1 /* $NetBSD: udf_subr.c,v 1.153 2021/04/13 06:25:49 mrg Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.153 2021/04/13 06:25:49 mrg Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref((vp)); \ 77 vput((vp)); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 uint64_t psize; 192 unsigned secsize; 193 struct mmc_discinfo *di; 194 int error; 195 196 DPRINTF(VOLUMES, ("read/update disc info\n")); 197 di = &ump->discinfo; 198 memset(di, 0, sizeof(struct mmc_discinfo)); 199 200 /* check if we're on a MMC capable device, i.e. CD/DVD */ 201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 202 if (error == 0) { 203 udf_dump_discinfo(ump); 204 return 0; 205 } 206 207 /* disc partition support */ 208 error = getdisksize(devvp, &psize, &secsize); 209 if (error) 210 return error; 211 212 /* set up a disc info profile for partitions */ 213 di->mmc_profile = 0x01; /* disc type */ 214 di->mmc_class = MMC_CLASS_DISC; 215 di->disc_state = MMC_STATE_CLOSED; 216 di->last_session_state = MMC_STATE_CLOSED; 217 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 218 di->link_block_penalty = 0; 219 220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 222 di->mmc_cap = di->mmc_cur; 223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 224 225 /* TODO problem with last_possible_lba on resizable VND; request */ 226 di->last_possible_lba = psize; 227 di->sector_size = secsize; 228 229 di->num_sessions = 1; 230 di->num_tracks = 1; 231 232 di->first_track = 1; 233 di->first_track_last_session = di->last_track_last_session = 1; 234 235 udf_dump_discinfo(ump); 236 return 0; 237 } 238 239 240 int 241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 242 { 243 struct vnode *devvp = ump->devvp; 244 struct mmc_discinfo *di = &ump->discinfo; 245 int error, class; 246 247 DPRINTF(VOLUMES, ("read track info\n")); 248 249 class = di->mmc_class; 250 if (class != MMC_CLASS_DISC) { 251 /* tracknr specified in struct ti */ 252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 253 return error; 254 } 255 256 /* disc partition support */ 257 if (ti->tracknr != 1) 258 return EIO; 259 260 /* create fake ti (TODO check for resized vnds) */ 261 ti->sessionnr = 1; 262 263 ti->track_mode = 0; /* XXX */ 264 ti->data_mode = 0; /* XXX */ 265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 266 267 ti->track_start = 0; 268 ti->packet_size = 1; 269 270 /* TODO support for resizable vnd */ 271 ti->track_size = di->last_possible_lba; 272 ti->next_writable = di->last_possible_lba; 273 ti->last_recorded = ti->next_writable; 274 ti->free_blocks = 0; 275 276 return 0; 277 } 278 279 280 int 281 udf_setup_writeparams(struct udf_mount *ump) 282 { 283 struct mmc_writeparams mmc_writeparams; 284 int error; 285 286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 287 return 0; 288 289 /* 290 * only CD burning normally needs setting up, but other disc types 291 * might need other settings to be made. The MMC framework will set up 292 * the nessisary recording parameters according to the disc 293 * characteristics read in. Modifications can be made in the discinfo 294 * structure passed to change the nature of the disc. 295 */ 296 297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 300 301 /* 302 * UDF dictates first track to determine track mode for the whole 303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 304 * To prevent problems with a `reserved' track in front we start with 305 * the 2nd track and if that is not valid, go for the 1st. 306 */ 307 mmc_writeparams.tracknr = 2; 308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 310 311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 312 FKIOCTL, NOCRED); 313 if (error) { 314 mmc_writeparams.tracknr = 1; 315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 316 &mmc_writeparams, FKIOCTL, NOCRED); 317 } 318 return error; 319 } 320 321 322 void 323 udf_mmc_synchronise_caches(struct udf_mount *ump) 324 { 325 struct mmc_op mmc_op; 326 327 DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n")); 328 329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 330 return; 331 332 /* discs are done now */ 333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 334 return; 335 336 memset(&mmc_op, 0, sizeof(struct mmc_op)); 337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 338 339 /* ignore return code */ 340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 341 } 342 343 /* --------------------------------------------------------------------- */ 344 345 /* track/session searching for mounting */ 346 int 347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 348 int *first_tracknr, int *last_tracknr) 349 { 350 struct mmc_trackinfo trackinfo; 351 uint32_t tracknr, start_track, num_tracks; 352 int error; 353 354 /* if negative, sessionnr is relative to last session */ 355 if (args->sessionnr < 0) { 356 args->sessionnr += ump->discinfo.num_sessions; 357 } 358 359 /* sanity */ 360 if (args->sessionnr < 0) 361 args->sessionnr = 0; 362 if (args->sessionnr > ump->discinfo.num_sessions) 363 args->sessionnr = ump->discinfo.num_sessions; 364 365 /* search the tracks for this session, zero session nr indicates last */ 366 if (args->sessionnr == 0) 367 args->sessionnr = ump->discinfo.num_sessions; 368 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 369 args->sessionnr--; 370 371 /* sanity again */ 372 if (args->sessionnr < 0) 373 args->sessionnr = 0; 374 375 /* search the first and last track of the specified session */ 376 num_tracks = ump->discinfo.num_tracks; 377 start_track = ump->discinfo.first_track; 378 379 /* search for first track of this session */ 380 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 381 /* get track info */ 382 trackinfo.tracknr = tracknr; 383 error = udf_update_trackinfo(ump, &trackinfo); 384 if (error) 385 return error; 386 387 if (trackinfo.sessionnr == args->sessionnr) 388 break; 389 } 390 *first_tracknr = tracknr; 391 392 /* search for last track of this session */ 393 for (;tracknr <= num_tracks; tracknr++) { 394 /* get track info */ 395 trackinfo.tracknr = tracknr; 396 error = udf_update_trackinfo(ump, &trackinfo); 397 if (error || (trackinfo.sessionnr != args->sessionnr)) { 398 tracknr--; 399 break; 400 } 401 } 402 if (tracknr > num_tracks) 403 tracknr--; 404 405 *last_tracknr = tracknr; 406 407 if (*last_tracknr < *first_tracknr) { 408 printf( "udf_search_tracks: sanity check on drive+disc failed, " 409 "drive returned garbage\n"); 410 return EINVAL; 411 } 412 413 assert(*last_tracknr >= *first_tracknr); 414 return 0; 415 } 416 417 418 /* 419 * NOTE: this is the only routine in this file that directly peeks into the 420 * metadata file but since its at a larval state of the mount it can't hurt. 421 * 422 * XXX candidate for udf_allocation.c 423 * XXX clean me up!, change to new node reading code. 424 */ 425 426 static void 427 udf_check_track_metadata_overlap(struct udf_mount *ump, 428 struct mmc_trackinfo *trackinfo) 429 { 430 struct part_desc *part; 431 struct file_entry *fe; 432 struct extfile_entry *efe; 433 struct short_ad *s_ad; 434 struct long_ad *l_ad; 435 uint32_t track_start, track_end; 436 uint32_t phys_part_start, phys_part_end, part_start, part_end; 437 uint32_t sector_size, len, alloclen, plb_num; 438 uint8_t *pos; 439 int addr_type, icblen, icbflags; 440 441 /* get our track extents */ 442 track_start = trackinfo->track_start; 443 track_end = track_start + trackinfo->track_size; 444 445 /* get our base partition extent */ 446 KASSERT(ump->node_part == ump->fids_part); 447 part = ump->partitions[ump->vtop[ump->node_part]]; 448 phys_part_start = udf_rw32(part->start_loc); 449 phys_part_end = phys_part_start + udf_rw32(part->part_len); 450 451 /* no use if its outside the physical partition */ 452 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 453 return; 454 455 /* 456 * now follow all extents in the fe/efe to see if they refer to this 457 * track 458 */ 459 460 sector_size = ump->discinfo.sector_size; 461 462 /* XXX should we claim exclusive access to the metafile ? */ 463 /* TODO: move to new node read code */ 464 fe = ump->metadata_node->fe; 465 efe = ump->metadata_node->efe; 466 if (fe) { 467 alloclen = udf_rw32(fe->l_ad); 468 pos = &fe->data[0] + udf_rw32(fe->l_ea); 469 icbflags = udf_rw16(fe->icbtag.flags); 470 } else { 471 assert(efe); 472 alloclen = udf_rw32(efe->l_ad); 473 pos = &efe->data[0] + udf_rw32(efe->l_ea); 474 icbflags = udf_rw16(efe->icbtag.flags); 475 } 476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 477 478 while (alloclen) { 479 if (addr_type == UDF_ICB_SHORT_ALLOC) { 480 icblen = sizeof(struct short_ad); 481 s_ad = (struct short_ad *) pos; 482 len = udf_rw32(s_ad->len); 483 plb_num = udf_rw32(s_ad->lb_num); 484 } else { 485 /* should not be present, but why not */ 486 icblen = sizeof(struct long_ad); 487 l_ad = (struct long_ad *) pos; 488 len = udf_rw32(l_ad->len); 489 plb_num = udf_rw32(l_ad->loc.lb_num); 490 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 491 } 492 /* process extent */ 493 len = UDF_EXT_LEN(len); 494 495 part_start = phys_part_start + plb_num; 496 part_end = part_start + (len / sector_size); 497 498 if ((part_start >= track_start) && (part_end <= track_end)) { 499 /* extent is enclosed within this track */ 500 ump->metadata_track = *trackinfo; 501 return; 502 } 503 504 pos += icblen; 505 alloclen -= icblen; 506 } 507 } 508 509 510 int 511 udf_search_writing_tracks(struct udf_mount *ump) 512 { 513 struct vnode *devvp = ump->devvp; 514 struct mmc_trackinfo trackinfo; 515 struct mmc_op mmc_op; 516 struct part_desc *part; 517 uint32_t tracknr, start_track, num_tracks; 518 uint32_t track_start, track_end, part_start, part_end; 519 int node_alloc, error; 520 521 /* 522 * in the CD/(HD)DVD/BD recordable device model a few tracks within 523 * the last session might be open but in the UDF device model at most 524 * three tracks can be open: a reserved track for delayed ISO VRS 525 * writing, a data track and a metadata track. We search here for the 526 * data track and the metadata track. Note that the reserved track is 527 * troublesome but can be detected by its small size of < 512 sectors. 528 */ 529 530 /* update discinfo since it might have changed */ 531 error = udf_update_discinfo(ump); 532 if (error) 533 return error; 534 535 num_tracks = ump->discinfo.num_tracks; 536 start_track = ump->discinfo.first_track; 537 538 /* fetch info on first and possibly only track */ 539 trackinfo.tracknr = start_track; 540 error = udf_update_trackinfo(ump, &trackinfo); 541 if (error) 542 return error; 543 544 /* copy results to our mount point */ 545 ump->data_track = trackinfo; 546 ump->metadata_track = trackinfo; 547 548 /* if not sequential, we're done */ 549 if (num_tracks == 1) 550 return 0; 551 552 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 553 /* get track info */ 554 trackinfo.tracknr = tracknr; 555 error = udf_update_trackinfo(ump, &trackinfo); 556 if (error) 557 return error; 558 559 /* 560 * If this track is marked damaged, ask for repair. This is an 561 * optional command, so ignore its error but report warning. 562 */ 563 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 564 memset(&mmc_op, 0, sizeof(mmc_op)); 565 mmc_op.operation = MMC_OP_REPAIRTRACK; 566 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 567 mmc_op.tracknr = tracknr; 568 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 569 if (error) 570 (void)printf("Drive can't explicitly repair " 571 "damaged track %d, but it might " 572 "autorepair\n", tracknr); 573 574 /* reget track info */ 575 error = udf_update_trackinfo(ump, &trackinfo); 576 if (error) 577 return error; 578 } 579 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 580 continue; 581 582 track_start = trackinfo.track_start; 583 track_end = track_start + trackinfo.track_size; 584 585 /* check for overlap on data partition */ 586 part = ump->partitions[ump->data_part]; 587 part_start = udf_rw32(part->start_loc); 588 part_end = part_start + udf_rw32(part->part_len); 589 if ((part_start < track_end) && (part_end > track_start)) { 590 ump->data_track = trackinfo; 591 /* TODO check if UDF partition data_part is writable */ 592 } 593 594 /* check for overlap on metadata partition */ 595 node_alloc = ump->vtop_alloc[ump->node_part]; 596 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 597 (node_alloc == UDF_ALLOC_METABITMAP)) { 598 udf_check_track_metadata_overlap(ump, &trackinfo); 599 } else { 600 ump->metadata_track = trackinfo; 601 } 602 } 603 604 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 605 return EROFS; 606 607 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 608 return EROFS; 609 610 return 0; 611 } 612 613 /* --------------------------------------------------------------------- */ 614 615 /* 616 * Check if the blob starts with a good UDF tag. Tags are protected by a 617 * checksum over the reader except one byte at position 4 that is the checksum 618 * itself. 619 */ 620 621 int 622 udf_check_tag(void *blob) 623 { 624 struct desc_tag *tag = blob; 625 uint8_t *pos, sum, cnt; 626 627 /* check TAG header checksum */ 628 pos = (uint8_t *) tag; 629 sum = 0; 630 631 for(cnt = 0; cnt < 16; cnt++) { 632 if (cnt != 4) 633 sum += *pos; 634 pos++; 635 } 636 if (sum != tag->cksum) { 637 /* bad tag header checksum; this is not a valid tag */ 638 return EINVAL; 639 } 640 641 return 0; 642 } 643 644 645 /* 646 * check tag payload will check descriptor CRC as specified. 647 * If the descriptor is too long, it will return EIO otherwise EINVAL. 648 */ 649 650 int 651 udf_check_tag_payload(void *blob, uint32_t max_length) 652 { 653 struct desc_tag *tag = blob; 654 uint16_t crc, crc_len; 655 656 crc_len = udf_rw16(tag->desc_crc_len); 657 658 /* check payload CRC if applicable */ 659 if (crc_len == 0) 660 return 0; 661 662 if (crc_len > max_length) 663 return EIO; 664 665 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 666 if (crc != udf_rw16(tag->desc_crc)) { 667 /* bad payload CRC; this is a broken tag */ 668 return EINVAL; 669 } 670 671 return 0; 672 } 673 674 675 void 676 udf_validate_tag_sum(void *blob) 677 { 678 struct desc_tag *tag = blob; 679 uint8_t *pos, sum, cnt; 680 681 /* calculate TAG header checksum */ 682 pos = (uint8_t *) tag; 683 sum = 0; 684 685 for(cnt = 0; cnt < 16; cnt++) { 686 if (cnt != 4) sum += *pos; 687 pos++; 688 } 689 tag->cksum = sum; /* 8 bit */ 690 } 691 692 693 /* assumes sector number of descriptor to be saved already present */ 694 void 695 udf_validate_tag_and_crc_sums(void *blob) 696 { 697 struct desc_tag *tag = blob; 698 uint8_t *btag = (uint8_t *) tag; 699 uint16_t crc, crc_len; 700 701 crc_len = udf_rw16(tag->desc_crc_len); 702 703 /* check payload CRC if applicable */ 704 if (crc_len > 0) { 705 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 706 tag->desc_crc = udf_rw16(crc); 707 } 708 709 /* calculate TAG header checksum */ 710 udf_validate_tag_sum(blob); 711 } 712 713 /* --------------------------------------------------------------------- */ 714 715 /* 716 * XXX note the different semantics from udfclient: for FIDs it still rounds 717 * up to sectors. Use udf_fidsize() for a correct length. 718 */ 719 720 int 721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 722 { 723 uint32_t size, tag_id, num_lb, elmsz; 724 725 tag_id = udf_rw16(dscr->tag.id); 726 727 switch (tag_id) { 728 case TAGID_LOGVOL : 729 size = sizeof(struct logvol_desc) - 1; 730 size += udf_rw32(dscr->lvd.mt_l); 731 break; 732 case TAGID_UNALLOC_SPACE : 733 elmsz = sizeof(struct extent_ad); 734 size = sizeof(struct unalloc_sp_desc) - elmsz; 735 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 736 break; 737 case TAGID_FID : 738 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 739 size = (size + 3) & ~3; 740 break; 741 case TAGID_LOGVOL_INTEGRITY : 742 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 743 size += udf_rw32(dscr->lvid.l_iu); 744 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 745 break; 746 case TAGID_SPACE_BITMAP : 747 size = sizeof(struct space_bitmap_desc) - 1; 748 size += udf_rw32(dscr->sbd.num_bytes); 749 break; 750 case TAGID_SPARING_TABLE : 751 elmsz = sizeof(struct spare_map_entry); 752 size = sizeof(struct udf_sparing_table) - elmsz; 753 size += udf_rw16(dscr->spt.rt_l) * elmsz; 754 break; 755 case TAGID_FENTRY : 756 size = sizeof(struct file_entry); 757 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 758 break; 759 case TAGID_EXTFENTRY : 760 size = sizeof(struct extfile_entry); 761 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 762 break; 763 case TAGID_FSD : 764 size = sizeof(struct fileset_desc); 765 break; 766 default : 767 size = sizeof(union dscrptr); 768 break; 769 } 770 771 if ((size == 0) || (lb_size == 0)) 772 return 0; 773 774 if (lb_size == 1) 775 return size; 776 777 /* round up in sectors */ 778 num_lb = (size + lb_size -1) / lb_size; 779 return num_lb * lb_size; 780 } 781 782 783 int 784 udf_fidsize(struct fileid_desc *fid) 785 { 786 uint32_t size; 787 788 if (udf_rw16(fid->tag.id) != TAGID_FID) 789 panic("got udf_fidsize on non FID\n"); 790 791 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 792 size = (size + 3) & ~3; 793 794 return size; 795 } 796 797 /* --------------------------------------------------------------------- */ 798 799 void 800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 801 { 802 int ret; 803 804 mutex_enter(&udf_node->node_mutex); 805 /* wait until free */ 806 while (udf_node->i_flags & IN_LOCKED) { 807 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 808 /* TODO check if we should return error; abort */ 809 if (ret == EWOULDBLOCK) { 810 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 811 "wanted at %s:%d, previously locked at %s:%d\n", 812 udf_node, fname, lineno, 813 udf_node->lock_fname, udf_node->lock_lineno)); 814 } 815 } 816 /* grab */ 817 udf_node->i_flags |= IN_LOCKED | flag; 818 /* debug */ 819 udf_node->lock_fname = fname; 820 udf_node->lock_lineno = lineno; 821 822 mutex_exit(&udf_node->node_mutex); 823 } 824 825 826 void 827 udf_unlock_node(struct udf_node *udf_node, int flag) 828 { 829 mutex_enter(&udf_node->node_mutex); 830 udf_node->i_flags &= ~(IN_LOCKED | flag); 831 cv_broadcast(&udf_node->node_lock); 832 mutex_exit(&udf_node->node_mutex); 833 } 834 835 836 /* --------------------------------------------------------------------- */ 837 838 static int 839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 840 { 841 int error; 842 843 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 844 (union dscrptr **) dst); 845 if (!error) { 846 /* blank terminator blocks are not allowed here */ 847 if (*dst == NULL) 848 return ENOENT; 849 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 850 error = ENOENT; 851 free(*dst, M_UDFVOLD); 852 *dst = NULL; 853 DPRINTF(VOLUMES, ("Not an anchor\n")); 854 } 855 } 856 857 return error; 858 } 859 860 861 int 862 udf_read_anchors(struct udf_mount *ump) 863 { 864 struct udf_args *args = &ump->mount_args; 865 struct mmc_trackinfo first_track; 866 struct mmc_trackinfo second_track; 867 struct mmc_trackinfo last_track; 868 struct anchor_vdp **anchorsp; 869 uint32_t track_start; 870 uint32_t track_end; 871 uint32_t positions[4]; 872 int first_tracknr, last_tracknr; 873 int error, anch, ok, first_anchor; 874 875 /* search the first and last track of the specified session */ 876 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 877 if (!error) { 878 first_track.tracknr = first_tracknr; 879 error = udf_update_trackinfo(ump, &first_track); 880 } 881 if (!error) { 882 last_track.tracknr = last_tracknr; 883 error = udf_update_trackinfo(ump, &last_track); 884 } 885 if ((!error) && (first_tracknr != last_tracknr)) { 886 second_track.tracknr = first_tracknr+1; 887 error = udf_update_trackinfo(ump, &second_track); 888 } 889 if (error) { 890 printf("UDF mount: reading disc geometry failed\n"); 891 return 0; 892 } 893 894 track_start = first_track.track_start; 895 896 /* `end' is not as straitforward as start. */ 897 track_end = last_track.track_start 898 + last_track.track_size - last_track.free_blocks - 1; 899 900 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 901 /* end of track is not straitforward here */ 902 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 903 track_end = last_track.last_recorded; 904 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 905 track_end = last_track.next_writable 906 - ump->discinfo.link_block_penalty; 907 } 908 909 /* its no use reading a blank track */ 910 first_anchor = 0; 911 if (first_track.flags & MMC_TRACKINFO_BLANK) 912 first_anchor = 1; 913 914 /* get our packet size */ 915 ump->packet_size = first_track.packet_size; 916 if (first_track.flags & MMC_TRACKINFO_BLANK) 917 ump->packet_size = second_track.packet_size; 918 919 if (ump->packet_size <= 1) { 920 /* take max, but not bigger than 64 */ 921 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 922 ump->packet_size = MIN(ump->packet_size, 64); 923 } 924 KASSERT(ump->packet_size >= 1); 925 926 /* read anchors start+256, start+512, end-256, end */ 927 positions[0] = track_start+256; 928 positions[1] = track_end-256; 929 positions[2] = track_end; 930 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 931 /* XXX shouldn't +512 be preferred over +256 for compat with Roxio CD */ 932 933 ok = 0; 934 anchorsp = ump->anchors; 935 for (anch = first_anchor; anch < 4; anch++) { 936 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 937 positions[anch])); 938 error = udf_read_anchor(ump, positions[anch], anchorsp); 939 if (!error) { 940 anchorsp++; 941 ok++; 942 } 943 } 944 945 /* VATs are only recorded on sequential media, but initialise */ 946 ump->first_possible_vat_location = track_start + 2; 947 ump->last_possible_vat_location = track_end; 948 949 return ok; 950 } 951 952 /* --------------------------------------------------------------------- */ 953 954 int 955 udf_get_c_type(struct udf_node *udf_node) 956 { 957 int isdir, what; 958 959 isdir = (udf_node->vnode->v_type == VDIR); 960 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 961 962 if (udf_node->ump) 963 if (udf_node == udf_node->ump->metadatabitmap_node) 964 what = UDF_C_METADATA_SBM; 965 966 return what; 967 } 968 969 970 int 971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) 972 { 973 int vpart_num; 974 975 vpart_num = ump->data_part; 976 if (udf_c_type == UDF_C_NODE) 977 vpart_num = ump->node_part; 978 if (udf_c_type == UDF_C_FIDS) 979 vpart_num = ump->fids_part; 980 981 return vpart_num; 982 } 983 984 985 /* 986 * BUGALERT: some rogue implementations use random physical partition 987 * numbers to break other implementations so lookup the number. 988 */ 989 990 static uint16_t 991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part) 992 { 993 struct part_desc *part; 994 uint16_t phys_part; 995 996 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 997 part = ump->partitions[phys_part]; 998 if (part == NULL) 999 break; 1000 if (udf_rw16(part->part_num) == raw_phys_part) 1001 break; 1002 } 1003 return phys_part; 1004 } 1005 1006 /* --------------------------------------------------------------------- */ 1007 1008 /* we dont try to be smart; we just record the parts */ 1009 #define UDF_UPDATE_DSCR(name, dscr) \ 1010 if (name) \ 1011 free(name, M_UDFVOLD); \ 1012 name = dscr; 1013 1014 static int 1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 1016 { 1017 uint16_t phys_part, raw_phys_part; 1018 1019 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 1020 udf_rw16(dscr->tag.id))); 1021 switch (udf_rw16(dscr->tag.id)) { 1022 case TAGID_PRI_VOL : /* primary partition */ 1023 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 1024 break; 1025 case TAGID_LOGVOL : /* logical volume */ 1026 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 1027 break; 1028 case TAGID_UNALLOC_SPACE : /* unallocated space */ 1029 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 1030 break; 1031 case TAGID_IMP_VOL : /* implementation */ 1032 /* XXX do we care about multiple impl. descr ? */ 1033 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 1034 break; 1035 case TAGID_PARTITION : /* physical partition */ 1036 /* not much use if its not allocated */ 1037 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 1038 free(dscr, M_UDFVOLD); 1039 break; 1040 } 1041 1042 /* 1043 * BUGALERT: some rogue implementations use random physical 1044 * partition numbers to break other implementations so lookup 1045 * the number. 1046 */ 1047 raw_phys_part = udf_rw16(dscr->pd.part_num); 1048 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1049 1050 if (phys_part == UDF_PARTITIONS) { 1051 free(dscr, M_UDFVOLD); 1052 return EINVAL; 1053 } 1054 1055 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1056 break; 1057 case TAGID_VOL : /* volume space extender; rare */ 1058 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1059 free(dscr, M_UDFVOLD); 1060 break; 1061 default : 1062 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1063 udf_rw16(dscr->tag.id))); 1064 free(dscr, M_UDFVOLD); 1065 } 1066 1067 return 0; 1068 } 1069 #undef UDF_UPDATE_DSCR 1070 1071 /* --------------------------------------------------------------------- */ 1072 1073 static int 1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1075 { 1076 union dscrptr *dscr; 1077 uint32_t sector_size, dscr_size; 1078 int error; 1079 1080 sector_size = ump->discinfo.sector_size; 1081 1082 /* loc is sectornr, len is in bytes */ 1083 error = EIO; 1084 while (len) { 1085 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1086 if (error) 1087 return error; 1088 1089 /* blank block is a terminator */ 1090 if (dscr == NULL) 1091 return 0; 1092 1093 /* TERM descriptor is a terminator */ 1094 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1095 free(dscr, M_UDFVOLD); 1096 return 0; 1097 } 1098 1099 /* process all others */ 1100 dscr_size = udf_tagsize(dscr, sector_size); 1101 error = udf_process_vds_descriptor(ump, dscr); 1102 if (error) { 1103 free(dscr, M_UDFVOLD); 1104 break; 1105 } 1106 assert((dscr_size % sector_size) == 0); 1107 1108 len -= dscr_size; 1109 loc += dscr_size / sector_size; 1110 } 1111 1112 return error; 1113 } 1114 1115 1116 int 1117 udf_read_vds_space(struct udf_mount *ump) 1118 { 1119 /* struct udf_args *args = &ump->mount_args; */ 1120 struct anchor_vdp *anchor, *anchor2; 1121 size_t size; 1122 uint32_t main_loc, main_len; 1123 uint32_t reserve_loc, reserve_len; 1124 int error; 1125 1126 /* 1127 * read in VDS space provided by the anchors; if one descriptor read 1128 * fails, try the mirror sector. 1129 * 1130 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1131 * avoids the `compatibility features' of DirectCD that may confuse 1132 * stuff completely. 1133 */ 1134 1135 anchor = ump->anchors[0]; 1136 anchor2 = ump->anchors[1]; 1137 assert(anchor); 1138 1139 if (anchor2) { 1140 size = sizeof(struct extent_ad); 1141 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1142 anchor = anchor2; 1143 /* reserve is specified to be a literal copy of main */ 1144 } 1145 1146 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1147 main_len = udf_rw32(anchor->main_vds_ex.len); 1148 1149 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1150 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1151 1152 error = udf_read_vds_extent(ump, main_loc, main_len); 1153 if (error) { 1154 printf("UDF mount: reading in reserve VDS extent\n"); 1155 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1156 } 1157 1158 return error; 1159 } 1160 1161 /* --------------------------------------------------------------------- */ 1162 1163 /* 1164 * Read in the logical volume integrity sequence pointed to by our logical 1165 * volume descriptor. Its a sequence that can be extended using fields in the 1166 * integrity descriptor itself. On sequential media only one is found, on 1167 * rewritable media a sequence of descriptors can be found as a form of 1168 * history keeping and on non sequential write-once media the chain is vital 1169 * to allow more and more descriptors to be written. The last descriptor 1170 * written in an extent needs to claim space for a new extent. 1171 */ 1172 1173 static int 1174 udf_retrieve_lvint(struct udf_mount *ump) 1175 { 1176 union dscrptr *dscr; 1177 struct logvol_int_desc *lvint; 1178 struct udf_lvintq *trace; 1179 uint32_t lb_size, lbnum, len; 1180 int dscr_type, error, trace_len; 1181 1182 lb_size = udf_rw32(ump->logical_vol->lb_size); 1183 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1184 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1185 1186 /* clean trace */ 1187 memset(ump->lvint_trace, 0, 1188 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1189 1190 trace_len = 0; 1191 trace = ump->lvint_trace; 1192 trace->start = lbnum; 1193 trace->end = lbnum + len/lb_size; 1194 trace->pos = 0; 1195 trace->wpos = 0; 1196 1197 lvint = NULL; 1198 dscr = NULL; 1199 error = 0; 1200 while (len) { 1201 trace->pos = lbnum - trace->start; 1202 trace->wpos = trace->pos + 1; 1203 1204 /* read in our integrity descriptor */ 1205 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1206 if (!error) { 1207 if (dscr == NULL) { 1208 trace->wpos = trace->pos; 1209 break; /* empty terminates */ 1210 } 1211 dscr_type = udf_rw16(dscr->tag.id); 1212 if (dscr_type == TAGID_TERM) { 1213 trace->wpos = trace->pos; 1214 break; /* clean terminator */ 1215 } 1216 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1217 /* fatal... corrupt disc */ 1218 error = ENOENT; 1219 break; 1220 } 1221 if (lvint) 1222 free(lvint, M_UDFVOLD); 1223 lvint = &dscr->lvid; 1224 dscr = NULL; 1225 } /* else hope for the best... maybe the next is ok */ 1226 1227 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1228 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1229 1230 /* proceed sequential */ 1231 lbnum += 1; 1232 len -= lb_size; 1233 1234 /* are we linking to a new piece? */ 1235 if (dscr && lvint->next_extent.len) { 1236 len = udf_rw32(lvint->next_extent.len); 1237 lbnum = udf_rw32(lvint->next_extent.loc); 1238 1239 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1240 /* IEK! segment link full... */ 1241 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1242 error = EINVAL; 1243 } else { 1244 trace++; 1245 trace_len++; 1246 1247 trace->start = lbnum; 1248 trace->end = lbnum + len/lb_size; 1249 trace->pos = 0; 1250 trace->wpos = 0; 1251 } 1252 } 1253 } 1254 1255 /* clean up the mess, esp. when there is an error */ 1256 if (dscr) 1257 free(dscr, M_UDFVOLD); 1258 1259 if (error && lvint) { 1260 free(lvint, M_UDFVOLD); 1261 lvint = NULL; 1262 } 1263 1264 if (!lvint) 1265 error = ENOENT; 1266 1267 ump->logvol_integrity = lvint; 1268 return error; 1269 } 1270 1271 1272 static int 1273 udf_loose_lvint_history(struct udf_mount *ump) 1274 { 1275 union dscrptr **bufs, *dscr, *last_dscr; 1276 struct udf_lvintq *trace, *in_trace, *out_trace; 1277 struct logvol_int_desc *lvint; 1278 uint32_t in_ext, in_pos, in_len; 1279 uint32_t out_ext, out_wpos, out_len; 1280 uint32_t lb_num; 1281 uint32_t len, start; 1282 int ext, sumext, extlen, cnt, cpy_len, dscr_type; 1283 int losing; 1284 int error; 1285 1286 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1287 1288 /* search smallest extent */ 1289 trace = &ump->lvint_trace[0]; 1290 sumext = trace->end - trace->start; 1291 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1292 trace = &ump->lvint_trace[ext]; 1293 extlen = trace->end - trace->start; 1294 if (extlen == 0) 1295 break; 1296 sumext += extlen; 1297 } 1298 1299 /* just one element? its not legal but be bug compatible */ 1300 if (sumext == 1) { 1301 /* overwrite the only entry */ 1302 DPRINTF(VOLUMES, ("\tLinux bugcompat overwriting sole entry\n")); 1303 trace = &ump->lvint_trace[0]; 1304 trace->wpos = 0; 1305 return 0; 1306 } 1307 1308 losing = MIN(sumext, UDF_LVINT_LOSSAGE); 1309 1310 /* no sense wiping too much */ 1311 if (sumext == UDF_LVINT_LOSSAGE) 1312 losing = UDF_LVINT_LOSSAGE/2; 1313 1314 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1315 1316 /* get buffer for pieces */ 1317 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1318 1319 in_ext = 0; 1320 in_pos = losing; 1321 in_trace = &ump->lvint_trace[in_ext]; 1322 in_len = in_trace->end - in_trace->start; 1323 out_ext = 0; 1324 out_wpos = 0; 1325 out_trace = &ump->lvint_trace[out_ext]; 1326 out_len = out_trace->end - out_trace->start; 1327 1328 last_dscr = NULL; 1329 for(;;) { 1330 out_trace->pos = out_wpos; 1331 out_trace->wpos = out_trace->pos; 1332 if (in_pos >= in_len) { 1333 in_ext++; 1334 in_pos = 0; 1335 in_trace = &ump->lvint_trace[in_ext]; 1336 in_len = in_trace->end - in_trace->start; 1337 } 1338 if (out_wpos >= out_len) { 1339 out_ext++; 1340 out_wpos = 0; 1341 out_trace = &ump->lvint_trace[out_ext]; 1342 out_len = out_trace->end - out_trace->start; 1343 } 1344 /* copy overlap contents */ 1345 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1346 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1347 if (cpy_len == 0) 1348 break; 1349 1350 /* copy */ 1351 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1352 for (cnt = 0; cnt < cpy_len; cnt++) { 1353 /* read in our integrity descriptor */ 1354 lb_num = in_trace->start + in_pos + cnt; 1355 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1356 &dscr); 1357 if (error) { 1358 /* copy last one */ 1359 dscr = last_dscr; 1360 } 1361 bufs[cnt] = dscr; 1362 if (!error) { 1363 if (dscr == NULL) { 1364 out_trace->pos = out_wpos + cnt; 1365 out_trace->wpos = out_trace->pos; 1366 break; /* empty terminates */ 1367 } 1368 dscr_type = udf_rw16(dscr->tag.id); 1369 if (dscr_type == TAGID_TERM) { 1370 out_trace->pos = out_wpos + cnt; 1371 out_trace->wpos = out_trace->pos; 1372 break; /* clean terminator */ 1373 } 1374 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1375 panic( "UDF integrity sequence " 1376 "corrupted while mounted!\n"); 1377 } 1378 last_dscr = dscr; 1379 } 1380 } 1381 1382 /* patch up if first entry was on error */ 1383 if (bufs[0] == NULL) { 1384 for (cnt = 0; cnt < cpy_len; cnt++) 1385 if (bufs[cnt] != NULL) 1386 break; 1387 last_dscr = bufs[cnt]; 1388 for (; cnt > 0; cnt--) { 1389 bufs[cnt] = last_dscr; 1390 } 1391 } 1392 1393 /* glue + write out */ 1394 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1395 for (cnt = 0; cnt < cpy_len; cnt++) { 1396 lb_num = out_trace->start + out_wpos + cnt; 1397 lvint = &bufs[cnt]->lvid; 1398 1399 /* set continuation */ 1400 len = 0; 1401 start = 0; 1402 if (out_wpos + cnt == out_len) { 1403 /* get continuation */ 1404 trace = &ump->lvint_trace[out_ext+1]; 1405 len = trace->end - trace->start; 1406 start = trace->start; 1407 } 1408 lvint->next_extent.len = udf_rw32(len); 1409 lvint->next_extent.loc = udf_rw32(start); 1410 1411 lb_num = trace->start + trace->wpos; 1412 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1413 bufs[cnt], lb_num, lb_num); 1414 DPRINTFIF(VOLUMES, error, 1415 ("error writing lvint lb_num\n")); 1416 } 1417 1418 /* free non repeating descriptors */ 1419 last_dscr = NULL; 1420 for (cnt = 0; cnt < cpy_len; cnt++) { 1421 if (bufs[cnt] != last_dscr) 1422 free(bufs[cnt], M_UDFVOLD); 1423 last_dscr = bufs[cnt]; 1424 } 1425 1426 /* advance */ 1427 in_pos += cpy_len; 1428 out_wpos += cpy_len; 1429 } 1430 1431 free(bufs, M_TEMP); 1432 1433 return 0; 1434 } 1435 1436 1437 static int 1438 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1439 { 1440 struct udf_lvintq *trace; 1441 struct timeval now_v; 1442 struct timespec now_s; 1443 uint32_t sector; 1444 int logvol_integrity; 1445 int space, error; 1446 1447 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1448 1449 /* get free space in last chunk */ 1450 trace = ump->lvint_trace; 1451 while (trace->wpos > (trace->end - trace->start)) { 1452 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1453 "wpos = %d\n", trace->start, trace->end, 1454 trace->pos, trace->wpos)); 1455 trace++; 1456 } 1457 1458 /* check if there is space to append */ 1459 space = (trace->end - trace->start) - trace->wpos; 1460 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1461 "space = %d\n", trace->start, trace->end, trace->pos, 1462 trace->wpos, space)); 1463 1464 /* get state */ 1465 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1466 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1467 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1468 /* TODO extent LVINT space if possible */ 1469 return EROFS; 1470 } 1471 } 1472 1473 if (space < 1) { 1474 if (lvflag & UDF_APPENDONLY_LVINT) 1475 return EROFS; 1476 1477 /* loose history by re-writing extents */ 1478 error = udf_loose_lvint_history(ump); 1479 if (error) 1480 return error; 1481 1482 trace = ump->lvint_trace; 1483 while (trace->wpos > (trace->end - trace->start)) 1484 trace++; 1485 space = (trace->end - trace->start) - trace->wpos; 1486 DPRINTF(VOLUMES, ("new try: write start = %d, end = %d, " 1487 "pos = %d, wpos = %d, " 1488 "space = %d\n", trace->start, trace->end, 1489 trace->pos, trace->wpos, space)); 1490 } 1491 1492 /* update our integrity descriptor to identify us and timestamp it */ 1493 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1494 microtime(&now_v); 1495 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1496 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1497 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1498 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1499 1500 /* writeout integrity descriptor */ 1501 sector = trace->start + trace->wpos; 1502 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1503 (union dscrptr *) ump->logvol_integrity, 1504 sector, sector); 1505 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1506 if (error) 1507 return error; 1508 1509 /* advance write position */ 1510 trace->wpos++; space--; 1511 if (space >= 1) { 1512 /* append terminator */ 1513 sector = trace->start + trace->wpos; 1514 error = udf_write_terminator(ump, sector); 1515 1516 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1517 } 1518 1519 space = (trace->end - trace->start) - trace->wpos; 1520 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1521 "space = %d\n", trace->start, trace->end, trace->pos, 1522 trace->wpos, space)); 1523 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1524 "successfull\n")); 1525 1526 return error; 1527 } 1528 1529 /* --------------------------------------------------------------------- */ 1530 1531 static int 1532 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1533 { 1534 union dscrptr *dscr; 1535 /* struct udf_args *args = &ump->mount_args; */ 1536 struct part_desc *partd; 1537 struct part_hdr_desc *parthdr; 1538 struct udf_bitmap *bitmap; 1539 uint32_t phys_part; 1540 uint32_t lb_num, len; 1541 int error, dscr_type; 1542 1543 /* unallocated space map */ 1544 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1545 partd = ump->partitions[phys_part]; 1546 if (partd == NULL) 1547 continue; 1548 parthdr = &partd->_impl_use.part_hdr; 1549 1550 lb_num = udf_rw32(partd->start_loc); 1551 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1552 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1553 if (len == 0) 1554 continue; 1555 1556 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1557 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1558 if (!error && dscr) { 1559 /* analyse */ 1560 dscr_type = udf_rw16(dscr->tag.id); 1561 if (dscr_type == TAGID_SPACE_BITMAP) { 1562 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1563 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1564 1565 /* fill in ump->part_unalloc_bits */ 1566 bitmap = &ump->part_unalloc_bits[phys_part]; 1567 bitmap->blob = (uint8_t *) dscr; 1568 bitmap->bits = dscr->sbd.data; 1569 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1570 bitmap->pages = NULL; /* TODO */ 1571 bitmap->data_pos = 0; 1572 bitmap->metadata_pos = 0; 1573 } else { 1574 free(dscr, M_UDFVOLD); 1575 1576 printf( "UDF mount: error reading unallocated " 1577 "space bitmap\n"); 1578 return EROFS; 1579 } 1580 } else { 1581 /* blank not allowed */ 1582 printf("UDF mount: blank unallocated space bitmap\n"); 1583 return EROFS; 1584 } 1585 } 1586 1587 /* unallocated space table (not supported) */ 1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1589 partd = ump->partitions[phys_part]; 1590 if (partd == NULL) 1591 continue; 1592 parthdr = &partd->_impl_use.part_hdr; 1593 1594 len = udf_rw32(parthdr->unalloc_space_table.len); 1595 if (len) { 1596 printf("UDF mount: space tables not supported\n"); 1597 return EROFS; 1598 } 1599 } 1600 1601 /* freed space map */ 1602 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1603 partd = ump->partitions[phys_part]; 1604 if (partd == NULL) 1605 continue; 1606 parthdr = &partd->_impl_use.part_hdr; 1607 1608 /* freed space map */ 1609 lb_num = udf_rw32(partd->start_loc); 1610 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1611 len = udf_rw32(parthdr->freed_space_bitmap.len); 1612 if (len == 0) 1613 continue; 1614 1615 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1616 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1617 if (!error && dscr) { 1618 /* analyse */ 1619 dscr_type = udf_rw16(dscr->tag.id); 1620 if (dscr_type == TAGID_SPACE_BITMAP) { 1621 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1622 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1623 1624 /* fill in ump->part_freed_bits */ 1625 bitmap = &ump->part_unalloc_bits[phys_part]; 1626 bitmap->blob = (uint8_t *) dscr; 1627 bitmap->bits = dscr->sbd.data; 1628 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1629 bitmap->pages = NULL; /* TODO */ 1630 bitmap->data_pos = 0; 1631 bitmap->metadata_pos = 0; 1632 } else { 1633 free(dscr, M_UDFVOLD); 1634 1635 printf( "UDF mount: error reading freed " 1636 "space bitmap\n"); 1637 return EROFS; 1638 } 1639 } else { 1640 /* blank not allowed */ 1641 printf("UDF mount: blank freed space bitmap\n"); 1642 return EROFS; 1643 } 1644 } 1645 1646 /* freed space table (not supported) */ 1647 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1648 partd = ump->partitions[phys_part]; 1649 if (partd == NULL) 1650 continue; 1651 parthdr = &partd->_impl_use.part_hdr; 1652 1653 len = udf_rw32(parthdr->freed_space_table.len); 1654 if (len) { 1655 printf("UDF mount: space tables not supported\n"); 1656 return EROFS; 1657 } 1658 } 1659 1660 return 0; 1661 } 1662 1663 1664 /* TODO implement async writeout */ 1665 int 1666 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1667 { 1668 union dscrptr *dscr; 1669 /* struct udf_args *args = &ump->mount_args; */ 1670 struct part_desc *partd; 1671 struct part_hdr_desc *parthdr; 1672 uint32_t phys_part; 1673 uint32_t lb_num, len, ptov; 1674 int error_all, error; 1675 1676 error_all = 0; 1677 /* unallocated space map */ 1678 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1679 partd = ump->partitions[phys_part]; 1680 if (partd == NULL) 1681 continue; 1682 parthdr = &partd->_impl_use.part_hdr; 1683 1684 ptov = udf_rw32(partd->start_loc); 1685 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1686 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1687 if (len == 0) 1688 continue; 1689 1690 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1691 lb_num + ptov)); 1692 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1693 1694 /* force a sane minimum for descriptors CRC length */ 1695 /* see UDF 2.3.1.2 and 2.3.8.1 */ 1696 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP); 1697 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0) 1698 dscr->sbd.tag.desc_crc_len = udf_rw16(8); 1699 1700 /* write out space bitmap */ 1701 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1702 (union dscrptr *) dscr, 1703 ptov + lb_num, lb_num); 1704 if (error) { 1705 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1706 error_all = error; 1707 } 1708 } 1709 1710 /* freed space map */ 1711 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1712 partd = ump->partitions[phys_part]; 1713 if (partd == NULL) 1714 continue; 1715 parthdr = &partd->_impl_use.part_hdr; 1716 1717 /* freed space map */ 1718 ptov = udf_rw32(partd->start_loc); 1719 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1720 len = udf_rw32(parthdr->freed_space_bitmap.len); 1721 if (len == 0) 1722 continue; 1723 1724 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1725 lb_num + ptov)); 1726 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1727 1728 /* force a sane minimum for descriptors CRC length */ 1729 /* see UDF 2.3.1.2 and 2.3.8.1 */ 1730 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP); 1731 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0) 1732 dscr->sbd.tag.desc_crc_len = udf_rw16(8); 1733 1734 /* write out space bitmap */ 1735 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1736 (union dscrptr *) dscr, 1737 ptov + lb_num, lb_num); 1738 if (error) { 1739 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1740 error_all = error; 1741 } 1742 } 1743 1744 return error_all; 1745 } 1746 1747 1748 static int 1749 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1750 { 1751 struct udf_node *bitmap_node; 1752 union dscrptr *dscr; 1753 struct udf_bitmap *bitmap; 1754 uint64_t inflen; 1755 int error, dscr_type; 1756 1757 bitmap_node = ump->metadatabitmap_node; 1758 1759 /* only read in when metadata bitmap node is read in */ 1760 if (bitmap_node == NULL) 1761 return 0; 1762 1763 if (bitmap_node->fe) { 1764 inflen = udf_rw64(bitmap_node->fe->inf_len); 1765 } else { 1766 KASSERT(bitmap_node->efe); 1767 inflen = udf_rw64(bitmap_node->efe->inf_len); 1768 } 1769 1770 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1771 "%"PRIu64" bytes\n", inflen)); 1772 1773 /* allocate space for bitmap */ 1774 dscr = malloc(inflen, M_UDFVOLD, M_WAITOK); 1775 if (!dscr) 1776 return ENOMEM; 1777 1778 /* set vnode type to regular file or we can't read from it! */ 1779 bitmap_node->vnode->v_type = VREG; 1780 1781 /* read in complete metadata bitmap file */ 1782 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1783 dscr, 1784 inflen, 0, 1785 UIO_SYSSPACE, 1786 IO_SYNC | IO_ALTSEMANTICS, FSCRED, 1787 NULL, NULL); 1788 if (error) { 1789 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1790 goto errorout; 1791 } 1792 1793 /* analyse */ 1794 dscr_type = udf_rw16(dscr->tag.id); 1795 if (dscr_type == TAGID_SPACE_BITMAP) { 1796 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1797 ump->metadata_unalloc_dscr = &dscr->sbd; 1798 1799 /* fill in bitmap bits */ 1800 bitmap = &ump->metadata_unalloc_bits; 1801 bitmap->blob = (uint8_t *) dscr; 1802 bitmap->bits = dscr->sbd.data; 1803 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1804 bitmap->pages = NULL; /* TODO */ 1805 bitmap->data_pos = 0; 1806 bitmap->metadata_pos = 0; 1807 } else { 1808 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1809 goto errorout; 1810 } 1811 1812 return 0; 1813 1814 errorout: 1815 free(dscr, M_UDFVOLD); 1816 printf( "UDF mount: error reading unallocated " 1817 "space bitmap for metadata partition\n"); 1818 return EROFS; 1819 } 1820 1821 1822 int 1823 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1824 { 1825 struct udf_node *bitmap_node; 1826 union dscrptr *dscr; 1827 uint64_t new_inflen; 1828 int dummy, error; 1829 1830 bitmap_node = ump->metadatabitmap_node; 1831 1832 /* only write out when metadata bitmap node is known */ 1833 if (bitmap_node == NULL) 1834 return 0; 1835 1836 if (!bitmap_node->fe) { 1837 KASSERT(bitmap_node->efe); 1838 } 1839 1840 /* reduce length to zero */ 1841 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1842 new_inflen = udf_tagsize(dscr, 1); 1843 1844 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap " 1845 " for %"PRIu64" bytes\n", new_inflen)); 1846 1847 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1848 if (error) 1849 printf("Error resizing metadata space bitmap\n"); 1850 1851 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1852 dscr, 1853 new_inflen, 0, 1854 UIO_SYSSPACE, 1855 IO_ALTSEMANTICS, FSCRED, 1856 NULL, NULL); 1857 1858 bitmap_node->i_flags |= IN_MODIFIED; 1859 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT); 1860 if (error == 0) 1861 error = VOP_FSYNC(bitmap_node->vnode, 1862 FSCRED, FSYNC_WAIT, 0, 0); 1863 1864 if (error) 1865 printf( "Error writing out metadata partition unalloced " 1866 "space bitmap!\n"); 1867 1868 return error; 1869 } 1870 1871 1872 /* --------------------------------------------------------------------- */ 1873 1874 /* 1875 * Checks if ump's vds information is correct and complete 1876 */ 1877 1878 int 1879 udf_process_vds(struct udf_mount *ump) { 1880 union udf_pmap *mapping; 1881 /* struct udf_args *args = &ump->mount_args; */ 1882 struct logvol_int_desc *lvint; 1883 struct udf_logvol_info *lvinfo; 1884 uint32_t n_pm; 1885 uint8_t *pmap_pos; 1886 char *domain_name, *map_name; 1887 const char *check_name; 1888 char bits[128]; 1889 int pmap_stype, pmap_size; 1890 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1891 int n_phys, n_virt, n_spar, n_meta; 1892 int len; 1893 1894 if (ump == NULL) 1895 return ENOENT; 1896 1897 /* we need at least an anchor (trivial, but for safety) */ 1898 if (ump->anchors[0] == NULL) 1899 return EINVAL; 1900 1901 /* we need at least one primary and one logical volume descriptor */ 1902 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1903 return EINVAL; 1904 1905 /* we need at least one partition descriptor */ 1906 if (ump->partitions[0] == NULL) 1907 return EINVAL; 1908 1909 /* check logical volume sector size verses device sector size */ 1910 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1911 printf("UDF mount: format violation, lb_size != sector size\n"); 1912 return EINVAL; 1913 } 1914 1915 /* check domain name */ 1916 domain_name = ump->logical_vol->domain_id.id; 1917 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1918 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1919 return EINVAL; 1920 } 1921 1922 /* retrieve logical volume integrity sequence */ 1923 (void)udf_retrieve_lvint(ump); 1924 1925 /* 1926 * We need at least one logvol integrity descriptor recorded. Note 1927 * that its OK to have an open logical volume integrity here. The VAT 1928 * will close/update the integrity. 1929 */ 1930 if (ump->logvol_integrity == NULL) 1931 return EINVAL; 1932 1933 /* process derived structures */ 1934 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1935 lvint = ump->logvol_integrity; 1936 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1937 ump->logvol_info = lvinfo; 1938 1939 /* TODO check udf versions? */ 1940 1941 /* 1942 * check logvol mappings: effective virt->log partmap translation 1943 * check and recording of the mapping results. Saves expensive 1944 * strncmp() in tight places. 1945 */ 1946 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1947 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1948 pmap_pos = ump->logical_vol->maps; 1949 1950 if (n_pm > UDF_PMAPS) { 1951 printf("UDF mount: too many mappings\n"); 1952 return EINVAL; 1953 } 1954 1955 /* count types and set partition numbers */ 1956 ump->data_part = ump->node_part = ump->fids_part = 0; 1957 n_phys = n_virt = n_spar = n_meta = 0; 1958 for (log_part = 0; log_part < n_pm; log_part++) { 1959 mapping = (union udf_pmap *) pmap_pos; 1960 pmap_stype = pmap_pos[0]; 1961 pmap_size = pmap_pos[1]; 1962 switch (pmap_stype) { 1963 case 1: /* physical mapping */ 1964 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1965 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1966 pmap_type = UDF_VTOP_TYPE_PHYS; 1967 n_phys++; 1968 ump->data_part = log_part; 1969 ump->node_part = log_part; 1970 ump->fids_part = log_part; 1971 break; 1972 case 2: /* virtual/sparable/meta mapping */ 1973 map_name = mapping->pm2.part_id.id; 1974 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1975 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1976 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1977 len = UDF_REGID_ID_SIZE; 1978 1979 check_name = "*UDF Virtual Partition"; 1980 if (strncmp(map_name, check_name, len) == 0) { 1981 pmap_type = UDF_VTOP_TYPE_VIRT; 1982 n_virt++; 1983 ump->node_part = log_part; 1984 break; 1985 } 1986 check_name = "*UDF Sparable Partition"; 1987 if (strncmp(map_name, check_name, len) == 0) { 1988 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1989 n_spar++; 1990 ump->data_part = log_part; 1991 ump->node_part = log_part; 1992 ump->fids_part = log_part; 1993 break; 1994 } 1995 check_name = "*UDF Metadata Partition"; 1996 if (strncmp(map_name, check_name, len) == 0) { 1997 pmap_type = UDF_VTOP_TYPE_META; 1998 n_meta++; 1999 ump->node_part = log_part; 2000 ump->fids_part = log_part; 2001 break; 2002 } 2003 break; 2004 default: 2005 return EINVAL; 2006 } 2007 2008 /* 2009 * BUGALERT: some rogue implementations use random physical 2010 * partition numbers to break other implementations so lookup 2011 * the number. 2012 */ 2013 phys_part = udf_find_raw_phys(ump, raw_phys_part); 2014 2015 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 2016 raw_phys_part, phys_part, pmap_type)); 2017 2018 if (phys_part == UDF_PARTITIONS) 2019 return EINVAL; 2020 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 2021 return EINVAL; 2022 2023 ump->vtop [log_part] = phys_part; 2024 ump->vtop_tp[log_part] = pmap_type; 2025 2026 pmap_pos += pmap_size; 2027 } 2028 /* not winning the beauty contest */ 2029 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 2030 2031 /* test some basic UDF assertions/requirements */ 2032 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 2033 return EINVAL; 2034 2035 if (n_virt) { 2036 if ((n_phys == 0) || n_spar || n_meta) 2037 return EINVAL; 2038 } 2039 if (n_spar + n_phys == 0) 2040 return EINVAL; 2041 2042 /* select allocation type for each logical partition */ 2043 for (log_part = 0; log_part < n_pm; log_part++) { 2044 maps_on = ump->vtop[log_part]; 2045 switch (ump->vtop_tp[log_part]) { 2046 case UDF_VTOP_TYPE_PHYS : 2047 assert(maps_on == log_part); 2048 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2049 break; 2050 case UDF_VTOP_TYPE_VIRT : 2051 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 2052 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2053 break; 2054 case UDF_VTOP_TYPE_SPARABLE : 2055 assert(maps_on == log_part); 2056 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2057 break; 2058 case UDF_VTOP_TYPE_META : 2059 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 2060 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 2061 /* special case for UDF 2.60 */ 2062 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 2063 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2064 } 2065 break; 2066 default: 2067 panic("bad alloction type in udf's ump->vtop\n"); 2068 } 2069 } 2070 2071 /* determine logical volume open/closure actions */ 2072 if (n_virt) { 2073 ump->lvopen = 0; 2074 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2075 ump->lvopen |= UDF_OPEN_SESSION ; 2076 ump->lvclose = UDF_WRITE_VAT; 2077 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2078 ump->lvclose |= UDF_CLOSE_SESSION; 2079 } else { 2080 /* `normal' rewritable or non sequential media */ 2081 ump->lvopen = UDF_WRITE_LVINT; 2082 ump->lvclose = UDF_WRITE_LVINT; 2083 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2084 ump->lvopen |= UDF_APPENDONLY_LVINT; 2085 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2086 ump->lvopen &= ~UDF_APPENDONLY_LVINT; 2087 } 2088 2089 /* 2090 * Determine sheduler error behaviour. For virtual partitions, update 2091 * the trackinfo; for sparable partitions replace a whole block on the 2092 * sparable table. Allways requeue. 2093 */ 2094 ump->lvreadwrite = 0; 2095 if (n_virt) 2096 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2097 if (n_spar) 2098 ump->lvreadwrite = UDF_REMAP_BLOCK; 2099 2100 /* 2101 * Select our sheduler 2102 */ 2103 ump->strategy = &udf_strat_rmw; 2104 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2105 ump->strategy = &udf_strat_sequential; 2106 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2107 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2108 ump->strategy = &udf_strat_direct; 2109 if (n_spar) 2110 ump->strategy = &udf_strat_rmw; 2111 2112 #if 0 2113 /* read-only access won't benefit from the other shedulers */ 2114 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2115 ump->strategy = &udf_strat_direct; 2116 #endif 2117 2118 /* print results */ 2119 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2120 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2121 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2122 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2123 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2124 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2125 2126 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2127 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2128 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2129 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2130 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2131 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2132 2133 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2134 (ump->strategy == &udf_strat_direct) ? "Direct" : 2135 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2136 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2137 2138 /* signal its OK for now */ 2139 return 0; 2140 } 2141 2142 /* --------------------------------------------------------------------- */ 2143 2144 /* 2145 * Update logical volume name in all structures that keep a record of it. We 2146 * use memmove since each of them might be specified as a source. 2147 * 2148 * Note that it doesn't update the VAT structure! 2149 */ 2150 2151 static void 2152 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2153 { 2154 struct logvol_desc *lvd = NULL; 2155 struct fileset_desc *fsd = NULL; 2156 struct udf_lv_info *lvi = NULL; 2157 2158 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2159 lvd = ump->logical_vol; 2160 fsd = ump->fileset_desc; 2161 if (ump->implementation) 2162 lvi = &ump->implementation->_impl_use.lv_info; 2163 2164 /* logvol's id might be specified as origional so use memmove here */ 2165 memmove(lvd->logvol_id, logvol_id, 128); 2166 if (fsd) 2167 memmove(fsd->logvol_id, logvol_id, 128); 2168 if (lvi) 2169 memmove(lvi->logvol_id, logvol_id, 128); 2170 } 2171 2172 /* --------------------------------------------------------------------- */ 2173 2174 void 2175 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2176 uint32_t sector) 2177 { 2178 assert(ump->logical_vol); 2179 2180 tag->id = udf_rw16(tagid); 2181 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2182 tag->cksum = 0; 2183 tag->reserved = 0; 2184 tag->serial_num = ump->logical_vol->tag.serial_num; 2185 tag->tag_loc = udf_rw32(sector); 2186 } 2187 2188 2189 uint64_t 2190 udf_advance_uniqueid(struct udf_mount *ump) 2191 { 2192 uint64_t unique_id; 2193 2194 mutex_enter(&ump->logvol_mutex); 2195 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2196 if (unique_id < 0x10) 2197 unique_id = 0x10; 2198 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2199 mutex_exit(&ump->logvol_mutex); 2200 2201 return unique_id; 2202 } 2203 2204 2205 static void 2206 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2207 { 2208 struct udf_mount *ump = udf_node->ump; 2209 uint32_t num_dirs, num_files; 2210 int udf_file_type; 2211 2212 /* get file type */ 2213 if (udf_node->fe) { 2214 udf_file_type = udf_node->fe->icbtag.file_type; 2215 } else { 2216 udf_file_type = udf_node->efe->icbtag.file_type; 2217 } 2218 2219 /* adjust file count */ 2220 mutex_enter(&ump->allocate_mutex); 2221 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2222 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2223 ump->logvol_info->num_directories = 2224 udf_rw32((num_dirs + sign)); 2225 } else { 2226 num_files = udf_rw32(ump->logvol_info->num_files); 2227 ump->logvol_info->num_files = 2228 udf_rw32((num_files + sign)); 2229 } 2230 mutex_exit(&ump->allocate_mutex); 2231 } 2232 2233 2234 void 2235 udf_osta_charset(struct charspec *charspec) 2236 { 2237 memset(charspec, 0, sizeof(struct charspec)); 2238 charspec->type = 0; 2239 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2240 } 2241 2242 2243 /* first call udf_set_regid and then the suffix */ 2244 void 2245 udf_set_regid(struct regid *regid, char const *name) 2246 { 2247 memset(regid, 0, sizeof(struct regid)); 2248 regid->flags = 0; /* not dirty and not protected */ 2249 strcpy((char *) regid->id, name); 2250 } 2251 2252 2253 void 2254 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2255 { 2256 uint16_t *ver; 2257 2258 ver = (uint16_t *) regid->id_suffix; 2259 *ver = ump->logvol_info->min_udf_readver; 2260 } 2261 2262 2263 void 2264 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2265 { 2266 uint16_t *ver; 2267 2268 ver = (uint16_t *) regid->id_suffix; 2269 *ver = ump->logvol_info->min_udf_readver; 2270 2271 regid->id_suffix[2] = 4; /* unix */ 2272 regid->id_suffix[3] = 8; /* NetBSD */ 2273 } 2274 2275 2276 void 2277 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2278 { 2279 regid->id_suffix[0] = 4; /* unix */ 2280 regid->id_suffix[1] = 8; /* NetBSD */ 2281 } 2282 2283 2284 void 2285 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2286 { 2287 regid->id_suffix[0] = APP_VERSION_MAIN; 2288 regid->id_suffix[1] = APP_VERSION_SUB; 2289 } 2290 2291 static int 2292 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2293 struct long_ad *parent, uint64_t unique_id) 2294 { 2295 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2296 int fidsize = 40; 2297 2298 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2299 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2300 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2301 fid->icb = *parent; 2302 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2303 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2304 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2305 2306 return fidsize; 2307 } 2308 2309 /* --------------------------------------------------------------------- */ 2310 2311 /* 2312 * Extended attribute support. UDF knows of 3 places for extended attributes: 2313 * 2314 * (a) inside the file's (e)fe in the length of the extended attribute area 2315 * before the allocation descriptors/filedata 2316 * 2317 * (b) in a file referenced by (e)fe->ext_attr_icb and 2318 * 2319 * (c) in the e(fe)'s associated stream directory that can hold various 2320 * sub-files. In the stream directory a few fixed named subfiles are reserved 2321 * for NT/Unix ACL's and OS/2 attributes. 2322 * 2323 * NOTE: Extended attributes are read randomly but allways written 2324 * *atomicaly*. For ACL's this interface is propably different but not known 2325 * to me yet. 2326 * 2327 * Order of extended attributes in a space : 2328 * ECMA 167 EAs 2329 * Non block aligned Implementation Use EAs 2330 * Block aligned Implementation Use EAs 2331 * Application Use EAs 2332 */ 2333 2334 static int 2335 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2336 { 2337 uint16_t *spos; 2338 2339 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2340 /* checksum valid? */ 2341 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2342 spos = (uint16_t *) implext->data; 2343 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2344 return EINVAL; 2345 } 2346 return 0; 2347 } 2348 2349 static void 2350 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2351 { 2352 uint16_t *spos; 2353 2354 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2355 /* set checksum */ 2356 spos = (uint16_t *) implext->data; 2357 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2358 } 2359 } 2360 2361 2362 int 2363 udf_extattr_search_intern(struct udf_node *node, 2364 uint32_t sattr, char const *sattrname, 2365 uint32_t *offsetp, uint32_t *lengthp) 2366 { 2367 struct extattrhdr_desc *eahdr; 2368 struct extattr_entry *attrhdr; 2369 struct impl_extattr_entry *implext; 2370 uint32_t offset, a_l, sector_size; 2371 int32_t l_ea; 2372 uint8_t *pos; 2373 int error; 2374 2375 /* get mountpoint */ 2376 sector_size = node->ump->discinfo.sector_size; 2377 2378 /* get information from fe/efe */ 2379 if (node->fe) { 2380 l_ea = udf_rw32(node->fe->l_ea); 2381 eahdr = (struct extattrhdr_desc *) node->fe->data; 2382 } else { 2383 assert(node->efe); 2384 l_ea = udf_rw32(node->efe->l_ea); 2385 eahdr = (struct extattrhdr_desc *) node->efe->data; 2386 } 2387 2388 /* something recorded here? */ 2389 if (l_ea == 0) 2390 return ENOENT; 2391 2392 /* check extended attribute tag; what to do if it fails? */ 2393 error = udf_check_tag(eahdr); 2394 if (error) 2395 return EINVAL; 2396 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2397 return EINVAL; 2398 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2399 if (error) 2400 return EINVAL; 2401 2402 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2403 2404 /* looking for Ecma-167 attributes? */ 2405 offset = sizeof(struct extattrhdr_desc); 2406 2407 /* looking for either implemenation use or application use */ 2408 if (sattr == 2048) { /* [4/48.10.8] */ 2409 offset = udf_rw32(eahdr->impl_attr_loc); 2410 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2411 return ENOENT; 2412 } 2413 if (sattr == 65536) { /* [4/48.10.9] */ 2414 offset = udf_rw32(eahdr->appl_attr_loc); 2415 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2416 return ENOENT; 2417 } 2418 2419 /* paranoia check offset and l_ea */ 2420 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2421 return EINVAL; 2422 2423 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2424 2425 /* find our extended attribute */ 2426 l_ea -= offset; 2427 pos = (uint8_t *) eahdr + offset; 2428 2429 while (l_ea >= sizeof(struct extattr_entry)) { 2430 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2431 attrhdr = (struct extattr_entry *) pos; 2432 implext = (struct impl_extattr_entry *) pos; 2433 2434 /* get complete attribute length and check for roque values */ 2435 a_l = udf_rw32(attrhdr->a_l); 2436 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2437 udf_rw32(attrhdr->type), 2438 attrhdr->subtype, a_l, l_ea)); 2439 if ((a_l == 0) || (a_l > l_ea)) 2440 return EINVAL; 2441 2442 if (attrhdr->type != sattr) 2443 goto next_attribute; 2444 2445 /* we might have found it! */ 2446 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2447 *offsetp = offset; 2448 *lengthp = a_l; 2449 return 0; /* success */ 2450 } 2451 2452 /* 2453 * Implementation use and application use extended attributes 2454 * have a name to identify. They share the same structure only 2455 * UDF implementation use extended attributes have a checksum 2456 * we need to check 2457 */ 2458 2459 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2460 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2461 /* we have found our appl/implementation attribute */ 2462 *offsetp = offset; 2463 *lengthp = a_l; 2464 return 0; /* success */ 2465 } 2466 2467 next_attribute: 2468 /* next attribute */ 2469 pos += a_l; 2470 l_ea -= a_l; 2471 offset += a_l; 2472 } 2473 /* not found */ 2474 return ENOENT; 2475 } 2476 2477 2478 static void 2479 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2480 struct extattr_entry *extattr) 2481 { 2482 struct file_entry *fe; 2483 struct extfile_entry *efe; 2484 struct extattrhdr_desc *extattrhdr; 2485 struct impl_extattr_entry *implext; 2486 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2487 uint32_t *l_eap, l_ad; 2488 uint16_t *spos; 2489 uint8_t *bpos, *data; 2490 2491 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2492 fe = &dscr->fe; 2493 data = fe->data; 2494 l_eap = &fe->l_ea; 2495 l_ad = udf_rw32(fe->l_ad); 2496 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2497 efe = &dscr->efe; 2498 data = efe->data; 2499 l_eap = &efe->l_ea; 2500 l_ad = udf_rw32(efe->l_ad); 2501 } else { 2502 panic("Bad tag passed to udf_extattr_insert_internal"); 2503 } 2504 2505 /* can't append already written to file descriptors yet */ 2506 assert(l_ad == 0); 2507 __USE(l_ad); 2508 2509 /* should have a header! */ 2510 extattrhdr = (struct extattrhdr_desc *) data; 2511 l_ea = udf_rw32(*l_eap); 2512 if (l_ea == 0) { 2513 /* create empty extended attribute header */ 2514 exthdr_len = sizeof(struct extattrhdr_desc); 2515 2516 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2517 /* loc */ 0); 2518 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2519 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2520 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2521 2522 /* record extended attribute header length */ 2523 l_ea = exthdr_len; 2524 *l_eap = udf_rw32(l_ea); 2525 } 2526 2527 /* extract locations */ 2528 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2529 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2530 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2531 impl_attr_loc = l_ea; 2532 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2533 appl_attr_loc = l_ea; 2534 2535 /* Ecma 167 EAs */ 2536 if (udf_rw32(extattr->type) < 2048) { 2537 assert(impl_attr_loc == l_ea); 2538 assert(appl_attr_loc == l_ea); 2539 } 2540 2541 /* implementation use extended attributes */ 2542 if (udf_rw32(extattr->type) == 2048) { 2543 assert(appl_attr_loc == l_ea); 2544 2545 /* calculate and write extended attribute header checksum */ 2546 implext = (struct impl_extattr_entry *) extattr; 2547 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2548 spos = (uint16_t *) implext->data; 2549 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2550 } 2551 2552 /* application use extended attributes */ 2553 assert(udf_rw32(extattr->type) != 65536); 2554 assert(appl_attr_loc == l_ea); 2555 2556 /* append the attribute at the end of the current space */ 2557 bpos = data + udf_rw32(*l_eap); 2558 a_l = udf_rw32(extattr->a_l); 2559 2560 /* update impl. attribute locations */ 2561 if (udf_rw32(extattr->type) < 2048) { 2562 impl_attr_loc = l_ea + a_l; 2563 appl_attr_loc = l_ea + a_l; 2564 } 2565 if (udf_rw32(extattr->type) == 2048) { 2566 appl_attr_loc = l_ea + a_l; 2567 } 2568 2569 /* copy and advance */ 2570 memcpy(bpos, extattr, a_l); 2571 l_ea += a_l; 2572 *l_eap = udf_rw32(l_ea); 2573 2574 /* do the `dance` again backwards */ 2575 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2576 if (impl_attr_loc == l_ea) 2577 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2578 if (appl_attr_loc == l_ea) 2579 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2580 } 2581 2582 /* store offsets */ 2583 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2584 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2585 } 2586 2587 2588 /* --------------------------------------------------------------------- */ 2589 2590 static int 2591 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2592 { 2593 struct udf_mount *ump; 2594 struct udf_logvol_info *lvinfo; 2595 struct impl_extattr_entry *implext; 2596 struct vatlvext_extattr_entry lvext; 2597 const char *extstr = "*UDF VAT LVExtension"; 2598 uint64_t vat_uniqueid; 2599 uint32_t offset, a_l; 2600 uint8_t *ea_start, *lvextpos; 2601 int error; 2602 2603 /* get mountpoint and lvinfo */ 2604 ump = vat_node->ump; 2605 lvinfo = ump->logvol_info; 2606 2607 /* get information from fe/efe */ 2608 if (vat_node->fe) { 2609 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2610 ea_start = vat_node->fe->data; 2611 } else { 2612 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2613 ea_start = vat_node->efe->data; 2614 } 2615 2616 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2617 if (error) 2618 return error; 2619 2620 implext = (struct impl_extattr_entry *) (ea_start + offset); 2621 error = udf_impl_extattr_check(implext); 2622 if (error) 2623 return error; 2624 2625 /* paranoia */ 2626 if (a_l != sizeof(*implext) -2 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2627 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2628 return EINVAL; 2629 } 2630 2631 /* 2632 * we have found our "VAT LVExtension attribute. BUT due to a 2633 * bug in the specification it might not be word aligned so 2634 * copy first to avoid panics on some machines (!!) 2635 */ 2636 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2637 lvextpos = implext->data + udf_rw32(implext->iu_l); 2638 memcpy(&lvext, lvextpos, sizeof(lvext)); 2639 2640 /* check if it was updated the last time */ 2641 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2642 lvinfo->num_files = lvext.num_files; 2643 lvinfo->num_directories = lvext.num_directories; 2644 udf_update_logvolname(ump, lvext.logvol_id); 2645 } else { 2646 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2647 /* replace VAT LVExt by free space EA */ 2648 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2649 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2650 udf_calc_impl_extattr_checksum(implext); 2651 } 2652 2653 return 0; 2654 } 2655 2656 2657 static int 2658 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2659 { 2660 struct udf_mount *ump; 2661 struct udf_logvol_info *lvinfo; 2662 struct impl_extattr_entry *implext; 2663 struct vatlvext_extattr_entry lvext; 2664 const char *extstr = "*UDF VAT LVExtension"; 2665 uint64_t vat_uniqueid; 2666 uint32_t offset, a_l; 2667 uint8_t *ea_start; 2668 uintptr_t lvextpos; 2669 int error; 2670 2671 /* get mountpoint and lvinfo */ 2672 ump = vat_node->ump; 2673 lvinfo = ump->logvol_info; 2674 2675 /* get information from fe/efe */ 2676 if (vat_node->fe) { 2677 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2678 ea_start = vat_node->fe->data; 2679 } else { 2680 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2681 ea_start = vat_node->efe->data; 2682 } 2683 2684 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2685 if (error) 2686 return error; 2687 /* found, it existed */ 2688 2689 /* paranoia */ 2690 implext = (struct impl_extattr_entry *) (ea_start + offset); 2691 error = udf_impl_extattr_check(implext); 2692 if (error) { 2693 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2694 return error; 2695 } 2696 /* it is correct */ 2697 2698 /* 2699 * we have found our "VAT LVExtension attribute. BUT due to a 2700 * bug in the specification it might not be word aligned so 2701 * copy first to avoid panics on some machines (!!) 2702 */ 2703 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2704 lvextpos = (uintptr_t)implext->data + udf_rw32(implext->iu_l); 2705 2706 lvext.unique_id_chk = vat_uniqueid; 2707 lvext.num_files = lvinfo->num_files; 2708 lvext.num_directories = lvinfo->num_directories; 2709 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2710 2711 memcpy((void *)lvextpos, &lvext, sizeof(lvext)); 2712 2713 return 0; 2714 } 2715 2716 /* --------------------------------------------------------------------- */ 2717 2718 int 2719 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2720 { 2721 struct udf_mount *ump = vat_node->ump; 2722 2723 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2724 return EINVAL; 2725 2726 memcpy(blob, ump->vat_table + offset, size); 2727 return 0; 2728 } 2729 2730 int 2731 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2732 { 2733 struct udf_mount *ump = vat_node->ump; 2734 uint32_t offset_high; 2735 uint8_t *new_vat_table; 2736 2737 /* extent VAT allocation if needed */ 2738 offset_high = offset + size; 2739 if (offset_high >= ump->vat_table_alloc_len) { 2740 /* realloc */ 2741 new_vat_table = realloc(ump->vat_table, 2742 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2743 M_UDFVOLD, M_WAITOK); 2744 if (!new_vat_table) { 2745 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2746 return ENOMEM; 2747 } 2748 ump->vat_table = new_vat_table; 2749 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2750 } 2751 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2752 2753 memcpy(ump->vat_table + offset, blob, size); 2754 return 0; 2755 } 2756 2757 /* --------------------------------------------------------------------- */ 2758 2759 /* TODO support previous VAT location writeout */ 2760 static int 2761 udf_update_vat_descriptor(struct udf_mount *ump) 2762 { 2763 struct udf_node *vat_node = ump->vat_node; 2764 struct udf_logvol_info *lvinfo = ump->logvol_info; 2765 struct icb_tag *icbtag; 2766 struct udf_oldvat_tail *oldvat_tl; 2767 struct udf_vat *vat; 2768 uint64_t unique_id; 2769 uint32_t lb_size; 2770 uint8_t *raw_vat; 2771 int filetype, error; 2772 2773 KASSERT(vat_node); 2774 KASSERT(lvinfo); 2775 lb_size = udf_rw32(ump->logical_vol->lb_size); 2776 2777 /* get our new unique_id */ 2778 unique_id = udf_advance_uniqueid(ump); 2779 2780 /* get information from fe/efe */ 2781 if (vat_node->fe) { 2782 icbtag = &vat_node->fe->icbtag; 2783 vat_node->fe->unique_id = udf_rw64(unique_id); 2784 } else { 2785 icbtag = &vat_node->efe->icbtag; 2786 vat_node->efe->unique_id = udf_rw64(unique_id); 2787 } 2788 2789 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2790 filetype = icbtag->file_type; 2791 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2792 2793 /* allocate piece to process head or tail of VAT file */ 2794 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2795 2796 if (filetype == 0) { 2797 /* 2798 * Update "*UDF VAT LVExtension" extended attribute from the 2799 * lvint if present. 2800 */ 2801 udf_update_vat_extattr_from_lvid(vat_node); 2802 2803 /* setup identifying regid */ 2804 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2805 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2806 2807 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2808 udf_add_udf_regid(ump, &oldvat_tl->id); 2809 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2810 2811 /* write out new tail of virtual allocation table file */ 2812 error = udf_vat_write(vat_node, raw_vat, 2813 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2814 } else { 2815 /* compose the VAT2 header */ 2816 vat = (struct udf_vat *) raw_vat; 2817 memset(vat, 0, sizeof(struct udf_vat)); 2818 2819 vat->header_len = udf_rw16(152); /* as per spec */ 2820 vat->impl_use_len = udf_rw16(0); 2821 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2822 vat->prev_vat = udf_rw32(0xffffffff); 2823 vat->num_files = lvinfo->num_files; 2824 vat->num_directories = lvinfo->num_directories; 2825 vat->min_udf_readver = lvinfo->min_udf_readver; 2826 vat->min_udf_writever = lvinfo->min_udf_writever; 2827 vat->max_udf_writever = lvinfo->max_udf_writever; 2828 2829 error = udf_vat_write(vat_node, raw_vat, 2830 sizeof(struct udf_vat), 0); 2831 } 2832 free(raw_vat, M_TEMP); 2833 2834 return error; /* success! */ 2835 } 2836 2837 2838 int 2839 udf_writeout_vat(struct udf_mount *ump) 2840 { 2841 struct udf_node *vat_node = ump->vat_node; 2842 int error; 2843 2844 KASSERT(vat_node); 2845 2846 DPRINTF(CALL, ("udf_writeout_vat\n")); 2847 2848 // mutex_enter(&ump->allocate_mutex); 2849 udf_update_vat_descriptor(ump); 2850 2851 /* write out the VAT contents ; TODO intelligent writing */ 2852 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2853 ump->vat_table, ump->vat_table_len, 0, 2854 UIO_SYSSPACE, 0, FSCRED, NULL, NULL); 2855 if (error) { 2856 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2857 goto out; 2858 } 2859 2860 // mutex_exit(&ump->allocate_mutex); 2861 2862 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 2863 if (error) 2864 goto out; 2865 error = VOP_FSYNC(ump->vat_node->vnode, 2866 FSCRED, FSYNC_WAIT, 0, 0); 2867 if (error) 2868 printf("udf_writeout_vat: error writing VAT node!\n"); 2869 out: 2870 return error; 2871 } 2872 2873 /* --------------------------------------------------------------------- */ 2874 2875 /* 2876 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2877 * descriptor. If OK, read in complete VAT file. 2878 */ 2879 2880 static int 2881 udf_check_for_vat(struct udf_node *vat_node) 2882 { 2883 struct udf_mount *ump; 2884 struct icb_tag *icbtag; 2885 struct timestamp *mtime; 2886 struct udf_vat *vat; 2887 struct udf_oldvat_tail *oldvat_tl; 2888 struct udf_logvol_info *lvinfo; 2889 uint64_t unique_id; 2890 uint32_t vat_length; 2891 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2892 uint32_t sector_size; 2893 uint32_t *raw_vat; 2894 uint8_t *vat_table; 2895 char *regid_name; 2896 int filetype; 2897 int error; 2898 2899 /* vat_length is really 64 bits though impossible */ 2900 2901 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2902 if (!vat_node) 2903 return ENOENT; 2904 2905 /* get mount info */ 2906 ump = vat_node->ump; 2907 sector_size = udf_rw32(ump->logical_vol->lb_size); 2908 2909 /* check assertions */ 2910 assert(vat_node->fe || vat_node->efe); 2911 assert(ump->logvol_integrity); 2912 2913 /* set vnode type to regular file or we can't read from it! */ 2914 vat_node->vnode->v_type = VREG; 2915 2916 /* get information from fe/efe */ 2917 if (vat_node->fe) { 2918 vat_length = udf_rw64(vat_node->fe->inf_len); 2919 icbtag = &vat_node->fe->icbtag; 2920 mtime = &vat_node->fe->mtime; 2921 unique_id = udf_rw64(vat_node->fe->unique_id); 2922 } else { 2923 vat_length = udf_rw64(vat_node->efe->inf_len); 2924 icbtag = &vat_node->efe->icbtag; 2925 mtime = &vat_node->efe->mtime; 2926 unique_id = udf_rw64(vat_node->efe->unique_id); 2927 } 2928 2929 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2930 filetype = icbtag->file_type; 2931 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2932 return ENOENT; 2933 2934 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2935 2936 vat_table_alloc_len = 2937 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2938 * UDF_VAT_CHUNKSIZE; 2939 2940 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, M_WAITOK); 2941 if (vat_table == NULL) { 2942 printf("allocation of %d bytes failed for VAT\n", 2943 vat_table_alloc_len); 2944 return ENOMEM; 2945 } 2946 2947 /* allocate piece to read in head or tail of VAT file */ 2948 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2949 2950 /* 2951 * check contents of the file if its the old 1.50 VAT table format. 2952 * Its notoriously broken and allthough some implementations support an 2953 * extention as defined in the UDF 1.50 errata document, its doubtfull 2954 * to be useable since a lot of implementations don't maintain it. 2955 */ 2956 lvinfo = ump->logvol_info; 2957 2958 if (filetype == 0) { 2959 /* definition */ 2960 vat_offset = 0; 2961 vat_entries = (vat_length-36)/4; 2962 2963 /* read in tail of virtual allocation table file */ 2964 error = vn_rdwr(UIO_READ, vat_node->vnode, 2965 (uint8_t *) raw_vat, 2966 sizeof(struct udf_oldvat_tail), 2967 vat_entries * 4, 2968 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2969 NULL, NULL); 2970 if (error) 2971 goto out; 2972 2973 /* check 1.50 VAT */ 2974 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2975 regid_name = (char *) oldvat_tl->id.id; 2976 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2977 if (error) { 2978 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2979 error = ENOENT; 2980 goto out; 2981 } 2982 2983 /* 2984 * update LVID from "*UDF VAT LVExtension" extended attribute 2985 * if present. 2986 */ 2987 udf_update_lvid_from_vat_extattr(vat_node); 2988 } else { 2989 /* read in head of virtual allocation table file */ 2990 error = vn_rdwr(UIO_READ, vat_node->vnode, 2991 (uint8_t *) raw_vat, 2992 sizeof(struct udf_vat), 0, 2993 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2994 NULL, NULL); 2995 if (error) 2996 goto out; 2997 2998 /* definition */ 2999 vat = (struct udf_vat *) raw_vat; 3000 vat_offset = vat->header_len; 3001 vat_entries = (vat_length - vat_offset)/4; 3002 3003 assert(lvinfo); 3004 lvinfo->num_files = vat->num_files; 3005 lvinfo->num_directories = vat->num_directories; 3006 lvinfo->min_udf_readver = vat->min_udf_readver; 3007 lvinfo->min_udf_writever = vat->min_udf_writever; 3008 lvinfo->max_udf_writever = vat->max_udf_writever; 3009 3010 udf_update_logvolname(ump, vat->logvol_id); 3011 } 3012 3013 /* read in complete VAT file */ 3014 error = vn_rdwr(UIO_READ, vat_node->vnode, 3015 vat_table, 3016 vat_length, 0, 3017 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 3018 NULL, NULL); 3019 if (error) 3020 printf("read in of complete VAT file failed (error %d)\n", 3021 error); 3022 if (error) 3023 goto out; 3024 3025 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 3026 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 3027 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3028 ump->logvol_integrity->time = *mtime; 3029 3030 /* if we're updating, free old allocated space */ 3031 if (ump->vat_table) 3032 free(ump->vat_table, M_UDFVOLD); 3033 3034 ump->vat_table_len = vat_length; 3035 ump->vat_table_alloc_len = vat_table_alloc_len; 3036 ump->vat_table = vat_table; 3037 ump->vat_offset = vat_offset; 3038 ump->vat_entries = vat_entries; 3039 ump->vat_last_free_lb = 0; /* start at beginning */ 3040 3041 out: 3042 if (error) { 3043 if (vat_table) 3044 free(vat_table, M_UDFVOLD); 3045 } 3046 free(raw_vat, M_TEMP); 3047 3048 return error; 3049 } 3050 3051 /* --------------------------------------------------------------------- */ 3052 3053 static int 3054 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 3055 { 3056 struct udf_node *vat_node, *accepted_vat_node; 3057 struct long_ad icb_loc; 3058 uint32_t early_vat_loc, late_vat_loc, vat_loc; 3059 int error; 3060 3061 /* mapping info not needed */ 3062 mapping = mapping; 3063 3064 DPRINTF(VOLUMES, ("Searching VAT\n")); 3065 3066 /* 3067 * Start reading forward in blocks from the first possible vat 3068 * location. If not found in this block, start again a bit before 3069 * until we get a hit. 3070 */ 3071 late_vat_loc = ump->last_possible_vat_location; 3072 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location); 3073 3074 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc)); 3075 accepted_vat_node = NULL; 3076 do { 3077 vat_loc = early_vat_loc; 3078 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n", 3079 early_vat_loc, late_vat_loc)); 3080 do { 3081 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n", 3082 vat_loc)); 3083 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3084 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3085 3086 error = udf_get_node(ump, &icb_loc, &vat_node, 3087 LK_EXCLUSIVE); 3088 if (!error) { 3089 error = udf_check_for_vat(vat_node); 3090 vat_node->i_flags = 0; /* reset access */ 3091 } 3092 if (!error) { 3093 DPRINTFIF(VOLUMES, !error, 3094 ("VAT candidate accepted at %d\n", 3095 vat_loc)); 3096 if (accepted_vat_node) 3097 vput(accepted_vat_node->vnode); 3098 accepted_vat_node = vat_node; 3099 accepted_vat_node->i_flags |= IN_NO_DELETE; 3100 vat_node = NULL; 3101 } 3102 if (vat_node) 3103 vput(vat_node->vnode); 3104 vat_loc++; /* walk forward */ 3105 } while (vat_loc < late_vat_loc); 3106 if (accepted_vat_node) 3107 break; 3108 3109 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location); 3110 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location); 3111 } while (late_vat_loc > ump->first_possible_vat_location); 3112 3113 /* keep our last accepted VAT node around */ 3114 if (accepted_vat_node) { 3115 /* revert no delete flag again to avoid potential side effects */ 3116 accepted_vat_node->i_flags &= ~IN_NO_DELETE; 3117 3118 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode); 3119 ump->vat_node = accepted_vat_node; 3120 return 0; 3121 } 3122 3123 return error; 3124 } 3125 3126 /* --------------------------------------------------------------------- */ 3127 3128 static int 3129 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3130 { 3131 union dscrptr *dscr; 3132 struct part_map_spare *pms = &mapping->pms; 3133 uint32_t lb_num; 3134 int spar, error; 3135 3136 /* 3137 * The partition mapping passed on to us specifies the information we 3138 * need to locate and initialise the sparable partition mapping 3139 * information we need. 3140 */ 3141 3142 DPRINTF(VOLUMES, ("Read sparable table\n")); 3143 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3144 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3145 3146 for (spar = 0; spar < pms->n_st; spar++) { 3147 lb_num = pms->st_loc[spar]; 3148 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3149 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3150 if (!error && dscr) { 3151 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3152 if (ump->sparing_table) 3153 free(ump->sparing_table, M_UDFVOLD); 3154 ump->sparing_table = &dscr->spt; 3155 dscr = NULL; 3156 DPRINTF(VOLUMES, 3157 ("Sparing table accepted (%d entries)\n", 3158 udf_rw16(ump->sparing_table->rt_l))); 3159 break; /* we're done */ 3160 } 3161 } 3162 if (dscr) 3163 free(dscr, M_UDFVOLD); 3164 } 3165 3166 if (ump->sparing_table) 3167 return 0; 3168 3169 return ENOENT; 3170 } 3171 3172 /* --------------------------------------------------------------------- */ 3173 3174 static int 3175 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3176 { 3177 struct part_map_meta *pmm = &mapping->pmm; 3178 struct long_ad icb_loc; 3179 struct vnode *vp; 3180 uint16_t raw_phys_part, phys_part; 3181 int error; 3182 3183 /* 3184 * BUGALERT: some rogue implementations use random physical 3185 * partition numbers to break other implementations so lookup 3186 * the number. 3187 */ 3188 3189 /* extract our allocation parameters set up on format */ 3190 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); 3191 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); 3192 ump->metadata_flags = mapping->pmm.flags; 3193 3194 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3195 raw_phys_part = udf_rw16(pmm->part_num); 3196 phys_part = udf_find_raw_phys(ump, raw_phys_part); 3197 3198 icb_loc.loc.part_num = udf_rw16(phys_part); 3199 3200 DPRINTF(VOLUMES, ("Metadata file\n")); 3201 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3202 error = udf_get_node(ump, &icb_loc, &ump->metadata_node, 3203 LK_EXCLUSIVE); 3204 if (ump->metadata_node) { 3205 vp = ump->metadata_node->vnode; 3206 UDF_SET_SYSTEMFILE(vp); 3207 } 3208 3209 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3210 if (icb_loc.loc.lb_num != -1) { 3211 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3212 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node, 3213 LK_EXCLUSIVE); 3214 if (ump->metadatamirror_node) { 3215 vp = ump->metadatamirror_node->vnode; 3216 UDF_SET_SYSTEMFILE(vp); 3217 } 3218 } 3219 3220 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3221 if (icb_loc.loc.lb_num != -1) { 3222 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3223 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node, 3224 LK_EXCLUSIVE); 3225 if (ump->metadatabitmap_node) { 3226 vp = ump->metadatabitmap_node->vnode; 3227 UDF_SET_SYSTEMFILE(vp); 3228 } 3229 } 3230 3231 /* if we're mounting read-only we relax the requirements */ 3232 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3233 error = EFAULT; 3234 if (ump->metadata_node) 3235 error = 0; 3236 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3237 printf( "udf mount: Metadata file not readable, " 3238 "substituting Metadata copy file\n"); 3239 ump->metadata_node = ump->metadatamirror_node; 3240 ump->metadatamirror_node = NULL; 3241 error = 0; 3242 } 3243 } else { 3244 /* mounting read/write */ 3245 /* XXX DISABLED! metadata writing is not working yet XXX */ 3246 if (error) 3247 error = EROFS; 3248 } 3249 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3250 "metadata files\n")); 3251 return error; 3252 } 3253 3254 /* --------------------------------------------------------------------- */ 3255 3256 int 3257 udf_read_vds_tables(struct udf_mount *ump) 3258 { 3259 union udf_pmap *mapping; 3260 /* struct udf_args *args = &ump->mount_args; */ 3261 uint32_t n_pm; 3262 uint32_t log_part; 3263 uint8_t *pmap_pos; 3264 int pmap_size; 3265 int error; 3266 3267 /* Iterate (again) over the part mappings for locations */ 3268 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3269 pmap_pos = ump->logical_vol->maps; 3270 3271 for (log_part = 0; log_part < n_pm; log_part++) { 3272 mapping = (union udf_pmap *) pmap_pos; 3273 switch (ump->vtop_tp[log_part]) { 3274 case UDF_VTOP_TYPE_PHYS : 3275 /* nothing */ 3276 break; 3277 case UDF_VTOP_TYPE_VIRT : 3278 /* search and load VAT */ 3279 error = udf_search_vat(ump, mapping); 3280 if (error) 3281 return ENOENT; 3282 break; 3283 case UDF_VTOP_TYPE_SPARABLE : 3284 /* load one of the sparable tables */ 3285 error = udf_read_sparables(ump, mapping); 3286 if (error) 3287 return ENOENT; 3288 break; 3289 case UDF_VTOP_TYPE_META : 3290 /* load the associated file descriptors */ 3291 error = udf_read_metadata_nodes(ump, mapping); 3292 if (error) 3293 return ENOENT; 3294 break; 3295 default: 3296 break; 3297 } 3298 pmap_size = pmap_pos[1]; 3299 pmap_pos += pmap_size; 3300 } 3301 3302 /* read in and check unallocated and free space info if writing */ 3303 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3304 error = udf_read_physical_partition_spacetables(ump); 3305 if (error) 3306 return error; 3307 3308 /* also read in metadata partition spacebitmap if defined */ 3309 error = udf_read_metadata_partition_spacetable(ump); 3310 return error; 3311 } 3312 3313 return 0; 3314 } 3315 3316 /* --------------------------------------------------------------------- */ 3317 3318 int 3319 udf_read_rootdirs(struct udf_mount *ump) 3320 { 3321 union dscrptr *dscr; 3322 /* struct udf_args *args = &ump->mount_args; */ 3323 struct udf_node *rootdir_node, *streamdir_node; 3324 struct long_ad fsd_loc, *dir_loc; 3325 uint32_t lb_num, dummy; 3326 uint32_t fsd_len; 3327 int dscr_type; 3328 int error; 3329 3330 /* TODO implement FSD reading in separate function like integrity? */ 3331 /* get fileset descriptor sequence */ 3332 fsd_loc = ump->logical_vol->lv_fsd_loc; 3333 fsd_len = udf_rw32(fsd_loc.len); 3334 3335 dscr = NULL; 3336 error = 0; 3337 while (fsd_len || error) { 3338 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3339 /* translate fsd_loc to lb_num */ 3340 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3341 if (error) 3342 break; 3343 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3344 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3345 /* end markers */ 3346 if (error || (dscr == NULL)) 3347 break; 3348 3349 /* analyse */ 3350 dscr_type = udf_rw16(dscr->tag.id); 3351 if (dscr_type == TAGID_TERM) 3352 break; 3353 if (dscr_type != TAGID_FSD) { 3354 free(dscr, M_UDFVOLD); 3355 return ENOENT; 3356 } 3357 3358 /* 3359 * TODO check for multiple fileset descriptors; its only 3360 * picking the last now. Also check for FSD 3361 * correctness/interpretability 3362 */ 3363 3364 /* update */ 3365 if (ump->fileset_desc) { 3366 free(ump->fileset_desc, M_UDFVOLD); 3367 } 3368 ump->fileset_desc = &dscr->fsd; 3369 dscr = NULL; 3370 3371 /* continue to the next fsd */ 3372 fsd_len -= ump->discinfo.sector_size; 3373 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3374 3375 /* follow up to fsd->next_ex (long_ad) if its not null */ 3376 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3377 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3378 fsd_loc = ump->fileset_desc->next_ex; 3379 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3380 } 3381 } 3382 if (dscr) 3383 free(dscr, M_UDFVOLD); 3384 3385 /* there has to be one */ 3386 if (ump->fileset_desc == NULL) 3387 return ENOENT; 3388 3389 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3390 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3391 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3392 3393 /* 3394 * Now the FSD is known, read in the rootdirectory and if one exists, 3395 * the system stream dir. Some files in the system streamdir are not 3396 * wanted in this implementation since they are not maintained. If 3397 * writing is enabled we'll delete these files if they exist. 3398 */ 3399 3400 rootdir_node = streamdir_node = NULL; 3401 dir_loc = NULL; 3402 3403 /* try to read in the rootdir */ 3404 dir_loc = &ump->fileset_desc->rootdir_icb; 3405 error = udf_get_node(ump, dir_loc, &rootdir_node, LK_EXCLUSIVE); 3406 if (error) 3407 return ENOENT; 3408 3409 /* aparently it read in fine */ 3410 3411 /* 3412 * Try the system stream directory; not very likely in the ones we 3413 * test, but for completeness. 3414 */ 3415 dir_loc = &ump->fileset_desc->streamdir_icb; 3416 if (udf_rw32(dir_loc->len)) { 3417 printf("udf_read_rootdirs: streamdir defined "); 3418 error = udf_get_node(ump, dir_loc, &streamdir_node, 3419 LK_EXCLUSIVE); 3420 if (error) { 3421 printf("but error in streamdir reading\n"); 3422 } else { 3423 printf("but ignored\n"); 3424 /* 3425 * TODO process streamdir `baddies' i.e. files we dont 3426 * want if R/W 3427 */ 3428 } 3429 } 3430 3431 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3432 3433 /* release the vnodes again; they'll be auto-recycled later */ 3434 if (streamdir_node) { 3435 vput(streamdir_node->vnode); 3436 } 3437 if (rootdir_node) { 3438 vput(rootdir_node->vnode); 3439 } 3440 3441 return 0; 3442 } 3443 3444 /* --------------------------------------------------------------------- */ 3445 3446 /* To make absolutely sure we are NOT returning zero, add one :) */ 3447 3448 long 3449 udf_get_node_id(const struct long_ad *icbptr) 3450 { 3451 /* ought to be enough since each mountpoint has its own chain */ 3452 return udf_rw32(icbptr->loc.lb_num) + 1; 3453 } 3454 3455 3456 int 3457 udf_compare_icb(const struct long_ad *a, const struct long_ad *b) 3458 { 3459 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) 3460 return -1; 3461 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) 3462 return 1; 3463 3464 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) 3465 return -1; 3466 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) 3467 return 1; 3468 3469 return 0; 3470 } 3471 3472 3473 static int 3474 udf_compare_rbnodes(void *ctx, const void *a, const void *b) 3475 { 3476 const struct udf_node *a_node = a; 3477 const struct udf_node *b_node = b; 3478 3479 return udf_compare_icb(&a_node->loc, &b_node->loc); 3480 } 3481 3482 3483 static int 3484 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) 3485 { 3486 const struct udf_node *a_node = a; 3487 const struct long_ad * const icb = key; 3488 3489 return udf_compare_icb(&a_node->loc, icb); 3490 } 3491 3492 3493 static const rb_tree_ops_t udf_node_rbtree_ops = { 3494 .rbto_compare_nodes = udf_compare_rbnodes, 3495 .rbto_compare_key = udf_compare_rbnode_icb, 3496 .rbto_node_offset = offsetof(struct udf_node, rbnode), 3497 .rbto_context = NULL 3498 }; 3499 3500 3501 void 3502 udf_init_nodes_tree(struct udf_mount *ump) 3503 { 3504 3505 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); 3506 } 3507 3508 3509 /* --------------------------------------------------------------------- */ 3510 3511 static int 3512 udf_validate_session_start(struct udf_mount *ump) 3513 { 3514 struct mmc_trackinfo trackinfo; 3515 struct vrs_desc *vrs; 3516 uint32_t tracknr, sessionnr, sector, sector_size; 3517 uint32_t iso9660_vrs, write_track_start; 3518 uint8_t *buffer, *blank, *pos; 3519 int blks, max_sectors, vrs_len; 3520 int error; 3521 3522 /* disc appendable? */ 3523 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3524 return EROFS; 3525 3526 /* already written here? if so, there should be an ISO VDS */ 3527 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3528 return 0; 3529 3530 /* 3531 * Check if the first track of the session is blank and if so, copy or 3532 * create a dummy ISO descriptor so the disc is valid again. 3533 */ 3534 3535 tracknr = ump->discinfo.first_track_last_session; 3536 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3537 trackinfo.tracknr = tracknr; 3538 error = udf_update_trackinfo(ump, &trackinfo); 3539 if (error) 3540 return error; 3541 3542 udf_dump_trackinfo(&trackinfo); 3543 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3544 KASSERT(trackinfo.sessionnr > 1); 3545 3546 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3547 write_track_start = trackinfo.next_writable; 3548 3549 /* we have to copy the ISO VRS from a former session */ 3550 DPRINTF(VOLUMES, ("validate_session_start: " 3551 "blank or reserved track, copying VRS\n")); 3552 3553 /* sessionnr should be the session we're mounting */ 3554 sessionnr = ump->mount_args.sessionnr; 3555 3556 /* start at the first track */ 3557 tracknr = ump->discinfo.first_track; 3558 while (tracknr <= ump->discinfo.num_tracks) { 3559 trackinfo.tracknr = tracknr; 3560 error = udf_update_trackinfo(ump, &trackinfo); 3561 if (error) { 3562 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3563 return error; 3564 } 3565 if (trackinfo.sessionnr == sessionnr) 3566 break; 3567 tracknr++; 3568 } 3569 if (trackinfo.sessionnr != sessionnr) { 3570 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3571 return ENOENT; 3572 } 3573 3574 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3575 udf_dump_trackinfo(&trackinfo); 3576 3577 /* 3578 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3579 * minimum ISO `sector size' 2048 3580 */ 3581 sector_size = ump->discinfo.sector_size; 3582 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3583 + trackinfo.track_start; 3584 3585 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3586 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3587 blks = MAX(1, 2048 / sector_size); 3588 3589 error = 0; 3590 for (sector = 0; sector < max_sectors; sector += blks) { 3591 pos = buffer + sector * sector_size; 3592 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3593 iso9660_vrs + sector, blks); 3594 if (error) 3595 break; 3596 /* check this ISO descriptor */ 3597 vrs = (struct vrs_desc *) pos; 3598 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3599 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3600 continue; 3601 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3602 continue; 3603 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3604 continue; 3605 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3606 continue; 3607 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3608 continue; 3609 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3610 break; 3611 /* now what? for now, end of sequence */ 3612 break; 3613 } 3614 vrs_len = sector + blks; 3615 if (error) { 3616 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3617 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3618 3619 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3620 3621 vrs = (struct vrs_desc *) (buffer); 3622 vrs->struct_type = 0; 3623 vrs->version = 1; 3624 memcpy(vrs->identifier,VRS_BEA01, 5); 3625 3626 vrs = (struct vrs_desc *) (buffer + 2048); 3627 vrs->struct_type = 0; 3628 vrs->version = 1; 3629 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3630 memcpy(vrs->identifier,VRS_NSR02, 5); 3631 } else { 3632 memcpy(vrs->identifier,VRS_NSR03, 5); 3633 } 3634 3635 vrs = (struct vrs_desc *) (buffer + 4096); 3636 vrs->struct_type = 0; 3637 vrs->version = 1; 3638 memcpy(vrs->identifier, VRS_TEA01, 5); 3639 3640 vrs_len = 3*blks; 3641 } 3642 3643 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3644 3645 /* 3646 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3647 * minimum ISO `sector size' 2048 3648 */ 3649 sector_size = ump->discinfo.sector_size; 3650 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3651 + write_track_start; 3652 3653 /* write out 32 kb */ 3654 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3655 memset(blank, 0, sector_size); 3656 error = 0; 3657 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3658 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3659 blank, sector, 1); 3660 if (error) 3661 break; 3662 } 3663 if (!error) { 3664 /* write out our ISO VRS */ 3665 KASSERT(sector == iso9660_vrs); 3666 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3667 sector, vrs_len); 3668 sector += vrs_len; 3669 } 3670 if (!error) { 3671 /* fill upto the first anchor at S+256 */ 3672 for (; sector < write_track_start+256; sector++) { 3673 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3674 blank, sector, 1); 3675 if (error) 3676 break; 3677 } 3678 } 3679 if (!error) { 3680 /* write out anchor; write at ABSOLUTE place! */ 3681 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3682 (union dscrptr *) ump->anchors[0], sector, sector); 3683 if (error) 3684 printf("writeout of anchor failed!\n"); 3685 } 3686 3687 free(blank, M_TEMP); 3688 free(buffer, M_TEMP); 3689 3690 if (error) 3691 printf("udf_open_session: error writing iso vrs! : " 3692 "leaving disc in compromised state!\n"); 3693 3694 /* synchronise device caches */ 3695 (void) udf_synchronise_caches(ump); 3696 3697 return error; 3698 } 3699 3700 3701 int 3702 udf_open_logvol(struct udf_mount *ump) 3703 { 3704 int logvol_integrity; 3705 int error; 3706 3707 /* already/still open? */ 3708 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3709 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3710 return 0; 3711 3712 /* can we open it ? */ 3713 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3714 return EROFS; 3715 3716 /* setup write parameters */ 3717 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3718 if ((error = udf_setup_writeparams(ump)) != 0) 3719 return error; 3720 3721 /* determine data and metadata tracks (most likely same) */ 3722 error = udf_search_writing_tracks(ump); 3723 if (error) { 3724 /* most likely lack of space */ 3725 printf("udf_open_logvol: error searching writing tracks\n"); 3726 return EROFS; 3727 } 3728 3729 /* writeout/update lvint on disc or only in memory */ 3730 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3731 if (ump->lvopen & UDF_OPEN_SESSION) { 3732 /* TODO optional track reservation opening */ 3733 error = udf_validate_session_start(ump); 3734 if (error) 3735 return error; 3736 3737 /* determine data and metadata tracks again */ 3738 error = udf_search_writing_tracks(ump); 3739 3740 if (ump->lvclose & UDF_WRITE_VAT) { 3741 /* 3742 * we writeout the VAT to get a self-sustained session 3743 * for fsck 3744 */ 3745 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3746 3747 /* write out the VAT data and all its descriptors */ 3748 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3749 udf_writeout_vat(ump); 3750 3751 /* force everything to be synchronized on the device */ 3752 (void) udf_synchronise_caches(ump); 3753 } 3754 } 3755 3756 /* mark it open */ 3757 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3758 3759 /* do we need to write it out? */ 3760 if (ump->lvopen & UDF_WRITE_LVINT) { 3761 error = udf_writeout_lvint(ump, ump->lvopen); 3762 /* if we couldn't write it mark it closed again */ 3763 if (error) { 3764 ump->logvol_integrity->integrity_type = 3765 udf_rw32(UDF_INTEGRITY_CLOSED); 3766 return error; 3767 } 3768 } 3769 3770 return 0; 3771 } 3772 3773 3774 int 3775 udf_close_logvol(struct udf_mount *ump, int mntflags) 3776 { 3777 struct vnode *devvp = ump->devvp; 3778 struct mmc_op mmc_op; 3779 int logvol_integrity; 3780 int error = 0, error1 = 0, error2 = 0; 3781 int tracknr; 3782 int nvats, n, nok; 3783 3784 /* already/still closed? */ 3785 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3786 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3787 return 0; 3788 3789 /* writeout/update lvint or write out VAT */ 3790 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3791 #ifdef DIAGNOSTIC 3792 if (ump->lvclose & UDF_CLOSE_SESSION) 3793 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3794 #endif 3795 3796 if (ump->lvclose & UDF_WRITE_VAT) { 3797 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3798 3799 /* write out the VAT data and all its descriptors */ 3800 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3801 udf_writeout_vat(ump); 3802 3803 /* at least two DVD packets and 3 CD-R packets */ 3804 nvats = 32; 3805 3806 #if notyet 3807 /* 3808 * TODO calculate the available space and if the disc is 3809 * allmost full, write out till end-256-1 with banks, write 3810 * AVDP and fill up with VATs, then close session and close 3811 * disc. 3812 */ 3813 if (ump->lvclose & UDF_FINALISE_DISC) { 3814 error = udf_write_phys_dscr_sync(ump, NULL, 3815 UDF_C_FLOAT_DSCR, 3816 (union dscrptr *) ump->anchors[0], 3817 0, 0); 3818 if (error) 3819 printf("writeout of anchor failed!\n"); 3820 3821 /* pad space with VAT ICBs */ 3822 nvats = 256; 3823 } 3824 #endif 3825 3826 /* write out a number of VAT nodes */ 3827 nok = 0; 3828 for (n = 0; n < nvats; n++) { 3829 /* will now only write last FE/EFE */ 3830 ump->vat_node->i_flags |= IN_MODIFIED; 3831 error = VOP_FSYNC(ump->vat_node->vnode, 3832 FSCRED, FSYNC_WAIT, 0, 0); 3833 if (!error) 3834 nok++; 3835 } 3836 /* force everything to be synchronized on the device */ 3837 (void) udf_synchronise_caches(ump); 3838 3839 if (nok < 14) { 3840 /* arbitrary; but at least one or two CD frames */ 3841 printf("writeout of at least 14 VATs failed\n"); 3842 return error; 3843 } 3844 } 3845 3846 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3847 3848 /* finish closing of session */ 3849 if (ump->lvclose & UDF_CLOSE_SESSION) { 3850 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3851 "as requested\n")); 3852 error = udf_validate_session_start(ump); 3853 if (error) 3854 return error; 3855 3856 (void) udf_synchronise_caches(ump); 3857 3858 /* close all associated tracks */ 3859 tracknr = ump->discinfo.first_track_last_session; 3860 error = 0; 3861 while (tracknr <= ump->discinfo.last_track_last_session) { 3862 DPRINTF(VOLUMES, ("\tclosing possible open " 3863 "track %d\n", tracknr)); 3864 memset(&mmc_op, 0, sizeof(mmc_op)); 3865 mmc_op.operation = MMC_OP_CLOSETRACK; 3866 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3867 mmc_op.tracknr = tracknr; 3868 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3869 FKIOCTL, NOCRED); 3870 if (error) 3871 printf("udf_close_logvol: closing of " 3872 "track %d failed\n", tracknr); 3873 tracknr ++; 3874 } 3875 if (!error) { 3876 DPRINTF(VOLUMES, ("closing session\n")); 3877 memset(&mmc_op, 0, sizeof(mmc_op)); 3878 mmc_op.operation = MMC_OP_CLOSESESSION; 3879 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3880 mmc_op.sessionnr = ump->discinfo.num_sessions; 3881 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3882 FKIOCTL, NOCRED); 3883 if (error) 3884 printf("udf_close_logvol: closing of session" 3885 "failed\n"); 3886 } 3887 if (!error) 3888 ump->lvopen |= UDF_OPEN_SESSION; 3889 if (error) { 3890 printf("udf_close_logvol: leaving disc as it is\n"); 3891 ump->lvclose &= ~UDF_FINALISE_DISC; 3892 } 3893 } 3894 3895 if (ump->lvclose & UDF_FINALISE_DISC) { 3896 memset(&mmc_op, 0, sizeof(mmc_op)); 3897 mmc_op.operation = MMC_OP_FINALISEDISC; 3898 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3899 mmc_op.sessionnr = ump->discinfo.num_sessions; 3900 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3901 FKIOCTL, NOCRED); 3902 if (error) 3903 printf("udf_close_logvol: finalising disc" 3904 "failed\n"); 3905 } 3906 3907 /* write out partition bitmaps if requested */ 3908 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3909 /* sync writeout metadata spacetable if existing */ 3910 error1 = udf_write_metadata_partition_spacetable(ump, true); 3911 if (error1) 3912 printf( "udf_close_logvol: writeout of metadata space " 3913 "bitmap failed\n"); 3914 3915 /* sync writeout partition spacetables */ 3916 error2 = udf_write_physical_partition_spacetables(ump, true); 3917 if (error2) 3918 printf( "udf_close_logvol: writeout of space tables " 3919 "failed\n"); 3920 3921 if (error1 || error2) 3922 return (error1 | error2); 3923 3924 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3925 } 3926 3927 /* write out metadata partition nodes if requested */ 3928 if (ump->lvclose & UDF_WRITE_METAPART_NODES) { 3929 /* sync writeout metadata descriptor node */ 3930 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); 3931 if (error1) 3932 printf( "udf_close_logvol: writeout of metadata partition " 3933 "node failed\n"); 3934 3935 /* duplicate metadata partition descriptor if needed */ 3936 udf_synchronise_metadatamirror_node(ump); 3937 3938 /* sync writeout metadatamirror descriptor node */ 3939 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); 3940 if (error2) 3941 printf( "udf_close_logvol: writeout of metadata partition " 3942 "mirror node failed\n"); 3943 3944 if (error1 || error2) 3945 return (error1 | error2); 3946 3947 ump->lvclose &= ~UDF_WRITE_METAPART_NODES; 3948 } 3949 3950 /* mark it closed */ 3951 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3952 3953 /* do we need to write out the logical volume integrity? */ 3954 if (ump->lvclose & UDF_WRITE_LVINT) 3955 error = udf_writeout_lvint(ump, ump->lvopen); 3956 if (error) { 3957 /* HELP now what? mark it open again for now */ 3958 ump->logvol_integrity->integrity_type = 3959 udf_rw32(UDF_INTEGRITY_OPEN); 3960 return error; 3961 } 3962 3963 (void) udf_synchronise_caches(ump); 3964 3965 return 0; 3966 } 3967 3968 /* --------------------------------------------------------------------- */ 3969 3970 /* 3971 * Genfs interfacing 3972 * 3973 * static const struct genfs_ops udf_genfsops = { 3974 * .gop_size = genfs_size, 3975 * size of transfers 3976 * .gop_alloc = udf_gop_alloc, 3977 * allocate len bytes at offset 3978 * .gop_write = genfs_gop_write, 3979 * putpages interface code 3980 * .gop_markupdate = udf_gop_markupdate, 3981 * set update/modify flags etc. 3982 * } 3983 */ 3984 3985 /* 3986 * Genfs interface. These four functions are the only ones defined though not 3987 * documented... great.... 3988 */ 3989 3990 /* 3991 * Called for allocating an extent of the file either by VOP_WRITE() or by 3992 * genfs filling up gaps. 3993 */ 3994 static int 3995 udf_gop_alloc(struct vnode *vp, off_t off, 3996 off_t len, int flags, kauth_cred_t cred) 3997 { 3998 struct udf_node *udf_node = VTOI(vp); 3999 struct udf_mount *ump = udf_node->ump; 4000 uint64_t lb_start, lb_end; 4001 uint32_t lb_size, num_lb; 4002 int udf_c_type, vpart_num, can_fail; 4003 int error; 4004 4005 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", 4006 off, len, flags? "SYNC":"NONE")); 4007 4008 /* 4009 * request the pages of our vnode and see how many pages will need to 4010 * be allocated and reserve that space 4011 */ 4012 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 4013 lb_start = off / lb_size; 4014 lb_end = (off + len + lb_size -1) / lb_size; 4015 num_lb = lb_end - lb_start; 4016 4017 udf_c_type = udf_get_c_type(udf_node); 4018 vpart_num = udf_get_record_vpart(ump, udf_c_type); 4019 4020 /* all requests can fail */ 4021 can_fail = true; 4022 4023 /* fid's (directories) can't fail */ 4024 if (udf_c_type == UDF_C_FIDS) 4025 can_fail = false; 4026 4027 /* system files can't fail */ 4028 if (vp->v_vflag & VV_SYSTEM) 4029 can_fail = false; 4030 4031 error = udf_reserve_space(ump, udf_node, udf_c_type, 4032 vpart_num, num_lb, can_fail); 4033 4034 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", 4035 lb_start, lb_end, num_lb)); 4036 4037 return error; 4038 } 4039 4040 4041 /* 4042 * callback from genfs to update our flags 4043 */ 4044 static void 4045 udf_gop_markupdate(struct vnode *vp, int flags) 4046 { 4047 struct udf_node *udf_node = VTOI(vp); 4048 u_long mask = 0; 4049 4050 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 4051 mask = IN_ACCESS; 4052 } 4053 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 4054 if (vp->v_type == VREG) { 4055 mask |= IN_CHANGE | IN_UPDATE; 4056 } else { 4057 mask |= IN_MODIFY; 4058 } 4059 } 4060 if (mask) { 4061 udf_node->i_flags |= mask; 4062 } 4063 } 4064 4065 4066 static const struct genfs_ops udf_genfsops = { 4067 .gop_size = genfs_size, 4068 .gop_alloc = udf_gop_alloc, 4069 .gop_write = genfs_gop_write_rwmap, 4070 .gop_markupdate = udf_gop_markupdate, 4071 .gop_putrange = genfs_gop_putrange, 4072 }; 4073 4074 4075 /* --------------------------------------------------------------------- */ 4076 4077 int 4078 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 4079 { 4080 union dscrptr *dscr; 4081 int error; 4082 4083 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 4084 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 4085 4086 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 4087 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 4088 (void) udf_validate_tag_and_crc_sums(dscr); 4089 4090 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 4091 dscr, sector, sector); 4092 4093 free(dscr, M_TEMP); 4094 4095 return error; 4096 } 4097 4098 4099 /* --------------------------------------------------------------------- */ 4100 4101 /* UDF<->unix converters */ 4102 4103 /* --------------------------------------------------------------------- */ 4104 4105 static mode_t 4106 udf_perm_to_unix_mode(uint32_t perm) 4107 { 4108 mode_t mode; 4109 4110 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 4111 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 4112 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 4113 4114 return mode; 4115 } 4116 4117 /* --------------------------------------------------------------------- */ 4118 4119 static uint32_t 4120 unix_mode_to_udf_perm(mode_t mode) 4121 { 4122 uint32_t perm; 4123 4124 perm = ((mode & S_IRWXO) ); 4125 perm |= ((mode & S_IRWXG) << 2); 4126 perm |= ((mode & S_IRWXU) << 4); 4127 perm |= ((mode & S_IWOTH) << 3); 4128 perm |= ((mode & S_IWGRP) << 5); 4129 perm |= ((mode & S_IWUSR) << 7); 4130 4131 return perm; 4132 } 4133 4134 /* --------------------------------------------------------------------- */ 4135 4136 static uint32_t 4137 udf_icb_to_unix_filetype(uint32_t icbftype) 4138 { 4139 switch (icbftype) { 4140 case UDF_ICB_FILETYPE_DIRECTORY : 4141 case UDF_ICB_FILETYPE_STREAMDIR : 4142 return S_IFDIR; 4143 case UDF_ICB_FILETYPE_FIFO : 4144 return S_IFIFO; 4145 case UDF_ICB_FILETYPE_CHARDEVICE : 4146 return S_IFCHR; 4147 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4148 return S_IFBLK; 4149 case UDF_ICB_FILETYPE_RANDOMACCESS : 4150 case UDF_ICB_FILETYPE_REALTIME : 4151 return S_IFREG; 4152 case UDF_ICB_FILETYPE_SYMLINK : 4153 return S_IFLNK; 4154 case UDF_ICB_FILETYPE_SOCKET : 4155 return S_IFSOCK; 4156 } 4157 /* no idea what this is */ 4158 return 0; 4159 } 4160 4161 /* --------------------------------------------------------------------- */ 4162 4163 void 4164 udf_to_unix_name(char *result, int result_len, char *id, int len, 4165 struct charspec *chsp) 4166 { 4167 uint16_t *raw_name, *unix_name; 4168 uint16_t *inchp, ch; 4169 uint8_t *outchp; 4170 const char *osta_id = "OSTA Compressed Unicode"; 4171 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4172 4173 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4174 unix_name = raw_name + 1024; /* split space in half */ 4175 assert(sizeof(char) == sizeof(uint8_t)); 4176 outchp = (uint8_t *) result; 4177 4178 is_osta_typ0 = (chsp->type == 0); 4179 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4180 if (is_osta_typ0) { 4181 /* TODO clean up */ 4182 *raw_name = *unix_name = 0; 4183 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4184 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4185 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4186 /* output UTF8 */ 4187 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4188 ch = *inchp; 4189 nout = wput_utf8(outchp, result_len, ch); 4190 outchp += nout; result_len -= nout; 4191 if (!ch) break; 4192 } 4193 *outchp++ = 0; 4194 } else { 4195 /* assume 8bit char length byte latin-1 */ 4196 assert(*id == 8); 4197 assert(strlen((char *) (id+1)) <= NAME_MAX); 4198 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4199 } 4200 free(raw_name, M_UDFTEMP); 4201 } 4202 4203 /* --------------------------------------------------------------------- */ 4204 4205 void 4206 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4207 struct charspec *chsp) 4208 { 4209 uint16_t *raw_name; 4210 uint16_t *outchp; 4211 const char *inchp; 4212 const char *osta_id = "OSTA Compressed Unicode"; 4213 int udf_chars, is_osta_typ0, bits; 4214 size_t cnt; 4215 4216 /* allocate temporary unicode-16 buffer */ 4217 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4218 4219 /* convert utf8 to unicode-16 */ 4220 *raw_name = 0; 4221 inchp = name; 4222 outchp = raw_name; 4223 bits = 8; 4224 for (cnt = name_len, udf_chars = 0; cnt;) { 4225 *outchp = wget_utf8(&inchp, &cnt); 4226 if (*outchp > 0xff) 4227 bits=16; 4228 outchp++; 4229 udf_chars++; 4230 } 4231 /* null terminate just in case */ 4232 *outchp++ = 0; 4233 4234 is_osta_typ0 = (chsp->type == 0); 4235 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4236 if (is_osta_typ0) { 4237 udf_chars = udf_CompressUnicode(udf_chars, bits, 4238 (unicode_t *) raw_name, 4239 (byte *) result); 4240 } else { 4241 printf("unix to udf name: no CHSP0 ?\n"); 4242 /* XXX assume 8bit char length byte latin-1 */ 4243 *result++ = 8; udf_chars = 1; 4244 strncpy(result, name + 1, name_len); 4245 udf_chars += name_len; 4246 } 4247 *result_len = udf_chars; 4248 free(raw_name, M_UDFTEMP); 4249 } 4250 4251 /* --------------------------------------------------------------------- */ 4252 4253 void 4254 udf_timestamp_to_timespec(struct udf_mount *ump, 4255 struct timestamp *timestamp, 4256 struct timespec *timespec) 4257 { 4258 struct clock_ymdhms ymdhms; 4259 uint32_t usecs, secs, nsecs; 4260 uint16_t tz; 4261 4262 /* fill in ymdhms structure from timestamp */ 4263 memset(&ymdhms, 0, sizeof(ymdhms)); 4264 ymdhms.dt_year = udf_rw16(timestamp->year); 4265 ymdhms.dt_mon = timestamp->month; 4266 ymdhms.dt_day = timestamp->day; 4267 ymdhms.dt_wday = 0; /* ? */ 4268 ymdhms.dt_hour = timestamp->hour; 4269 ymdhms.dt_min = timestamp->minute; 4270 ymdhms.dt_sec = timestamp->second; 4271 4272 secs = clock_ymdhms_to_secs(&ymdhms); 4273 usecs = timestamp->usec + 4274 100*timestamp->hund_usec + 10000*timestamp->centisec; 4275 nsecs = usecs * 1000; 4276 4277 /* 4278 * Calculate the time zone. The timezone is 12 bit signed 2's 4279 * compliment, so we gotta do some extra magic to handle it right. 4280 */ 4281 tz = udf_rw16(timestamp->type_tz); 4282 tz &= 0x0fff; /* only lower 12 bits are significant */ 4283 if (tz & 0x0800) /* sign extention */ 4284 tz |= 0xf000; 4285 4286 /* TODO check timezone conversion */ 4287 /* check if we are specified a timezone to convert */ 4288 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4289 if ((int16_t) tz != -2047) 4290 secs -= (int16_t) tz * 60; 4291 } else { 4292 secs -= ump->mount_args.gmtoff; 4293 } 4294 4295 timespec->tv_sec = secs; 4296 timespec->tv_nsec = nsecs; 4297 } 4298 4299 4300 void 4301 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4302 { 4303 struct clock_ymdhms ymdhms; 4304 uint32_t husec, usec, csec; 4305 4306 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4307 4308 usec = timespec->tv_nsec / 1000; 4309 husec = usec / 100; 4310 usec -= husec * 100; /* only 0-99 in usec */ 4311 csec = husec / 100; /* only 0-99 in csec */ 4312 husec -= csec * 100; /* only 0-99 in husec */ 4313 4314 /* set method 1 for CUT/GMT */ 4315 timestamp->type_tz = udf_rw16((1<<12) + 0); 4316 timestamp->year = udf_rw16(ymdhms.dt_year); 4317 timestamp->month = ymdhms.dt_mon; 4318 timestamp->day = ymdhms.dt_day; 4319 timestamp->hour = ymdhms.dt_hour; 4320 timestamp->minute = ymdhms.dt_min; 4321 timestamp->second = ymdhms.dt_sec; 4322 timestamp->centisec = csec; 4323 timestamp->hund_usec = husec; 4324 timestamp->usec = usec; 4325 } 4326 4327 /* --------------------------------------------------------------------- */ 4328 4329 /* 4330 * Attribute and filetypes converters with get/set pairs 4331 */ 4332 4333 uint32_t 4334 udf_getaccessmode(struct udf_node *udf_node) 4335 { 4336 struct file_entry *fe = udf_node->fe; 4337 struct extfile_entry *efe = udf_node->efe; 4338 uint32_t udf_perm, icbftype; 4339 uint32_t mode, ftype; 4340 uint16_t icbflags; 4341 4342 UDF_LOCK_NODE(udf_node, 0); 4343 if (fe) { 4344 udf_perm = udf_rw32(fe->perm); 4345 icbftype = fe->icbtag.file_type; 4346 icbflags = udf_rw16(fe->icbtag.flags); 4347 } else { 4348 assert(udf_node->efe); 4349 udf_perm = udf_rw32(efe->perm); 4350 icbftype = efe->icbtag.file_type; 4351 icbflags = udf_rw16(efe->icbtag.flags); 4352 } 4353 4354 mode = udf_perm_to_unix_mode(udf_perm); 4355 ftype = udf_icb_to_unix_filetype(icbftype); 4356 4357 /* set suid, sgid, sticky from flags in fe/efe */ 4358 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4359 mode |= S_ISUID; 4360 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4361 mode |= S_ISGID; 4362 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4363 mode |= S_ISVTX; 4364 4365 UDF_UNLOCK_NODE(udf_node, 0); 4366 4367 return mode | ftype; 4368 } 4369 4370 4371 void 4372 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4373 { 4374 struct file_entry *fe = udf_node->fe; 4375 struct extfile_entry *efe = udf_node->efe; 4376 uint32_t udf_perm; 4377 uint16_t icbflags; 4378 4379 UDF_LOCK_NODE(udf_node, 0); 4380 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4381 if (fe) { 4382 icbflags = udf_rw16(fe->icbtag.flags); 4383 } else { 4384 icbflags = udf_rw16(efe->icbtag.flags); 4385 } 4386 4387 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4388 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4389 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4390 if (mode & S_ISUID) 4391 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4392 if (mode & S_ISGID) 4393 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4394 if (mode & S_ISVTX) 4395 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4396 4397 if (fe) { 4398 fe->perm = udf_rw32(udf_perm); 4399 fe->icbtag.flags = udf_rw16(icbflags); 4400 } else { 4401 efe->perm = udf_rw32(udf_perm); 4402 efe->icbtag.flags = udf_rw16(icbflags); 4403 } 4404 4405 UDF_UNLOCK_NODE(udf_node, 0); 4406 } 4407 4408 4409 void 4410 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4411 { 4412 struct udf_mount *ump = udf_node->ump; 4413 struct file_entry *fe = udf_node->fe; 4414 struct extfile_entry *efe = udf_node->efe; 4415 uid_t uid; 4416 gid_t gid; 4417 4418 UDF_LOCK_NODE(udf_node, 0); 4419 if (fe) { 4420 uid = (uid_t)udf_rw32(fe->uid); 4421 gid = (gid_t)udf_rw32(fe->gid); 4422 } else { 4423 assert(udf_node->efe); 4424 uid = (uid_t)udf_rw32(efe->uid); 4425 gid = (gid_t)udf_rw32(efe->gid); 4426 } 4427 4428 /* do the uid/gid translation game */ 4429 if (uid == (uid_t) -1) 4430 uid = ump->mount_args.anon_uid; 4431 if (gid == (gid_t) -1) 4432 gid = ump->mount_args.anon_gid; 4433 4434 *uidp = uid; 4435 *gidp = gid; 4436 4437 UDF_UNLOCK_NODE(udf_node, 0); 4438 } 4439 4440 4441 void 4442 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4443 { 4444 struct udf_mount *ump = udf_node->ump; 4445 struct file_entry *fe = udf_node->fe; 4446 struct extfile_entry *efe = udf_node->efe; 4447 uid_t nobody_uid; 4448 gid_t nobody_gid; 4449 4450 UDF_LOCK_NODE(udf_node, 0); 4451 4452 /* do the uid/gid translation game */ 4453 nobody_uid = ump->mount_args.nobody_uid; 4454 nobody_gid = ump->mount_args.nobody_gid; 4455 if (uid == nobody_uid) 4456 uid = (uid_t) -1; 4457 if (gid == nobody_gid) 4458 gid = (gid_t) -1; 4459 4460 if (fe) { 4461 fe->uid = udf_rw32((uint32_t) uid); 4462 fe->gid = udf_rw32((uint32_t) gid); 4463 } else { 4464 efe->uid = udf_rw32((uint32_t) uid); 4465 efe->gid = udf_rw32((uint32_t) gid); 4466 } 4467 4468 UDF_UNLOCK_NODE(udf_node, 0); 4469 } 4470 4471 4472 /* --------------------------------------------------------------------- */ 4473 4474 4475 int 4476 udf_dirhash_fill(struct udf_node *dir_node) 4477 { 4478 struct vnode *dvp = dir_node->vnode; 4479 struct dirhash *dirh; 4480 struct file_entry *fe = dir_node->fe; 4481 struct extfile_entry *efe = dir_node->efe; 4482 struct fileid_desc *fid; 4483 struct dirent *dirent; 4484 uint64_t file_size, pre_diroffset, diroffset; 4485 uint32_t lb_size; 4486 int error; 4487 4488 /* make sure we have a dirhash to work on */ 4489 dirh = dir_node->dir_hash; 4490 KASSERT(dirh); 4491 KASSERT(dirh->refcnt > 0); 4492 4493 if (dirh->flags & DIRH_BROKEN) 4494 return EIO; 4495 if (dirh->flags & DIRH_COMPLETE) 4496 return 0; 4497 4498 /* make sure we have a clean dirhash to add to */ 4499 dirhash_purge_entries(dirh); 4500 4501 /* get directory filesize */ 4502 if (fe) { 4503 file_size = udf_rw64(fe->inf_len); 4504 } else { 4505 assert(efe); 4506 file_size = udf_rw64(efe->inf_len); 4507 } 4508 4509 /* allocate temporary space for fid */ 4510 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4511 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4512 4513 /* allocate temporary space for dirent */ 4514 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4515 4516 error = 0; 4517 diroffset = 0; 4518 while (diroffset < file_size) { 4519 /* transfer a new fid/dirent */ 4520 pre_diroffset = diroffset; 4521 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4522 if (error) { 4523 /* TODO what to do? continue but not add? */ 4524 dirh->flags |= DIRH_BROKEN; 4525 dirhash_purge_entries(dirh); 4526 break; 4527 } 4528 4529 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4530 /* register deleted extent for reuse */ 4531 dirhash_enter_freed(dirh, pre_diroffset, 4532 udf_fidsize(fid)); 4533 } else { 4534 /* append to the dirhash */ 4535 dirhash_enter(dirh, dirent, pre_diroffset, 4536 udf_fidsize(fid), 0); 4537 } 4538 } 4539 dirh->flags |= DIRH_COMPLETE; 4540 4541 free(fid, M_UDFTEMP); 4542 free(dirent, M_UDFTEMP); 4543 4544 return error; 4545 } 4546 4547 4548 /* --------------------------------------------------------------------- */ 4549 4550 /* 4551 * Directory read and manipulation functions. 4552 * 4553 */ 4554 4555 int 4556 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4557 struct long_ad *icb_loc, int *found) 4558 { 4559 struct udf_node *dir_node = VTOI(vp); 4560 struct dirhash *dirh; 4561 struct dirhash_entry *dirh_ep; 4562 struct fileid_desc *fid; 4563 struct dirent *dirent, *s_dirent; 4564 struct charspec osta_charspec; 4565 uint64_t diroffset; 4566 uint32_t lb_size; 4567 int hit, error; 4568 4569 /* set default return */ 4570 *found = 0; 4571 4572 /* get our dirhash and make sure its read in */ 4573 dirhash_get(&dir_node->dir_hash); 4574 error = udf_dirhash_fill(dir_node); 4575 if (error) { 4576 dirhash_put(dir_node->dir_hash); 4577 return error; 4578 } 4579 dirh = dir_node->dir_hash; 4580 4581 /* allocate temporary space for fid */ 4582 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4583 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4584 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4585 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4586 4587 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4588 namelen, namelen, name)); 4589 4590 /* convert given unix name to canonical unix name */ 4591 udf_osta_charset(&osta_charspec); 4592 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4593 name, namelen, &osta_charspec); 4594 udf_to_unix_name(s_dirent->d_name, NAME_MAX, 4595 (char *) fid->data, fid->l_fi, 4596 &osta_charspec); 4597 s_dirent->d_namlen = strlen(s_dirent->d_name); 4598 4599 /* search our dirhash hits */ 4600 memset(icb_loc, 0, sizeof(*icb_loc)); 4601 dirh_ep = NULL; 4602 for (;;) { 4603 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep); 4604 /* if no hit, abort the search */ 4605 if (!hit) 4606 break; 4607 4608 /* check this hit */ 4609 diroffset = dirh_ep->offset; 4610 4611 /* transfer a new fid/dirent */ 4612 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4613 if (error) 4614 break; 4615 4616 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4617 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4618 4619 /* see if its our entry */ 4620 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) { 4621 *found = 1; 4622 *icb_loc = fid->icb; 4623 break; 4624 } 4625 } 4626 free(fid, M_UDFTEMP); 4627 free(dirent, M_UDFTEMP); 4628 free(s_dirent, M_UDFTEMP); 4629 4630 dirhash_put(dir_node->dir_hash); 4631 4632 return error; 4633 } 4634 4635 /* --------------------------------------------------------------------- */ 4636 4637 static int 4638 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4639 struct long_ad *node_icb, struct long_ad *parent_icb, 4640 uint64_t parent_unique_id) 4641 { 4642 struct timespec now; 4643 struct icb_tag *icb; 4644 struct filetimes_extattr_entry *ft_extattr; 4645 uint64_t unique_id; 4646 uint32_t fidsize, lb_num; 4647 uint8_t *bpos; 4648 int crclen, attrlen; 4649 4650 lb_num = udf_rw32(node_icb->loc.lb_num); 4651 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4652 icb = &fe->icbtag; 4653 4654 /* 4655 * Always use strategy type 4 unless on WORM wich we don't support 4656 * (yet). Fill in defaults and set for internal allocation of data. 4657 */ 4658 icb->strat_type = udf_rw16(4); 4659 icb->max_num_entries = udf_rw16(1); 4660 icb->file_type = file_type; /* 8 bit */ 4661 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4662 4663 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4664 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4665 4666 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4667 4668 vfs_timestamp(&now); 4669 udf_timespec_to_timestamp(&now, &fe->atime); 4670 udf_timespec_to_timestamp(&now, &fe->attrtime); 4671 udf_timespec_to_timestamp(&now, &fe->mtime); 4672 4673 udf_set_regid(&fe->imp_id, IMPL_NAME); 4674 udf_add_impl_regid(ump, &fe->imp_id); 4675 4676 unique_id = udf_advance_uniqueid(ump); 4677 fe->unique_id = udf_rw64(unique_id); 4678 fe->l_ea = udf_rw32(0); 4679 4680 /* create extended attribute to record our creation time */ 4681 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4682 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4683 memset(ft_extattr, 0, attrlen); 4684 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4685 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4686 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4687 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4688 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4689 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4690 4691 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4692 (struct extattr_entry *) ft_extattr); 4693 free(ft_extattr, M_UDFTEMP); 4694 4695 /* if its a directory, create '..' */ 4696 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4697 fidsize = 0; 4698 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4699 fidsize = udf_create_parentfid(ump, 4700 (struct fileid_desc *) bpos, parent_icb, 4701 parent_unique_id); 4702 } 4703 4704 /* record fidlength information */ 4705 fe->inf_len = udf_rw64(fidsize); 4706 fe->l_ad = udf_rw32(fidsize); 4707 fe->logblks_rec = udf_rw64(0); /* intern */ 4708 4709 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4710 crclen += udf_rw32(fe->l_ea) + fidsize; 4711 fe->tag.desc_crc_len = udf_rw16(crclen); 4712 4713 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4714 4715 return fidsize; 4716 } 4717 4718 /* --------------------------------------------------------------------- */ 4719 4720 static int 4721 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4722 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4723 uint64_t parent_unique_id) 4724 { 4725 struct timespec now; 4726 struct icb_tag *icb; 4727 uint64_t unique_id; 4728 uint32_t fidsize, lb_num; 4729 uint8_t *bpos; 4730 int crclen; 4731 4732 lb_num = udf_rw32(node_icb->loc.lb_num); 4733 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4734 icb = &efe->icbtag; 4735 4736 /* 4737 * Always use strategy type 4 unless on WORM wich we don't support 4738 * (yet). Fill in defaults and set for internal allocation of data. 4739 */ 4740 icb->strat_type = udf_rw16(4); 4741 icb->max_num_entries = udf_rw16(1); 4742 icb->file_type = file_type; /* 8 bit */ 4743 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4744 4745 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4746 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4747 4748 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4749 4750 vfs_timestamp(&now); 4751 udf_timespec_to_timestamp(&now, &efe->ctime); 4752 udf_timespec_to_timestamp(&now, &efe->atime); 4753 udf_timespec_to_timestamp(&now, &efe->attrtime); 4754 udf_timespec_to_timestamp(&now, &efe->mtime); 4755 4756 udf_set_regid(&efe->imp_id, IMPL_NAME); 4757 udf_add_impl_regid(ump, &efe->imp_id); 4758 4759 unique_id = udf_advance_uniqueid(ump); 4760 efe->unique_id = udf_rw64(unique_id); 4761 efe->l_ea = udf_rw32(0); 4762 4763 /* if its a directory, create '..' */ 4764 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4765 fidsize = 0; 4766 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4767 fidsize = udf_create_parentfid(ump, 4768 (struct fileid_desc *) bpos, parent_icb, 4769 parent_unique_id); 4770 } 4771 4772 /* record fidlength information */ 4773 efe->obj_size = udf_rw64(fidsize); 4774 efe->inf_len = udf_rw64(fidsize); 4775 efe->l_ad = udf_rw32(fidsize); 4776 efe->logblks_rec = udf_rw64(0); /* intern */ 4777 4778 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4779 crclen += udf_rw32(efe->l_ea) + fidsize; 4780 efe->tag.desc_crc_len = udf_rw16(crclen); 4781 4782 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4783 4784 return fidsize; 4785 } 4786 4787 /* --------------------------------------------------------------------- */ 4788 4789 int 4790 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4791 struct udf_node *udf_node, struct componentname *cnp) 4792 { 4793 struct vnode *dvp = dir_node->vnode; 4794 struct dirhash *dirh; 4795 struct dirhash_entry *dirh_ep; 4796 struct file_entry *fe = dir_node->fe; 4797 struct fileid_desc *fid; 4798 struct dirent *dirent, *s_dirent; 4799 struct charspec osta_charspec; 4800 uint64_t diroffset; 4801 uint32_t lb_size, fidsize; 4802 int found, error; 4803 int hit, refcnt; 4804 4805 /* get our dirhash and make sure its read in */ 4806 dirhash_get(&dir_node->dir_hash); 4807 error = udf_dirhash_fill(dir_node); 4808 if (error) { 4809 dirhash_put(dir_node->dir_hash); 4810 return error; 4811 } 4812 dirh = dir_node->dir_hash; 4813 4814 /* get directory filesize */ 4815 if (!fe) { 4816 assert(dir_node->efe); 4817 } 4818 4819 /* allocate temporary space for fid and dirents */ 4820 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4821 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4822 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4823 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4824 4825 /* convert given unix name to canonical unix name */ 4826 udf_osta_charset(&osta_charspec); 4827 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4828 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4829 udf_to_unix_name(s_dirent->d_name, NAME_MAX, 4830 (char *) fid->data, fid->l_fi, 4831 &osta_charspec); 4832 s_dirent->d_namlen = strlen(s_dirent->d_name); 4833 4834 /* search our dirhash hits */ 4835 found = 0; 4836 dirh_ep = NULL; 4837 for (;;) { 4838 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep); 4839 /* if no hit, abort the search */ 4840 if (!hit) 4841 break; 4842 4843 /* check this hit */ 4844 diroffset = dirh_ep->offset; 4845 4846 /* transfer a new fid/dirent */ 4847 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4848 if (error) 4849 break; 4850 4851 /* see if its our entry */ 4852 KASSERT(dirent->d_namlen == s_dirent->d_namlen); 4853 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) { 4854 found = 1; 4855 break; 4856 } 4857 } 4858 4859 if (!found) 4860 error = ENOENT; 4861 if (error) 4862 goto error_out; 4863 4864 /* mark deleted */ 4865 fid->file_char |= UDF_FILE_CHAR_DEL; 4866 #ifdef UDF_COMPLETE_DELETE 4867 memset(&fid->icb, 0, sizeof(fid->icb)); 4868 #endif 4869 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4870 4871 /* get size of fid and compensate for the read_fid_stream advance */ 4872 fidsize = udf_fidsize(fid); 4873 diroffset -= fidsize; 4874 4875 /* write out */ 4876 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4877 fid, fidsize, diroffset, 4878 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4879 FSCRED, NULL, NULL); 4880 if (error) 4881 goto error_out; 4882 4883 /* get reference count of attached node */ 4884 if (udf_node->fe) { 4885 refcnt = udf_rw16(udf_node->fe->link_cnt); 4886 } else { 4887 KASSERT(udf_node->efe); 4888 refcnt = udf_rw16(udf_node->efe->link_cnt); 4889 } 4890 #ifdef UDF_COMPLETE_DELETE 4891 /* substract reference counter in attached node */ 4892 refcnt -= 1; 4893 if (udf_node->fe) { 4894 udf_node->fe->link_cnt = udf_rw16(refcnt); 4895 } else { 4896 udf_node->efe->link_cnt = udf_rw16(refcnt); 4897 } 4898 4899 /* prevent writeout when refcnt == 0 */ 4900 if (refcnt == 0) 4901 udf_node->i_flags |= IN_DELETED; 4902 4903 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4904 int drefcnt; 4905 4906 /* substract reference counter in directory node */ 4907 /* note subtract 2 (?) for its was also backreferenced */ 4908 if (dir_node->fe) { 4909 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4910 drefcnt -= 1; 4911 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4912 } else { 4913 KASSERT(dir_node->efe); 4914 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4915 drefcnt -= 1; 4916 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4917 } 4918 } 4919 4920 udf_node->i_flags |= IN_MODIFIED; 4921 dir_node->i_flags |= IN_MODIFIED; 4922 #endif 4923 /* if it is/was a hardlink adjust the file count */ 4924 if (refcnt > 0) 4925 udf_adjust_filecount(udf_node, -1); 4926 4927 /* remove from the dirhash */ 4928 dirhash_remove(dirh, dirent, diroffset, 4929 udf_fidsize(fid)); 4930 4931 error_out: 4932 free(fid, M_UDFTEMP); 4933 free(dirent, M_UDFTEMP); 4934 free(s_dirent, M_UDFTEMP); 4935 4936 dirhash_put(dir_node->dir_hash); 4937 4938 return error; 4939 } 4940 4941 /* --------------------------------------------------------------------- */ 4942 4943 int 4944 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, 4945 struct udf_node *new_parent_node) 4946 { 4947 struct vnode *dvp = dir_node->vnode; 4948 struct dirhash *dirh; 4949 struct dirhash_entry *dirh_ep; 4950 struct file_entry *fe; 4951 struct extfile_entry *efe; 4952 struct fileid_desc *fid; 4953 struct dirent *dirent; 4954 uint64_t diroffset; 4955 uint64_t new_parent_unique_id; 4956 uint32_t lb_size, fidsize; 4957 int found, error; 4958 char const *name = ".."; 4959 int namelen = 2; 4960 int hit; 4961 4962 /* get our dirhash and make sure its read in */ 4963 dirhash_get(&dir_node->dir_hash); 4964 error = udf_dirhash_fill(dir_node); 4965 if (error) { 4966 dirhash_put(dir_node->dir_hash); 4967 return error; 4968 } 4969 dirh = dir_node->dir_hash; 4970 4971 /* get new parent's unique ID */ 4972 fe = new_parent_node->fe; 4973 efe = new_parent_node->efe; 4974 if (fe) { 4975 new_parent_unique_id = udf_rw64(fe->unique_id); 4976 } else { 4977 assert(efe); 4978 new_parent_unique_id = udf_rw64(efe->unique_id); 4979 } 4980 4981 /* get directory filesize */ 4982 fe = dir_node->fe; 4983 efe = dir_node->efe; 4984 if (!fe) { 4985 assert(efe); 4986 } 4987 4988 /* allocate temporary space for fid */ 4989 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4990 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4991 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4992 4993 /* 4994 * NOTE the standard does not dictate the FID entry '..' should be 4995 * first, though in practice it will most likely be. 4996 */ 4997 4998 /* search our dirhash hits */ 4999 found = 0; 5000 dirh_ep = NULL; 5001 for (;;) { 5002 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 5003 /* if no hit, abort the search */ 5004 if (!hit) 5005 break; 5006 5007 /* check this hit */ 5008 diroffset = dirh_ep->offset; 5009 5010 /* transfer a new fid/dirent */ 5011 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 5012 if (error) 5013 break; 5014 5015 /* see if its our entry */ 5016 KASSERT(dirent->d_namlen == namelen); 5017 if (strncmp(dirent->d_name, name, namelen) == 0) { 5018 found = 1; 5019 break; 5020 } 5021 } 5022 5023 if (!found) 5024 error = ENOENT; 5025 if (error) 5026 goto error_out; 5027 5028 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ 5029 fid->icb = new_parent_node->write_loc; 5030 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); 5031 5032 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5033 5034 /* get size of fid and compensate for the read_fid_stream advance */ 5035 fidsize = udf_fidsize(fid); 5036 diroffset -= fidsize; 5037 5038 /* write out */ 5039 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 5040 fid, fidsize, diroffset, 5041 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5042 FSCRED, NULL, NULL); 5043 5044 /* nothing to be done in the dirhash */ 5045 5046 error_out: 5047 free(fid, M_UDFTEMP); 5048 free(dirent, M_UDFTEMP); 5049 5050 dirhash_put(dir_node->dir_hash); 5051 5052 return error; 5053 } 5054 5055 /* --------------------------------------------------------------------- */ 5056 5057 /* 5058 * We are not allowed to split the fid tag itself over an logical block so 5059 * check the space remaining in the logical block. 5060 * 5061 * We try to select the smallest candidate for recycling or when none is 5062 * found, append a new one at the end of the directory. 5063 */ 5064 5065 int 5066 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 5067 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 5068 { 5069 struct vnode *dvp = dir_node->vnode; 5070 struct dirhash *dirh; 5071 struct dirhash_entry *dirh_ep; 5072 struct fileid_desc *fid; 5073 struct icb_tag *icbtag; 5074 struct charspec osta_charspec; 5075 struct dirent dirent; 5076 uint64_t unique_id, dir_size; 5077 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 5078 uint32_t chosen_size, chosen_size_diff; 5079 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 5080 int file_char, refcnt, icbflags, addr_type, hit, error; 5081 5082 /* get our dirhash and make sure its read in */ 5083 dirhash_get(&dir_node->dir_hash); 5084 error = udf_dirhash_fill(dir_node); 5085 if (error) { 5086 dirhash_put(dir_node->dir_hash); 5087 return error; 5088 } 5089 dirh = dir_node->dir_hash; 5090 5091 /* get info */ 5092 lb_size = udf_rw32(ump->logical_vol->lb_size); 5093 udf_osta_charset(&osta_charspec); 5094 5095 if (dir_node->fe) { 5096 dir_size = udf_rw64(dir_node->fe->inf_len); 5097 icbtag = &dir_node->fe->icbtag; 5098 } else { 5099 dir_size = udf_rw64(dir_node->efe->inf_len); 5100 icbtag = &dir_node->efe->icbtag; 5101 } 5102 5103 icbflags = udf_rw16(icbtag->flags); 5104 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5105 5106 if (udf_node->fe) { 5107 unique_id = udf_rw64(udf_node->fe->unique_id); 5108 refcnt = udf_rw16(udf_node->fe->link_cnt); 5109 } else { 5110 unique_id = udf_rw64(udf_node->efe->unique_id); 5111 refcnt = udf_rw16(udf_node->efe->link_cnt); 5112 } 5113 5114 if (refcnt > 0) { 5115 unique_id = udf_advance_uniqueid(ump); 5116 udf_adjust_filecount(udf_node, 1); 5117 } 5118 5119 /* determine file characteristics */ 5120 file_char = 0; /* visible non deleted file and not stream metadata */ 5121 if (vap->va_type == VDIR) 5122 file_char = UDF_FILE_CHAR_DIR; 5123 5124 /* malloc scrap buffer */ 5125 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 5126 5127 /* calculate _minimum_ fid size */ 5128 unix_to_udf_name((char *) fid->data, &fid->l_fi, 5129 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5130 fidsize = UDF_FID_SIZE + fid->l_fi; 5131 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 5132 5133 /* find position that will fit the FID */ 5134 chosen_fid_pos = dir_size; 5135 chosen_size = 0; 5136 chosen_size_diff = UINT_MAX; 5137 5138 /* shut up gcc */ 5139 dirent.d_namlen = 0; 5140 5141 /* search our dirhash hits */ 5142 error = 0; 5143 dirh_ep = NULL; 5144 for (;;) { 5145 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 5146 /* if no hit, abort the search */ 5147 if (!hit) 5148 break; 5149 5150 /* check this hit for size */ 5151 this_fidsize = dirh_ep->entry_size; 5152 5153 /* check this hit */ 5154 fid_pos = dirh_ep->offset; 5155 end_fid_pos = fid_pos + this_fidsize; 5156 size_diff = this_fidsize - fidsize; 5157 lb_rest = lb_size - (end_fid_pos % lb_size); 5158 5159 #ifndef UDF_COMPLETE_DELETE 5160 /* transfer a new fid/dirent */ 5161 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 5162 if (error) 5163 goto error_out; 5164 5165 /* only reuse entries that are wiped */ 5166 /* check if the len + loc are marked zero */ 5167 if (udf_rw32(fid->icb.len) != 0) 5168 continue; 5169 if (udf_rw32(fid->icb.loc.lb_num) != 0) 5170 continue; 5171 if (udf_rw16(fid->icb.loc.part_num) != 0) 5172 continue; 5173 #endif /* UDF_COMPLETE_DELETE */ 5174 5175 /* select if not splitting the tag and its smaller */ 5176 if ((size_diff >= 0) && 5177 (size_diff < chosen_size_diff) && 5178 (lb_rest >= sizeof(struct desc_tag))) 5179 { 5180 /* UDF 2.3.4.2+3 specifies rules for iu size */ 5181 if ((size_diff == 0) || (size_diff >= 32)) { 5182 chosen_fid_pos = fid_pos; 5183 chosen_size = this_fidsize; 5184 chosen_size_diff = size_diff; 5185 } 5186 } 5187 } 5188 5189 5190 /* extend directory if no other candidate found */ 5191 if (chosen_size == 0) { 5192 chosen_fid_pos = dir_size; 5193 chosen_size = fidsize; 5194 chosen_size_diff = 0; 5195 5196 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 5197 if (addr_type == UDF_ICB_INTERN_ALLOC) { 5198 /* pre-grow directory to see if we're to switch */ 5199 udf_grow_node(dir_node, dir_size + chosen_size); 5200 5201 icbflags = udf_rw16(icbtag->flags); 5202 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5203 } 5204 5205 /* make sure the next fid desc_tag won't be splitted */ 5206 if (addr_type != UDF_ICB_INTERN_ALLOC) { 5207 end_fid_pos = chosen_fid_pos + chosen_size; 5208 lb_rest = lb_size - (end_fid_pos % lb_size); 5209 5210 /* pad with implementation use regid if needed */ 5211 if (lb_rest < sizeof(struct desc_tag)) 5212 chosen_size += 32; 5213 } 5214 } 5215 chosen_size_diff = chosen_size - fidsize; 5216 5217 /* populate the FID */ 5218 memset(fid, 0, lb_size); 5219 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 5220 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 5221 fid->file_char = file_char; 5222 fid->icb = udf_node->loc; 5223 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 5224 fid->l_iu = udf_rw16(0); 5225 5226 if (chosen_size > fidsize) { 5227 /* insert implementation-use regid to space it correctly */ 5228 fid->l_iu = udf_rw16(chosen_size_diff); 5229 5230 /* set implementation use */ 5231 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 5232 udf_add_impl_regid(ump, (struct regid *) fid->data); 5233 } 5234 5235 /* fill in name */ 5236 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 5237 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5238 5239 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 5240 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5241 5242 /* writeout FID/update parent directory */ 5243 error = vn_rdwr(UIO_WRITE, dvp, 5244 fid, chosen_size, chosen_fid_pos, 5245 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5246 FSCRED, NULL, NULL); 5247 5248 if (error) 5249 goto error_out; 5250 5251 /* add reference counter in attached node */ 5252 if (udf_node->fe) { 5253 refcnt = udf_rw16(udf_node->fe->link_cnt); 5254 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5255 } else { 5256 KASSERT(udf_node->efe); 5257 refcnt = udf_rw16(udf_node->efe->link_cnt); 5258 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5259 } 5260 5261 /* mark not deleted if it was... just in case, but do warn */ 5262 if (udf_node->i_flags & IN_DELETED) { 5263 printf("udf: warning, marking a file undeleted\n"); 5264 udf_node->i_flags &= ~IN_DELETED; 5265 } 5266 5267 if (file_char & UDF_FILE_CHAR_DIR) { 5268 /* add reference counter in directory node for '..' */ 5269 if (dir_node->fe) { 5270 refcnt = udf_rw16(dir_node->fe->link_cnt); 5271 refcnt++; 5272 dir_node->fe->link_cnt = udf_rw16(refcnt); 5273 } else { 5274 KASSERT(dir_node->efe); 5275 refcnt = udf_rw16(dir_node->efe->link_cnt); 5276 refcnt++; 5277 dir_node->efe->link_cnt = udf_rw16(refcnt); 5278 } 5279 } 5280 5281 /* append to the dirhash */ 5282 /* NOTE do not use dirent anymore or it won't match later! */ 5283 udf_to_unix_name(dirent.d_name, NAME_MAX, 5284 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec); 5285 dirent.d_namlen = strlen(dirent.d_name); 5286 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5287 udf_fidsize(fid), 1); 5288 5289 /* note updates */ 5290 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5291 /* VN_KNOTE(udf_node, ...) */ 5292 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5293 5294 error_out: 5295 free(fid, M_TEMP); 5296 5297 dirhash_put(dir_node->dir_hash); 5298 5299 return error; 5300 } 5301 5302 /* --------------------------------------------------------------------- */ 5303 5304 /* 5305 * Each node can have an attached streamdir node though not recursively. These 5306 * are otherwise known as named substreams/named extended attributes that have 5307 * no size limitations. 5308 * 5309 * `Normal' extended attributes are indicated with a number and are recorded 5310 * in either the fe/efe descriptor itself for small descriptors or recorded in 5311 * the attached extended attribute file. Since these spaces can get 5312 * fragmented, care ought to be taken. 5313 * 5314 * Since the size of the space reserved for allocation descriptors is limited, 5315 * there is a mechanim provided for extending this space; this is done by a 5316 * special extent to allow schrinking of the allocations without breaking the 5317 * linkage to the allocation extent descriptor. 5318 */ 5319 5320 int 5321 udf_loadvnode(struct mount *mp, struct vnode *vp, 5322 const void *key, size_t key_len, const void **new_key) 5323 { 5324 union dscrptr *dscr; 5325 struct udf_mount *ump; 5326 struct udf_node *udf_node; 5327 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc; 5328 uint64_t file_size; 5329 uint32_t lb_size, sector, dummy; 5330 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5331 int slot, eof, error; 5332 int num_indir_followed = 0; 5333 5334 DPRINTF(NODE, ("udf_loadvnode called\n")); 5335 udf_node = NULL; 5336 ump = VFSTOUDF(mp); 5337 5338 KASSERT(key_len == sizeof(node_icb_loc.loc)); 5339 memset(&node_icb_loc, 0, sizeof(node_icb_loc)); 5340 node_icb_loc.len = ump->logical_vol->lb_size; 5341 memcpy(&node_icb_loc.loc, key, key_len); 5342 5343 /* garbage check: translate udf_node_icb_loc to sectornr */ 5344 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy); 5345 if (error) { 5346 DPRINTF(NODE, ("\tcan't translate icb address!\n")); 5347 /* no use, this will fail anyway */ 5348 return EINVAL; 5349 } 5350 5351 /* build udf_node (do initialise!) */ 5352 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5353 memset(udf_node, 0, sizeof(struct udf_node)); 5354 5355 vp->v_tag = VT_UDF; 5356 vp->v_op = udf_vnodeop_p; 5357 vp->v_data = udf_node; 5358 5359 /* initialise crosslinks, note location of fe/efe for hashing */ 5360 udf_node->ump = ump; 5361 udf_node->vnode = vp; 5362 udf_node->loc = node_icb_loc; 5363 udf_node->lockf = 0; 5364 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5365 cv_init(&udf_node->node_lock, "udf_nlk"); 5366 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */ 5367 udf_node->outstanding_bufs = 0; 5368 udf_node->outstanding_nodedscr = 0; 5369 udf_node->uncommitted_lbs = 0; 5370 5371 /* check if we're fetching the root */ 5372 if (ump->fileset_desc) 5373 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5374 sizeof(struct long_ad)) == 0) 5375 vp->v_vflag |= VV_ROOT; 5376 5377 icb_loc = node_icb_loc; 5378 needs_indirect = 0; 5379 strat4096 = 0; 5380 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5381 file_size = 0; 5382 lb_size = udf_rw32(ump->logical_vol->lb_size); 5383 5384 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5385 do { 5386 /* try to read in fe/efe */ 5387 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5388 5389 /* blank sector marks end of sequence, check this */ 5390 if ((dscr == NULL) && (!strat4096)) 5391 error = ENOENT; 5392 5393 /* break if read error or blank sector */ 5394 if (error || (dscr == NULL)) 5395 break; 5396 5397 /* process descriptor based on the descriptor type */ 5398 dscr_type = udf_rw16(dscr->tag.id); 5399 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5400 5401 /* if dealing with an indirect entry, follow the link */ 5402 if (dscr_type == TAGID_INDIRECTENTRY) { 5403 needs_indirect = 0; 5404 next_icb_loc = dscr->inde.indirect_icb; 5405 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5406 icb_loc = next_icb_loc; 5407 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) { 5408 error = EMLINK; 5409 break; 5410 } 5411 continue; 5412 } 5413 5414 /* only file entries and extended file entries allowed here */ 5415 if ((dscr_type != TAGID_FENTRY) && 5416 (dscr_type != TAGID_EXTFENTRY)) { 5417 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5418 error = ENOENT; 5419 break; 5420 } 5421 5422 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5423 5424 /* choose this one */ 5425 last_fe_icb_loc = icb_loc; 5426 5427 /* record and process/update (ext)fentry */ 5428 if (dscr_type == TAGID_FENTRY) { 5429 if (udf_node->fe) 5430 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5431 udf_node->fe); 5432 udf_node->fe = &dscr->fe; 5433 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5434 udf_file_type = udf_node->fe->icbtag.file_type; 5435 file_size = udf_rw64(udf_node->fe->inf_len); 5436 } else { 5437 if (udf_node->efe) 5438 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5439 udf_node->efe); 5440 udf_node->efe = &dscr->efe; 5441 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5442 udf_file_type = udf_node->efe->icbtag.file_type; 5443 file_size = udf_rw64(udf_node->efe->inf_len); 5444 } 5445 5446 /* check recording strategy (structure) */ 5447 5448 /* 5449 * Strategy 4096 is a daisy linked chain terminating with an 5450 * unrecorded sector or a TERM descriptor. The next 5451 * descriptor is to be found in the sector that follows the 5452 * current sector. 5453 */ 5454 if (strat == 4096) { 5455 strat4096 = 1; 5456 needs_indirect = 1; 5457 5458 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5459 } 5460 5461 /* 5462 * Strategy 4 is the normal strategy and terminates, but if 5463 * we're in strategy 4096, we can't have strategy 4 mixed in 5464 */ 5465 5466 if (strat == 4) { 5467 if (strat4096) { 5468 error = EINVAL; 5469 break; 5470 } 5471 break; /* done */ 5472 } 5473 } while (!error); 5474 5475 /* first round of cleanup code */ 5476 if (error) { 5477 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5478 /* recycle udf_node */ 5479 udf_dispose_node(udf_node); 5480 5481 return EINVAL; /* error code ok? */ 5482 } 5483 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5484 5485 /* assert no references to dscr anymore beyong this point */ 5486 assert((udf_node->fe) || (udf_node->efe)); 5487 dscr = NULL; 5488 5489 /* 5490 * Remember where to record an updated version of the descriptor. If 5491 * there is a sequence of indirect entries, icb_loc will have been 5492 * updated. Its the write disipline to allocate new space and to make 5493 * sure the chain is maintained. 5494 * 5495 * `needs_indirect' flags if the next location is to be filled with 5496 * with an indirect entry. 5497 */ 5498 udf_node->write_loc = icb_loc; 5499 udf_node->needs_indirect = needs_indirect; 5500 5501 /* 5502 * Go trough all allocations extents of this descriptor and when 5503 * encountering a redirect read in the allocation extension. These are 5504 * daisy-chained. 5505 */ 5506 UDF_LOCK_NODE(udf_node, 0); 5507 udf_node->num_extensions = 0; 5508 5509 error = 0; 5510 slot = 0; 5511 for (;;) { 5512 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5513 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5514 "lb_num = %d, part = %d\n", slot, eof, 5515 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5516 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5517 udf_rw32(icb_loc.loc.lb_num), 5518 udf_rw16(icb_loc.loc.part_num))); 5519 if (eof) 5520 break; 5521 slot++; 5522 5523 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5524 continue; 5525 5526 DPRINTF(NODE, ("\tgot redirect extent\n")); 5527 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5528 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5529 "too many allocation extensions on " 5530 "udf_node\n")); 5531 error = EINVAL; 5532 break; 5533 } 5534 5535 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5536 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5537 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5538 "extension size in udf_node\n")); 5539 error = EINVAL; 5540 break; 5541 } 5542 5543 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5544 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5545 /* load in allocation extent */ 5546 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5547 if (error || (dscr == NULL)) 5548 break; 5549 5550 /* process read-in descriptor */ 5551 dscr_type = udf_rw16(dscr->tag.id); 5552 5553 if (dscr_type != TAGID_ALLOCEXTENT) { 5554 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5555 error = ENOENT; 5556 break; 5557 } 5558 5559 DPRINTF(NODE, ("\trecording redirect extent\n")); 5560 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5561 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5562 5563 udf_node->num_extensions++; 5564 5565 } /* while */ 5566 UDF_UNLOCK_NODE(udf_node, 0); 5567 5568 /* second round of cleanup code */ 5569 if (error) { 5570 /* recycle udf_node */ 5571 udf_dispose_node(udf_node); 5572 5573 return EINVAL; /* error code ok? */ 5574 } 5575 5576 DPRINTF(NODE, ("\tnode read in fine\n")); 5577 5578 /* 5579 * Translate UDF filetypes into vnode types. 5580 * 5581 * Systemfiles like the meta main and mirror files are not treated as 5582 * normal files, so we type them as having no type. UDF dictates that 5583 * they are not allowed to be visible. 5584 */ 5585 5586 switch (udf_file_type) { 5587 case UDF_ICB_FILETYPE_DIRECTORY : 5588 case UDF_ICB_FILETYPE_STREAMDIR : 5589 vp->v_type = VDIR; 5590 break; 5591 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5592 vp->v_type = VBLK; 5593 break; 5594 case UDF_ICB_FILETYPE_CHARDEVICE : 5595 vp->v_type = VCHR; 5596 break; 5597 case UDF_ICB_FILETYPE_SOCKET : 5598 vp->v_type = VSOCK; 5599 break; 5600 case UDF_ICB_FILETYPE_FIFO : 5601 vp->v_type = VFIFO; 5602 break; 5603 case UDF_ICB_FILETYPE_SYMLINK : 5604 vp->v_type = VLNK; 5605 break; 5606 case UDF_ICB_FILETYPE_VAT : 5607 case UDF_ICB_FILETYPE_META_MAIN : 5608 case UDF_ICB_FILETYPE_META_MIRROR : 5609 vp->v_type = VNON; 5610 break; 5611 case UDF_ICB_FILETYPE_RANDOMACCESS : 5612 case UDF_ICB_FILETYPE_REALTIME : 5613 vp->v_type = VREG; 5614 break; 5615 default: 5616 /* YIKES, something else */ 5617 vp->v_type = VNON; 5618 } 5619 5620 /* TODO specfs, fifofs etc etc. vnops setting */ 5621 5622 /* don't forget to set vnode's v_size */ 5623 uvm_vnp_setsize(vp, file_size); 5624 5625 /* TODO ext attr and streamdir udf_nodes */ 5626 5627 *new_key = &udf_node->loc.loc; 5628 5629 return 0; 5630 } 5631 5632 int 5633 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5634 struct udf_node **udf_noderes, int lktype) 5635 { 5636 int error; 5637 struct vnode *vp; 5638 5639 *udf_noderes = NULL; 5640 5641 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc, 5642 sizeof(node_icb_loc->loc), &vp); 5643 if (error) 5644 return error; 5645 error = vn_lock(vp, lktype); 5646 if (error) { 5647 vrele(vp); 5648 return error; 5649 } 5650 *udf_noderes = VTOI(vp); 5651 return 0; 5652 } 5653 5654 /* --------------------------------------------------------------------- */ 5655 5656 int 5657 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5658 { 5659 union dscrptr *dscr; 5660 struct long_ad *loc; 5661 int extnr, error; 5662 5663 DPRINTF(NODE, ("udf_writeout_node called\n")); 5664 5665 KASSERT(udf_node->outstanding_bufs == 0); 5666 KASSERT(udf_node->outstanding_nodedscr == 0); 5667 5668 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5669 5670 if (udf_node->i_flags & IN_DELETED) { 5671 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5672 udf_cleanup_reservation(udf_node); 5673 return 0; 5674 } 5675 5676 /* lock node; unlocked in callback */ 5677 UDF_LOCK_NODE(udf_node, 0); 5678 5679 /* remove pending reservations, we're written out */ 5680 udf_cleanup_reservation(udf_node); 5681 5682 /* at least one descriptor writeout */ 5683 udf_node->outstanding_nodedscr = 1; 5684 5685 /* we're going to write out the descriptor so clear the flags */ 5686 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5687 5688 /* if we were rebuild, write out the allocation extents */ 5689 if (udf_node->i_flags & IN_NODE_REBUILD) { 5690 /* mark outstanding node descriptors and issue them */ 5691 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5692 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5693 loc = &udf_node->ext_loc[extnr]; 5694 dscr = (union dscrptr *) udf_node->ext[extnr]; 5695 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5696 if (error) 5697 return error; 5698 } 5699 /* mark allocation extents written out */ 5700 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5701 } 5702 5703 if (udf_node->fe) { 5704 KASSERT(udf_node->efe == NULL); 5705 dscr = (union dscrptr *) udf_node->fe; 5706 } else { 5707 KASSERT(udf_node->efe); 5708 KASSERT(udf_node->fe == NULL); 5709 dscr = (union dscrptr *) udf_node->efe; 5710 } 5711 KASSERT(dscr); 5712 5713 loc = &udf_node->write_loc; 5714 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5715 5716 return error; 5717 } 5718 5719 /* --------------------------------------------------------------------- */ 5720 5721 int 5722 udf_dispose_node(struct udf_node *udf_node) 5723 { 5724 struct vnode *vp; 5725 int extnr; 5726 5727 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5728 if (!udf_node) { 5729 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5730 return 0; 5731 } 5732 5733 vp = udf_node->vnode; 5734 #ifdef DIAGNOSTIC 5735 if (vp->v_numoutput) 5736 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5737 "v_numoutput = %d", udf_node, vp->v_numoutput); 5738 #endif 5739 5740 udf_cleanup_reservation(udf_node); 5741 5742 /* TODO extended attributes and streamdir */ 5743 5744 /* remove dirhash if present */ 5745 dirhash_purge(&udf_node->dir_hash); 5746 5747 /* destroy our lock */ 5748 mutex_destroy(&udf_node->node_mutex); 5749 cv_destroy(&udf_node->node_lock); 5750 5751 /* dissociate our udf_node from the vnode */ 5752 genfs_node_destroy(udf_node->vnode); 5753 mutex_enter(vp->v_interlock); 5754 vp->v_data = NULL; 5755 mutex_exit(vp->v_interlock); 5756 5757 /* free associated memory and the node itself */ 5758 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5759 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5760 udf_node->ext[extnr]); 5761 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5762 } 5763 5764 if (udf_node->fe) 5765 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5766 udf_node->fe); 5767 if (udf_node->efe) 5768 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5769 udf_node->efe); 5770 5771 udf_node->fe = (void *) 0xdeadaaaa; 5772 udf_node->efe = (void *) 0xdeadbbbb; 5773 udf_node->ump = (void *) 0xdeadbeef; 5774 pool_put(&udf_node_pool, udf_node); 5775 5776 return 0; 5777 } 5778 5779 5780 5781 /* 5782 * create a new node using the specified dvp, vap and cnp. 5783 * This allows special files to be created. Use with care. 5784 */ 5785 5786 int 5787 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp, 5788 struct vattr *vap, kauth_cred_t cred, void *extra, 5789 size_t *key_len, const void **new_key) 5790 { 5791 union dscrptr *dscr; 5792 struct udf_node *dir_node = VTOI(dvp); 5793 struct udf_node *udf_node; 5794 struct udf_mount *ump = dir_node->ump; 5795 struct long_ad node_icb_loc; 5796 uint64_t parent_unique_id; 5797 uint64_t lmapping; 5798 uint32_t lb_size, lb_num; 5799 uint16_t vpart_num; 5800 uid_t uid; 5801 gid_t gid, parent_gid; 5802 int (**vnodeops)(void *); 5803 int udf_file_type, fid_size, error; 5804 5805 vnodeops = udf_vnodeop_p; 5806 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5807 5808 switch (vap->va_type) { 5809 case VREG : 5810 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5811 break; 5812 case VDIR : 5813 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5814 break; 5815 case VLNK : 5816 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5817 break; 5818 case VBLK : 5819 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5820 /* specfs */ 5821 return ENOTSUP; 5822 break; 5823 case VCHR : 5824 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5825 /* specfs */ 5826 return ENOTSUP; 5827 break; 5828 case VFIFO : 5829 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5830 /* fifofs */ 5831 return ENOTSUP; 5832 break; 5833 case VSOCK : 5834 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5835 return ENOTSUP; 5836 break; 5837 case VNON : 5838 case VBAD : 5839 default : 5840 /* nothing; can we even create these? */ 5841 return EINVAL; 5842 } 5843 5844 lb_size = udf_rw32(ump->logical_vol->lb_size); 5845 5846 /* reserve space for one logical block */ 5847 vpart_num = ump->node_part; 5848 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 5849 vpart_num, 1, /* can_fail */ true); 5850 if (error) 5851 return error; 5852 5853 /* allocate node */ 5854 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 5855 vpart_num, 1, &lmapping); 5856 if (error) { 5857 udf_do_unreserve_space(ump, NULL, vpart_num, 1); 5858 return error; 5859 } 5860 5861 lb_num = lmapping; 5862 5863 /* initialise pointer to location */ 5864 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5865 node_icb_loc.len = udf_rw32(lb_size); 5866 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5867 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5868 5869 /* build udf_node (do initialise!) */ 5870 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5871 memset(udf_node, 0, sizeof(struct udf_node)); 5872 5873 /* initialise crosslinks, note location of fe/efe for hashing */ 5874 /* bugalert: synchronise with udf_get_node() */ 5875 udf_node->ump = ump; 5876 udf_node->vnode = vp; 5877 vp->v_data = udf_node; 5878 udf_node->loc = node_icb_loc; 5879 udf_node->write_loc = node_icb_loc; 5880 udf_node->lockf = 0; 5881 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5882 cv_init(&udf_node->node_lock, "udf_nlk"); 5883 udf_node->outstanding_bufs = 0; 5884 udf_node->outstanding_nodedscr = 0; 5885 udf_node->uncommitted_lbs = 0; 5886 5887 vp->v_tag = VT_UDF; 5888 vp->v_op = vnodeops; 5889 5890 /* initialise genfs */ 5891 genfs_node_init(vp, &udf_genfsops); 5892 5893 /* get parent's unique ID for refering '..' if its a directory */ 5894 if (dir_node->fe) { 5895 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5896 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5897 } else { 5898 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5899 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5900 } 5901 5902 /* get descriptor */ 5903 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5904 5905 /* choose a fe or an efe for it */ 5906 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5907 udf_node->fe = &dscr->fe; 5908 fid_size = udf_create_new_fe(ump, udf_node->fe, 5909 udf_file_type, &udf_node->loc, 5910 &dir_node->loc, parent_unique_id); 5911 /* TODO add extended attribute for creation time */ 5912 } else { 5913 udf_node->efe = &dscr->efe; 5914 fid_size = udf_create_new_efe(ump, udf_node->efe, 5915 udf_file_type, &udf_node->loc, 5916 &dir_node->loc, parent_unique_id); 5917 } 5918 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5919 5920 /* update vnode's size and type */ 5921 vp->v_type = vap->va_type; 5922 uvm_vnp_setsize(vp, fid_size); 5923 5924 /* set access mode */ 5925 udf_setaccessmode(udf_node, vap->va_mode); 5926 5927 /* set ownership */ 5928 uid = kauth_cred_geteuid(cred); 5929 gid = parent_gid; 5930 udf_setownership(udf_node, uid, gid); 5931 5932 *key_len = sizeof(udf_node->loc.loc); 5933 *new_key = &udf_node->loc.loc; 5934 5935 return 0; 5936 } 5937 5938 5939 int 5940 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5941 struct componentname *cnp) 5942 { 5943 struct udf_node *udf_node, *dir_node = VTOI(dvp); 5944 struct udf_mount *ump = dir_node->ump; 5945 int error; 5946 5947 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, vpp); 5948 if (error) 5949 return error; 5950 5951 udf_node = VTOI(*vpp); 5952 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5953 if (error) { 5954 struct long_ad *node_icb_loc = &udf_node->loc; 5955 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num); 5956 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num); 5957 5958 /* free disc allocation for node */ 5959 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5960 5961 /* recycle udf_node */ 5962 udf_dispose_node(udf_node); 5963 vrele(*vpp); 5964 5965 *vpp = NULL; 5966 return error; 5967 } 5968 5969 /* adjust file count */ 5970 udf_adjust_filecount(udf_node, 1); 5971 5972 cache_enter(dvp, *vpp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_flags); 5973 return 0; 5974 } 5975 5976 /* --------------------------------------------------------------------- */ 5977 5978 static void 5979 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5980 { 5981 struct udf_mount *ump = udf_node->ump; 5982 uint32_t lb_size, lb_num, len, num_lb; 5983 uint16_t vpart_num; 5984 5985 /* is there really one? */ 5986 if (mem == NULL) 5987 return; 5988 5989 /* got a descriptor here */ 5990 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5991 lb_num = udf_rw32(loc->loc.lb_num); 5992 vpart_num = udf_rw16(loc->loc.part_num); 5993 5994 lb_size = udf_rw32(ump->logical_vol->lb_size); 5995 num_lb = (len + lb_size -1) / lb_size; 5996 5997 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5998 } 5999 6000 void 6001 udf_delete_node(struct udf_node *udf_node) 6002 { 6003 void *dscr; 6004 struct long_ad *loc; 6005 int extnr, lvint, dummy; 6006 6007 if (udf_node->i_flags & IN_NO_DELETE) 6008 return; 6009 6010 /* paranoia check on integrity; should be open!; we could panic */ 6011 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 6012 if (lvint == UDF_INTEGRITY_CLOSED) 6013 printf("\tIntegrity was CLOSED!\n"); 6014 6015 /* whatever the node type, change its size to zero */ 6016 (void) udf_resize_node(udf_node, 0, &dummy); 6017 6018 /* force it to be `clean'; no use writing it out */ 6019 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 6020 IN_CHANGE | IN_UPDATE | IN_MODIFY); 6021 6022 /* adjust file count */ 6023 udf_adjust_filecount(udf_node, -1); 6024 6025 /* 6026 * Free its allocated descriptors; memory will be released when 6027 * vop_reclaim() is called. 6028 */ 6029 loc = &udf_node->loc; 6030 6031 dscr = udf_node->fe; 6032 udf_free_descriptor_space(udf_node, loc, dscr); 6033 dscr = udf_node->efe; 6034 udf_free_descriptor_space(udf_node, loc, dscr); 6035 6036 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 6037 dscr = udf_node->ext[extnr]; 6038 loc = &udf_node->ext_loc[extnr]; 6039 udf_free_descriptor_space(udf_node, loc, dscr); 6040 } 6041 } 6042 6043 /* --------------------------------------------------------------------- */ 6044 6045 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 6046 int 6047 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 6048 { 6049 struct file_entry *fe = udf_node->fe; 6050 struct extfile_entry *efe = udf_node->efe; 6051 uint64_t file_size; 6052 int error; 6053 6054 if (fe) { 6055 file_size = udf_rw64(fe->inf_len); 6056 } else { 6057 assert(udf_node->efe); 6058 file_size = udf_rw64(efe->inf_len); 6059 } 6060 6061 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 6062 file_size, new_size)); 6063 6064 /* if not changing, we're done */ 6065 if (file_size == new_size) 6066 return 0; 6067 6068 *extended = (new_size > file_size); 6069 if (*extended) { 6070 error = udf_grow_node(udf_node, new_size); 6071 } else { 6072 error = udf_shrink_node(udf_node, new_size); 6073 } 6074 6075 return error; 6076 } 6077 6078 6079 /* --------------------------------------------------------------------- */ 6080 6081 void 6082 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 6083 struct timespec *mod, struct timespec *birth) 6084 { 6085 struct timespec now; 6086 struct file_entry *fe; 6087 struct extfile_entry *efe; 6088 struct filetimes_extattr_entry *ft_extattr; 6089 struct timestamp *atime, *mtime, *attrtime, *ctime; 6090 struct timestamp fe_ctime; 6091 struct timespec cur_birth; 6092 uint32_t offset, a_l; 6093 uint8_t *filedata; 6094 int error; 6095 6096 /* protect against rogue values */ 6097 if (!udf_node) 6098 return; 6099 6100 fe = udf_node->fe; 6101 efe = udf_node->efe; 6102 6103 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 6104 return; 6105 6106 /* get descriptor information */ 6107 if (fe) { 6108 atime = &fe->atime; 6109 mtime = &fe->mtime; 6110 attrtime = &fe->attrtime; 6111 filedata = fe->data; 6112 6113 /* initial save dummy setting */ 6114 ctime = &fe_ctime; 6115 6116 /* check our extended attribute if present */ 6117 error = udf_extattr_search_intern(udf_node, 6118 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 6119 if (!error) { 6120 ft_extattr = (struct filetimes_extattr_entry *) 6121 (filedata + offset); 6122 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 6123 ctime = &ft_extattr->times[0]; 6124 } 6125 /* TODO create the extended attribute if not found ? */ 6126 } else { 6127 assert(udf_node->efe); 6128 atime = &efe->atime; 6129 mtime = &efe->mtime; 6130 attrtime = &efe->attrtime; 6131 ctime = &efe->ctime; 6132 } 6133 6134 vfs_timestamp(&now); 6135 6136 /* set access time */ 6137 if (udf_node->i_flags & IN_ACCESS) { 6138 if (acc == NULL) 6139 acc = &now; 6140 udf_timespec_to_timestamp(acc, atime); 6141 } 6142 6143 /* set modification time */ 6144 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 6145 if (mod == NULL) 6146 mod = &now; 6147 udf_timespec_to_timestamp(mod, mtime); 6148 6149 /* ensure birthtime is older than set modification! */ 6150 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 6151 if ((cur_birth.tv_sec > mod->tv_sec) || 6152 ((cur_birth.tv_sec == mod->tv_sec) && 6153 (cur_birth.tv_nsec > mod->tv_nsec))) { 6154 udf_timespec_to_timestamp(mod, ctime); 6155 } 6156 } 6157 6158 /* update birthtime if specified */ 6159 /* XXX we assume here that given birthtime is older than mod */ 6160 if (birth && (birth->tv_sec != VNOVAL)) { 6161 udf_timespec_to_timestamp(birth, ctime); 6162 } 6163 6164 /* set change time */ 6165 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 6166 udf_timespec_to_timestamp(&now, attrtime); 6167 6168 /* notify updates to the node itself */ 6169 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 6170 udf_node->i_flags |= IN_ACCESSED; 6171 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 6172 udf_node->i_flags |= IN_MODIFIED; 6173 6174 /* clear modification flags */ 6175 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 6176 } 6177 6178 /* --------------------------------------------------------------------- */ 6179 6180 int 6181 udf_update(struct vnode *vp, struct timespec *acc, 6182 struct timespec *mod, struct timespec *birth, int updflags) 6183 { 6184 union dscrptr *dscrptr; 6185 struct udf_node *udf_node = VTOI(vp); 6186 struct udf_mount *ump = udf_node->ump; 6187 struct regid *impl_id; 6188 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 6189 int waitfor, flags; 6190 6191 #ifdef DEBUG 6192 char bits[128]; 6193 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 6194 updflags)); 6195 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 6196 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 6197 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 6198 #endif 6199 6200 /* set our times */ 6201 udf_itimes(udf_node, acc, mod, birth); 6202 6203 /* set our implementation id */ 6204 if (udf_node->fe) { 6205 dscrptr = (union dscrptr *) udf_node->fe; 6206 impl_id = &udf_node->fe->imp_id; 6207 } else { 6208 dscrptr = (union dscrptr *) udf_node->efe; 6209 impl_id = &udf_node->efe->imp_id; 6210 } 6211 6212 /* set our ID */ 6213 udf_set_regid(impl_id, IMPL_NAME); 6214 udf_add_impl_regid(ump, impl_id); 6215 6216 /* update our crc! on RMW we are not allowed to change a thing */ 6217 udf_validate_tag_and_crc_sums(dscrptr); 6218 6219 /* if called when mounted readonly, never write back */ 6220 if (vp->v_mount->mnt_flag & MNT_RDONLY) 6221 return 0; 6222 6223 /* check if the node is dirty 'enough'*/ 6224 if (updflags & UPDATE_CLOSE) { 6225 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6226 } else { 6227 flags = udf_node->i_flags & IN_MODIFIED; 6228 } 6229 if (flags == 0) 6230 return 0; 6231 6232 /* determine if we need to write sync or async */ 6233 waitfor = 0; 6234 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6235 /* sync mounted */ 6236 waitfor = updflags & UPDATE_WAIT; 6237 if (updflags & UPDATE_DIROP) 6238 waitfor |= UPDATE_WAIT; 6239 } 6240 if (waitfor) 6241 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6242 6243 return 0; 6244 } 6245 6246 6247 /* --------------------------------------------------------------------- */ 6248 6249 6250 /* 6251 * Read one fid and process it into a dirent and advance to the next (*fid) 6252 * has to be allocated a logical block in size, (*dirent) struct dirent length 6253 */ 6254 6255 int 6256 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6257 struct fileid_desc *fid, struct dirent *dirent) 6258 { 6259 struct udf_node *dir_node = VTOI(vp); 6260 struct udf_mount *ump = dir_node->ump; 6261 struct file_entry *fe = dir_node->fe; 6262 struct extfile_entry *efe = dir_node->efe; 6263 uint32_t fid_size, lb_size; 6264 uint64_t file_size; 6265 char *fid_name; 6266 int enough, error; 6267 6268 assert(fid); 6269 assert(dirent); 6270 assert(dir_node); 6271 assert(offset); 6272 assert(*offset != 1); 6273 6274 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6275 /* check if we're past the end of the directory */ 6276 if (fe) { 6277 file_size = udf_rw64(fe->inf_len); 6278 } else { 6279 assert(dir_node->efe); 6280 file_size = udf_rw64(efe->inf_len); 6281 } 6282 if (*offset >= file_size) 6283 return EINVAL; 6284 6285 /* get maximum length of FID descriptor */ 6286 lb_size = udf_rw32(ump->logical_vol->lb_size); 6287 6288 /* initialise return values */ 6289 fid_size = 0; 6290 memset(dirent, 0, sizeof(struct dirent)); 6291 memset(fid, 0, lb_size); 6292 6293 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6294 if (!enough) { 6295 /* short dir ... */ 6296 return EIO; 6297 } 6298 6299 error = vn_rdwr(UIO_READ, vp, 6300 fid, MIN(file_size - (*offset), lb_size), *offset, 6301 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6302 NULL, NULL); 6303 if (error) 6304 return error; 6305 6306 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6307 /* 6308 * Check if we got a whole descriptor. 6309 * TODO Try to `resync' directory stream when something is very wrong. 6310 */ 6311 6312 /* check if our FID header is OK */ 6313 error = udf_check_tag(fid); 6314 if (error) { 6315 goto brokendir; 6316 } 6317 DPRINTF(FIDS, ("\ttag check ok\n")); 6318 6319 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6320 error = EIO; 6321 goto brokendir; 6322 } 6323 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6324 6325 /* check for length */ 6326 fid_size = udf_fidsize(fid); 6327 enough = (file_size - (*offset) >= fid_size); 6328 if (!enough) { 6329 error = EIO; 6330 goto brokendir; 6331 } 6332 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6333 6334 /* check FID contents */ 6335 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6336 brokendir: 6337 if (error) { 6338 /* note that is sometimes a bit quick to report */ 6339 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6340 /* RESYNC? */ 6341 /* TODO: use udf_resync_fid_stream */ 6342 return EIO; 6343 } 6344 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6345 6346 /* we got a whole and valid descriptor! */ 6347 DPRINTF(FIDS, ("\tinterpret FID\n")); 6348 6349 /* create resulting dirent structure */ 6350 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6351 udf_to_unix_name(dirent->d_name, NAME_MAX, 6352 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6353 6354 /* '..' has no name, so provide one */ 6355 if (fid->file_char & UDF_FILE_CHAR_PAR) 6356 strcpy(dirent->d_name, ".."); 6357 6358 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ 6359 dirent->d_namlen = strlen(dirent->d_name); 6360 dirent->d_reclen = _DIRENT_SIZE(dirent); 6361 6362 /* 6363 * Note that its not worth trying to go for the filetypes now... its 6364 * too expensive too 6365 */ 6366 dirent->d_type = DT_UNKNOWN; 6367 6368 /* initial guess for filetype we can make */ 6369 if (fid->file_char & UDF_FILE_CHAR_DIR) 6370 dirent->d_type = DT_DIR; 6371 6372 /* advance */ 6373 *offset += fid_size; 6374 6375 return error; 6376 } 6377 6378 6379 /* --------------------------------------------------------------------- */ 6380 6381 static void 6382 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty) 6383 { 6384 struct udf_node *udf_node, *n_udf_node; 6385 struct vnode *vp; 6386 int vdirty, error; 6387 6388 KASSERT(mutex_owned(&ump->sync_lock)); 6389 6390 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6391 udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6392 for (;udf_node; udf_node = n_udf_node) { 6393 DPRINTF(SYNC, (".")); 6394 6395 vp = udf_node->vnode; 6396 6397 n_udf_node = rb_tree_iterate(&ump->udf_node_tree, 6398 udf_node, RB_DIR_RIGHT); 6399 6400 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 6401 if (error) { 6402 KASSERT(error == EBUSY); 6403 *ndirty += 1; 6404 continue; 6405 } 6406 6407 switch (pass) { 6408 case 1: 6409 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6410 break; 6411 case 2: 6412 vdirty = vp->v_numoutput; 6413 if (vp->v_tag == VT_UDF) 6414 vdirty += udf_node->outstanding_bufs + 6415 udf_node->outstanding_nodedscr; 6416 if (vdirty == 0) 6417 VOP_FSYNC(vp, cred, 0,0,0); 6418 *ndirty += vdirty; 6419 break; 6420 case 3: 6421 vdirty = vp->v_numoutput; 6422 if (vp->v_tag == VT_UDF) 6423 vdirty += udf_node->outstanding_bufs + 6424 udf_node->outstanding_nodedscr; 6425 *ndirty += vdirty; 6426 break; 6427 } 6428 6429 VOP_UNLOCK(vp); 6430 } 6431 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6432 } 6433 6434 6435 static bool 6436 udf_sync_selector(void *cl, struct vnode *vp) 6437 { 6438 struct udf_node *udf_node; 6439 6440 KASSERT(mutex_owned(vp->v_interlock)); 6441 6442 udf_node = VTOI(vp); 6443 6444 if (vp->v_vflag & VV_SYSTEM) 6445 return false; 6446 if (vp->v_type == VNON) 6447 return false; 6448 if (udf_node == NULL) 6449 return false; 6450 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0) 6451 return false; 6452 if (LIST_EMPTY(&vp->v_dirtyblkhd) && (vp->v_iflag & VI_ONWORKLST) == 0) 6453 return false; 6454 6455 return true; 6456 } 6457 6458 void 6459 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6460 { 6461 struct vnode_iterator *marker; 6462 struct vnode *vp; 6463 struct udf_node *udf_node, *udf_next_node; 6464 int dummy, ndirty; 6465 6466 if (waitfor == MNT_LAZY) 6467 return; 6468 6469 mutex_enter(&ump->sync_lock); 6470 6471 /* Fill the rbtree with nodes to sync. */ 6472 vfs_vnode_iterator_init(ump->vfs_mountp, &marker); 6473 while ((vp = vfs_vnode_iterator_next(marker, 6474 udf_sync_selector, NULL)) != NULL) { 6475 udf_node = VTOI(vp); 6476 udf_node->i_flags |= IN_SYNCED; 6477 rb_tree_insert_node(&ump->udf_node_tree, udf_node); 6478 } 6479 vfs_vnode_iterator_destroy(marker); 6480 6481 dummy = 0; 6482 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6483 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6484 udf_sync_pass(ump, cred, 1, &dummy); 6485 6486 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6487 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6488 udf_sync_pass(ump, cred, 2, &dummy); 6489 6490 if (waitfor == MNT_WAIT) { 6491 recount: 6492 ndirty = ump->devvp->v_numoutput; 6493 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6494 ndirty)); 6495 udf_sync_pass(ump, cred, 3, &ndirty); 6496 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6497 ndirty)); 6498 6499 if (ndirty) { 6500 /* 1/4 second wait */ 6501 kpause("udfsync2", false, hz/4, NULL); 6502 goto recount; 6503 } 6504 } 6505 6506 /* Clean the rbtree. */ 6507 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6508 udf_node; udf_node = udf_next_node) { 6509 udf_next_node = rb_tree_iterate(&ump->udf_node_tree, 6510 udf_node, RB_DIR_RIGHT); 6511 rb_tree_remove_node(&ump->udf_node_tree, udf_node); 6512 udf_node->i_flags &= ~IN_SYNCED; 6513 vrele(udf_node->vnode); 6514 } 6515 6516 mutex_exit(&ump->sync_lock); 6517 } 6518 6519 /* --------------------------------------------------------------------- */ 6520 6521 /* 6522 * Read and write file extent in/from the buffer. 6523 * 6524 * The splitup of the extent into separate request-buffers is to minimise 6525 * copying around as much as possible. 6526 * 6527 * block based file reading and writing 6528 */ 6529 6530 static int 6531 udf_read_internal(struct udf_node *node, uint8_t *blob) 6532 { 6533 struct udf_mount *ump; 6534 struct file_entry *fe = node->fe; 6535 struct extfile_entry *efe = node->efe; 6536 uint64_t inflen; 6537 uint32_t sector_size; 6538 uint8_t *srcpos; 6539 int icbflags, addr_type; 6540 6541 /* get extent and do some paranoia checks */ 6542 ump = node->ump; 6543 sector_size = ump->discinfo.sector_size; 6544 6545 /* 6546 * XXX there should be real bounds-checking logic here, 6547 * in case ->l_ea or ->inf_len contains nonsense. 6548 */ 6549 6550 if (fe) { 6551 inflen = udf_rw64(fe->inf_len); 6552 srcpos = &fe->data[0] + udf_rw32(fe->l_ea); 6553 icbflags = udf_rw16(fe->icbtag.flags); 6554 } else { 6555 assert(node->efe); 6556 inflen = udf_rw64(efe->inf_len); 6557 srcpos = &efe->data[0] + udf_rw32(efe->l_ea); 6558 icbflags = udf_rw16(efe->icbtag.flags); 6559 } 6560 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6561 6562 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6563 __USE(addr_type); 6564 assert(inflen < sector_size); 6565 6566 /* copy out info */ 6567 memcpy(blob, srcpos, inflen); 6568 memset(&blob[inflen], 0, sector_size - inflen); 6569 6570 return 0; 6571 } 6572 6573 6574 static int 6575 udf_write_internal(struct udf_node *node, uint8_t *blob) 6576 { 6577 struct udf_mount *ump; 6578 struct file_entry *fe = node->fe; 6579 struct extfile_entry *efe = node->efe; 6580 uint64_t inflen; 6581 uint32_t sector_size; 6582 uint8_t *pos; 6583 int icbflags, addr_type; 6584 6585 /* get extent and do some paranoia checks */ 6586 ump = node->ump; 6587 sector_size = ump->discinfo.sector_size; 6588 6589 if (fe) { 6590 inflen = udf_rw64(fe->inf_len); 6591 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6592 icbflags = udf_rw16(fe->icbtag.flags); 6593 } else { 6594 assert(node->efe); 6595 inflen = udf_rw64(efe->inf_len); 6596 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6597 icbflags = udf_rw16(efe->icbtag.flags); 6598 } 6599 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6600 6601 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6602 __USE(addr_type); 6603 assert(inflen < sector_size); 6604 __USE(sector_size); 6605 6606 /* copy in blob */ 6607 /* memset(pos, 0, inflen); */ 6608 memcpy(pos, blob, inflen); 6609 6610 return 0; 6611 } 6612 6613 6614 void 6615 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6616 { 6617 struct buf *nestbuf; 6618 struct udf_mount *ump = udf_node->ump; 6619 uint64_t *mapping; 6620 uint64_t run_start; 6621 uint32_t sector_size; 6622 uint32_t buf_offset, sector, rbuflen, rblk; 6623 uint32_t from, lblkno; 6624 uint32_t sectors; 6625 uint8_t *buf_pos; 6626 int error, run_length, what; 6627 6628 sector_size = udf_node->ump->discinfo.sector_size; 6629 6630 from = buf->b_blkno; 6631 sectors = buf->b_bcount / sector_size; 6632 6633 what = udf_get_c_type(udf_node); 6634 6635 /* assure we have enough translation slots */ 6636 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6637 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6638 6639 if (sectors > UDF_MAX_MAPPINGS) { 6640 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6641 buf->b_error = EIO; 6642 biodone(buf); 6643 return; 6644 } 6645 6646 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6647 6648 error = 0; 6649 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6650 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6651 if (error) { 6652 buf->b_error = error; 6653 biodone(buf); 6654 goto out; 6655 } 6656 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6657 6658 /* pre-check if its an internal */ 6659 if (*mapping == UDF_TRANS_INTERN) { 6660 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6661 if (error) 6662 buf->b_error = error; 6663 biodone(buf); 6664 goto out; 6665 } 6666 DPRINTF(READ, ("\tnot intern\n")); 6667 6668 #ifdef DEBUG 6669 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6670 printf("Returned translation table:\n"); 6671 for (sector = 0; sector < sectors; sector++) { 6672 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6673 } 6674 } 6675 #endif 6676 6677 /* request read-in of data from disc sheduler */ 6678 buf->b_resid = buf->b_bcount; 6679 for (sector = 0; sector < sectors; sector++) { 6680 buf_offset = sector * sector_size; 6681 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6682 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6683 6684 /* check if its zero or unmapped to stop reading */ 6685 switch (mapping[sector]) { 6686 case UDF_TRANS_UNMAPPED: 6687 case UDF_TRANS_ZERO: 6688 /* copy zero sector TODO runlength like below */ 6689 memset(buf_pos, 0, sector_size); 6690 DPRINTF(READ, ("\treturning zero sector\n")); 6691 nestiobuf_done(buf, sector_size, 0); 6692 break; 6693 default : 6694 DPRINTF(READ, ("\tread sector " 6695 "%"PRIu64"\n", mapping[sector])); 6696 6697 lblkno = from + sector; 6698 run_start = mapping[sector]; 6699 run_length = 1; 6700 while (sector < sectors-1) { 6701 if (mapping[sector+1] != mapping[sector]+1) 6702 break; 6703 run_length++; 6704 sector++; 6705 } 6706 6707 /* 6708 * nest an iobuf and mark it for async reading. Since 6709 * we're using nested buffers, they can't be cached by 6710 * design. 6711 */ 6712 rbuflen = run_length * sector_size; 6713 rblk = run_start * (sector_size/DEV_BSIZE); 6714 6715 nestbuf = getiobuf(NULL, true); 6716 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6717 /* nestbuf is B_ASYNC */ 6718 6719 /* identify this nestbuf */ 6720 nestbuf->b_lblkno = lblkno; 6721 assert(nestbuf->b_vp == udf_node->vnode); 6722 6723 /* CD shedules on raw blkno */ 6724 nestbuf->b_blkno = rblk; 6725 nestbuf->b_proc = NULL; 6726 nestbuf->b_rawblkno = rblk; 6727 nestbuf->b_udf_c_type = what; 6728 6729 udf_discstrat_queuebuf(ump, nestbuf); 6730 } 6731 } 6732 out: 6733 /* if we're synchronously reading, wait for the completion */ 6734 if ((buf->b_flags & B_ASYNC) == 0) 6735 biowait(buf); 6736 6737 DPRINTF(READ, ("\tend of read_filebuf\n")); 6738 free(mapping, M_TEMP); 6739 return; 6740 } 6741 6742 6743 void 6744 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6745 { 6746 struct buf *nestbuf; 6747 struct udf_mount *ump = udf_node->ump; 6748 uint64_t *mapping; 6749 uint64_t run_start; 6750 uint32_t lb_size; 6751 uint32_t buf_offset, lb_num, rbuflen, rblk; 6752 uint32_t from, lblkno; 6753 uint32_t num_lb; 6754 int error, run_length, what, s; 6755 6756 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6757 6758 from = buf->b_blkno; 6759 num_lb = buf->b_bcount / lb_size; 6760 6761 what = udf_get_c_type(udf_node); 6762 6763 /* assure we have enough translation slots */ 6764 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6765 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6766 6767 if (num_lb > UDF_MAX_MAPPINGS) { 6768 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6769 buf->b_error = EIO; 6770 biodone(buf); 6771 return; 6772 } 6773 6774 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6775 6776 error = 0; 6777 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6778 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6779 if (error) { 6780 buf->b_error = error; 6781 biodone(buf); 6782 goto out; 6783 } 6784 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6785 6786 /* if its internally mapped, we can write it in the descriptor itself */ 6787 if (*mapping == UDF_TRANS_INTERN) { 6788 /* TODO paranoia check if we ARE going to have enough space */ 6789 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6790 if (error) 6791 buf->b_error = error; 6792 biodone(buf); 6793 goto out; 6794 } 6795 DPRINTF(WRITE, ("\tnot intern\n")); 6796 6797 /* request write out of data to disc sheduler */ 6798 buf->b_resid = buf->b_bcount; 6799 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6800 buf_offset = lb_num * lb_size; 6801 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6802 6803 /* 6804 * Mappings are not that important here. Just before we write 6805 * the lb_num we late-allocate them when needed and update the 6806 * mapping in the udf_node. 6807 */ 6808 6809 /* XXX why not ignore the mapping altogether ? */ 6810 DPRINTF(WRITE, ("\twrite lb_num " 6811 "%"PRIu64, mapping[lb_num])); 6812 6813 lblkno = from + lb_num; 6814 run_start = mapping[lb_num]; 6815 run_length = 1; 6816 while (lb_num < num_lb-1) { 6817 if (mapping[lb_num+1] != mapping[lb_num]+1) 6818 if (mapping[lb_num+1] != mapping[lb_num]) 6819 break; 6820 run_length++; 6821 lb_num++; 6822 } 6823 DPRINTF(WRITE, ("+ %d\n", run_length)); 6824 6825 /* nest an iobuf on the master buffer for the extent */ 6826 rbuflen = run_length * lb_size; 6827 rblk = run_start * (lb_size/DEV_BSIZE); 6828 6829 nestbuf = getiobuf(NULL, true); 6830 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6831 /* nestbuf is B_ASYNC */ 6832 6833 /* identify this nestbuf */ 6834 nestbuf->b_lblkno = lblkno; 6835 KASSERT(nestbuf->b_vp == udf_node->vnode); 6836 6837 /* CD shedules on raw blkno */ 6838 nestbuf->b_blkno = rblk; 6839 nestbuf->b_proc = NULL; 6840 nestbuf->b_rawblkno = rblk; 6841 nestbuf->b_udf_c_type = what; 6842 6843 /* increment our outstanding bufs counter */ 6844 s = splbio(); 6845 udf_node->outstanding_bufs++; 6846 splx(s); 6847 6848 udf_discstrat_queuebuf(ump, nestbuf); 6849 } 6850 out: 6851 /* if we're synchronously writing, wait for the completion */ 6852 if ((buf->b_flags & B_ASYNC) == 0) 6853 biowait(buf); 6854 6855 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6856 free(mapping, M_TEMP); 6857 return; 6858 } 6859 6860 /* --------------------------------------------------------------------- */ 6861