xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /* $NetBSD: udf_subr.c,v 1.10 2006/06/20 03:22:12 christos Exp $ */
2 
3 /*
4  * Copyright (c) 2006 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  */
35 
36 
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.10 2006/06/20 03:22:12 christos Exp $");
40 #endif /* not lint */
41 
42 
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67 
68 #include <fs/udf/ecma167-udf.h>
69 #include <fs/udf/udf_mount.h>
70 
71 #include "udf.h"
72 #include "udf_subr.h"
73 #include "udf_bswap.h"
74 
75 
76 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
77 
78 
79 /* predefines */
80 
81 
82 #if 0
83 {
84 	int i, j, dlen;
85 	uint8_t *blob;
86 
87 	blob = (uint8_t *) fid;
88 	dlen = file_size - (*offset);
89 
90 	printf("blob = %p\n", blob);
91 	printf("dump of %d bytes\n", dlen);
92 
93 	for (i = 0; i < dlen; i+ = 16) {
94 		printf("%04x ", i);
95 		for (j = 0; j < 16; j++) {
96 			if (i+j < dlen) {
97 				printf("%02x ", blob[i+j]);
98 			} else {
99 				printf("   ");
100 			}
101 		}
102 		for (j = 0; j < 16; j++) {
103 			if (i+j < dlen) {
104 				if (blob[i+j]>32 && blob[i+j]! = 127) {
105 					printf("%c", blob[i+j]);
106 				} else {
107 					printf(".");
108 				}
109 			}
110 		}
111 		printf("\n");
112 	}
113 	printf("\n");
114 }
115 Debugger();
116 #endif
117 
118 
119 /* --------------------------------------------------------------------- */
120 
121 /* STUB */
122 
123 static int
124 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
125 {
126 	int sector_size = ump->discinfo.sector_size;
127 	int blks = sector_size / DEV_BSIZE;
128 
129 	/* NOTE bread() checks if block is in cache or not */
130 	return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
131 }
132 
133 
134 /* --------------------------------------------------------------------- */
135 
136 /*
137  * Check if the blob starts with a good UDF tag. Tags are protected by a
138  * checksum over the reader except one byte at position 4 that is the checksum
139  * itself.
140  */
141 
142 int
143 udf_check_tag(void *blob)
144 {
145 	struct desc_tag *tag = blob;
146 	uint8_t *pos, sum, cnt;
147 
148 	/* check TAG header checksum */
149 	pos = (uint8_t *) tag;
150 	sum = 0;
151 
152 	for(cnt = 0; cnt < 16; cnt++) {
153 		if (cnt != 4)
154 			sum += *pos;
155 		pos++;
156 	}
157 	if (sum != tag->cksum) {
158 		/* bad tag header checksum; this is not a valid tag */
159 		return EINVAL;
160 	}
161 
162 	return 0;
163 }
164 
165 /* --------------------------------------------------------------------- */
166 
167 /*
168  * check tag payload will check descriptor CRC as specified.
169  * If the descriptor is too short, it will return EIO otherwise EINVAL.
170  */
171 
172 int
173 udf_check_tag_payload(void *blob, uint32_t max_length)
174 {
175 	struct desc_tag *tag = blob;
176 	uint16_t crc, crc_len;
177 
178 	crc_len = udf_rw16(tag->desc_crc_len);
179 
180 	/* check payload CRC if applicable */
181 	if (crc_len == 0)
182 		return 0;
183 
184 	if (crc_len > max_length)
185 		return EIO;
186 
187 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
188 	if (crc != udf_rw16(tag->desc_crc)) {
189 		/* bad payload CRC; this is a broken tag */
190 		return EINVAL;
191 	}
192 
193 	return 0;
194 }
195 
196 /* --------------------------------------------------------------------- */
197 
198 int
199 udf_validate_tag_sum(void *blob)
200 {
201 	struct desc_tag *tag = blob;
202 	uint8_t *pos, sum, cnt;
203 
204 	/* calculate TAG header checksum */
205 	pos = (uint8_t *) tag;
206 	sum = 0;
207 
208 	for(cnt = 0; cnt < 16; cnt++) {
209 		if (cnt != 4) sum += *pos;
210 		pos++;
211 	}
212 	tag->cksum = sum;	/* 8 bit */
213 
214 	return 0;
215 }
216 
217 /* --------------------------------------------------------------------- */
218 
219 /* assumes sector number of descriptor to be saved already present */
220 
221 int
222 udf_validate_tag_and_crc_sums(void *blob)
223 {
224 	struct desc_tag *tag  = blob;
225 	uint8_t         *btag = (uint8_t *) tag;
226 	uint16_t crc, crc_len;
227 
228 	crc_len = udf_rw16(tag->desc_crc_len);
229 
230 	/* check payload CRC if applicable */
231 	if (crc_len > 0) {
232 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
233 		tag->desc_crc = udf_rw16(crc);
234 	}
235 
236 	/* calculate TAG header checksum */
237 	return udf_validate_tag_sum(blob);
238 }
239 
240 /* --------------------------------------------------------------------- */
241 
242 /*
243  * XXX note the different semantics from udfclient: for FIDs it still rounds
244  * up to sectors. Use udf_fidsize() for a correct length.
245  */
246 
247 int
248 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
249 {
250 	uint32_t size, tag_id, num_secs, elmsz;
251 
252 	tag_id = udf_rw16(dscr->tag.id);
253 
254 	switch (tag_id) {
255 	case TAGID_LOGVOL :
256 		size  = sizeof(struct logvol_desc) - 1;
257 		size += udf_rw32(dscr->lvd.mt_l);
258 		break;
259 	case TAGID_UNALLOC_SPACE :
260 		elmsz = sizeof(struct extent_ad);
261 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
262 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
263 		break;
264 	case TAGID_FID :
265 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
266 		size = (size + 3) & ~3;
267 		break;
268 	case TAGID_LOGVOL_INTEGRITY :
269 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
270 		size += udf_rw32(dscr->lvid.l_iu);
271 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
272 		break;
273 	case TAGID_SPACE_BITMAP :
274 		size  = sizeof(struct space_bitmap_desc) - 1;
275 		size += udf_rw32(dscr->sbd.num_bytes);
276 		break;
277 	case TAGID_SPARING_TABLE :
278 		elmsz = sizeof(struct spare_map_entry);
279 		size  = sizeof(struct udf_sparing_table) - elmsz;
280 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
281 		break;
282 	case TAGID_FENTRY :
283 		size  = sizeof(struct file_entry);
284 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
285 		break;
286 	case TAGID_EXTFENTRY :
287 		size  = sizeof(struct extfile_entry);
288 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
289 		break;
290 	case TAGID_FSD :
291 		size  = sizeof(struct fileset_desc);
292 		break;
293 	default :
294 		size = sizeof(union dscrptr);
295 		break;
296 	}
297 
298 	if ((size == 0) || (udf_sector_size == 0)) return 0;
299 
300 	/* round up in sectors */
301 	num_secs = (size + udf_sector_size -1) / udf_sector_size;
302 	return num_secs * udf_sector_size;
303 }
304 
305 
306 static int
307 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
308 {
309 	uint32_t size;
310 
311 	if (udf_rw16(fid->tag.id) != TAGID_FID)
312 		panic("got udf_fidsize on non FID\n");
313 
314 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
315 	size = (size + 3) & ~3;
316 
317 	return size;
318 }
319 
320 /* --------------------------------------------------------------------- */
321 
322 /*
323  * Problem with read_descriptor are long descriptors spanning more than one
324  * sector. Luckily long descriptors can't be in `logical space'.
325  *
326  * Size of allocated piece is returned in multiple of sector size due to
327  * udf_calc_udf_malloc_size().
328  */
329 
330 int
331 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
332 		    struct malloc_type *mtype, union dscrptr **dstp)
333 {
334 	union dscrptr *src, *dst;
335 	struct buf *bp;
336 	uint8_t *pos;
337 	int blks, blk, dscrlen;
338 	int i, error, sector_size;
339 
340 	sector_size = ump->discinfo.sector_size;
341 
342 	*dstp = dst = NULL;
343 	dscrlen = sector_size;
344 
345 	/* read initial piece */
346 	error = udf_bread(ump, sector, &bp);
347 	DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
348 
349 	if (!error) {
350 		/* check if its a valid tag */
351 		error = udf_check_tag(bp->b_data);
352 		if (error) {
353 			/* check if its an empty block */
354 			pos = bp->b_data;
355 			for (i = 0; i < sector_size; i++, pos++) {
356 				if (*pos) break;
357 			}
358 			if (i == sector_size) {
359 				/* return no error but with no dscrptr */
360 				/* dispose first block */
361 				brelse(bp);
362 				return 0;
363 			}
364 		}
365 	}
366 	DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
367 	if (!error) {
368 		src = (union dscrptr *) bp->b_data;
369 		dscrlen = udf_tagsize(src, sector_size);
370 		dst = malloc(dscrlen, mtype, M_WAITOK);
371 		memcpy(dst, src, dscrlen);
372 	}
373 	/* dispose first block */
374 	bp->b_flags |= B_AGE;
375 	brelse(bp);
376 
377 	if (!error && (dscrlen > sector_size)) {
378 		DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
379 		/*
380 		 * Read the rest of descriptor. Since it is only used at mount
381 		 * time its overdone to define and use a specific udf_breadn
382 		 * for this alone.
383 		 */
384 		blks = (dscrlen + sector_size -1) / sector_size;
385 		for (blk = 1; blk < blks; blk++) {
386 			error = udf_bread(ump, sector + blk, &bp);
387 			if (error) {
388 				brelse(bp);
389 				break;
390 			}
391 			pos = (uint8_t *) dst + blk*sector_size;
392 			memcpy(pos, bp->b_data, sector_size);
393 
394 			/* dispose block */
395 			bp->b_flags |= B_AGE;
396 			brelse(bp);
397 		}
398 		DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
399 		    error));
400 	}
401 	if (!error) {
402 		error = udf_check_tag_payload(dst, dscrlen);
403 		DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
404 	}
405 	if (error && dst) {
406 		free(dst, mtype);
407 		dst = NULL;
408 	}
409 	*dstp = dst;
410 
411 	return error;
412 }
413 
414 /* --------------------------------------------------------------------- */
415 #ifdef DEBUG
416 static void
417 udf_dump_discinfo(struct udf_mount *ump)
418 {
419 	char   bits[128];
420 	struct mmc_discinfo *di = &ump->discinfo;
421 
422 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
423 		return;
424 
425 	printf("Device/media info  :\n");
426 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
427 	printf("\tderived class      %d\n", di->mmc_class);
428 	printf("\tsector size        %d\n", di->sector_size);
429 	printf("\tdisc state         %d\n", di->disc_state);
430 	printf("\tlast ses state     %d\n", di->last_session_state);
431 	printf("\tbg format state    %d\n", di->bg_format_state);
432 	printf("\tfrst track         %d\n", di->first_track);
433 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
434 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
435 	printf("\tlink block penalty %d\n", di->link_block_penalty);
436 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
437 		sizeof(bits));
438 	printf("\tdisc flags         %s\n", bits);
439 	printf("\tdisc id            %x\n", di->disc_id);
440 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
441 
442 	printf("\tnum sessions       %d\n", di->num_sessions);
443 	printf("\tnum tracks         %d\n", di->num_tracks);
444 
445 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
446 	printf("\tcapabilities cur   %s\n", bits);
447 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
448 	printf("\tcapabilities cap   %s\n", bits);
449 }
450 #else
451 #define udf_dump_discinfo(a);
452 #endif
453 
454 /* not called often */
455 int
456 udf_update_discinfo(struct udf_mount *ump)
457 {
458 	struct vnode *devvp = ump->devvp;
459 	struct partinfo dpart;
460 	struct mmc_discinfo *di;
461 	int error;
462 
463 	DPRINTF(VOLUMES, ("read/update disc info\n"));
464 	di = &ump->discinfo;
465 	memset(di, 0, sizeof(struct mmc_discinfo));
466 
467 	/* check if we're on a MMC capable device, i.e. CD/DVD */
468 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
469 	if (error == 0) {
470 		udf_dump_discinfo(ump);
471 		return 0;
472 	}
473 
474 	/* disc partition support */
475 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
476 	if (error)
477 		return ENODEV;
478 
479 	/* set up a disc info profile for partitions */
480 	di->mmc_profile		= 0x01;	/* disc type */
481 	di->mmc_class		= MMC_CLASS_DISC;
482 	di->disc_state		= MMC_STATE_CLOSED;
483 	di->last_session_state	= MMC_STATE_CLOSED;
484 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
485 	di->link_block_penalty	= 0;
486 
487 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
488 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
489 	di->mmc_cap    = di->mmc_cur;
490 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
491 
492 	/* TODO problem with last_possible_lba on resizable VND; request */
493 	di->last_possible_lba = dpart.part->p_size;
494 	di->sector_size       = dpart.disklab->d_secsize;
495 	di->blockingnr        = 1;
496 
497 	di->num_sessions = 1;
498 	di->num_tracks   = 1;
499 
500 	di->first_track  = 1;
501 	di->first_track_last_session = di->last_track_last_session = 1;
502 
503 	udf_dump_discinfo(ump);
504 	return 0;
505 }
506 
507 /* --------------------------------------------------------------------- */
508 
509 int
510 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
511 {
512 	struct vnode *devvp = ump->devvp;
513 	struct mmc_discinfo *di = &ump->discinfo;
514 	int error, class;
515 
516 	DPRINTF(VOLUMES, ("read track info\n"));
517 
518 	class = di->mmc_class;
519 	if (class != MMC_CLASS_DISC) {
520 		/* tracknr specified in struct ti */
521 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
522 			NOCRED, NULL);
523 		return error;
524 	}
525 
526 	/* disc partition support */
527 	if (ti->tracknr != 1)
528 		return EIO;
529 
530 	/* create fake ti (TODO check for resized vnds) */
531 	ti->sessionnr  = 1;
532 
533 	ti->track_mode = 0;	/* XXX */
534 	ti->data_mode  = 0;	/* XXX */
535 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
536 
537 	ti->track_start    = 0;
538 	ti->packet_size    = 1;
539 
540 	/* TODO support for resizable vnd */
541 	ti->track_size    = di->last_possible_lba;
542 	ti->next_writable = di->last_possible_lba;
543 	ti->last_recorded = ti->next_writable;
544 	ti->free_blocks   = 0;
545 
546 	return 0;
547 }
548 
549 /* --------------------------------------------------------------------- */
550 
551 /* track/session searching for mounting */
552 
553 static int
554 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
555 		  int *first_tracknr, int *last_tracknr)
556 {
557 	struct mmc_trackinfo trackinfo;
558 	uint32_t tracknr, start_track, num_tracks;
559 	int error;
560 
561 	/* if negative, sessionnr is relative to last session */
562 	if (args->sessionnr < 0) {
563 		args->sessionnr += ump->discinfo.num_sessions;
564 		/* sanity */
565 		if (args->sessionnr < 0)
566 			args->sessionnr = 0;
567 	}
568 
569 	/* sanity */
570 	if (args->sessionnr > ump->discinfo.num_sessions)
571 		args->sessionnr = ump->discinfo.num_sessions;
572 
573 	/* search the tracks for this session, zero session nr indicates last */
574 	if (args->sessionnr == 0) {
575 		args->sessionnr = ump->discinfo.num_sessions;
576 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
577 			args->sessionnr--;
578 		}
579 	}
580 
581 	/* search the first and last track of the specified session */
582 	num_tracks  = ump->discinfo.num_tracks;
583 	start_track = ump->discinfo.first_track;
584 
585 	/* search for first track of this session */
586 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
587 		/* get track info */
588 		trackinfo.tracknr = tracknr;
589 		error = udf_update_trackinfo(ump, &trackinfo);
590 		if (error)
591 			return error;
592 
593 		if (trackinfo.sessionnr == args->sessionnr)
594 			break;
595 	}
596 	*first_tracknr = tracknr;
597 
598 	/* search for last track of this session */
599 	for (;tracknr <= num_tracks; tracknr++) {
600 		/* get track info */
601 		trackinfo.tracknr = tracknr;
602 		error = udf_update_trackinfo(ump, &trackinfo);
603 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
604 			tracknr--;
605 			break;
606 		}
607 	}
608 	if (tracknr > num_tracks)
609 		tracknr--;
610 
611 	*last_tracknr = tracknr;
612 
613 	assert(*last_tracknr >= *first_tracknr);
614 	return 0;
615 }
616 
617 /* --------------------------------------------------------------------- */
618 
619 static int
620 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
621 {
622 	int error;
623 
624 	error = udf_read_descriptor(ump, sector, M_UDFVOLD,
625 			(union dscrptr **) dst);
626 	if (!error) {
627 		/* blank terminator blocks are not allowed here */
628 		if (*dst == NULL)
629 			return ENOENT;
630 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
631 			error = ENOENT;
632 			free(*dst, M_UDFVOLD);
633 			*dst = NULL;
634 			DPRINTF(VOLUMES, ("Not an anchor\n"));
635 		}
636 	}
637 
638 	return error;
639 }
640 
641 
642 int
643 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
644 {
645 	struct mmc_trackinfo first_track;
646 	struct mmc_trackinfo last_track;
647 	struct anchor_vdp **anchorsp;
648 	uint32_t track_start;
649 	uint32_t track_end;
650 	uint32_t positions[4];
651 	int first_tracknr, last_tracknr;
652 	int error, anch, ok, first_anchor;
653 
654 	/* search the first and last track of the specified session */
655 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
656 	if (!error) {
657 		first_track.tracknr = first_tracknr;
658 		error = udf_update_trackinfo(ump, &first_track);
659 	}
660 	if (!error) {
661 		last_track.tracknr = last_tracknr;
662 		error = udf_update_trackinfo(ump, &last_track);
663 	}
664 	if (error) {
665 		printf("UDF mount: reading disc geometry failed\n");
666 		return 0;
667 	}
668 
669 	track_start = first_track.track_start;
670 
671 	/* `end' is not as straitforward as start. */
672 	track_end =   last_track.track_start
673 		    + last_track.track_size - last_track.free_blocks - 1;
674 
675 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
676 		/* end of track is not straitforward here */
677 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
678 			track_end = last_track.last_recorded;
679 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
680 			track_end = last_track.next_writable
681 				    - ump->discinfo.link_block_penalty;
682 	}
683 	/* VATs are only recorded on sequential media, but initialise */
684 	ump->possible_vat_location = track_end;
685 
686 	/* its no use reading a blank track */
687 	first_anchor = 0;
688 	if (first_track.flags & MMC_TRACKINFO_BLANK)
689 		first_anchor = 1;
690 
691 	/* read anchors start+256, start+512, end-256, end */
692 	positions[0] = track_start+256;
693 	positions[1] =   track_end-256;
694 	positions[2] =   track_end;
695 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
696 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
697 
698 	ok = 0;
699 	anchorsp = ump->anchors;
700 	for (anch = first_anchor; anch < 4; anch++) {
701 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
702 		    positions[anch]));
703 		error = udf_read_anchor(ump, positions[anch], anchorsp);
704 		if (!error) {
705 			anchorsp++;
706 			ok++;
707 		}
708 	}
709 
710 	return ok;
711 }
712 
713 /* --------------------------------------------------------------------- */
714 
715 /* we dont try to be smart; we just record the parts */
716 #define UDF_UPDATE_DSCR(name, dscr) \
717 	if (name) \
718 		free(name, M_UDFVOLD); \
719 	name = dscr;
720 
721 static int
722 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
723 {
724 	uint16_t partnr;
725 
726 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
727 	    udf_rw16(dscr->tag.id)));
728 	switch (udf_rw16(dscr->tag.id)) {
729 	case TAGID_PRI_VOL :		/* primary partition		*/
730 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
731 		break;
732 	case TAGID_LOGVOL :		/* logical volume		*/
733 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
734 		break;
735 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
736 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
737 		break;
738 	case TAGID_IMP_VOL :		/* implementation		*/
739 		/* XXX do we care about multiple impl. descr ? */
740 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
741 		break;
742 	case TAGID_PARTITION :		/* physical partition		*/
743 		/* not much use if its not allocated */
744 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
745 			free(dscr, M_UDFVOLD);
746 			break;
747 		}
748 
749 		/* check partnr boundaries */
750 		partnr = udf_rw16(dscr->pd.part_num);
751 		if (partnr >= UDF_PARTITIONS)
752 			return EINVAL;
753 
754 		UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
755 		break;
756 	case TAGID_VOL :		/* volume space extender; rare	*/
757 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
758 		free(dscr, M_UDFVOLD);
759 		break;
760 	default :
761 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
762 		    udf_rw16(dscr->tag.id)));
763 		free(dscr, M_UDFVOLD);
764 	}
765 
766 	return 0;
767 }
768 #undef UDF_UPDATE_DSCR
769 
770 /* --------------------------------------------------------------------- */
771 
772 static int
773 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
774 {
775 	union dscrptr *dscr;
776 	uint32_t sector_size, dscr_size;
777 	int error;
778 
779 	sector_size = ump->discinfo.sector_size;
780 
781 	/* loc is sectornr, len is in bytes */
782 	error = EIO;
783 	while (len) {
784 		error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
785 		if (error)
786 			return error;
787 
788 		/* blank block is a terminator */
789 		if (dscr == NULL)
790 			return 0;
791 
792 		/* TERM descriptor is a terminator */
793 		if (udf_rw16(dscr->tag.id) == TAGID_TERM)
794 			return 0;
795 
796 		/* process all others */
797 		dscr_size = udf_tagsize(dscr, sector_size);
798 		error = udf_process_vds_descriptor(ump, dscr);
799 		if (error) {
800 			free(dscr, M_UDFVOLD);
801 			break;
802 		}
803 		assert((dscr_size % sector_size) == 0);
804 
805 		len -= dscr_size;
806 		loc += dscr_size / sector_size;
807 	}
808 
809 	return error;
810 }
811 
812 
813 int
814 udf_read_vds_space(struct udf_mount *ump)
815 {
816 	struct anchor_vdp *anchor, *anchor2;
817 	size_t size;
818 	uint32_t main_loc, main_len;
819 	uint32_t reserve_loc, reserve_len;
820 	int error;
821 
822 	/*
823 	 * read in VDS space provided by the anchors; if one descriptor read
824 	 * fails, try the mirror sector.
825 	 *
826 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
827 	 * avoids the `compatibility features' of DirectCD that may confuse
828 	 * stuff completely.
829 	 */
830 
831 	anchor  = ump->anchors[0];
832 	anchor2 = ump->anchors[1];
833 	assert(anchor);
834 
835 	if (anchor2) {
836 		size = sizeof(struct extent_ad);
837 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
838 			anchor = anchor2;
839 		/* reserve is specified to be a literal copy of main */
840 	}
841 
842 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
843 	main_len    = udf_rw32(anchor->main_vds_ex.len);
844 
845 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
846 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
847 
848 	error = udf_read_vds_extent(ump, main_loc, main_len);
849 	if (error) {
850 		printf("UDF mount: reading in reserve VDS extent\n");
851 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
852 	}
853 
854 	return error;
855 }
856 
857 /* --------------------------------------------------------------------- */
858 
859 /*
860  * Read in the logical volume integrity sequence pointed to by our logical
861  * volume descriptor. Its a sequence that can be extended using fields in the
862  * integrity descriptor itself. On sequential media only one is found, on
863  * rewritable media a sequence of descriptors can be found as a form of
864  * history keeping and on non sequential write-once media the chain is vital
865  * to allow more and more descriptors to be written. The last descriptor
866  * written in an extent needs to claim space for a new extent.
867  */
868 
869 static int
870 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
871 {
872 	union dscrptr *dscr;
873 	struct logvol_int_desc *lvint;
874 	uint32_t sector_size, sector, len;
875 	int dscr_type, error;
876 
877 	sector_size = ump->discinfo.sector_size;
878 	len    = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
879 	sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
880 
881 	lvint = NULL;
882 	dscr  = NULL;
883 	error = 0;
884 	while (len) {
885 		/* read in our integrity descriptor */
886 		error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
887 		if (!error) {
888 			if (dscr == NULL)
889 				break;		/* empty terminates */
890 			dscr_type = udf_rw16(dscr->tag.id);
891 			if (dscr_type == TAGID_TERM) {
892 				break;		/* clean terminator */
893 			}
894 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
895 				/* fatal... corrupt disc */
896 				error = ENOENT;
897 				break;
898 			}
899 			if (lvint)
900 				free(lvint, M_UDFVOLD);
901 			lvint = &dscr->lvid;
902 			dscr = NULL;
903 		} /* else hope for the best... maybe the next is ok */
904 
905 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
906 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
907 
908 		/* proceed sequential */
909 		sector += 1;
910 		len    -= sector_size;
911 
912 		/* are we linking to a new piece? */
913 		if (lvint->next_extent.len) {
914 			len    = udf_rw32(lvint->next_extent.len);
915 			sector = udf_rw32(lvint->next_extent.loc);
916 		}
917 	}
918 
919 	/* clean up the mess, esp. when there is an error */
920 	if (dscr)
921 		free(dscr, M_UDFVOLD);
922 
923 	if (error && lvint) {
924 		free(lvint, M_UDFVOLD);
925 		lvint = NULL;
926 	}
927 
928 	if (!lvint)
929 		error = ENOENT;
930 
931 	*lvintp = lvint;
932 	return error;
933 }
934 
935 /* --------------------------------------------------------------------- */
936 
937 /*
938  * Checks if ump's vds information is correct and complete
939  */
940 
941 int
942 udf_process_vds(struct udf_mount *ump, struct udf_args *args) {
943 	union udf_pmap *mapping;
944 	struct logvol_int_desc *lvint;
945 	struct udf_logvol_info *lvinfo;
946 	uint32_t n_pm, mt_l;
947 	uint8_t *pmap_pos;
948 	char *domain_name, *map_name;
949 	const char *check_name;
950 	int pmap_stype, pmap_size;
951 	int pmap_type, log_part, phys_part;
952 	int n_phys, n_virt, n_spar, n_meta;
953 	int len, error;
954 
955 	if (ump == NULL)
956 		return ENOENT;
957 
958 	/* we need at least an anchor (trivial, but for safety) */
959 	if (ump->anchors[0] == NULL)
960 		return EINVAL;
961 
962 	/* we need at least one primary and one logical volume descriptor */
963 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
964 		return EINVAL;
965 
966 	/* we need at least one partition descriptor */
967 	if (ump->partitions[0] == NULL)
968 		return EINVAL;
969 
970 	/* check logical volume sector size verses device sector size */
971 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
972 		printf("UDF mount: format violation, lb_size != sector size\n");
973 		return EINVAL;
974 	}
975 
976 	domain_name = ump->logical_vol->domain_id.id;
977 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
978 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
979 		return EINVAL;
980 	}
981 
982 	/* retrieve logical volume integrity sequence */
983 	error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
984 
985 	/*
986 	 * We need at least one logvol integrity descriptor recorded.  Note
987 	 * that its OK to have an open logical volume integrity here. The VAT
988 	 * will close/update the integrity.
989 	 */
990 	if (ump->logvol_integrity == NULL)
991 		return EINVAL;
992 
993 	/* process derived structures */
994 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
995 	lvint  = ump->logvol_integrity;
996 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
997 	ump->logvol_info = lvinfo;
998 
999 	/* TODO check udf versions? */
1000 
1001 	/*
1002 	 * check logvol mappings: effective virt->log partmap translation
1003 	 * check and recording of the mapping results. Saves expensive
1004 	 * strncmp() in tight places.
1005 	 */
1006 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1007 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1008 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1009 	pmap_pos =  ump->logical_vol->maps;
1010 
1011 	if (n_pm > UDF_PMAPS) {
1012 		printf("UDF mount: too many mappings\n");
1013 		return EINVAL;
1014 	}
1015 
1016 	n_phys = n_virt = n_spar = n_meta = 0;
1017 	for (log_part = 0; log_part < n_pm; log_part++) {
1018 		mapping = (union udf_pmap *) pmap_pos;
1019 		pmap_stype = pmap_pos[0];
1020 		pmap_size  = pmap_pos[1];
1021 		switch (pmap_stype) {
1022 		case 1:	/* physical mapping */
1023 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1024 			phys_part = udf_rw16(mapping->pm1.part_num);
1025 			pmap_type = UDF_VTOP_TYPE_PHYS;
1026 			n_phys++;
1027 			break;
1028 		case 2: /* virtual/sparable/meta mapping */
1029 			map_name  = mapping->pm2.part_id.id;
1030 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1031 			phys_part = udf_rw16(mapping->pm2.part_num);
1032 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1033 			len = UDF_REGID_ID_SIZE;
1034 
1035 			check_name = "*UDF Virtual Partition";
1036 			if (strncmp(map_name, check_name, len) == 0) {
1037 				pmap_type = UDF_VTOP_TYPE_VIRT;
1038 				n_virt++;
1039 				break;
1040 			}
1041 			check_name = "*UDF Sparable Partition";
1042 			if (strncmp(map_name, check_name, len) == 0) {
1043 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1044 				n_spar++;
1045 				break;
1046 			}
1047 			check_name = "*UDF Metadata Partition";
1048 			if (strncmp(map_name, check_name, len) == 0) {
1049 				pmap_type = UDF_VTOP_TYPE_META;
1050 				n_meta++;
1051 				break;
1052 			}
1053 			break;
1054 		default:
1055 			return EINVAL;
1056 		}
1057 
1058 		DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
1059 		    pmap_type));
1060 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1061 			return EINVAL;
1062 
1063 		ump->vtop   [log_part] = phys_part;
1064 		ump->vtop_tp[log_part] = pmap_type;
1065 
1066 		pmap_pos += pmap_size;
1067 	}
1068 	/* not winning the beauty contest */
1069 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1070 
1071 	/* test some basic UDF assertions/requirements */
1072 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1073 		return EINVAL;
1074 
1075 	if (n_virt) {
1076 		if ((n_phys == 0) || n_spar || n_meta)
1077 			return EINVAL;
1078 	}
1079 	if (n_spar + n_phys == 0)
1080 		return EINVAL;
1081 
1082 	/* vat's can only be on a sequential media */
1083 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
1084 	if (n_virt)
1085 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1086 
1087 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1088 	if (n_virt)
1089 		ump->meta_alloc = UDF_ALLOC_VAT;
1090 	if (n_meta)
1091 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
1092 
1093 	/* special cases for pseudo-overwrite */
1094 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1095 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1096 		if (n_meta) {
1097 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1098 		} else {
1099 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1100 		}
1101 	}
1102 
1103 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1104 	    ump->data_alloc, ump->meta_alloc));
1105 	/* TODO determine partitions to write data and metadata ? */
1106 
1107 	/* signal its OK for now */
1108 	return 0;
1109 }
1110 
1111 /* --------------------------------------------------------------------- */
1112 
1113 /*
1114  * Read in complete VAT file and check if its indeed a VAT file descriptor
1115  */
1116 
1117 static int
1118 udf_check_for_vat(struct udf_node *vat_node)
1119 {
1120 	struct udf_mount *ump;
1121 	struct icb_tag   *icbtag;
1122 	struct timestamp *mtime;
1123 	struct regid     *regid;
1124 	struct udf_vat   *vat;
1125 	struct udf_logvol_info *lvinfo;
1126 	uint32_t  vat_length, alloc_length;
1127 	uint32_t  vat_offset, vat_entries;
1128 	uint32_t  sector_size;
1129 	uint32_t  sectors;
1130 	uint32_t *raw_vat;
1131 	char     *regid_name;
1132 	int filetype;
1133 	int error;
1134 
1135 	/* vat_length is really 64 bits though impossible */
1136 
1137 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
1138 	if (!vat_node)
1139 		return ENOENT;
1140 
1141 	/* get mount info */
1142 	ump = vat_node->ump;
1143 
1144 	/* check assertions */
1145 	assert(vat_node->fe || vat_node->efe);
1146 	assert(ump->logvol_integrity);
1147 
1148 	/* get information from fe/efe */
1149 	if (vat_node->fe) {
1150 		vat_length = udf_rw64(vat_node->fe->inf_len);
1151 		icbtag = &vat_node->fe->icbtag;
1152 		mtime  = &vat_node->fe->mtime;
1153 	} else {
1154 		vat_length = udf_rw64(vat_node->efe->inf_len);
1155 		icbtag = &vat_node->efe->icbtag;
1156 		mtime  = &vat_node->efe->mtime;
1157 	}
1158 
1159 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1160 	filetype = icbtag->file_type;
1161 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1162 		return ENOENT;
1163 
1164 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1165 	/* place a sanity check on the length; currently 1Mb in size */
1166 	if (vat_length > 1*1024*1024)
1167 		return ENOENT;
1168 
1169 	/* get sector size */
1170 	sector_size = vat_node->ump->discinfo.sector_size;
1171 
1172 	/* calculate how many sectors to read in and how much to allocate */
1173 	sectors = (vat_length + sector_size -1) / sector_size;
1174 	alloc_length = (sectors + 2) * sector_size;
1175 
1176 	/* try to allocate the space */
1177 	ump->vat_table_alloc_length = alloc_length;
1178 	ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK);
1179 	if (!ump->vat_table)
1180 		return ENOMEM;		/* impossible to allocate */
1181 	DPRINTF(VOLUMES, ("\talloced fine\n"));
1182 
1183 	/* read it in! */
1184 	raw_vat = (uint32_t *) ump->vat_table;
1185 	error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1186 	if (error) {
1187 		DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1188 		/* not completely readable... :( bomb out */
1189 		free(ump->vat_table, M_UDFMNT);
1190 		ump->vat_table = NULL;
1191 		return error;
1192 	}
1193 	DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1194 
1195 	/*
1196 	 * check contents of the file if its the old 1.50 VAT table format.
1197 	 * Its notoriously broken and allthough some implementations support an
1198 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
1199 	 * to be useable since a lot of implementations don't maintain it.
1200 	 */
1201 	lvinfo = ump->logvol_info;
1202 
1203 	if (filetype == 0) {
1204 		/* definition */
1205 		vat_offset  = 0;
1206 		vat_entries = (vat_length-36)/4;
1207 
1208 		/* check 1.50 VAT */
1209 		regid = (struct regid *) (raw_vat + vat_entries);
1210 		regid_name = (char *) regid->id;
1211 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1212 		if (error) {
1213 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1214 			free(ump->vat_table, M_UDFMNT);
1215 			ump->vat_table = NULL;
1216 			return ENOENT;
1217 		}
1218 		/* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1219 	} else {
1220 		vat = (struct udf_vat *) raw_vat;
1221 
1222 		/* definition */
1223 		vat_offset  = vat->header_len;
1224 		vat_entries = (vat_length - vat_offset)/4;
1225 
1226 		assert(lvinfo);
1227 		lvinfo->num_files        = vat->num_files;
1228 		lvinfo->num_directories  = vat->num_directories;
1229 		lvinfo->min_udf_readver  = vat->min_udf_readver;
1230 		lvinfo->min_udf_writever = vat->min_udf_writever;
1231 		lvinfo->max_udf_writever = vat->max_udf_writever;
1232 	}
1233 
1234 	ump->vat_offset  = vat_offset;
1235 	ump->vat_entries = vat_entries;
1236 
1237 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1238 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1239 	ump->logvol_integrity->time           = *mtime;
1240 
1241 	return 0;	/* success! */
1242 }
1243 
1244 /* --------------------------------------------------------------------- */
1245 
1246 static int
1247 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1248 {
1249 	struct udf_node *vat_node;
1250 	struct long_ad	 icb_loc;
1251 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
1252 	int error;
1253 
1254 	/* mapping info not needed */
1255 	mapping = mapping;
1256 
1257 	vat_loc = ump->possible_vat_location;
1258 	early_vat_loc = vat_loc - 20;
1259 	late_vat_loc  = vat_loc + 1024;
1260 
1261 	/* TODO first search last sector? */
1262 	do {
1263 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1264 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1265 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
1266 
1267 		error = udf_get_node(ump, &icb_loc, &vat_node);
1268 		if (!error) error = udf_check_for_vat(vat_node);
1269 		if (!error) break;
1270 		if (vat_node) {
1271 			vput(vat_node->vnode);
1272 			udf_dispose_node(vat_node);
1273 		}
1274 		vat_loc--;	/* walk backwards */
1275 	} while (vat_loc >= early_vat_loc);
1276 
1277 	/* we don't need our VAT node anymore */
1278 	if (vat_node) {
1279 		vput(vat_node->vnode);
1280 		udf_dispose_node(vat_node);
1281 	}
1282 
1283 	return error;
1284 }
1285 
1286 /* --------------------------------------------------------------------- */
1287 
1288 static int
1289 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1290 {
1291 	union dscrptr *dscr;
1292 	struct part_map_spare *pms = (struct part_map_spare *) mapping;
1293 	uint32_t lb_num;
1294 	int spar, error;
1295 
1296 	/*
1297 	 * The partition mapping passed on to us specifies the information we
1298 	 * need to locate and initialise the sparable partition mapping
1299 	 * information we need.
1300 	 */
1301 
1302 	DPRINTF(VOLUMES, ("Read sparable table\n"));
1303 	ump->sparable_packet_len = udf_rw16(pms->packet_len);
1304 	for (spar = 0; spar < pms->n_st; spar++) {
1305 		lb_num = pms->st_loc[spar];
1306 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1307 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1308 		if (!error && dscr) {
1309 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1310 				if (ump->sparing_table)
1311 					free(ump->sparing_table, M_UDFVOLD);
1312 				ump->sparing_table = &dscr->spt;
1313 				dscr = NULL;
1314 				DPRINTF(VOLUMES,
1315 				    ("Sparing table accepted (%d entries)\n",
1316 				     udf_rw16(ump->sparing_table->rt_l)));
1317 				break;	/* we're done */
1318 			}
1319 		}
1320 		if (dscr)
1321 			free(dscr, M_UDFVOLD);
1322 	}
1323 
1324 	if (ump->sparing_table)
1325 		return 0;
1326 
1327 	return ENOENT;
1328 }
1329 
1330 /* --------------------------------------------------------------------- */
1331 
1332 int
1333 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1334 {
1335 	union udf_pmap *mapping;
1336 	uint32_t n_pm, mt_l;
1337 	uint32_t log_part;
1338 	uint8_t *pmap_pos;
1339 	int pmap_size;
1340 	int error;
1341 
1342 	/* We have to iterate again over the part mappings for locations   */
1343 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1344 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1345 	pmap_pos =  ump->logical_vol->maps;
1346 
1347 	for (log_part = 0; log_part < n_pm; log_part++) {
1348 		mapping = (union udf_pmap *) pmap_pos;
1349 		switch (ump->vtop_tp[log_part]) {
1350 		case UDF_VTOP_TYPE_PHYS :
1351 			/* nothing */
1352 			break;
1353 		case UDF_VTOP_TYPE_VIRT :
1354 			/* search and load VAT */
1355 			error = udf_search_vat(ump, mapping);
1356 			if (error)
1357 				return ENOENT;
1358 			break;
1359 		case UDF_VTOP_TYPE_SPARABLE :
1360 			/* load one of the sparable tables */
1361 			error = udf_read_sparables(ump, mapping);
1362 			break;
1363 		case UDF_VTOP_TYPE_META :
1364 			/* TODO load metafile and metabitmapfile FE/EFEs */
1365 			break;
1366 		default:
1367 			break;
1368 		}
1369 		pmap_size  = pmap_pos[1];
1370 		pmap_pos  += pmap_size;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 /* --------------------------------------------------------------------- */
1377 
1378 int
1379 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1380 {
1381 	struct udf_node *rootdir_node, *streamdir_node;
1382 	union dscrptr *dscr;
1383 	struct long_ad  fsd_loc, *dir_loc;
1384 	uint32_t lb_num, dummy;
1385 	uint32_t fsd_len;
1386 	int dscr_type;
1387 	int error;
1388 
1389 	/* TODO implement FSD reading in seperate function like integrity? */
1390 	/* get fileset descriptor sequence */
1391 	fsd_loc = ump->logical_vol->lv_fsd_loc;
1392 	fsd_len = udf_rw32(fsd_loc.len);
1393 
1394 	dscr  = NULL;
1395 	error = 0;
1396 	while (fsd_len || error) {
1397 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1398 		/* translate fsd_loc to lb_num */
1399 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1400 		if (error)
1401 			break;
1402 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1403 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1404 		/* end markers */
1405 		if (error || (dscr == NULL))
1406 			break;
1407 
1408 		/* analyse */
1409 		dscr_type = udf_rw16(dscr->tag.id);
1410 		if (dscr_type == TAGID_TERM)
1411 			break;
1412 		if (dscr_type != TAGID_FSD) {
1413 			free(dscr, M_UDFVOLD);
1414 			return ENOENT;
1415 		}
1416 
1417 		/*
1418 		 * TODO check for multiple fileset descriptors; its only
1419 		 * picking the last now. Also check for FSD
1420 		 * correctness/interpretability
1421 		 */
1422 
1423 		/* update */
1424 		if (ump->fileset_desc) {
1425 			free(ump->fileset_desc, M_UDFVOLD);
1426 		}
1427 		ump->fileset_desc = &dscr->fsd;
1428 		dscr = NULL;
1429 
1430 		/* continue to the next fsd */
1431 		fsd_len -= ump->discinfo.sector_size;
1432 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1433 
1434 		/* follow up to fsd->next_ex (long_ad) if its not null */
1435 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1436 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1437 			fsd_loc = ump->fileset_desc->next_ex;
1438 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1439 		}
1440 	}
1441 	if (dscr)
1442 		free(dscr, M_UDFVOLD);
1443 
1444 	/* there has to be one */
1445 	if (ump->fileset_desc == NULL)
1446 		return ENOENT;
1447 
1448 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
1449 
1450 	/*
1451 	 * Now the FSD is known, read in the rootdirectory and if one exists,
1452 	 * the system stream dir. Some files in the system streamdir are not
1453 	 * wanted in this implementation since they are not maintained. If
1454 	 * writing is enabled we'll delete these files if they exist.
1455 	 */
1456 
1457 	rootdir_node = streamdir_node = NULL;
1458 	dir_loc = NULL;
1459 
1460 	/* try to read in the rootdir */
1461 	dir_loc = &ump->fileset_desc->rootdir_icb;
1462 	error = udf_get_node(ump, dir_loc, &rootdir_node);
1463 	if (error)
1464 		return ENOENT;
1465 
1466 	/* aparently it read in fine */
1467 
1468 	/*
1469 	 * Try the system stream directory; not very likely in the ones we
1470 	 * test, but for completeness.
1471 	 */
1472 	dir_loc = &ump->fileset_desc->streamdir_icb;
1473 	if (udf_rw32(dir_loc->len)) {
1474 		error = udf_get_node(ump, dir_loc, &streamdir_node);
1475 		if (error)
1476 			printf("udf mount: streamdir defined but ignored\n");
1477 		if (!error) {
1478 			/*
1479 			 * TODO process streamdir `baddies' i.e. files we dont
1480 			 * want if R/W
1481 			 */
1482 		}
1483 	}
1484 
1485 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1486 
1487 	/* release the vnodes again; they'll be auto-recycled later */
1488 	if (streamdir_node) {
1489 		vput(streamdir_node->vnode);
1490 	}
1491 	if (rootdir_node) {
1492 		vput(rootdir_node->vnode);
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 /* --------------------------------------------------------------------- */
1499 
1500 int
1501 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1502 		   uint32_t *lb_numres, uint32_t *extres)
1503 {
1504 	struct part_desc       *pdesc;
1505 	struct spare_map_entry *sme;
1506 	uint32_t *trans;
1507 	uint32_t  lb_num, lb_rel, lb_packet;
1508 	int rel, vpart, part;
1509 
1510 	assert(ump && icb_loc && lb_numres);
1511 
1512 	vpart  = udf_rw16(icb_loc->loc.part_num);
1513 	lb_num = udf_rw32(icb_loc->loc.lb_num);
1514 	if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1515 		return EINVAL;
1516 
1517 	switch (ump->vtop_tp[vpart]) {
1518 	case UDF_VTOP_TYPE_RAW :
1519 		/* 1:1 to the end of the device */
1520 		*lb_numres = lb_num;
1521 		*extres = INT_MAX;
1522 		return 0;
1523 	case UDF_VTOP_TYPE_PHYS :
1524 		/* transform into its disc logical block */
1525 		part = ump->vtop[vpart];
1526 		pdesc = ump->partitions[part];
1527 		if (lb_num > udf_rw32(pdesc->part_len))
1528 			return EINVAL;
1529 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1530 
1531 		/* extent from here to the end of the partition */
1532 		*extres = udf_rw32(pdesc->part_len) - lb_num;
1533 		return 0;
1534 	case UDF_VTOP_TYPE_VIRT :
1535 		/* only maps one sector, lookup in VAT */
1536 		if (lb_num >= ump->vat_entries)		/* XXX > or >= ? */
1537 			return EINVAL;
1538 
1539 		/* lookup in virtual allocation table */
1540 		trans  = (uint32_t *) (ump->vat_table + ump->vat_offset);
1541 		lb_num = udf_rw32(trans[lb_num]);
1542 
1543 		/* transform into its disc logical block */
1544 		part = ump->vtop[vpart];
1545 		pdesc = ump->partitions[part];
1546 		if (lb_num > udf_rw32(pdesc->part_len))
1547 			return EINVAL;
1548 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1549 
1550 		/* just one logical block */
1551 		*extres = 1;
1552 		return 0;
1553 	case UDF_VTOP_TYPE_SPARABLE :
1554 		/* check if the packet containing the lb_num is remapped */
1555 		lb_packet = lb_num / ump->sparable_packet_len;
1556 		lb_rel    = lb_num % ump->sparable_packet_len;
1557 
1558 		for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1559 			sme = &ump->sparing_table->entries[rel];
1560 			if (lb_packet == udf_rw32(sme->org)) {
1561 				/* NOTE maps to absolute disc logical block! */
1562 				*lb_numres = udf_rw32(sme->map) + lb_rel;
1563 				*extres    = ump->sparable_packet_len - lb_rel;
1564 				return 0;
1565 			}
1566 		}
1567 
1568 		/* transform into its disc logical block */
1569 		part = ump->vtop[vpart];
1570 		pdesc = ump->partitions[part];
1571 		if (lb_num > udf_rw32(pdesc->part_len))
1572 			return EINVAL;
1573 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1574 
1575 		/* rest of block */
1576 		*extres = ump->sparable_packet_len - lb_rel;
1577 		return 0;
1578 	case UDF_VTOP_TYPE_META :
1579 	default:
1580 		printf("UDF vtop translation scheme %d unimplemented yet\n",
1581 			ump->vtop_tp[vpart]);
1582 	}
1583 
1584 	return EINVAL;
1585 }
1586 
1587 /* --------------------------------------------------------------------- */
1588 
1589 /* To make absolutely sure we are NOT returning zero, add one :) */
1590 
1591 long
1592 udf_calchash(struct long_ad *icbptr)
1593 {
1594 	/* ought to be enough since each mountpoint has its own chain */
1595 	return udf_rw32(icbptr->loc.lb_num) + 1;
1596 }
1597 
1598 /* --------------------------------------------------------------------- */
1599 
1600 static struct udf_node *
1601 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1602 {
1603 	struct udf_node *unp;
1604 	struct vnode *vp;
1605 	uint32_t hashline;
1606 
1607 loop:
1608 	simple_lock(&ump->ihash_slock);
1609 
1610 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1611 	LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1612 		assert(unp);
1613 		if (unp->loc.loc.lb_num   == icbptr->loc.lb_num &&
1614 		    unp->loc.loc.part_num == icbptr->loc.part_num) {
1615 			vp = unp->vnode;
1616 			assert(vp);
1617 			simple_lock(&vp->v_interlock);
1618 			simple_unlock(&ump->ihash_slock);
1619 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1620 				goto loop;
1621 			return unp;
1622 		}
1623 	}
1624 	simple_unlock(&ump->ihash_slock);
1625 
1626 	return NULL;
1627 }
1628 
1629 /* --------------------------------------------------------------------- */
1630 
1631 static void
1632 udf_hashins(struct udf_node *unp)
1633 {
1634 	struct udf_mount *ump;
1635 	uint32_t hashline;
1636 
1637 	ump = unp->ump;
1638 	simple_lock(&ump->ihash_slock);
1639 
1640 	hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1641 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1642 
1643 	simple_unlock(&ump->ihash_slock);
1644 }
1645 
1646 /* --------------------------------------------------------------------- */
1647 
1648 static void
1649 udf_hashrem(struct udf_node *unp)
1650 {
1651 	struct udf_mount *ump;
1652 
1653 	ump = unp->ump;
1654 	simple_lock(&ump->ihash_slock);
1655 
1656 	LIST_REMOVE(unp, hashchain);
1657 
1658 	simple_unlock(&ump->ihash_slock);
1659 }
1660 
1661 /* --------------------------------------------------------------------- */
1662 
1663 int
1664 udf_dispose_locked_node(struct udf_node *node)
1665 {
1666 	if (!node)
1667 		return 0;
1668 	if (node->vnode)
1669 		VOP_UNLOCK(node->vnode, 0);
1670 	return udf_dispose_node(node);
1671 }
1672 
1673 /* --------------------------------------------------------------------- */
1674 
1675 int
1676 udf_dispose_node(struct udf_node *node)
1677 {
1678 	struct vnode *vp;
1679 
1680 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1681 	if (!node) {
1682 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1683 		return 0;
1684 	}
1685 
1686 	vp  = node->vnode;
1687 
1688 	/* TODO extended attributes and streamdir */
1689 
1690 	/* remove from our hash lookup table */
1691 	udf_hashrem(node);
1692 
1693 	/* dissociate our udf_node from the vnode */
1694 	vp->v_data = NULL;
1695 
1696 	/* free associated memory and the node itself */
1697 	if (node->fe)
1698 		pool_put(&node->ump->desc_pool, node->fe);
1699 	if (node->efe)
1700 		pool_put(&node->ump->desc_pool, node->efe);
1701 	pool_put(&udf_node_pool, node);
1702 
1703 	return 0;
1704 }
1705 
1706 /* --------------------------------------------------------------------- */
1707 
1708 /*
1709  * Genfs interfacing
1710  *
1711  * static const struct genfs_ops udffs_genfsops = {
1712  * 	.gop_size = genfs_size,
1713  * 		size of transfers
1714  * 	.gop_alloc = udf_gop_alloc,
1715  * 		unknown
1716  * 	.gop_write = genfs_gop_write,
1717  * 		putpages interface code
1718  * 	.gop_markupdate = udf_gop_markupdate,
1719  * 		set update/modify flags etc.
1720  * }
1721  */
1722 
1723 /*
1724  * Genfs interface. These four functions are the only ones defined though not
1725  * documented... great.... why is chosen for the `.' initialisers i dont know
1726  * but other filingsystems seem to use it this way.
1727  */
1728 
1729 static int
1730 udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags,
1731     kauth_cred_t cred)
1732 {
1733 	return 0;
1734 }
1735 
1736 
1737 static void
1738 udf_gop_markupdate(struct vnode *vp, int flags)
1739 {
1740 	struct udf_node *udf_node = VTOI(vp);
1741 	u_long mask;
1742 
1743 	udf_node = udf_node;	/* shut up gcc */
1744 
1745 	mask = 0;
1746 #ifdef notyet
1747 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1748 		mask = UDF_SET_ACCESS;
1749 	}
1750 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1751 		mask |= UDF_SET_UPDATE;
1752 	}
1753 	if (mask) {
1754 		udf_node->update_flag |= mask;
1755 	}
1756 #endif
1757 	/* msdosfs doesn't do it, but shouldn't we update the times here? */
1758 }
1759 
1760 
1761 static const struct genfs_ops udf_genfsops = {
1762 	.gop_size = genfs_size,
1763 	.gop_alloc = udf_gop_alloc,
1764 	.gop_write = genfs_gop_write,
1765 	.gop_markupdate = udf_gop_markupdate,
1766 };
1767 
1768 /* --------------------------------------------------------------------- */
1769 
1770 /*
1771  * Each node can have an attached streamdir node though not
1772  * recursively. These are otherwise known as named substreams/named
1773  * extended attributes that have no size limitations.
1774  *
1775  * `Normal' extended attributes are indicated with a number and are recorded
1776  * in either the fe/efe descriptor itself for small descriptors or recorded in
1777  * the attached extended attribute file. Since this file can get fragmented,
1778  * care ought to be taken.
1779  */
1780 
1781 int
1782 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1783 	     struct udf_node **noderes)
1784 {
1785 	union dscrptr   *dscr, *tmpdscr;
1786 	struct udf_node *node;
1787 	struct vnode    *nvp;
1788 	struct long_ad   icb_loc;
1789 	extern int (**udf_vnodeop_p)(void *);
1790 	uint64_t file_size;
1791 	uint32_t lb_size, sector, dummy;
1792 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1793 	int error;
1794 
1795 	DPRINTF(NODE, ("udf_get_node called\n"));
1796 	*noderes = node = NULL;
1797 
1798 	/* lock to disallow simultanious creation of same node */
1799 	lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1800 
1801 	DPRINTF(NODE, ("\tlookup in hash table\n"));
1802 	/* lookup in hash table */
1803 	assert(ump);
1804 	assert(node_icb_loc);
1805 	node = udf_hashget(ump, node_icb_loc);
1806 	if (node) {
1807 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
1808 		/* vnode is returned locked */
1809 		*noderes = node;
1810 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1811 		return 0;
1812 	}
1813 
1814 	/* garbage check: translate node_icb_loc to sectornr */
1815 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
1816 	if (error) {
1817 		/* no use, this will fail anyway */
1818 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1819 		return EINVAL;
1820 	}
1821 
1822 	/* build node (do initialise!) */
1823 	node = pool_get(&udf_node_pool, PR_WAITOK);
1824 	memset(node, 0, sizeof(struct udf_node));
1825 
1826 	DPRINTF(NODE, ("\tget new vnode\n"));
1827 	/* give it a vnode */
1828 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
1829         if (error) {
1830 		pool_put(&udf_node_pool, node);
1831 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1832 		return error;
1833 	}
1834 
1835 	/* allways return locked vnode */
1836 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
1837 		/* recycle vnode and unlock; simultanious will fail too */
1838 		ungetnewvnode(nvp);
1839 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1840 		return error;
1841 	}
1842 
1843 	/* initialise crosslinks, note location of fe/efe for hashing */
1844 	node->ump    =  ump;
1845 	node->vnode  =  nvp;
1846 	nvp->v_data  =  node;
1847 	node->loc    = *node_icb_loc;
1848 	node->lockf  =  0;
1849 
1850 	/* insert into the hash lookup */
1851 	udf_hashins(node);
1852 
1853 	/* safe to unlock, the entry is in the hash table, vnode is locked */
1854 	lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1855 
1856 	icb_loc = *node_icb_loc;
1857 	needs_indirect = 0;
1858 	strat4096 = 0;
1859 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
1860 	file_size = 0;
1861 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1862 
1863 	do {
1864 		error = udf_translate_vtop(ump, &icb_loc, &sector, &dummy);
1865 		if (error)
1866 			break;
1867 
1868 		/* try to read in fe/efe */
1869 		error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
1870 
1871 		/* blank sector marks end of sequence, check this */
1872 		if ((tmpdscr == NULL) &&  (!strat4096))
1873 			error = ENOENT;
1874 
1875 		/* break if read error or blank sector */
1876 		if (error || (tmpdscr == NULL))
1877 			break;
1878 
1879 		/* process descriptor based on the descriptor type */
1880 		dscr_type = udf_rw16(tmpdscr->tag.id);
1881 
1882 		/* if dealing with an indirect entry, follow the link */
1883 		if (dscr_type == TAGID_INDIRECT_ENTRY) {
1884 			needs_indirect = 0;
1885 			icb_loc = tmpdscr->inde.indirect_icb;
1886 			free(tmpdscr, M_UDFTEMP);
1887 			continue;
1888 		}
1889 
1890 		/* only file entries and extended file entries allowed here */
1891 		if ((dscr_type != TAGID_FENTRY) &&
1892 		    (dscr_type != TAGID_EXTFENTRY)) {
1893 			free(tmpdscr, M_UDFTEMP);
1894 			error = ENOENT;
1895 			break;
1896 		}
1897 
1898 		/* get descriptor space from our pool */
1899 		KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
1900 
1901 		dscr = pool_get(&ump->desc_pool, PR_WAITOK);
1902 		memcpy(dscr, tmpdscr, lb_size);
1903 		free(tmpdscr, M_UDFTEMP);
1904 
1905 		/* record and process/update (ext)fentry */
1906 		if (dscr_type == TAGID_FENTRY) {
1907 			if (node->fe)
1908 				pool_put(&ump->desc_pool, node->fe);
1909 			node->fe  = &dscr->fe;
1910 			strat = udf_rw16(node->fe->icbtag.strat_type);
1911 			udf_file_type = node->fe->icbtag.file_type;
1912 			file_size = udf_rw64(node->fe->inf_len);
1913 		} else {
1914 			if (node->efe)
1915 				pool_put(&ump->desc_pool, node->efe);
1916 			node->efe = &dscr->efe;
1917 			strat = udf_rw16(node->efe->icbtag.strat_type);
1918 			udf_file_type = node->efe->icbtag.file_type;
1919 			file_size = udf_rw64(node->efe->inf_len);
1920 		}
1921 
1922 		/* check recording strategy (structure) */
1923 
1924 		/*
1925 		 * Strategy 4096 is a daisy linked chain terminating with an
1926 		 * unrecorded sector or a TERM descriptor. The next
1927 		 * descriptor is to be found in the sector that follows the
1928 		 * current sector.
1929 		 */
1930 		if (strat == 4096) {
1931 			strat4096 = 1;
1932 			needs_indirect = 1;
1933 
1934 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
1935 		}
1936 
1937 		/*
1938 		 * Strategy 4 is the normal strategy and terminates, but if
1939 		 * we're in strategy 4096, we can't have strategy 4 mixed in
1940 		 */
1941 
1942 		if (strat == 4) {
1943 			if (strat4096) {
1944 				error = EINVAL;
1945 				break;
1946 			}
1947 			break;		/* done */
1948 		}
1949 	} while (!error);
1950 
1951 	if (error) {
1952 		/* recycle udf_node */
1953 		udf_dispose_node(node);
1954 
1955 		/* recycle vnode */
1956 		nvp->v_data = NULL;
1957 		ungetnewvnode(nvp);
1958 
1959 		return EINVAL;		/* error code ok? */
1960 	}
1961 
1962 	/* post process and initialise node */
1963 
1964 	/* assert no references to dscr anymore beyong this point */
1965 	assert((node->fe) || (node->efe));
1966 	dscr = NULL;
1967 
1968 	/*
1969 	 * Record where to record an updated version of the descriptor. If
1970 	 * there is a sequence of indirect entries, icb_loc will have been
1971 	 * updated. Its the write disipline to allocate new space and to make
1972 	 * sure the chain is maintained.
1973 	 *
1974 	 * `needs_indirect' flags if the next location is to be filled with
1975 	 * with an indirect entry.
1976 	 */
1977 	node->next_loc = icb_loc;
1978 	node->needs_indirect = needs_indirect;
1979 
1980 	/*
1981 	 * Translate UDF filetypes into vnode types.
1982 	 *
1983 	 * Systemfiles like the meta main and mirror files are not treated as
1984 	 * normal files, so we type them as having no type. UDF dictates that
1985 	 * they are not allowed to be visible.
1986 	 */
1987 
1988 	/* TODO specfs, fifofs etc etc. vnops setting */
1989 	switch (udf_file_type) {
1990 	case UDF_ICB_FILETYPE_DIRECTORY :
1991 	case UDF_ICB_FILETYPE_STREAMDIR :
1992 		nvp->v_type = VDIR;
1993 		break;
1994 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
1995 		nvp->v_type = VBLK;
1996 		break;
1997 	case UDF_ICB_FILETYPE_CHARDEVICE :
1998 		nvp->v_type = VCHR;
1999 		break;
2000 	case UDF_ICB_FILETYPE_SYMLINK :
2001 		nvp->v_type = VLNK;
2002 		break;
2003 	case UDF_ICB_FILETYPE_META_MAIN :
2004 	case UDF_ICB_FILETYPE_META_MIRROR :
2005 		nvp->v_type = VNON;
2006 		break;
2007 	case UDF_ICB_FILETYPE_RANDOMACCESS :
2008 		nvp->v_type = VREG;
2009 		break;
2010 	default:
2011 		/* YIKES, either a block/char device, fifo or something else */
2012 		nvp->v_type = VNON;
2013 	}
2014 
2015 	/* initialise genfs */
2016 	genfs_node_init(nvp, &udf_genfsops);
2017 
2018 	/* don't forget to set vnode's v_size */
2019 	nvp->v_size = file_size;
2020 
2021 	/* TODO ext attr and streamdir nodes */
2022 
2023 	*noderes = node;
2024 
2025 	return 0;
2026 }
2027 
2028 /* --------------------------------------------------------------------- */
2029 
2030 /* UDF<->unix converters */
2031 
2032 /* --------------------------------------------------------------------- */
2033 
2034 static mode_t
2035 udf_perm_to_unix_mode(uint32_t perm)
2036 {
2037 	mode_t mode;
2038 
2039 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
2040 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
2041 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2042 
2043 	return mode;
2044 }
2045 
2046 /* --------------------------------------------------------------------- */
2047 
2048 #ifdef notyet
2049 static uint32_t
2050 unix_mode_to_udf_perm(mode_t mode)
2051 {
2052 	uint32_t perm;
2053 
2054 	perm  = ((mode & S_IRWXO)     );
2055 	perm |= ((mode & S_IRWXG) << 2);
2056 	perm |= ((mode & S_IRWXU) << 4);
2057 	perm |= ((mode & S_IWOTH) << 3);
2058 	perm |= ((mode & S_IWGRP) << 5);
2059 	perm |= ((mode & S_IWUSR) << 7);
2060 
2061 	return perm;
2062 }
2063 #endif
2064 
2065 /* --------------------------------------------------------------------- */
2066 
2067 static uint32_t
2068 udf_icb_to_unix_filetype(uint32_t icbftype)
2069 {
2070 	switch (icbftype) {
2071 	case UDF_ICB_FILETYPE_DIRECTORY :
2072 	case UDF_ICB_FILETYPE_STREAMDIR :
2073 		return S_IFDIR;
2074 	case UDF_ICB_FILETYPE_FIFO :
2075 		return S_IFIFO;
2076 	case UDF_ICB_FILETYPE_CHARDEVICE :
2077 		return S_IFCHR;
2078 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
2079 		return S_IFBLK;
2080 	case UDF_ICB_FILETYPE_RANDOMACCESS :
2081 		return S_IFREG;
2082 	case UDF_ICB_FILETYPE_SYMLINK :
2083 		return S_IFLNK;
2084 	case UDF_ICB_FILETYPE_SOCKET :
2085 		return S_IFSOCK;
2086 	}
2087 	/* no idea what this is */
2088 	return 0;
2089 }
2090 
2091 /* --------------------------------------------------------------------- */
2092 
2093 /* TODO KNF-ify */
2094 
2095 void
2096 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2097 {
2098 	uint16_t *raw_name, *unix_name;
2099 	uint16_t *inchp, ch;
2100 	uint8_t	 *outchp;
2101 	int       ucode_chars, nice_uchars;
2102 
2103 	raw_name = malloc(2048, M_UDFTEMP, M_WAITOK);
2104 	unix_name = raw_name + 1024;
2105 	assert(sizeof(char) == sizeof(uint8_t));
2106 	outchp = (uint8_t *) result;
2107 	if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2108 		*raw_name = *unix_name = 0;
2109 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2110 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2111 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2112 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2113 			ch = *inchp;
2114 			/* XXX sloppy unicode -> latin */
2115 			*outchp++ = ch & 255;
2116 			if (!ch) break;
2117 		}
2118 		*outchp++ = 0;
2119 	} else {
2120 		/* assume 8bit char length byte latin-1 */
2121 		assert(*id == 8);
2122 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2123 	}
2124 	free(raw_name, M_UDFTEMP);
2125 }
2126 
2127 /* --------------------------------------------------------------------- */
2128 
2129 /* TODO KNF-ify */
2130 
2131 void
2132 unix_to_udf_name(char *result, char *name,
2133 		 uint8_t *result_len, struct charspec *chsp)
2134 {
2135 	uint16_t *raw_name;
2136 	int       udf_chars, name_len;
2137 	char     *inchp;
2138 	uint16_t *outchp;
2139 
2140 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2141 	/* convert latin-1 or whatever to unicode-16 */
2142 	*raw_name = 0;
2143 	name_len  = 0;
2144 	inchp  = name;
2145 	outchp = raw_name;
2146 	while (*inchp) {
2147 		*outchp++ = (uint16_t) (*inchp++);
2148 		name_len++;
2149 	}
2150 
2151 	if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2152 		udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2153 	} else {
2154 		/* XXX assume 8bit char length byte latin-1 */
2155 		*result++ = 8; udf_chars = 1;
2156 		strncpy(result, name + 1, strlen(name+1));
2157 		udf_chars += strlen(name);
2158 	}
2159 	*result_len = udf_chars;
2160 	free(raw_name, M_UDFTEMP);
2161 }
2162 
2163 /* --------------------------------------------------------------------- */
2164 
2165 /*
2166  * Timestamp to timespec conversion code is taken with small modifications
2167  * from FreeBSDs /sys/fs/udf by Scott Long <scottl@freebsd.org>. Added with
2168  * permission from Scott.
2169  */
2170 
2171 static int mon_lens[2][12] = {
2172 	{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
2173 	{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
2174 };
2175 
2176 
2177 static int
2178 udf_isaleapyear(int year)
2179 {
2180 	int i;
2181 
2182 	i  = (year % 4) ? 0 : 1;
2183 	i &= (year % 100) ? 1 : 0;
2184 	i |= (year % 400) ? 0 : 1;
2185 
2186 	return i;
2187 }
2188 
2189 
2190 void
2191 udf_timestamp_to_timespec(struct udf_mount *ump,
2192 			  struct timestamp *timestamp,
2193 		          struct timespec  *timespec)
2194 {
2195 	uint32_t usecs, secs, nsecs;
2196 	uint16_t tz;
2197 	int i, lpyear, daysinyear, year;
2198 
2199 	timespec->tv_sec  = secs  = 0;
2200 	timespec->tv_nsec = nsecs = 0;
2201 
2202        /*
2203 	* DirectCD seems to like using bogus year values.
2204 	*
2205 	* Distrust time->month especially, since it will be used for an array
2206 	* index.
2207 	*/
2208 	year = udf_rw16(timestamp->year);
2209 	if ((year < 1970) || (timestamp->month > 12)) {
2210 		return;
2211 	}
2212 
2213 	/* Calculate the time and day
2214 	 * Day is 1-31, Month is 1-12
2215 	 */
2216 
2217 	usecs = timestamp->usec +
2218 		100*timestamp->hund_usec + 10000*timestamp->centisec;
2219 	nsecs = usecs * 1000;
2220 	secs  = timestamp->second;
2221 	secs += timestamp->minute * 60;
2222 	secs += timestamp->hour * 3600;
2223 	secs += (timestamp->day-1) * 3600 * 24;
2224 
2225 	/* Calclulate the month */
2226 	lpyear = udf_isaleapyear(year);
2227 	for (i = 1; i < timestamp->month; i++)
2228 		secs += mon_lens[lpyear][i-1] * 3600 * 24;
2229 
2230 	for (i = 1970; i < year; i++) {
2231 		daysinyear = udf_isaleapyear(i) + 365 ;
2232 		secs += daysinyear * 3600 * 24;
2233 	}
2234 
2235 	/*
2236 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
2237 	 * compliment, so we gotta do some extra magic to handle it right.
2238 	 */
2239 	tz  = udf_rw16(timestamp->type_tz);
2240 	tz &= 0x0fff;			/* only lower 12 bits are significant */
2241 	if (tz & 0x0800)		/* sign extention */
2242 		tz |= 0xf000;
2243 
2244 	/* TODO check timezone conversion */
2245 	/* check if we are specified a timezone to convert */
2246 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
2247 		if ((int16_t) tz != -2047)
2248 			secs -= (int16_t) tz * 60;
2249 	} else {
2250 		secs -= ump->mount_args.gmtoff;
2251 	}
2252 
2253 	timespec->tv_sec  = secs;
2254 	timespec->tv_nsec = nsecs;
2255 }
2256 
2257 /* --------------------------------------------------------------------- */
2258 
2259 /*
2260  * Attribute and filetypes converters with get/set pairs
2261  */
2262 
2263 uint32_t
2264 udf_getaccessmode(struct udf_node *udf_node)
2265 {
2266 	struct file_entry *fe;
2267 	struct extfile_entry *efe;
2268 	uint32_t udf_perm, icbftype;
2269 	uint32_t mode, ftype;
2270 	uint16_t icbflags;
2271 
2272 	if (udf_node->fe) {
2273 		fe = udf_node->fe;
2274 		udf_perm = udf_rw32(fe->perm);
2275 		icbftype = fe->icbtag.file_type;
2276 		icbflags = udf_rw16(fe->icbtag.flags);
2277 	} else {
2278 		assert(udf_node->efe);
2279 		efe = udf_node->efe;
2280 		udf_perm = udf_rw32(efe->perm);
2281 		icbftype = efe->icbtag.file_type;
2282 		icbflags = udf_rw16(efe->icbtag.flags);
2283 	}
2284 
2285 	mode  = udf_perm_to_unix_mode(udf_perm);
2286 	ftype = udf_icb_to_unix_filetype(icbftype);
2287 
2288 	/* set suid, sgid, sticky from flags in fe/efe */
2289 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2290 		mode |= S_ISUID;
2291 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2292 		mode |= S_ISGID;
2293 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2294 		mode |= S_ISVTX;
2295 
2296 	return mode | ftype;
2297 }
2298 
2299 /* --------------------------------------------------------------------- */
2300 
2301 /*
2302  * Directory read and manipulation functions
2303  */
2304 
2305 int
2306 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2307 		       struct long_ad *icb_loc)
2308 {
2309 	struct udf_node  *dir_node = VTOI(vp);
2310 	struct file_entry    *fe;
2311 	struct extfile_entry *efe;
2312 	struct fileid_desc *fid;
2313 	struct dirent dirent;
2314 	uint64_t file_size, diroffset;
2315 	uint32_t lb_size;
2316 	int found, error;
2317 
2318 	/* get directory filesize */
2319 	if (dir_node->fe) {
2320 		fe = dir_node->fe;
2321 		file_size = udf_rw64(fe->inf_len);
2322 	} else {
2323 		assert(dir_node->efe);
2324 		efe = dir_node->efe;
2325 		file_size = udf_rw64(efe->inf_len);
2326 	}
2327 
2328 	/* allocate temporary space for fid */
2329 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2330 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
2331 
2332 	found = 0;
2333 	diroffset = 0;
2334 	while (!found && (diroffset < file_size)) {
2335 		/* transfer a new fid/dirent */
2336 		error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2337 		if (error)
2338 			break;
2339 
2340 		/* skip deleted entries */
2341 		if (fid->file_char & UDF_FILE_CHAR_DEL)
2342 			continue;
2343 
2344 		if ((strlen(dirent.d_name) == namelen) &&
2345 		    (strncmp(dirent.d_name, name, namelen) == 0)) {
2346 			found = 1;
2347 			*icb_loc = fid->icb;
2348 		}
2349 	}
2350 	free(fid, M_TEMP);
2351 
2352 	return found;
2353 }
2354 
2355 /* --------------------------------------------------------------------- */
2356 
2357 /*
2358  * Read one fid and process it into a dirent and advance to the next (*fid)
2359  * has to be allocated a logical block in size, (*dirent) struct dirent length
2360  */
2361 
2362 int
2363 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2364 		    struct fileid_desc *fid, struct dirent *dirent)
2365 {
2366 	struct udf_node  *dir_node = VTOI(vp);
2367 	struct udf_mount *ump = dir_node->ump;
2368 	struct file_entry    *fe;
2369 	struct extfile_entry *efe;
2370 	struct uio    dir_uio;
2371 	struct iovec  dir_iovec;
2372 	uint32_t      entry_length, lb_size;
2373 	uint64_t      file_size;
2374 	char         *fid_name;
2375 	int           enough, error;
2376 
2377 	assert(fid);
2378 	assert(dirent);
2379 	assert(dir_node);
2380 	assert(offset);
2381 	assert(*offset != 1);
2382 
2383 	DPRINTF(FIDS, ("read_fid_stream called\n"));
2384 	/* check if we're past the end of the directory */
2385 	if (dir_node->fe) {
2386 		fe = dir_node->fe;
2387 		file_size = udf_rw64(fe->inf_len);
2388 	} else {
2389 		assert(dir_node->efe);
2390 		efe = dir_node->efe;
2391 		file_size = udf_rw64(efe->inf_len);
2392 	}
2393 	if (*offset >= file_size)
2394 		return EINVAL;
2395 
2396 	/* get maximum length of FID descriptor */
2397 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2398 
2399 	/* initialise return values */
2400 	entry_length = 0;
2401 	memset(dirent, 0, sizeof(struct dirent));
2402 	memset(fid, 0, lb_size);
2403 
2404 	/* TODO use vn_rdwr instead of creating our own uio */
2405 	/* read part of the directory */
2406 	memset(&dir_uio, 0, sizeof(struct uio));
2407 	dir_uio.uio_rw     = UIO_READ;	/* read into this space */
2408 	dir_uio.uio_iovcnt = 1;
2409 	dir_uio.uio_iov    = &dir_iovec;
2410 	UIO_SETUP_SYSSPACE(&dir_uio);
2411 	dir_iovec.iov_base = fid;
2412 	dir_iovec.iov_len  = lb_size;
2413 	dir_uio.uio_offset = *offset;
2414 
2415 	/* limit length of read in piece */
2416 	dir_uio.uio_resid  = MIN(file_size - (*offset), lb_size);
2417 
2418 	/* read the part into the fid space */
2419 	error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2420 	if (error)
2421 		return error;
2422 
2423 	/*
2424 	 * Check if we got a whole descriptor.
2425 	 * XXX Try to `resync' directory stream when something is very wrong.
2426 	 *
2427 	 */
2428 	enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2429 	if (!enough) {
2430 		/* short dir ... */
2431 		return EIO;
2432 	}
2433 
2434 	/* check if our FID header is OK */
2435 	error = udf_check_tag(fid);
2436 	DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2437 	if (!error) {
2438 		if (udf_rw16(fid->tag.id) != TAGID_FID)
2439 			error = ENOENT;
2440 	}
2441 	DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2442 
2443 	/* check for length */
2444 	if (!error) {
2445 		entry_length = udf_fidsize(fid, lb_size);
2446 		enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2447 	}
2448 	DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2449 	    entry_length, enough?"yes":"no"));
2450 
2451 	if (!enough) {
2452 		/* short dir ... bomb out */
2453 		return EIO;
2454 	}
2455 
2456 	/* check FID contents */
2457 	if (!error) {
2458 		error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2459 		DPRINTF(FIDS, ("\tpayload checked ok\n"));
2460 	}
2461 	if (error) {
2462 		/* note that is sometimes a bit quick to report */
2463 		printf("BROKEN DIRECTORY ENTRY\n");
2464 		/* RESYNC? */
2465 		/* TODO: use udf_resync_fid_stream */
2466 		return EIO;
2467 	}
2468 	DPRINTF(FIDS, ("\tinterpret FID\n"));
2469 
2470 	/* we got a whole and valid descriptor! */
2471 
2472 	/* create resulting dirent structure */
2473 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2474 	udf_to_unix_name(dirent->d_name,
2475 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2476 
2477 	/* '..' has no name, so provide one */
2478 	if (fid->file_char & UDF_FILE_CHAR_PAR)
2479 		strcpy(dirent->d_name, "..");
2480 
2481 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
2482 	dirent->d_namlen = strlen(dirent->d_name);
2483 	dirent->d_reclen = _DIRENT_SIZE(dirent);
2484 
2485 	/*
2486 	 * Note that its not worth trying to go for the filetypes now... its
2487 	 * too expensive too
2488 	 */
2489 	dirent->d_type = DT_UNKNOWN;
2490 
2491 	/* initial guess for filetype we can make */
2492 	if (fid->file_char & UDF_FILE_CHAR_DIR)
2493 		dirent->d_type = DT_DIR;
2494 
2495 	/* advance */
2496 	*offset += entry_length;
2497 
2498 	return error;
2499 }
2500 
2501 /* --------------------------------------------------------------------- */
2502 
2503 /*
2504  * block based file reading and writing
2505  */
2506 
2507 static int
2508 udf_read_internal(struct udf_node *node, uint8_t *blob)
2509 {
2510 	struct udf_mount *ump;
2511 	struct file_entry *fe;
2512 	struct extfile_entry *efe;
2513 	uint64_t inflen;
2514 	uint32_t sector_size;
2515 	uint8_t  *pos;
2516 	int icbflags, addr_type;
2517 
2518 	/* shut up gcc */
2519 	inflen = addr_type = icbflags = 0;
2520 	pos = NULL;
2521 
2522 	/* get extent and do some paranoia checks */
2523 	ump = node->ump;
2524 	sector_size = ump->discinfo.sector_size;
2525 
2526 	fe  = node->fe;
2527 	efe = node->efe;
2528 	if (fe) {
2529 		inflen   = udf_rw64(fe->inf_len);
2530 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
2531 		icbflags = udf_rw16(fe->icbtag.flags);
2532 	}
2533 	if (efe) {
2534 		inflen   = udf_rw64(efe->inf_len);
2535 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
2536 		icbflags = udf_rw16(efe->icbtag.flags);
2537 	}
2538 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2539 
2540 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
2541 	assert(inflen < sector_size);
2542 
2543 	/* copy out info */
2544 	memset(blob, 0, sector_size);
2545 	memcpy(blob, pos, inflen);
2546 
2547 	return 0;
2548 }
2549 
2550 /* --------------------------------------------------------------------- */
2551 
2552 /*
2553  * Read file extent reads an extent specified in sectors from the file. It is
2554  * sector based; i.e. no `fancy' offsets.
2555  */
2556 
2557 int
2558 udf_read_file_extent(struct udf_node *node,
2559 		     uint32_t from, uint32_t sectors,
2560 		     uint8_t *blob)
2561 {
2562 	struct buf buf;
2563 	uint32_t sector_size;
2564 
2565 	BUF_INIT(&buf);
2566 
2567 	sector_size = node->ump->discinfo.sector_size;
2568 
2569 	buf.b_bufsize = sectors * sector_size;
2570 	buf.b_data    = blob;
2571 	buf.b_bcount  = buf.b_bufsize;
2572 	buf.b_resid   = buf.b_bcount;
2573 	buf.b_flags   = B_BUSY | B_READ;
2574 	buf.b_vp      = node->vnode;
2575 	buf.b_proc    = NULL;
2576 
2577 	buf.b_blkno  = from;
2578 	buf.b_lblkno = 0;
2579 	BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2580 
2581 	udf_read_filebuf(node, &buf);
2582 	return biowait(&buf);
2583 }
2584 
2585 
2586 /* --------------------------------------------------------------------- */
2587 
2588 /*
2589  * Read file extent in the buffer.
2590  *
2591  * The splitup of the extent into seperate request-buffers is to minimise
2592  * copying around as much as possible.
2593  */
2594 
2595 
2596 /* mininum of 128 translations (!) (64 kb in 512 byte sectors) */
2597 #define FILEBUFSECT 128
2598 
2599 void
2600 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2601 {
2602 	struct buf *nestbuf;
2603 	uint64_t   *mapping;
2604 	uint64_t    run_start;
2605 	uint32_t    sector_size;
2606 	uint32_t    buf_offset, sector, rbuflen, rblk;
2607 	uint8_t    *buf_pos;
2608 	int error, run_length;
2609 
2610 	uint32_t  from;
2611 	uint32_t  sectors;
2612 
2613 	sector_size = node->ump->discinfo.sector_size;
2614 
2615 	from    = buf->b_blkno;
2616 	sectors = buf->b_bcount / sector_size;
2617 
2618 	/* assure we have enough translation slots */
2619 	KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2620 	KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2621 
2622 	if (sectors > FILEBUFSECT) {
2623 		printf("udf_read_filebuf: implementation limit on bufsize\n");
2624 		buf->b_error  = EIO;
2625 		buf->b_flags |= B_ERROR;
2626 		biodone(buf);
2627 		return;
2628 	}
2629 
2630 	mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2631 
2632 	error = 0;
2633 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2634 	error = udf_translate_file_extent(node, from, sectors, mapping);
2635 	if (error) {
2636 		buf->b_error  = error;
2637 		buf->b_flags |= B_ERROR;
2638 		biodone(buf);
2639 		goto out;
2640 	}
2641 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
2642 
2643 	/* pre-check if internal or parts are zero */
2644 	if (*mapping == UDF_TRANS_INTERN) {
2645 		error = udf_read_internal(node, (uint8_t *) buf->b_data);
2646 		if (error) {
2647 			buf->b_error  = error;
2648 			buf->b_flags |= B_ERROR;
2649 		}
2650 		biodone(buf);
2651 		goto out;
2652 	}
2653 	DPRINTF(READ, ("\tnot intern\n"));
2654 
2655 	/* request read-in of data from disc sheduler */
2656 	buf->b_resid = buf->b_bcount;
2657 	for (sector = 0; sector < sectors; sector++) {
2658 		buf_offset = sector * sector_size;
2659 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
2660 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2661 
2662 		switch (mapping[sector]) {
2663 		case UDF_TRANS_UNMAPPED:
2664 		case UDF_TRANS_ZERO:
2665 			/* copy zero sector */
2666 			memset(buf_pos, 0, sector_size);
2667 			DPRINTF(READ, ("\treturning zero sector\n"));
2668 			nestiobuf_done(buf, sector_size, 0);
2669 			break;
2670 		default :
2671 			DPRINTF(READ, ("\tread sector "
2672 			    "%"PRIu64"\n", mapping[sector]));
2673 
2674 			run_start  = mapping[sector];
2675 			run_length = 1;
2676 			while (sector < sectors-1) {
2677 				if (mapping[sector+1] != mapping[sector]+1)
2678 					break;
2679 				run_length++;
2680 				sector++;
2681 			}
2682 
2683 			/*
2684 			 * nest an iobuf and mark it for async reading. Since
2685 			 * we're using nested buffers, they can't be cached by
2686 			 * design.
2687 			 */
2688 			rbuflen = run_length * sector_size;
2689 			rblk    = run_start  * (sector_size/DEV_BSIZE);
2690 
2691 			nestbuf = getiobuf();
2692 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2693 			/* nestbuf is B_ASYNC */
2694 
2695 			/* CD shedules on raw blkno */
2696 			nestbuf->b_blkno    = rblk;
2697 			nestbuf->b_proc     = NULL;
2698 			nestbuf->b_cylinder = 0;
2699 			nestbuf->b_rawblkno = rblk;
2700 			VOP_STRATEGY(node->ump->devvp, nestbuf);
2701 		}
2702 	}
2703 out:
2704 	DPRINTF(READ, ("\tend of read_filebuf\n"));
2705 	free(mapping, M_TEMP);
2706 	return;
2707 }
2708 #undef FILEBUFSECT
2709 
2710 
2711 /* --------------------------------------------------------------------- */
2712 
2713 /*
2714  * Translate an extent (in sectors) into sector numbers; used for read and
2715  * write operations. DOESNT't check extents.
2716  */
2717 
2718 int
2719 udf_translate_file_extent(struct udf_node *node,
2720 		          uint32_t from, uint32_t pages,
2721 			  uint64_t *map)
2722 {
2723 	struct udf_mount *ump;
2724 	struct file_entry *fe;
2725 	struct extfile_entry *efe;
2726 	struct short_ad *s_ad;
2727 	struct long_ad  *l_ad, t_ad;
2728 	uint64_t transsec;
2729 	uint32_t sector_size, transsec32;
2730 	uint32_t overlap, translen;
2731 	uint32_t vpart_num, lb_num, len, alloclen;
2732 	uint8_t *pos;
2733 	int error, flags, addr_type, icblen, icbflags;
2734 
2735 	if (!node)
2736 		return ENOENT;
2737 
2738 	/* shut up gcc */
2739 	alloclen = addr_type = icbflags = 0;
2740 	pos = NULL;
2741 
2742 	/* do the work */
2743 	ump = node->ump;
2744 	sector_size = ump->discinfo.sector_size;
2745 	fe  = node->fe;
2746 	efe = node->efe;
2747 	if (fe) {
2748 		alloclen = udf_rw32(fe->l_ad);
2749 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
2750 		icbflags = udf_rw16(fe->icbtag.flags);
2751 	}
2752 	if (efe) {
2753 		alloclen = udf_rw32(efe->l_ad);
2754 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
2755 		icbflags = udf_rw16(efe->icbtag.flags);
2756 	}
2757 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2758 
2759 	DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2760 	    "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2761 
2762 	vpart_num = udf_rw16(node->loc.loc.part_num);
2763 	lb_num = len = icblen = 0;	/* shut up gcc */
2764 	while (pages && alloclen) {
2765 		DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2766 		switch (addr_type) {
2767 		case UDF_ICB_INTERN_ALLOC :
2768 			/* TODO check extents? */
2769 			*map = UDF_TRANS_INTERN;
2770 			return 0;
2771 		case UDF_ICB_SHORT_ALLOC :
2772 			icblen = sizeof(struct short_ad);
2773 			s_ad   = (struct short_ad *) pos;
2774 			len       = udf_rw32(s_ad->len);
2775 			lb_num    = udf_rw32(s_ad->lb_num);
2776 			break;
2777 		case UDF_ICB_LONG_ALLOC  :
2778 			icblen = sizeof(struct long_ad);
2779 			l_ad   = (struct long_ad *) pos;
2780 			len       = udf_rw32(l_ad->len);
2781 			lb_num    = udf_rw32(l_ad->loc.lb_num);
2782 			vpart_num = udf_rw16(l_ad->loc.part_num);
2783 			DPRINTFIF(TRANSLATE,
2784 			    (l_ad->impl.im_used.flags &
2785 			     UDF_ADIMP_FLAGS_EXTENT_ERASED),
2786 			    ("UDF: got an `extent erased' flag in long_ad\n"));
2787 			break;
2788 		default:
2789 			/* can't be here */
2790 			return EINVAL;	/* for sure */
2791 		}
2792 
2793 		/* process extent */
2794 		flags   = UDF_EXT_FLAGS(len);
2795 		len     = UDF_EXT_LEN(len);
2796 
2797 		overlap = (len + sector_size -1) / sector_size;
2798 		if (from) {
2799 			if (from > overlap) {
2800 				from -= overlap;
2801 				overlap = 0;
2802 			} else {
2803 				lb_num  += from;	/* advance in extent */
2804 				overlap -= from;
2805 				from = 0;
2806 			}
2807 		}
2808 
2809 		overlap = MIN(overlap, pages);
2810 		while (overlap) {
2811 			switch (flags) {
2812 			case UDF_EXT_REDIRECT :
2813 				/* no support for allocation extentions yet */
2814 				/* TODO support for allocation extention */
2815 				return ENOENT;
2816 			case UDF_EXT_FREED :
2817 			case UDF_EXT_FREE :
2818 				transsec = UDF_TRANS_ZERO;
2819 				translen = overlap;
2820 				while (overlap && pages && translen) {
2821 					*map++ = transsec;
2822 					overlap--; pages--; translen--;
2823 				}
2824 				break;
2825 			case UDF_EXT_ALLOCATED :
2826 				t_ad.loc.lb_num   = udf_rw32(lb_num);
2827 				t_ad.loc.part_num = udf_rw16(vpart_num);
2828 				error = udf_translate_vtop(ump,
2829 						&t_ad, &transsec32, &translen);
2830 				transsec = transsec32;
2831 				if (error)
2832 					return error;
2833 				while (overlap && pages && translen) {
2834 					*map++ = transsec;
2835 					transsec++;
2836 					overlap--; pages--; translen--;
2837 				}
2838 				break;
2839 			}
2840 		}
2841 		pos      += icblen;
2842 		alloclen -= icblen;
2843 	}
2844 	return 0;
2845 }
2846 
2847 /* --------------------------------------------------------------------- */
2848 
2849