1 /* $NetBSD: udf_subr.c,v 1.10 2006/06/20 03:22:12 christos Exp $ */ 2 3 /* 4 * Copyright (c) 2006 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 */ 35 36 37 #include <sys/cdefs.h> 38 #ifndef lint 39 __RCSID("$NetBSD: udf_subr.c,v 1.10 2006/06/20 03:22:12 christos Exp $"); 40 #endif /* not lint */ 41 42 43 #if defined(_KERNEL_OPT) 44 #include "opt_quota.h" 45 #include "opt_compat_netbsd.h" 46 #endif 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/sysctl.h> 51 #include <sys/namei.h> 52 #include <sys/proc.h> 53 #include <sys/kernel.h> 54 #include <sys/vnode.h> 55 #include <miscfs/genfs/genfs_node.h> 56 #include <sys/mount.h> 57 #include <sys/buf.h> 58 #include <sys/file.h> 59 #include <sys/device.h> 60 #include <sys/disklabel.h> 61 #include <sys/ioctl.h> 62 #include <sys/malloc.h> 63 #include <sys/dirent.h> 64 #include <sys/stat.h> 65 #include <sys/conf.h> 66 #include <sys/kauth.h> 67 68 #include <fs/udf/ecma167-udf.h> 69 #include <fs/udf/udf_mount.h> 70 71 #include "udf.h" 72 #include "udf_subr.h" 73 #include "udf_bswap.h" 74 75 76 #define VTOI(vnode) ((struct udf_node *) vnode->v_data) 77 78 79 /* predefines */ 80 81 82 #if 0 83 { 84 int i, j, dlen; 85 uint8_t *blob; 86 87 blob = (uint8_t *) fid; 88 dlen = file_size - (*offset); 89 90 printf("blob = %p\n", blob); 91 printf("dump of %d bytes\n", dlen); 92 93 for (i = 0; i < dlen; i+ = 16) { 94 printf("%04x ", i); 95 for (j = 0; j < 16; j++) { 96 if (i+j < dlen) { 97 printf("%02x ", blob[i+j]); 98 } else { 99 printf(" "); 100 } 101 } 102 for (j = 0; j < 16; j++) { 103 if (i+j < dlen) { 104 if (blob[i+j]>32 && blob[i+j]! = 127) { 105 printf("%c", blob[i+j]); 106 } else { 107 printf("."); 108 } 109 } 110 } 111 printf("\n"); 112 } 113 printf("\n"); 114 } 115 Debugger(); 116 #endif 117 118 119 /* --------------------------------------------------------------------- */ 120 121 /* STUB */ 122 123 static int 124 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp) 125 { 126 int sector_size = ump->discinfo.sector_size; 127 int blks = sector_size / DEV_BSIZE; 128 129 /* NOTE bread() checks if block is in cache or not */ 130 return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp); 131 } 132 133 134 /* --------------------------------------------------------------------- */ 135 136 /* 137 * Check if the blob starts with a good UDF tag. Tags are protected by a 138 * checksum over the reader except one byte at position 4 that is the checksum 139 * itself. 140 */ 141 142 int 143 udf_check_tag(void *blob) 144 { 145 struct desc_tag *tag = blob; 146 uint8_t *pos, sum, cnt; 147 148 /* check TAG header checksum */ 149 pos = (uint8_t *) tag; 150 sum = 0; 151 152 for(cnt = 0; cnt < 16; cnt++) { 153 if (cnt != 4) 154 sum += *pos; 155 pos++; 156 } 157 if (sum != tag->cksum) { 158 /* bad tag header checksum; this is not a valid tag */ 159 return EINVAL; 160 } 161 162 return 0; 163 } 164 165 /* --------------------------------------------------------------------- */ 166 167 /* 168 * check tag payload will check descriptor CRC as specified. 169 * If the descriptor is too short, it will return EIO otherwise EINVAL. 170 */ 171 172 int 173 udf_check_tag_payload(void *blob, uint32_t max_length) 174 { 175 struct desc_tag *tag = blob; 176 uint16_t crc, crc_len; 177 178 crc_len = udf_rw16(tag->desc_crc_len); 179 180 /* check payload CRC if applicable */ 181 if (crc_len == 0) 182 return 0; 183 184 if (crc_len > max_length) 185 return EIO; 186 187 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 188 if (crc != udf_rw16(tag->desc_crc)) { 189 /* bad payload CRC; this is a broken tag */ 190 return EINVAL; 191 } 192 193 return 0; 194 } 195 196 /* --------------------------------------------------------------------- */ 197 198 int 199 udf_validate_tag_sum(void *blob) 200 { 201 struct desc_tag *tag = blob; 202 uint8_t *pos, sum, cnt; 203 204 /* calculate TAG header checksum */ 205 pos = (uint8_t *) tag; 206 sum = 0; 207 208 for(cnt = 0; cnt < 16; cnt++) { 209 if (cnt != 4) sum += *pos; 210 pos++; 211 } 212 tag->cksum = sum; /* 8 bit */ 213 214 return 0; 215 } 216 217 /* --------------------------------------------------------------------- */ 218 219 /* assumes sector number of descriptor to be saved already present */ 220 221 int 222 udf_validate_tag_and_crc_sums(void *blob) 223 { 224 struct desc_tag *tag = blob; 225 uint8_t *btag = (uint8_t *) tag; 226 uint16_t crc, crc_len; 227 228 crc_len = udf_rw16(tag->desc_crc_len); 229 230 /* check payload CRC if applicable */ 231 if (crc_len > 0) { 232 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 233 tag->desc_crc = udf_rw16(crc); 234 } 235 236 /* calculate TAG header checksum */ 237 return udf_validate_tag_sum(blob); 238 } 239 240 /* --------------------------------------------------------------------- */ 241 242 /* 243 * XXX note the different semantics from udfclient: for FIDs it still rounds 244 * up to sectors. Use udf_fidsize() for a correct length. 245 */ 246 247 int 248 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size) 249 { 250 uint32_t size, tag_id, num_secs, elmsz; 251 252 tag_id = udf_rw16(dscr->tag.id); 253 254 switch (tag_id) { 255 case TAGID_LOGVOL : 256 size = sizeof(struct logvol_desc) - 1; 257 size += udf_rw32(dscr->lvd.mt_l); 258 break; 259 case TAGID_UNALLOC_SPACE : 260 elmsz = sizeof(struct extent_ad); 261 size = sizeof(struct unalloc_sp_desc) - elmsz; 262 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 263 break; 264 case TAGID_FID : 265 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 266 size = (size + 3) & ~3; 267 break; 268 case TAGID_LOGVOL_INTEGRITY : 269 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 270 size += udf_rw32(dscr->lvid.l_iu); 271 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 272 break; 273 case TAGID_SPACE_BITMAP : 274 size = sizeof(struct space_bitmap_desc) - 1; 275 size += udf_rw32(dscr->sbd.num_bytes); 276 break; 277 case TAGID_SPARING_TABLE : 278 elmsz = sizeof(struct spare_map_entry); 279 size = sizeof(struct udf_sparing_table) - elmsz; 280 size += udf_rw16(dscr->spt.rt_l) * elmsz; 281 break; 282 case TAGID_FENTRY : 283 size = sizeof(struct file_entry); 284 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 285 break; 286 case TAGID_EXTFENTRY : 287 size = sizeof(struct extfile_entry); 288 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 289 break; 290 case TAGID_FSD : 291 size = sizeof(struct fileset_desc); 292 break; 293 default : 294 size = sizeof(union dscrptr); 295 break; 296 } 297 298 if ((size == 0) || (udf_sector_size == 0)) return 0; 299 300 /* round up in sectors */ 301 num_secs = (size + udf_sector_size -1) / udf_sector_size; 302 return num_secs * udf_sector_size; 303 } 304 305 306 static int 307 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size) 308 { 309 uint32_t size; 310 311 if (udf_rw16(fid->tag.id) != TAGID_FID) 312 panic("got udf_fidsize on non FID\n"); 313 314 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 315 size = (size + 3) & ~3; 316 317 return size; 318 } 319 320 /* --------------------------------------------------------------------- */ 321 322 /* 323 * Problem with read_descriptor are long descriptors spanning more than one 324 * sector. Luckily long descriptors can't be in `logical space'. 325 * 326 * Size of allocated piece is returned in multiple of sector size due to 327 * udf_calc_udf_malloc_size(). 328 */ 329 330 int 331 udf_read_descriptor(struct udf_mount *ump, uint32_t sector, 332 struct malloc_type *mtype, union dscrptr **dstp) 333 { 334 union dscrptr *src, *dst; 335 struct buf *bp; 336 uint8_t *pos; 337 int blks, blk, dscrlen; 338 int i, error, sector_size; 339 340 sector_size = ump->discinfo.sector_size; 341 342 *dstp = dst = NULL; 343 dscrlen = sector_size; 344 345 /* read initial piece */ 346 error = udf_bread(ump, sector, &bp); 347 DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error)); 348 349 if (!error) { 350 /* check if its a valid tag */ 351 error = udf_check_tag(bp->b_data); 352 if (error) { 353 /* check if its an empty block */ 354 pos = bp->b_data; 355 for (i = 0; i < sector_size; i++, pos++) { 356 if (*pos) break; 357 } 358 if (i == sector_size) { 359 /* return no error but with no dscrptr */ 360 /* dispose first block */ 361 brelse(bp); 362 return 0; 363 } 364 } 365 } 366 DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n")); 367 if (!error) { 368 src = (union dscrptr *) bp->b_data; 369 dscrlen = udf_tagsize(src, sector_size); 370 dst = malloc(dscrlen, mtype, M_WAITOK); 371 memcpy(dst, src, dscrlen); 372 } 373 /* dispose first block */ 374 bp->b_flags |= B_AGE; 375 brelse(bp); 376 377 if (!error && (dscrlen > sector_size)) { 378 DPRINTF(DESCRIPTOR, ("multi block descriptor read\n")); 379 /* 380 * Read the rest of descriptor. Since it is only used at mount 381 * time its overdone to define and use a specific udf_breadn 382 * for this alone. 383 */ 384 blks = (dscrlen + sector_size -1) / sector_size; 385 for (blk = 1; blk < blks; blk++) { 386 error = udf_bread(ump, sector + blk, &bp); 387 if (error) { 388 brelse(bp); 389 break; 390 } 391 pos = (uint8_t *) dst + blk*sector_size; 392 memcpy(pos, bp->b_data, sector_size); 393 394 /* dispose block */ 395 bp->b_flags |= B_AGE; 396 brelse(bp); 397 } 398 DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n", 399 error)); 400 } 401 if (!error) { 402 error = udf_check_tag_payload(dst, dscrlen); 403 DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n")); 404 } 405 if (error && dst) { 406 free(dst, mtype); 407 dst = NULL; 408 } 409 *dstp = dst; 410 411 return error; 412 } 413 414 /* --------------------------------------------------------------------- */ 415 #ifdef DEBUG 416 static void 417 udf_dump_discinfo(struct udf_mount *ump) 418 { 419 char bits[128]; 420 struct mmc_discinfo *di = &ump->discinfo; 421 422 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 423 return; 424 425 printf("Device/media info :\n"); 426 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 427 printf("\tderived class %d\n", di->mmc_class); 428 printf("\tsector size %d\n", di->sector_size); 429 printf("\tdisc state %d\n", di->disc_state); 430 printf("\tlast ses state %d\n", di->last_session_state); 431 printf("\tbg format state %d\n", di->bg_format_state); 432 printf("\tfrst track %d\n", di->first_track); 433 printf("\tfst on last ses %d\n", di->first_track_last_session); 434 printf("\tlst on last ses %d\n", di->last_track_last_session); 435 printf("\tlink block penalty %d\n", di->link_block_penalty); 436 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits, 437 sizeof(bits)); 438 printf("\tdisc flags %s\n", bits); 439 printf("\tdisc id %x\n", di->disc_id); 440 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 441 442 printf("\tnum sessions %d\n", di->num_sessions); 443 printf("\tnum tracks %d\n", di->num_tracks); 444 445 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits)); 446 printf("\tcapabilities cur %s\n", bits); 447 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits)); 448 printf("\tcapabilities cap %s\n", bits); 449 } 450 #else 451 #define udf_dump_discinfo(a); 452 #endif 453 454 /* not called often */ 455 int 456 udf_update_discinfo(struct udf_mount *ump) 457 { 458 struct vnode *devvp = ump->devvp; 459 struct partinfo dpart; 460 struct mmc_discinfo *di; 461 int error; 462 463 DPRINTF(VOLUMES, ("read/update disc info\n")); 464 di = &ump->discinfo; 465 memset(di, 0, sizeof(struct mmc_discinfo)); 466 467 /* check if we're on a MMC capable device, i.e. CD/DVD */ 468 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL); 469 if (error == 0) { 470 udf_dump_discinfo(ump); 471 return 0; 472 } 473 474 /* disc partition support */ 475 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL); 476 if (error) 477 return ENODEV; 478 479 /* set up a disc info profile for partitions */ 480 di->mmc_profile = 0x01; /* disc type */ 481 di->mmc_class = MMC_CLASS_DISC; 482 di->disc_state = MMC_STATE_CLOSED; 483 di->last_session_state = MMC_STATE_CLOSED; 484 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 485 di->link_block_penalty = 0; 486 487 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 488 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 489 di->mmc_cap = di->mmc_cur; 490 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 491 492 /* TODO problem with last_possible_lba on resizable VND; request */ 493 di->last_possible_lba = dpart.part->p_size; 494 di->sector_size = dpart.disklab->d_secsize; 495 di->blockingnr = 1; 496 497 di->num_sessions = 1; 498 di->num_tracks = 1; 499 500 di->first_track = 1; 501 di->first_track_last_session = di->last_track_last_session = 1; 502 503 udf_dump_discinfo(ump); 504 return 0; 505 } 506 507 /* --------------------------------------------------------------------- */ 508 509 int 510 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 511 { 512 struct vnode *devvp = ump->devvp; 513 struct mmc_discinfo *di = &ump->discinfo; 514 int error, class; 515 516 DPRINTF(VOLUMES, ("read track info\n")); 517 518 class = di->mmc_class; 519 if (class != MMC_CLASS_DISC) { 520 /* tracknr specified in struct ti */ 521 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, 522 NOCRED, NULL); 523 return error; 524 } 525 526 /* disc partition support */ 527 if (ti->tracknr != 1) 528 return EIO; 529 530 /* create fake ti (TODO check for resized vnds) */ 531 ti->sessionnr = 1; 532 533 ti->track_mode = 0; /* XXX */ 534 ti->data_mode = 0; /* XXX */ 535 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 536 537 ti->track_start = 0; 538 ti->packet_size = 1; 539 540 /* TODO support for resizable vnd */ 541 ti->track_size = di->last_possible_lba; 542 ti->next_writable = di->last_possible_lba; 543 ti->last_recorded = ti->next_writable; 544 ti->free_blocks = 0; 545 546 return 0; 547 } 548 549 /* --------------------------------------------------------------------- */ 550 551 /* track/session searching for mounting */ 552 553 static int 554 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 555 int *first_tracknr, int *last_tracknr) 556 { 557 struct mmc_trackinfo trackinfo; 558 uint32_t tracknr, start_track, num_tracks; 559 int error; 560 561 /* if negative, sessionnr is relative to last session */ 562 if (args->sessionnr < 0) { 563 args->sessionnr += ump->discinfo.num_sessions; 564 /* sanity */ 565 if (args->sessionnr < 0) 566 args->sessionnr = 0; 567 } 568 569 /* sanity */ 570 if (args->sessionnr > ump->discinfo.num_sessions) 571 args->sessionnr = ump->discinfo.num_sessions; 572 573 /* search the tracks for this session, zero session nr indicates last */ 574 if (args->sessionnr == 0) { 575 args->sessionnr = ump->discinfo.num_sessions; 576 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) { 577 args->sessionnr--; 578 } 579 } 580 581 /* search the first and last track of the specified session */ 582 num_tracks = ump->discinfo.num_tracks; 583 start_track = ump->discinfo.first_track; 584 585 /* search for first track of this session */ 586 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 587 /* get track info */ 588 trackinfo.tracknr = tracknr; 589 error = udf_update_trackinfo(ump, &trackinfo); 590 if (error) 591 return error; 592 593 if (trackinfo.sessionnr == args->sessionnr) 594 break; 595 } 596 *first_tracknr = tracknr; 597 598 /* search for last track of this session */ 599 for (;tracknr <= num_tracks; tracknr++) { 600 /* get track info */ 601 trackinfo.tracknr = tracknr; 602 error = udf_update_trackinfo(ump, &trackinfo); 603 if (error || (trackinfo.sessionnr != args->sessionnr)) { 604 tracknr--; 605 break; 606 } 607 } 608 if (tracknr > num_tracks) 609 tracknr--; 610 611 *last_tracknr = tracknr; 612 613 assert(*last_tracknr >= *first_tracknr); 614 return 0; 615 } 616 617 /* --------------------------------------------------------------------- */ 618 619 static int 620 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 621 { 622 int error; 623 624 error = udf_read_descriptor(ump, sector, M_UDFVOLD, 625 (union dscrptr **) dst); 626 if (!error) { 627 /* blank terminator blocks are not allowed here */ 628 if (*dst == NULL) 629 return ENOENT; 630 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 631 error = ENOENT; 632 free(*dst, M_UDFVOLD); 633 *dst = NULL; 634 DPRINTF(VOLUMES, ("Not an anchor\n")); 635 } 636 } 637 638 return error; 639 } 640 641 642 int 643 udf_read_anchors(struct udf_mount *ump, struct udf_args *args) 644 { 645 struct mmc_trackinfo first_track; 646 struct mmc_trackinfo last_track; 647 struct anchor_vdp **anchorsp; 648 uint32_t track_start; 649 uint32_t track_end; 650 uint32_t positions[4]; 651 int first_tracknr, last_tracknr; 652 int error, anch, ok, first_anchor; 653 654 /* search the first and last track of the specified session */ 655 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 656 if (!error) { 657 first_track.tracknr = first_tracknr; 658 error = udf_update_trackinfo(ump, &first_track); 659 } 660 if (!error) { 661 last_track.tracknr = last_tracknr; 662 error = udf_update_trackinfo(ump, &last_track); 663 } 664 if (error) { 665 printf("UDF mount: reading disc geometry failed\n"); 666 return 0; 667 } 668 669 track_start = first_track.track_start; 670 671 /* `end' is not as straitforward as start. */ 672 track_end = last_track.track_start 673 + last_track.track_size - last_track.free_blocks - 1; 674 675 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 676 /* end of track is not straitforward here */ 677 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 678 track_end = last_track.last_recorded; 679 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 680 track_end = last_track.next_writable 681 - ump->discinfo.link_block_penalty; 682 } 683 /* VATs are only recorded on sequential media, but initialise */ 684 ump->possible_vat_location = track_end; 685 686 /* its no use reading a blank track */ 687 first_anchor = 0; 688 if (first_track.flags & MMC_TRACKINFO_BLANK) 689 first_anchor = 1; 690 691 /* read anchors start+256, start+512, end-256, end */ 692 positions[0] = track_start+256; 693 positions[1] = track_end-256; 694 positions[2] = track_end; 695 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 696 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 697 698 ok = 0; 699 anchorsp = ump->anchors; 700 for (anch = first_anchor; anch < 4; anch++) { 701 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 702 positions[anch])); 703 error = udf_read_anchor(ump, positions[anch], anchorsp); 704 if (!error) { 705 anchorsp++; 706 ok++; 707 } 708 } 709 710 return ok; 711 } 712 713 /* --------------------------------------------------------------------- */ 714 715 /* we dont try to be smart; we just record the parts */ 716 #define UDF_UPDATE_DSCR(name, dscr) \ 717 if (name) \ 718 free(name, M_UDFVOLD); \ 719 name = dscr; 720 721 static int 722 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 723 { 724 uint16_t partnr; 725 726 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 727 udf_rw16(dscr->tag.id))); 728 switch (udf_rw16(dscr->tag.id)) { 729 case TAGID_PRI_VOL : /* primary partition */ 730 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 731 break; 732 case TAGID_LOGVOL : /* logical volume */ 733 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 734 break; 735 case TAGID_UNALLOC_SPACE : /* unallocated space */ 736 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 737 break; 738 case TAGID_IMP_VOL : /* implementation */ 739 /* XXX do we care about multiple impl. descr ? */ 740 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 741 break; 742 case TAGID_PARTITION : /* physical partition */ 743 /* not much use if its not allocated */ 744 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 745 free(dscr, M_UDFVOLD); 746 break; 747 } 748 749 /* check partnr boundaries */ 750 partnr = udf_rw16(dscr->pd.part_num); 751 if (partnr >= UDF_PARTITIONS) 752 return EINVAL; 753 754 UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd); 755 break; 756 case TAGID_VOL : /* volume space extender; rare */ 757 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 758 free(dscr, M_UDFVOLD); 759 break; 760 default : 761 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 762 udf_rw16(dscr->tag.id))); 763 free(dscr, M_UDFVOLD); 764 } 765 766 return 0; 767 } 768 #undef UDF_UPDATE_DSCR 769 770 /* --------------------------------------------------------------------- */ 771 772 static int 773 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 774 { 775 union dscrptr *dscr; 776 uint32_t sector_size, dscr_size; 777 int error; 778 779 sector_size = ump->discinfo.sector_size; 780 781 /* loc is sectornr, len is in bytes */ 782 error = EIO; 783 while (len) { 784 error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr); 785 if (error) 786 return error; 787 788 /* blank block is a terminator */ 789 if (dscr == NULL) 790 return 0; 791 792 /* TERM descriptor is a terminator */ 793 if (udf_rw16(dscr->tag.id) == TAGID_TERM) 794 return 0; 795 796 /* process all others */ 797 dscr_size = udf_tagsize(dscr, sector_size); 798 error = udf_process_vds_descriptor(ump, dscr); 799 if (error) { 800 free(dscr, M_UDFVOLD); 801 break; 802 } 803 assert((dscr_size % sector_size) == 0); 804 805 len -= dscr_size; 806 loc += dscr_size / sector_size; 807 } 808 809 return error; 810 } 811 812 813 int 814 udf_read_vds_space(struct udf_mount *ump) 815 { 816 struct anchor_vdp *anchor, *anchor2; 817 size_t size; 818 uint32_t main_loc, main_len; 819 uint32_t reserve_loc, reserve_len; 820 int error; 821 822 /* 823 * read in VDS space provided by the anchors; if one descriptor read 824 * fails, try the mirror sector. 825 * 826 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 827 * avoids the `compatibility features' of DirectCD that may confuse 828 * stuff completely. 829 */ 830 831 anchor = ump->anchors[0]; 832 anchor2 = ump->anchors[1]; 833 assert(anchor); 834 835 if (anchor2) { 836 size = sizeof(struct extent_ad); 837 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 838 anchor = anchor2; 839 /* reserve is specified to be a literal copy of main */ 840 } 841 842 main_loc = udf_rw32(anchor->main_vds_ex.loc); 843 main_len = udf_rw32(anchor->main_vds_ex.len); 844 845 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 846 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 847 848 error = udf_read_vds_extent(ump, main_loc, main_len); 849 if (error) { 850 printf("UDF mount: reading in reserve VDS extent\n"); 851 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 852 } 853 854 return error; 855 } 856 857 /* --------------------------------------------------------------------- */ 858 859 /* 860 * Read in the logical volume integrity sequence pointed to by our logical 861 * volume descriptor. Its a sequence that can be extended using fields in the 862 * integrity descriptor itself. On sequential media only one is found, on 863 * rewritable media a sequence of descriptors can be found as a form of 864 * history keeping and on non sequential write-once media the chain is vital 865 * to allow more and more descriptors to be written. The last descriptor 866 * written in an extent needs to claim space for a new extent. 867 */ 868 869 static int 870 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp) 871 { 872 union dscrptr *dscr; 873 struct logvol_int_desc *lvint; 874 uint32_t sector_size, sector, len; 875 int dscr_type, error; 876 877 sector_size = ump->discinfo.sector_size; 878 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 879 sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 880 881 lvint = NULL; 882 dscr = NULL; 883 error = 0; 884 while (len) { 885 /* read in our integrity descriptor */ 886 error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr); 887 if (!error) { 888 if (dscr == NULL) 889 break; /* empty terminates */ 890 dscr_type = udf_rw16(dscr->tag.id); 891 if (dscr_type == TAGID_TERM) { 892 break; /* clean terminator */ 893 } 894 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 895 /* fatal... corrupt disc */ 896 error = ENOENT; 897 break; 898 } 899 if (lvint) 900 free(lvint, M_UDFVOLD); 901 lvint = &dscr->lvid; 902 dscr = NULL; 903 } /* else hope for the best... maybe the next is ok */ 904 905 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 906 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 907 908 /* proceed sequential */ 909 sector += 1; 910 len -= sector_size; 911 912 /* are we linking to a new piece? */ 913 if (lvint->next_extent.len) { 914 len = udf_rw32(lvint->next_extent.len); 915 sector = udf_rw32(lvint->next_extent.loc); 916 } 917 } 918 919 /* clean up the mess, esp. when there is an error */ 920 if (dscr) 921 free(dscr, M_UDFVOLD); 922 923 if (error && lvint) { 924 free(lvint, M_UDFVOLD); 925 lvint = NULL; 926 } 927 928 if (!lvint) 929 error = ENOENT; 930 931 *lvintp = lvint; 932 return error; 933 } 934 935 /* --------------------------------------------------------------------- */ 936 937 /* 938 * Checks if ump's vds information is correct and complete 939 */ 940 941 int 942 udf_process_vds(struct udf_mount *ump, struct udf_args *args) { 943 union udf_pmap *mapping; 944 struct logvol_int_desc *lvint; 945 struct udf_logvol_info *lvinfo; 946 uint32_t n_pm, mt_l; 947 uint8_t *pmap_pos; 948 char *domain_name, *map_name; 949 const char *check_name; 950 int pmap_stype, pmap_size; 951 int pmap_type, log_part, phys_part; 952 int n_phys, n_virt, n_spar, n_meta; 953 int len, error; 954 955 if (ump == NULL) 956 return ENOENT; 957 958 /* we need at least an anchor (trivial, but for safety) */ 959 if (ump->anchors[0] == NULL) 960 return EINVAL; 961 962 /* we need at least one primary and one logical volume descriptor */ 963 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 964 return EINVAL; 965 966 /* we need at least one partition descriptor */ 967 if (ump->partitions[0] == NULL) 968 return EINVAL; 969 970 /* check logical volume sector size verses device sector size */ 971 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 972 printf("UDF mount: format violation, lb_size != sector size\n"); 973 return EINVAL; 974 } 975 976 domain_name = ump->logical_vol->domain_id.id; 977 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 978 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 979 return EINVAL; 980 } 981 982 /* retrieve logical volume integrity sequence */ 983 error = udf_retrieve_lvint(ump, &ump->logvol_integrity); 984 985 /* 986 * We need at least one logvol integrity descriptor recorded. Note 987 * that its OK to have an open logical volume integrity here. The VAT 988 * will close/update the integrity. 989 */ 990 if (ump->logvol_integrity == NULL) 991 return EINVAL; 992 993 /* process derived structures */ 994 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 995 lvint = ump->logvol_integrity; 996 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 997 ump->logvol_info = lvinfo; 998 999 /* TODO check udf versions? */ 1000 1001 /* 1002 * check logvol mappings: effective virt->log partmap translation 1003 * check and recording of the mapping results. Saves expensive 1004 * strncmp() in tight places. 1005 */ 1006 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1007 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1008 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 1009 pmap_pos = ump->logical_vol->maps; 1010 1011 if (n_pm > UDF_PMAPS) { 1012 printf("UDF mount: too many mappings\n"); 1013 return EINVAL; 1014 } 1015 1016 n_phys = n_virt = n_spar = n_meta = 0; 1017 for (log_part = 0; log_part < n_pm; log_part++) { 1018 mapping = (union udf_pmap *) pmap_pos; 1019 pmap_stype = pmap_pos[0]; 1020 pmap_size = pmap_pos[1]; 1021 switch (pmap_stype) { 1022 case 1: /* physical mapping */ 1023 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1024 phys_part = udf_rw16(mapping->pm1.part_num); 1025 pmap_type = UDF_VTOP_TYPE_PHYS; 1026 n_phys++; 1027 break; 1028 case 2: /* virtual/sparable/meta mapping */ 1029 map_name = mapping->pm2.part_id.id; 1030 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1031 phys_part = udf_rw16(mapping->pm2.part_num); 1032 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1033 len = UDF_REGID_ID_SIZE; 1034 1035 check_name = "*UDF Virtual Partition"; 1036 if (strncmp(map_name, check_name, len) == 0) { 1037 pmap_type = UDF_VTOP_TYPE_VIRT; 1038 n_virt++; 1039 break; 1040 } 1041 check_name = "*UDF Sparable Partition"; 1042 if (strncmp(map_name, check_name, len) == 0) { 1043 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1044 n_spar++; 1045 break; 1046 } 1047 check_name = "*UDF Metadata Partition"; 1048 if (strncmp(map_name, check_name, len) == 0) { 1049 pmap_type = UDF_VTOP_TYPE_META; 1050 n_meta++; 1051 break; 1052 } 1053 break; 1054 default: 1055 return EINVAL; 1056 } 1057 1058 DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part, 1059 pmap_type)); 1060 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1061 return EINVAL; 1062 1063 ump->vtop [log_part] = phys_part; 1064 ump->vtop_tp[log_part] = pmap_type; 1065 1066 pmap_pos += pmap_size; 1067 } 1068 /* not winning the beauty contest */ 1069 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1070 1071 /* test some basic UDF assertions/requirements */ 1072 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 1073 return EINVAL; 1074 1075 if (n_virt) { 1076 if ((n_phys == 0) || n_spar || n_meta) 1077 return EINVAL; 1078 } 1079 if (n_spar + n_phys == 0) 1080 return EINVAL; 1081 1082 /* vat's can only be on a sequential media */ 1083 ump->data_alloc = UDF_ALLOC_SPACEMAP; 1084 if (n_virt) 1085 ump->data_alloc = UDF_ALLOC_SEQUENTIAL; 1086 1087 ump->meta_alloc = UDF_ALLOC_SPACEMAP; 1088 if (n_virt) 1089 ump->meta_alloc = UDF_ALLOC_VAT; 1090 if (n_meta) 1091 ump->meta_alloc = UDF_ALLOC_METABITMAP; 1092 1093 /* special cases for pseudo-overwrite */ 1094 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 1095 ump->data_alloc = UDF_ALLOC_SEQUENTIAL; 1096 if (n_meta) { 1097 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL; 1098 } else { 1099 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL; 1100 } 1101 } 1102 1103 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n", 1104 ump->data_alloc, ump->meta_alloc)); 1105 /* TODO determine partitions to write data and metadata ? */ 1106 1107 /* signal its OK for now */ 1108 return 0; 1109 } 1110 1111 /* --------------------------------------------------------------------- */ 1112 1113 /* 1114 * Read in complete VAT file and check if its indeed a VAT file descriptor 1115 */ 1116 1117 static int 1118 udf_check_for_vat(struct udf_node *vat_node) 1119 { 1120 struct udf_mount *ump; 1121 struct icb_tag *icbtag; 1122 struct timestamp *mtime; 1123 struct regid *regid; 1124 struct udf_vat *vat; 1125 struct udf_logvol_info *lvinfo; 1126 uint32_t vat_length, alloc_length; 1127 uint32_t vat_offset, vat_entries; 1128 uint32_t sector_size; 1129 uint32_t sectors; 1130 uint32_t *raw_vat; 1131 char *regid_name; 1132 int filetype; 1133 int error; 1134 1135 /* vat_length is really 64 bits though impossible */ 1136 1137 DPRINTF(VOLUMES, ("Checking for VAT\n")); 1138 if (!vat_node) 1139 return ENOENT; 1140 1141 /* get mount info */ 1142 ump = vat_node->ump; 1143 1144 /* check assertions */ 1145 assert(vat_node->fe || vat_node->efe); 1146 assert(ump->logvol_integrity); 1147 1148 /* get information from fe/efe */ 1149 if (vat_node->fe) { 1150 vat_length = udf_rw64(vat_node->fe->inf_len); 1151 icbtag = &vat_node->fe->icbtag; 1152 mtime = &vat_node->fe->mtime; 1153 } else { 1154 vat_length = udf_rw64(vat_node->efe->inf_len); 1155 icbtag = &vat_node->efe->icbtag; 1156 mtime = &vat_node->efe->mtime; 1157 } 1158 1159 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 1160 filetype = icbtag->file_type; 1161 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 1162 return ENOENT; 1163 1164 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 1165 /* place a sanity check on the length; currently 1Mb in size */ 1166 if (vat_length > 1*1024*1024) 1167 return ENOENT; 1168 1169 /* get sector size */ 1170 sector_size = vat_node->ump->discinfo.sector_size; 1171 1172 /* calculate how many sectors to read in and how much to allocate */ 1173 sectors = (vat_length + sector_size -1) / sector_size; 1174 alloc_length = (sectors + 2) * sector_size; 1175 1176 /* try to allocate the space */ 1177 ump->vat_table_alloc_length = alloc_length; 1178 ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK); 1179 if (!ump->vat_table) 1180 return ENOMEM; /* impossible to allocate */ 1181 DPRINTF(VOLUMES, ("\talloced fine\n")); 1182 1183 /* read it in! */ 1184 raw_vat = (uint32_t *) ump->vat_table; 1185 error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat); 1186 if (error) { 1187 DPRINTF(VOLUMES, ("\tread failed : %d\n", error)); 1188 /* not completely readable... :( bomb out */ 1189 free(ump->vat_table, M_UDFMNT); 1190 ump->vat_table = NULL; 1191 return error; 1192 } 1193 DPRINTF(VOLUMES, ("VAT read in fine!\n")); 1194 1195 /* 1196 * check contents of the file if its the old 1.50 VAT table format. 1197 * Its notoriously broken and allthough some implementations support an 1198 * extention as defined in the UDF 1.50 errata document, its doubtfull 1199 * to be useable since a lot of implementations don't maintain it. 1200 */ 1201 lvinfo = ump->logvol_info; 1202 1203 if (filetype == 0) { 1204 /* definition */ 1205 vat_offset = 0; 1206 vat_entries = (vat_length-36)/4; 1207 1208 /* check 1.50 VAT */ 1209 regid = (struct regid *) (raw_vat + vat_entries); 1210 regid_name = (char *) regid->id; 1211 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 1212 if (error) { 1213 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 1214 free(ump->vat_table, M_UDFMNT); 1215 ump->vat_table = NULL; 1216 return ENOENT; 1217 } 1218 /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */ 1219 } else { 1220 vat = (struct udf_vat *) raw_vat; 1221 1222 /* definition */ 1223 vat_offset = vat->header_len; 1224 vat_entries = (vat_length - vat_offset)/4; 1225 1226 assert(lvinfo); 1227 lvinfo->num_files = vat->num_files; 1228 lvinfo->num_directories = vat->num_directories; 1229 lvinfo->min_udf_readver = vat->min_udf_readver; 1230 lvinfo->min_udf_writever = vat->min_udf_writever; 1231 lvinfo->max_udf_writever = vat->max_udf_writever; 1232 } 1233 1234 ump->vat_offset = vat_offset; 1235 ump->vat_entries = vat_entries; 1236 1237 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 1238 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 1239 ump->logvol_integrity->time = *mtime; 1240 1241 return 0; /* success! */ 1242 } 1243 1244 /* --------------------------------------------------------------------- */ 1245 1246 static int 1247 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 1248 { 1249 struct udf_node *vat_node; 1250 struct long_ad icb_loc; 1251 uint32_t early_vat_loc, late_vat_loc, vat_loc; 1252 int error; 1253 1254 /* mapping info not needed */ 1255 mapping = mapping; 1256 1257 vat_loc = ump->possible_vat_location; 1258 early_vat_loc = vat_loc - 20; 1259 late_vat_loc = vat_loc + 1024; 1260 1261 /* TODO first search last sector? */ 1262 do { 1263 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 1264 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 1265 icb_loc.loc.lb_num = udf_rw32(vat_loc); 1266 1267 error = udf_get_node(ump, &icb_loc, &vat_node); 1268 if (!error) error = udf_check_for_vat(vat_node); 1269 if (!error) break; 1270 if (vat_node) { 1271 vput(vat_node->vnode); 1272 udf_dispose_node(vat_node); 1273 } 1274 vat_loc--; /* walk backwards */ 1275 } while (vat_loc >= early_vat_loc); 1276 1277 /* we don't need our VAT node anymore */ 1278 if (vat_node) { 1279 vput(vat_node->vnode); 1280 udf_dispose_node(vat_node); 1281 } 1282 1283 return error; 1284 } 1285 1286 /* --------------------------------------------------------------------- */ 1287 1288 static int 1289 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 1290 { 1291 union dscrptr *dscr; 1292 struct part_map_spare *pms = (struct part_map_spare *) mapping; 1293 uint32_t lb_num; 1294 int spar, error; 1295 1296 /* 1297 * The partition mapping passed on to us specifies the information we 1298 * need to locate and initialise the sparable partition mapping 1299 * information we need. 1300 */ 1301 1302 DPRINTF(VOLUMES, ("Read sparable table\n")); 1303 ump->sparable_packet_len = udf_rw16(pms->packet_len); 1304 for (spar = 0; spar < pms->n_st; spar++) { 1305 lb_num = pms->st_loc[spar]; 1306 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 1307 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr); 1308 if (!error && dscr) { 1309 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 1310 if (ump->sparing_table) 1311 free(ump->sparing_table, M_UDFVOLD); 1312 ump->sparing_table = &dscr->spt; 1313 dscr = NULL; 1314 DPRINTF(VOLUMES, 1315 ("Sparing table accepted (%d entries)\n", 1316 udf_rw16(ump->sparing_table->rt_l))); 1317 break; /* we're done */ 1318 } 1319 } 1320 if (dscr) 1321 free(dscr, M_UDFVOLD); 1322 } 1323 1324 if (ump->sparing_table) 1325 return 0; 1326 1327 return ENOENT; 1328 } 1329 1330 /* --------------------------------------------------------------------- */ 1331 1332 int 1333 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args) 1334 { 1335 union udf_pmap *mapping; 1336 uint32_t n_pm, mt_l; 1337 uint32_t log_part; 1338 uint8_t *pmap_pos; 1339 int pmap_size; 1340 int error; 1341 1342 /* We have to iterate again over the part mappings for locations */ 1343 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1344 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 1345 pmap_pos = ump->logical_vol->maps; 1346 1347 for (log_part = 0; log_part < n_pm; log_part++) { 1348 mapping = (union udf_pmap *) pmap_pos; 1349 switch (ump->vtop_tp[log_part]) { 1350 case UDF_VTOP_TYPE_PHYS : 1351 /* nothing */ 1352 break; 1353 case UDF_VTOP_TYPE_VIRT : 1354 /* search and load VAT */ 1355 error = udf_search_vat(ump, mapping); 1356 if (error) 1357 return ENOENT; 1358 break; 1359 case UDF_VTOP_TYPE_SPARABLE : 1360 /* load one of the sparable tables */ 1361 error = udf_read_sparables(ump, mapping); 1362 break; 1363 case UDF_VTOP_TYPE_META : 1364 /* TODO load metafile and metabitmapfile FE/EFEs */ 1365 break; 1366 default: 1367 break; 1368 } 1369 pmap_size = pmap_pos[1]; 1370 pmap_pos += pmap_size; 1371 } 1372 1373 return 0; 1374 } 1375 1376 /* --------------------------------------------------------------------- */ 1377 1378 int 1379 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args) 1380 { 1381 struct udf_node *rootdir_node, *streamdir_node; 1382 union dscrptr *dscr; 1383 struct long_ad fsd_loc, *dir_loc; 1384 uint32_t lb_num, dummy; 1385 uint32_t fsd_len; 1386 int dscr_type; 1387 int error; 1388 1389 /* TODO implement FSD reading in seperate function like integrity? */ 1390 /* get fileset descriptor sequence */ 1391 fsd_loc = ump->logical_vol->lv_fsd_loc; 1392 fsd_len = udf_rw32(fsd_loc.len); 1393 1394 dscr = NULL; 1395 error = 0; 1396 while (fsd_len || error) { 1397 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 1398 /* translate fsd_loc to lb_num */ 1399 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 1400 if (error) 1401 break; 1402 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 1403 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr); 1404 /* end markers */ 1405 if (error || (dscr == NULL)) 1406 break; 1407 1408 /* analyse */ 1409 dscr_type = udf_rw16(dscr->tag.id); 1410 if (dscr_type == TAGID_TERM) 1411 break; 1412 if (dscr_type != TAGID_FSD) { 1413 free(dscr, M_UDFVOLD); 1414 return ENOENT; 1415 } 1416 1417 /* 1418 * TODO check for multiple fileset descriptors; its only 1419 * picking the last now. Also check for FSD 1420 * correctness/interpretability 1421 */ 1422 1423 /* update */ 1424 if (ump->fileset_desc) { 1425 free(ump->fileset_desc, M_UDFVOLD); 1426 } 1427 ump->fileset_desc = &dscr->fsd; 1428 dscr = NULL; 1429 1430 /* continue to the next fsd */ 1431 fsd_len -= ump->discinfo.sector_size; 1432 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 1433 1434 /* follow up to fsd->next_ex (long_ad) if its not null */ 1435 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 1436 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 1437 fsd_loc = ump->fileset_desc->next_ex; 1438 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 1439 } 1440 } 1441 if (dscr) 1442 free(dscr, M_UDFVOLD); 1443 1444 /* there has to be one */ 1445 if (ump->fileset_desc == NULL) 1446 return ENOENT; 1447 1448 DPRINTF(VOLUMES, ("FSD read in fine\n")); 1449 1450 /* 1451 * Now the FSD is known, read in the rootdirectory and if one exists, 1452 * the system stream dir. Some files in the system streamdir are not 1453 * wanted in this implementation since they are not maintained. If 1454 * writing is enabled we'll delete these files if they exist. 1455 */ 1456 1457 rootdir_node = streamdir_node = NULL; 1458 dir_loc = NULL; 1459 1460 /* try to read in the rootdir */ 1461 dir_loc = &ump->fileset_desc->rootdir_icb; 1462 error = udf_get_node(ump, dir_loc, &rootdir_node); 1463 if (error) 1464 return ENOENT; 1465 1466 /* aparently it read in fine */ 1467 1468 /* 1469 * Try the system stream directory; not very likely in the ones we 1470 * test, but for completeness. 1471 */ 1472 dir_loc = &ump->fileset_desc->streamdir_icb; 1473 if (udf_rw32(dir_loc->len)) { 1474 error = udf_get_node(ump, dir_loc, &streamdir_node); 1475 if (error) 1476 printf("udf mount: streamdir defined but ignored\n"); 1477 if (!error) { 1478 /* 1479 * TODO process streamdir `baddies' i.e. files we dont 1480 * want if R/W 1481 */ 1482 } 1483 } 1484 1485 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 1486 1487 /* release the vnodes again; they'll be auto-recycled later */ 1488 if (streamdir_node) { 1489 vput(streamdir_node->vnode); 1490 } 1491 if (rootdir_node) { 1492 vput(rootdir_node->vnode); 1493 } 1494 1495 return 0; 1496 } 1497 1498 /* --------------------------------------------------------------------- */ 1499 1500 int 1501 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc, 1502 uint32_t *lb_numres, uint32_t *extres) 1503 { 1504 struct part_desc *pdesc; 1505 struct spare_map_entry *sme; 1506 uint32_t *trans; 1507 uint32_t lb_num, lb_rel, lb_packet; 1508 int rel, vpart, part; 1509 1510 assert(ump && icb_loc && lb_numres); 1511 1512 vpart = udf_rw16(icb_loc->loc.part_num); 1513 lb_num = udf_rw32(icb_loc->loc.lb_num); 1514 if (vpart < 0 || vpart > UDF_VTOP_RAWPART) 1515 return EINVAL; 1516 1517 switch (ump->vtop_tp[vpart]) { 1518 case UDF_VTOP_TYPE_RAW : 1519 /* 1:1 to the end of the device */ 1520 *lb_numres = lb_num; 1521 *extres = INT_MAX; 1522 return 0; 1523 case UDF_VTOP_TYPE_PHYS : 1524 /* transform into its disc logical block */ 1525 part = ump->vtop[vpart]; 1526 pdesc = ump->partitions[part]; 1527 if (lb_num > udf_rw32(pdesc->part_len)) 1528 return EINVAL; 1529 *lb_numres = lb_num + udf_rw32(pdesc->start_loc); 1530 1531 /* extent from here to the end of the partition */ 1532 *extres = udf_rw32(pdesc->part_len) - lb_num; 1533 return 0; 1534 case UDF_VTOP_TYPE_VIRT : 1535 /* only maps one sector, lookup in VAT */ 1536 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */ 1537 return EINVAL; 1538 1539 /* lookup in virtual allocation table */ 1540 trans = (uint32_t *) (ump->vat_table + ump->vat_offset); 1541 lb_num = udf_rw32(trans[lb_num]); 1542 1543 /* transform into its disc logical block */ 1544 part = ump->vtop[vpart]; 1545 pdesc = ump->partitions[part]; 1546 if (lb_num > udf_rw32(pdesc->part_len)) 1547 return EINVAL; 1548 *lb_numres = lb_num + udf_rw32(pdesc->start_loc); 1549 1550 /* just one logical block */ 1551 *extres = 1; 1552 return 0; 1553 case UDF_VTOP_TYPE_SPARABLE : 1554 /* check if the packet containing the lb_num is remapped */ 1555 lb_packet = lb_num / ump->sparable_packet_len; 1556 lb_rel = lb_num % ump->sparable_packet_len; 1557 1558 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) { 1559 sme = &ump->sparing_table->entries[rel]; 1560 if (lb_packet == udf_rw32(sme->org)) { 1561 /* NOTE maps to absolute disc logical block! */ 1562 *lb_numres = udf_rw32(sme->map) + lb_rel; 1563 *extres = ump->sparable_packet_len - lb_rel; 1564 return 0; 1565 } 1566 } 1567 1568 /* transform into its disc logical block */ 1569 part = ump->vtop[vpart]; 1570 pdesc = ump->partitions[part]; 1571 if (lb_num > udf_rw32(pdesc->part_len)) 1572 return EINVAL; 1573 *lb_numres = lb_num + udf_rw32(pdesc->start_loc); 1574 1575 /* rest of block */ 1576 *extres = ump->sparable_packet_len - lb_rel; 1577 return 0; 1578 case UDF_VTOP_TYPE_META : 1579 default: 1580 printf("UDF vtop translation scheme %d unimplemented yet\n", 1581 ump->vtop_tp[vpart]); 1582 } 1583 1584 return EINVAL; 1585 } 1586 1587 /* --------------------------------------------------------------------- */ 1588 1589 /* To make absolutely sure we are NOT returning zero, add one :) */ 1590 1591 long 1592 udf_calchash(struct long_ad *icbptr) 1593 { 1594 /* ought to be enough since each mountpoint has its own chain */ 1595 return udf_rw32(icbptr->loc.lb_num) + 1; 1596 } 1597 1598 /* --------------------------------------------------------------------- */ 1599 1600 static struct udf_node * 1601 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr) 1602 { 1603 struct udf_node *unp; 1604 struct vnode *vp; 1605 uint32_t hashline; 1606 1607 loop: 1608 simple_lock(&ump->ihash_slock); 1609 1610 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK; 1611 LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) { 1612 assert(unp); 1613 if (unp->loc.loc.lb_num == icbptr->loc.lb_num && 1614 unp->loc.loc.part_num == icbptr->loc.part_num) { 1615 vp = unp->vnode; 1616 assert(vp); 1617 simple_lock(&vp->v_interlock); 1618 simple_unlock(&ump->ihash_slock); 1619 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) 1620 goto loop; 1621 return unp; 1622 } 1623 } 1624 simple_unlock(&ump->ihash_slock); 1625 1626 return NULL; 1627 } 1628 1629 /* --------------------------------------------------------------------- */ 1630 1631 static void 1632 udf_hashins(struct udf_node *unp) 1633 { 1634 struct udf_mount *ump; 1635 uint32_t hashline; 1636 1637 ump = unp->ump; 1638 simple_lock(&ump->ihash_slock); 1639 1640 hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK; 1641 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain); 1642 1643 simple_unlock(&ump->ihash_slock); 1644 } 1645 1646 /* --------------------------------------------------------------------- */ 1647 1648 static void 1649 udf_hashrem(struct udf_node *unp) 1650 { 1651 struct udf_mount *ump; 1652 1653 ump = unp->ump; 1654 simple_lock(&ump->ihash_slock); 1655 1656 LIST_REMOVE(unp, hashchain); 1657 1658 simple_unlock(&ump->ihash_slock); 1659 } 1660 1661 /* --------------------------------------------------------------------- */ 1662 1663 int 1664 udf_dispose_locked_node(struct udf_node *node) 1665 { 1666 if (!node) 1667 return 0; 1668 if (node->vnode) 1669 VOP_UNLOCK(node->vnode, 0); 1670 return udf_dispose_node(node); 1671 } 1672 1673 /* --------------------------------------------------------------------- */ 1674 1675 int 1676 udf_dispose_node(struct udf_node *node) 1677 { 1678 struct vnode *vp; 1679 1680 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node)); 1681 if (!node) { 1682 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 1683 return 0; 1684 } 1685 1686 vp = node->vnode; 1687 1688 /* TODO extended attributes and streamdir */ 1689 1690 /* remove from our hash lookup table */ 1691 udf_hashrem(node); 1692 1693 /* dissociate our udf_node from the vnode */ 1694 vp->v_data = NULL; 1695 1696 /* free associated memory and the node itself */ 1697 if (node->fe) 1698 pool_put(&node->ump->desc_pool, node->fe); 1699 if (node->efe) 1700 pool_put(&node->ump->desc_pool, node->efe); 1701 pool_put(&udf_node_pool, node); 1702 1703 return 0; 1704 } 1705 1706 /* --------------------------------------------------------------------- */ 1707 1708 /* 1709 * Genfs interfacing 1710 * 1711 * static const struct genfs_ops udffs_genfsops = { 1712 * .gop_size = genfs_size, 1713 * size of transfers 1714 * .gop_alloc = udf_gop_alloc, 1715 * unknown 1716 * .gop_write = genfs_gop_write, 1717 * putpages interface code 1718 * .gop_markupdate = udf_gop_markupdate, 1719 * set update/modify flags etc. 1720 * } 1721 */ 1722 1723 /* 1724 * Genfs interface. These four functions are the only ones defined though not 1725 * documented... great.... why is chosen for the `.' initialisers i dont know 1726 * but other filingsystems seem to use it this way. 1727 */ 1728 1729 static int 1730 udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags, 1731 kauth_cred_t cred) 1732 { 1733 return 0; 1734 } 1735 1736 1737 static void 1738 udf_gop_markupdate(struct vnode *vp, int flags) 1739 { 1740 struct udf_node *udf_node = VTOI(vp); 1741 u_long mask; 1742 1743 udf_node = udf_node; /* shut up gcc */ 1744 1745 mask = 0; 1746 #ifdef notyet 1747 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 1748 mask = UDF_SET_ACCESS; 1749 } 1750 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 1751 mask |= UDF_SET_UPDATE; 1752 } 1753 if (mask) { 1754 udf_node->update_flag |= mask; 1755 } 1756 #endif 1757 /* msdosfs doesn't do it, but shouldn't we update the times here? */ 1758 } 1759 1760 1761 static const struct genfs_ops udf_genfsops = { 1762 .gop_size = genfs_size, 1763 .gop_alloc = udf_gop_alloc, 1764 .gop_write = genfs_gop_write, 1765 .gop_markupdate = udf_gop_markupdate, 1766 }; 1767 1768 /* --------------------------------------------------------------------- */ 1769 1770 /* 1771 * Each node can have an attached streamdir node though not 1772 * recursively. These are otherwise known as named substreams/named 1773 * extended attributes that have no size limitations. 1774 * 1775 * `Normal' extended attributes are indicated with a number and are recorded 1776 * in either the fe/efe descriptor itself for small descriptors or recorded in 1777 * the attached extended attribute file. Since this file can get fragmented, 1778 * care ought to be taken. 1779 */ 1780 1781 int 1782 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 1783 struct udf_node **noderes) 1784 { 1785 union dscrptr *dscr, *tmpdscr; 1786 struct udf_node *node; 1787 struct vnode *nvp; 1788 struct long_ad icb_loc; 1789 extern int (**udf_vnodeop_p)(void *); 1790 uint64_t file_size; 1791 uint32_t lb_size, sector, dummy; 1792 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 1793 int error; 1794 1795 DPRINTF(NODE, ("udf_get_node called\n")); 1796 *noderes = node = NULL; 1797 1798 /* lock to disallow simultanious creation of same node */ 1799 lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL); 1800 1801 DPRINTF(NODE, ("\tlookup in hash table\n")); 1802 /* lookup in hash table */ 1803 assert(ump); 1804 assert(node_icb_loc); 1805 node = udf_hashget(ump, node_icb_loc); 1806 if (node) { 1807 DPRINTF(NODE, ("\tgot it from the hash!\n")); 1808 /* vnode is returned locked */ 1809 *noderes = node; 1810 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); 1811 return 0; 1812 } 1813 1814 /* garbage check: translate node_icb_loc to sectornr */ 1815 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); 1816 if (error) { 1817 /* no use, this will fail anyway */ 1818 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); 1819 return EINVAL; 1820 } 1821 1822 /* build node (do initialise!) */ 1823 node = pool_get(&udf_node_pool, PR_WAITOK); 1824 memset(node, 0, sizeof(struct udf_node)); 1825 1826 DPRINTF(NODE, ("\tget new vnode\n")); 1827 /* give it a vnode */ 1828 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp); 1829 if (error) { 1830 pool_put(&udf_node_pool, node); 1831 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); 1832 return error; 1833 } 1834 1835 /* allways return locked vnode */ 1836 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { 1837 /* recycle vnode and unlock; simultanious will fail too */ 1838 ungetnewvnode(nvp); 1839 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); 1840 return error; 1841 } 1842 1843 /* initialise crosslinks, note location of fe/efe for hashing */ 1844 node->ump = ump; 1845 node->vnode = nvp; 1846 nvp->v_data = node; 1847 node->loc = *node_icb_loc; 1848 node->lockf = 0; 1849 1850 /* insert into the hash lookup */ 1851 udf_hashins(node); 1852 1853 /* safe to unlock, the entry is in the hash table, vnode is locked */ 1854 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); 1855 1856 icb_loc = *node_icb_loc; 1857 needs_indirect = 0; 1858 strat4096 = 0; 1859 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 1860 file_size = 0; 1861 lb_size = udf_rw32(ump->logical_vol->lb_size); 1862 1863 do { 1864 error = udf_translate_vtop(ump, &icb_loc, §or, &dummy); 1865 if (error) 1866 break; 1867 1868 /* try to read in fe/efe */ 1869 error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr); 1870 1871 /* blank sector marks end of sequence, check this */ 1872 if ((tmpdscr == NULL) && (!strat4096)) 1873 error = ENOENT; 1874 1875 /* break if read error or blank sector */ 1876 if (error || (tmpdscr == NULL)) 1877 break; 1878 1879 /* process descriptor based on the descriptor type */ 1880 dscr_type = udf_rw16(tmpdscr->tag.id); 1881 1882 /* if dealing with an indirect entry, follow the link */ 1883 if (dscr_type == TAGID_INDIRECT_ENTRY) { 1884 needs_indirect = 0; 1885 icb_loc = tmpdscr->inde.indirect_icb; 1886 free(tmpdscr, M_UDFTEMP); 1887 continue; 1888 } 1889 1890 /* only file entries and extended file entries allowed here */ 1891 if ((dscr_type != TAGID_FENTRY) && 1892 (dscr_type != TAGID_EXTFENTRY)) { 1893 free(tmpdscr, M_UDFTEMP); 1894 error = ENOENT; 1895 break; 1896 } 1897 1898 /* get descriptor space from our pool */ 1899 KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size); 1900 1901 dscr = pool_get(&ump->desc_pool, PR_WAITOK); 1902 memcpy(dscr, tmpdscr, lb_size); 1903 free(tmpdscr, M_UDFTEMP); 1904 1905 /* record and process/update (ext)fentry */ 1906 if (dscr_type == TAGID_FENTRY) { 1907 if (node->fe) 1908 pool_put(&ump->desc_pool, node->fe); 1909 node->fe = &dscr->fe; 1910 strat = udf_rw16(node->fe->icbtag.strat_type); 1911 udf_file_type = node->fe->icbtag.file_type; 1912 file_size = udf_rw64(node->fe->inf_len); 1913 } else { 1914 if (node->efe) 1915 pool_put(&ump->desc_pool, node->efe); 1916 node->efe = &dscr->efe; 1917 strat = udf_rw16(node->efe->icbtag.strat_type); 1918 udf_file_type = node->efe->icbtag.file_type; 1919 file_size = udf_rw64(node->efe->inf_len); 1920 } 1921 1922 /* check recording strategy (structure) */ 1923 1924 /* 1925 * Strategy 4096 is a daisy linked chain terminating with an 1926 * unrecorded sector or a TERM descriptor. The next 1927 * descriptor is to be found in the sector that follows the 1928 * current sector. 1929 */ 1930 if (strat == 4096) { 1931 strat4096 = 1; 1932 needs_indirect = 1; 1933 1934 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 1935 } 1936 1937 /* 1938 * Strategy 4 is the normal strategy and terminates, but if 1939 * we're in strategy 4096, we can't have strategy 4 mixed in 1940 */ 1941 1942 if (strat == 4) { 1943 if (strat4096) { 1944 error = EINVAL; 1945 break; 1946 } 1947 break; /* done */ 1948 } 1949 } while (!error); 1950 1951 if (error) { 1952 /* recycle udf_node */ 1953 udf_dispose_node(node); 1954 1955 /* recycle vnode */ 1956 nvp->v_data = NULL; 1957 ungetnewvnode(nvp); 1958 1959 return EINVAL; /* error code ok? */ 1960 } 1961 1962 /* post process and initialise node */ 1963 1964 /* assert no references to dscr anymore beyong this point */ 1965 assert((node->fe) || (node->efe)); 1966 dscr = NULL; 1967 1968 /* 1969 * Record where to record an updated version of the descriptor. If 1970 * there is a sequence of indirect entries, icb_loc will have been 1971 * updated. Its the write disipline to allocate new space and to make 1972 * sure the chain is maintained. 1973 * 1974 * `needs_indirect' flags if the next location is to be filled with 1975 * with an indirect entry. 1976 */ 1977 node->next_loc = icb_loc; 1978 node->needs_indirect = needs_indirect; 1979 1980 /* 1981 * Translate UDF filetypes into vnode types. 1982 * 1983 * Systemfiles like the meta main and mirror files are not treated as 1984 * normal files, so we type them as having no type. UDF dictates that 1985 * they are not allowed to be visible. 1986 */ 1987 1988 /* TODO specfs, fifofs etc etc. vnops setting */ 1989 switch (udf_file_type) { 1990 case UDF_ICB_FILETYPE_DIRECTORY : 1991 case UDF_ICB_FILETYPE_STREAMDIR : 1992 nvp->v_type = VDIR; 1993 break; 1994 case UDF_ICB_FILETYPE_BLOCKDEVICE : 1995 nvp->v_type = VBLK; 1996 break; 1997 case UDF_ICB_FILETYPE_CHARDEVICE : 1998 nvp->v_type = VCHR; 1999 break; 2000 case UDF_ICB_FILETYPE_SYMLINK : 2001 nvp->v_type = VLNK; 2002 break; 2003 case UDF_ICB_FILETYPE_META_MAIN : 2004 case UDF_ICB_FILETYPE_META_MIRROR : 2005 nvp->v_type = VNON; 2006 break; 2007 case UDF_ICB_FILETYPE_RANDOMACCESS : 2008 nvp->v_type = VREG; 2009 break; 2010 default: 2011 /* YIKES, either a block/char device, fifo or something else */ 2012 nvp->v_type = VNON; 2013 } 2014 2015 /* initialise genfs */ 2016 genfs_node_init(nvp, &udf_genfsops); 2017 2018 /* don't forget to set vnode's v_size */ 2019 nvp->v_size = file_size; 2020 2021 /* TODO ext attr and streamdir nodes */ 2022 2023 *noderes = node; 2024 2025 return 0; 2026 } 2027 2028 /* --------------------------------------------------------------------- */ 2029 2030 /* UDF<->unix converters */ 2031 2032 /* --------------------------------------------------------------------- */ 2033 2034 static mode_t 2035 udf_perm_to_unix_mode(uint32_t perm) 2036 { 2037 mode_t mode; 2038 2039 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 2040 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 2041 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 2042 2043 return mode; 2044 } 2045 2046 /* --------------------------------------------------------------------- */ 2047 2048 #ifdef notyet 2049 static uint32_t 2050 unix_mode_to_udf_perm(mode_t mode) 2051 { 2052 uint32_t perm; 2053 2054 perm = ((mode & S_IRWXO) ); 2055 perm |= ((mode & S_IRWXG) << 2); 2056 perm |= ((mode & S_IRWXU) << 4); 2057 perm |= ((mode & S_IWOTH) << 3); 2058 perm |= ((mode & S_IWGRP) << 5); 2059 perm |= ((mode & S_IWUSR) << 7); 2060 2061 return perm; 2062 } 2063 #endif 2064 2065 /* --------------------------------------------------------------------- */ 2066 2067 static uint32_t 2068 udf_icb_to_unix_filetype(uint32_t icbftype) 2069 { 2070 switch (icbftype) { 2071 case UDF_ICB_FILETYPE_DIRECTORY : 2072 case UDF_ICB_FILETYPE_STREAMDIR : 2073 return S_IFDIR; 2074 case UDF_ICB_FILETYPE_FIFO : 2075 return S_IFIFO; 2076 case UDF_ICB_FILETYPE_CHARDEVICE : 2077 return S_IFCHR; 2078 case UDF_ICB_FILETYPE_BLOCKDEVICE : 2079 return S_IFBLK; 2080 case UDF_ICB_FILETYPE_RANDOMACCESS : 2081 return S_IFREG; 2082 case UDF_ICB_FILETYPE_SYMLINK : 2083 return S_IFLNK; 2084 case UDF_ICB_FILETYPE_SOCKET : 2085 return S_IFSOCK; 2086 } 2087 /* no idea what this is */ 2088 return 0; 2089 } 2090 2091 /* --------------------------------------------------------------------- */ 2092 2093 /* TODO KNF-ify */ 2094 2095 void 2096 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp) 2097 { 2098 uint16_t *raw_name, *unix_name; 2099 uint16_t *inchp, ch; 2100 uint8_t *outchp; 2101 int ucode_chars, nice_uchars; 2102 2103 raw_name = malloc(2048, M_UDFTEMP, M_WAITOK); 2104 unix_name = raw_name + 1024; 2105 assert(sizeof(char) == sizeof(uint8_t)); 2106 outchp = (uint8_t *) result; 2107 if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) { 2108 *raw_name = *unix_name = 0; 2109 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 2110 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 2111 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 2112 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 2113 ch = *inchp; 2114 /* XXX sloppy unicode -> latin */ 2115 *outchp++ = ch & 255; 2116 if (!ch) break; 2117 } 2118 *outchp++ = 0; 2119 } else { 2120 /* assume 8bit char length byte latin-1 */ 2121 assert(*id == 8); 2122 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 2123 } 2124 free(raw_name, M_UDFTEMP); 2125 } 2126 2127 /* --------------------------------------------------------------------- */ 2128 2129 /* TODO KNF-ify */ 2130 2131 void 2132 unix_to_udf_name(char *result, char *name, 2133 uint8_t *result_len, struct charspec *chsp) 2134 { 2135 uint16_t *raw_name; 2136 int udf_chars, name_len; 2137 char *inchp; 2138 uint16_t *outchp; 2139 2140 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 2141 /* convert latin-1 or whatever to unicode-16 */ 2142 *raw_name = 0; 2143 name_len = 0; 2144 inchp = name; 2145 outchp = raw_name; 2146 while (*inchp) { 2147 *outchp++ = (uint16_t) (*inchp++); 2148 name_len++; 2149 } 2150 2151 if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) { 2152 udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result); 2153 } else { 2154 /* XXX assume 8bit char length byte latin-1 */ 2155 *result++ = 8; udf_chars = 1; 2156 strncpy(result, name + 1, strlen(name+1)); 2157 udf_chars += strlen(name); 2158 } 2159 *result_len = udf_chars; 2160 free(raw_name, M_UDFTEMP); 2161 } 2162 2163 /* --------------------------------------------------------------------- */ 2164 2165 /* 2166 * Timestamp to timespec conversion code is taken with small modifications 2167 * from FreeBSDs /sys/fs/udf by Scott Long <scottl@freebsd.org>. Added with 2168 * permission from Scott. 2169 */ 2170 2171 static int mon_lens[2][12] = { 2172 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, 2173 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} 2174 }; 2175 2176 2177 static int 2178 udf_isaleapyear(int year) 2179 { 2180 int i; 2181 2182 i = (year % 4) ? 0 : 1; 2183 i &= (year % 100) ? 1 : 0; 2184 i |= (year % 400) ? 0 : 1; 2185 2186 return i; 2187 } 2188 2189 2190 void 2191 udf_timestamp_to_timespec(struct udf_mount *ump, 2192 struct timestamp *timestamp, 2193 struct timespec *timespec) 2194 { 2195 uint32_t usecs, secs, nsecs; 2196 uint16_t tz; 2197 int i, lpyear, daysinyear, year; 2198 2199 timespec->tv_sec = secs = 0; 2200 timespec->tv_nsec = nsecs = 0; 2201 2202 /* 2203 * DirectCD seems to like using bogus year values. 2204 * 2205 * Distrust time->month especially, since it will be used for an array 2206 * index. 2207 */ 2208 year = udf_rw16(timestamp->year); 2209 if ((year < 1970) || (timestamp->month > 12)) { 2210 return; 2211 } 2212 2213 /* Calculate the time and day 2214 * Day is 1-31, Month is 1-12 2215 */ 2216 2217 usecs = timestamp->usec + 2218 100*timestamp->hund_usec + 10000*timestamp->centisec; 2219 nsecs = usecs * 1000; 2220 secs = timestamp->second; 2221 secs += timestamp->minute * 60; 2222 secs += timestamp->hour * 3600; 2223 secs += (timestamp->day-1) * 3600 * 24; 2224 2225 /* Calclulate the month */ 2226 lpyear = udf_isaleapyear(year); 2227 for (i = 1; i < timestamp->month; i++) 2228 secs += mon_lens[lpyear][i-1] * 3600 * 24; 2229 2230 for (i = 1970; i < year; i++) { 2231 daysinyear = udf_isaleapyear(i) + 365 ; 2232 secs += daysinyear * 3600 * 24; 2233 } 2234 2235 /* 2236 * Calculate the time zone. The timezone is 12 bit signed 2's 2237 * compliment, so we gotta do some extra magic to handle it right. 2238 */ 2239 tz = udf_rw16(timestamp->type_tz); 2240 tz &= 0x0fff; /* only lower 12 bits are significant */ 2241 if (tz & 0x0800) /* sign extention */ 2242 tz |= 0xf000; 2243 2244 /* TODO check timezone conversion */ 2245 /* check if we are specified a timezone to convert */ 2246 if (udf_rw16(timestamp->type_tz) & 0x1000) { 2247 if ((int16_t) tz != -2047) 2248 secs -= (int16_t) tz * 60; 2249 } else { 2250 secs -= ump->mount_args.gmtoff; 2251 } 2252 2253 timespec->tv_sec = secs; 2254 timespec->tv_nsec = nsecs; 2255 } 2256 2257 /* --------------------------------------------------------------------- */ 2258 2259 /* 2260 * Attribute and filetypes converters with get/set pairs 2261 */ 2262 2263 uint32_t 2264 udf_getaccessmode(struct udf_node *udf_node) 2265 { 2266 struct file_entry *fe; 2267 struct extfile_entry *efe; 2268 uint32_t udf_perm, icbftype; 2269 uint32_t mode, ftype; 2270 uint16_t icbflags; 2271 2272 if (udf_node->fe) { 2273 fe = udf_node->fe; 2274 udf_perm = udf_rw32(fe->perm); 2275 icbftype = fe->icbtag.file_type; 2276 icbflags = udf_rw16(fe->icbtag.flags); 2277 } else { 2278 assert(udf_node->efe); 2279 efe = udf_node->efe; 2280 udf_perm = udf_rw32(efe->perm); 2281 icbftype = efe->icbtag.file_type; 2282 icbflags = udf_rw16(efe->icbtag.flags); 2283 } 2284 2285 mode = udf_perm_to_unix_mode(udf_perm); 2286 ftype = udf_icb_to_unix_filetype(icbftype); 2287 2288 /* set suid, sgid, sticky from flags in fe/efe */ 2289 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 2290 mode |= S_ISUID; 2291 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 2292 mode |= S_ISGID; 2293 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 2294 mode |= S_ISVTX; 2295 2296 return mode | ftype; 2297 } 2298 2299 /* --------------------------------------------------------------------- */ 2300 2301 /* 2302 * Directory read and manipulation functions 2303 */ 2304 2305 int 2306 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 2307 struct long_ad *icb_loc) 2308 { 2309 struct udf_node *dir_node = VTOI(vp); 2310 struct file_entry *fe; 2311 struct extfile_entry *efe; 2312 struct fileid_desc *fid; 2313 struct dirent dirent; 2314 uint64_t file_size, diroffset; 2315 uint32_t lb_size; 2316 int found, error; 2317 2318 /* get directory filesize */ 2319 if (dir_node->fe) { 2320 fe = dir_node->fe; 2321 file_size = udf_rw64(fe->inf_len); 2322 } else { 2323 assert(dir_node->efe); 2324 efe = dir_node->efe; 2325 file_size = udf_rw64(efe->inf_len); 2326 } 2327 2328 /* allocate temporary space for fid */ 2329 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 2330 fid = malloc(lb_size, M_TEMP, M_WAITOK); 2331 2332 found = 0; 2333 diroffset = 0; 2334 while (!found && (diroffset < file_size)) { 2335 /* transfer a new fid/dirent */ 2336 error = udf_read_fid_stream(vp, &diroffset, fid, &dirent); 2337 if (error) 2338 break; 2339 2340 /* skip deleted entries */ 2341 if (fid->file_char & UDF_FILE_CHAR_DEL) 2342 continue; 2343 2344 if ((strlen(dirent.d_name) == namelen) && 2345 (strncmp(dirent.d_name, name, namelen) == 0)) { 2346 found = 1; 2347 *icb_loc = fid->icb; 2348 } 2349 } 2350 free(fid, M_TEMP); 2351 2352 return found; 2353 } 2354 2355 /* --------------------------------------------------------------------- */ 2356 2357 /* 2358 * Read one fid and process it into a dirent and advance to the next (*fid) 2359 * has to be allocated a logical block in size, (*dirent) struct dirent length 2360 */ 2361 2362 int 2363 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 2364 struct fileid_desc *fid, struct dirent *dirent) 2365 { 2366 struct udf_node *dir_node = VTOI(vp); 2367 struct udf_mount *ump = dir_node->ump; 2368 struct file_entry *fe; 2369 struct extfile_entry *efe; 2370 struct uio dir_uio; 2371 struct iovec dir_iovec; 2372 uint32_t entry_length, lb_size; 2373 uint64_t file_size; 2374 char *fid_name; 2375 int enough, error; 2376 2377 assert(fid); 2378 assert(dirent); 2379 assert(dir_node); 2380 assert(offset); 2381 assert(*offset != 1); 2382 2383 DPRINTF(FIDS, ("read_fid_stream called\n")); 2384 /* check if we're past the end of the directory */ 2385 if (dir_node->fe) { 2386 fe = dir_node->fe; 2387 file_size = udf_rw64(fe->inf_len); 2388 } else { 2389 assert(dir_node->efe); 2390 efe = dir_node->efe; 2391 file_size = udf_rw64(efe->inf_len); 2392 } 2393 if (*offset >= file_size) 2394 return EINVAL; 2395 2396 /* get maximum length of FID descriptor */ 2397 lb_size = udf_rw32(ump->logical_vol->lb_size); 2398 2399 /* initialise return values */ 2400 entry_length = 0; 2401 memset(dirent, 0, sizeof(struct dirent)); 2402 memset(fid, 0, lb_size); 2403 2404 /* TODO use vn_rdwr instead of creating our own uio */ 2405 /* read part of the directory */ 2406 memset(&dir_uio, 0, sizeof(struct uio)); 2407 dir_uio.uio_rw = UIO_READ; /* read into this space */ 2408 dir_uio.uio_iovcnt = 1; 2409 dir_uio.uio_iov = &dir_iovec; 2410 UIO_SETUP_SYSSPACE(&dir_uio); 2411 dir_iovec.iov_base = fid; 2412 dir_iovec.iov_len = lb_size; 2413 dir_uio.uio_offset = *offset; 2414 2415 /* limit length of read in piece */ 2416 dir_uio.uio_resid = MIN(file_size - (*offset), lb_size); 2417 2418 /* read the part into the fid space */ 2419 error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED); 2420 if (error) 2421 return error; 2422 2423 /* 2424 * Check if we got a whole descriptor. 2425 * XXX Try to `resync' directory stream when something is very wrong. 2426 * 2427 */ 2428 enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE); 2429 if (!enough) { 2430 /* short dir ... */ 2431 return EIO; 2432 } 2433 2434 /* check if our FID header is OK */ 2435 error = udf_check_tag(fid); 2436 DPRINTFIF(FIDS, error, ("read fids: tag check failed\n")); 2437 if (!error) { 2438 if (udf_rw16(fid->tag.id) != TAGID_FID) 2439 error = ENOENT; 2440 } 2441 DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n")); 2442 2443 /* check for length */ 2444 if (!error) { 2445 entry_length = udf_fidsize(fid, lb_size); 2446 enough = (dir_uio.uio_offset - (*offset) >= entry_length); 2447 } 2448 DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n", 2449 entry_length, enough?"yes":"no")); 2450 2451 if (!enough) { 2452 /* short dir ... bomb out */ 2453 return EIO; 2454 } 2455 2456 /* check FID contents */ 2457 if (!error) { 2458 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 2459 DPRINTF(FIDS, ("\tpayload checked ok\n")); 2460 } 2461 if (error) { 2462 /* note that is sometimes a bit quick to report */ 2463 printf("BROKEN DIRECTORY ENTRY\n"); 2464 /* RESYNC? */ 2465 /* TODO: use udf_resync_fid_stream */ 2466 return EIO; 2467 } 2468 DPRINTF(FIDS, ("\tinterpret FID\n")); 2469 2470 /* we got a whole and valid descriptor! */ 2471 2472 /* create resulting dirent structure */ 2473 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 2474 udf_to_unix_name(dirent->d_name, 2475 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 2476 2477 /* '..' has no name, so provide one */ 2478 if (fid->file_char & UDF_FILE_CHAR_PAR) 2479 strcpy(dirent->d_name, ".."); 2480 2481 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */ 2482 dirent->d_namlen = strlen(dirent->d_name); 2483 dirent->d_reclen = _DIRENT_SIZE(dirent); 2484 2485 /* 2486 * Note that its not worth trying to go for the filetypes now... its 2487 * too expensive too 2488 */ 2489 dirent->d_type = DT_UNKNOWN; 2490 2491 /* initial guess for filetype we can make */ 2492 if (fid->file_char & UDF_FILE_CHAR_DIR) 2493 dirent->d_type = DT_DIR; 2494 2495 /* advance */ 2496 *offset += entry_length; 2497 2498 return error; 2499 } 2500 2501 /* --------------------------------------------------------------------- */ 2502 2503 /* 2504 * block based file reading and writing 2505 */ 2506 2507 static int 2508 udf_read_internal(struct udf_node *node, uint8_t *blob) 2509 { 2510 struct udf_mount *ump; 2511 struct file_entry *fe; 2512 struct extfile_entry *efe; 2513 uint64_t inflen; 2514 uint32_t sector_size; 2515 uint8_t *pos; 2516 int icbflags, addr_type; 2517 2518 /* shut up gcc */ 2519 inflen = addr_type = icbflags = 0; 2520 pos = NULL; 2521 2522 /* get extent and do some paranoia checks */ 2523 ump = node->ump; 2524 sector_size = ump->discinfo.sector_size; 2525 2526 fe = node->fe; 2527 efe = node->efe; 2528 if (fe) { 2529 inflen = udf_rw64(fe->inf_len); 2530 pos = &fe->data[0] + udf_rw32(fe->l_ea); 2531 icbflags = udf_rw16(fe->icbtag.flags); 2532 } 2533 if (efe) { 2534 inflen = udf_rw64(efe->inf_len); 2535 pos = &efe->data[0] + udf_rw32(efe->l_ea); 2536 icbflags = udf_rw16(efe->icbtag.flags); 2537 } 2538 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 2539 2540 assert(addr_type == UDF_ICB_INTERN_ALLOC); 2541 assert(inflen < sector_size); 2542 2543 /* copy out info */ 2544 memset(blob, 0, sector_size); 2545 memcpy(blob, pos, inflen); 2546 2547 return 0; 2548 } 2549 2550 /* --------------------------------------------------------------------- */ 2551 2552 /* 2553 * Read file extent reads an extent specified in sectors from the file. It is 2554 * sector based; i.e. no `fancy' offsets. 2555 */ 2556 2557 int 2558 udf_read_file_extent(struct udf_node *node, 2559 uint32_t from, uint32_t sectors, 2560 uint8_t *blob) 2561 { 2562 struct buf buf; 2563 uint32_t sector_size; 2564 2565 BUF_INIT(&buf); 2566 2567 sector_size = node->ump->discinfo.sector_size; 2568 2569 buf.b_bufsize = sectors * sector_size; 2570 buf.b_data = blob; 2571 buf.b_bcount = buf.b_bufsize; 2572 buf.b_resid = buf.b_bcount; 2573 buf.b_flags = B_BUSY | B_READ; 2574 buf.b_vp = node->vnode; 2575 buf.b_proc = NULL; 2576 2577 buf.b_blkno = from; 2578 buf.b_lblkno = 0; 2579 BIO_SETPRIO(&buf, BPRIO_TIMELIMITED); 2580 2581 udf_read_filebuf(node, &buf); 2582 return biowait(&buf); 2583 } 2584 2585 2586 /* --------------------------------------------------------------------- */ 2587 2588 /* 2589 * Read file extent in the buffer. 2590 * 2591 * The splitup of the extent into seperate request-buffers is to minimise 2592 * copying around as much as possible. 2593 */ 2594 2595 2596 /* mininum of 128 translations (!) (64 kb in 512 byte sectors) */ 2597 #define FILEBUFSECT 128 2598 2599 void 2600 udf_read_filebuf(struct udf_node *node, struct buf *buf) 2601 { 2602 struct buf *nestbuf; 2603 uint64_t *mapping; 2604 uint64_t run_start; 2605 uint32_t sector_size; 2606 uint32_t buf_offset, sector, rbuflen, rblk; 2607 uint8_t *buf_pos; 2608 int error, run_length; 2609 2610 uint32_t from; 2611 uint32_t sectors; 2612 2613 sector_size = node->ump->discinfo.sector_size; 2614 2615 from = buf->b_blkno; 2616 sectors = buf->b_bcount / sector_size; 2617 2618 /* assure we have enough translation slots */ 2619 KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT); 2620 KASSERT(MAXPHYS / sector_size <= FILEBUFSECT); 2621 2622 if (sectors > FILEBUFSECT) { 2623 printf("udf_read_filebuf: implementation limit on bufsize\n"); 2624 buf->b_error = EIO; 2625 buf->b_flags |= B_ERROR; 2626 biodone(buf); 2627 return; 2628 } 2629 2630 mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK); 2631 2632 error = 0; 2633 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 2634 error = udf_translate_file_extent(node, from, sectors, mapping); 2635 if (error) { 2636 buf->b_error = error; 2637 buf->b_flags |= B_ERROR; 2638 biodone(buf); 2639 goto out; 2640 } 2641 DPRINTF(READ, ("\ttranslate extent went OK\n")); 2642 2643 /* pre-check if internal or parts are zero */ 2644 if (*mapping == UDF_TRANS_INTERN) { 2645 error = udf_read_internal(node, (uint8_t *) buf->b_data); 2646 if (error) { 2647 buf->b_error = error; 2648 buf->b_flags |= B_ERROR; 2649 } 2650 biodone(buf); 2651 goto out; 2652 } 2653 DPRINTF(READ, ("\tnot intern\n")); 2654 2655 /* request read-in of data from disc sheduler */ 2656 buf->b_resid = buf->b_bcount; 2657 for (sector = 0; sector < sectors; sector++) { 2658 buf_offset = sector * sector_size; 2659 buf_pos = (uint8_t *) buf->b_data + buf_offset; 2660 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 2661 2662 switch (mapping[sector]) { 2663 case UDF_TRANS_UNMAPPED: 2664 case UDF_TRANS_ZERO: 2665 /* copy zero sector */ 2666 memset(buf_pos, 0, sector_size); 2667 DPRINTF(READ, ("\treturning zero sector\n")); 2668 nestiobuf_done(buf, sector_size, 0); 2669 break; 2670 default : 2671 DPRINTF(READ, ("\tread sector " 2672 "%"PRIu64"\n", mapping[sector])); 2673 2674 run_start = mapping[sector]; 2675 run_length = 1; 2676 while (sector < sectors-1) { 2677 if (mapping[sector+1] != mapping[sector]+1) 2678 break; 2679 run_length++; 2680 sector++; 2681 } 2682 2683 /* 2684 * nest an iobuf and mark it for async reading. Since 2685 * we're using nested buffers, they can't be cached by 2686 * design. 2687 */ 2688 rbuflen = run_length * sector_size; 2689 rblk = run_start * (sector_size/DEV_BSIZE); 2690 2691 nestbuf = getiobuf(); 2692 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 2693 /* nestbuf is B_ASYNC */ 2694 2695 /* CD shedules on raw blkno */ 2696 nestbuf->b_blkno = rblk; 2697 nestbuf->b_proc = NULL; 2698 nestbuf->b_cylinder = 0; 2699 nestbuf->b_rawblkno = rblk; 2700 VOP_STRATEGY(node->ump->devvp, nestbuf); 2701 } 2702 } 2703 out: 2704 DPRINTF(READ, ("\tend of read_filebuf\n")); 2705 free(mapping, M_TEMP); 2706 return; 2707 } 2708 #undef FILEBUFSECT 2709 2710 2711 /* --------------------------------------------------------------------- */ 2712 2713 /* 2714 * Translate an extent (in sectors) into sector numbers; used for read and 2715 * write operations. DOESNT't check extents. 2716 */ 2717 2718 int 2719 udf_translate_file_extent(struct udf_node *node, 2720 uint32_t from, uint32_t pages, 2721 uint64_t *map) 2722 { 2723 struct udf_mount *ump; 2724 struct file_entry *fe; 2725 struct extfile_entry *efe; 2726 struct short_ad *s_ad; 2727 struct long_ad *l_ad, t_ad; 2728 uint64_t transsec; 2729 uint32_t sector_size, transsec32; 2730 uint32_t overlap, translen; 2731 uint32_t vpart_num, lb_num, len, alloclen; 2732 uint8_t *pos; 2733 int error, flags, addr_type, icblen, icbflags; 2734 2735 if (!node) 2736 return ENOENT; 2737 2738 /* shut up gcc */ 2739 alloclen = addr_type = icbflags = 0; 2740 pos = NULL; 2741 2742 /* do the work */ 2743 ump = node->ump; 2744 sector_size = ump->discinfo.sector_size; 2745 fe = node->fe; 2746 efe = node->efe; 2747 if (fe) { 2748 alloclen = udf_rw32(fe->l_ad); 2749 pos = &fe->data[0] + udf_rw32(fe->l_ea); 2750 icbflags = udf_rw16(fe->icbtag.flags); 2751 } 2752 if (efe) { 2753 alloclen = udf_rw32(efe->l_ad); 2754 pos = &efe->data[0] + udf_rw32(efe->l_ea); 2755 icbflags = udf_rw16(efe->icbtag.flags); 2756 } 2757 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 2758 2759 DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, " 2760 "fe %p, efe %p\n", alloclen, addr_type, fe, efe)); 2761 2762 vpart_num = udf_rw16(node->loc.loc.part_num); 2763 lb_num = len = icblen = 0; /* shut up gcc */ 2764 while (pages && alloclen) { 2765 DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type)); 2766 switch (addr_type) { 2767 case UDF_ICB_INTERN_ALLOC : 2768 /* TODO check extents? */ 2769 *map = UDF_TRANS_INTERN; 2770 return 0; 2771 case UDF_ICB_SHORT_ALLOC : 2772 icblen = sizeof(struct short_ad); 2773 s_ad = (struct short_ad *) pos; 2774 len = udf_rw32(s_ad->len); 2775 lb_num = udf_rw32(s_ad->lb_num); 2776 break; 2777 case UDF_ICB_LONG_ALLOC : 2778 icblen = sizeof(struct long_ad); 2779 l_ad = (struct long_ad *) pos; 2780 len = udf_rw32(l_ad->len); 2781 lb_num = udf_rw32(l_ad->loc.lb_num); 2782 vpart_num = udf_rw16(l_ad->loc.part_num); 2783 DPRINTFIF(TRANSLATE, 2784 (l_ad->impl.im_used.flags & 2785 UDF_ADIMP_FLAGS_EXTENT_ERASED), 2786 ("UDF: got an `extent erased' flag in long_ad\n")); 2787 break; 2788 default: 2789 /* can't be here */ 2790 return EINVAL; /* for sure */ 2791 } 2792 2793 /* process extent */ 2794 flags = UDF_EXT_FLAGS(len); 2795 len = UDF_EXT_LEN(len); 2796 2797 overlap = (len + sector_size -1) / sector_size; 2798 if (from) { 2799 if (from > overlap) { 2800 from -= overlap; 2801 overlap = 0; 2802 } else { 2803 lb_num += from; /* advance in extent */ 2804 overlap -= from; 2805 from = 0; 2806 } 2807 } 2808 2809 overlap = MIN(overlap, pages); 2810 while (overlap) { 2811 switch (flags) { 2812 case UDF_EXT_REDIRECT : 2813 /* no support for allocation extentions yet */ 2814 /* TODO support for allocation extention */ 2815 return ENOENT; 2816 case UDF_EXT_FREED : 2817 case UDF_EXT_FREE : 2818 transsec = UDF_TRANS_ZERO; 2819 translen = overlap; 2820 while (overlap && pages && translen) { 2821 *map++ = transsec; 2822 overlap--; pages--; translen--; 2823 } 2824 break; 2825 case UDF_EXT_ALLOCATED : 2826 t_ad.loc.lb_num = udf_rw32(lb_num); 2827 t_ad.loc.part_num = udf_rw16(vpart_num); 2828 error = udf_translate_vtop(ump, 2829 &t_ad, &transsec32, &translen); 2830 transsec = transsec32; 2831 if (error) 2832 return error; 2833 while (overlap && pages && translen) { 2834 *map++ = transsec; 2835 transsec++; 2836 overlap--; pages--; translen--; 2837 } 2838 break; 2839 } 2840 } 2841 pos += icblen; 2842 alloclen -= icblen; 2843 } 2844 return 0; 2845 } 2846 2847 /* --------------------------------------------------------------------- */ 2848 2849