xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /* $NetBSD: udf_subr.c,v 1.70 2008/07/28 19:41:13 reinoud Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.70 2008/07/28 19:41:13 reinoud Exp $");
33 #endif /* not lint */
34 
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_quota.h"
38 #include "opt_compat_netbsd.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysctl.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/vnode.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <sys/mount.h>
50 #include <sys/buf.h>
51 #include <sys/file.h>
52 #include <sys/device.h>
53 #include <sys/disklabel.h>
54 #include <sys/ioctl.h>
55 #include <sys/malloc.h>
56 #include <sys/dirent.h>
57 #include <sys/stat.h>
58 #include <sys/conf.h>
59 #include <sys/kauth.h>
60 #include <fs/unicode.h>
61 #include <dev/clock_subr.h>
62 
63 #include <fs/udf/ecma167-udf.h>
64 #include <fs/udf/udf_mount.h>
65 
66 #if defined(_KERNEL_OPT)
67 #include "opt_udf.h"
68 #endif
69 
70 #include "udf.h"
71 #include "udf_subr.h"
72 #include "udf_bswap.h"
73 
74 
75 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
76 
77 #define UDF_SET_SYSTEMFILE(vp) \
78 	/* XXXAD Is the vnode locked? */	\
79 	(vp)->v_vflag |= VV_SYSTEM;		\
80 	vref(vp);			\
81 	vput(vp);			\
82 
83 extern int syncer_maxdelay;     /* maximum delay time */
84 extern int (**udf_vnodeop_p)(void *);
85 
86 /* --------------------------------------------------------------------- */
87 
88 //#ifdef DEBUG
89 #if 1
90 
91 #if 0
92 static void
93 udf_dumpblob(boid *blob, uint32_t dlen)
94 {
95 	int i, j;
96 
97 	printf("blob = %p\n", blob);
98 	printf("dump of %d bytes\n", dlen);
99 
100 	for (i = 0; i < dlen; i+ = 16) {
101 		printf("%04x ", i);
102 		for (j = 0; j < 16; j++) {
103 			if (i+j < dlen) {
104 				printf("%02x ", blob[i+j]);
105 			} else {
106 				printf("   ");
107 			}
108 		}
109 		for (j = 0; j < 16; j++) {
110 			if (i+j < dlen) {
111 				if (blob[i+j]>32 && blob[i+j]! = 127) {
112 					printf("%c", blob[i+j]);
113 				} else {
114 					printf(".");
115 				}
116 			}
117 		}
118 		printf("\n");
119 	}
120 	printf("\n");
121 	Debugger();
122 }
123 #endif
124 
125 static void
126 udf_dump_discinfo(struct udf_mount *ump)
127 {
128 	char   bits[128];
129 	struct mmc_discinfo *di = &ump->discinfo;
130 
131 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
132 		return;
133 
134 	printf("Device/media info  :\n");
135 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
136 	printf("\tderived class      %d\n", di->mmc_class);
137 	printf("\tsector size        %d\n", di->sector_size);
138 	printf("\tdisc state         %d\n", di->disc_state);
139 	printf("\tlast ses state     %d\n", di->last_session_state);
140 	printf("\tbg format state    %d\n", di->bg_format_state);
141 	printf("\tfrst track         %d\n", di->first_track);
142 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
143 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
144 	printf("\tlink block penalty %d\n", di->link_block_penalty);
145 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
146 		sizeof(bits));
147 	printf("\tdisc flags         %s\n", bits);
148 	printf("\tdisc id            %x\n", di->disc_id);
149 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
150 
151 	printf("\tnum sessions       %d\n", di->num_sessions);
152 	printf("\tnum tracks         %d\n", di->num_tracks);
153 
154 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
155 	printf("\tcapabilities cur   %s\n", bits);
156 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
157 	printf("\tcapabilities cap   %s\n", bits);
158 }
159 #else
160 #define udf_dump_discinfo(a);
161 #endif
162 
163 
164 /* --------------------------------------------------------------------- */
165 
166 /* not called often */
167 int
168 udf_update_discinfo(struct udf_mount *ump)
169 {
170 	struct vnode *devvp = ump->devvp;
171 	struct partinfo dpart;
172 	struct mmc_discinfo *di;
173 	int error;
174 
175 	DPRINTF(VOLUMES, ("read/update disc info\n"));
176 	di = &ump->discinfo;
177 	memset(di, 0, sizeof(struct mmc_discinfo));
178 
179 	/* check if we're on a MMC capable device, i.e. CD/DVD */
180 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
181 	if (error == 0) {
182 		udf_dump_discinfo(ump);
183 		return 0;
184 	}
185 
186 	/* disc partition support */
187 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
188 	if (error)
189 		return ENODEV;
190 
191 	/* set up a disc info profile for partitions */
192 	di->mmc_profile		= 0x01;	/* disc type */
193 	di->mmc_class		= MMC_CLASS_DISC;
194 	di->disc_state		= MMC_STATE_CLOSED;
195 	di->last_session_state	= MMC_STATE_CLOSED;
196 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
197 	di->link_block_penalty	= 0;
198 
199 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
200 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
201 	di->mmc_cap    = di->mmc_cur;
202 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
203 
204 	/* TODO problem with last_possible_lba on resizable VND; request */
205 	di->last_possible_lba = dpart.part->p_size;
206 	di->sector_size       = dpart.disklab->d_secsize;
207 
208 	di->num_sessions = 1;
209 	di->num_tracks   = 1;
210 
211 	di->first_track  = 1;
212 	di->first_track_last_session = di->last_track_last_session = 1;
213 
214 	udf_dump_discinfo(ump);
215 	return 0;
216 }
217 
218 
219 int
220 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
221 {
222 	struct vnode *devvp = ump->devvp;
223 	struct mmc_discinfo *di = &ump->discinfo;
224 	int error, class;
225 
226 	DPRINTF(VOLUMES, ("read track info\n"));
227 
228 	class = di->mmc_class;
229 	if (class != MMC_CLASS_DISC) {
230 		/* tracknr specified in struct ti */
231 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
232 		return error;
233 	}
234 
235 	/* disc partition support */
236 	if (ti->tracknr != 1)
237 		return EIO;
238 
239 	/* create fake ti (TODO check for resized vnds) */
240 	ti->sessionnr  = 1;
241 
242 	ti->track_mode = 0;	/* XXX */
243 	ti->data_mode  = 0;	/* XXX */
244 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
245 
246 	ti->track_start    = 0;
247 	ti->packet_size    = 1;
248 
249 	/* TODO support for resizable vnd */
250 	ti->track_size    = di->last_possible_lba;
251 	ti->next_writable = di->last_possible_lba;
252 	ti->last_recorded = ti->next_writable;
253 	ti->free_blocks   = 0;
254 
255 	return 0;
256 }
257 
258 
259 int
260 udf_setup_writeparams(struct udf_mount *ump)
261 {
262 	struct mmc_writeparams mmc_writeparams;
263 	int error;
264 
265 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
266 		return 0;
267 
268 	/*
269 	 * only CD burning normally needs setting up, but other disc types
270 	 * might need other settings to be made. The MMC framework will set up
271 	 * the nessisary recording parameters according to the disc
272 	 * characteristics read in. Modifications can be made in the discinfo
273 	 * structure passed to change the nature of the disc.
274 	 */
275 
276 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
277 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
278 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
279 
280 	/*
281 	 * UDF dictates first track to determine track mode for the whole
282 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
283 	 * To prevent problems with a `reserved' track in front we start with
284 	 * the 2nd track and if that is not valid, go for the 1st.
285 	 */
286 	mmc_writeparams.tracknr = 2;
287 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
288 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
289 
290 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
291 			FKIOCTL, NOCRED);
292 	if (error) {
293 		mmc_writeparams.tracknr = 1;
294 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
295 				&mmc_writeparams, FKIOCTL, NOCRED);
296 	}
297 	return error;
298 }
299 
300 
301 int
302 udf_synchronise_caches(struct udf_mount *ump)
303 {
304 	struct mmc_op mmc_op;
305 
306 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
307 
308 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
309 		return 0;
310 
311 	/* discs are done now */
312 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
313 		return 0;
314 
315 	bzero(&mmc_op, sizeof(struct mmc_op));
316 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
317 
318 	/* ignore return code */
319 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
320 
321 	return 0;
322 }
323 
324 /* --------------------------------------------------------------------- */
325 
326 /* track/session searching for mounting */
327 int
328 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
329 		  int *first_tracknr, int *last_tracknr)
330 {
331 	struct mmc_trackinfo trackinfo;
332 	uint32_t tracknr, start_track, num_tracks;
333 	int error;
334 
335 	/* if negative, sessionnr is relative to last session */
336 	if (args->sessionnr < 0) {
337 		args->sessionnr += ump->discinfo.num_sessions;
338 	}
339 
340 	/* sanity */
341 	if (args->sessionnr < 0)
342 		args->sessionnr = 0;
343 	if (args->sessionnr > ump->discinfo.num_sessions)
344 		args->sessionnr = ump->discinfo.num_sessions;
345 
346 	/* search the tracks for this session, zero session nr indicates last */
347 	if (args->sessionnr == 0)
348 		args->sessionnr = ump->discinfo.num_sessions;
349 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
350 		args->sessionnr--;
351 
352 	/* sanity again */
353 	if (args->sessionnr < 0)
354 		args->sessionnr = 0;
355 
356 	/* search the first and last track of the specified session */
357 	num_tracks  = ump->discinfo.num_tracks;
358 	start_track = ump->discinfo.first_track;
359 
360 	/* search for first track of this session */
361 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
362 		/* get track info */
363 		trackinfo.tracknr = tracknr;
364 		error = udf_update_trackinfo(ump, &trackinfo);
365 		if (error)
366 			return error;
367 
368 		if (trackinfo.sessionnr == args->sessionnr)
369 			break;
370 	}
371 	*first_tracknr = tracknr;
372 
373 	/* search for last track of this session */
374 	for (;tracknr <= num_tracks; tracknr++) {
375 		/* get track info */
376 		trackinfo.tracknr = tracknr;
377 		error = udf_update_trackinfo(ump, &trackinfo);
378 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
379 			tracknr--;
380 			break;
381 		}
382 	}
383 	if (tracknr > num_tracks)
384 		tracknr--;
385 
386 	*last_tracknr = tracknr;
387 
388 	if (*last_tracknr < *first_tracknr) {
389 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
390 			"drive returned garbage\n");
391 		return EINVAL;
392 	}
393 
394 	assert(*last_tracknr >= *first_tracknr);
395 	return 0;
396 }
397 
398 
399 /*
400  * NOTE: this is the only routine in this file that directly peeks into the
401  * metadata file but since its at a larval state of the mount it can't hurt.
402  *
403  * XXX candidate for udf_allocation.c
404  * XXX clean me up!, change to new node reading code.
405  */
406 
407 static void
408 udf_check_track_metadata_overlap(struct udf_mount *ump,
409 	struct mmc_trackinfo *trackinfo)
410 {
411 	struct part_desc *part;
412 	struct file_entry      *fe;
413 	struct extfile_entry   *efe;
414 	struct short_ad        *s_ad;
415 	struct long_ad         *l_ad;
416 	uint32_t track_start, track_end;
417 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
418 	uint32_t sector_size, len, alloclen, plb_num;
419 	uint8_t *pos;
420 	int addr_type, icblen, icbflags, flags;
421 
422 	/* get our track extents */
423 	track_start = trackinfo->track_start;
424 	track_end   = track_start + trackinfo->track_size;
425 
426 	/* get our base partition extent */
427 	part = ump->partitions[ump->metadata_part];
428 	phys_part_start = udf_rw32(part->start_loc);
429 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
430 
431 	/* no use if its outside the physical partition */
432 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
433 		return;
434 
435 	/*
436 	 * now follow all extents in the fe/efe to see if they refer to this
437 	 * track
438 	 */
439 
440 	sector_size = ump->discinfo.sector_size;
441 
442 	/* XXX should we claim exclusive access to the metafile ? */
443 	/* TODO: move to new node read code */
444 	fe  = ump->metadata_node->fe;
445 	efe = ump->metadata_node->efe;
446 	if (fe) {
447 		alloclen = udf_rw32(fe->l_ad);
448 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
449 		icbflags = udf_rw16(fe->icbtag.flags);
450 	} else {
451 		assert(efe);
452 		alloclen = udf_rw32(efe->l_ad);
453 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
454 		icbflags = udf_rw16(efe->icbtag.flags);
455 	}
456 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
457 
458 	while (alloclen) {
459 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
460 			icblen = sizeof(struct short_ad);
461 			s_ad   = (struct short_ad *) pos;
462 			len        = udf_rw32(s_ad->len);
463 			plb_num    = udf_rw32(s_ad->lb_num);
464 		} else {
465 			/* should not be present, but why not */
466 			icblen = sizeof(struct long_ad);
467 			l_ad   = (struct long_ad *) pos;
468 			len        = udf_rw32(l_ad->len);
469 			plb_num    = udf_rw32(l_ad->loc.lb_num);
470 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
471 		}
472 		/* process extent */
473 		flags   = UDF_EXT_FLAGS(len);
474 		len     = UDF_EXT_LEN(len);
475 
476 		part_start = phys_part_start + plb_num;
477 		part_end   = part_start + (len / sector_size);
478 
479 		if ((part_start >= track_start) && (part_end <= track_end)) {
480 			/* extent is enclosed within this track */
481 			ump->metadata_track = *trackinfo;
482 			return;
483 		}
484 
485 		pos        += icblen;
486 		alloclen   -= icblen;
487 	}
488 }
489 
490 
491 int
492 udf_search_writing_tracks(struct udf_mount *ump)
493 {
494 	struct mmc_trackinfo trackinfo;
495 	struct part_desc *part;
496 	uint32_t tracknr, start_track, num_tracks;
497 	uint32_t track_start, track_end, part_start, part_end;
498 	int error;
499 
500 	/*
501 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
502 	 * the last session might be open but in the UDF device model at most
503 	 * three tracks can be open: a reserved track for delayed ISO VRS
504 	 * writing, a data track and a metadata track. We search here for the
505 	 * data track and the metadata track. Note that the reserved track is
506 	 * troublesome but can be detected by its small size of < 512 sectors.
507 	 */
508 
509 	num_tracks  = ump->discinfo.num_tracks;
510 	start_track = ump->discinfo.first_track;
511 
512 	/* fetch info on first and possibly only track */
513 	trackinfo.tracknr = start_track;
514 	error = udf_update_trackinfo(ump, &trackinfo);
515 	if (error)
516 		return error;
517 
518 	/* copy results to our mount point */
519 	ump->data_track     = trackinfo;
520 	ump->metadata_track = trackinfo;
521 
522 	/* if not sequential, we're done */
523 	if (num_tracks == 1)
524 		return 0;
525 
526 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
527 		/* get track info */
528 		trackinfo.tracknr = tracknr;
529 		error = udf_update_trackinfo(ump, &trackinfo);
530 		if (error)
531 			return error;
532 
533 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
534 			continue;
535 
536 		track_start = trackinfo.track_start;
537 		track_end   = track_start + trackinfo.track_size;
538 
539 		/* check for overlap on data partition */
540 		part = ump->partitions[ump->data_part];
541 		part_start = udf_rw32(part->start_loc);
542 		part_end   = part_start + udf_rw32(part->part_len);
543 		if ((part_start < track_end) && (part_end > track_start)) {
544 			ump->data_track = trackinfo;
545 			/* TODO check if UDF partition data_part is writable */
546 		}
547 
548 		/* check for overlap on metadata partition */
549 		if ((ump->meta_alloc == UDF_ALLOC_METASEQUENTIAL) ||
550 		    (ump->meta_alloc == UDF_ALLOC_METABITMAP)) {
551 			udf_check_track_metadata_overlap(ump, &trackinfo);
552 		} else {
553 			ump->metadata_track = trackinfo;
554 		}
555 	}
556 
557 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
558 		return EROFS;
559 
560 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
561 		return EROFS;
562 
563 	return 0;
564 }
565 
566 /* --------------------------------------------------------------------- */
567 
568 /*
569  * Check if the blob starts with a good UDF tag. Tags are protected by a
570  * checksum over the reader except one byte at position 4 that is the checksum
571  * itself.
572  */
573 
574 int
575 udf_check_tag(void *blob)
576 {
577 	struct desc_tag *tag = blob;
578 	uint8_t *pos, sum, cnt;
579 
580 	/* check TAG header checksum */
581 	pos = (uint8_t *) tag;
582 	sum = 0;
583 
584 	for(cnt = 0; cnt < 16; cnt++) {
585 		if (cnt != 4)
586 			sum += *pos;
587 		pos++;
588 	}
589 	if (sum != tag->cksum) {
590 		/* bad tag header checksum; this is not a valid tag */
591 		return EINVAL;
592 	}
593 
594 	return 0;
595 }
596 
597 
598 /*
599  * check tag payload will check descriptor CRC as specified.
600  * If the descriptor is too long, it will return EIO otherwise EINVAL.
601  */
602 
603 int
604 udf_check_tag_payload(void *blob, uint32_t max_length)
605 {
606 	struct desc_tag *tag = blob;
607 	uint16_t crc, crc_len;
608 
609 	crc_len = udf_rw16(tag->desc_crc_len);
610 
611 	/* check payload CRC if applicable */
612 	if (crc_len == 0)
613 		return 0;
614 
615 	if (crc_len > max_length)
616 		return EIO;
617 
618 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
619 	if (crc != udf_rw16(tag->desc_crc)) {
620 		/* bad payload CRC; this is a broken tag */
621 		return EINVAL;
622 	}
623 
624 	return 0;
625 }
626 
627 
628 void
629 udf_validate_tag_sum(void *blob)
630 {
631 	struct desc_tag *tag = blob;
632 	uint8_t *pos, sum, cnt;
633 
634 	/* calculate TAG header checksum */
635 	pos = (uint8_t *) tag;
636 	sum = 0;
637 
638 	for(cnt = 0; cnt < 16; cnt++) {
639 		if (cnt != 4) sum += *pos;
640 		pos++;
641 	}
642 	tag->cksum = sum;	/* 8 bit */
643 }
644 
645 
646 /* assumes sector number of descriptor to be saved already present */
647 void
648 udf_validate_tag_and_crc_sums(void *blob)
649 {
650 	struct desc_tag *tag  = blob;
651 	uint8_t         *btag = (uint8_t *) tag;
652 	uint16_t crc, crc_len;
653 
654 	crc_len = udf_rw16(tag->desc_crc_len);
655 
656 	/* check payload CRC if applicable */
657 	if (crc_len > 0) {
658 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
659 		tag->desc_crc = udf_rw16(crc);
660 	}
661 
662 	/* calculate TAG header checksum */
663 	udf_validate_tag_sum(blob);
664 }
665 
666 /* --------------------------------------------------------------------- */
667 
668 /*
669  * XXX note the different semantics from udfclient: for FIDs it still rounds
670  * up to sectors. Use udf_fidsize() for a correct length.
671  */
672 
673 int
674 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
675 {
676 	uint32_t size, tag_id, num_lb, elmsz;
677 
678 	tag_id = udf_rw16(dscr->tag.id);
679 
680 	switch (tag_id) {
681 	case TAGID_LOGVOL :
682 		size  = sizeof(struct logvol_desc) - 1;
683 		size += udf_rw32(dscr->lvd.mt_l);
684 		break;
685 	case TAGID_UNALLOC_SPACE :
686 		elmsz = sizeof(struct extent_ad);
687 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
688 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
689 		break;
690 	case TAGID_FID :
691 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
692 		size = (size + 3) & ~3;
693 		break;
694 	case TAGID_LOGVOL_INTEGRITY :
695 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
696 		size += udf_rw32(dscr->lvid.l_iu);
697 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
698 		break;
699 	case TAGID_SPACE_BITMAP :
700 		size  = sizeof(struct space_bitmap_desc) - 1;
701 		size += udf_rw32(dscr->sbd.num_bytes);
702 		break;
703 	case TAGID_SPARING_TABLE :
704 		elmsz = sizeof(struct spare_map_entry);
705 		size  = sizeof(struct udf_sparing_table) - elmsz;
706 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
707 		break;
708 	case TAGID_FENTRY :
709 		size  = sizeof(struct file_entry);
710 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
711 		break;
712 	case TAGID_EXTFENTRY :
713 		size  = sizeof(struct extfile_entry);
714 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
715 		break;
716 	case TAGID_FSD :
717 		size  = sizeof(struct fileset_desc);
718 		break;
719 	default :
720 		size = sizeof(union dscrptr);
721 		break;
722 	}
723 
724 	if ((size == 0) || (lb_size == 0))
725 		return 0;
726 
727 	if (lb_size == 1)
728 		return size;
729 
730 	/* round up in sectors */
731 	num_lb = (size + lb_size -1) / lb_size;
732 	return num_lb * lb_size;
733 }
734 
735 
736 int
737 udf_fidsize(struct fileid_desc *fid)
738 {
739 	uint32_t size;
740 
741 	if (udf_rw16(fid->tag.id) != TAGID_FID)
742 		panic("got udf_fidsize on non FID\n");
743 
744 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
745 	size = (size + 3) & ~3;
746 
747 	return size;
748 }
749 
750 /* --------------------------------------------------------------------- */
751 
752 void
753 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
754 {
755 	int ret;
756 
757 	mutex_enter(&udf_node->node_mutex);
758 	/* wait until free */
759 	while (udf_node->i_flags & IN_LOCKED) {
760 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
761 		/* TODO check if we should return error; abort */
762 		if (ret == EWOULDBLOCK) {
763 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
764 				"wanted at %s:%d, previously locked at %s:%d\n",
765 				udf_node, fname, lineno,
766 				udf_node->lock_fname, udf_node->lock_lineno));
767 		}
768 	}
769 	/* grab */
770 	udf_node->i_flags |= IN_LOCKED | flag;
771 	/* debug */
772 	udf_node->lock_fname  = fname;
773 	udf_node->lock_lineno = lineno;
774 
775 	mutex_exit(&udf_node->node_mutex);
776 }
777 
778 
779 void
780 udf_unlock_node(struct udf_node *udf_node, int flag)
781 {
782 	mutex_enter(&udf_node->node_mutex);
783 	udf_node->i_flags &= ~(IN_LOCKED | flag);
784 	cv_broadcast(&udf_node->node_lock);
785 	mutex_exit(&udf_node->node_mutex);
786 }
787 
788 
789 /* --------------------------------------------------------------------- */
790 
791 static int
792 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
793 {
794 	int error;
795 
796 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
797 			(union dscrptr **) dst);
798 	if (!error) {
799 		/* blank terminator blocks are not allowed here */
800 		if (*dst == NULL)
801 			return ENOENT;
802 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
803 			error = ENOENT;
804 			free(*dst, M_UDFVOLD);
805 			*dst = NULL;
806 			DPRINTF(VOLUMES, ("Not an anchor\n"));
807 		}
808 	}
809 
810 	return error;
811 }
812 
813 
814 int
815 udf_read_anchors(struct udf_mount *ump)
816 {
817 	struct udf_args *args = &ump->mount_args;
818 	struct mmc_trackinfo first_track;
819 	struct mmc_trackinfo second_track;
820 	struct mmc_trackinfo last_track;
821 	struct anchor_vdp **anchorsp;
822 	uint32_t track_start;
823 	uint32_t track_end;
824 	uint32_t positions[4];
825 	int first_tracknr, last_tracknr;
826 	int error, anch, ok, first_anchor;
827 
828 	/* search the first and last track of the specified session */
829 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
830 	if (!error) {
831 		first_track.tracknr = first_tracknr;
832 		error = udf_update_trackinfo(ump, &first_track);
833 	}
834 	if (!error) {
835 		last_track.tracknr = last_tracknr;
836 		error = udf_update_trackinfo(ump, &last_track);
837 	}
838 	if ((!error) && (first_tracknr != last_tracknr)) {
839 		second_track.tracknr = first_tracknr+1;
840 		error = udf_update_trackinfo(ump, &second_track);
841 	}
842 	if (error) {
843 		printf("UDF mount: reading disc geometry failed\n");
844 		return 0;
845 	}
846 
847 	track_start = first_track.track_start;
848 
849 	/* `end' is not as straitforward as start. */
850 	track_end =   last_track.track_start
851 		    + last_track.track_size - last_track.free_blocks - 1;
852 
853 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
854 		/* end of track is not straitforward here */
855 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
856 			track_end = last_track.last_recorded;
857 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
858 			track_end = last_track.next_writable
859 				    - ump->discinfo.link_block_penalty;
860 	}
861 
862 	/* its no use reading a blank track */
863 	first_anchor = 0;
864 	if (first_track.flags & MMC_TRACKINFO_BLANK)
865 		first_anchor = 1;
866 
867 	/* get our packet size */
868 	ump->packet_size = first_track.packet_size;
869 	if (first_track.flags & MMC_TRACKINFO_BLANK)
870 		ump->packet_size = second_track.packet_size;
871 
872 	if (ump->packet_size <= 1) {
873 		/* take max, but not bigger than 64 */
874 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
875 		ump->packet_size = MIN(ump->packet_size, 64);
876 	}
877 	KASSERT(ump->packet_size >= 1);
878 
879 	/* read anchors start+256, start+512, end-256, end */
880 	positions[0] = track_start+256;
881 	positions[1] =   track_end-256;
882 	positions[2] =   track_end;
883 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
884 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
885 
886 	ok = 0;
887 	anchorsp = ump->anchors;
888 	for (anch = first_anchor; anch < 4; anch++) {
889 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
890 		    positions[anch]));
891 		error = udf_read_anchor(ump, positions[anch], anchorsp);
892 		if (!error) {
893 			anchorsp++;
894 			ok++;
895 		}
896 	}
897 
898 	/* VATs are only recorded on sequential media, but initialise */
899 	ump->first_possible_vat_location = track_start + 2;
900 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
901 
902 	return ok;
903 }
904 
905 /* --------------------------------------------------------------------- */
906 
907 /* we dont try to be smart; we just record the parts */
908 #define UDF_UPDATE_DSCR(name, dscr) \
909 	if (name) \
910 		free(name, M_UDFVOLD); \
911 	name = dscr;
912 
913 static int
914 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
915 {
916 	struct part_desc *part;
917 	uint16_t phys_part, raw_phys_part;
918 
919 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
920 	    udf_rw16(dscr->tag.id)));
921 	switch (udf_rw16(dscr->tag.id)) {
922 	case TAGID_PRI_VOL :		/* primary partition		*/
923 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
924 		break;
925 	case TAGID_LOGVOL :		/* logical volume		*/
926 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
927 		break;
928 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
929 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
930 		break;
931 	case TAGID_IMP_VOL :		/* implementation		*/
932 		/* XXX do we care about multiple impl. descr ? */
933 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
934 		break;
935 	case TAGID_PARTITION :		/* physical partition		*/
936 		/* not much use if its not allocated */
937 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
938 			free(dscr, M_UDFVOLD);
939 			break;
940 		}
941 
942 		/*
943 		 * BUGALERT: some rogue implementations use random physical
944 		 * partion numbers to break other implementations so lookup
945 		 * the number.
946 		 */
947 		raw_phys_part = udf_rw16(dscr->pd.part_num);
948 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
949 			part = ump->partitions[phys_part];
950 			if (part == NULL)
951 				break;
952 			if (udf_rw16(part->part_num) == raw_phys_part)
953 				break;
954 		}
955 		if (phys_part == UDF_PARTITIONS) {
956 			free(dscr, M_UDFVOLD);
957 			return EINVAL;
958 		}
959 
960 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
961 		break;
962 	case TAGID_VOL :		/* volume space extender; rare	*/
963 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
964 		free(dscr, M_UDFVOLD);
965 		break;
966 	default :
967 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
968 		    udf_rw16(dscr->tag.id)));
969 		free(dscr, M_UDFVOLD);
970 	}
971 
972 	return 0;
973 }
974 #undef UDF_UPDATE_DSCR
975 
976 /* --------------------------------------------------------------------- */
977 
978 static int
979 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
980 {
981 	union dscrptr *dscr;
982 	uint32_t sector_size, dscr_size;
983 	int error;
984 
985 	sector_size = ump->discinfo.sector_size;
986 
987 	/* loc is sectornr, len is in bytes */
988 	error = EIO;
989 	while (len) {
990 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
991 		if (error)
992 			return error;
993 
994 		/* blank block is a terminator */
995 		if (dscr == NULL)
996 			return 0;
997 
998 		/* TERM descriptor is a terminator */
999 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1000 			free(dscr, M_UDFVOLD);
1001 			return 0;
1002 		}
1003 
1004 		/* process all others */
1005 		dscr_size = udf_tagsize(dscr, sector_size);
1006 		error = udf_process_vds_descriptor(ump, dscr);
1007 		if (error) {
1008 			free(dscr, M_UDFVOLD);
1009 			break;
1010 		}
1011 		assert((dscr_size % sector_size) == 0);
1012 
1013 		len -= dscr_size;
1014 		loc += dscr_size / sector_size;
1015 	}
1016 
1017 	return error;
1018 }
1019 
1020 
1021 int
1022 udf_read_vds_space(struct udf_mount *ump)
1023 {
1024 	/* struct udf_args *args = &ump->mount_args; */
1025 	struct anchor_vdp *anchor, *anchor2;
1026 	size_t size;
1027 	uint32_t main_loc, main_len;
1028 	uint32_t reserve_loc, reserve_len;
1029 	int error;
1030 
1031 	/*
1032 	 * read in VDS space provided by the anchors; if one descriptor read
1033 	 * fails, try the mirror sector.
1034 	 *
1035 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1036 	 * avoids the `compatibility features' of DirectCD that may confuse
1037 	 * stuff completely.
1038 	 */
1039 
1040 	anchor  = ump->anchors[0];
1041 	anchor2 = ump->anchors[1];
1042 	assert(anchor);
1043 
1044 	if (anchor2) {
1045 		size = sizeof(struct extent_ad);
1046 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1047 			anchor = anchor2;
1048 		/* reserve is specified to be a literal copy of main */
1049 	}
1050 
1051 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
1052 	main_len    = udf_rw32(anchor->main_vds_ex.len);
1053 
1054 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1055 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1056 
1057 	error = udf_read_vds_extent(ump, main_loc, main_len);
1058 	if (error) {
1059 		printf("UDF mount: reading in reserve VDS extent\n");
1060 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1061 	}
1062 
1063 	return error;
1064 }
1065 
1066 /* --------------------------------------------------------------------- */
1067 
1068 /*
1069  * Read in the logical volume integrity sequence pointed to by our logical
1070  * volume descriptor. Its a sequence that can be extended using fields in the
1071  * integrity descriptor itself. On sequential media only one is found, on
1072  * rewritable media a sequence of descriptors can be found as a form of
1073  * history keeping and on non sequential write-once media the chain is vital
1074  * to allow more and more descriptors to be written. The last descriptor
1075  * written in an extent needs to claim space for a new extent.
1076  */
1077 
1078 static int
1079 udf_retrieve_lvint(struct udf_mount *ump)
1080 {
1081 	union dscrptr *dscr;
1082 	struct logvol_int_desc *lvint;
1083 	struct udf_lvintq *trace;
1084 	uint32_t lb_size, lbnum, len;
1085 	int dscr_type, error, trace_len;
1086 
1087 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1088 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1089 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1090 
1091 	/* clean trace */
1092 	memset(ump->lvint_trace, 0,
1093 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1094 
1095 	trace_len    = 0;
1096 	trace        = ump->lvint_trace;
1097 	trace->start = lbnum;
1098 	trace->end   = lbnum + len/lb_size;
1099 	trace->pos   = 0;
1100 	trace->wpos  = 0;
1101 
1102 	lvint = NULL;
1103 	dscr  = NULL;
1104 	error = 0;
1105 	while (len) {
1106 		trace->pos  = lbnum - trace->start;
1107 		trace->wpos = trace->pos + 1;
1108 
1109 		/* read in our integrity descriptor */
1110 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1111 		if (!error) {
1112 			if (dscr == NULL) {
1113 				trace->wpos = trace->pos;
1114 				break;		/* empty terminates */
1115 			}
1116 			dscr_type = udf_rw16(dscr->tag.id);
1117 			if (dscr_type == TAGID_TERM) {
1118 				trace->wpos = trace->pos;
1119 				break;		/* clean terminator */
1120 			}
1121 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1122 				/* fatal... corrupt disc */
1123 				error = ENOENT;
1124 				break;
1125 			}
1126 			if (lvint)
1127 				free(lvint, M_UDFVOLD);
1128 			lvint = &dscr->lvid;
1129 			dscr = NULL;
1130 		} /* else hope for the best... maybe the next is ok */
1131 
1132 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1133 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1134 
1135 		/* proceed sequential */
1136 		lbnum += 1;
1137 		len    -= lb_size;
1138 
1139 		/* are we linking to a new piece? */
1140 		if (dscr && lvint->next_extent.len) {
1141 			len    = udf_rw32(lvint->next_extent.len);
1142 			lbnum = udf_rw32(lvint->next_extent.loc);
1143 
1144 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1145 				/* IEK! segment link full... */
1146 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
1147 				error = EINVAL;
1148 			} else {
1149 				trace++;
1150 				trace_len++;
1151 
1152 				trace->start = lbnum;
1153 				trace->end   = lbnum + len/lb_size;
1154 				trace->pos   = 0;
1155 				trace->wpos  = 0;
1156 			}
1157 		}
1158 	}
1159 
1160 	/* clean up the mess, esp. when there is an error */
1161 	if (dscr)
1162 		free(dscr, M_UDFVOLD);
1163 
1164 	if (error && lvint) {
1165 		free(lvint, M_UDFVOLD);
1166 		lvint = NULL;
1167 	}
1168 
1169 	if (!lvint)
1170 		error = ENOENT;
1171 
1172 	ump->logvol_integrity = lvint;
1173 	return error;
1174 }
1175 
1176 
1177 static int
1178 udf_loose_lvint_history(struct udf_mount *ump)
1179 {
1180 	union dscrptr **bufs, *dscr, *last_dscr;
1181 	struct udf_lvintq *trace, *in_trace, *out_trace;
1182 	struct logvol_int_desc *lvint;
1183 	uint32_t in_ext, in_pos, in_len;
1184 	uint32_t out_ext, out_wpos, out_len;
1185 	uint32_t lb_size, packet_size, lb_num;
1186 	uint32_t len, start;
1187 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
1188 	int losing;
1189 	int error;
1190 
1191 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1192 
1193 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1194 	packet_size = ump->data_track.packet_size;	/* XXX data track */
1195 
1196 	/* search smallest extent */
1197 	trace = &ump->lvint_trace[0];
1198 	minext = trace->end - trace->start;
1199 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1200 		trace = &ump->lvint_trace[ext];
1201 		extlen = trace->end - trace->start;
1202 		if (extlen == 0)
1203 			break;
1204 		minext = MIN(minext, extlen);
1205 	}
1206 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
1207 	/* no sense wiping all */
1208 	if (losing == minext)
1209 		losing--;
1210 
1211 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1212 
1213 	/* get buffer for pieces */
1214 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1215 
1216 	in_ext    = 0;
1217 	in_pos    = losing;
1218 	in_trace  = &ump->lvint_trace[in_ext];
1219 	in_len    = in_trace->end - in_trace->start;
1220 	out_ext   = 0;
1221 	out_wpos  = 0;
1222 	out_trace = &ump->lvint_trace[out_ext];
1223 	out_len   = out_trace->end - out_trace->start;
1224 
1225 	last_dscr = NULL;
1226 	for(;;) {
1227 		out_trace->pos  = out_wpos;
1228 		out_trace->wpos = out_trace->pos;
1229 		if (in_pos >= in_len) {
1230 			in_ext++;
1231 			in_pos = 0;
1232 			in_trace = &ump->lvint_trace[in_ext];
1233 			in_len   = in_trace->end - in_trace->start;
1234 		}
1235 		if (out_wpos >= out_len) {
1236 			out_ext++;
1237 			out_wpos = 0;
1238 			out_trace = &ump->lvint_trace[out_ext];
1239 			out_len   = out_trace->end - out_trace->start;
1240 		}
1241 		/* copy overlap contents */
1242 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1243 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1244 		if (cpy_len == 0)
1245 			break;
1246 
1247 		/* copy */
1248 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1249 		for (cnt = 0; cnt < cpy_len; cnt++) {
1250 			/* read in our integrity descriptor */
1251 			lb_num = in_trace->start + in_pos + cnt;
1252 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1253 				&dscr);
1254 			if (error) {
1255 				/* copy last one */
1256 				dscr = last_dscr;
1257 			}
1258 			bufs[cnt] = dscr;
1259 			if (!error) {
1260 				if (dscr == NULL) {
1261 					out_trace->pos  = out_wpos + cnt;
1262 					out_trace->wpos = out_trace->pos;
1263 					break;		/* empty terminates */
1264 				}
1265 				dscr_type = udf_rw16(dscr->tag.id);
1266 				if (dscr_type == TAGID_TERM) {
1267 					out_trace->pos  = out_wpos + cnt;
1268 					out_trace->wpos = out_trace->pos;
1269 					break;		/* clean terminator */
1270 				}
1271 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1272 					panic(  "UDF integrity sequence "
1273 						"corrupted while mounted!\n");
1274 				}
1275 				last_dscr = dscr;
1276 			}
1277 		}
1278 
1279 		/* patch up if first entry was on error */
1280 		if (bufs[0] == NULL) {
1281 			for (cnt = 0; cnt < cpy_len; cnt++)
1282 				if (bufs[cnt] != NULL)
1283 					break;
1284 			last_dscr = bufs[cnt];
1285 			for (; cnt > 0; cnt--) {
1286 				bufs[cnt] = last_dscr;
1287 			}
1288 		}
1289 
1290 		/* glue + write out */
1291 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1292 		for (cnt = 0; cnt < cpy_len; cnt++) {
1293 			lb_num = out_trace->start + out_wpos + cnt;
1294 			lvint  = &bufs[cnt]->lvid;
1295 
1296 			/* set continuation */
1297 			len = 0;
1298 			start = 0;
1299 			if (out_wpos + cnt == out_len) {
1300 				/* get continuation */
1301 				trace = &ump->lvint_trace[out_ext+1];
1302 				len   = trace->end - trace->start;
1303 				start = trace->start;
1304 			}
1305 			lvint->next_extent.len = udf_rw32(len);
1306 			lvint->next_extent.loc = udf_rw32(start);
1307 
1308 			lb_num = trace->start + trace->wpos;
1309 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1310 				bufs[cnt], lb_num, lb_num);
1311 			DPRINTFIF(VOLUMES, error,
1312 				("error writing lvint lb_num\n"));
1313 		}
1314 
1315 		/* free non repeating descriptors */
1316 		last_dscr = NULL;
1317 		for (cnt = 0; cnt < cpy_len; cnt++) {
1318 			if (bufs[cnt] != last_dscr)
1319 				free(bufs[cnt], M_UDFVOLD);
1320 			last_dscr = bufs[cnt];
1321 		}
1322 
1323 		/* advance */
1324 		in_pos   += cpy_len;
1325 		out_wpos += cpy_len;
1326 	}
1327 
1328 	free(bufs, M_TEMP);
1329 
1330 	return 0;
1331 }
1332 
1333 
1334 static int
1335 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1336 {
1337 	struct udf_lvintq *trace;
1338 	struct timeval  now_v;
1339 	struct timespec now_s;
1340 	uint32_t sector;
1341 	int logvol_integrity;
1342 	int space, error;
1343 
1344 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1345 
1346 again:
1347 	/* get free space in last chunk */
1348 	trace = ump->lvint_trace;
1349 	while (trace->wpos > (trace->end - trace->start)) {
1350 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1351 				  "wpos = %d\n", trace->start, trace->end,
1352 				  trace->pos, trace->wpos));
1353 		trace++;
1354 	}
1355 
1356 	/* check if there is space to append */
1357 	space = (trace->end - trace->start) - trace->wpos;
1358 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1359 			  "space = %d\n", trace->start, trace->end, trace->pos,
1360 			  trace->wpos, space));
1361 
1362 	/* get state */
1363 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1364 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1365 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1366 			/* don't allow this logvol to be opened */
1367 			/* TODO extent LVINT space if possible */
1368 			return EROFS;
1369 		}
1370 	}
1371 
1372 	if (space < 1) {
1373 		if (lvflag & UDF_APPENDONLY_LVINT)
1374 			return EROFS;
1375 		/* loose history by re-writing extents */
1376 		error = udf_loose_lvint_history(ump);
1377 		if (error)
1378 			return error;
1379 		goto again;
1380 	}
1381 
1382 	/* update our integrity descriptor to identify us and timestamp it */
1383 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1384 	microtime(&now_v);
1385 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1386 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1387 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1388 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1389 
1390 	/* writeout integrity descriptor */
1391 	sector = trace->start + trace->wpos;
1392 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1393 			(union dscrptr *) ump->logvol_integrity,
1394 			sector, sector);
1395 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1396 	if (error)
1397 		return error;
1398 
1399 	/* advance write position */
1400 	trace->wpos++; space--;
1401 	if (space >= 1) {
1402 		/* append terminator */
1403 		sector = trace->start + trace->wpos;
1404 		error = udf_write_terminator(ump, sector);
1405 
1406 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1407 	}
1408 
1409 	space = (trace->end - trace->start) - trace->wpos;
1410 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1411 		"space = %d\n", trace->start, trace->end, trace->pos,
1412 		trace->wpos, space));
1413 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1414 		"successfull\n"));
1415 
1416 	return error;
1417 }
1418 
1419 /* --------------------------------------------------------------------- */
1420 
1421 static int
1422 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1423 {
1424 	union dscrptr        *dscr;
1425 	/* struct udf_args *args = &ump->mount_args; */
1426 	struct part_desc     *partd;
1427 	struct part_hdr_desc *parthdr;
1428 	struct udf_bitmap    *bitmap;
1429 	uint32_t phys_part;
1430 	uint32_t lb_num, len;
1431 	int error, dscr_type;
1432 
1433 	/* unallocated space map */
1434 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1435 		partd = ump->partitions[phys_part];
1436 		if (partd == NULL)
1437 			continue;
1438 		parthdr = &partd->_impl_use.part_hdr;
1439 
1440 		lb_num  = udf_rw32(partd->start_loc);
1441 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1442 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
1443 		if (len == 0)
1444 			continue;
1445 
1446 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1447 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1448 		if (!error && dscr) {
1449 			/* analyse */
1450 			dscr_type = udf_rw16(dscr->tag.id);
1451 			if (dscr_type == TAGID_SPACE_BITMAP) {
1452 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1453 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1454 
1455 				/* fill in ump->part_unalloc_bits */
1456 				bitmap = &ump->part_unalloc_bits[phys_part];
1457 				bitmap->blob  = (uint8_t *) dscr;
1458 				bitmap->bits  = dscr->sbd.data;
1459 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1460 				bitmap->pages = NULL;	/* TODO */
1461 				bitmap->data_pos     = 0;
1462 				bitmap->metadata_pos = 0;
1463 			} else {
1464 				free(dscr, M_UDFVOLD);
1465 
1466 				printf( "UDF mount: error reading unallocated "
1467 					"space bitmap\n");
1468 				return EROFS;
1469 			}
1470 		} else {
1471 			/* blank not allowed */
1472 			printf("UDF mount: blank unallocated space bitmap\n");
1473 			return EROFS;
1474 		}
1475 	}
1476 
1477 	/* unallocated space table (not supported) */
1478 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1479 		partd = ump->partitions[phys_part];
1480 		if (partd == NULL)
1481 			continue;
1482 		parthdr = &partd->_impl_use.part_hdr;
1483 
1484 		len     = udf_rw32(parthdr->unalloc_space_table.len);
1485 		if (len) {
1486 			printf("UDF mount: space tables not supported\n");
1487 			return EROFS;
1488 		}
1489 	}
1490 
1491 	/* freed space map */
1492 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1493 		partd = ump->partitions[phys_part];
1494 		if (partd == NULL)
1495 			continue;
1496 		parthdr = &partd->_impl_use.part_hdr;
1497 
1498 		/* freed space map */
1499 		lb_num  = udf_rw32(partd->start_loc);
1500 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1501 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
1502 		if (len == 0)
1503 			continue;
1504 
1505 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1506 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1507 		if (!error && dscr) {
1508 			/* analyse */
1509 			dscr_type = udf_rw16(dscr->tag.id);
1510 			if (dscr_type == TAGID_SPACE_BITMAP) {
1511 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1512 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
1513 
1514 				/* fill in ump->part_freed_bits */
1515 				bitmap = &ump->part_unalloc_bits[phys_part];
1516 				bitmap->blob  = (uint8_t *) dscr;
1517 				bitmap->bits  = dscr->sbd.data;
1518 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1519 				bitmap->pages = NULL;	/* TODO */
1520 				bitmap->data_pos     = 0;
1521 				bitmap->metadata_pos = 0;
1522 			} else {
1523 				free(dscr, M_UDFVOLD);
1524 
1525 				printf( "UDF mount: error reading freed  "
1526 					"space bitmap\n");
1527 				return EROFS;
1528 			}
1529 		} else {
1530 			/* blank not allowed */
1531 			printf("UDF mount: blank freed space bitmap\n");
1532 			return EROFS;
1533 		}
1534 	}
1535 
1536 	/* freed space table (not supported) */
1537 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1538 		partd = ump->partitions[phys_part];
1539 		if (partd == NULL)
1540 			continue;
1541 		parthdr = &partd->_impl_use.part_hdr;
1542 
1543 		len     = udf_rw32(parthdr->freed_space_table.len);
1544 		if (len) {
1545 			printf("UDF mount: space tables not supported\n");
1546 			return EROFS;
1547 		}
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 
1554 /* TODO implement async writeout */
1555 int
1556 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1557 {
1558 	union dscrptr        *dscr;
1559 	/* struct udf_args *args = &ump->mount_args; */
1560 	struct part_desc     *partd;
1561 	struct part_hdr_desc *parthdr;
1562 	uint32_t phys_part;
1563 	uint32_t lb_num, len, ptov;
1564 	int error_all, error;
1565 
1566 	error_all = 0;
1567 	/* unallocated space map */
1568 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1569 		partd = ump->partitions[phys_part];
1570 		if (partd == NULL)
1571 			continue;
1572 		parthdr = &partd->_impl_use.part_hdr;
1573 
1574 		ptov   = udf_rw32(partd->start_loc);
1575 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1576 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
1577 		if (len == 0)
1578 			continue;
1579 
1580 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1581 			lb_num + ptov));
1582 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1583 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1584 				(union dscrptr *) dscr,
1585 				ptov + lb_num, lb_num);
1586 		if (error) {
1587 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1588 			error_all = error;
1589 		}
1590 	}
1591 
1592 	/* freed space map */
1593 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1594 		partd = ump->partitions[phys_part];
1595 		if (partd == NULL)
1596 			continue;
1597 		parthdr = &partd->_impl_use.part_hdr;
1598 
1599 		/* freed space map */
1600 		ptov   = udf_rw32(partd->start_loc);
1601 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1602 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
1603 		if (len == 0)
1604 			continue;
1605 
1606 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1607 			lb_num + ptov));
1608 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1609 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1610 				(union dscrptr *) dscr,
1611 				ptov + lb_num, lb_num);
1612 		if (error) {
1613 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1614 			error_all = error;
1615 		}
1616 	}
1617 
1618 	return error_all;
1619 }
1620 
1621 
1622 static int
1623 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1624 {
1625 	struct udf_node	     *bitmap_node;
1626 	union dscrptr        *dscr;
1627 	struct udf_bitmap    *bitmap;
1628 	uint64_t inflen;
1629 	int error, dscr_type;
1630 
1631 	bitmap_node = ump->metadatabitmap_node;
1632 
1633 	/* only read in when metadata bitmap node is read in */
1634 	if (bitmap_node == NULL)
1635 		return 0;
1636 
1637 	if (bitmap_node->fe) {
1638 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1639 	} else {
1640 		KASSERT(bitmap_node->efe);
1641 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1642 	}
1643 
1644 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1645 		"%"PRIu64" bytes\n", inflen));
1646 
1647 	/* allocate space for bitmap */
1648 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1649 	if (!dscr)
1650 		return ENOMEM;
1651 
1652 	/* set vnode type to regular file or we can't read from it! */
1653 	bitmap_node->vnode->v_type = VREG;
1654 
1655 	/* read in complete metadata bitmap file */
1656 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1657 			dscr,
1658 			inflen, 0,
1659 			UIO_SYSSPACE,
1660 			IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1661 			NULL, NULL);
1662 	if (error) {
1663 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1664 		goto errorout;
1665 	}
1666 
1667 	/* analyse */
1668 	dscr_type = udf_rw16(dscr->tag.id);
1669 	if (dscr_type == TAGID_SPACE_BITMAP) {
1670 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1671 		ump->metadata_unalloc_dscr = &dscr->sbd;
1672 
1673 		/* fill in bitmap bits */
1674 		bitmap = &ump->metadata_unalloc_bits;
1675 		bitmap->blob  = (uint8_t *) dscr;
1676 		bitmap->bits  = dscr->sbd.data;
1677 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1678 		bitmap->pages = NULL;	/* TODO */
1679 		bitmap->data_pos     = 0;
1680 		bitmap->metadata_pos = 0;
1681 	} else {
1682 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1683 		goto errorout;
1684 	}
1685 
1686 	return 0;
1687 
1688 errorout:
1689 	free(dscr, M_UDFVOLD);
1690 	printf( "UDF mount: error reading unallocated "
1691 		"space bitmap for metadata partition\n");
1692 	return EROFS;
1693 }
1694 
1695 
1696 int
1697 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1698 {
1699 	struct udf_node	     *bitmap_node;
1700 	union dscrptr        *dscr;
1701 	uint64_t inflen, new_inflen;
1702 	int dummy, error;
1703 
1704 	bitmap_node = ump->metadatabitmap_node;
1705 
1706 	/* only write out when metadata bitmap node is known */
1707 	if (bitmap_node == NULL)
1708 		return 0;
1709 
1710 	if (bitmap_node->fe) {
1711 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1712 	} else {
1713 		KASSERT(bitmap_node->efe);
1714 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1715 	}
1716 
1717 	/* reduce length to zero */
1718 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1719 	new_inflen = udf_tagsize(dscr, 1);
1720 
1721 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1722 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1723 
1724 	error = udf_resize_node(bitmap_node, 0, &dummy);
1725 	if (error)
1726 		printf("Error resizing metadata space bitmap\n");
1727 
1728 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1729 			dscr,
1730 			new_inflen, 0,
1731 			UIO_SYSSPACE,
1732 			IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1733 			NULL, NULL);
1734 
1735 	bitmap_node->i_flags |= IN_MODIFIED;
1736 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
1737 	error = VOP_FSYNC(bitmap_node->vnode,
1738 			FSCRED, FSYNC_WAIT, 0, 0);
1739 
1740 	if (error)
1741 		printf( "Error writing out metadata partition unalloced "
1742 			"space bitmap!\n");
1743 
1744 	return error;
1745 }
1746 
1747 
1748 /* --------------------------------------------------------------------- */
1749 
1750 /*
1751  * Checks if ump's vds information is correct and complete
1752  */
1753 
1754 int
1755 udf_process_vds(struct udf_mount *ump) {
1756 	union udf_pmap *mapping;
1757 	/* struct udf_args *args = &ump->mount_args; */
1758 	struct logvol_int_desc *lvint;
1759 	struct udf_logvol_info *lvinfo;
1760 	struct part_desc *part;
1761 	uint32_t n_pm, mt_l;
1762 	uint8_t *pmap_pos;
1763 	char *domain_name, *map_name;
1764 	const char *check_name;
1765 	char bits[128];
1766 	int pmap_stype, pmap_size;
1767 	int pmap_type, log_part, phys_part, raw_phys_part;
1768 	int n_phys, n_virt, n_spar, n_meta;
1769 	int len, error;
1770 
1771 	if (ump == NULL)
1772 		return ENOENT;
1773 
1774 	/* we need at least an anchor (trivial, but for safety) */
1775 	if (ump->anchors[0] == NULL)
1776 		return EINVAL;
1777 
1778 	/* we need at least one primary and one logical volume descriptor */
1779 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1780 		return EINVAL;
1781 
1782 	/* we need at least one partition descriptor */
1783 	if (ump->partitions[0] == NULL)
1784 		return EINVAL;
1785 
1786 	/* check logical volume sector size verses device sector size */
1787 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1788 		printf("UDF mount: format violation, lb_size != sector size\n");
1789 		return EINVAL;
1790 	}
1791 
1792 	/* check domain name */
1793 	domain_name = ump->logical_vol->domain_id.id;
1794 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1795 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1796 		return EINVAL;
1797 	}
1798 
1799 	/* retrieve logical volume integrity sequence */
1800 	error = udf_retrieve_lvint(ump);
1801 
1802 	/*
1803 	 * We need at least one logvol integrity descriptor recorded.  Note
1804 	 * that its OK to have an open logical volume integrity here. The VAT
1805 	 * will close/update the integrity.
1806 	 */
1807 	if (ump->logvol_integrity == NULL)
1808 		return EINVAL;
1809 
1810 	/* process derived structures */
1811 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1812 	lvint  = ump->logvol_integrity;
1813 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1814 	ump->logvol_info = lvinfo;
1815 
1816 	/* TODO check udf versions? */
1817 
1818 	/*
1819 	 * check logvol mappings: effective virt->log partmap translation
1820 	 * check and recording of the mapping results. Saves expensive
1821 	 * strncmp() in tight places.
1822 	 */
1823 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1824 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1825 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1826 	pmap_pos =  ump->logical_vol->maps;
1827 
1828 	if (n_pm > UDF_PMAPS) {
1829 		printf("UDF mount: too many mappings\n");
1830 		return EINVAL;
1831 	}
1832 
1833 	ump->data_part = ump->metadata_part = 0;
1834 	n_phys = n_virt = n_spar = n_meta = 0;
1835 	for (log_part = 0; log_part < n_pm; log_part++) {
1836 		mapping = (union udf_pmap *) pmap_pos;
1837 		pmap_stype = pmap_pos[0];
1838 		pmap_size  = pmap_pos[1];
1839 		switch (pmap_stype) {
1840 		case 1:	/* physical mapping */
1841 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1842 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1843 			pmap_type = UDF_VTOP_TYPE_PHYS;
1844 			n_phys++;
1845 			ump->data_part     = log_part;
1846 			ump->metadata_part = log_part;
1847 			break;
1848 		case 2: /* virtual/sparable/meta mapping */
1849 			map_name  = mapping->pm2.part_id.id;
1850 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1851 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1852 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1853 			len = UDF_REGID_ID_SIZE;
1854 
1855 			check_name = "*UDF Virtual Partition";
1856 			if (strncmp(map_name, check_name, len) == 0) {
1857 				pmap_type = UDF_VTOP_TYPE_VIRT;
1858 				n_virt++;
1859 				ump->metadata_part = log_part;
1860 				break;
1861 			}
1862 			check_name = "*UDF Sparable Partition";
1863 			if (strncmp(map_name, check_name, len) == 0) {
1864 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1865 				n_spar++;
1866 				ump->data_part     = log_part;
1867 				ump->metadata_part = log_part;
1868 				break;
1869 			}
1870 			check_name = "*UDF Metadata Partition";
1871 			if (strncmp(map_name, check_name, len) == 0) {
1872 				pmap_type = UDF_VTOP_TYPE_META;
1873 				n_meta++;
1874 				ump->metadata_part = log_part;
1875 				break;
1876 			}
1877 			break;
1878 		default:
1879 			return EINVAL;
1880 		}
1881 
1882 		/*
1883 		 * BUGALERT: some rogue implementations use random physical
1884 		 * partion numbers to break other implementations so lookup
1885 		 * the number.
1886 		 */
1887 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1888 			part = ump->partitions[phys_part];
1889 			if (part == NULL)
1890 				continue;
1891 			if (udf_rw16(part->part_num) == raw_phys_part)
1892 				break;
1893 		}
1894 
1895 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1896 		    raw_phys_part, phys_part, pmap_type));
1897 
1898 		if (phys_part == UDF_PARTITIONS)
1899 			return EINVAL;
1900 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1901 			return EINVAL;
1902 
1903 		ump->vtop   [log_part] = phys_part;
1904 		ump->vtop_tp[log_part] = pmap_type;
1905 
1906 		pmap_pos += pmap_size;
1907 	}
1908 	/* not winning the beauty contest */
1909 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1910 
1911 	/* test some basic UDF assertions/requirements */
1912 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1913 		return EINVAL;
1914 
1915 	if (n_virt) {
1916 		if ((n_phys == 0) || n_spar || n_meta)
1917 			return EINVAL;
1918 	}
1919 	if (n_spar + n_phys == 0)
1920 		return EINVAL;
1921 
1922 	/* determine allocation scheme's based on disc format */
1923 	/* VAT's can only be on a sequential media */
1924 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
1925 	if (n_virt)
1926 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1927 
1928 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1929 	if (n_virt)
1930 		ump->meta_alloc = UDF_ALLOC_VAT;
1931 	if (n_meta)
1932 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
1933 
1934 	/* special cases for pseudo-overwrite */
1935 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1936 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1937 		if (n_meta) {
1938 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1939 		} else {
1940 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1941 		}
1942 	}
1943 
1944 	/* determine default allocation descriptors to use */
1945 	ump->data_allocdscr = UDF_ICB_SHORT_ALLOC;
1946 	ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
1947 	if (n_pm > 1) {
1948 		ump->data_allocdscr = UDF_ICB_LONG_ALLOC;
1949 		ump->meta_allocdscr = UDF_ICB_LONG_ALLOC;
1950 		/* metadata partitions are forced to have short */
1951 		if (n_meta)
1952 			ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
1953 	}
1954 
1955 	/* determine logical volume open/closure actions */
1956 	if (n_virt) {
1957 		ump->lvopen  = 0;
1958 		if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
1959 			ump->lvopen |= UDF_OPEN_SESSION ;
1960 		ump->lvclose = UDF_WRITE_VAT;
1961 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
1962 			ump->lvclose |= UDF_CLOSE_SESSION;
1963 	} else {
1964 		/* `normal' rewritable or non sequential media */
1965 		ump->lvopen  = UDF_WRITE_LVINT;
1966 		ump->lvclose = UDF_WRITE_LVINT;
1967 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
1968 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
1969 	}
1970 
1971 	/*
1972 	 * Determine sheduler error behaviour. For virtual partions, update
1973 	 * the trackinfo; for sparable partitions replace a whole block on the
1974 	 * sparable table. Allways requeue.
1975 	 */
1976 	ump->lvreadwrite = 0;
1977 	if (n_virt)
1978 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
1979 	if (n_spar)
1980 		ump->lvreadwrite = UDF_REMAP_BLOCK;
1981 
1982 	/*
1983 	 * Select our sheduler
1984 	 */
1985 	ump->strategy = &udf_strat_rmw;
1986 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
1987 		ump->strategy = &udf_strat_sequential;
1988 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
1989 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
1990 			ump->strategy = &udf_strat_direct;
1991 	if (n_spar)
1992 		ump->strategy = &udf_strat_rmw;
1993 
1994 	/* print results */
1995 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1996 	    ump->data_alloc, ump->meta_alloc));
1997 	DPRINTF(VOLUMES, ("\tdata partition %d, metadata partition %d\n",
1998 	    ump->data_part, ump->metadata_part));
1999 
2000 	bitmask_snprintf(ump->lvopen,  UDFLOGVOL_BITS, bits, sizeof(bits));
2001 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
2002 	bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
2003 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2004 	bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
2005 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2006 
2007 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2008 		(ump->strategy == &udf_strat_direct) ? "Direct" :
2009 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
2010 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2011 
2012 	/* signal its OK for now */
2013 	return 0;
2014 }
2015 
2016 /* --------------------------------------------------------------------- */
2017 
2018 /*
2019  * Update logical volume name in all structures that keep a record of it. We
2020  * use memmove since each of them might be specified as a source.
2021  *
2022  * Note that it doesn't update the VAT structure!
2023  */
2024 
2025 static void
2026 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2027 {
2028 	struct logvol_desc     *lvd = NULL;
2029 	struct fileset_desc    *fsd = NULL;
2030 	struct udf_lv_info     *lvi = NULL;
2031 
2032 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2033 	lvd = ump->logical_vol;
2034 	fsd = ump->fileset_desc;
2035 	if (ump->implementation)
2036 		lvi = &ump->implementation->_impl_use.lv_info;
2037 
2038 	/* logvol's id might be specified as origional so use memmove here */
2039 	memmove(lvd->logvol_id, logvol_id, 128);
2040 	if (fsd)
2041 		memmove(fsd->logvol_id, logvol_id, 128);
2042 	if (lvi)
2043 		memmove(lvi->logvol_id, logvol_id, 128);
2044 }
2045 
2046 /* --------------------------------------------------------------------- */
2047 
2048 void
2049 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2050 	uint32_t sector)
2051 {
2052 	assert(ump->logical_vol);
2053 
2054 	tag->id 		= udf_rw16(tagid);
2055 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
2056 	tag->cksum		= 0;
2057 	tag->reserved		= 0;
2058 	tag->serial_num		= ump->logical_vol->tag.serial_num;
2059 	tag->tag_loc            = udf_rw32(sector);
2060 }
2061 
2062 
2063 uint64_t
2064 udf_advance_uniqueid(struct udf_mount *ump)
2065 {
2066 	uint64_t unique_id;
2067 
2068 	mutex_enter(&ump->logvol_mutex);
2069 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2070 	if (unique_id < 0x10)
2071 		unique_id = 0x10;
2072 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2073 	mutex_exit(&ump->logvol_mutex);
2074 
2075 	return unique_id;
2076 }
2077 
2078 
2079 static void
2080 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2081 {
2082 	struct udf_mount *ump = udf_node->ump;
2083 	uint32_t num_dirs, num_files;
2084 	int udf_file_type;
2085 
2086 	/* get file type */
2087 	if (udf_node->fe) {
2088 		udf_file_type = udf_node->fe->icbtag.file_type;
2089 	} else {
2090 		udf_file_type = udf_node->efe->icbtag.file_type;
2091 	}
2092 
2093 	/* adjust file count */
2094 	mutex_enter(&ump->allocate_mutex);
2095 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2096 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
2097 		ump->logvol_info->num_directories =
2098 			udf_rw32((num_dirs + sign));
2099 	} else {
2100 		num_files = udf_rw32(ump->logvol_info->num_files);
2101 		ump->logvol_info->num_files =
2102 			udf_rw32((num_files + sign));
2103 	}
2104 	mutex_exit(&ump->allocate_mutex);
2105 }
2106 
2107 
2108 void
2109 udf_osta_charset(struct charspec *charspec)
2110 {
2111 	bzero(charspec, sizeof(struct charspec));
2112 	charspec->type = 0;
2113 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2114 }
2115 
2116 
2117 /* first call udf_set_regid and then the suffix */
2118 void
2119 udf_set_regid(struct regid *regid, char const *name)
2120 {
2121 	bzero(regid, sizeof(struct regid));
2122 	regid->flags    = 0;		/* not dirty and not protected */
2123 	strcpy((char *) regid->id, name);
2124 }
2125 
2126 
2127 void
2128 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2129 {
2130 	uint16_t *ver;
2131 
2132 	ver  = (uint16_t *) regid->id_suffix;
2133 	*ver = ump->logvol_info->min_udf_readver;
2134 }
2135 
2136 
2137 void
2138 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2139 {
2140 	uint16_t *ver;
2141 
2142 	ver  = (uint16_t *) regid->id_suffix;
2143 	*ver = ump->logvol_info->min_udf_readver;
2144 
2145 	regid->id_suffix[2] = 4;	/* unix */
2146 	regid->id_suffix[3] = 8;	/* NetBSD */
2147 }
2148 
2149 
2150 void
2151 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2152 {
2153 	regid->id_suffix[0] = 4;	/* unix */
2154 	regid->id_suffix[1] = 8;	/* NetBSD */
2155 }
2156 
2157 
2158 void
2159 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2160 {
2161 	regid->id_suffix[0] = APP_VERSION_MAIN;
2162 	regid->id_suffix[1] = APP_VERSION_SUB;
2163 }
2164 
2165 static int
2166 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2167 	struct long_ad *parent, uint64_t unique_id)
2168 {
2169 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
2170 	int fidsize = 40;
2171 
2172 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2173 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
2174 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2175 	fid->icb = *parent;
2176 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2177 	fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
2178 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2179 
2180 	return fidsize;
2181 }
2182 
2183 /* --------------------------------------------------------------------- */
2184 
2185 /*
2186  * Extended attribute support. UDF knows of 3 places for extended attributes:
2187  *
2188  * (a) inside the file's (e)fe in the length of the extended attribute area
2189  * before the allocation descriptors/filedata
2190  *
2191  * (b) in a file referenced by (e)fe->ext_attr_icb and
2192  *
2193  * (c) in the e(fe)'s associated stream directory that can hold various
2194  * sub-files. In the stream directory a few fixed named subfiles are reserved
2195  * for NT/Unix ACL's and OS/2 attributes.
2196  *
2197  * NOTE: Extended attributes are read randomly but allways written
2198  * *atomicaly*. For ACL's this interface is propably different but not known
2199  * to me yet.
2200  *
2201  * Order of extended attributes in a space :
2202  *   ECMA 167 EAs
2203  *   Non block aligned Implementation Use EAs
2204  *   Block aligned Implementation Use EAs
2205  *   Application Use EAs
2206  */
2207 
2208 static int
2209 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2210 {
2211 	uint16_t   *spos;
2212 
2213 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2214 		/* checksum valid? */
2215 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2216 		spos = (uint16_t *) implext->data;
2217 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2218 			return EINVAL;
2219 	}
2220 	return 0;
2221 }
2222 
2223 static void
2224 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2225 {
2226 	uint16_t   *spos;
2227 
2228 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2229 		/* set checksum */
2230 		spos = (uint16_t *) implext->data;
2231 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2232 	}
2233 }
2234 
2235 
2236 int
2237 udf_extattr_search_intern(struct udf_node *node,
2238 	uint32_t sattr, char const *sattrname,
2239 	uint32_t *offsetp, uint32_t *lengthp)
2240 {
2241 	struct extattrhdr_desc    *eahdr;
2242 	struct extattr_entry      *attrhdr;
2243 	struct impl_extattr_entry *implext;
2244 	uint32_t    offset, a_l, sector_size;
2245 	 int32_t    l_ea;
2246 	uint8_t    *pos;
2247 	int         error;
2248 
2249 	/* get mountpoint */
2250 	sector_size = node->ump->discinfo.sector_size;
2251 
2252 	/* get information from fe/efe */
2253 	if (node->fe) {
2254 		l_ea  = udf_rw32(node->fe->l_ea);
2255 		eahdr = (struct extattrhdr_desc *) node->fe->data;
2256 	} else {
2257 		assert(node->efe);
2258 		l_ea  = udf_rw32(node->efe->l_ea);
2259 		eahdr = (struct extattrhdr_desc *) node->efe->data;
2260 	}
2261 
2262 	/* something recorded here? */
2263 	if (l_ea == 0)
2264 		return ENOENT;
2265 
2266 	/* check extended attribute tag; what to do if it fails? */
2267 	error = udf_check_tag(eahdr);
2268 	if (error)
2269 		return EINVAL;
2270 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2271 		return EINVAL;
2272 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2273 	if (error)
2274 		return EINVAL;
2275 
2276 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2277 
2278 	/* looking for Ecma-167 attributes? */
2279 	offset = sizeof(struct extattrhdr_desc);
2280 
2281 	/* looking for either implemenation use or application use */
2282 	if (sattr == 2048) {				/* [4/48.10.8] */
2283 		offset = udf_rw32(eahdr->impl_attr_loc);
2284 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2285 			return ENOENT;
2286 	}
2287 	if (sattr == 65536) {				/* [4/48.10.9] */
2288 		offset = udf_rw32(eahdr->appl_attr_loc);
2289 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2290 			return ENOENT;
2291 	}
2292 
2293 	/* paranoia check offset and l_ea */
2294 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2295 		return EINVAL;
2296 
2297 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2298 
2299 	/* find our extended attribute  */
2300 	l_ea -= offset;
2301 	pos = (uint8_t *) eahdr + offset;
2302 
2303 	while (l_ea >= sizeof(struct extattr_entry)) {
2304 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2305 		attrhdr = (struct extattr_entry *) pos;
2306 		implext = (struct impl_extattr_entry *) pos;
2307 
2308 		/* get complete attribute length and check for roque values */
2309 		a_l = udf_rw32(attrhdr->a_l);
2310 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2311 				udf_rw32(attrhdr->type),
2312 				attrhdr->subtype, a_l, l_ea));
2313 		if ((a_l == 0) || (a_l > l_ea))
2314 			return EINVAL;
2315 
2316 		if (attrhdr->type != sattr)
2317 			goto next_attribute;
2318 
2319 		/* we might have found it! */
2320 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
2321 			*offsetp = offset;
2322 			*lengthp = a_l;
2323 			return 0;		/* success */
2324 		}
2325 
2326 		/*
2327 		 * Implementation use and application use extended attributes
2328 		 * have a name to identify. They share the same structure only
2329 		 * UDF implementation use extended attributes have a checksum
2330 		 * we need to check
2331 		 */
2332 
2333 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2334 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
2335 			/* we have found our appl/implementation attribute */
2336 			*offsetp = offset;
2337 			*lengthp = a_l;
2338 			return 0;		/* success */
2339 		}
2340 
2341 next_attribute:
2342 		/* next attribute */
2343 		pos    += a_l;
2344 		l_ea   -= a_l;
2345 		offset += a_l;
2346 	}
2347 	/* not found */
2348 	return ENOENT;
2349 }
2350 
2351 
2352 static void
2353 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2354 	struct extattr_entry *extattr)
2355 {
2356 	struct file_entry      *fe;
2357 	struct extfile_entry   *efe;
2358 	struct extattrhdr_desc *extattrhdr;
2359 	struct impl_extattr_entry *implext;
2360 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2361 	uint32_t *l_eap, l_ad;
2362 	uint16_t *spos;
2363 	uint8_t *bpos, *data;
2364 
2365 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2366 		fe    = &dscr->fe;
2367 		data  = fe->data;
2368 		l_eap = &fe->l_ea;
2369 		l_ad  = udf_rw32(fe->l_ad);
2370 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2371 		efe   = &dscr->efe;
2372 		data  = efe->data;
2373 		l_eap = &efe->l_ea;
2374 		l_ad  = udf_rw32(efe->l_ad);
2375 	} else {
2376 		panic("Bad tag passed to udf_extattr_insert_internal");
2377 	}
2378 
2379 	/* can't append already written to file descriptors yet */
2380 	assert(l_ad == 0);
2381 
2382 	/* should have a header! */
2383 	extattrhdr = (struct extattrhdr_desc *) data;
2384 	l_ea = udf_rw32(*l_eap);
2385 	if (l_ea == 0) {
2386 		/* create empty extended attribute header */
2387 		exthdr_len = sizeof(struct extattrhdr_desc);
2388 
2389 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2390 			/* loc */ 0);
2391 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2392 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2393 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
2394 
2395 		/* record extended attribute header length */
2396 		l_ea = exthdr_len;
2397 		*l_eap = udf_rw32(l_ea);
2398 	}
2399 
2400 	/* extract locations */
2401 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2402 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2403 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2404 		impl_attr_loc = l_ea;
2405 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2406 		appl_attr_loc = l_ea;
2407 
2408 	/* Ecma 167 EAs */
2409 	if (udf_rw32(extattr->type) < 2048) {
2410 		assert(impl_attr_loc == l_ea);
2411 		assert(appl_attr_loc == l_ea);
2412 	}
2413 
2414 	/* implementation use extended attributes */
2415 	if (udf_rw32(extattr->type) == 2048) {
2416 		assert(appl_attr_loc == l_ea);
2417 
2418 		/* calculate and write extended attribute header checksum */
2419 		implext = (struct impl_extattr_entry *) extattr;
2420 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
2421 		spos = (uint16_t *) implext->data;
2422 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2423 	}
2424 
2425 	/* application use extended attributes */
2426 	assert(udf_rw32(extattr->type) != 65536);
2427 	assert(appl_attr_loc == l_ea);
2428 
2429 	/* append the attribute at the end of the current space */
2430 	bpos = data + udf_rw32(*l_eap);
2431 	a_l  = udf_rw32(extattr->a_l);
2432 
2433 	/* update impl. attribute locations */
2434 	if (udf_rw32(extattr->type) < 2048) {
2435 		impl_attr_loc = l_ea + a_l;
2436 		appl_attr_loc = l_ea + a_l;
2437 	}
2438 	if (udf_rw32(extattr->type) == 2048) {
2439 		appl_attr_loc = l_ea + a_l;
2440 	}
2441 
2442 	/* copy and advance */
2443 	memcpy(bpos, extattr, a_l);
2444 	l_ea += a_l;
2445 	*l_eap = udf_rw32(l_ea);
2446 
2447 	/* do the `dance` again backwards */
2448 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2449 		if (impl_attr_loc == l_ea)
2450 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2451 		if (appl_attr_loc == l_ea)
2452 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2453 	}
2454 
2455 	/* store offsets */
2456 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2457 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2458 }
2459 
2460 
2461 /* --------------------------------------------------------------------- */
2462 
2463 static int
2464 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2465 {
2466 	struct udf_mount       *ump;
2467 	struct udf_logvol_info *lvinfo;
2468 	struct impl_extattr_entry     *implext;
2469 	struct vatlvext_extattr_entry  lvext;
2470 	const char *extstr = "*UDF VAT LVExtension";
2471 	uint64_t    vat_uniqueid;
2472 	uint32_t    offset, a_l;
2473 	uint8_t    *ea_start, *lvextpos;
2474 	int         error;
2475 
2476 	/* get mountpoint and lvinfo */
2477 	ump    = vat_node->ump;
2478 	lvinfo = ump->logvol_info;
2479 
2480 	/* get information from fe/efe */
2481 	if (vat_node->fe) {
2482 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2483 		ea_start     = vat_node->fe->data;
2484 	} else {
2485 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2486 		ea_start     = vat_node->efe->data;
2487 	}
2488 
2489 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2490 	if (error)
2491 		return error;
2492 
2493 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2494 	error = udf_impl_extattr_check(implext);
2495 	if (error)
2496 		return error;
2497 
2498 	/* paranoia */
2499 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2500 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2501 		return EINVAL;
2502 	}
2503 
2504 	/*
2505 	 * we have found our "VAT LVExtension attribute. BUT due to a
2506 	 * bug in the specification it might not be word aligned so
2507 	 * copy first to avoid panics on some machines (!!)
2508 	 */
2509 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2510 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2511 	memcpy(&lvext, lvextpos, sizeof(lvext));
2512 
2513 	/* check if it was updated the last time */
2514 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2515 		lvinfo->num_files       = lvext.num_files;
2516 		lvinfo->num_directories = lvext.num_directories;
2517 		udf_update_logvolname(ump, lvext.logvol_id);
2518 	} else {
2519 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2520 		/* replace VAT LVExt by free space EA */
2521 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2522 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2523 		udf_calc_impl_extattr_checksum(implext);
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 
2530 static int
2531 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2532 {
2533 	struct udf_mount       *ump;
2534 	struct udf_logvol_info *lvinfo;
2535 	struct impl_extattr_entry     *implext;
2536 	struct vatlvext_extattr_entry  lvext;
2537 	const char *extstr = "*UDF VAT LVExtension";
2538 	uint64_t    vat_uniqueid;
2539 	uint32_t    offset, a_l;
2540 	uint8_t    *ea_start, *lvextpos;
2541 	int         error;
2542 
2543 	/* get mountpoint and lvinfo */
2544 	ump    = vat_node->ump;
2545 	lvinfo = ump->logvol_info;
2546 
2547 	/* get information from fe/efe */
2548 	if (vat_node->fe) {
2549 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2550 		ea_start     = vat_node->fe->data;
2551 	} else {
2552 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2553 		ea_start     = vat_node->efe->data;
2554 	}
2555 
2556 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2557 	if (error)
2558 		return error;
2559 	/* found, it existed */
2560 
2561 	/* paranoia */
2562 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2563 	error = udf_impl_extattr_check(implext);
2564 	if (error) {
2565 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2566 		return error;
2567 	}
2568 	/* it is correct */
2569 
2570 	/*
2571 	 * we have found our "VAT LVExtension attribute. BUT due to a
2572 	 * bug in the specification it might not be word aligned so
2573 	 * copy first to avoid panics on some machines (!!)
2574 	 */
2575 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2576 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2577 
2578 	lvext.unique_id_chk   = vat_uniqueid;
2579 	lvext.num_files       = lvinfo->num_files;
2580 	lvext.num_directories = lvinfo->num_directories;
2581 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2582 
2583 	memcpy(lvextpos, &lvext, sizeof(lvext));
2584 
2585 	return 0;
2586 }
2587 
2588 /* --------------------------------------------------------------------- */
2589 
2590 int
2591 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2592 {
2593 	struct udf_mount *ump = vat_node->ump;
2594 
2595 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2596 		return EINVAL;
2597 
2598 	memcpy(blob, ump->vat_table + offset, size);
2599 	return 0;
2600 }
2601 
2602 int
2603 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2604 {
2605 	struct udf_mount *ump = vat_node->ump;
2606 	uint32_t offset_high;
2607 	uint8_t *new_vat_table;
2608 
2609 	/* extent VAT allocation if needed */
2610 	offset_high = offset + size;
2611 	if (offset_high >= ump->vat_table_alloc_len) {
2612 		/* realloc */
2613 		new_vat_table = realloc(ump->vat_table,
2614 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2615 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
2616 		if (!new_vat_table) {
2617 			printf("udf_vat_write: can't extent VAT, out of mem\n");
2618 			return ENOMEM;
2619 		}
2620 		ump->vat_table = new_vat_table;
2621 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2622 	}
2623 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2624 
2625 	memcpy(ump->vat_table + offset, blob, size);
2626 	return 0;
2627 }
2628 
2629 /* --------------------------------------------------------------------- */
2630 
2631 /* TODO support previous VAT location writeout */
2632 static int
2633 udf_update_vat_descriptor(struct udf_mount *ump)
2634 {
2635 	struct udf_node *vat_node = ump->vat_node;
2636 	struct udf_logvol_info *lvinfo = ump->logvol_info;
2637 	struct icb_tag *icbtag;
2638 	struct udf_oldvat_tail *oldvat_tl;
2639 	struct udf_vat *vat;
2640 	uint64_t unique_id;
2641 	uint32_t lb_size;
2642 	uint8_t *raw_vat;
2643 	int filetype, error;
2644 
2645 	KASSERT(vat_node);
2646 	KASSERT(lvinfo);
2647 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2648 
2649 	/* get our new unique_id */
2650 	unique_id = udf_advance_uniqueid(ump);
2651 
2652 	/* get information from fe/efe */
2653 	if (vat_node->fe) {
2654 		icbtag    = &vat_node->fe->icbtag;
2655 		vat_node->fe->unique_id = udf_rw64(unique_id);
2656 	} else {
2657 		icbtag = &vat_node->efe->icbtag;
2658 		vat_node->efe->unique_id = udf_rw64(unique_id);
2659 	}
2660 
2661 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2662 	filetype = icbtag->file_type;
2663 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2664 
2665 	/* allocate piece to process head or tail of VAT file */
2666 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2667 
2668 	if (filetype == 0) {
2669 		/*
2670 		 * Update "*UDF VAT LVExtension" extended attribute from the
2671 		 * lvint if present.
2672 		 */
2673 		udf_update_vat_extattr_from_lvid(vat_node);
2674 
2675 		/* setup identifying regid */
2676 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2677 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2678 
2679 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2680 		udf_add_udf_regid(ump, &oldvat_tl->id);
2681 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2682 
2683 		/* write out new tail of virtual allocation table file */
2684 		error = udf_vat_write(vat_node, raw_vat,
2685 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2686 	} else {
2687 		/* compose the VAT2 header */
2688 		vat = (struct udf_vat *) raw_vat;
2689 		memset(vat, 0, sizeof(struct udf_vat));
2690 
2691 		vat->header_len       = udf_rw16(152);	/* as per spec */
2692 		vat->impl_use_len     = udf_rw16(0);
2693 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2694 		vat->prev_vat         = udf_rw32(0xffffffff);
2695 		vat->num_files        = lvinfo->num_files;
2696 		vat->num_directories  = lvinfo->num_directories;
2697 		vat->min_udf_readver  = lvinfo->min_udf_readver;
2698 		vat->min_udf_writever = lvinfo->min_udf_writever;
2699 		vat->max_udf_writever = lvinfo->max_udf_writever;
2700 
2701 		error = udf_vat_write(vat_node, raw_vat,
2702 			sizeof(struct udf_vat), 0);
2703 	}
2704 	free(raw_vat, M_TEMP);
2705 
2706 	return error;	/* success! */
2707 }
2708 
2709 
2710 int
2711 udf_writeout_vat(struct udf_mount *ump)
2712 {
2713 	struct udf_node *vat_node = ump->vat_node;
2714 	uint32_t vat_length;
2715 	int error;
2716 
2717 	KASSERT(vat_node);
2718 
2719 	DPRINTF(CALL, ("udf_writeout_vat\n"));
2720 
2721 	mutex_enter(&ump->allocate_mutex);
2722 	udf_update_vat_descriptor(ump);
2723 
2724 	/* write out the VAT contents ; TODO intelligent writing */
2725 	vat_length = ump->vat_table_len;
2726 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2727 		ump->vat_table, ump->vat_table_len, 0,
2728 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2729 	if (error) {
2730 		printf("udf_writeout_vat: failed to write out VAT contents\n");
2731 		goto out;
2732 	}
2733 
2734 	mutex_exit(&ump->allocate_mutex);
2735 
2736 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2737 	error = VOP_FSYNC(ump->vat_node->vnode,
2738 			FSCRED, FSYNC_WAIT, 0, 0);
2739 	if (error)
2740 		printf("udf_writeout_vat: error writing VAT node!\n");
2741 out:
2742 
2743 	return error;
2744 }
2745 
2746 /* --------------------------------------------------------------------- */
2747 
2748 /*
2749  * Read in relevant pieces of VAT file and check if its indeed a VAT file
2750  * descriptor. If OK, read in complete VAT file.
2751  */
2752 
2753 static int
2754 udf_check_for_vat(struct udf_node *vat_node)
2755 {
2756 	struct udf_mount *ump;
2757 	struct icb_tag   *icbtag;
2758 	struct timestamp *mtime;
2759 	struct udf_vat   *vat;
2760 	struct udf_oldvat_tail *oldvat_tl;
2761 	struct udf_logvol_info *lvinfo;
2762 	uint64_t  unique_id;
2763 	uint32_t  vat_length;
2764 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
2765 	uint32_t  sector_size;
2766 	uint32_t *raw_vat;
2767 	uint8_t  *vat_table;
2768 	char     *regid_name;
2769 	int filetype;
2770 	int error;
2771 
2772 	/* vat_length is really 64 bits though impossible */
2773 
2774 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
2775 	if (!vat_node)
2776 		return ENOENT;
2777 
2778 	/* get mount info */
2779 	ump = vat_node->ump;
2780 	sector_size = udf_rw32(ump->logical_vol->lb_size);
2781 
2782 	/* check assertions */
2783 	assert(vat_node->fe || vat_node->efe);
2784 	assert(ump->logvol_integrity);
2785 
2786 	/* set vnode type to regular file or we can't read from it! */
2787 	vat_node->vnode->v_type = VREG;
2788 
2789 	/* get information from fe/efe */
2790 	if (vat_node->fe) {
2791 		vat_length = udf_rw64(vat_node->fe->inf_len);
2792 		icbtag    = &vat_node->fe->icbtag;
2793 		mtime     = &vat_node->fe->mtime;
2794 		unique_id = udf_rw64(vat_node->fe->unique_id);
2795 	} else {
2796 		vat_length = udf_rw64(vat_node->efe->inf_len);
2797 		icbtag = &vat_node->efe->icbtag;
2798 		mtime  = &vat_node->efe->mtime;
2799 		unique_id = udf_rw64(vat_node->efe->unique_id);
2800 	}
2801 
2802 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2803 	filetype = icbtag->file_type;
2804 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2805 		return ENOENT;
2806 
2807 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2808 
2809 	vat_table_alloc_len =
2810 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2811 			* UDF_VAT_CHUNKSIZE;
2812 
2813 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2814 		M_CANFAIL | M_WAITOK);
2815 	if (vat_table == NULL) {
2816 		printf("allocation of %d bytes failed for VAT\n",
2817 			vat_table_alloc_len);
2818 		return ENOMEM;
2819 	}
2820 
2821 	/* allocate piece to read in head or tail of VAT file */
2822 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2823 
2824 	/*
2825 	 * check contents of the file if its the old 1.50 VAT table format.
2826 	 * Its notoriously broken and allthough some implementations support an
2827 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
2828 	 * to be useable since a lot of implementations don't maintain it.
2829 	 */
2830 	lvinfo = ump->logvol_info;
2831 
2832 	if (filetype == 0) {
2833 		/* definition */
2834 		vat_offset  = 0;
2835 		vat_entries = (vat_length-36)/4;
2836 
2837 		/* read in tail of virtual allocation table file */
2838 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2839 				(uint8_t *) raw_vat,
2840 				sizeof(struct udf_oldvat_tail),
2841 				vat_entries * 4,
2842 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2843 				NULL, NULL);
2844 		if (error)
2845 			goto out;
2846 
2847 		/* check 1.50 VAT */
2848 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2849 		regid_name = (char *) oldvat_tl->id.id;
2850 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2851 		if (error) {
2852 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2853 			error = ENOENT;
2854 			goto out;
2855 		}
2856 
2857 		/*
2858 		 * update LVID from "*UDF VAT LVExtension" extended attribute
2859 		 * if present.
2860 		 */
2861 		udf_update_lvid_from_vat_extattr(vat_node);
2862 	} else {
2863 		/* read in head of virtual allocation table file */
2864 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2865 				(uint8_t *) raw_vat,
2866 				sizeof(struct udf_vat), 0,
2867 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2868 				NULL, NULL);
2869 		if (error)
2870 			goto out;
2871 
2872 		/* definition */
2873 		vat = (struct udf_vat *) raw_vat;
2874 		vat_offset  = vat->header_len;
2875 		vat_entries = (vat_length - vat_offset)/4;
2876 
2877 		assert(lvinfo);
2878 		lvinfo->num_files        = vat->num_files;
2879 		lvinfo->num_directories  = vat->num_directories;
2880 		lvinfo->min_udf_readver  = vat->min_udf_readver;
2881 		lvinfo->min_udf_writever = vat->min_udf_writever;
2882 		lvinfo->max_udf_writever = vat->max_udf_writever;
2883 
2884 		udf_update_logvolname(ump, vat->logvol_id);
2885 	}
2886 
2887 	/* read in complete VAT file */
2888 	error = vn_rdwr(UIO_READ, vat_node->vnode,
2889 			vat_table,
2890 			vat_length, 0,
2891 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2892 			NULL, NULL);
2893 	if (error)
2894 		printf("read in of complete VAT file failed (error %d)\n",
2895 			error);
2896 	if (error)
2897 		goto out;
2898 
2899 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2900 	ump->logvol_integrity->lvint_next_unique_id = unique_id;
2901 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2902 	ump->logvol_integrity->time           = *mtime;
2903 
2904 	ump->vat_table_len = vat_length;
2905 	ump->vat_table_alloc_len = vat_table_alloc_len;
2906 	ump->vat_table   = vat_table;
2907 	ump->vat_offset  = vat_offset;
2908 	ump->vat_entries = vat_entries;
2909 	ump->vat_last_free_lb = 0;		/* start at beginning */
2910 
2911 out:
2912 	if (error) {
2913 		if (vat_table)
2914 			free(vat_table, M_UDFVOLD);
2915 	}
2916 	free(raw_vat, M_TEMP);
2917 
2918 	return error;
2919 }
2920 
2921 /* --------------------------------------------------------------------- */
2922 
2923 static int
2924 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
2925 {
2926 	struct udf_node *vat_node;
2927 	struct long_ad	 icb_loc;
2928 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
2929 	int error;
2930 
2931 	/* mapping info not needed */
2932 	mapping = mapping;
2933 
2934 	vat_loc = ump->last_possible_vat_location;
2935 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
2936 
2937 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
2938 		vat_loc, early_vat_loc));
2939 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
2940 	late_vat_loc  = vat_loc + 1024;
2941 
2942 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
2943 		vat_loc, early_vat_loc));
2944 
2945 	/* start looking from the end of the range */
2946 	do {
2947 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
2948 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
2949 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
2950 
2951 		error = udf_get_node(ump, &icb_loc, &vat_node);
2952 		if (!error) {
2953 			error = udf_check_for_vat(vat_node);
2954 			DPRINTFIF(VOLUMES, !error,
2955 				("VAT accepted at %d\n", vat_loc));
2956 			if (!error)
2957 				break;
2958 		}
2959 		if (vat_node) {
2960 			vput(vat_node->vnode);
2961 			vat_node = NULL;
2962 		}
2963 		vat_loc--;	/* walk backwards */
2964 	} while (vat_loc >= early_vat_loc);
2965 
2966 	/* keep our VAT node around */
2967 	if (vat_node) {
2968 		UDF_SET_SYSTEMFILE(vat_node->vnode);
2969 		ump->vat_node = vat_node;
2970 	}
2971 
2972 	return error;
2973 }
2974 
2975 /* --------------------------------------------------------------------- */
2976 
2977 static int
2978 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
2979 {
2980 	union dscrptr *dscr;
2981 	struct part_map_spare *pms = &mapping->pms;
2982 	uint32_t lb_num;
2983 	int spar, error;
2984 
2985 	/*
2986 	 * The partition mapping passed on to us specifies the information we
2987 	 * need to locate and initialise the sparable partition mapping
2988 	 * information we need.
2989 	 */
2990 
2991 	DPRINTF(VOLUMES, ("Read sparable table\n"));
2992 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
2993 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
2994 
2995 	for (spar = 0; spar < pms->n_st; spar++) {
2996 		lb_num = pms->st_loc[spar];
2997 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
2998 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
2999 		if (!error && dscr) {
3000 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3001 				if (ump->sparing_table)
3002 					free(ump->sparing_table, M_UDFVOLD);
3003 				ump->sparing_table = &dscr->spt;
3004 				dscr = NULL;
3005 				DPRINTF(VOLUMES,
3006 				    ("Sparing table accepted (%d entries)\n",
3007 				     udf_rw16(ump->sparing_table->rt_l)));
3008 				break;	/* we're done */
3009 			}
3010 		}
3011 		if (dscr)
3012 			free(dscr, M_UDFVOLD);
3013 	}
3014 
3015 	if (ump->sparing_table)
3016 		return 0;
3017 
3018 	return ENOENT;
3019 }
3020 
3021 /* --------------------------------------------------------------------- */
3022 
3023 static int
3024 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3025 {
3026 	struct part_map_meta *pmm = &mapping->pmm;
3027 	struct long_ad	 icb_loc;
3028 	struct vnode *vp;
3029 	int error;
3030 
3031 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3032 	icb_loc.loc.part_num = pmm->part_num;
3033 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
3034 	DPRINTF(VOLUMES, ("Metadata file\n"));
3035 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3036 	if (ump->metadata_node) {
3037 		vp = ump->metadata_node->vnode;
3038 		UDF_SET_SYSTEMFILE(vp);
3039 	}
3040 
3041 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
3042 	if (icb_loc.loc.lb_num != -1) {
3043 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
3044 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3045 		if (ump->metadatamirror_node) {
3046 			vp = ump->metadatamirror_node->vnode;
3047 			UDF_SET_SYSTEMFILE(vp);
3048 		}
3049 	}
3050 
3051 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
3052 	if (icb_loc.loc.lb_num != -1) {
3053 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3054 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3055 		if (ump->metadatabitmap_node) {
3056 			vp = ump->metadatabitmap_node->vnode;
3057 			UDF_SET_SYSTEMFILE(vp);
3058 		}
3059 	}
3060 
3061 	/* if we're mounting read-only we relax the requirements */
3062 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3063 		error = EFAULT;
3064 		if (ump->metadata_node)
3065 			error = 0;
3066 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3067 			printf( "udf mount: Metadata file not readable, "
3068 				"substituting Metadata copy file\n");
3069 			ump->metadata_node = ump->metadatamirror_node;
3070 			ump->metadatamirror_node = NULL;
3071 			error = 0;
3072 		}
3073 	} else {
3074 		/* mounting read/write */
3075 		/* XXX DISABLED! metadata writing is not working yet XXX */
3076 /*		if (error)  */
3077 			error = EROFS;
3078 	}
3079 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3080 				   "metadata files\n"));
3081 	return error;
3082 }
3083 
3084 /* --------------------------------------------------------------------- */
3085 
3086 int
3087 udf_read_vds_tables(struct udf_mount *ump)
3088 {
3089 	union udf_pmap *mapping;
3090 	/* struct udf_args *args = &ump->mount_args; */
3091 	uint32_t n_pm, mt_l;
3092 	uint32_t log_part;
3093 	uint8_t *pmap_pos;
3094 	int pmap_size;
3095 	int error;
3096 
3097 	/* Iterate (again) over the part mappings for locations   */
3098 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
3099 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
3100 	pmap_pos =  ump->logical_vol->maps;
3101 
3102 	for (log_part = 0; log_part < n_pm; log_part++) {
3103 		mapping = (union udf_pmap *) pmap_pos;
3104 		switch (ump->vtop_tp[log_part]) {
3105 		case UDF_VTOP_TYPE_PHYS :
3106 			/* nothing */
3107 			break;
3108 		case UDF_VTOP_TYPE_VIRT :
3109 			/* search and load VAT */
3110 			error = udf_search_vat(ump, mapping);
3111 			if (error)
3112 				return ENOENT;
3113 			break;
3114 		case UDF_VTOP_TYPE_SPARABLE :
3115 			/* load one of the sparable tables */
3116 			error = udf_read_sparables(ump, mapping);
3117 			if (error)
3118 				return ENOENT;
3119 			break;
3120 		case UDF_VTOP_TYPE_META :
3121 			/* load the associated file descriptors */
3122 			error = udf_read_metadata_nodes(ump, mapping);
3123 			if (error)
3124 				return ENOENT;
3125 			break;
3126 		default:
3127 			break;
3128 		}
3129 		pmap_size  = pmap_pos[1];
3130 		pmap_pos  += pmap_size;
3131 	}
3132 
3133 	/* read in and check unallocated and free space info if writing */
3134 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3135 		error = udf_read_physical_partition_spacetables(ump);
3136 		if (error)
3137 			return error;
3138 
3139 		/* also read in metadata partion spacebitmap if defined */
3140 		error = udf_read_metadata_partition_spacetable(ump);
3141 			return error;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 /* --------------------------------------------------------------------- */
3148 
3149 int
3150 udf_read_rootdirs(struct udf_mount *ump)
3151 {
3152 	union dscrptr *dscr;
3153 	/* struct udf_args *args = &ump->mount_args; */
3154 	struct udf_node *rootdir_node, *streamdir_node;
3155 	struct long_ad  fsd_loc, *dir_loc;
3156 	uint32_t lb_num, dummy;
3157 	uint32_t fsd_len;
3158 	int dscr_type;
3159 	int error;
3160 
3161 	/* TODO implement FSD reading in separate function like integrity? */
3162 	/* get fileset descriptor sequence */
3163 	fsd_loc = ump->logical_vol->lv_fsd_loc;
3164 	fsd_len = udf_rw32(fsd_loc.len);
3165 
3166 	dscr  = NULL;
3167 	error = 0;
3168 	while (fsd_len || error) {
3169 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3170 		/* translate fsd_loc to lb_num */
3171 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3172 		if (error)
3173 			break;
3174 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3175 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3176 		/* end markers */
3177 		if (error || (dscr == NULL))
3178 			break;
3179 
3180 		/* analyse */
3181 		dscr_type = udf_rw16(dscr->tag.id);
3182 		if (dscr_type == TAGID_TERM)
3183 			break;
3184 		if (dscr_type != TAGID_FSD) {
3185 			free(dscr, M_UDFVOLD);
3186 			return ENOENT;
3187 		}
3188 
3189 		/*
3190 		 * TODO check for multiple fileset descriptors; its only
3191 		 * picking the last now. Also check for FSD
3192 		 * correctness/interpretability
3193 		 */
3194 
3195 		/* update */
3196 		if (ump->fileset_desc) {
3197 			free(ump->fileset_desc, M_UDFVOLD);
3198 		}
3199 		ump->fileset_desc = &dscr->fsd;
3200 		dscr = NULL;
3201 
3202 		/* continue to the next fsd */
3203 		fsd_len -= ump->discinfo.sector_size;
3204 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3205 
3206 		/* follow up to fsd->next_ex (long_ad) if its not null */
3207 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3208 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3209 			fsd_loc = ump->fileset_desc->next_ex;
3210 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3211 		}
3212 	}
3213 	if (dscr)
3214 		free(dscr, M_UDFVOLD);
3215 
3216 	/* there has to be one */
3217 	if (ump->fileset_desc == NULL)
3218 		return ENOENT;
3219 
3220 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
3221 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3222 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3223 
3224 	/*
3225 	 * Now the FSD is known, read in the rootdirectory and if one exists,
3226 	 * the system stream dir. Some files in the system streamdir are not
3227 	 * wanted in this implementation since they are not maintained. If
3228 	 * writing is enabled we'll delete these files if they exist.
3229 	 */
3230 
3231 	rootdir_node = streamdir_node = NULL;
3232 	dir_loc = NULL;
3233 
3234 	/* try to read in the rootdir */
3235 	dir_loc = &ump->fileset_desc->rootdir_icb;
3236 	error = udf_get_node(ump, dir_loc, &rootdir_node);
3237 	if (error)
3238 		return ENOENT;
3239 
3240 	/* aparently it read in fine */
3241 
3242 	/*
3243 	 * Try the system stream directory; not very likely in the ones we
3244 	 * test, but for completeness.
3245 	 */
3246 	dir_loc = &ump->fileset_desc->streamdir_icb;
3247 	if (udf_rw32(dir_loc->len)) {
3248 		printf("udf_read_rootdirs: streamdir defined ");
3249 		error = udf_get_node(ump, dir_loc, &streamdir_node);
3250 		if (error) {
3251 			printf("but error in streamdir reading\n");
3252 		} else {
3253 			printf("but ignored\n");
3254 			/*
3255 			 * TODO process streamdir `baddies' i.e. files we dont
3256 			 * want if R/W
3257 			 */
3258 		}
3259 	}
3260 
3261 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3262 
3263 	/* release the vnodes again; they'll be auto-recycled later */
3264 	if (streamdir_node) {
3265 		vput(streamdir_node->vnode);
3266 	}
3267 	if (rootdir_node) {
3268 		vput(rootdir_node->vnode);
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 /* --------------------------------------------------------------------- */
3275 
3276 /* To make absolutely sure we are NOT returning zero, add one :) */
3277 
3278 long
3279 udf_calchash(struct long_ad *icbptr)
3280 {
3281 	/* ought to be enough since each mountpoint has its own chain */
3282 	return udf_rw32(icbptr->loc.lb_num) + 1;
3283 }
3284 
3285 
3286 static struct udf_node *
3287 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3288 {
3289 	struct udf_node *node;
3290 	struct vnode *vp;
3291 	uint32_t hashline;
3292 
3293 loop:
3294 	mutex_enter(&ump->ihash_lock);
3295 
3296 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
3297 	LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
3298 		assert(node);
3299 		if (node->loc.loc.lb_num   == icbptr->loc.lb_num &&
3300 		    node->loc.loc.part_num == icbptr->loc.part_num) {
3301 			vp = node->vnode;
3302 			assert(vp);
3303 			mutex_enter(&vp->v_interlock);
3304 			mutex_exit(&ump->ihash_lock);
3305 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
3306 				goto loop;
3307 			return node;
3308 		}
3309 	}
3310 	mutex_exit(&ump->ihash_lock);
3311 
3312 	return NULL;
3313 }
3314 
3315 
3316 static void
3317 udf_sorted_list_insert(struct udf_node *node)
3318 {
3319 	struct udf_mount *ump;
3320 	struct udf_node  *s_node, *last_node;
3321 	uint32_t loc, s_loc;
3322 
3323 	ump = node->ump;
3324 	last_node = NULL;	/* XXX gcc */
3325 
3326 	if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
3327 		LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
3328 		return;
3329 	}
3330 
3331 	/*
3332 	 * We sort on logical block number here and not on physical block
3333 	 * number here. Ideally we should go for the physical block nr to get
3334 	 * better sync performance though this sort will ensure that packets
3335 	 * won't get spit up unnessisarily.
3336 	 */
3337 
3338 	loc = udf_rw32(node->loc.loc.lb_num);
3339 	LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
3340 		s_loc = udf_rw32(s_node->loc.loc.lb_num);
3341 		if (s_loc > loc) {
3342 			LIST_INSERT_BEFORE(s_node, node, sortchain);
3343 			return;
3344 		}
3345 		last_node = s_node;
3346 	}
3347 	LIST_INSERT_AFTER(last_node, node, sortchain);
3348 }
3349 
3350 
3351 static void
3352 udf_register_node(struct udf_node *node)
3353 {
3354 	struct udf_mount *ump;
3355 	struct udf_node *chk;
3356 	uint32_t hashline;
3357 
3358 	ump = node->ump;
3359 	mutex_enter(&ump->ihash_lock);
3360 
3361 	/* add to our hash table */
3362 	hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
3363 #ifdef DEBUG
3364 	LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
3365 		assert(chk);
3366 		if (chk->loc.loc.lb_num   == node->loc.loc.lb_num &&
3367 		    chk->loc.loc.part_num == node->loc.loc.part_num)
3368 			panic("Double node entered\n");
3369 	}
3370 #else
3371 	chk = NULL;
3372 #endif
3373 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
3374 
3375 	/* add to our sorted list */
3376 	udf_sorted_list_insert(node);
3377 
3378 	mutex_exit(&ump->ihash_lock);
3379 }
3380 
3381 
3382 static void
3383 udf_deregister_node(struct udf_node *node)
3384 {
3385 	struct udf_mount *ump;
3386 
3387 	ump = node->ump;
3388 	mutex_enter(&ump->ihash_lock);
3389 
3390 	/* from hash and sorted list */
3391 	LIST_REMOVE(node, hashchain);
3392 	LIST_REMOVE(node, sortchain);
3393 
3394 	mutex_exit(&ump->ihash_lock);
3395 }
3396 
3397 /* --------------------------------------------------------------------- */
3398 
3399 int
3400 udf_open_logvol(struct udf_mount *ump)
3401 {
3402 	int logvol_integrity;
3403 	int error;
3404 
3405 	/* already/still open? */
3406 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3407 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
3408 		return 0;
3409 
3410 	/* can we open it ? */
3411 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3412 		return EROFS;
3413 
3414 	/* setup write parameters */
3415 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3416 	if ((error = udf_setup_writeparams(ump)) != 0)
3417 		return error;
3418 
3419 	/* determine data and metadata tracks (most likely same) */
3420 	error = udf_search_writing_tracks(ump);
3421 	if (error) {
3422 		/* most likely lack of space */
3423 		printf("udf_open_logvol: error searching writing tracks\n");
3424 		return EROFS;
3425 	}
3426 
3427 	/* writeout/update lvint on disc or only in memory */
3428 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
3429 	if (ump->lvopen & UDF_OPEN_SESSION) {
3430 		/* TODO implement writeout of VRS + VDS */
3431 		printf( "udf_open_logvol:Opening a closed session not yet "
3432 			"implemented\n");
3433 		return EROFS;
3434 
3435 		/* determine data and metadata tracks again */
3436 		error = udf_search_writing_tracks(ump);
3437 	}
3438 
3439 	/* mark it open */
3440 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3441 
3442 	/* do we need to write it out? */
3443 	if (ump->lvopen & UDF_WRITE_LVINT) {
3444 		error = udf_writeout_lvint(ump, ump->lvopen);
3445 		/* if we couldn't write it mark it closed again */
3446 		if (error) {
3447 			ump->logvol_integrity->integrity_type =
3448 						udf_rw32(UDF_INTEGRITY_CLOSED);
3449 			return error;
3450 		}
3451 	}
3452 
3453 	return 0;
3454 }
3455 
3456 
3457 int
3458 udf_close_logvol(struct udf_mount *ump, int mntflags)
3459 {
3460 	int logvol_integrity;
3461 	int error = 0, error1 = 0, error2 = 0;
3462 	int n;
3463 
3464 	/* already/still closed? */
3465 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3466 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3467 		return 0;
3468 
3469 	/* writeout/update lvint or write out VAT */
3470 	DPRINTF(VOLUMES, ("Closing logical volume\n"));
3471 	if (ump->lvclose & UDF_WRITE_VAT) {
3472 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3473 
3474 		/* preprocess the VAT node; its modified on every writeout */
3475 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
3476 		udf_update_vat_descriptor(ump->vat_node->ump);
3477 
3478 		/* write out the VAT node */
3479 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3480 		for (n = 0; n < 16; n++) {
3481 			ump->vat_node->i_flags |= IN_MODIFIED;
3482 			error = VOP_FSYNC(ump->vat_node->vnode,
3483 					FSCRED, FSYNC_WAIT, 0, 0);
3484 		}
3485 		if (error) {
3486 			printf("udf_close_logvol: writeout of VAT failed\n");
3487 			return error;
3488 		}
3489 	}
3490 
3491 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3492 		/* sync writeout metadata spacetable if existing */
3493 		error1 = udf_write_metadata_partition_spacetable(ump, true);
3494 		if (error1)
3495 			printf( "udf_close_logvol: writeout of metadata space "
3496 				"bitmap failed\n");
3497 
3498 		/* sync writeout partition spacetables */
3499 		error2 = udf_write_physical_partition_spacetables(ump, true);
3500 		if (error2)
3501 			printf( "udf_close_logvol: writeout of space tables "
3502 				"failed\n");
3503 
3504 		if (error1 || error2)
3505 			return (error1 | error2);
3506 
3507 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3508 	}
3509 
3510 	if (ump->lvclose & UDF_CLOSE_SESSION) {
3511 		printf("TODO: Closing a session is not yet implemented\n");
3512 		return EROFS;
3513 		ump->lvopen |= UDF_OPEN_SESSION;
3514 	}
3515 
3516 	/* mark it closed */
3517 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3518 
3519 	/* do we need to write out the logical volume integrity */
3520 	if (ump->lvclose & UDF_WRITE_LVINT)
3521 		error = udf_writeout_lvint(ump, ump->lvopen);
3522 	if (error) {
3523 		/* HELP now what? mark it open again for now */
3524 		ump->logvol_integrity->integrity_type =
3525 			udf_rw32(UDF_INTEGRITY_OPEN);
3526 		return error;
3527 	}
3528 
3529 	(void) udf_synchronise_caches(ump);
3530 
3531 	return 0;
3532 }
3533 
3534 /* --------------------------------------------------------------------- */
3535 
3536 /*
3537  * Genfs interfacing
3538  *
3539  * static const struct genfs_ops udf_genfsops = {
3540  * 	.gop_size = genfs_size,
3541  * 		size of transfers
3542  * 	.gop_alloc = udf_gop_alloc,
3543  * 		allocate len bytes at offset
3544  * 	.gop_write = genfs_gop_write,
3545  * 		putpages interface code
3546  * 	.gop_markupdate = udf_gop_markupdate,
3547  * 		set update/modify flags etc.
3548  * }
3549  */
3550 
3551 /*
3552  * Genfs interface. These four functions are the only ones defined though not
3553  * documented... great....
3554  */
3555 
3556 /*
3557  * Callback from genfs to allocate len bytes at offset off; only called when
3558  * filling up gaps in the allocation.
3559  */
3560 /* XXX should we check if there is space enough in udf_gop_alloc? */
3561 static int
3562 udf_gop_alloc(struct vnode *vp, off_t off,
3563     off_t len, int flags, kauth_cred_t cred)
3564 {
3565 #if 0
3566 	struct udf_node *udf_node = VTOI(vp);
3567 	struct udf_mount *ump = udf_node->ump;
3568 	uint32_t lb_size, num_lb;
3569 #endif
3570 
3571 	DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
3572 	DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
3573 
3574 	return 0;
3575 }
3576 
3577 
3578 /*
3579  * callback from genfs to update our flags
3580  */
3581 static void
3582 udf_gop_markupdate(struct vnode *vp, int flags)
3583 {
3584 	struct udf_node *udf_node = VTOI(vp);
3585 	u_long mask = 0;
3586 
3587 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3588 		mask = IN_ACCESS;
3589 	}
3590 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3591 		if (vp->v_type == VREG) {
3592 			mask |= IN_CHANGE | IN_UPDATE;
3593 		} else {
3594 			mask |= IN_MODIFY;
3595 		}
3596 	}
3597 	if (mask) {
3598 		udf_node->i_flags |= mask;
3599 	}
3600 }
3601 
3602 
3603 static const struct genfs_ops udf_genfsops = {
3604 	.gop_size = genfs_size,
3605 	.gop_alloc = udf_gop_alloc,
3606 	.gop_write = genfs_gop_write_rwmap,
3607 	.gop_markupdate = udf_gop_markupdate,
3608 };
3609 
3610 
3611 /* --------------------------------------------------------------------- */
3612 
3613 int
3614 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
3615 {
3616 	union dscrptr *dscr;
3617 	int error;
3618 
3619 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
3620 	bzero(dscr, ump->discinfo.sector_size);
3621 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
3622 
3623 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
3624 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
3625 	(void) udf_validate_tag_and_crc_sums(dscr);
3626 
3627 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
3628 			dscr, sector, sector);
3629 
3630 	free(dscr, M_TEMP);
3631 
3632 	return error;
3633 }
3634 
3635 
3636 /* --------------------------------------------------------------------- */
3637 
3638 /* UDF<->unix converters */
3639 
3640 /* --------------------------------------------------------------------- */
3641 
3642 static mode_t
3643 udf_perm_to_unix_mode(uint32_t perm)
3644 {
3645 	mode_t mode;
3646 
3647 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
3648 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
3649 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
3650 
3651 	return mode;
3652 }
3653 
3654 /* --------------------------------------------------------------------- */
3655 
3656 static uint32_t
3657 unix_mode_to_udf_perm(mode_t mode)
3658 {
3659 	uint32_t perm;
3660 
3661 	perm  = ((mode & S_IRWXO)     );
3662 	perm |= ((mode & S_IRWXG) << 2);
3663 	perm |= ((mode & S_IRWXU) << 4);
3664 	perm |= ((mode & S_IWOTH) << 3);
3665 	perm |= ((mode & S_IWGRP) << 5);
3666 	perm |= ((mode & S_IWUSR) << 7);
3667 
3668 	return perm;
3669 }
3670 
3671 /* --------------------------------------------------------------------- */
3672 
3673 static uint32_t
3674 udf_icb_to_unix_filetype(uint32_t icbftype)
3675 {
3676 	switch (icbftype) {
3677 	case UDF_ICB_FILETYPE_DIRECTORY :
3678 	case UDF_ICB_FILETYPE_STREAMDIR :
3679 		return S_IFDIR;
3680 	case UDF_ICB_FILETYPE_FIFO :
3681 		return S_IFIFO;
3682 	case UDF_ICB_FILETYPE_CHARDEVICE :
3683 		return S_IFCHR;
3684 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
3685 		return S_IFBLK;
3686 	case UDF_ICB_FILETYPE_RANDOMACCESS :
3687 	case UDF_ICB_FILETYPE_REALTIME :
3688 		return S_IFREG;
3689 	case UDF_ICB_FILETYPE_SYMLINK :
3690 		return S_IFLNK;
3691 	case UDF_ICB_FILETYPE_SOCKET :
3692 		return S_IFSOCK;
3693 	}
3694 	/* no idea what this is */
3695 	return 0;
3696 }
3697 
3698 /* --------------------------------------------------------------------- */
3699 
3700 void
3701 udf_to_unix_name(char *result, int result_len, char *id, int len,
3702 	struct charspec *chsp)
3703 {
3704 	uint16_t   *raw_name, *unix_name;
3705 	uint16_t   *inchp, ch;
3706 	uint8_t	   *outchp;
3707 	const char *osta_id = "OSTA Compressed Unicode";
3708 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
3709 
3710 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
3711 	unix_name = raw_name + 1024;			/* split space in half */
3712 	assert(sizeof(char) == sizeof(uint8_t));
3713 	outchp = (uint8_t *) result;
3714 
3715 	is_osta_typ0  = (chsp->type == 0);
3716 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
3717 	if (is_osta_typ0) {
3718 		/* TODO clean up */
3719 		*raw_name = *unix_name = 0;
3720 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
3721 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
3722 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
3723 		/* output UTF8 */
3724 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
3725 			ch = *inchp;
3726 			nout = wput_utf8(outchp, result_len, ch);
3727 			outchp += nout; result_len -= nout;
3728 			if (!ch) break;
3729 		}
3730 		*outchp++ = 0;
3731 	} else {
3732 		/* assume 8bit char length byte latin-1 */
3733 		assert(*id == 8);
3734 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
3735 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
3736 	}
3737 	free(raw_name, M_UDFTEMP);
3738 }
3739 
3740 /* --------------------------------------------------------------------- */
3741 
3742 void
3743 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
3744 	struct charspec *chsp)
3745 {
3746 	uint16_t   *raw_name;
3747 	uint16_t   *outchp;
3748 	const char *inchp;
3749 	const char *osta_id = "OSTA Compressed Unicode";
3750 	int         udf_chars, is_osta_typ0, bits;
3751 	size_t      cnt;
3752 
3753 	/* allocate temporary unicode-16 buffer */
3754 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
3755 
3756 	/* convert utf8 to unicode-16 */
3757 	*raw_name = 0;
3758 	inchp  = name;
3759 	outchp = raw_name;
3760 	bits = 8;
3761 	for (cnt = name_len, udf_chars = 0; cnt;) {
3762 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
3763 		*outchp = wget_utf8(&inchp, &cnt);
3764 		if (*outchp > 0xff)
3765 			bits=16;
3766 		outchp++;
3767 		udf_chars++;
3768 	}
3769 	/* null terminate just in case */
3770 	*outchp++ = 0;
3771 
3772 	is_osta_typ0  = (chsp->type == 0);
3773 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
3774 	if (is_osta_typ0) {
3775 		udf_chars = udf_CompressUnicode(udf_chars, bits,
3776 				(unicode_t *) raw_name,
3777 				(byte *) result);
3778 	} else {
3779 		printf("unix to udf name: no CHSP0 ?\n");
3780 		/* XXX assume 8bit char length byte latin-1 */
3781 		*result++ = 8; udf_chars = 1;
3782 		strncpy(result, name + 1, name_len);
3783 		udf_chars += name_len;
3784 	}
3785 	*result_len = udf_chars;
3786 	free(raw_name, M_UDFTEMP);
3787 }
3788 
3789 /* --------------------------------------------------------------------- */
3790 
3791 void
3792 udf_timestamp_to_timespec(struct udf_mount *ump,
3793 			  struct timestamp *timestamp,
3794 			  struct timespec  *timespec)
3795 {
3796 	struct clock_ymdhms ymdhms;
3797 	uint32_t usecs, secs, nsecs;
3798 	uint16_t tz;
3799 
3800 	/* fill in ymdhms structure from timestamp */
3801 	memset(&ymdhms, 0, sizeof(ymdhms));
3802 	ymdhms.dt_year = udf_rw16(timestamp->year);
3803 	ymdhms.dt_mon  = timestamp->month;
3804 	ymdhms.dt_day  = timestamp->day;
3805 	ymdhms.dt_wday = 0; /* ? */
3806 	ymdhms.dt_hour = timestamp->hour;
3807 	ymdhms.dt_min  = timestamp->minute;
3808 	ymdhms.dt_sec  = timestamp->second;
3809 
3810 	secs = clock_ymdhms_to_secs(&ymdhms);
3811 	usecs = timestamp->usec +
3812 		100*timestamp->hund_usec + 10000*timestamp->centisec;
3813 	nsecs = usecs * 1000;
3814 
3815 	/*
3816 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
3817 	 * compliment, so we gotta do some extra magic to handle it right.
3818 	 */
3819 	tz  = udf_rw16(timestamp->type_tz);
3820 	tz &= 0x0fff;			/* only lower 12 bits are significant */
3821 	if (tz & 0x0800)		/* sign extention */
3822 		tz |= 0xf000;
3823 
3824 	/* TODO check timezone conversion */
3825 	/* check if we are specified a timezone to convert */
3826 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
3827 		if ((int16_t) tz != -2047)
3828 			secs -= (int16_t) tz * 60;
3829 	} else {
3830 		secs -= ump->mount_args.gmtoff;
3831 	}
3832 
3833 	timespec->tv_sec  = secs;
3834 	timespec->tv_nsec = nsecs;
3835 }
3836 
3837 
3838 void
3839 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
3840 {
3841 	struct clock_ymdhms ymdhms;
3842 	uint32_t husec, usec, csec;
3843 
3844 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
3845 
3846 	usec   = timespec->tv_nsec / 1000;
3847 	husec  =  usec / 100;
3848 	usec  -= husec * 100;				/* only 0-99 in usec  */
3849 	csec   = husec / 100;				/* only 0-99 in csec  */
3850 	husec -=  csec * 100;				/* only 0-99 in husec */
3851 
3852 	/* set method 1 for CUT/GMT */
3853 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
3854 	timestamp->year		= udf_rw16(ymdhms.dt_year);
3855 	timestamp->month	= ymdhms.dt_mon;
3856 	timestamp->day		= ymdhms.dt_day;
3857 	timestamp->hour		= ymdhms.dt_hour;
3858 	timestamp->minute	= ymdhms.dt_min;
3859 	timestamp->second	= ymdhms.dt_sec;
3860 	timestamp->centisec	= csec;
3861 	timestamp->hund_usec	= husec;
3862 	timestamp->usec		= usec;
3863 }
3864 
3865 /* --------------------------------------------------------------------- */
3866 
3867 /*
3868  * Attribute and filetypes converters with get/set pairs
3869  */
3870 
3871 uint32_t
3872 udf_getaccessmode(struct udf_node *udf_node)
3873 {
3874 	struct file_entry     *fe = udf_node->fe;;
3875 	struct extfile_entry *efe = udf_node->efe;
3876 	uint32_t udf_perm, icbftype;
3877 	uint32_t mode, ftype;
3878 	uint16_t icbflags;
3879 
3880 	UDF_LOCK_NODE(udf_node, 0);
3881 	if (fe) {
3882 		udf_perm = udf_rw32(fe->perm);
3883 		icbftype = fe->icbtag.file_type;
3884 		icbflags = udf_rw16(fe->icbtag.flags);
3885 	} else {
3886 		assert(udf_node->efe);
3887 		udf_perm = udf_rw32(efe->perm);
3888 		icbftype = efe->icbtag.file_type;
3889 		icbflags = udf_rw16(efe->icbtag.flags);
3890 	}
3891 
3892 	mode  = udf_perm_to_unix_mode(udf_perm);
3893 	ftype = udf_icb_to_unix_filetype(icbftype);
3894 
3895 	/* set suid, sgid, sticky from flags in fe/efe */
3896 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
3897 		mode |= S_ISUID;
3898 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
3899 		mode |= S_ISGID;
3900 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
3901 		mode |= S_ISVTX;
3902 
3903 	UDF_UNLOCK_NODE(udf_node, 0);
3904 
3905 	return mode | ftype;
3906 }
3907 
3908 
3909 void
3910 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
3911 {
3912 	struct file_entry    *fe  = udf_node->fe;
3913 	struct extfile_entry *efe = udf_node->efe;
3914 	uint32_t udf_perm;
3915 	uint16_t icbflags;
3916 
3917 	UDF_LOCK_NODE(udf_node, 0);
3918 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
3919 	if (fe) {
3920 		icbflags = udf_rw16(fe->icbtag.flags);
3921 	} else {
3922 		icbflags = udf_rw16(efe->icbtag.flags);
3923 	}
3924 
3925 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
3926 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
3927 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
3928 	if (mode & S_ISUID)
3929 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
3930 	if (mode & S_ISGID)
3931 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
3932 	if (mode & S_ISVTX)
3933 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
3934 
3935 	if (fe) {
3936 		fe->perm  = udf_rw32(udf_perm);
3937 		fe->icbtag.flags  = udf_rw16(icbflags);
3938 	} else {
3939 		efe->perm = udf_rw32(udf_perm);
3940 		efe->icbtag.flags = udf_rw16(icbflags);
3941 	}
3942 
3943 	UDF_UNLOCK_NODE(udf_node, 0);
3944 }
3945 
3946 
3947 void
3948 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
3949 {
3950 	struct udf_mount     *ump = udf_node->ump;
3951 	struct file_entry    *fe  = udf_node->fe;
3952 	struct extfile_entry *efe = udf_node->efe;
3953 	uid_t uid;
3954 	gid_t gid;
3955 
3956 	UDF_LOCK_NODE(udf_node, 0);
3957 	if (fe) {
3958 		uid = (uid_t)udf_rw32(fe->uid);
3959 		gid = (gid_t)udf_rw32(fe->gid);
3960 	} else {
3961 		assert(udf_node->efe);
3962 		uid = (uid_t)udf_rw32(efe->uid);
3963 		gid = (gid_t)udf_rw32(efe->gid);
3964 	}
3965 
3966 	/* do the uid/gid translation game */
3967 	if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
3968 		uid = ump->mount_args.anon_uid;
3969 		gid = ump->mount_args.anon_gid;
3970 	}
3971 	*uidp = uid;
3972 	*gidp = gid;
3973 
3974 	UDF_UNLOCK_NODE(udf_node, 0);
3975 }
3976 
3977 
3978 void
3979 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
3980 {
3981 	struct udf_mount     *ump = udf_node->ump;
3982 	struct file_entry    *fe  = udf_node->fe;
3983 	struct extfile_entry *efe = udf_node->efe;
3984 	uid_t nobody_uid;
3985 	gid_t nobody_gid;
3986 
3987 	UDF_LOCK_NODE(udf_node, 0);
3988 
3989 	/* do the uid/gid translation game */
3990 	nobody_uid = ump->mount_args.nobody_uid;
3991 	nobody_gid = ump->mount_args.nobody_gid;
3992 	if ((uid == nobody_uid) && (gid == nobody_gid)) {
3993 		uid = (uid_t) -1;
3994 		gid = (gid_t) -1;
3995 	}
3996 
3997 	if (fe) {
3998 		fe->uid  = udf_rw32((uint32_t) uid);
3999 		fe->gid  = udf_rw32((uint32_t) gid);
4000 	} else {
4001 		efe->uid = udf_rw32((uint32_t) uid);
4002 		efe->gid = udf_rw32((uint32_t) gid);
4003 	}
4004 
4005 	UDF_UNLOCK_NODE(udf_node, 0);
4006 }
4007 
4008 
4009 /* --------------------------------------------------------------------- */
4010 
4011 /*
4012  * UDF dirhash implementation
4013  */
4014 
4015 static uint32_t
4016 udf_dirhash_hash(const char *str, int namelen)
4017 {
4018 	uint32_t hash = 5381;
4019         int i, c;
4020 
4021 	for (i = 0; i < namelen; i++) {
4022 		c = *str++;
4023 		hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
4024 	}
4025         return hash;
4026 }
4027 
4028 
4029 static void
4030 udf_dirhash_purge(struct udf_dirhash *dirh)
4031 {
4032 	struct udf_dirhash_entry *dirh_e;
4033 	uint32_t hashline;
4034 
4035 	if (dirh == NULL)
4036 		return;
4037 
4038 	if (dirh->size == 0)
4039 		return;
4040 
4041 	for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) {
4042 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4043 		while (dirh_e) {
4044 			LIST_REMOVE(dirh_e, next);
4045 			pool_put(&udf_dirhash_entry_pool, dirh_e);
4046 			dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4047 		}
4048 	}
4049 	dirh_e = LIST_FIRST(&dirh->free_entries);
4050 
4051 	while (dirh_e) {
4052 		LIST_REMOVE(dirh_e, next);
4053 		pool_put(&udf_dirhash_entry_pool, dirh_e);
4054 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4055 	}
4056 
4057 	dirh->flags &= ~UDF_DIRH_COMPLETE;
4058 	dirh->flags |=  UDF_DIRH_PURGED;
4059 
4060 	udf_dirhashsize -= dirh->size;
4061 	dirh->size = 0;
4062 }
4063 
4064 
4065 static void
4066 udf_dirhash_destroy(struct udf_dirhash **dirhp)
4067 {
4068 	struct udf_dirhash *dirh = *dirhp;
4069 
4070 	if (dirh == NULL)
4071 		return;
4072 
4073 	mutex_enter(&udf_dirhashmutex);
4074 
4075 	udf_dirhash_purge(dirh);
4076 	TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
4077 	pool_put(&udf_dirhash_pool, dirh);
4078 
4079 	*dirhp = NULL;
4080 
4081 	mutex_exit(&udf_dirhashmutex);
4082 }
4083 
4084 
4085 static void
4086 udf_dirhash_get(struct udf_dirhash **dirhp)
4087 {
4088 	struct udf_dirhash *dirh;
4089 	uint32_t hashline;
4090 
4091 	mutex_enter(&udf_dirhashmutex);
4092 
4093 	dirh = *dirhp;
4094 	if (*dirhp == NULL) {
4095 		dirh = pool_get(&udf_dirhash_pool, PR_WAITOK);
4096 		*dirhp = dirh;
4097 		memset(dirh, 0, sizeof(struct udf_dirhash));
4098 		for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++)
4099 			LIST_INIT(&dirh->entries[hashline]);
4100 		dirh->size   = 0;
4101 		dirh->refcnt = 0;
4102 		dirh->flags  = 0;
4103 	} else {
4104 		TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
4105 	}
4106 
4107 	dirh->refcnt++;
4108 	TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next);
4109 
4110 	mutex_exit(&udf_dirhashmutex);
4111 }
4112 
4113 
4114 static void
4115 udf_dirhash_put(struct udf_dirhash *dirh)
4116 {
4117 	mutex_enter(&udf_dirhashmutex);
4118 	dirh->refcnt--;
4119 	mutex_exit(&udf_dirhashmutex);
4120 }
4121 
4122 
4123 static void
4124 udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid,
4125 	struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new)
4126 {
4127 	struct udf_dirhash *dirh, *del_dirh, *prev_dirh;
4128 	struct udf_dirhash_entry *dirh_e;
4129 	uint32_t hashvalue, hashline;
4130 	int entrysize;
4131 
4132 	/* make sure we have a dirhash to work on */
4133 	dirh = dir_node->dir_hash;
4134 	KASSERT(dirh);
4135 	KASSERT(dirh->refcnt > 0);
4136 
4137 	/* are we trying to re-enter an entry? */
4138 	if (!new && (dirh->flags & UDF_DIRH_COMPLETE))
4139 		return;
4140 
4141 	/* calculate our hash */
4142 	hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
4143 	hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
4144 
4145 	/* lookup and insert entry if not there yet */
4146 	LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
4147 		/* check for hash collision */
4148 		if (dirh_e->hashvalue != hashvalue)
4149 			continue;
4150 		if (dirh_e->offset != offset)
4151 			continue;
4152 		/* got it already */
4153 		KASSERT(dirh_e->d_namlen == dirent->d_namlen);
4154 		KASSERT(dirh_e->fid_size == fid_size);
4155 		return;
4156 	}
4157 
4158 	DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n",
4159 		offset, fid_size, dirent->d_namlen,
4160 		dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4161 
4162 	/* check if entry is in free space list */
4163 	LIST_FOREACH(dirh_e, &dirh->free_entries, next) {
4164 		if (dirh_e->offset == offset) {
4165 			DPRINTF(DIRHASH, ("\tremoving free entry\n"));
4166 			LIST_REMOVE(dirh_e, next);
4167 			break;
4168 		}
4169 	}
4170 
4171 	/* ensure we are not passing the dirhash limit */
4172 	entrysize = sizeof(struct udf_dirhash_entry);
4173 	if (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
4174 		del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash);
4175 		KASSERT(del_dirh);
4176 		while (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
4177 			/* no use trying to delete myself */
4178 			if (del_dirh == dirh)
4179 				break;
4180 			prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next);
4181 			if (del_dirh->refcnt == 0)
4182 				udf_dirhash_purge(del_dirh);
4183 			del_dirh = prev_dirh;
4184 		}
4185 	}
4186 
4187 	/* add to the hashline */
4188 	dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
4189 	memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
4190 
4191 	dirh_e->hashvalue = hashvalue;
4192 	dirh_e->offset    = offset;
4193 	dirh_e->d_namlen  = dirent->d_namlen;
4194 	dirh_e->fid_size  = fid_size;
4195 
4196 	dirh->size      += sizeof(struct udf_dirhash_entry);
4197 	udf_dirhashsize += sizeof(struct udf_dirhash_entry);
4198 	LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next);
4199 }
4200 
4201 
4202 static void
4203 udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset,
4204 	uint32_t fid_size)
4205 {
4206 	struct udf_dirhash *dirh;
4207 	struct udf_dirhash_entry *dirh_e;
4208 
4209 	/* make sure we have a dirhash to work on */
4210 	dirh = dir_node->dir_hash;
4211 	KASSERT(dirh);
4212 	KASSERT(dirh->refcnt > 0);
4213 
4214 #ifdef DEBUG
4215 	/* check for double entry of free space */
4216 	LIST_FOREACH(dirh_e, &dirh->free_entries, next)
4217 		KASSERT(dirh_e->offset != offset);
4218 #endif
4219 
4220 	DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n",
4221 		offset, fid_size));
4222 	dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
4223 	memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
4224 
4225 	dirh_e->hashvalue = 0;		/* not relevant */
4226 	dirh_e->offset    = offset;
4227 	dirh_e->d_namlen  = 0;		/* not relevant */
4228 	dirh_e->fid_size  = fid_size;
4229 
4230 	/* XXX it might be preferable to append them at the tail */
4231 	LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next);
4232 	dirh->size      += sizeof(struct udf_dirhash_entry);
4233 	udf_dirhashsize += sizeof(struct udf_dirhash_entry);
4234 }
4235 
4236 
4237 static void
4238 udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent,
4239 	uint64_t offset, uint32_t fid_size)
4240 {
4241 	struct udf_dirhash *dirh;
4242 	struct udf_dirhash_entry *dirh_e;
4243 	uint32_t hashvalue, hashline;
4244 
4245 	DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n",
4246 		offset, fid_size,
4247 		dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4248 
4249 	/* make sure we have a dirhash to work on */
4250 	dirh = dir_node->dir_hash;
4251 	KASSERT(dirh);
4252 	KASSERT(dirh->refcnt > 0);
4253 
4254 	/* calculate our hash */
4255 	hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
4256 	hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
4257 
4258 	/* lookup entry */
4259 	LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
4260 		/* check for hash collision */
4261 		if (dirh_e->hashvalue != hashvalue)
4262 			continue;
4263 		if (dirh_e->offset != offset)
4264 			continue;
4265 
4266 		/* got it! */
4267 		KASSERT(dirh_e->d_namlen == dirent->d_namlen);
4268 		KASSERT(dirh_e->fid_size == fid_size);
4269 		LIST_REMOVE(dirh_e, next);
4270 		dirh->size      -= sizeof(struct udf_dirhash_entry);
4271 		udf_dirhashsize -= sizeof(struct udf_dirhash_entry);
4272 
4273 		udf_dirhash_enter_freed(dir_node, offset, fid_size);
4274 		return;
4275 	}
4276 
4277 	/* not found! */
4278 	panic("dirhash_remove couldn't find entry in hash table\n");
4279 }
4280 
4281 
4282 /* BUGALERT: don't use result longer than needed, never past the node lock */
4283 /* call with NULL *result initially and it will return nonzero if again */
4284 static int
4285 udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen,
4286 	struct udf_dirhash_entry **result)
4287 {
4288 	struct udf_dirhash *dirh;
4289 	struct udf_dirhash_entry *dirh_e;
4290 	uint32_t hashvalue, hashline;
4291 
4292 	KASSERT(VOP_ISLOCKED(dir_node->vnode));
4293 
4294 	/* make sure we have a dirhash to work on */
4295 	dirh = dir_node->dir_hash;
4296 	KASSERT(dirh);
4297 	KASSERT(dirh->refcnt > 0);
4298 
4299 	/* start where we were */
4300 	if (*result) {
4301 		KASSERT(dir_node->dir_hash);
4302 		dirh_e = *result;
4303 
4304 		/* retrieve information to avoid recalculation and advance */
4305 		hashvalue = dirh_e->hashvalue;
4306 		dirh_e = LIST_NEXT(*result, next);
4307 	} else {
4308 		/* calculate our hash and lookup all entries in hashline */
4309 		hashvalue = udf_dirhash_hash(d_name, d_namlen);
4310 		hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
4311 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4312 	}
4313 
4314 	for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
4315 		/* check for hash collision */
4316 		if (dirh_e->hashvalue != hashvalue)
4317 			continue;
4318 		if (dirh_e->d_namlen != d_namlen)
4319 			continue;
4320 		/* might have an entry in the cache */
4321 		*result = dirh_e;
4322 		return 1;
4323 	}
4324 
4325 	*result = NULL;
4326 	return 0;
4327 }
4328 
4329 
4330 /* BUGALERT: don't use result longer than needed, never past the node lock */
4331 /* call with NULL *result initially and it will return nonzero if again */
4332 static int
4333 udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize,
4334 	struct udf_dirhash_entry **result)
4335 {
4336 	struct udf_dirhash *dirh;
4337 	struct udf_dirhash_entry *dirh_e;
4338 
4339 	KASSERT(VOP_ISLOCKED(dir_node->vnode));
4340 
4341 	/* make sure we have a dirhash to work on */
4342 	dirh = dir_node->dir_hash;
4343 	KASSERT(dirh);
4344 	KASSERT(dirh->refcnt > 0);
4345 
4346 	/* start where we were */
4347 	if (*result) {
4348 		KASSERT(dir_node->dir_hash);
4349 		dirh_e = LIST_NEXT(*result, next);
4350 	} else {
4351 		/* lookup all entries that match */
4352 		dirh_e = LIST_FIRST(&dirh->free_entries);
4353 	}
4354 
4355 	for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
4356 		/* check for minimum size */
4357 		if (dirh_e->fid_size < min_fidsize)
4358 			continue;
4359 		/* might be a candidate */
4360 		*result = dirh_e;
4361 		return 1;
4362 	}
4363 
4364 	*result = NULL;
4365 	return 0;
4366 }
4367 
4368 
4369 static int
4370 udf_dirhash_fill(struct udf_node *dir_node)
4371 {
4372 	struct vnode *dvp = dir_node->vnode;
4373 	struct udf_dirhash *dirh;
4374 	struct file_entry    *fe  = dir_node->fe;
4375 	struct extfile_entry *efe = dir_node->efe;
4376 	struct fileid_desc *fid;
4377 	struct dirent *dirent;
4378 	uint64_t file_size, pre_diroffset, diroffset;
4379 	uint32_t lb_size;
4380 	int error;
4381 
4382 	/* make sure we have a dirhash to work on */
4383 	dirh = dir_node->dir_hash;
4384 	KASSERT(dirh);
4385 	KASSERT(dirh->refcnt > 0);
4386 
4387 	if (dirh->flags & UDF_DIRH_BROKEN)
4388 		return EIO;
4389 	if (dirh->flags & UDF_DIRH_COMPLETE)
4390 		return 0;
4391 
4392 	/* make sure we have a clean dirhash to add to */
4393 	udf_dirhash_purge(dirh);
4394 
4395 	/* get directory filesize */
4396 	if (fe) {
4397 		file_size = udf_rw64(fe->inf_len);
4398 	} else {
4399 		assert(efe);
4400 		file_size = udf_rw64(efe->inf_len);
4401 	}
4402 
4403 	/* allocate temporary space for fid */
4404 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4405 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4406 
4407 	/* allocate temporary space for dirent */
4408 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4409 
4410 	error = 0;
4411 	diroffset = 0;
4412 	while (diroffset < file_size) {
4413 		/* transfer a new fid/dirent */
4414 		pre_diroffset = diroffset;
4415 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4416 		if (error) {
4417 			/* TODO what to do? continue but not add? */
4418 			dirh->flags |= UDF_DIRH_BROKEN;
4419 			udf_dirhash_purge(dirh);
4420 			break;
4421 		}
4422 
4423 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4424 			/* register deleted extent for reuse */
4425 			udf_dirhash_enter_freed(dir_node, pre_diroffset,
4426 				udf_fidsize(fid));
4427 		} else {
4428 			/* append to the dirhash */
4429 			udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset,
4430 				udf_fidsize(fid), 0);
4431 		}
4432 	}
4433 	dirh->flags |= UDF_DIRH_COMPLETE;
4434 
4435 	free(fid, M_UDFTEMP);
4436 	free(dirent, M_UDFTEMP);
4437 
4438 	return error;
4439 }
4440 
4441 
4442 /* --------------------------------------------------------------------- */
4443 
4444 /*
4445  * Directory read and manipulation functions.
4446  *
4447  * Note that if the file is found, the cached diroffset position *before* the
4448  * advance is remembered. Thus if the same filename is lookup again just after
4449  * this lookup its immediately found.
4450  */
4451 
4452 int
4453 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4454        struct long_ad *icb_loc, int *found)
4455 {
4456 	struct udf_node  *dir_node = VTOI(vp);
4457 	struct udf_dirhash_entry *dirh_ep;
4458 	struct fileid_desc *fid;
4459 	struct dirent *dirent;
4460 	uint64_t diroffset;
4461 	uint32_t lb_size;
4462 	int hit, error;
4463 
4464 	/* set default return */
4465 	*found = 0;
4466 
4467 	/* get our dirhash and make sure its read in */
4468 	udf_dirhash_get(&dir_node->dir_hash);
4469 	error = udf_dirhash_fill(dir_node);
4470 	if (error) {
4471 		udf_dirhash_put(dir_node->dir_hash);
4472 		return error;
4473 	}
4474 
4475 	/* allocate temporary space for fid */
4476 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4477 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4478 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4479 
4480 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4481 		namelen, namelen, name));
4482 
4483 	/* search our dirhash hits */
4484 	memset(icb_loc, 0, sizeof(*icb_loc));
4485 	dirh_ep = NULL;
4486 	for (;;) {
4487 		hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
4488 		/* if no hit, abort the search */
4489 		if (!hit)
4490 			break;
4491 
4492 		/* check this hit */
4493 		diroffset = dirh_ep->offset;
4494 
4495 		/* transfer a new fid/dirent */
4496 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4497 		if (error)
4498 			break;
4499 
4500 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4501 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4502 
4503 		/* see if its our entry */
4504 		KASSERT(dirent->d_namlen == namelen);
4505 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4506 			*found = 1;
4507 			*icb_loc = fid->icb;
4508 			break;
4509 		}
4510 	}
4511 	free(fid, M_UDFTEMP);
4512 	free(dirent, M_UDFTEMP);
4513 
4514 	udf_dirhash_put(dir_node->dir_hash);
4515 
4516 	return error;
4517 }
4518 
4519 /* --------------------------------------------------------------------- */
4520 
4521 static int
4522 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4523 	struct long_ad *node_icb, struct long_ad *parent_icb,
4524 	uint64_t parent_unique_id)
4525 {
4526 	struct timespec now;
4527 	struct icb_tag *icb;
4528 	struct filetimes_extattr_entry *ft_extattr;
4529 	uint64_t unique_id;
4530 	uint32_t fidsize, lb_num;
4531 	uint8_t *bpos;
4532 	int crclen, attrlen;
4533 
4534 	lb_num = udf_rw32(node_icb->loc.lb_num);
4535 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4536 	icb = &fe->icbtag;
4537 
4538 	/*
4539 	 * Always use strategy type 4 unless on WORM wich we don't support
4540 	 * (yet). Fill in defaults and set for internal allocation of data.
4541 	 */
4542 	icb->strat_type      = udf_rw16(4);
4543 	icb->max_num_entries = udf_rw16(1);
4544 	icb->file_type       = file_type;	/* 8 bit */
4545 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4546 
4547 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4548 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
4549 
4550 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4551 
4552 	vfs_timestamp(&now);
4553 	udf_timespec_to_timestamp(&now, &fe->atime);
4554 	udf_timespec_to_timestamp(&now, &fe->attrtime);
4555 	udf_timespec_to_timestamp(&now, &fe->mtime);
4556 
4557 	udf_set_regid(&fe->imp_id, IMPL_NAME);
4558 	udf_add_impl_regid(ump, &fe->imp_id);
4559 
4560 	unique_id = udf_advance_uniqueid(ump);
4561 	fe->unique_id = udf_rw64(unique_id);
4562 	fe->l_ea = udf_rw32(0);
4563 
4564 	/* create extended attribute to record our creation time */
4565 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4566 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4567 	memset(ft_extattr, 0, attrlen);
4568 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4569 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
4570 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4571 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4572 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4573 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4574 
4575 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4576 		(struct extattr_entry *) ft_extattr);
4577 	free(ft_extattr, M_UDFTEMP);
4578 
4579 	/* if its a directory, create '..' */
4580 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4581 	fidsize = 0;
4582 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4583 		fidsize = udf_create_parentfid(ump,
4584 			(struct fileid_desc *) bpos, parent_icb,
4585 			parent_unique_id);
4586 	}
4587 
4588 	/* record fidlength information */
4589 	fe->inf_len = udf_rw64(fidsize);
4590 	fe->l_ad    = udf_rw32(fidsize);
4591 	fe->logblks_rec = udf_rw64(0);		/* intern */
4592 
4593 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4594 	crclen += udf_rw32(fe->l_ea) + fidsize;
4595 	fe->tag.desc_crc_len = udf_rw16(crclen);
4596 
4597 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4598 
4599 	return fidsize;
4600 }
4601 
4602 /* --------------------------------------------------------------------- */
4603 
4604 static int
4605 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4606 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4607 	uint64_t parent_unique_id)
4608 {
4609 	struct timespec now;
4610 	struct icb_tag *icb;
4611 	uint64_t unique_id;
4612 	uint32_t fidsize, lb_num;
4613 	uint8_t *bpos;
4614 	int crclen;
4615 
4616 	lb_num = udf_rw32(node_icb->loc.lb_num);
4617 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4618 	icb = &efe->icbtag;
4619 
4620 	/*
4621 	 * Always use strategy type 4 unless on WORM wich we don't support
4622 	 * (yet). Fill in defaults and set for internal allocation of data.
4623 	 */
4624 	icb->strat_type      = udf_rw16(4);
4625 	icb->max_num_entries = udf_rw16(1);
4626 	icb->file_type       = file_type;	/* 8 bit */
4627 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4628 
4629 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4630 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
4631 
4632 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4633 
4634 	vfs_timestamp(&now);
4635 	udf_timespec_to_timestamp(&now, &efe->ctime);
4636 	udf_timespec_to_timestamp(&now, &efe->atime);
4637 	udf_timespec_to_timestamp(&now, &efe->attrtime);
4638 	udf_timespec_to_timestamp(&now, &efe->mtime);
4639 
4640 	udf_set_regid(&efe->imp_id, IMPL_NAME);
4641 	udf_add_impl_regid(ump, &efe->imp_id);
4642 
4643 	unique_id = udf_advance_uniqueid(ump);
4644 	efe->unique_id = udf_rw64(unique_id);
4645 	efe->l_ea = udf_rw32(0);
4646 
4647 	/* if its a directory, create '..' */
4648 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4649 	fidsize = 0;
4650 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4651 		fidsize = udf_create_parentfid(ump,
4652 			(struct fileid_desc *) bpos, parent_icb,
4653 			parent_unique_id);
4654 	}
4655 
4656 	/* record fidlength information */
4657 	efe->obj_size = udf_rw64(fidsize);
4658 	efe->inf_len  = udf_rw64(fidsize);
4659 	efe->l_ad     = udf_rw32(fidsize);
4660 	efe->logblks_rec = udf_rw64(0);		/* intern */
4661 
4662 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4663 	crclen += udf_rw32(efe->l_ea) + fidsize;
4664 	efe->tag.desc_crc_len = udf_rw16(crclen);
4665 
4666 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4667 
4668 	return fidsize;
4669 }
4670 
4671 /* --------------------------------------------------------------------- */
4672 
4673 int
4674 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4675 	struct udf_node *udf_node, struct componentname *cnp)
4676 {
4677 	struct vnode *dvp = dir_node->vnode;
4678 	struct udf_dirhash_entry *dirh_ep;
4679 	struct file_entry    *fe  = dir_node->fe;
4680 	struct extfile_entry *efe = dir_node->efe;
4681 	struct fileid_desc *fid;
4682 	struct dirent *dirent;
4683 	uint64_t file_size, diroffset;
4684 	uint32_t lb_size, fidsize;
4685 	int found, error;
4686 	char const *name  = cnp->cn_nameptr;
4687 	int namelen = cnp->cn_namelen;
4688 	int hit, refcnt;
4689 
4690 	/* get our dirhash and make sure its read in */
4691 	udf_dirhash_get(&dir_node->dir_hash);
4692 	error = udf_dirhash_fill(dir_node);
4693 	if (error) {
4694 		udf_dirhash_put(dir_node->dir_hash);
4695 		return error;
4696 	}
4697 
4698 	/* get directory filesize */
4699 	if (fe) {
4700 		file_size = udf_rw64(fe->inf_len);
4701 	} else {
4702 		assert(efe);
4703 		file_size = udf_rw64(efe->inf_len);
4704 	}
4705 
4706 	/* allocate temporary space for fid */
4707 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4708 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4709 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4710 
4711 	/* search our dirhash hits */
4712 	found = 0;
4713 	dirh_ep = NULL;
4714 	for (;;) {
4715 		hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
4716 		/* if no hit, abort the search */
4717 		if (!hit)
4718 			break;
4719 
4720 		/* check this hit */
4721 		diroffset = dirh_ep->offset;
4722 
4723 		/* transfer a new fid/dirent */
4724 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4725 		if (error)
4726 			break;
4727 
4728 		/* see if its our entry */
4729 		KASSERT(dirent->d_namlen == namelen);
4730 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4731 			found = 1;
4732 			break;
4733 		}
4734 	}
4735 
4736 	if (!found)
4737 		error = ENOENT;
4738 	if (error)
4739 		goto error_out;
4740 
4741 	/* mark deleted */
4742 	fid->file_char |= UDF_FILE_CHAR_DEL;
4743 #ifdef UDF_COMPLETE_DELETE
4744 	memset(&fid->icb, 0, sizeof(fid->icb));
4745 #endif
4746 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4747 
4748 	/* get size of fid and compensate for the read_fid_stream advance */
4749 	fidsize = udf_fidsize(fid);
4750 	diroffset -= fidsize;
4751 
4752 	/* write out */
4753 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4754 			fid, fidsize, diroffset,
4755 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4756 			FSCRED, NULL, NULL);
4757 	if (error)
4758 		goto error_out;
4759 
4760 	/* get reference count of attached node */
4761 	if (udf_node->fe) {
4762 		refcnt = udf_rw16(udf_node->fe->link_cnt);
4763 	} else {
4764 		KASSERT(udf_node->efe);
4765 		refcnt = udf_rw16(udf_node->efe->link_cnt);
4766 	}
4767 #ifdef UDF_COMPLETE_DELETE
4768 	/* substract reference counter in attached node */
4769 	refcnt -= 1;
4770 	if (udf_node->fe) {
4771 		udf_node->fe->link_cnt = udf_rw16(refcnt);
4772 	} else {
4773 		udf_node->efe->link_cnt = udf_rw16(refcnt);
4774 	}
4775 
4776 	/* prevent writeout when refcnt == 0 */
4777 	if (refcnt == 0)
4778 		udf_node->i_flags |= IN_DELETED;
4779 
4780 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
4781 		int drefcnt;
4782 
4783 		/* substract reference counter in directory node */
4784 		/* note subtract 2 (?) for its was also backreferenced */
4785 		if (dir_node->fe) {
4786 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
4787 			drefcnt -= 1;
4788 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
4789 		} else {
4790 			KASSERT(dir_node->efe);
4791 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
4792 			drefcnt -= 1;
4793 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
4794 		}
4795 	}
4796 
4797 	udf_node->i_flags |= IN_MODIFIED;
4798 	dir_node->i_flags |= IN_MODIFIED;
4799 #endif
4800 	/* if it is/was a hardlink adjust the file count */
4801 	if (refcnt > 0)
4802 		udf_adjust_filecount(udf_node, -1);
4803 
4804 	/* remove from the dirhash */
4805 	udf_dirhash_remove(dir_node, dirent, diroffset,
4806 		udf_fidsize(fid));
4807 
4808 error_out:
4809 	free(fid, M_UDFTEMP);
4810 	free(dirent, M_UDFTEMP);
4811 
4812 	udf_dirhash_put(dir_node->dir_hash);
4813 
4814 	return error;
4815 }
4816 
4817 /* --------------------------------------------------------------------- */
4818 
4819 /*
4820  * We are not allowed to split the fid tag itself over an logical block so
4821  * check the space remaining in the logical block.
4822  *
4823  * We try to select the smallest candidate for recycling or when none is
4824  * found, append a new one at the end of the directory.
4825  */
4826 
4827 int
4828 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4829 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4830 {
4831 	struct vnode *dvp = dir_node->vnode;
4832 	struct udf_dirhash_entry *dirh_ep;
4833 	struct fileid_desc   *fid;
4834 	struct icb_tag       *icbtag;
4835 	struct charspec osta_charspec;
4836 	struct dirent   dirent;
4837 	uint64_t unique_id, dir_size, diroffset;
4838 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
4839 	uint32_t chosen_size, chosen_size_diff;
4840 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
4841 	int file_char, refcnt, icbflags, addr_type, hit, error;
4842 
4843 	/* get our dirhash and make sure its read in */
4844 	udf_dirhash_get(&dir_node->dir_hash);
4845 	error = udf_dirhash_fill(dir_node);
4846 	if (error) {
4847 		udf_dirhash_put(dir_node->dir_hash);
4848 		return error;
4849 	}
4850 
4851 	/* get info */
4852 	lb_size = udf_rw32(ump->logical_vol->lb_size);
4853 	udf_osta_charset(&osta_charspec);
4854 
4855 	if (dir_node->fe) {
4856 		dir_size = udf_rw64(dir_node->fe->inf_len);
4857 		icbtag   = &dir_node->fe->icbtag;
4858 	} else {
4859 		dir_size = udf_rw64(dir_node->efe->inf_len);
4860 		icbtag   = &dir_node->efe->icbtag;
4861 	}
4862 
4863 	icbflags   = udf_rw16(icbtag->flags);
4864 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4865 
4866 	if (udf_node->fe) {
4867 		unique_id = udf_rw64(udf_node->fe->unique_id);
4868 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
4869 	} else {
4870 		unique_id = udf_rw64(udf_node->efe->unique_id);
4871 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
4872 	}
4873 
4874 	if (refcnt > 0) {
4875 		unique_id = udf_advance_uniqueid(ump);
4876 		udf_adjust_filecount(udf_node, 1);
4877 	}
4878 
4879 	/* determine file characteristics */
4880 	file_char = 0;	/* visible non deleted file and not stream metadata */
4881 	if (vap->va_type == VDIR)
4882 		file_char = UDF_FILE_CHAR_DIR;
4883 
4884 	/* malloc scrap buffer */
4885 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
4886 	bzero(fid, lb_size);
4887 
4888 	/* calculate _minimum_ fid size */
4889 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
4890 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4891 	fidsize = UDF_FID_SIZE + fid->l_fi;
4892 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
4893 
4894 	/* find position that will fit the FID */
4895 	chosen_fid_pos   = dir_size;
4896 	chosen_size      = 0;
4897 	chosen_size_diff = UINT_MAX;
4898 
4899 	/* shut up gcc */
4900 	dirent.d_namlen = 0;
4901 
4902 	/* search our dirhash hits */
4903 	error = 0;
4904 	dirh_ep = NULL;
4905 	for (;;) {
4906 		hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep);
4907 		/* if no hit, abort the search */
4908 		if (!hit)
4909 			break;
4910 
4911 		/* check this hit for size */
4912 		this_fidsize = dirh_ep->fid_size;
4913 
4914 		/* check this hit */
4915 		fid_pos     = dirh_ep->offset;
4916 		end_fid_pos = fid_pos + this_fidsize;
4917 		size_diff   = this_fidsize - fidsize;
4918 		lb_rest = lb_size - (end_fid_pos % lb_size);
4919 
4920 #ifndef UDF_COMPLETE_DELETE
4921 		/* transfer a new fid/dirent */
4922 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
4923 		if (error)
4924 			goto error_out;
4925 
4926 		/* only reuse entries that are wiped */
4927 		/* check if the len + loc are marked zero */
4928 		if (udf_rw32(fid->icb.len != 0))
4929 			continue;
4930 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
4931 			continue;
4932 		if (udf_rw16(fid->icb.loc.part_num != 0))
4933 			continue;
4934 #endif	/* UDF_COMPLETE_DELETE */
4935 
4936 		/* select if not splitting the tag and its smaller */
4937 		if ((size_diff >= 0)  &&
4938 			(size_diff < chosen_size_diff) &&
4939 			(lb_rest >= sizeof(struct desc_tag)))
4940 		{
4941 			/* UDF 2.3.4.2+3 specifies rules for iu size */
4942 			if ((size_diff == 0) || (size_diff >= 32)) {
4943 				chosen_fid_pos   = fid_pos;
4944 				chosen_size      = this_fidsize;
4945 				chosen_size_diff = size_diff;
4946 			}
4947 		}
4948 	}
4949 
4950 
4951 	/* extend directory if no other candidate found */
4952 	if (chosen_size == 0) {
4953 		chosen_fid_pos   = dir_size;
4954 		chosen_size      = fidsize;
4955 		chosen_size_diff = 0;
4956 
4957 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
4958 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
4959 			/* pre-grow directory to see if we're to switch */
4960 			udf_grow_node(dir_node, dir_size + chosen_size);
4961 
4962 			icbflags   = udf_rw16(icbtag->flags);
4963 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4964 		}
4965 
4966 		/* make sure the next fid desc_tag won't be splitted */
4967 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
4968 			end_fid_pos = chosen_fid_pos + chosen_size;
4969 			lb_rest = lb_size - (end_fid_pos % lb_size);
4970 
4971 			/* pad with implementation use regid if needed */
4972 			if (lb_rest < sizeof(struct desc_tag))
4973 				chosen_size += 32;
4974 		}
4975 	}
4976 	chosen_size_diff = chosen_size - fidsize;
4977 	diroffset = chosen_fid_pos + chosen_size;
4978 
4979 	/* populate the FID */
4980 	memset(fid, 0, lb_size);
4981 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
4982 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
4983 	fid->file_char           = file_char;
4984 	fid->icb                 = udf_node->loc;
4985 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
4986 	fid->l_iu                = udf_rw16(0);
4987 
4988 	if (chosen_size > fidsize) {
4989 		/* insert implementation-use regid to space it correctly */
4990 		fid->l_iu = udf_rw16(chosen_size_diff);
4991 
4992 		/* set implementation use */
4993 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
4994 		udf_add_impl_regid(ump, (struct regid *) fid->data);
4995 	}
4996 
4997 	/* fill in name */
4998 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
4999 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5000 
5001 	fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
5002 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5003 
5004 	/* writeout FID/update parent directory */
5005 	error = vn_rdwr(UIO_WRITE, dvp,
5006 			fid, chosen_size, chosen_fid_pos,
5007 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5008 			FSCRED, NULL, NULL);
5009 
5010 	if (error)
5011 		goto error_out;
5012 
5013 	/* add reference counter in attached node */
5014 	if (udf_node->fe) {
5015 		refcnt = udf_rw16(udf_node->fe->link_cnt);
5016 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5017 	} else {
5018 		KASSERT(udf_node->efe);
5019 		refcnt = udf_rw16(udf_node->efe->link_cnt);
5020 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5021 	}
5022 
5023 	/* mark not deleted if it was... just in case, but do warn */
5024 	if (udf_node->i_flags & IN_DELETED) {
5025 		printf("udf: warning, marking a file undeleted\n");
5026 		udf_node->i_flags &= ~IN_DELETED;
5027 	}
5028 
5029 	if (file_char & UDF_FILE_CHAR_DIR) {
5030 		/* add reference counter in directory node for '..' */
5031 		if (dir_node->fe) {
5032 			refcnt = udf_rw16(dir_node->fe->link_cnt);
5033 			refcnt++;
5034 			dir_node->fe->link_cnt = udf_rw16(refcnt);
5035 		} else {
5036 			KASSERT(dir_node->efe);
5037 			refcnt = udf_rw16(dir_node->efe->link_cnt);
5038 			refcnt++;
5039 			dir_node->efe->link_cnt = udf_rw16(refcnt);
5040 		}
5041 	}
5042 
5043 	/* append to the dirhash */
5044 	dirent.d_namlen = cnp->cn_namelen;
5045 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5046 	udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos,
5047 		udf_fidsize(fid), 1);
5048 
5049 	/* note updates */
5050 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5051 	/* VN_KNOTE(udf_node,  ...) */
5052 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5053 
5054 error_out:
5055 	free(fid, M_TEMP);
5056 
5057 	udf_dirhash_put(dir_node->dir_hash);
5058 
5059 	return error;
5060 }
5061 
5062 /* --------------------------------------------------------------------- */
5063 
5064 /*
5065  * Each node can have an attached streamdir node though not recursively. These
5066  * are otherwise known as named substreams/named extended attributes that have
5067  * no size limitations.
5068  *
5069  * `Normal' extended attributes are indicated with a number and are recorded
5070  * in either the fe/efe descriptor itself for small descriptors or recorded in
5071  * the attached extended attribute file. Since these spaces can get
5072  * fragmented, care ought to be taken.
5073  *
5074  * Since the size of the space reserved for allocation descriptors is limited,
5075  * there is a mechanim provided for extending this space; this is done by a
5076  * special extent to allow schrinking of the allocations without breaking the
5077  * linkage to the allocation extent descriptor.
5078  */
5079 
5080 int
5081 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5082 	     struct udf_node **udf_noderes)
5083 {
5084 	union dscrptr   *dscr;
5085 	struct udf_node *udf_node;
5086 	struct vnode    *nvp;
5087 	struct long_ad   icb_loc, last_fe_icb_loc;
5088 	uint64_t file_size;
5089 	uint32_t lb_size, sector, dummy;
5090 	uint8_t  *file_data;
5091 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5092 	int slot, eof, error;
5093 
5094 	DPRINTF(NODE, ("udf_get_node called\n"));
5095 	*udf_noderes = udf_node = NULL;
5096 
5097 	/* lock to disallow simultanious creation of same udf_node */
5098 	mutex_enter(&ump->get_node_lock);
5099 
5100 	DPRINTF(NODE, ("\tlookup in hash table\n"));
5101 	/* lookup in hash table */
5102 	assert(ump);
5103 	assert(node_icb_loc);
5104 	udf_node = udf_hash_lookup(ump, node_icb_loc);
5105 	if (udf_node) {
5106 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
5107 		/* vnode is returned locked */
5108 		*udf_noderes = udf_node;
5109 		mutex_exit(&ump->get_node_lock);
5110 		return 0;
5111 	}
5112 
5113 	/* garbage check: translate udf_node_icb_loc to sectornr */
5114 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
5115 	if (error) {
5116 		/* no use, this will fail anyway */
5117 		mutex_exit(&ump->get_node_lock);
5118 		return EINVAL;
5119 	}
5120 
5121 	/* build udf_node (do initialise!) */
5122 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5123 	memset(udf_node, 0, sizeof(struct udf_node));
5124 
5125 	DPRINTF(NODE, ("\tget new vnode\n"));
5126 	/* give it a vnode */
5127 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5128         if (error) {
5129 		pool_put(&udf_node_pool, udf_node);
5130 		mutex_exit(&ump->get_node_lock);
5131 		return error;
5132 	}
5133 
5134 	/* always return locked vnode */
5135 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5136 		/* recycle vnode and unlock; simultanious will fail too */
5137 		ungetnewvnode(nvp);
5138 		mutex_exit(&ump->get_node_lock);
5139 		return error;
5140 	}
5141 
5142 	/* initialise crosslinks, note location of fe/efe for hashing */
5143 	udf_node->ump    =  ump;
5144 	udf_node->vnode  =  nvp;
5145 	nvp->v_data      =  udf_node;
5146 	udf_node->loc    = *node_icb_loc;
5147 	udf_node->lockf  =  0;
5148 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5149 	cv_init(&udf_node->node_lock, "udf_nlk");
5150 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
5151 	udf_node->outstanding_bufs = 0;
5152 	udf_node->outstanding_nodedscr = 0;
5153 
5154 	/* insert into the hash lookup */
5155 	udf_register_node(udf_node);
5156 
5157 	/* safe to unlock, the entry is in the hash table, vnode is locked */
5158 	mutex_exit(&ump->get_node_lock);
5159 
5160 	icb_loc = *node_icb_loc;
5161 	needs_indirect = 0;
5162 	strat4096 = 0;
5163 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5164 	file_size = 0;
5165 	file_data = NULL;
5166 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5167 
5168 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
5169 	do {
5170 		/* try to read in fe/efe */
5171 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5172 
5173 		/* blank sector marks end of sequence, check this */
5174 		if ((dscr == NULL) &&  (!strat4096))
5175 			error = ENOENT;
5176 
5177 		/* break if read error or blank sector */
5178 		if (error || (dscr == NULL))
5179 			break;
5180 
5181 		/* process descriptor based on the descriptor type */
5182 		dscr_type = udf_rw16(dscr->tag.id);
5183 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5184 
5185 		/* if dealing with an indirect entry, follow the link */
5186 		if (dscr_type == TAGID_INDIRECTENTRY) {
5187 			needs_indirect = 0;
5188 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5189 			icb_loc = dscr->inde.indirect_icb;
5190 			continue;
5191 		}
5192 
5193 		/* only file entries and extended file entries allowed here */
5194 		if ((dscr_type != TAGID_FENTRY) &&
5195 		    (dscr_type != TAGID_EXTFENTRY)) {
5196 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5197 			error = ENOENT;
5198 			break;
5199 		}
5200 
5201 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5202 
5203 		/* choose this one */
5204 		last_fe_icb_loc = icb_loc;
5205 
5206 		/* record and process/update (ext)fentry */
5207 		file_data = NULL;
5208 		if (dscr_type == TAGID_FENTRY) {
5209 			if (udf_node->fe)
5210 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5211 					udf_node->fe);
5212 			udf_node->fe  = &dscr->fe;
5213 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5214 			udf_file_type = udf_node->fe->icbtag.file_type;
5215 			file_size = udf_rw64(udf_node->fe->inf_len);
5216 			file_data = udf_node->fe->data;
5217 		} else {
5218 			if (udf_node->efe)
5219 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5220 					udf_node->efe);
5221 			udf_node->efe = &dscr->efe;
5222 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5223 			udf_file_type = udf_node->efe->icbtag.file_type;
5224 			file_size = udf_rw64(udf_node->efe->inf_len);
5225 			file_data = udf_node->efe->data;
5226 		}
5227 
5228 		/* check recording strategy (structure) */
5229 
5230 		/*
5231 		 * Strategy 4096 is a daisy linked chain terminating with an
5232 		 * unrecorded sector or a TERM descriptor. The next
5233 		 * descriptor is to be found in the sector that follows the
5234 		 * current sector.
5235 		 */
5236 		if (strat == 4096) {
5237 			strat4096 = 1;
5238 			needs_indirect = 1;
5239 
5240 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5241 		}
5242 
5243 		/*
5244 		 * Strategy 4 is the normal strategy and terminates, but if
5245 		 * we're in strategy 4096, we can't have strategy 4 mixed in
5246 		 */
5247 
5248 		if (strat == 4) {
5249 			if (strat4096) {
5250 				error = EINVAL;
5251 				break;
5252 			}
5253 			break;		/* done */
5254 		}
5255 	} while (!error);
5256 
5257 	/* first round of cleanup code */
5258 	if (error) {
5259 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5260 		/* recycle udf_node */
5261 		udf_dispose_node(udf_node);
5262 
5263 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5264 		nvp->v_data = NULL;
5265 		ungetnewvnode(nvp);
5266 
5267 		return EINVAL;		/* error code ok? */
5268 	}
5269 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5270 
5271 	/* assert no references to dscr anymore beyong this point */
5272 	assert((udf_node->fe) || (udf_node->efe));
5273 	dscr = NULL;
5274 
5275 	/*
5276 	 * Remember where to record an updated version of the descriptor. If
5277 	 * there is a sequence of indirect entries, icb_loc will have been
5278 	 * updated. Its the write disipline to allocate new space and to make
5279 	 * sure the chain is maintained.
5280 	 *
5281 	 * `needs_indirect' flags if the next location is to be filled with
5282 	 * with an indirect entry.
5283 	 */
5284 	udf_node->write_loc = icb_loc;
5285 	udf_node->needs_indirect = needs_indirect;
5286 
5287 	/*
5288 	 * Go trough all allocations extents of this descriptor and when
5289 	 * encountering a redirect read in the allocation extension. These are
5290 	 * daisy-chained.
5291 	 */
5292 	UDF_LOCK_NODE(udf_node, 0);
5293 	udf_node->num_extensions = 0;
5294 
5295 	error   = 0;
5296 	slot    = 0;
5297 	for (;;) {
5298 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5299 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5300 			"lb_num = %d, part = %d\n", slot, eof,
5301 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5302 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5303 			udf_rw32(icb_loc.loc.lb_num),
5304 			udf_rw16(icb_loc.loc.part_num)));
5305 		if (eof)
5306 			break;
5307 		slot++;
5308 
5309 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5310 			continue;
5311 
5312 		DPRINTF(NODE, ("\tgot redirect extent\n"));
5313 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5314 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5315 					"too many allocation extensions on "
5316 					"udf_node\n"));
5317 			error = EINVAL;
5318 			break;
5319 		}
5320 
5321 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5322 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5323 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5324 					"extension size in udf_node\n"));
5325 			error = EINVAL;
5326 			break;
5327 		}
5328 
5329 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5330 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5331 		/* load in allocation extent */
5332 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5333 		if (error || (dscr == NULL))
5334 			break;
5335 
5336 		/* process read-in descriptor */
5337 		dscr_type = udf_rw16(dscr->tag.id);
5338 
5339 		if (dscr_type != TAGID_ALLOCEXTENT) {
5340 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5341 			error = ENOENT;
5342 			break;
5343 		}
5344 
5345 		DPRINTF(NODE, ("\trecording redirect extent\n"));
5346 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5347 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5348 
5349 		udf_node->num_extensions++;
5350 
5351 	} /* while */
5352 	UDF_UNLOCK_NODE(udf_node, 0);
5353 
5354 	/* second round of cleanup code */
5355 	if (error) {
5356 		/* recycle udf_node */
5357 		udf_dispose_node(udf_node);
5358 
5359 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5360 		nvp->v_data = NULL;
5361 		ungetnewvnode(nvp);
5362 
5363 		return EINVAL;		/* error code ok? */
5364 	}
5365 
5366 	DPRINTF(NODE, ("\tnode read in fine\n"));
5367 
5368 	/*
5369 	 * Translate UDF filetypes into vnode types.
5370 	 *
5371 	 * Systemfiles like the meta main and mirror files are not treated as
5372 	 * normal files, so we type them as having no type. UDF dictates that
5373 	 * they are not allowed to be visible.
5374 	 */
5375 
5376 	switch (udf_file_type) {
5377 	case UDF_ICB_FILETYPE_DIRECTORY :
5378 	case UDF_ICB_FILETYPE_STREAMDIR :
5379 		nvp->v_type = VDIR;
5380 		break;
5381 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
5382 		nvp->v_type = VBLK;
5383 		break;
5384 	case UDF_ICB_FILETYPE_CHARDEVICE :
5385 		nvp->v_type = VCHR;
5386 		break;
5387 	case UDF_ICB_FILETYPE_SOCKET :
5388 		nvp->v_type = VSOCK;
5389 		break;
5390 	case UDF_ICB_FILETYPE_FIFO :
5391 		nvp->v_type = VFIFO;
5392 		break;
5393 	case UDF_ICB_FILETYPE_SYMLINK :
5394 		nvp->v_type = VLNK;
5395 		break;
5396 	case UDF_ICB_FILETYPE_VAT :
5397 	case UDF_ICB_FILETYPE_META_MAIN :
5398 	case UDF_ICB_FILETYPE_META_MIRROR :
5399 		nvp->v_type = VNON;
5400 		break;
5401 	case UDF_ICB_FILETYPE_RANDOMACCESS :
5402 	case UDF_ICB_FILETYPE_REALTIME :
5403 		nvp->v_type = VREG;
5404 		break;
5405 	default:
5406 		/* YIKES, something else */
5407 		nvp->v_type = VNON;
5408 	}
5409 
5410 	/* TODO specfs, fifofs etc etc. vnops setting */
5411 
5412 	/* don't forget to set vnode's v_size */
5413 	uvm_vnp_setsize(nvp, file_size);
5414 
5415 	/* TODO ext attr and streamdir udf_nodes */
5416 
5417 	*udf_noderes = udf_node;
5418 
5419 	return 0;
5420 }
5421 
5422 /* --------------------------------------------------------------------- */
5423 
5424 
5425 int
5426 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5427 {
5428 	union dscrptr *dscr;
5429 	struct long_ad *loc;
5430 	int extnr, flags, error;
5431 
5432 	DPRINTF(NODE, ("udf_writeout_node called\n"));
5433 
5434 	KASSERT(udf_node->outstanding_bufs == 0);
5435 	KASSERT(udf_node->outstanding_nodedscr == 0);
5436 
5437 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5438 
5439 	if (udf_node->i_flags & IN_DELETED) {
5440 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5441 		return 0;
5442 	}
5443 
5444 	/* lock node */
5445 	flags = waitfor ? 0 : IN_CALLBACK_ULK;
5446 	UDF_LOCK_NODE(udf_node, flags);
5447 
5448 	/* at least one descriptor writeout */
5449 	udf_node->outstanding_nodedscr = 1;
5450 
5451 	/* we're going to write out the descriptor so clear the flags */
5452 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5453 
5454 	/* if we were rebuild, write out the allocation extents */
5455 	if (udf_node->i_flags & IN_NODE_REBUILD) {
5456 		/* mark outstanding node dscriptors and issue them */
5457 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
5458 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5459 			loc = &udf_node->ext_loc[extnr];
5460 			dscr = (union dscrptr *) udf_node->ext[extnr];
5461 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5462 			if (error)
5463 				return error;
5464 		}
5465 		/* mark allocation extents written out */
5466 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
5467 	}
5468 
5469 	if (udf_node->fe) {
5470 		dscr = (union dscrptr *) udf_node->fe;
5471 	} else {
5472 		KASSERT(udf_node->efe);
5473 		dscr = (union dscrptr *) udf_node->efe;
5474 	}
5475 	KASSERT(dscr);
5476 
5477 	loc = &udf_node->write_loc;
5478 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5479 	return error;
5480 }
5481 
5482 /* --------------------------------------------------------------------- */
5483 
5484 int
5485 udf_dispose_node(struct udf_node *udf_node)
5486 {
5487 	struct vnode *vp;
5488 	int extnr;
5489 
5490 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5491 	if (!udf_node) {
5492 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5493 		return 0;
5494 	}
5495 
5496 	vp  = udf_node->vnode;
5497 #ifdef DIAGNOSTIC
5498 	if (vp->v_numoutput)
5499 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
5500 				"v_numoutput = %d", udf_node, vp->v_numoutput);
5501 #endif
5502 
5503 	/* wait until out of sync (just in case we happen to stumble over one */
5504 	KASSERT(!mutex_owned(&mntvnode_lock));
5505 	mutex_enter(&mntvnode_lock);
5506 	while (udf_node->i_flags & IN_SYNCED) {
5507 		cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
5508 			hz/16);
5509 	}
5510 	mutex_exit(&mntvnode_lock);
5511 
5512 	/* TODO extended attributes and streamdir */
5513 
5514 	/* remove dirhash if present */
5515 	udf_dirhash_destroy(&udf_node->dir_hash);
5516 
5517 	/* remove from our hash lookup table */
5518 	udf_deregister_node(udf_node);
5519 
5520 	/* destroy our lock */
5521 	mutex_destroy(&udf_node->node_mutex);
5522 	cv_destroy(&udf_node->node_lock);
5523 
5524 	/* dissociate our udf_node from the vnode */
5525 	genfs_node_destroy(udf_node->vnode);
5526 	vp->v_data = NULL;
5527 
5528 	/* free associated memory and the node itself */
5529 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5530 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5531 			udf_node->ext[extnr]);
5532 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
5533 	}
5534 
5535 	if (udf_node->fe)
5536 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5537 			udf_node->fe);
5538 	if (udf_node->efe)
5539 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5540 			udf_node->efe);
5541 
5542 	udf_node->fe  = (void *) 0xdeadaaaa;
5543 	udf_node->efe = (void *) 0xdeadbbbb;
5544 	udf_node->ump = (void *) 0xdeadbeef;
5545 	pool_put(&udf_node_pool, udf_node);
5546 
5547 	return 0;
5548 }
5549 
5550 
5551 
5552 /*
5553  * create a new node using the specified vnodeops, vap and cnp but with the
5554  * udf_file_type. This allows special files to be created. Use with care.
5555  */
5556 
5557 static int
5558 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5559 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5560 {
5561 	union dscrptr *dscr;
5562 	struct udf_node *dir_node = VTOI(dvp);;
5563 	struct udf_node *udf_node;
5564 	struct udf_mount *ump = dir_node->ump;
5565 	struct vnode *nvp;
5566 	struct long_ad node_icb_loc;
5567 	uint64_t parent_unique_id;
5568 	uint64_t lmapping;
5569 	uint32_t lb_size, lb_num;
5570 	uint16_t vpart_num;
5571 	uid_t uid;
5572 	gid_t gid, parent_gid;
5573 	int fid_size, error;
5574 
5575 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5576 	*vpp = NULL;
5577 
5578 	/* allocate vnode */
5579 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5580         if (error)
5581 		return error;
5582 
5583 	/* lock node */
5584 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5585 	if (error) {
5586 		nvp->v_data = NULL;
5587 		ungetnewvnode(nvp);
5588 		return error;
5589 	}
5590 
5591 	/* get disc allocation for one logical block */
5592 	error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
5593 			&vpart_num, &lmapping);
5594 	lb_num = lmapping;
5595 	if (error) {
5596 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5597 		ungetnewvnode(nvp);
5598 		return error;
5599 	}
5600 
5601 	/* initialise pointer to location */
5602 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
5603 	node_icb_loc.len = lb_size;
5604 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
5605 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5606 
5607 	/* build udf_node (do initialise!) */
5608 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5609 	memset(udf_node, 0, sizeof(struct udf_node));
5610 
5611 	/* initialise crosslinks, note location of fe/efe for hashing */
5612 	/* bugalert: synchronise with udf_get_node() */
5613 	udf_node->ump       = ump;
5614 	udf_node->vnode     = nvp;
5615 	nvp->v_data         = udf_node;
5616 	udf_node->loc       = node_icb_loc;
5617 	udf_node->write_loc = node_icb_loc;
5618 	udf_node->lockf     = 0;
5619 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5620 	cv_init(&udf_node->node_lock, "udf_nlk");
5621 	udf_node->outstanding_bufs = 0;
5622 	udf_node->outstanding_nodedscr = 0;
5623 
5624 	/* initialise genfs */
5625 	genfs_node_init(nvp, &udf_genfsops);
5626 
5627 	/* insert into the hash lookup */
5628 	udf_register_node(udf_node);
5629 
5630 	/* get parent's unique ID for refering '..' if its a directory */
5631 	if (dir_node->fe) {
5632 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5633 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
5634 	} else {
5635 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5636 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
5637 	}
5638 
5639 	/* get descriptor */
5640 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5641 
5642 	/* choose a fe or an efe for it */
5643 	if (ump->logical_vol->tag.descriptor_ver == 2) {
5644 		udf_node->fe = &dscr->fe;
5645 		fid_size = udf_create_new_fe(ump, udf_node->fe,
5646 			udf_file_type, &udf_node->loc,
5647 			&dir_node->loc, parent_unique_id);
5648 		/* TODO add extended attribute for creation time */
5649 	} else {
5650 		udf_node->efe = &dscr->efe;
5651 		fid_size = udf_create_new_efe(ump, udf_node->efe,
5652 			udf_file_type, &udf_node->loc,
5653 			&dir_node->loc, parent_unique_id);
5654 	}
5655 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5656 
5657 	/* update vnode's size and type */
5658 	nvp->v_type = vap->va_type;
5659 	uvm_vnp_setsize(nvp, fid_size);
5660 
5661 	/* set access mode */
5662 	udf_setaccessmode(udf_node, vap->va_mode);
5663 
5664 	/* set ownership */
5665 	uid = kauth_cred_geteuid(cnp->cn_cred);
5666 	gid = parent_gid;
5667 	udf_setownership(udf_node, uid, gid);
5668 
5669 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5670 	if (error) {
5671 		/* free disc allocation for node */
5672 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5673 
5674 		/* recycle udf_node */
5675 		udf_dispose_node(udf_node);
5676 		vput(nvp);
5677 
5678 		*vpp = NULL;
5679 		return error;
5680 	}
5681 
5682 	/* adjust file count */
5683 	udf_adjust_filecount(udf_node, 1);
5684 
5685 	/* return result */
5686 	*vpp = nvp;
5687 
5688 	return 0;
5689 }
5690 
5691 
5692 int
5693 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5694 	struct componentname *cnp)
5695 {
5696 	int (**vnodeops)(void *);
5697 	int udf_file_type;
5698 
5699 	DPRINTF(NODE, ("udf_create_node called\n"));
5700 
5701 	/* what type are we creating ? */
5702 	vnodeops = udf_vnodeop_p;
5703 	/* start with a default */
5704 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5705 
5706 	*vpp = NULL;
5707 
5708 	switch (vap->va_type) {
5709 	case VREG :
5710 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5711 		break;
5712 	case VDIR :
5713 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5714 		break;
5715 	case VLNK :
5716 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5717 		break;
5718 	case VBLK :
5719 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5720 		/* specfs */
5721 		return ENOTSUP;
5722 		break;
5723 	case VCHR :
5724 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5725 		/* specfs */
5726 		return ENOTSUP;
5727 		break;
5728 	case VFIFO :
5729 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
5730 		/* specfs */
5731 		return ENOTSUP;
5732 		break;
5733 	case VSOCK :
5734 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5735 		/* specfs */
5736 		return ENOTSUP;
5737 		break;
5738 	case VNON :
5739 	case VBAD :
5740 	default :
5741 		/* nothing; can we even create these? */
5742 		return EINVAL;
5743 	}
5744 
5745 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5746 }
5747 
5748 /* --------------------------------------------------------------------- */
5749 
5750 static void
5751 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5752 {
5753 	struct udf_mount *ump = udf_node->ump;
5754 	uint32_t lb_size, lb_num, len, num_lb;
5755 	uint16_t vpart_num;
5756 
5757 	/* is there really one? */
5758 	if (mem == NULL)
5759 		return;
5760 
5761 	/* got a descriptor here */
5762 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
5763 	lb_num    = udf_rw32(loc->loc.lb_num);
5764 	vpart_num = udf_rw16(loc->loc.part_num);
5765 
5766 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5767 	num_lb = (len + lb_size -1) / lb_size;
5768 
5769 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5770 }
5771 
5772 void
5773 udf_delete_node(struct udf_node *udf_node)
5774 {
5775 	void *dscr;
5776 	struct udf_mount *ump;
5777 	struct long_ad *loc;
5778 	int extnr, lvint, dummy;
5779 
5780 	ump = udf_node->ump;
5781 
5782 	/* paranoia check on integrity; should be open!; we could panic */
5783 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5784 	if (lvint == UDF_INTEGRITY_CLOSED)
5785 		printf("\tIntegrity was CLOSED!\n");
5786 
5787 	/* whatever the node type, change its size to zero */
5788 	(void) udf_resize_node(udf_node, 0, &dummy);
5789 
5790 	/* force it to be `clean'; no use writing it out */
5791 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5792 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
5793 
5794 	/* adjust file count */
5795 	udf_adjust_filecount(udf_node, -1);
5796 
5797 	/*
5798 	 * Free its allocated descriptors; memory will be released when
5799 	 * vop_reclaim() is called.
5800 	 */
5801 	loc = &udf_node->loc;
5802 
5803 	dscr = udf_node->fe;
5804 	udf_free_descriptor_space(udf_node, loc, dscr);
5805 	dscr = udf_node->efe;
5806 	udf_free_descriptor_space(udf_node, loc, dscr);
5807 
5808 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5809 		dscr =  udf_node->ext[extnr];
5810 		loc  = &udf_node->ext_loc[extnr];
5811 		udf_free_descriptor_space(udf_node, loc, dscr);
5812 	}
5813 }
5814 
5815 /* --------------------------------------------------------------------- */
5816 
5817 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5818 int
5819 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5820 {
5821 	struct file_entry    *fe  = udf_node->fe;
5822 	struct extfile_entry *efe = udf_node->efe;
5823 	uint64_t file_size;
5824 	int error;
5825 
5826 	if (fe) {
5827 		file_size  = udf_rw64(fe->inf_len);
5828 	} else {
5829 		assert(udf_node->efe);
5830 		file_size  = udf_rw64(efe->inf_len);
5831 	}
5832 
5833 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5834 			file_size, new_size));
5835 
5836 	/* if not changing, we're done */
5837 	if (file_size == new_size)
5838 		return 0;
5839 
5840 	*extended = (new_size > file_size);
5841 	if (*extended) {
5842 		error = udf_grow_node(udf_node, new_size);
5843 	} else {
5844 		error = udf_shrink_node(udf_node, new_size);
5845 	}
5846 
5847 	return error;
5848 }
5849 
5850 
5851 /* --------------------------------------------------------------------- */
5852 
5853 void
5854 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
5855 	struct timespec *mod, struct timespec *birth)
5856 {
5857 	struct timespec now;
5858 	struct file_entry    *fe;
5859 	struct extfile_entry *efe;
5860 	struct filetimes_extattr_entry *ft_extattr;
5861 	struct timestamp *atime, *mtime, *attrtime, *ctime;
5862 	struct timestamp  fe_ctime;
5863 	struct timespec   cur_birth;
5864 	uint32_t offset, a_l;
5865 	uint8_t *filedata;
5866 	int error;
5867 
5868 	/* protect against rogue values */
5869 	if (!udf_node)
5870 		return;
5871 
5872 	fe  = udf_node->fe;
5873 	efe = udf_node->efe;
5874 
5875 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
5876 		return;
5877 
5878 	/* get descriptor information */
5879 	if (fe) {
5880 		atime    = &fe->atime;
5881 		mtime    = &fe->mtime;
5882 		attrtime = &fe->attrtime;
5883 		filedata = fe->data;
5884 
5885 		/* initial save dummy setting */
5886 		ctime    = &fe_ctime;
5887 
5888 		/* check our extended attribute if present */
5889 		error = udf_extattr_search_intern(udf_node,
5890 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
5891 		if (!error) {
5892 			ft_extattr = (struct filetimes_extattr_entry *)
5893 				(filedata + offset);
5894 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
5895 				ctime = &ft_extattr->times[0];
5896 		}
5897 		/* TODO create the extended attribute if not found ? */
5898 	} else {
5899 		assert(udf_node->efe);
5900 		atime    = &efe->atime;
5901 		mtime    = &efe->mtime;
5902 		attrtime = &efe->attrtime;
5903 		ctime    = &efe->ctime;
5904 	}
5905 
5906 	vfs_timestamp(&now);
5907 
5908 	/* set access time */
5909 	if (udf_node->i_flags & IN_ACCESS) {
5910 		if (acc == NULL)
5911 			acc = &now;
5912 		udf_timespec_to_timestamp(acc, atime);
5913 	}
5914 
5915 	/* set modification time */
5916 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
5917 		if (mod == NULL)
5918 			mod = &now;
5919 		udf_timespec_to_timestamp(mod, mtime);
5920 
5921 		/* ensure birthtime is older than set modification! */
5922 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
5923 		if ((cur_birth.tv_sec > mod->tv_sec) ||
5924 			  ((cur_birth.tv_sec == mod->tv_sec) &&
5925 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
5926 			udf_timespec_to_timestamp(mod, ctime);
5927 		}
5928 	}
5929 
5930 	/* update birthtime if specified */
5931 	/* XXX we asume here that given birthtime is older than mod */
5932 	if (birth && (birth->tv_sec != VNOVAL)) {
5933 		udf_timespec_to_timestamp(birth, ctime);
5934 	}
5935 
5936 	/* set change time */
5937 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
5938 		udf_timespec_to_timestamp(&now, attrtime);
5939 
5940 	/* notify updates to the node itself */
5941 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
5942 		udf_node->i_flags |= IN_ACCESSED;
5943 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
5944 		udf_node->i_flags |= IN_MODIFIED;
5945 
5946 	/* clear modification flags */
5947 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
5948 }
5949 
5950 /* --------------------------------------------------------------------- */
5951 
5952 int
5953 udf_update(struct vnode *vp, struct timespec *acc,
5954 	struct timespec *mod, struct timespec *birth, int updflags)
5955 {
5956 	struct udf_node  *udf_node = VTOI(vp);
5957 	struct udf_mount *ump = udf_node->ump;
5958 	struct regid     *impl_id;
5959 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
5960 	int waitfor, flags;
5961 
5962 #ifdef DEBUG
5963 	char bits[128];
5964 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
5965 		updflags));
5966 	bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
5967 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
5968 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
5969 #endif
5970 
5971 	/* set our times */
5972 	udf_itimes(udf_node, acc, mod, birth);
5973 
5974 	/* set our implementation id */
5975 	if (udf_node->fe) {
5976 		impl_id = &udf_node->fe->imp_id;
5977 	} else {
5978 		impl_id = &udf_node->efe->imp_id;
5979 	}
5980 	udf_set_regid(impl_id, IMPL_NAME);
5981 	udf_add_impl_regid(ump, impl_id);
5982 
5983 	/* if called when mounted readonly, never write back */
5984 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
5985 		return 0;
5986 
5987 	/* check if the node is dirty 'enough'*/
5988 	if (updflags & UPDATE_CLOSE) {
5989 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
5990 	} else {
5991 		flags = udf_node->i_flags & IN_MODIFIED;
5992 	}
5993 	if (flags == 0)
5994 		return 0;
5995 
5996 	/* determine if we need to write sync or async */
5997 	waitfor = 0;
5998 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
5999 		/* sync mounted */
6000 		waitfor = updflags & UPDATE_WAIT;
6001 		if (updflags & UPDATE_DIROP)
6002 			waitfor |= UPDATE_WAIT;
6003 	}
6004 	if (waitfor)
6005 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6006 
6007 	return 0;
6008 }
6009 
6010 
6011 /* --------------------------------------------------------------------- */
6012 
6013 
6014 /*
6015  * Read one fid and process it into a dirent and advance to the next (*fid)
6016  * has to be allocated a logical block in size, (*dirent) struct dirent length
6017  */
6018 
6019 int
6020 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6021 		    struct fileid_desc *fid, struct dirent *dirent)
6022 {
6023 	struct udf_node  *dir_node = VTOI(vp);
6024 	struct udf_mount *ump = dir_node->ump;
6025 	struct file_entry    *fe  = dir_node->fe;
6026 	struct extfile_entry *efe = dir_node->efe;
6027 	uint32_t      fid_size, lb_size;
6028 	uint64_t      file_size;
6029 	char         *fid_name;
6030 	int           enough, error;
6031 
6032 	assert(fid);
6033 	assert(dirent);
6034 	assert(dir_node);
6035 	assert(offset);
6036 	assert(*offset != 1);
6037 
6038 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6039 	/* check if we're past the end of the directory */
6040 	if (fe) {
6041 		file_size = udf_rw64(fe->inf_len);
6042 	} else {
6043 		assert(dir_node->efe);
6044 		file_size = udf_rw64(efe->inf_len);
6045 	}
6046 	if (*offset >= file_size)
6047 		return EINVAL;
6048 
6049 	/* get maximum length of FID descriptor */
6050 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6051 
6052 	/* initialise return values */
6053 	fid_size = 0;
6054 	memset(dirent, 0, sizeof(struct dirent));
6055 	memset(fid, 0, lb_size);
6056 
6057 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
6058 	if (!enough) {
6059 		/* short dir ... */
6060 		return EIO;
6061 	}
6062 
6063 	error = vn_rdwr(UIO_READ, vp,
6064 			fid, MIN(file_size - (*offset), lb_size), *offset,
6065 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6066 			NULL, NULL);
6067 	if (error)
6068 		return error;
6069 
6070 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6071 	/*
6072 	 * Check if we got a whole descriptor.
6073 	 * TODO Try to `resync' directory stream when something is very wrong.
6074 	 */
6075 
6076 	/* check if our FID header is OK */
6077 	error = udf_check_tag(fid);
6078 	if (error) {
6079 		goto brokendir;
6080 	}
6081 	DPRINTF(FIDS, ("\ttag check ok\n"));
6082 
6083 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
6084 		error = EIO;
6085 		goto brokendir;
6086 	}
6087 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6088 
6089 	/* check for length */
6090 	fid_size = udf_fidsize(fid);
6091 	enough = (file_size - (*offset) >= fid_size);
6092 	if (!enough) {
6093 		error = EIO;
6094 		goto brokendir;
6095 	}
6096 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6097 
6098 	/* check FID contents */
6099 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6100 brokendir:
6101 	if (error) {
6102 		/* note that is sometimes a bit quick to report */
6103 		printf("BROKEN DIRECTORY ENTRY\n");
6104 		/* RESYNC? */
6105 		/* TODO: use udf_resync_fid_stream */
6106 		return EIO;
6107 	}
6108 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
6109 
6110 	/* we got a whole and valid descriptor! */
6111 	DPRINTF(FIDS, ("\tinterpret FID\n"));
6112 
6113 	/* create resulting dirent structure */
6114 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6115 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6116 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6117 
6118 	/* '..' has no name, so provide one */
6119 	if (fid->file_char & UDF_FILE_CHAR_PAR)
6120 		strcpy(dirent->d_name, "..");
6121 
6122 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
6123 	dirent->d_namlen = strlen(dirent->d_name);
6124 	dirent->d_reclen = _DIRENT_SIZE(dirent);
6125 
6126 	/*
6127 	 * Note that its not worth trying to go for the filetypes now... its
6128 	 * too expensive too
6129 	 */
6130 	dirent->d_type = DT_UNKNOWN;
6131 
6132 	/* initial guess for filetype we can make */
6133 	if (fid->file_char & UDF_FILE_CHAR_DIR)
6134 		dirent->d_type = DT_DIR;
6135 
6136 	/* advance */
6137 	*offset += fid_size;
6138 
6139 	return error;
6140 }
6141 
6142 
6143 /* --------------------------------------------------------------------- */
6144 
6145 static void
6146 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6147 	int pass, int *ndirty)
6148 {
6149 	struct udf_node *udf_node, *n_udf_node;
6150 	struct vnode *vp;
6151 	int vdirty, error;
6152 	int on_type, on_flags, on_vnode;
6153 
6154 derailed:
6155 	KASSERT(mutex_owned(&mntvnode_lock));
6156 
6157 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
6158 	udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
6159 	for (;udf_node; udf_node = n_udf_node) {
6160 		DPRINTF(SYNC, ("."));
6161 
6162 		udf_node->i_flags &= ~IN_SYNCED;
6163 		vp = udf_node->vnode;
6164 
6165 		mutex_enter(&vp->v_interlock);
6166 		n_udf_node = LIST_NEXT(udf_node, sortchain);
6167 		if (n_udf_node)
6168 			n_udf_node->i_flags |= IN_SYNCED;
6169 
6170 		/* system nodes are not synced this way */
6171 		if (vp->v_vflag & VV_SYSTEM) {
6172 			mutex_exit(&vp->v_interlock);
6173 			continue;
6174 		}
6175 
6176 		/* check if its dirty enough to even try */
6177 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
6178 		on_flags = ((udf_node->i_flags &
6179 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6180 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6181 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6182 		if (on_type || (on_flags || on_vnode)) { /* XXX */
6183 			/* not dirty (enough?) */
6184 			mutex_exit(&vp->v_interlock);
6185 			continue;
6186 		}
6187 
6188 		mutex_exit(&mntvnode_lock);
6189 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
6190 		if (error) {
6191 			mutex_enter(&mntvnode_lock);
6192 			if (error == ENOENT)
6193 				goto derailed;
6194 			*ndirty += 1;
6195 			continue;
6196 		}
6197 
6198 		switch (pass) {
6199 		case 1:
6200 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6201 			break;
6202 		case 2:
6203 			vdirty = vp->v_numoutput;
6204 			if (vp->v_tag == VT_UDF)
6205 				vdirty += udf_node->outstanding_bufs +
6206 					udf_node->outstanding_nodedscr;
6207 			if (vdirty == 0)
6208 				VOP_FSYNC(vp, cred, 0,0,0);
6209 			*ndirty += vdirty;
6210 			break;
6211 		case 3:
6212 			vdirty = vp->v_numoutput;
6213 			if (vp->v_tag == VT_UDF)
6214 				vdirty += udf_node->outstanding_bufs +
6215 					udf_node->outstanding_nodedscr;
6216 			*ndirty += vdirty;
6217 			break;
6218 		}
6219 
6220 		vput(vp);
6221 		mutex_enter(&mntvnode_lock);
6222 	}
6223 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6224 }
6225 
6226 
6227 void
6228 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6229 {
6230 	int dummy, ndirty;
6231 
6232 	mutex_enter(&mntvnode_lock);
6233 recount:
6234 	dummy = 0;
6235 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6236 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6237 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6238 
6239 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6240 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6241 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6242 
6243 	if (waitfor == MNT_WAIT) {
6244 		ndirty = ump->devvp->v_numoutput;
6245 		DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
6246 			ndirty));
6247 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6248 		DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
6249 			ndirty));
6250 
6251 		if (ndirty) {
6252 			/* 1/4 second wait */
6253 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6254 				hz/4);
6255 			goto recount;
6256 		}
6257 	}
6258 
6259 	mutex_exit(&mntvnode_lock);
6260 }
6261 
6262 /* --------------------------------------------------------------------- */
6263 
6264 /*
6265  * Read and write file extent in/from the buffer.
6266  *
6267  * The splitup of the extent into seperate request-buffers is to minimise
6268  * copying around as much as possible.
6269  *
6270  * block based file reading and writing
6271  */
6272 
6273 static int
6274 udf_read_internal(struct udf_node *node, uint8_t *blob)
6275 {
6276 	struct udf_mount *ump;
6277 	struct file_entry     *fe = node->fe;
6278 	struct extfile_entry *efe = node->efe;
6279 	uint64_t inflen;
6280 	uint32_t sector_size;
6281 	uint8_t  *pos;
6282 	int icbflags, addr_type;
6283 
6284 	/* get extent and do some paranoia checks */
6285 	ump = node->ump;
6286 	sector_size = ump->discinfo.sector_size;
6287 
6288 	if (fe) {
6289 		inflen   = udf_rw64(fe->inf_len);
6290 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6291 		icbflags = udf_rw16(fe->icbtag.flags);
6292 	} else {
6293 		assert(node->efe);
6294 		inflen   = udf_rw64(efe->inf_len);
6295 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6296 		icbflags = udf_rw16(efe->icbtag.flags);
6297 	}
6298 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6299 
6300 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6301 	assert(inflen < sector_size);
6302 
6303 	/* copy out info */
6304 	memset(blob, 0, sector_size);
6305 	memcpy(blob, pos, inflen);
6306 
6307 	return 0;
6308 }
6309 
6310 
6311 static int
6312 udf_write_internal(struct udf_node *node, uint8_t *blob)
6313 {
6314 	struct udf_mount *ump;
6315 	struct file_entry     *fe = node->fe;
6316 	struct extfile_entry *efe = node->efe;
6317 	uint64_t inflen;
6318 	uint32_t sector_size;
6319 	uint8_t  *pos;
6320 	int icbflags, addr_type;
6321 
6322 	/* get extent and do some paranoia checks */
6323 	ump = node->ump;
6324 	sector_size = ump->discinfo.sector_size;
6325 
6326 	if (fe) {
6327 		inflen   = udf_rw64(fe->inf_len);
6328 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6329 		icbflags = udf_rw16(fe->icbtag.flags);
6330 	} else {
6331 		assert(node->efe);
6332 		inflen   = udf_rw64(efe->inf_len);
6333 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6334 		icbflags = udf_rw16(efe->icbtag.flags);
6335 	}
6336 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6337 
6338 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6339 	assert(inflen < sector_size);
6340 
6341 	/* copy in blob */
6342 	/* memset(pos, 0, inflen); */
6343 	memcpy(pos, blob, inflen);
6344 
6345 	return 0;
6346 }
6347 
6348 
6349 void
6350 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6351 {
6352 	struct buf *nestbuf;
6353 	struct udf_mount *ump = udf_node->ump;
6354 	uint64_t   *mapping;
6355 	uint64_t    run_start;
6356 	uint32_t    sector_size;
6357 	uint32_t    buf_offset, sector, rbuflen, rblk;
6358 	uint32_t    from, lblkno;
6359 	uint32_t    sectors;
6360 	uint8_t    *buf_pos;
6361 	int error, run_length, isdir, what;
6362 
6363 	sector_size = udf_node->ump->discinfo.sector_size;
6364 
6365 	from    = buf->b_blkno;
6366 	sectors = buf->b_bcount / sector_size;
6367 
6368 	isdir   = (udf_node->vnode->v_type == VDIR);
6369 	what    = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6370 
6371 	/* assure we have enough translation slots */
6372 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6373 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6374 
6375 	if (sectors > UDF_MAX_MAPPINGS) {
6376 		printf("udf_read_filebuf: implementation limit on bufsize\n");
6377 		buf->b_error  = EIO;
6378 		biodone(buf);
6379 		return;
6380 	}
6381 
6382 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6383 
6384 	error = 0;
6385 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6386 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6387 	if (error) {
6388 		buf->b_error  = error;
6389 		biodone(buf);
6390 		goto out;
6391 	}
6392 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
6393 
6394 	/* pre-check if its an internal */
6395 	if (*mapping == UDF_TRANS_INTERN) {
6396 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6397 		if (error)
6398 			buf->b_error  = error;
6399 		biodone(buf);
6400 		goto out;
6401 	}
6402 	DPRINTF(READ, ("\tnot intern\n"));
6403 
6404 #ifdef DEBUG
6405 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6406 		printf("Returned translation table:\n");
6407 		for (sector = 0; sector < sectors; sector++) {
6408 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6409 		}
6410 	}
6411 #endif
6412 
6413 	/* request read-in of data from disc sheduler */
6414 	buf->b_resid = buf->b_bcount;
6415 	for (sector = 0; sector < sectors; sector++) {
6416 		buf_offset = sector * sector_size;
6417 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6418 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6419 
6420 		/* check if its zero or unmapped to stop reading */
6421 		switch (mapping[sector]) {
6422 		case UDF_TRANS_UNMAPPED:
6423 		case UDF_TRANS_ZERO:
6424 			/* copy zero sector TODO runlength like below */
6425 			memset(buf_pos, 0, sector_size);
6426 			DPRINTF(READ, ("\treturning zero sector\n"));
6427 			nestiobuf_done(buf, sector_size, 0);
6428 			break;
6429 		default :
6430 			DPRINTF(READ, ("\tread sector "
6431 			    "%"PRIu64"\n", mapping[sector]));
6432 
6433 			lblkno = from + sector;
6434 			run_start  = mapping[sector];
6435 			run_length = 1;
6436 			while (sector < sectors-1) {
6437 				if (mapping[sector+1] != mapping[sector]+1)
6438 					break;
6439 				run_length++;
6440 				sector++;
6441 			}
6442 
6443 			/*
6444 			 * nest an iobuf and mark it for async reading. Since
6445 			 * we're using nested buffers, they can't be cached by
6446 			 * design.
6447 			 */
6448 			rbuflen = run_length * sector_size;
6449 			rblk    = run_start  * (sector_size/DEV_BSIZE);
6450 
6451 			nestbuf = getiobuf(NULL, true);
6452 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6453 			/* nestbuf is B_ASYNC */
6454 
6455 			/* identify this nestbuf */
6456 			nestbuf->b_lblkno   = lblkno;
6457 			assert(nestbuf->b_vp == udf_node->vnode);
6458 
6459 			/* CD shedules on raw blkno */
6460 			nestbuf->b_blkno      = rblk;
6461 			nestbuf->b_proc       = NULL;
6462 			nestbuf->b_rawblkno   = rblk;
6463 			nestbuf->b_udf_c_type = what;
6464 
6465 			udf_discstrat_queuebuf(ump, nestbuf);
6466 		}
6467 	}
6468 out:
6469 	/* if we're synchronously reading, wait for the completion */
6470 	if ((buf->b_flags & B_ASYNC) == 0)
6471 		biowait(buf);
6472 
6473 	DPRINTF(READ, ("\tend of read_filebuf\n"));
6474 	free(mapping, M_TEMP);
6475 	return;
6476 }
6477 
6478 
6479 void
6480 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6481 {
6482 	struct buf *nestbuf;
6483 	struct udf_mount *ump = udf_node->ump;
6484 	uint64_t   *mapping;
6485 	uint64_t    run_start;
6486 	uint32_t    lb_size;
6487 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
6488 	uint32_t    from, lblkno;
6489 	uint32_t    num_lb;
6490 	uint8_t    *buf_pos;
6491 	int error, run_length, isdir, what, s;
6492 
6493 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6494 
6495 	from   = buf->b_blkno;
6496 	num_lb = buf->b_bcount / lb_size;
6497 
6498 	isdir  = (udf_node->vnode->v_type == VDIR);
6499 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6500 
6501 	if (udf_node == ump->metadatabitmap_node)
6502 		what = UDF_C_METADATA_SBM;
6503 
6504 	/* assure we have enough translation slots */
6505 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6506 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6507 
6508 	if (num_lb > UDF_MAX_MAPPINGS) {
6509 		printf("udf_write_filebuf: implementation limit on bufsize\n");
6510 		buf->b_error  = EIO;
6511 		biodone(buf);
6512 		return;
6513 	}
6514 
6515 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6516 
6517 	error = 0;
6518 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6519 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6520 	if (error) {
6521 		buf->b_error  = error;
6522 		biodone(buf);
6523 		goto out;
6524 	}
6525 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6526 
6527 	/* if its internally mapped, we can write it in the descriptor itself */
6528 	if (*mapping == UDF_TRANS_INTERN) {
6529 		/* TODO paranoia check if we ARE going to have enough space */
6530 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6531 		if (error)
6532 			buf->b_error  = error;
6533 		biodone(buf);
6534 		goto out;
6535 	}
6536 	DPRINTF(WRITE, ("\tnot intern\n"));
6537 
6538 	/* request write out of data to disc sheduler */
6539 	buf->b_resid = buf->b_bcount;
6540 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
6541 		buf_offset = lb_num * lb_size;
6542 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6543 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6544 
6545 		/*
6546 		 * Mappings are not that important here. Just before we write
6547 		 * the lb_num we late-allocate them when needed and update the
6548 		 * mapping in the udf_node.
6549 		 */
6550 
6551 		/* XXX why not ignore the mapping altogether ? */
6552 		/* TODO estimate here how much will be late-allocated */
6553 		DPRINTF(WRITE, ("\twrite lb_num "
6554 		    "%"PRIu64, mapping[lb_num]));
6555 
6556 		lblkno = from + lb_num;
6557 		run_start  = mapping[lb_num];
6558 		run_length = 1;
6559 		while (lb_num < num_lb-1) {
6560 			if (mapping[lb_num+1] != mapping[lb_num]+1)
6561 				if (mapping[lb_num+1] != mapping[lb_num])
6562 					break;
6563 			run_length++;
6564 			lb_num++;
6565 		}
6566 		DPRINTF(WRITE, ("+ %d\n", run_length));
6567 
6568 		/* nest an iobuf on the master buffer for the extent */
6569 		rbuflen = run_length * lb_size;
6570 		rblk = run_start * (lb_size/DEV_BSIZE);
6571 
6572 #if 0
6573 		/* if its zero or unmapped, our blknr gets -1 for unmapped */
6574 		switch (mapping[lb_num]) {
6575 		case UDF_TRANS_UNMAPPED:
6576 		case UDF_TRANS_ZERO:
6577 			rblk = -1;
6578 			break;
6579 		default:
6580 			rblk = run_start * (lb_size/DEV_BSIZE);
6581 			break;
6582 		}
6583 #endif
6584 
6585 		nestbuf = getiobuf(NULL, true);
6586 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6587 		/* nestbuf is B_ASYNC */
6588 
6589 		/* identify this nestbuf */
6590 		nestbuf->b_lblkno   = lblkno;
6591 		KASSERT(nestbuf->b_vp == udf_node->vnode);
6592 
6593 		/* CD shedules on raw blkno */
6594 		nestbuf->b_blkno      = rblk;
6595 		nestbuf->b_proc       = NULL;
6596 		nestbuf->b_rawblkno   = rblk;
6597 		nestbuf->b_udf_c_type = what;
6598 
6599 		/* increment our outstanding bufs counter */
6600 		s = splbio();
6601 			udf_node->outstanding_bufs++;
6602 		splx(s);
6603 
6604 		udf_discstrat_queuebuf(ump, nestbuf);
6605 	}
6606 out:
6607 	/* if we're synchronously writing, wait for the completion */
6608 	if ((buf->b_flags & B_ASYNC) == 0)
6609 		biowait(buf);
6610 
6611 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6612 	free(mapping, M_TEMP);
6613 	return;
6614 }
6615 
6616 /* --------------------------------------------------------------------- */
6617 
6618 
6619