1 /* $NetBSD: udf_subr.c,v 1.121 2013/10/18 19:56:55 christos Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.121 2013/10/18 19:56:55 christos Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref((vp)); \ 77 vput((vp)); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 uint64_t psize; 192 unsigned secsize; 193 struct mmc_discinfo *di; 194 int error; 195 196 DPRINTF(VOLUMES, ("read/update disc info\n")); 197 di = &ump->discinfo; 198 memset(di, 0, sizeof(struct mmc_discinfo)); 199 200 /* check if we're on a MMC capable device, i.e. CD/DVD */ 201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 202 if (error == 0) { 203 udf_dump_discinfo(ump); 204 return 0; 205 } 206 207 /* disc partition support */ 208 error = getdisksize(devvp, &psize, &secsize); 209 if (error) 210 return error; 211 212 /* set up a disc info profile for partitions */ 213 di->mmc_profile = 0x01; /* disc type */ 214 di->mmc_class = MMC_CLASS_DISC; 215 di->disc_state = MMC_STATE_CLOSED; 216 di->last_session_state = MMC_STATE_CLOSED; 217 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 218 di->link_block_penalty = 0; 219 220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 222 di->mmc_cap = di->mmc_cur; 223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 224 225 /* TODO problem with last_possible_lba on resizable VND; request */ 226 di->last_possible_lba = psize; 227 di->sector_size = secsize; 228 229 di->num_sessions = 1; 230 di->num_tracks = 1; 231 232 di->first_track = 1; 233 di->first_track_last_session = di->last_track_last_session = 1; 234 235 udf_dump_discinfo(ump); 236 return 0; 237 } 238 239 240 int 241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 242 { 243 struct vnode *devvp = ump->devvp; 244 struct mmc_discinfo *di = &ump->discinfo; 245 int error, class; 246 247 DPRINTF(VOLUMES, ("read track info\n")); 248 249 class = di->mmc_class; 250 if (class != MMC_CLASS_DISC) { 251 /* tracknr specified in struct ti */ 252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 253 return error; 254 } 255 256 /* disc partition support */ 257 if (ti->tracknr != 1) 258 return EIO; 259 260 /* create fake ti (TODO check for resized vnds) */ 261 ti->sessionnr = 1; 262 263 ti->track_mode = 0; /* XXX */ 264 ti->data_mode = 0; /* XXX */ 265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 266 267 ti->track_start = 0; 268 ti->packet_size = 1; 269 270 /* TODO support for resizable vnd */ 271 ti->track_size = di->last_possible_lba; 272 ti->next_writable = di->last_possible_lba; 273 ti->last_recorded = ti->next_writable; 274 ti->free_blocks = 0; 275 276 return 0; 277 } 278 279 280 int 281 udf_setup_writeparams(struct udf_mount *ump) 282 { 283 struct mmc_writeparams mmc_writeparams; 284 int error; 285 286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 287 return 0; 288 289 /* 290 * only CD burning normally needs setting up, but other disc types 291 * might need other settings to be made. The MMC framework will set up 292 * the nessisary recording parameters according to the disc 293 * characteristics read in. Modifications can be made in the discinfo 294 * structure passed to change the nature of the disc. 295 */ 296 297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 300 301 /* 302 * UDF dictates first track to determine track mode for the whole 303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 304 * To prevent problems with a `reserved' track in front we start with 305 * the 2nd track and if that is not valid, go for the 1st. 306 */ 307 mmc_writeparams.tracknr = 2; 308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 310 311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 312 FKIOCTL, NOCRED); 313 if (error) { 314 mmc_writeparams.tracknr = 1; 315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 316 &mmc_writeparams, FKIOCTL, NOCRED); 317 } 318 return error; 319 } 320 321 322 int 323 udf_synchronise_caches(struct udf_mount *ump) 324 { 325 struct mmc_op mmc_op; 326 327 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 328 329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 330 return 0; 331 332 /* discs are done now */ 333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 334 return 0; 335 336 memset(&mmc_op, 0, sizeof(struct mmc_op)); 337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 338 339 /* ignore return code */ 340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 341 342 return 0; 343 } 344 345 /* --------------------------------------------------------------------- */ 346 347 /* track/session searching for mounting */ 348 int 349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 350 int *first_tracknr, int *last_tracknr) 351 { 352 struct mmc_trackinfo trackinfo; 353 uint32_t tracknr, start_track, num_tracks; 354 int error; 355 356 /* if negative, sessionnr is relative to last session */ 357 if (args->sessionnr < 0) { 358 args->sessionnr += ump->discinfo.num_sessions; 359 } 360 361 /* sanity */ 362 if (args->sessionnr < 0) 363 args->sessionnr = 0; 364 if (args->sessionnr > ump->discinfo.num_sessions) 365 args->sessionnr = ump->discinfo.num_sessions; 366 367 /* search the tracks for this session, zero session nr indicates last */ 368 if (args->sessionnr == 0) 369 args->sessionnr = ump->discinfo.num_sessions; 370 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 371 args->sessionnr--; 372 373 /* sanity again */ 374 if (args->sessionnr < 0) 375 args->sessionnr = 0; 376 377 /* search the first and last track of the specified session */ 378 num_tracks = ump->discinfo.num_tracks; 379 start_track = ump->discinfo.first_track; 380 381 /* search for first track of this session */ 382 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 383 /* get track info */ 384 trackinfo.tracknr = tracknr; 385 error = udf_update_trackinfo(ump, &trackinfo); 386 if (error) 387 return error; 388 389 if (trackinfo.sessionnr == args->sessionnr) 390 break; 391 } 392 *first_tracknr = tracknr; 393 394 /* search for last track of this session */ 395 for (;tracknr <= num_tracks; tracknr++) { 396 /* get track info */ 397 trackinfo.tracknr = tracknr; 398 error = udf_update_trackinfo(ump, &trackinfo); 399 if (error || (trackinfo.sessionnr != args->sessionnr)) { 400 tracknr--; 401 break; 402 } 403 } 404 if (tracknr > num_tracks) 405 tracknr--; 406 407 *last_tracknr = tracknr; 408 409 if (*last_tracknr < *first_tracknr) { 410 printf( "udf_search_tracks: sanity check on drive+disc failed, " 411 "drive returned garbage\n"); 412 return EINVAL; 413 } 414 415 assert(*last_tracknr >= *first_tracknr); 416 return 0; 417 } 418 419 420 /* 421 * NOTE: this is the only routine in this file that directly peeks into the 422 * metadata file but since its at a larval state of the mount it can't hurt. 423 * 424 * XXX candidate for udf_allocation.c 425 * XXX clean me up!, change to new node reading code. 426 */ 427 428 static void 429 udf_check_track_metadata_overlap(struct udf_mount *ump, 430 struct mmc_trackinfo *trackinfo) 431 { 432 struct part_desc *part; 433 struct file_entry *fe; 434 struct extfile_entry *efe; 435 struct short_ad *s_ad; 436 struct long_ad *l_ad; 437 uint32_t track_start, track_end; 438 uint32_t phys_part_start, phys_part_end, part_start, part_end; 439 uint32_t sector_size, len, alloclen, plb_num; 440 uint8_t *pos; 441 int addr_type, icblen, icbflags; 442 443 /* get our track extents */ 444 track_start = trackinfo->track_start; 445 track_end = track_start + trackinfo->track_size; 446 447 /* get our base partition extent */ 448 KASSERT(ump->node_part == ump->fids_part); 449 part = ump->partitions[ump->vtop[ump->node_part]]; 450 phys_part_start = udf_rw32(part->start_loc); 451 phys_part_end = phys_part_start + udf_rw32(part->part_len); 452 453 /* no use if its outside the physical partition */ 454 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 455 return; 456 457 /* 458 * now follow all extents in the fe/efe to see if they refer to this 459 * track 460 */ 461 462 sector_size = ump->discinfo.sector_size; 463 464 /* XXX should we claim exclusive access to the metafile ? */ 465 /* TODO: move to new node read code */ 466 fe = ump->metadata_node->fe; 467 efe = ump->metadata_node->efe; 468 if (fe) { 469 alloclen = udf_rw32(fe->l_ad); 470 pos = &fe->data[0] + udf_rw32(fe->l_ea); 471 icbflags = udf_rw16(fe->icbtag.flags); 472 } else { 473 assert(efe); 474 alloclen = udf_rw32(efe->l_ad); 475 pos = &efe->data[0] + udf_rw32(efe->l_ea); 476 icbflags = udf_rw16(efe->icbtag.flags); 477 } 478 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 479 480 while (alloclen) { 481 if (addr_type == UDF_ICB_SHORT_ALLOC) { 482 icblen = sizeof(struct short_ad); 483 s_ad = (struct short_ad *) pos; 484 len = udf_rw32(s_ad->len); 485 plb_num = udf_rw32(s_ad->lb_num); 486 } else { 487 /* should not be present, but why not */ 488 icblen = sizeof(struct long_ad); 489 l_ad = (struct long_ad *) pos; 490 len = udf_rw32(l_ad->len); 491 plb_num = udf_rw32(l_ad->loc.lb_num); 492 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 493 } 494 /* process extent */ 495 len = UDF_EXT_LEN(len); 496 497 part_start = phys_part_start + plb_num; 498 part_end = part_start + (len / sector_size); 499 500 if ((part_start >= track_start) && (part_end <= track_end)) { 501 /* extent is enclosed within this track */ 502 ump->metadata_track = *trackinfo; 503 return; 504 } 505 506 pos += icblen; 507 alloclen -= icblen; 508 } 509 } 510 511 512 int 513 udf_search_writing_tracks(struct udf_mount *ump) 514 { 515 struct vnode *devvp = ump->devvp; 516 struct mmc_trackinfo trackinfo; 517 struct mmc_op mmc_op; 518 struct part_desc *part; 519 uint32_t tracknr, start_track, num_tracks; 520 uint32_t track_start, track_end, part_start, part_end; 521 int node_alloc, error; 522 523 /* 524 * in the CD/(HD)DVD/BD recordable device model a few tracks within 525 * the last session might be open but in the UDF device model at most 526 * three tracks can be open: a reserved track for delayed ISO VRS 527 * writing, a data track and a metadata track. We search here for the 528 * data track and the metadata track. Note that the reserved track is 529 * troublesome but can be detected by its small size of < 512 sectors. 530 */ 531 532 /* update discinfo since it might have changed */ 533 error = udf_update_discinfo(ump); 534 if (error) 535 return error; 536 537 num_tracks = ump->discinfo.num_tracks; 538 start_track = ump->discinfo.first_track; 539 540 /* fetch info on first and possibly only track */ 541 trackinfo.tracknr = start_track; 542 error = udf_update_trackinfo(ump, &trackinfo); 543 if (error) 544 return error; 545 546 /* copy results to our mount point */ 547 ump->data_track = trackinfo; 548 ump->metadata_track = trackinfo; 549 550 /* if not sequential, we're done */ 551 if (num_tracks == 1) 552 return 0; 553 554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 555 /* get track info */ 556 trackinfo.tracknr = tracknr; 557 error = udf_update_trackinfo(ump, &trackinfo); 558 if (error) 559 return error; 560 561 /* 562 * If this track is marked damaged, ask for repair. This is an 563 * optional command, so ignore its error but report warning. 564 */ 565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 566 memset(&mmc_op, 0, sizeof(mmc_op)); 567 mmc_op.operation = MMC_OP_REPAIRTRACK; 568 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 569 mmc_op.tracknr = tracknr; 570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 571 if (error) 572 (void)printf("Drive can't explicitly repair " 573 "damaged track %d, but it might " 574 "autorepair\n", tracknr); 575 576 /* reget track info */ 577 error = udf_update_trackinfo(ump, &trackinfo); 578 if (error) 579 return error; 580 } 581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 582 continue; 583 584 track_start = trackinfo.track_start; 585 track_end = track_start + trackinfo.track_size; 586 587 /* check for overlap on data partition */ 588 part = ump->partitions[ump->data_part]; 589 part_start = udf_rw32(part->start_loc); 590 part_end = part_start + udf_rw32(part->part_len); 591 if ((part_start < track_end) && (part_end > track_start)) { 592 ump->data_track = trackinfo; 593 /* TODO check if UDF partition data_part is writable */ 594 } 595 596 /* check for overlap on metadata partition */ 597 node_alloc = ump->vtop_alloc[ump->node_part]; 598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 599 (node_alloc == UDF_ALLOC_METABITMAP)) { 600 udf_check_track_metadata_overlap(ump, &trackinfo); 601 } else { 602 ump->metadata_track = trackinfo; 603 } 604 } 605 606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 607 return EROFS; 608 609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 610 return EROFS; 611 612 return 0; 613 } 614 615 /* --------------------------------------------------------------------- */ 616 617 /* 618 * Check if the blob starts with a good UDF tag. Tags are protected by a 619 * checksum over the reader except one byte at position 4 that is the checksum 620 * itself. 621 */ 622 623 int 624 udf_check_tag(void *blob) 625 { 626 struct desc_tag *tag = blob; 627 uint8_t *pos, sum, cnt; 628 629 /* check TAG header checksum */ 630 pos = (uint8_t *) tag; 631 sum = 0; 632 633 for(cnt = 0; cnt < 16; cnt++) { 634 if (cnt != 4) 635 sum += *pos; 636 pos++; 637 } 638 if (sum != tag->cksum) { 639 /* bad tag header checksum; this is not a valid tag */ 640 return EINVAL; 641 } 642 643 return 0; 644 } 645 646 647 /* 648 * check tag payload will check descriptor CRC as specified. 649 * If the descriptor is too long, it will return EIO otherwise EINVAL. 650 */ 651 652 int 653 udf_check_tag_payload(void *blob, uint32_t max_length) 654 { 655 struct desc_tag *tag = blob; 656 uint16_t crc, crc_len; 657 658 crc_len = udf_rw16(tag->desc_crc_len); 659 660 /* check payload CRC if applicable */ 661 if (crc_len == 0) 662 return 0; 663 664 if (crc_len > max_length) 665 return EIO; 666 667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 668 if (crc != udf_rw16(tag->desc_crc)) { 669 /* bad payload CRC; this is a broken tag */ 670 return EINVAL; 671 } 672 673 return 0; 674 } 675 676 677 void 678 udf_validate_tag_sum(void *blob) 679 { 680 struct desc_tag *tag = blob; 681 uint8_t *pos, sum, cnt; 682 683 /* calculate TAG header checksum */ 684 pos = (uint8_t *) tag; 685 sum = 0; 686 687 for(cnt = 0; cnt < 16; cnt++) { 688 if (cnt != 4) sum += *pos; 689 pos++; 690 } 691 tag->cksum = sum; /* 8 bit */ 692 } 693 694 695 /* assumes sector number of descriptor to be saved already present */ 696 void 697 udf_validate_tag_and_crc_sums(void *blob) 698 { 699 struct desc_tag *tag = blob; 700 uint8_t *btag = (uint8_t *) tag; 701 uint16_t crc, crc_len; 702 703 crc_len = udf_rw16(tag->desc_crc_len); 704 705 /* check payload CRC if applicable */ 706 if (crc_len > 0) { 707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 708 tag->desc_crc = udf_rw16(crc); 709 } 710 711 /* calculate TAG header checksum */ 712 udf_validate_tag_sum(blob); 713 } 714 715 /* --------------------------------------------------------------------- */ 716 717 /* 718 * XXX note the different semantics from udfclient: for FIDs it still rounds 719 * up to sectors. Use udf_fidsize() for a correct length. 720 */ 721 722 int 723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 724 { 725 uint32_t size, tag_id, num_lb, elmsz; 726 727 tag_id = udf_rw16(dscr->tag.id); 728 729 switch (tag_id) { 730 case TAGID_LOGVOL : 731 size = sizeof(struct logvol_desc) - 1; 732 size += udf_rw32(dscr->lvd.mt_l); 733 break; 734 case TAGID_UNALLOC_SPACE : 735 elmsz = sizeof(struct extent_ad); 736 size = sizeof(struct unalloc_sp_desc) - elmsz; 737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 738 break; 739 case TAGID_FID : 740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 741 size = (size + 3) & ~3; 742 break; 743 case TAGID_LOGVOL_INTEGRITY : 744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 745 size += udf_rw32(dscr->lvid.l_iu); 746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 747 break; 748 case TAGID_SPACE_BITMAP : 749 size = sizeof(struct space_bitmap_desc) - 1; 750 size += udf_rw32(dscr->sbd.num_bytes); 751 break; 752 case TAGID_SPARING_TABLE : 753 elmsz = sizeof(struct spare_map_entry); 754 size = sizeof(struct udf_sparing_table) - elmsz; 755 size += udf_rw16(dscr->spt.rt_l) * elmsz; 756 break; 757 case TAGID_FENTRY : 758 size = sizeof(struct file_entry); 759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 760 break; 761 case TAGID_EXTFENTRY : 762 size = sizeof(struct extfile_entry); 763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 764 break; 765 case TAGID_FSD : 766 size = sizeof(struct fileset_desc); 767 break; 768 default : 769 size = sizeof(union dscrptr); 770 break; 771 } 772 773 if ((size == 0) || (lb_size == 0)) 774 return 0; 775 776 if (lb_size == 1) 777 return size; 778 779 /* round up in sectors */ 780 num_lb = (size + lb_size -1) / lb_size; 781 return num_lb * lb_size; 782 } 783 784 785 int 786 udf_fidsize(struct fileid_desc *fid) 787 { 788 uint32_t size; 789 790 if (udf_rw16(fid->tag.id) != TAGID_FID) 791 panic("got udf_fidsize on non FID\n"); 792 793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 794 size = (size + 3) & ~3; 795 796 return size; 797 } 798 799 /* --------------------------------------------------------------------- */ 800 801 void 802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 803 { 804 int ret; 805 806 mutex_enter(&udf_node->node_mutex); 807 /* wait until free */ 808 while (udf_node->i_flags & IN_LOCKED) { 809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 810 /* TODO check if we should return error; abort */ 811 if (ret == EWOULDBLOCK) { 812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 813 "wanted at %s:%d, previously locked at %s:%d\n", 814 udf_node, fname, lineno, 815 udf_node->lock_fname, udf_node->lock_lineno)); 816 } 817 } 818 /* grab */ 819 udf_node->i_flags |= IN_LOCKED | flag; 820 /* debug */ 821 udf_node->lock_fname = fname; 822 udf_node->lock_lineno = lineno; 823 824 mutex_exit(&udf_node->node_mutex); 825 } 826 827 828 void 829 udf_unlock_node(struct udf_node *udf_node, int flag) 830 { 831 mutex_enter(&udf_node->node_mutex); 832 udf_node->i_flags &= ~(IN_LOCKED | flag); 833 cv_broadcast(&udf_node->node_lock); 834 mutex_exit(&udf_node->node_mutex); 835 } 836 837 838 /* --------------------------------------------------------------------- */ 839 840 static int 841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 842 { 843 int error; 844 845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 846 (union dscrptr **) dst); 847 if (!error) { 848 /* blank terminator blocks are not allowed here */ 849 if (*dst == NULL) 850 return ENOENT; 851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 852 error = ENOENT; 853 free(*dst, M_UDFVOLD); 854 *dst = NULL; 855 DPRINTF(VOLUMES, ("Not an anchor\n")); 856 } 857 } 858 859 return error; 860 } 861 862 863 int 864 udf_read_anchors(struct udf_mount *ump) 865 { 866 struct udf_args *args = &ump->mount_args; 867 struct mmc_trackinfo first_track; 868 struct mmc_trackinfo second_track; 869 struct mmc_trackinfo last_track; 870 struct anchor_vdp **anchorsp; 871 uint32_t track_start; 872 uint32_t track_end; 873 uint32_t positions[4]; 874 int first_tracknr, last_tracknr; 875 int error, anch, ok, first_anchor; 876 877 /* search the first and last track of the specified session */ 878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 879 if (!error) { 880 first_track.tracknr = first_tracknr; 881 error = udf_update_trackinfo(ump, &first_track); 882 } 883 if (!error) { 884 last_track.tracknr = last_tracknr; 885 error = udf_update_trackinfo(ump, &last_track); 886 } 887 if ((!error) && (first_tracknr != last_tracknr)) { 888 second_track.tracknr = first_tracknr+1; 889 error = udf_update_trackinfo(ump, &second_track); 890 } 891 if (error) { 892 printf("UDF mount: reading disc geometry failed\n"); 893 return 0; 894 } 895 896 track_start = first_track.track_start; 897 898 /* `end' is not as straitforward as start. */ 899 track_end = last_track.track_start 900 + last_track.track_size - last_track.free_blocks - 1; 901 902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 903 /* end of track is not straitforward here */ 904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 905 track_end = last_track.last_recorded; 906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 907 track_end = last_track.next_writable 908 - ump->discinfo.link_block_penalty; 909 } 910 911 /* its no use reading a blank track */ 912 first_anchor = 0; 913 if (first_track.flags & MMC_TRACKINFO_BLANK) 914 first_anchor = 1; 915 916 /* get our packet size */ 917 ump->packet_size = first_track.packet_size; 918 if (first_track.flags & MMC_TRACKINFO_BLANK) 919 ump->packet_size = second_track.packet_size; 920 921 if (ump->packet_size <= 1) { 922 /* take max, but not bigger than 64 */ 923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 924 ump->packet_size = MIN(ump->packet_size, 64); 925 } 926 KASSERT(ump->packet_size >= 1); 927 928 /* read anchors start+256, start+512, end-256, end */ 929 positions[0] = track_start+256; 930 positions[1] = track_end-256; 931 positions[2] = track_end; 932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 934 935 ok = 0; 936 anchorsp = ump->anchors; 937 for (anch = first_anchor; anch < 4; anch++) { 938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 939 positions[anch])); 940 error = udf_read_anchor(ump, positions[anch], anchorsp); 941 if (!error) { 942 anchorsp++; 943 ok++; 944 } 945 } 946 947 /* VATs are only recorded on sequential media, but initialise */ 948 ump->first_possible_vat_location = track_start + 2; 949 ump->last_possible_vat_location = track_end + last_track.packet_size; 950 951 return ok; 952 } 953 954 /* --------------------------------------------------------------------- */ 955 956 int 957 udf_get_c_type(struct udf_node *udf_node) 958 { 959 int isdir, what; 960 961 isdir = (udf_node->vnode->v_type == VDIR); 962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 963 964 if (udf_node->ump) 965 if (udf_node == udf_node->ump->metadatabitmap_node) 966 what = UDF_C_METADATA_SBM; 967 968 return what; 969 } 970 971 972 int 973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) 974 { 975 int vpart_num; 976 977 vpart_num = ump->data_part; 978 if (udf_c_type == UDF_C_NODE) 979 vpart_num = ump->node_part; 980 if (udf_c_type == UDF_C_FIDS) 981 vpart_num = ump->fids_part; 982 983 return vpart_num; 984 } 985 986 987 /* 988 * BUGALERT: some rogue implementations use random physical partition 989 * numbers to break other implementations so lookup the number. 990 */ 991 992 static uint16_t 993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part) 994 { 995 struct part_desc *part; 996 uint16_t phys_part; 997 998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 999 part = ump->partitions[phys_part]; 1000 if (part == NULL) 1001 break; 1002 if (udf_rw16(part->part_num) == raw_phys_part) 1003 break; 1004 } 1005 return phys_part; 1006 } 1007 1008 /* --------------------------------------------------------------------- */ 1009 1010 /* we dont try to be smart; we just record the parts */ 1011 #define UDF_UPDATE_DSCR(name, dscr) \ 1012 if (name) \ 1013 free(name, M_UDFVOLD); \ 1014 name = dscr; 1015 1016 static int 1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 1018 { 1019 uint16_t phys_part, raw_phys_part; 1020 1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 1022 udf_rw16(dscr->tag.id))); 1023 switch (udf_rw16(dscr->tag.id)) { 1024 case TAGID_PRI_VOL : /* primary partition */ 1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 1026 break; 1027 case TAGID_LOGVOL : /* logical volume */ 1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 1029 break; 1030 case TAGID_UNALLOC_SPACE : /* unallocated space */ 1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 1032 break; 1033 case TAGID_IMP_VOL : /* implementation */ 1034 /* XXX do we care about multiple impl. descr ? */ 1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 1036 break; 1037 case TAGID_PARTITION : /* physical partition */ 1038 /* not much use if its not allocated */ 1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 1040 free(dscr, M_UDFVOLD); 1041 break; 1042 } 1043 1044 /* 1045 * BUGALERT: some rogue implementations use random physical 1046 * partition numbers to break other implementations so lookup 1047 * the number. 1048 */ 1049 raw_phys_part = udf_rw16(dscr->pd.part_num); 1050 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1051 1052 if (phys_part == UDF_PARTITIONS) { 1053 free(dscr, M_UDFVOLD); 1054 return EINVAL; 1055 } 1056 1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1058 break; 1059 case TAGID_VOL : /* volume space extender; rare */ 1060 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1061 free(dscr, M_UDFVOLD); 1062 break; 1063 default : 1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1065 udf_rw16(dscr->tag.id))); 1066 free(dscr, M_UDFVOLD); 1067 } 1068 1069 return 0; 1070 } 1071 #undef UDF_UPDATE_DSCR 1072 1073 /* --------------------------------------------------------------------- */ 1074 1075 static int 1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1077 { 1078 union dscrptr *dscr; 1079 uint32_t sector_size, dscr_size; 1080 int error; 1081 1082 sector_size = ump->discinfo.sector_size; 1083 1084 /* loc is sectornr, len is in bytes */ 1085 error = EIO; 1086 while (len) { 1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1088 if (error) 1089 return error; 1090 1091 /* blank block is a terminator */ 1092 if (dscr == NULL) 1093 return 0; 1094 1095 /* TERM descriptor is a terminator */ 1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1097 free(dscr, M_UDFVOLD); 1098 return 0; 1099 } 1100 1101 /* process all others */ 1102 dscr_size = udf_tagsize(dscr, sector_size); 1103 error = udf_process_vds_descriptor(ump, dscr); 1104 if (error) { 1105 free(dscr, M_UDFVOLD); 1106 break; 1107 } 1108 assert((dscr_size % sector_size) == 0); 1109 1110 len -= dscr_size; 1111 loc += dscr_size / sector_size; 1112 } 1113 1114 return error; 1115 } 1116 1117 1118 int 1119 udf_read_vds_space(struct udf_mount *ump) 1120 { 1121 /* struct udf_args *args = &ump->mount_args; */ 1122 struct anchor_vdp *anchor, *anchor2; 1123 size_t size; 1124 uint32_t main_loc, main_len; 1125 uint32_t reserve_loc, reserve_len; 1126 int error; 1127 1128 /* 1129 * read in VDS space provided by the anchors; if one descriptor read 1130 * fails, try the mirror sector. 1131 * 1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1133 * avoids the `compatibility features' of DirectCD that may confuse 1134 * stuff completely. 1135 */ 1136 1137 anchor = ump->anchors[0]; 1138 anchor2 = ump->anchors[1]; 1139 assert(anchor); 1140 1141 if (anchor2) { 1142 size = sizeof(struct extent_ad); 1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1144 anchor = anchor2; 1145 /* reserve is specified to be a literal copy of main */ 1146 } 1147 1148 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1149 main_len = udf_rw32(anchor->main_vds_ex.len); 1150 1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1153 1154 error = udf_read_vds_extent(ump, main_loc, main_len); 1155 if (error) { 1156 printf("UDF mount: reading in reserve VDS extent\n"); 1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1158 } 1159 1160 return error; 1161 } 1162 1163 /* --------------------------------------------------------------------- */ 1164 1165 /* 1166 * Read in the logical volume integrity sequence pointed to by our logical 1167 * volume descriptor. Its a sequence that can be extended using fields in the 1168 * integrity descriptor itself. On sequential media only one is found, on 1169 * rewritable media a sequence of descriptors can be found as a form of 1170 * history keeping and on non sequential write-once media the chain is vital 1171 * to allow more and more descriptors to be written. The last descriptor 1172 * written in an extent needs to claim space for a new extent. 1173 */ 1174 1175 static int 1176 udf_retrieve_lvint(struct udf_mount *ump) 1177 { 1178 union dscrptr *dscr; 1179 struct logvol_int_desc *lvint; 1180 struct udf_lvintq *trace; 1181 uint32_t lb_size, lbnum, len; 1182 int dscr_type, error, trace_len; 1183 1184 lb_size = udf_rw32(ump->logical_vol->lb_size); 1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1187 1188 /* clean trace */ 1189 memset(ump->lvint_trace, 0, 1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1191 1192 trace_len = 0; 1193 trace = ump->lvint_trace; 1194 trace->start = lbnum; 1195 trace->end = lbnum + len/lb_size; 1196 trace->pos = 0; 1197 trace->wpos = 0; 1198 1199 lvint = NULL; 1200 dscr = NULL; 1201 error = 0; 1202 while (len) { 1203 trace->pos = lbnum - trace->start; 1204 trace->wpos = trace->pos + 1; 1205 1206 /* read in our integrity descriptor */ 1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1208 if (!error) { 1209 if (dscr == NULL) { 1210 trace->wpos = trace->pos; 1211 break; /* empty terminates */ 1212 } 1213 dscr_type = udf_rw16(dscr->tag.id); 1214 if (dscr_type == TAGID_TERM) { 1215 trace->wpos = trace->pos; 1216 break; /* clean terminator */ 1217 } 1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1219 /* fatal... corrupt disc */ 1220 error = ENOENT; 1221 break; 1222 } 1223 if (lvint) 1224 free(lvint, M_UDFVOLD); 1225 lvint = &dscr->lvid; 1226 dscr = NULL; 1227 } /* else hope for the best... maybe the next is ok */ 1228 1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1231 1232 /* proceed sequential */ 1233 lbnum += 1; 1234 len -= lb_size; 1235 1236 /* are we linking to a new piece? */ 1237 if (dscr && lvint->next_extent.len) { 1238 len = udf_rw32(lvint->next_extent.len); 1239 lbnum = udf_rw32(lvint->next_extent.loc); 1240 1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1242 /* IEK! segment link full... */ 1243 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1244 error = EINVAL; 1245 } else { 1246 trace++; 1247 trace_len++; 1248 1249 trace->start = lbnum; 1250 trace->end = lbnum + len/lb_size; 1251 trace->pos = 0; 1252 trace->wpos = 0; 1253 } 1254 } 1255 } 1256 1257 /* clean up the mess, esp. when there is an error */ 1258 if (dscr) 1259 free(dscr, M_UDFVOLD); 1260 1261 if (error && lvint) { 1262 free(lvint, M_UDFVOLD); 1263 lvint = NULL; 1264 } 1265 1266 if (!lvint) 1267 error = ENOENT; 1268 1269 ump->logvol_integrity = lvint; 1270 return error; 1271 } 1272 1273 1274 static int 1275 udf_loose_lvint_history(struct udf_mount *ump) 1276 { 1277 union dscrptr **bufs, *dscr, *last_dscr; 1278 struct udf_lvintq *trace, *in_trace, *out_trace; 1279 struct logvol_int_desc *lvint; 1280 uint32_t in_ext, in_pos, in_len; 1281 uint32_t out_ext, out_wpos, out_len; 1282 uint32_t lb_num; 1283 uint32_t len, start; 1284 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1285 int losing; 1286 int error; 1287 1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1289 1290 /* search smallest extent */ 1291 trace = &ump->lvint_trace[0]; 1292 minext = trace->end - trace->start; 1293 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1294 trace = &ump->lvint_trace[ext]; 1295 extlen = trace->end - trace->start; 1296 if (extlen == 0) 1297 break; 1298 minext = MIN(minext, extlen); 1299 } 1300 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1301 /* no sense wiping all */ 1302 if (losing == minext) 1303 losing--; 1304 1305 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1306 1307 /* get buffer for pieces */ 1308 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1309 1310 in_ext = 0; 1311 in_pos = losing; 1312 in_trace = &ump->lvint_trace[in_ext]; 1313 in_len = in_trace->end - in_trace->start; 1314 out_ext = 0; 1315 out_wpos = 0; 1316 out_trace = &ump->lvint_trace[out_ext]; 1317 out_len = out_trace->end - out_trace->start; 1318 1319 last_dscr = NULL; 1320 for(;;) { 1321 out_trace->pos = out_wpos; 1322 out_trace->wpos = out_trace->pos; 1323 if (in_pos >= in_len) { 1324 in_ext++; 1325 in_pos = 0; 1326 in_trace = &ump->lvint_trace[in_ext]; 1327 in_len = in_trace->end - in_trace->start; 1328 } 1329 if (out_wpos >= out_len) { 1330 out_ext++; 1331 out_wpos = 0; 1332 out_trace = &ump->lvint_trace[out_ext]; 1333 out_len = out_trace->end - out_trace->start; 1334 } 1335 /* copy overlap contents */ 1336 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1337 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1338 if (cpy_len == 0) 1339 break; 1340 1341 /* copy */ 1342 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1343 for (cnt = 0; cnt < cpy_len; cnt++) { 1344 /* read in our integrity descriptor */ 1345 lb_num = in_trace->start + in_pos + cnt; 1346 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1347 &dscr); 1348 if (error) { 1349 /* copy last one */ 1350 dscr = last_dscr; 1351 } 1352 bufs[cnt] = dscr; 1353 if (!error) { 1354 if (dscr == NULL) { 1355 out_trace->pos = out_wpos + cnt; 1356 out_trace->wpos = out_trace->pos; 1357 break; /* empty terminates */ 1358 } 1359 dscr_type = udf_rw16(dscr->tag.id); 1360 if (dscr_type == TAGID_TERM) { 1361 out_trace->pos = out_wpos + cnt; 1362 out_trace->wpos = out_trace->pos; 1363 break; /* clean terminator */ 1364 } 1365 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1366 panic( "UDF integrity sequence " 1367 "corrupted while mounted!\n"); 1368 } 1369 last_dscr = dscr; 1370 } 1371 } 1372 1373 /* patch up if first entry was on error */ 1374 if (bufs[0] == NULL) { 1375 for (cnt = 0; cnt < cpy_len; cnt++) 1376 if (bufs[cnt] != NULL) 1377 break; 1378 last_dscr = bufs[cnt]; 1379 for (; cnt > 0; cnt--) { 1380 bufs[cnt] = last_dscr; 1381 } 1382 } 1383 1384 /* glue + write out */ 1385 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1386 for (cnt = 0; cnt < cpy_len; cnt++) { 1387 lb_num = out_trace->start + out_wpos + cnt; 1388 lvint = &bufs[cnt]->lvid; 1389 1390 /* set continuation */ 1391 len = 0; 1392 start = 0; 1393 if (out_wpos + cnt == out_len) { 1394 /* get continuation */ 1395 trace = &ump->lvint_trace[out_ext+1]; 1396 len = trace->end - trace->start; 1397 start = trace->start; 1398 } 1399 lvint->next_extent.len = udf_rw32(len); 1400 lvint->next_extent.loc = udf_rw32(start); 1401 1402 lb_num = trace->start + trace->wpos; 1403 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1404 bufs[cnt], lb_num, lb_num); 1405 DPRINTFIF(VOLUMES, error, 1406 ("error writing lvint lb_num\n")); 1407 } 1408 1409 /* free non repeating descriptors */ 1410 last_dscr = NULL; 1411 for (cnt = 0; cnt < cpy_len; cnt++) { 1412 if (bufs[cnt] != last_dscr) 1413 free(bufs[cnt], M_UDFVOLD); 1414 last_dscr = bufs[cnt]; 1415 } 1416 1417 /* advance */ 1418 in_pos += cpy_len; 1419 out_wpos += cpy_len; 1420 } 1421 1422 free(bufs, M_TEMP); 1423 1424 return 0; 1425 } 1426 1427 1428 static int 1429 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1430 { 1431 struct udf_lvintq *trace; 1432 struct timeval now_v; 1433 struct timespec now_s; 1434 uint32_t sector; 1435 int logvol_integrity; 1436 int space, error; 1437 1438 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1439 1440 again: 1441 /* get free space in last chunk */ 1442 trace = ump->lvint_trace; 1443 while (trace->wpos > (trace->end - trace->start)) { 1444 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1445 "wpos = %d\n", trace->start, trace->end, 1446 trace->pos, trace->wpos)); 1447 trace++; 1448 } 1449 1450 /* check if there is space to append */ 1451 space = (trace->end - trace->start) - trace->wpos; 1452 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1453 "space = %d\n", trace->start, trace->end, trace->pos, 1454 trace->wpos, space)); 1455 1456 /* get state */ 1457 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1458 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1459 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1460 /* TODO extent LVINT space if possible */ 1461 return EROFS; 1462 } 1463 } 1464 1465 if (space < 1) { 1466 if (lvflag & UDF_APPENDONLY_LVINT) 1467 return EROFS; 1468 /* loose history by re-writing extents */ 1469 error = udf_loose_lvint_history(ump); 1470 if (error) 1471 return error; 1472 goto again; 1473 } 1474 1475 /* update our integrity descriptor to identify us and timestamp it */ 1476 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1477 microtime(&now_v); 1478 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1479 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1480 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1481 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1482 1483 /* writeout integrity descriptor */ 1484 sector = trace->start + trace->wpos; 1485 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1486 (union dscrptr *) ump->logvol_integrity, 1487 sector, sector); 1488 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1489 if (error) 1490 return error; 1491 1492 /* advance write position */ 1493 trace->wpos++; space--; 1494 if (space >= 1) { 1495 /* append terminator */ 1496 sector = trace->start + trace->wpos; 1497 error = udf_write_terminator(ump, sector); 1498 1499 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1500 } 1501 1502 space = (trace->end - trace->start) - trace->wpos; 1503 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1504 "space = %d\n", trace->start, trace->end, trace->pos, 1505 trace->wpos, space)); 1506 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1507 "successfull\n")); 1508 1509 return error; 1510 } 1511 1512 /* --------------------------------------------------------------------- */ 1513 1514 static int 1515 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1516 { 1517 union dscrptr *dscr; 1518 /* struct udf_args *args = &ump->mount_args; */ 1519 struct part_desc *partd; 1520 struct part_hdr_desc *parthdr; 1521 struct udf_bitmap *bitmap; 1522 uint32_t phys_part; 1523 uint32_t lb_num, len; 1524 int error, dscr_type; 1525 1526 /* unallocated space map */ 1527 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1528 partd = ump->partitions[phys_part]; 1529 if (partd == NULL) 1530 continue; 1531 parthdr = &partd->_impl_use.part_hdr; 1532 1533 lb_num = udf_rw32(partd->start_loc); 1534 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1535 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1536 if (len == 0) 1537 continue; 1538 1539 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1540 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1541 if (!error && dscr) { 1542 /* analyse */ 1543 dscr_type = udf_rw16(dscr->tag.id); 1544 if (dscr_type == TAGID_SPACE_BITMAP) { 1545 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1546 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1547 1548 /* fill in ump->part_unalloc_bits */ 1549 bitmap = &ump->part_unalloc_bits[phys_part]; 1550 bitmap->blob = (uint8_t *) dscr; 1551 bitmap->bits = dscr->sbd.data; 1552 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1553 bitmap->pages = NULL; /* TODO */ 1554 bitmap->data_pos = 0; 1555 bitmap->metadata_pos = 0; 1556 } else { 1557 free(dscr, M_UDFVOLD); 1558 1559 printf( "UDF mount: error reading unallocated " 1560 "space bitmap\n"); 1561 return EROFS; 1562 } 1563 } else { 1564 /* blank not allowed */ 1565 printf("UDF mount: blank unallocated space bitmap\n"); 1566 return EROFS; 1567 } 1568 } 1569 1570 /* unallocated space table (not supported) */ 1571 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1572 partd = ump->partitions[phys_part]; 1573 if (partd == NULL) 1574 continue; 1575 parthdr = &partd->_impl_use.part_hdr; 1576 1577 len = udf_rw32(parthdr->unalloc_space_table.len); 1578 if (len) { 1579 printf("UDF mount: space tables not supported\n"); 1580 return EROFS; 1581 } 1582 } 1583 1584 /* freed space map */ 1585 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1586 partd = ump->partitions[phys_part]; 1587 if (partd == NULL) 1588 continue; 1589 parthdr = &partd->_impl_use.part_hdr; 1590 1591 /* freed space map */ 1592 lb_num = udf_rw32(partd->start_loc); 1593 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1594 len = udf_rw32(parthdr->freed_space_bitmap.len); 1595 if (len == 0) 1596 continue; 1597 1598 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1599 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1600 if (!error && dscr) { 1601 /* analyse */ 1602 dscr_type = udf_rw16(dscr->tag.id); 1603 if (dscr_type == TAGID_SPACE_BITMAP) { 1604 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1605 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1606 1607 /* fill in ump->part_freed_bits */ 1608 bitmap = &ump->part_unalloc_bits[phys_part]; 1609 bitmap->blob = (uint8_t *) dscr; 1610 bitmap->bits = dscr->sbd.data; 1611 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1612 bitmap->pages = NULL; /* TODO */ 1613 bitmap->data_pos = 0; 1614 bitmap->metadata_pos = 0; 1615 } else { 1616 free(dscr, M_UDFVOLD); 1617 1618 printf( "UDF mount: error reading freed " 1619 "space bitmap\n"); 1620 return EROFS; 1621 } 1622 } else { 1623 /* blank not allowed */ 1624 printf("UDF mount: blank freed space bitmap\n"); 1625 return EROFS; 1626 } 1627 } 1628 1629 /* freed space table (not supported) */ 1630 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1631 partd = ump->partitions[phys_part]; 1632 if (partd == NULL) 1633 continue; 1634 parthdr = &partd->_impl_use.part_hdr; 1635 1636 len = udf_rw32(parthdr->freed_space_table.len); 1637 if (len) { 1638 printf("UDF mount: space tables not supported\n"); 1639 return EROFS; 1640 } 1641 } 1642 1643 return 0; 1644 } 1645 1646 1647 /* TODO implement async writeout */ 1648 int 1649 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1650 { 1651 union dscrptr *dscr; 1652 /* struct udf_args *args = &ump->mount_args; */ 1653 struct part_desc *partd; 1654 struct part_hdr_desc *parthdr; 1655 uint32_t phys_part; 1656 uint32_t lb_num, len, ptov; 1657 int error_all, error; 1658 1659 error_all = 0; 1660 /* unallocated space map */ 1661 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1662 partd = ump->partitions[phys_part]; 1663 if (partd == NULL) 1664 continue; 1665 parthdr = &partd->_impl_use.part_hdr; 1666 1667 ptov = udf_rw32(partd->start_loc); 1668 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1669 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1670 if (len == 0) 1671 continue; 1672 1673 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1674 lb_num + ptov)); 1675 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1676 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1677 (union dscrptr *) dscr, 1678 ptov + lb_num, lb_num); 1679 if (error) { 1680 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1681 error_all = error; 1682 } 1683 } 1684 1685 /* freed space map */ 1686 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1687 partd = ump->partitions[phys_part]; 1688 if (partd == NULL) 1689 continue; 1690 parthdr = &partd->_impl_use.part_hdr; 1691 1692 /* freed space map */ 1693 ptov = udf_rw32(partd->start_loc); 1694 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1695 len = udf_rw32(parthdr->freed_space_bitmap.len); 1696 if (len == 0) 1697 continue; 1698 1699 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1700 lb_num + ptov)); 1701 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1702 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1703 (union dscrptr *) dscr, 1704 ptov + lb_num, lb_num); 1705 if (error) { 1706 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1707 error_all = error; 1708 } 1709 } 1710 1711 return error_all; 1712 } 1713 1714 1715 static int 1716 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1717 { 1718 struct udf_node *bitmap_node; 1719 union dscrptr *dscr; 1720 struct udf_bitmap *bitmap; 1721 uint64_t inflen; 1722 int error, dscr_type; 1723 1724 bitmap_node = ump->metadatabitmap_node; 1725 1726 /* only read in when metadata bitmap node is read in */ 1727 if (bitmap_node == NULL) 1728 return 0; 1729 1730 if (bitmap_node->fe) { 1731 inflen = udf_rw64(bitmap_node->fe->inf_len); 1732 } else { 1733 KASSERT(bitmap_node->efe); 1734 inflen = udf_rw64(bitmap_node->efe->inf_len); 1735 } 1736 1737 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1738 "%"PRIu64" bytes\n", inflen)); 1739 1740 /* allocate space for bitmap */ 1741 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1742 if (!dscr) 1743 return ENOMEM; 1744 1745 /* set vnode type to regular file or we can't read from it! */ 1746 bitmap_node->vnode->v_type = VREG; 1747 1748 /* read in complete metadata bitmap file */ 1749 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1750 dscr, 1751 inflen, 0, 1752 UIO_SYSSPACE, 1753 IO_SYNC | IO_ALTSEMANTICS, FSCRED, 1754 NULL, NULL); 1755 if (error) { 1756 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1757 goto errorout; 1758 } 1759 1760 /* analyse */ 1761 dscr_type = udf_rw16(dscr->tag.id); 1762 if (dscr_type == TAGID_SPACE_BITMAP) { 1763 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1764 ump->metadata_unalloc_dscr = &dscr->sbd; 1765 1766 /* fill in bitmap bits */ 1767 bitmap = &ump->metadata_unalloc_bits; 1768 bitmap->blob = (uint8_t *) dscr; 1769 bitmap->bits = dscr->sbd.data; 1770 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1771 bitmap->pages = NULL; /* TODO */ 1772 bitmap->data_pos = 0; 1773 bitmap->metadata_pos = 0; 1774 } else { 1775 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1776 goto errorout; 1777 } 1778 1779 return 0; 1780 1781 errorout: 1782 free(dscr, M_UDFVOLD); 1783 printf( "UDF mount: error reading unallocated " 1784 "space bitmap for metadata partition\n"); 1785 return EROFS; 1786 } 1787 1788 1789 int 1790 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1791 { 1792 struct udf_node *bitmap_node; 1793 union dscrptr *dscr; 1794 uint64_t new_inflen; 1795 int dummy, error; 1796 1797 bitmap_node = ump->metadatabitmap_node; 1798 1799 /* only write out when metadata bitmap node is known */ 1800 if (bitmap_node == NULL) 1801 return 0; 1802 1803 if (!bitmap_node->fe) { 1804 KASSERT(bitmap_node->efe); 1805 } 1806 1807 /* reduce length to zero */ 1808 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1809 new_inflen = udf_tagsize(dscr, 1); 1810 1811 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from " 1812 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen)); 1813 1814 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1815 if (error) 1816 printf("Error resizing metadata space bitmap\n"); 1817 1818 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1819 dscr, 1820 new_inflen, 0, 1821 UIO_SYSSPACE, 1822 IO_ALTSEMANTICS, FSCRED, 1823 NULL, NULL); 1824 1825 bitmap_node->i_flags |= IN_MODIFIED; 1826 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT); 1827 if (error == 0) 1828 error = VOP_FSYNC(bitmap_node->vnode, 1829 FSCRED, FSYNC_WAIT, 0, 0); 1830 1831 if (error) 1832 printf( "Error writing out metadata partition unalloced " 1833 "space bitmap!\n"); 1834 1835 return error; 1836 } 1837 1838 1839 /* --------------------------------------------------------------------- */ 1840 1841 /* 1842 * Checks if ump's vds information is correct and complete 1843 */ 1844 1845 int 1846 udf_process_vds(struct udf_mount *ump) { 1847 union udf_pmap *mapping; 1848 /* struct udf_args *args = &ump->mount_args; */ 1849 struct logvol_int_desc *lvint; 1850 struct udf_logvol_info *lvinfo; 1851 uint32_t n_pm; 1852 uint8_t *pmap_pos; 1853 char *domain_name, *map_name; 1854 const char *check_name; 1855 char bits[128]; 1856 int pmap_stype, pmap_size; 1857 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1858 int n_phys, n_virt, n_spar, n_meta; 1859 int len; 1860 1861 if (ump == NULL) 1862 return ENOENT; 1863 1864 /* we need at least an anchor (trivial, but for safety) */ 1865 if (ump->anchors[0] == NULL) 1866 return EINVAL; 1867 1868 /* we need at least one primary and one logical volume descriptor */ 1869 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1870 return EINVAL; 1871 1872 /* we need at least one partition descriptor */ 1873 if (ump->partitions[0] == NULL) 1874 return EINVAL; 1875 1876 /* check logical volume sector size verses device sector size */ 1877 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1878 printf("UDF mount: format violation, lb_size != sector size\n"); 1879 return EINVAL; 1880 } 1881 1882 /* check domain name */ 1883 domain_name = ump->logical_vol->domain_id.id; 1884 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1885 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1886 return EINVAL; 1887 } 1888 1889 /* retrieve logical volume integrity sequence */ 1890 (void)udf_retrieve_lvint(ump); 1891 1892 /* 1893 * We need at least one logvol integrity descriptor recorded. Note 1894 * that its OK to have an open logical volume integrity here. The VAT 1895 * will close/update the integrity. 1896 */ 1897 if (ump->logvol_integrity == NULL) 1898 return EINVAL; 1899 1900 /* process derived structures */ 1901 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1902 lvint = ump->logvol_integrity; 1903 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1904 ump->logvol_info = lvinfo; 1905 1906 /* TODO check udf versions? */ 1907 1908 /* 1909 * check logvol mappings: effective virt->log partmap translation 1910 * check and recording of the mapping results. Saves expensive 1911 * strncmp() in tight places. 1912 */ 1913 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1914 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1915 pmap_pos = ump->logical_vol->maps; 1916 1917 if (n_pm > UDF_PMAPS) { 1918 printf("UDF mount: too many mappings\n"); 1919 return EINVAL; 1920 } 1921 1922 /* count types and set partition numbers */ 1923 ump->data_part = ump->node_part = ump->fids_part = 0; 1924 n_phys = n_virt = n_spar = n_meta = 0; 1925 for (log_part = 0; log_part < n_pm; log_part++) { 1926 mapping = (union udf_pmap *) pmap_pos; 1927 pmap_stype = pmap_pos[0]; 1928 pmap_size = pmap_pos[1]; 1929 switch (pmap_stype) { 1930 case 1: /* physical mapping */ 1931 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1932 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1933 pmap_type = UDF_VTOP_TYPE_PHYS; 1934 n_phys++; 1935 ump->data_part = log_part; 1936 ump->node_part = log_part; 1937 ump->fids_part = log_part; 1938 break; 1939 case 2: /* virtual/sparable/meta mapping */ 1940 map_name = mapping->pm2.part_id.id; 1941 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1942 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1943 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1944 len = UDF_REGID_ID_SIZE; 1945 1946 check_name = "*UDF Virtual Partition"; 1947 if (strncmp(map_name, check_name, len) == 0) { 1948 pmap_type = UDF_VTOP_TYPE_VIRT; 1949 n_virt++; 1950 ump->node_part = log_part; 1951 break; 1952 } 1953 check_name = "*UDF Sparable Partition"; 1954 if (strncmp(map_name, check_name, len) == 0) { 1955 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1956 n_spar++; 1957 ump->data_part = log_part; 1958 ump->node_part = log_part; 1959 ump->fids_part = log_part; 1960 break; 1961 } 1962 check_name = "*UDF Metadata Partition"; 1963 if (strncmp(map_name, check_name, len) == 0) { 1964 pmap_type = UDF_VTOP_TYPE_META; 1965 n_meta++; 1966 ump->node_part = log_part; 1967 ump->fids_part = log_part; 1968 break; 1969 } 1970 break; 1971 default: 1972 return EINVAL; 1973 } 1974 1975 /* 1976 * BUGALERT: some rogue implementations use random physical 1977 * partition numbers to break other implementations so lookup 1978 * the number. 1979 */ 1980 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1981 1982 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1983 raw_phys_part, phys_part, pmap_type)); 1984 1985 if (phys_part == UDF_PARTITIONS) 1986 return EINVAL; 1987 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1988 return EINVAL; 1989 1990 ump->vtop [log_part] = phys_part; 1991 ump->vtop_tp[log_part] = pmap_type; 1992 1993 pmap_pos += pmap_size; 1994 } 1995 /* not winning the beauty contest */ 1996 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1997 1998 /* test some basic UDF assertions/requirements */ 1999 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 2000 return EINVAL; 2001 2002 if (n_virt) { 2003 if ((n_phys == 0) || n_spar || n_meta) 2004 return EINVAL; 2005 } 2006 if (n_spar + n_phys == 0) 2007 return EINVAL; 2008 2009 /* select allocation type for each logical partition */ 2010 for (log_part = 0; log_part < n_pm; log_part++) { 2011 maps_on = ump->vtop[log_part]; 2012 switch (ump->vtop_tp[log_part]) { 2013 case UDF_VTOP_TYPE_PHYS : 2014 assert(maps_on == log_part); 2015 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2016 break; 2017 case UDF_VTOP_TYPE_VIRT : 2018 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 2019 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2020 break; 2021 case UDF_VTOP_TYPE_SPARABLE : 2022 assert(maps_on == log_part); 2023 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2024 break; 2025 case UDF_VTOP_TYPE_META : 2026 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 2027 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 2028 /* special case for UDF 2.60 */ 2029 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 2030 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2031 } 2032 break; 2033 default: 2034 panic("bad alloction type in udf's ump->vtop\n"); 2035 } 2036 } 2037 2038 /* determine logical volume open/closure actions */ 2039 if (n_virt) { 2040 ump->lvopen = 0; 2041 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2042 ump->lvopen |= UDF_OPEN_SESSION ; 2043 ump->lvclose = UDF_WRITE_VAT; 2044 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2045 ump->lvclose |= UDF_CLOSE_SESSION; 2046 } else { 2047 /* `normal' rewritable or non sequential media */ 2048 ump->lvopen = UDF_WRITE_LVINT; 2049 ump->lvclose = UDF_WRITE_LVINT; 2050 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2051 ump->lvopen |= UDF_APPENDONLY_LVINT; 2052 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2053 ump->lvopen &= ~UDF_APPENDONLY_LVINT; 2054 } 2055 2056 /* 2057 * Determine sheduler error behaviour. For virtual partitions, update 2058 * the trackinfo; for sparable partitions replace a whole block on the 2059 * sparable table. Allways requeue. 2060 */ 2061 ump->lvreadwrite = 0; 2062 if (n_virt) 2063 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2064 if (n_spar) 2065 ump->lvreadwrite = UDF_REMAP_BLOCK; 2066 2067 /* 2068 * Select our sheduler 2069 */ 2070 ump->strategy = &udf_strat_rmw; 2071 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2072 ump->strategy = &udf_strat_sequential; 2073 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2074 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2075 ump->strategy = &udf_strat_direct; 2076 if (n_spar) 2077 ump->strategy = &udf_strat_rmw; 2078 2079 #if 0 2080 /* read-only access won't benefit from the other shedulers */ 2081 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2082 ump->strategy = &udf_strat_direct; 2083 #endif 2084 2085 /* print results */ 2086 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2088 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2090 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2091 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2092 2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2094 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2095 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2096 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2097 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2098 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2099 2100 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2101 (ump->strategy == &udf_strat_direct) ? "Direct" : 2102 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2103 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2104 2105 /* signal its OK for now */ 2106 return 0; 2107 } 2108 2109 /* --------------------------------------------------------------------- */ 2110 2111 /* 2112 * Update logical volume name in all structures that keep a record of it. We 2113 * use memmove since each of them might be specified as a source. 2114 * 2115 * Note that it doesn't update the VAT structure! 2116 */ 2117 2118 static void 2119 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2120 { 2121 struct logvol_desc *lvd = NULL; 2122 struct fileset_desc *fsd = NULL; 2123 struct udf_lv_info *lvi = NULL; 2124 2125 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2126 lvd = ump->logical_vol; 2127 fsd = ump->fileset_desc; 2128 if (ump->implementation) 2129 lvi = &ump->implementation->_impl_use.lv_info; 2130 2131 /* logvol's id might be specified as origional so use memmove here */ 2132 memmove(lvd->logvol_id, logvol_id, 128); 2133 if (fsd) 2134 memmove(fsd->logvol_id, logvol_id, 128); 2135 if (lvi) 2136 memmove(lvi->logvol_id, logvol_id, 128); 2137 } 2138 2139 /* --------------------------------------------------------------------- */ 2140 2141 void 2142 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2143 uint32_t sector) 2144 { 2145 assert(ump->logical_vol); 2146 2147 tag->id = udf_rw16(tagid); 2148 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2149 tag->cksum = 0; 2150 tag->reserved = 0; 2151 tag->serial_num = ump->logical_vol->tag.serial_num; 2152 tag->tag_loc = udf_rw32(sector); 2153 } 2154 2155 2156 uint64_t 2157 udf_advance_uniqueid(struct udf_mount *ump) 2158 { 2159 uint64_t unique_id; 2160 2161 mutex_enter(&ump->logvol_mutex); 2162 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2163 if (unique_id < 0x10) 2164 unique_id = 0x10; 2165 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2166 mutex_exit(&ump->logvol_mutex); 2167 2168 return unique_id; 2169 } 2170 2171 2172 static void 2173 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2174 { 2175 struct udf_mount *ump = udf_node->ump; 2176 uint32_t num_dirs, num_files; 2177 int udf_file_type; 2178 2179 /* get file type */ 2180 if (udf_node->fe) { 2181 udf_file_type = udf_node->fe->icbtag.file_type; 2182 } else { 2183 udf_file_type = udf_node->efe->icbtag.file_type; 2184 } 2185 2186 /* adjust file count */ 2187 mutex_enter(&ump->allocate_mutex); 2188 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2189 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2190 ump->logvol_info->num_directories = 2191 udf_rw32((num_dirs + sign)); 2192 } else { 2193 num_files = udf_rw32(ump->logvol_info->num_files); 2194 ump->logvol_info->num_files = 2195 udf_rw32((num_files + sign)); 2196 } 2197 mutex_exit(&ump->allocate_mutex); 2198 } 2199 2200 2201 void 2202 udf_osta_charset(struct charspec *charspec) 2203 { 2204 memset(charspec, 0, sizeof(struct charspec)); 2205 charspec->type = 0; 2206 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2207 } 2208 2209 2210 /* first call udf_set_regid and then the suffix */ 2211 void 2212 udf_set_regid(struct regid *regid, char const *name) 2213 { 2214 memset(regid, 0, sizeof(struct regid)); 2215 regid->flags = 0; /* not dirty and not protected */ 2216 strcpy((char *) regid->id, name); 2217 } 2218 2219 2220 void 2221 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2222 { 2223 uint16_t *ver; 2224 2225 ver = (uint16_t *) regid->id_suffix; 2226 *ver = ump->logvol_info->min_udf_readver; 2227 } 2228 2229 2230 void 2231 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2232 { 2233 uint16_t *ver; 2234 2235 ver = (uint16_t *) regid->id_suffix; 2236 *ver = ump->logvol_info->min_udf_readver; 2237 2238 regid->id_suffix[2] = 4; /* unix */ 2239 regid->id_suffix[3] = 8; /* NetBSD */ 2240 } 2241 2242 2243 void 2244 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2245 { 2246 regid->id_suffix[0] = 4; /* unix */ 2247 regid->id_suffix[1] = 8; /* NetBSD */ 2248 } 2249 2250 2251 void 2252 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2253 { 2254 regid->id_suffix[0] = APP_VERSION_MAIN; 2255 regid->id_suffix[1] = APP_VERSION_SUB; 2256 } 2257 2258 static int 2259 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2260 struct long_ad *parent, uint64_t unique_id) 2261 { 2262 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2263 int fidsize = 40; 2264 2265 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2266 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2267 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2268 fid->icb = *parent; 2269 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2270 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2271 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2272 2273 return fidsize; 2274 } 2275 2276 /* --------------------------------------------------------------------- */ 2277 2278 /* 2279 * Extended attribute support. UDF knows of 3 places for extended attributes: 2280 * 2281 * (a) inside the file's (e)fe in the length of the extended attribute area 2282 * before the allocation descriptors/filedata 2283 * 2284 * (b) in a file referenced by (e)fe->ext_attr_icb and 2285 * 2286 * (c) in the e(fe)'s associated stream directory that can hold various 2287 * sub-files. In the stream directory a few fixed named subfiles are reserved 2288 * for NT/Unix ACL's and OS/2 attributes. 2289 * 2290 * NOTE: Extended attributes are read randomly but allways written 2291 * *atomicaly*. For ACL's this interface is propably different but not known 2292 * to me yet. 2293 * 2294 * Order of extended attributes in a space : 2295 * ECMA 167 EAs 2296 * Non block aligned Implementation Use EAs 2297 * Block aligned Implementation Use EAs 2298 * Application Use EAs 2299 */ 2300 2301 static int 2302 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2303 { 2304 uint16_t *spos; 2305 2306 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2307 /* checksum valid? */ 2308 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2309 spos = (uint16_t *) implext->data; 2310 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2311 return EINVAL; 2312 } 2313 return 0; 2314 } 2315 2316 static void 2317 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2318 { 2319 uint16_t *spos; 2320 2321 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2322 /* set checksum */ 2323 spos = (uint16_t *) implext->data; 2324 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2325 } 2326 } 2327 2328 2329 int 2330 udf_extattr_search_intern(struct udf_node *node, 2331 uint32_t sattr, char const *sattrname, 2332 uint32_t *offsetp, uint32_t *lengthp) 2333 { 2334 struct extattrhdr_desc *eahdr; 2335 struct extattr_entry *attrhdr; 2336 struct impl_extattr_entry *implext; 2337 uint32_t offset, a_l, sector_size; 2338 int32_t l_ea; 2339 uint8_t *pos; 2340 int error; 2341 2342 /* get mountpoint */ 2343 sector_size = node->ump->discinfo.sector_size; 2344 2345 /* get information from fe/efe */ 2346 if (node->fe) { 2347 l_ea = udf_rw32(node->fe->l_ea); 2348 eahdr = (struct extattrhdr_desc *) node->fe->data; 2349 } else { 2350 assert(node->efe); 2351 l_ea = udf_rw32(node->efe->l_ea); 2352 eahdr = (struct extattrhdr_desc *) node->efe->data; 2353 } 2354 2355 /* something recorded here? */ 2356 if (l_ea == 0) 2357 return ENOENT; 2358 2359 /* check extended attribute tag; what to do if it fails? */ 2360 error = udf_check_tag(eahdr); 2361 if (error) 2362 return EINVAL; 2363 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2364 return EINVAL; 2365 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2366 if (error) 2367 return EINVAL; 2368 2369 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2370 2371 /* looking for Ecma-167 attributes? */ 2372 offset = sizeof(struct extattrhdr_desc); 2373 2374 /* looking for either implemenation use or application use */ 2375 if (sattr == 2048) { /* [4/48.10.8] */ 2376 offset = udf_rw32(eahdr->impl_attr_loc); 2377 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2378 return ENOENT; 2379 } 2380 if (sattr == 65536) { /* [4/48.10.9] */ 2381 offset = udf_rw32(eahdr->appl_attr_loc); 2382 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2383 return ENOENT; 2384 } 2385 2386 /* paranoia check offset and l_ea */ 2387 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2388 return EINVAL; 2389 2390 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2391 2392 /* find our extended attribute */ 2393 l_ea -= offset; 2394 pos = (uint8_t *) eahdr + offset; 2395 2396 while (l_ea >= sizeof(struct extattr_entry)) { 2397 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2398 attrhdr = (struct extattr_entry *) pos; 2399 implext = (struct impl_extattr_entry *) pos; 2400 2401 /* get complete attribute length and check for roque values */ 2402 a_l = udf_rw32(attrhdr->a_l); 2403 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2404 udf_rw32(attrhdr->type), 2405 attrhdr->subtype, a_l, l_ea)); 2406 if ((a_l == 0) || (a_l > l_ea)) 2407 return EINVAL; 2408 2409 if (attrhdr->type != sattr) 2410 goto next_attribute; 2411 2412 /* we might have found it! */ 2413 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2414 *offsetp = offset; 2415 *lengthp = a_l; 2416 return 0; /* success */ 2417 } 2418 2419 /* 2420 * Implementation use and application use extended attributes 2421 * have a name to identify. They share the same structure only 2422 * UDF implementation use extended attributes have a checksum 2423 * we need to check 2424 */ 2425 2426 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2427 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2428 /* we have found our appl/implementation attribute */ 2429 *offsetp = offset; 2430 *lengthp = a_l; 2431 return 0; /* success */ 2432 } 2433 2434 next_attribute: 2435 /* next attribute */ 2436 pos += a_l; 2437 l_ea -= a_l; 2438 offset += a_l; 2439 } 2440 /* not found */ 2441 return ENOENT; 2442 } 2443 2444 2445 static void 2446 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2447 struct extattr_entry *extattr) 2448 { 2449 struct file_entry *fe; 2450 struct extfile_entry *efe; 2451 struct extattrhdr_desc *extattrhdr; 2452 struct impl_extattr_entry *implext; 2453 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2454 uint32_t *l_eap, l_ad; 2455 uint16_t *spos; 2456 uint8_t *bpos, *data; 2457 2458 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2459 fe = &dscr->fe; 2460 data = fe->data; 2461 l_eap = &fe->l_ea; 2462 l_ad = udf_rw32(fe->l_ad); 2463 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2464 efe = &dscr->efe; 2465 data = efe->data; 2466 l_eap = &efe->l_ea; 2467 l_ad = udf_rw32(efe->l_ad); 2468 } else { 2469 panic("Bad tag passed to udf_extattr_insert_internal"); 2470 } 2471 2472 /* can't append already written to file descriptors yet */ 2473 assert(l_ad == 0); 2474 2475 /* should have a header! */ 2476 extattrhdr = (struct extattrhdr_desc *) data; 2477 l_ea = udf_rw32(*l_eap); 2478 if (l_ea == 0) { 2479 /* create empty extended attribute header */ 2480 exthdr_len = sizeof(struct extattrhdr_desc); 2481 2482 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2483 /* loc */ 0); 2484 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2485 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2486 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2487 2488 /* record extended attribute header length */ 2489 l_ea = exthdr_len; 2490 *l_eap = udf_rw32(l_ea); 2491 } 2492 2493 /* extract locations */ 2494 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2495 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2496 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2497 impl_attr_loc = l_ea; 2498 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2499 appl_attr_loc = l_ea; 2500 2501 /* Ecma 167 EAs */ 2502 if (udf_rw32(extattr->type) < 2048) { 2503 assert(impl_attr_loc == l_ea); 2504 assert(appl_attr_loc == l_ea); 2505 } 2506 2507 /* implementation use extended attributes */ 2508 if (udf_rw32(extattr->type) == 2048) { 2509 assert(appl_attr_loc == l_ea); 2510 2511 /* calculate and write extended attribute header checksum */ 2512 implext = (struct impl_extattr_entry *) extattr; 2513 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2514 spos = (uint16_t *) implext->data; 2515 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2516 } 2517 2518 /* application use extended attributes */ 2519 assert(udf_rw32(extattr->type) != 65536); 2520 assert(appl_attr_loc == l_ea); 2521 2522 /* append the attribute at the end of the current space */ 2523 bpos = data + udf_rw32(*l_eap); 2524 a_l = udf_rw32(extattr->a_l); 2525 2526 /* update impl. attribute locations */ 2527 if (udf_rw32(extattr->type) < 2048) { 2528 impl_attr_loc = l_ea + a_l; 2529 appl_attr_loc = l_ea + a_l; 2530 } 2531 if (udf_rw32(extattr->type) == 2048) { 2532 appl_attr_loc = l_ea + a_l; 2533 } 2534 2535 /* copy and advance */ 2536 memcpy(bpos, extattr, a_l); 2537 l_ea += a_l; 2538 *l_eap = udf_rw32(l_ea); 2539 2540 /* do the `dance` again backwards */ 2541 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2542 if (impl_attr_loc == l_ea) 2543 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2544 if (appl_attr_loc == l_ea) 2545 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2546 } 2547 2548 /* store offsets */ 2549 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2550 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2551 } 2552 2553 2554 /* --------------------------------------------------------------------- */ 2555 2556 static int 2557 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2558 { 2559 struct udf_mount *ump; 2560 struct udf_logvol_info *lvinfo; 2561 struct impl_extattr_entry *implext; 2562 struct vatlvext_extattr_entry lvext; 2563 const char *extstr = "*UDF VAT LVExtension"; 2564 uint64_t vat_uniqueid; 2565 uint32_t offset, a_l; 2566 uint8_t *ea_start, *lvextpos; 2567 int error; 2568 2569 /* get mountpoint and lvinfo */ 2570 ump = vat_node->ump; 2571 lvinfo = ump->logvol_info; 2572 2573 /* get information from fe/efe */ 2574 if (vat_node->fe) { 2575 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2576 ea_start = vat_node->fe->data; 2577 } else { 2578 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2579 ea_start = vat_node->efe->data; 2580 } 2581 2582 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2583 if (error) 2584 return error; 2585 2586 implext = (struct impl_extattr_entry *) (ea_start + offset); 2587 error = udf_impl_extattr_check(implext); 2588 if (error) 2589 return error; 2590 2591 /* paranoia */ 2592 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2593 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2594 return EINVAL; 2595 } 2596 2597 /* 2598 * we have found our "VAT LVExtension attribute. BUT due to a 2599 * bug in the specification it might not be word aligned so 2600 * copy first to avoid panics on some machines (!!) 2601 */ 2602 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2603 lvextpos = implext->data + udf_rw32(implext->iu_l); 2604 memcpy(&lvext, lvextpos, sizeof(lvext)); 2605 2606 /* check if it was updated the last time */ 2607 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2608 lvinfo->num_files = lvext.num_files; 2609 lvinfo->num_directories = lvext.num_directories; 2610 udf_update_logvolname(ump, lvext.logvol_id); 2611 } else { 2612 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2613 /* replace VAT LVExt by free space EA */ 2614 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2615 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2616 udf_calc_impl_extattr_checksum(implext); 2617 } 2618 2619 return 0; 2620 } 2621 2622 2623 static int 2624 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2625 { 2626 struct udf_mount *ump; 2627 struct udf_logvol_info *lvinfo; 2628 struct impl_extattr_entry *implext; 2629 struct vatlvext_extattr_entry lvext; 2630 const char *extstr = "*UDF VAT LVExtension"; 2631 uint64_t vat_uniqueid; 2632 uint32_t offset, a_l; 2633 uint8_t *ea_start, *lvextpos; 2634 int error; 2635 2636 /* get mountpoint and lvinfo */ 2637 ump = vat_node->ump; 2638 lvinfo = ump->logvol_info; 2639 2640 /* get information from fe/efe */ 2641 if (vat_node->fe) { 2642 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2643 ea_start = vat_node->fe->data; 2644 } else { 2645 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2646 ea_start = vat_node->efe->data; 2647 } 2648 2649 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2650 if (error) 2651 return error; 2652 /* found, it existed */ 2653 2654 /* paranoia */ 2655 implext = (struct impl_extattr_entry *) (ea_start + offset); 2656 error = udf_impl_extattr_check(implext); 2657 if (error) { 2658 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2659 return error; 2660 } 2661 /* it is correct */ 2662 2663 /* 2664 * we have found our "VAT LVExtension attribute. BUT due to a 2665 * bug in the specification it might not be word aligned so 2666 * copy first to avoid panics on some machines (!!) 2667 */ 2668 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2669 lvextpos = implext->data + udf_rw32(implext->iu_l); 2670 2671 lvext.unique_id_chk = vat_uniqueid; 2672 lvext.num_files = lvinfo->num_files; 2673 lvext.num_directories = lvinfo->num_directories; 2674 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2675 2676 memcpy(lvextpos, &lvext, sizeof(lvext)); 2677 2678 return 0; 2679 } 2680 2681 /* --------------------------------------------------------------------- */ 2682 2683 int 2684 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2685 { 2686 struct udf_mount *ump = vat_node->ump; 2687 2688 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2689 return EINVAL; 2690 2691 memcpy(blob, ump->vat_table + offset, size); 2692 return 0; 2693 } 2694 2695 int 2696 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2697 { 2698 struct udf_mount *ump = vat_node->ump; 2699 uint32_t offset_high; 2700 uint8_t *new_vat_table; 2701 2702 /* extent VAT allocation if needed */ 2703 offset_high = offset + size; 2704 if (offset_high >= ump->vat_table_alloc_len) { 2705 /* realloc */ 2706 new_vat_table = realloc(ump->vat_table, 2707 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2708 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2709 if (!new_vat_table) { 2710 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2711 return ENOMEM; 2712 } 2713 ump->vat_table = new_vat_table; 2714 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2715 } 2716 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2717 2718 memcpy(ump->vat_table + offset, blob, size); 2719 return 0; 2720 } 2721 2722 /* --------------------------------------------------------------------- */ 2723 2724 /* TODO support previous VAT location writeout */ 2725 static int 2726 udf_update_vat_descriptor(struct udf_mount *ump) 2727 { 2728 struct udf_node *vat_node = ump->vat_node; 2729 struct udf_logvol_info *lvinfo = ump->logvol_info; 2730 struct icb_tag *icbtag; 2731 struct udf_oldvat_tail *oldvat_tl; 2732 struct udf_vat *vat; 2733 uint64_t unique_id; 2734 uint32_t lb_size; 2735 uint8_t *raw_vat; 2736 int filetype, error; 2737 2738 KASSERT(vat_node); 2739 KASSERT(lvinfo); 2740 lb_size = udf_rw32(ump->logical_vol->lb_size); 2741 2742 /* get our new unique_id */ 2743 unique_id = udf_advance_uniqueid(ump); 2744 2745 /* get information from fe/efe */ 2746 if (vat_node->fe) { 2747 icbtag = &vat_node->fe->icbtag; 2748 vat_node->fe->unique_id = udf_rw64(unique_id); 2749 } else { 2750 icbtag = &vat_node->efe->icbtag; 2751 vat_node->efe->unique_id = udf_rw64(unique_id); 2752 } 2753 2754 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2755 filetype = icbtag->file_type; 2756 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2757 2758 /* allocate piece to process head or tail of VAT file */ 2759 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2760 2761 if (filetype == 0) { 2762 /* 2763 * Update "*UDF VAT LVExtension" extended attribute from the 2764 * lvint if present. 2765 */ 2766 udf_update_vat_extattr_from_lvid(vat_node); 2767 2768 /* setup identifying regid */ 2769 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2770 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2771 2772 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2773 udf_add_udf_regid(ump, &oldvat_tl->id); 2774 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2775 2776 /* write out new tail of virtual allocation table file */ 2777 error = udf_vat_write(vat_node, raw_vat, 2778 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2779 } else { 2780 /* compose the VAT2 header */ 2781 vat = (struct udf_vat *) raw_vat; 2782 memset(vat, 0, sizeof(struct udf_vat)); 2783 2784 vat->header_len = udf_rw16(152); /* as per spec */ 2785 vat->impl_use_len = udf_rw16(0); 2786 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2787 vat->prev_vat = udf_rw32(0xffffffff); 2788 vat->num_files = lvinfo->num_files; 2789 vat->num_directories = lvinfo->num_directories; 2790 vat->min_udf_readver = lvinfo->min_udf_readver; 2791 vat->min_udf_writever = lvinfo->min_udf_writever; 2792 vat->max_udf_writever = lvinfo->max_udf_writever; 2793 2794 error = udf_vat_write(vat_node, raw_vat, 2795 sizeof(struct udf_vat), 0); 2796 } 2797 free(raw_vat, M_TEMP); 2798 2799 return error; /* success! */ 2800 } 2801 2802 2803 int 2804 udf_writeout_vat(struct udf_mount *ump) 2805 { 2806 struct udf_node *vat_node = ump->vat_node; 2807 int error; 2808 2809 KASSERT(vat_node); 2810 2811 DPRINTF(CALL, ("udf_writeout_vat\n")); 2812 2813 // mutex_enter(&ump->allocate_mutex); 2814 udf_update_vat_descriptor(ump); 2815 2816 /* write out the VAT contents ; TODO intelligent writing */ 2817 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2818 ump->vat_table, ump->vat_table_len, 0, 2819 UIO_SYSSPACE, 0, FSCRED, NULL, NULL); 2820 if (error) { 2821 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2822 goto out; 2823 } 2824 2825 // mutex_exit(&ump->allocate_mutex); 2826 2827 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 2828 if (error) 2829 goto out; 2830 error = VOP_FSYNC(ump->vat_node->vnode, 2831 FSCRED, FSYNC_WAIT, 0, 0); 2832 if (error) 2833 printf("udf_writeout_vat: error writing VAT node!\n"); 2834 out: 2835 2836 return error; 2837 } 2838 2839 /* --------------------------------------------------------------------- */ 2840 2841 /* 2842 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2843 * descriptor. If OK, read in complete VAT file. 2844 */ 2845 2846 static int 2847 udf_check_for_vat(struct udf_node *vat_node) 2848 { 2849 struct udf_mount *ump; 2850 struct icb_tag *icbtag; 2851 struct timestamp *mtime; 2852 struct udf_vat *vat; 2853 struct udf_oldvat_tail *oldvat_tl; 2854 struct udf_logvol_info *lvinfo; 2855 uint64_t unique_id; 2856 uint32_t vat_length; 2857 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2858 uint32_t sector_size; 2859 uint32_t *raw_vat; 2860 uint8_t *vat_table; 2861 char *regid_name; 2862 int filetype; 2863 int error; 2864 2865 /* vat_length is really 64 bits though impossible */ 2866 2867 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2868 if (!vat_node) 2869 return ENOENT; 2870 2871 /* get mount info */ 2872 ump = vat_node->ump; 2873 sector_size = udf_rw32(ump->logical_vol->lb_size); 2874 2875 /* check assertions */ 2876 assert(vat_node->fe || vat_node->efe); 2877 assert(ump->logvol_integrity); 2878 2879 /* set vnode type to regular file or we can't read from it! */ 2880 vat_node->vnode->v_type = VREG; 2881 2882 /* get information from fe/efe */ 2883 if (vat_node->fe) { 2884 vat_length = udf_rw64(vat_node->fe->inf_len); 2885 icbtag = &vat_node->fe->icbtag; 2886 mtime = &vat_node->fe->mtime; 2887 unique_id = udf_rw64(vat_node->fe->unique_id); 2888 } else { 2889 vat_length = udf_rw64(vat_node->efe->inf_len); 2890 icbtag = &vat_node->efe->icbtag; 2891 mtime = &vat_node->efe->mtime; 2892 unique_id = udf_rw64(vat_node->efe->unique_id); 2893 } 2894 2895 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2896 filetype = icbtag->file_type; 2897 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2898 return ENOENT; 2899 2900 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2901 2902 vat_table_alloc_len = 2903 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2904 * UDF_VAT_CHUNKSIZE; 2905 2906 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2907 M_CANFAIL | M_WAITOK); 2908 if (vat_table == NULL) { 2909 printf("allocation of %d bytes failed for VAT\n", 2910 vat_table_alloc_len); 2911 return ENOMEM; 2912 } 2913 2914 /* allocate piece to read in head or tail of VAT file */ 2915 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2916 2917 /* 2918 * check contents of the file if its the old 1.50 VAT table format. 2919 * Its notoriously broken and allthough some implementations support an 2920 * extention as defined in the UDF 1.50 errata document, its doubtfull 2921 * to be useable since a lot of implementations don't maintain it. 2922 */ 2923 lvinfo = ump->logvol_info; 2924 2925 if (filetype == 0) { 2926 /* definition */ 2927 vat_offset = 0; 2928 vat_entries = (vat_length-36)/4; 2929 2930 /* read in tail of virtual allocation table file */ 2931 error = vn_rdwr(UIO_READ, vat_node->vnode, 2932 (uint8_t *) raw_vat, 2933 sizeof(struct udf_oldvat_tail), 2934 vat_entries * 4, 2935 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2936 NULL, NULL); 2937 if (error) 2938 goto out; 2939 2940 /* check 1.50 VAT */ 2941 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2942 regid_name = (char *) oldvat_tl->id.id; 2943 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2944 if (error) { 2945 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2946 error = ENOENT; 2947 goto out; 2948 } 2949 2950 /* 2951 * update LVID from "*UDF VAT LVExtension" extended attribute 2952 * if present. 2953 */ 2954 udf_update_lvid_from_vat_extattr(vat_node); 2955 } else { 2956 /* read in head of virtual allocation table file */ 2957 error = vn_rdwr(UIO_READ, vat_node->vnode, 2958 (uint8_t *) raw_vat, 2959 sizeof(struct udf_vat), 0, 2960 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2961 NULL, NULL); 2962 if (error) 2963 goto out; 2964 2965 /* definition */ 2966 vat = (struct udf_vat *) raw_vat; 2967 vat_offset = vat->header_len; 2968 vat_entries = (vat_length - vat_offset)/4; 2969 2970 assert(lvinfo); 2971 lvinfo->num_files = vat->num_files; 2972 lvinfo->num_directories = vat->num_directories; 2973 lvinfo->min_udf_readver = vat->min_udf_readver; 2974 lvinfo->min_udf_writever = vat->min_udf_writever; 2975 lvinfo->max_udf_writever = vat->max_udf_writever; 2976 2977 udf_update_logvolname(ump, vat->logvol_id); 2978 } 2979 2980 /* read in complete VAT file */ 2981 error = vn_rdwr(UIO_READ, vat_node->vnode, 2982 vat_table, 2983 vat_length, 0, 2984 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2985 NULL, NULL); 2986 if (error) 2987 printf("read in of complete VAT file failed (error %d)\n", 2988 error); 2989 if (error) 2990 goto out; 2991 2992 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2993 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 2994 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2995 ump->logvol_integrity->time = *mtime; 2996 2997 ump->vat_table_len = vat_length; 2998 ump->vat_table_alloc_len = vat_table_alloc_len; 2999 ump->vat_table = vat_table; 3000 ump->vat_offset = vat_offset; 3001 ump->vat_entries = vat_entries; 3002 ump->vat_last_free_lb = 0; /* start at beginning */ 3003 3004 out: 3005 if (error) { 3006 if (vat_table) 3007 free(vat_table, M_UDFVOLD); 3008 } 3009 free(raw_vat, M_TEMP); 3010 3011 return error; 3012 } 3013 3014 /* --------------------------------------------------------------------- */ 3015 3016 static int 3017 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 3018 { 3019 struct udf_node *vat_node; 3020 struct long_ad icb_loc; 3021 uint32_t early_vat_loc, vat_loc; 3022 int error; 3023 3024 /* mapping info not needed */ 3025 mapping = mapping; 3026 3027 vat_loc = ump->last_possible_vat_location; 3028 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 3029 3030 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 3031 vat_loc, early_vat_loc)); 3032 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 3033 3034 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 3035 vat_loc, early_vat_loc)); 3036 3037 /* start looking from the end of the range */ 3038 do { 3039 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 3040 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3041 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3042 3043 error = udf_get_node(ump, &icb_loc, &vat_node); 3044 if (!error) { 3045 error = udf_check_for_vat(vat_node); 3046 DPRINTFIF(VOLUMES, !error, 3047 ("VAT accepted at %d\n", vat_loc)); 3048 if (!error) 3049 break; 3050 } 3051 if (vat_node) { 3052 vput(vat_node->vnode); 3053 vat_node = NULL; 3054 } 3055 vat_loc--; /* walk backwards */ 3056 } while (vat_loc >= early_vat_loc); 3057 3058 /* keep our VAT node around */ 3059 if (vat_node) { 3060 UDF_SET_SYSTEMFILE(vat_node->vnode); 3061 ump->vat_node = vat_node; 3062 } 3063 3064 return error; 3065 } 3066 3067 /* --------------------------------------------------------------------- */ 3068 3069 static int 3070 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3071 { 3072 union dscrptr *dscr; 3073 struct part_map_spare *pms = &mapping->pms; 3074 uint32_t lb_num; 3075 int spar, error; 3076 3077 /* 3078 * The partition mapping passed on to us specifies the information we 3079 * need to locate and initialise the sparable partition mapping 3080 * information we need. 3081 */ 3082 3083 DPRINTF(VOLUMES, ("Read sparable table\n")); 3084 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3085 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3086 3087 for (spar = 0; spar < pms->n_st; spar++) { 3088 lb_num = pms->st_loc[spar]; 3089 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3090 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3091 if (!error && dscr) { 3092 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3093 if (ump->sparing_table) 3094 free(ump->sparing_table, M_UDFVOLD); 3095 ump->sparing_table = &dscr->spt; 3096 dscr = NULL; 3097 DPRINTF(VOLUMES, 3098 ("Sparing table accepted (%d entries)\n", 3099 udf_rw16(ump->sparing_table->rt_l))); 3100 break; /* we're done */ 3101 } 3102 } 3103 if (dscr) 3104 free(dscr, M_UDFVOLD); 3105 } 3106 3107 if (ump->sparing_table) 3108 return 0; 3109 3110 return ENOENT; 3111 } 3112 3113 /* --------------------------------------------------------------------- */ 3114 3115 static int 3116 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3117 { 3118 struct part_map_meta *pmm = &mapping->pmm; 3119 struct long_ad icb_loc; 3120 struct vnode *vp; 3121 uint16_t raw_phys_part, phys_part; 3122 int error; 3123 3124 /* 3125 * BUGALERT: some rogue implementations use random physical 3126 * partition numbers to break other implementations so lookup 3127 * the number. 3128 */ 3129 3130 /* extract our allocation parameters set up on format */ 3131 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); 3132 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); 3133 ump->metadata_flags = mapping->pmm.flags; 3134 3135 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3136 raw_phys_part = udf_rw16(pmm->part_num); 3137 phys_part = udf_find_raw_phys(ump, raw_phys_part); 3138 3139 icb_loc.loc.part_num = udf_rw16(phys_part); 3140 3141 DPRINTF(VOLUMES, ("Metadata file\n")); 3142 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3143 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3144 if (ump->metadata_node) { 3145 vp = ump->metadata_node->vnode; 3146 UDF_SET_SYSTEMFILE(vp); 3147 } 3148 3149 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3150 if (icb_loc.loc.lb_num != -1) { 3151 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3152 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3153 if (ump->metadatamirror_node) { 3154 vp = ump->metadatamirror_node->vnode; 3155 UDF_SET_SYSTEMFILE(vp); 3156 } 3157 } 3158 3159 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3160 if (icb_loc.loc.lb_num != -1) { 3161 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3162 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3163 if (ump->metadatabitmap_node) { 3164 vp = ump->metadatabitmap_node->vnode; 3165 UDF_SET_SYSTEMFILE(vp); 3166 } 3167 } 3168 3169 /* if we're mounting read-only we relax the requirements */ 3170 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3171 error = EFAULT; 3172 if (ump->metadata_node) 3173 error = 0; 3174 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3175 printf( "udf mount: Metadata file not readable, " 3176 "substituting Metadata copy file\n"); 3177 ump->metadata_node = ump->metadatamirror_node; 3178 ump->metadatamirror_node = NULL; 3179 error = 0; 3180 } 3181 } else { 3182 /* mounting read/write */ 3183 /* XXX DISABLED! metadata writing is not working yet XXX */ 3184 if (error) 3185 error = EROFS; 3186 } 3187 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3188 "metadata files\n")); 3189 return error; 3190 } 3191 3192 /* --------------------------------------------------------------------- */ 3193 3194 int 3195 udf_read_vds_tables(struct udf_mount *ump) 3196 { 3197 union udf_pmap *mapping; 3198 /* struct udf_args *args = &ump->mount_args; */ 3199 uint32_t n_pm; 3200 uint32_t log_part; 3201 uint8_t *pmap_pos; 3202 int pmap_size; 3203 int error; 3204 3205 /* Iterate (again) over the part mappings for locations */ 3206 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3207 pmap_pos = ump->logical_vol->maps; 3208 3209 for (log_part = 0; log_part < n_pm; log_part++) { 3210 mapping = (union udf_pmap *) pmap_pos; 3211 switch (ump->vtop_tp[log_part]) { 3212 case UDF_VTOP_TYPE_PHYS : 3213 /* nothing */ 3214 break; 3215 case UDF_VTOP_TYPE_VIRT : 3216 /* search and load VAT */ 3217 error = udf_search_vat(ump, mapping); 3218 if (error) 3219 return ENOENT; 3220 break; 3221 case UDF_VTOP_TYPE_SPARABLE : 3222 /* load one of the sparable tables */ 3223 error = udf_read_sparables(ump, mapping); 3224 if (error) 3225 return ENOENT; 3226 break; 3227 case UDF_VTOP_TYPE_META : 3228 /* load the associated file descriptors */ 3229 error = udf_read_metadata_nodes(ump, mapping); 3230 if (error) 3231 return ENOENT; 3232 break; 3233 default: 3234 break; 3235 } 3236 pmap_size = pmap_pos[1]; 3237 pmap_pos += pmap_size; 3238 } 3239 3240 /* read in and check unallocated and free space info if writing */ 3241 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3242 error = udf_read_physical_partition_spacetables(ump); 3243 if (error) 3244 return error; 3245 3246 /* also read in metadata partition spacebitmap if defined */ 3247 error = udf_read_metadata_partition_spacetable(ump); 3248 return error; 3249 } 3250 3251 return 0; 3252 } 3253 3254 /* --------------------------------------------------------------------- */ 3255 3256 int 3257 udf_read_rootdirs(struct udf_mount *ump) 3258 { 3259 union dscrptr *dscr; 3260 /* struct udf_args *args = &ump->mount_args; */ 3261 struct udf_node *rootdir_node, *streamdir_node; 3262 struct long_ad fsd_loc, *dir_loc; 3263 uint32_t lb_num, dummy; 3264 uint32_t fsd_len; 3265 int dscr_type; 3266 int error; 3267 3268 /* TODO implement FSD reading in separate function like integrity? */ 3269 /* get fileset descriptor sequence */ 3270 fsd_loc = ump->logical_vol->lv_fsd_loc; 3271 fsd_len = udf_rw32(fsd_loc.len); 3272 3273 dscr = NULL; 3274 error = 0; 3275 while (fsd_len || error) { 3276 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3277 /* translate fsd_loc to lb_num */ 3278 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3279 if (error) 3280 break; 3281 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3282 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3283 /* end markers */ 3284 if (error || (dscr == NULL)) 3285 break; 3286 3287 /* analyse */ 3288 dscr_type = udf_rw16(dscr->tag.id); 3289 if (dscr_type == TAGID_TERM) 3290 break; 3291 if (dscr_type != TAGID_FSD) { 3292 free(dscr, M_UDFVOLD); 3293 return ENOENT; 3294 } 3295 3296 /* 3297 * TODO check for multiple fileset descriptors; its only 3298 * picking the last now. Also check for FSD 3299 * correctness/interpretability 3300 */ 3301 3302 /* update */ 3303 if (ump->fileset_desc) { 3304 free(ump->fileset_desc, M_UDFVOLD); 3305 } 3306 ump->fileset_desc = &dscr->fsd; 3307 dscr = NULL; 3308 3309 /* continue to the next fsd */ 3310 fsd_len -= ump->discinfo.sector_size; 3311 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3312 3313 /* follow up to fsd->next_ex (long_ad) if its not null */ 3314 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3315 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3316 fsd_loc = ump->fileset_desc->next_ex; 3317 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3318 } 3319 } 3320 if (dscr) 3321 free(dscr, M_UDFVOLD); 3322 3323 /* there has to be one */ 3324 if (ump->fileset_desc == NULL) 3325 return ENOENT; 3326 3327 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3328 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3329 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3330 3331 /* 3332 * Now the FSD is known, read in the rootdirectory and if one exists, 3333 * the system stream dir. Some files in the system streamdir are not 3334 * wanted in this implementation since they are not maintained. If 3335 * writing is enabled we'll delete these files if they exist. 3336 */ 3337 3338 rootdir_node = streamdir_node = NULL; 3339 dir_loc = NULL; 3340 3341 /* try to read in the rootdir */ 3342 dir_loc = &ump->fileset_desc->rootdir_icb; 3343 error = udf_get_node(ump, dir_loc, &rootdir_node); 3344 if (error) 3345 return ENOENT; 3346 3347 /* aparently it read in fine */ 3348 3349 /* 3350 * Try the system stream directory; not very likely in the ones we 3351 * test, but for completeness. 3352 */ 3353 dir_loc = &ump->fileset_desc->streamdir_icb; 3354 if (udf_rw32(dir_loc->len)) { 3355 printf("udf_read_rootdirs: streamdir defined "); 3356 error = udf_get_node(ump, dir_loc, &streamdir_node); 3357 if (error) { 3358 printf("but error in streamdir reading\n"); 3359 } else { 3360 printf("but ignored\n"); 3361 /* 3362 * TODO process streamdir `baddies' i.e. files we dont 3363 * want if R/W 3364 */ 3365 } 3366 } 3367 3368 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3369 3370 /* release the vnodes again; they'll be auto-recycled later */ 3371 if (streamdir_node) { 3372 vput(streamdir_node->vnode); 3373 } 3374 if (rootdir_node) { 3375 vput(rootdir_node->vnode); 3376 } 3377 3378 return 0; 3379 } 3380 3381 /* --------------------------------------------------------------------- */ 3382 3383 /* To make absolutely sure we are NOT returning zero, add one :) */ 3384 3385 long 3386 udf_get_node_id(const struct long_ad *icbptr) 3387 { 3388 /* ought to be enough since each mountpoint has its own chain */ 3389 return udf_rw32(icbptr->loc.lb_num) + 1; 3390 } 3391 3392 3393 int 3394 udf_compare_icb(const struct long_ad *a, const struct long_ad *b) 3395 { 3396 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) 3397 return -1; 3398 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) 3399 return 1; 3400 3401 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) 3402 return -1; 3403 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) 3404 return 1; 3405 3406 return 0; 3407 } 3408 3409 3410 static int 3411 udf_compare_rbnodes(void *ctx, const void *a, const void *b) 3412 { 3413 const struct udf_node *a_node = a; 3414 const struct udf_node *b_node = b; 3415 3416 return udf_compare_icb(&a_node->loc, &b_node->loc); 3417 } 3418 3419 3420 static int 3421 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) 3422 { 3423 const struct udf_node *a_node = a; 3424 const struct long_ad * const icb = key; 3425 3426 return udf_compare_icb(&a_node->loc, icb); 3427 } 3428 3429 3430 static const rb_tree_ops_t udf_node_rbtree_ops = { 3431 .rbto_compare_nodes = udf_compare_rbnodes, 3432 .rbto_compare_key = udf_compare_rbnode_icb, 3433 .rbto_node_offset = offsetof(struct udf_node, rbnode), 3434 .rbto_context = NULL 3435 }; 3436 3437 3438 void 3439 udf_init_nodes_tree(struct udf_mount *ump) 3440 { 3441 3442 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); 3443 } 3444 3445 3446 static struct udf_node * 3447 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr) 3448 { 3449 struct udf_node *udf_node; 3450 struct vnode *vp; 3451 3452 loop: 3453 mutex_enter(&ump->ihash_lock); 3454 3455 udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr); 3456 if (udf_node) { 3457 vp = udf_node->vnode; 3458 assert(vp); 3459 mutex_enter(vp->v_interlock); 3460 mutex_exit(&ump->ihash_lock); 3461 if (vget(vp, LK_EXCLUSIVE)) 3462 goto loop; 3463 return udf_node; 3464 } 3465 mutex_exit(&ump->ihash_lock); 3466 3467 return NULL; 3468 } 3469 3470 3471 static void 3472 udf_register_node(struct udf_node *udf_node) 3473 { 3474 struct udf_mount *ump = udf_node->ump; 3475 3476 /* add node to the rb tree */ 3477 mutex_enter(&ump->ihash_lock); 3478 rb_tree_insert_node(&ump->udf_node_tree, udf_node); 3479 mutex_exit(&ump->ihash_lock); 3480 } 3481 3482 3483 static void 3484 udf_deregister_node(struct udf_node *udf_node) 3485 { 3486 struct udf_mount *ump = udf_node->ump; 3487 3488 /* remove node from the rb tree */ 3489 mutex_enter(&ump->ihash_lock); 3490 rb_tree_remove_node(&ump->udf_node_tree, udf_node); 3491 mutex_exit(&ump->ihash_lock); 3492 } 3493 3494 /* --------------------------------------------------------------------- */ 3495 3496 static int 3497 udf_validate_session_start(struct udf_mount *ump) 3498 { 3499 struct mmc_trackinfo trackinfo; 3500 struct vrs_desc *vrs; 3501 uint32_t tracknr, sessionnr, sector, sector_size; 3502 uint32_t iso9660_vrs, write_track_start; 3503 uint8_t *buffer, *blank, *pos; 3504 int blks, max_sectors, vrs_len; 3505 int error; 3506 3507 /* disc appendable? */ 3508 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3509 return EROFS; 3510 3511 /* already written here? if so, there should be an ISO VDS */ 3512 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3513 return 0; 3514 3515 /* 3516 * Check if the first track of the session is blank and if so, copy or 3517 * create a dummy ISO descriptor so the disc is valid again. 3518 */ 3519 3520 tracknr = ump->discinfo.first_track_last_session; 3521 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3522 trackinfo.tracknr = tracknr; 3523 error = udf_update_trackinfo(ump, &trackinfo); 3524 if (error) 3525 return error; 3526 3527 udf_dump_trackinfo(&trackinfo); 3528 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3529 KASSERT(trackinfo.sessionnr > 1); 3530 3531 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3532 write_track_start = trackinfo.next_writable; 3533 3534 /* we have to copy the ISO VRS from a former session */ 3535 DPRINTF(VOLUMES, ("validate_session_start: " 3536 "blank or reserved track, copying VRS\n")); 3537 3538 /* sessionnr should be the session we're mounting */ 3539 sessionnr = ump->mount_args.sessionnr; 3540 3541 /* start at the first track */ 3542 tracknr = ump->discinfo.first_track; 3543 while (tracknr <= ump->discinfo.num_tracks) { 3544 trackinfo.tracknr = tracknr; 3545 error = udf_update_trackinfo(ump, &trackinfo); 3546 if (error) { 3547 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3548 return error; 3549 } 3550 if (trackinfo.sessionnr == sessionnr) 3551 break; 3552 tracknr++; 3553 } 3554 if (trackinfo.sessionnr != sessionnr) { 3555 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3556 return ENOENT; 3557 } 3558 3559 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3560 udf_dump_trackinfo(&trackinfo); 3561 3562 /* 3563 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3564 * minimum ISO `sector size' 2048 3565 */ 3566 sector_size = ump->discinfo.sector_size; 3567 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3568 + trackinfo.track_start; 3569 3570 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3571 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3572 blks = MAX(1, 2048 / sector_size); 3573 3574 error = 0; 3575 for (sector = 0; sector < max_sectors; sector += blks) { 3576 pos = buffer + sector * sector_size; 3577 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3578 iso9660_vrs + sector, blks); 3579 if (error) 3580 break; 3581 /* check this ISO descriptor */ 3582 vrs = (struct vrs_desc *) pos; 3583 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3584 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3585 continue; 3586 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3587 continue; 3588 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3589 continue; 3590 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3591 continue; 3592 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3593 continue; 3594 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3595 break; 3596 /* now what? for now, end of sequence */ 3597 break; 3598 } 3599 vrs_len = sector + blks; 3600 if (error) { 3601 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3602 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3603 3604 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3605 3606 vrs = (struct vrs_desc *) (buffer); 3607 vrs->struct_type = 0; 3608 vrs->version = 1; 3609 memcpy(vrs->identifier,VRS_BEA01, 5); 3610 3611 vrs = (struct vrs_desc *) (buffer + 2048); 3612 vrs->struct_type = 0; 3613 vrs->version = 1; 3614 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3615 memcpy(vrs->identifier,VRS_NSR02, 5); 3616 } else { 3617 memcpy(vrs->identifier,VRS_NSR03, 5); 3618 } 3619 3620 vrs = (struct vrs_desc *) (buffer + 4096); 3621 vrs->struct_type = 0; 3622 vrs->version = 1; 3623 memcpy(vrs->identifier, VRS_TEA01, 5); 3624 3625 vrs_len = 3*blks; 3626 } 3627 3628 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3629 3630 /* 3631 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3632 * minimum ISO `sector size' 2048 3633 */ 3634 sector_size = ump->discinfo.sector_size; 3635 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3636 + write_track_start; 3637 3638 /* write out 32 kb */ 3639 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3640 memset(blank, 0, sector_size); 3641 error = 0; 3642 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3643 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3644 blank, sector, 1); 3645 if (error) 3646 break; 3647 } 3648 if (!error) { 3649 /* write out our ISO VRS */ 3650 KASSERT(sector == iso9660_vrs); 3651 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3652 sector, vrs_len); 3653 sector += vrs_len; 3654 } 3655 if (!error) { 3656 /* fill upto the first anchor at S+256 */ 3657 for (; sector < write_track_start+256; sector++) { 3658 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3659 blank, sector, 1); 3660 if (error) 3661 break; 3662 } 3663 } 3664 if (!error) { 3665 /* write out anchor; write at ABSOLUTE place! */ 3666 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3667 (union dscrptr *) ump->anchors[0], sector, sector); 3668 if (error) 3669 printf("writeout of anchor failed!\n"); 3670 } 3671 3672 free(blank, M_TEMP); 3673 free(buffer, M_TEMP); 3674 3675 if (error) 3676 printf("udf_open_session: error writing iso vrs! : " 3677 "leaving disc in compromised state!\n"); 3678 3679 /* synchronise device caches */ 3680 (void) udf_synchronise_caches(ump); 3681 3682 return error; 3683 } 3684 3685 3686 int 3687 udf_open_logvol(struct udf_mount *ump) 3688 { 3689 int logvol_integrity; 3690 int error; 3691 3692 /* already/still open? */ 3693 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3694 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3695 return 0; 3696 3697 /* can we open it ? */ 3698 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3699 return EROFS; 3700 3701 /* setup write parameters */ 3702 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3703 if ((error = udf_setup_writeparams(ump)) != 0) 3704 return error; 3705 3706 /* determine data and metadata tracks (most likely same) */ 3707 error = udf_search_writing_tracks(ump); 3708 if (error) { 3709 /* most likely lack of space */ 3710 printf("udf_open_logvol: error searching writing tracks\n"); 3711 return EROFS; 3712 } 3713 3714 /* writeout/update lvint on disc or only in memory */ 3715 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3716 if (ump->lvopen & UDF_OPEN_SESSION) { 3717 /* TODO optional track reservation opening */ 3718 error = udf_validate_session_start(ump); 3719 if (error) 3720 return error; 3721 3722 /* determine data and metadata tracks again */ 3723 error = udf_search_writing_tracks(ump); 3724 } 3725 3726 /* mark it open */ 3727 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3728 3729 /* do we need to write it out? */ 3730 if (ump->lvopen & UDF_WRITE_LVINT) { 3731 error = udf_writeout_lvint(ump, ump->lvopen); 3732 /* if we couldn't write it mark it closed again */ 3733 if (error) { 3734 ump->logvol_integrity->integrity_type = 3735 udf_rw32(UDF_INTEGRITY_CLOSED); 3736 return error; 3737 } 3738 } 3739 3740 return 0; 3741 } 3742 3743 3744 int 3745 udf_close_logvol(struct udf_mount *ump, int mntflags) 3746 { 3747 struct vnode *devvp = ump->devvp; 3748 struct mmc_op mmc_op; 3749 int logvol_integrity; 3750 int error = 0, error1 = 0, error2 = 0; 3751 int tracknr; 3752 int nvats, n, nok; 3753 3754 /* already/still closed? */ 3755 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3756 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3757 return 0; 3758 3759 /* writeout/update lvint or write out VAT */ 3760 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3761 #ifdef DIAGNOSTIC 3762 if (ump->lvclose & UDF_CLOSE_SESSION) 3763 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3764 #endif 3765 3766 if (ump->lvclose & UDF_WRITE_VAT) { 3767 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3768 3769 /* write out the VAT data and all its descriptors */ 3770 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3771 udf_writeout_vat(ump); 3772 (void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 3773 3774 (void) VOP_FSYNC(ump->vat_node->vnode, 3775 FSCRED, FSYNC_WAIT, 0, 0); 3776 3777 if (ump->lvclose & UDF_CLOSE_SESSION) { 3778 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3779 "as requested\n")); 3780 } 3781 3782 /* at least two DVD packets and 3 CD-R packets */ 3783 nvats = 32; 3784 3785 #if notyet 3786 /* 3787 * TODO calculate the available space and if the disc is 3788 * allmost full, write out till end-256-1 with banks, write 3789 * AVDP and fill up with VATs, then close session and close 3790 * disc. 3791 */ 3792 if (ump->lvclose & UDF_FINALISE_DISC) { 3793 error = udf_write_phys_dscr_sync(ump, NULL, 3794 UDF_C_FLOAT_DSCR, 3795 (union dscrptr *) ump->anchors[0], 3796 0, 0); 3797 if (error) 3798 printf("writeout of anchor failed!\n"); 3799 3800 /* pad space with VAT ICBs */ 3801 nvats = 256; 3802 } 3803 #endif 3804 3805 /* write out a number of VAT nodes */ 3806 nok = 0; 3807 for (n = 0; n < nvats; n++) { 3808 /* will now only write last FE/EFE */ 3809 ump->vat_node->i_flags |= IN_MODIFIED; 3810 error = VOP_FSYNC(ump->vat_node->vnode, 3811 FSCRED, FSYNC_WAIT, 0, 0); 3812 if (!error) 3813 nok++; 3814 } 3815 if (nok < 14) { 3816 /* arbitrary; but at least one or two CD frames */ 3817 printf("writeout of at least 14 VATs failed\n"); 3818 return error; 3819 } 3820 } 3821 3822 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3823 3824 /* finish closing of session */ 3825 if (ump->lvclose & UDF_CLOSE_SESSION) { 3826 error = udf_validate_session_start(ump); 3827 if (error) 3828 return error; 3829 3830 (void) udf_synchronise_caches(ump); 3831 3832 /* close all associated tracks */ 3833 tracknr = ump->discinfo.first_track_last_session; 3834 error = 0; 3835 while (tracknr <= ump->discinfo.last_track_last_session) { 3836 DPRINTF(VOLUMES, ("\tclosing possible open " 3837 "track %d\n", tracknr)); 3838 memset(&mmc_op, 0, sizeof(mmc_op)); 3839 mmc_op.operation = MMC_OP_CLOSETRACK; 3840 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3841 mmc_op.tracknr = tracknr; 3842 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3843 FKIOCTL, NOCRED); 3844 if (error) 3845 printf("udf_close_logvol: closing of " 3846 "track %d failed\n", tracknr); 3847 tracknr ++; 3848 } 3849 if (!error) { 3850 DPRINTF(VOLUMES, ("closing session\n")); 3851 memset(&mmc_op, 0, sizeof(mmc_op)); 3852 mmc_op.operation = MMC_OP_CLOSESESSION; 3853 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3854 mmc_op.sessionnr = ump->discinfo.num_sessions; 3855 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3856 FKIOCTL, NOCRED); 3857 if (error) 3858 printf("udf_close_logvol: closing of session" 3859 "failed\n"); 3860 } 3861 if (!error) 3862 ump->lvopen |= UDF_OPEN_SESSION; 3863 if (error) { 3864 printf("udf_close_logvol: leaving disc as it is\n"); 3865 ump->lvclose &= ~UDF_FINALISE_DISC; 3866 } 3867 } 3868 3869 if (ump->lvclose & UDF_FINALISE_DISC) { 3870 memset(&mmc_op, 0, sizeof(mmc_op)); 3871 mmc_op.operation = MMC_OP_FINALISEDISC; 3872 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3873 mmc_op.sessionnr = ump->discinfo.num_sessions; 3874 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3875 FKIOCTL, NOCRED); 3876 if (error) 3877 printf("udf_close_logvol: finalising disc" 3878 "failed\n"); 3879 } 3880 3881 /* write out partition bitmaps if requested */ 3882 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3883 /* sync writeout metadata spacetable if existing */ 3884 error1 = udf_write_metadata_partition_spacetable(ump, true); 3885 if (error1) 3886 printf( "udf_close_logvol: writeout of metadata space " 3887 "bitmap failed\n"); 3888 3889 /* sync writeout partition spacetables */ 3890 error2 = udf_write_physical_partition_spacetables(ump, true); 3891 if (error2) 3892 printf( "udf_close_logvol: writeout of space tables " 3893 "failed\n"); 3894 3895 if (error1 || error2) 3896 return (error1 | error2); 3897 3898 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3899 } 3900 3901 /* write out metadata partition nodes if requested */ 3902 if (ump->lvclose & UDF_WRITE_METAPART_NODES) { 3903 /* sync writeout metadata descriptor node */ 3904 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); 3905 if (error1) 3906 printf( "udf_close_logvol: writeout of metadata partition " 3907 "node failed\n"); 3908 3909 /* duplicate metadata partition descriptor if needed */ 3910 udf_synchronise_metadatamirror_node(ump); 3911 3912 /* sync writeout metadatamirror descriptor node */ 3913 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); 3914 if (error2) 3915 printf( "udf_close_logvol: writeout of metadata partition " 3916 "mirror node failed\n"); 3917 3918 if (error1 || error2) 3919 return (error1 | error2); 3920 3921 ump->lvclose &= ~UDF_WRITE_METAPART_NODES; 3922 } 3923 3924 /* mark it closed */ 3925 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3926 3927 /* do we need to write out the logical volume integrity? */ 3928 if (ump->lvclose & UDF_WRITE_LVINT) 3929 error = udf_writeout_lvint(ump, ump->lvopen); 3930 if (error) { 3931 /* HELP now what? mark it open again for now */ 3932 ump->logvol_integrity->integrity_type = 3933 udf_rw32(UDF_INTEGRITY_OPEN); 3934 return error; 3935 } 3936 3937 (void) udf_synchronise_caches(ump); 3938 3939 return 0; 3940 } 3941 3942 /* --------------------------------------------------------------------- */ 3943 3944 /* 3945 * Genfs interfacing 3946 * 3947 * static const struct genfs_ops udf_genfsops = { 3948 * .gop_size = genfs_size, 3949 * size of transfers 3950 * .gop_alloc = udf_gop_alloc, 3951 * allocate len bytes at offset 3952 * .gop_write = genfs_gop_write, 3953 * putpages interface code 3954 * .gop_markupdate = udf_gop_markupdate, 3955 * set update/modify flags etc. 3956 * } 3957 */ 3958 3959 /* 3960 * Genfs interface. These four functions are the only ones defined though not 3961 * documented... great.... 3962 */ 3963 3964 /* 3965 * Called for allocating an extent of the file either by VOP_WRITE() or by 3966 * genfs filling up gaps. 3967 */ 3968 static int 3969 udf_gop_alloc(struct vnode *vp, off_t off, 3970 off_t len, int flags, kauth_cred_t cred) 3971 { 3972 struct udf_node *udf_node = VTOI(vp); 3973 struct udf_mount *ump = udf_node->ump; 3974 uint64_t lb_start, lb_end; 3975 uint32_t lb_size, num_lb; 3976 int udf_c_type, vpart_num, can_fail; 3977 int error; 3978 3979 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", 3980 off, len, flags? "SYNC":"NONE")); 3981 3982 /* 3983 * request the pages of our vnode and see how many pages will need to 3984 * be allocated and reserve that space 3985 */ 3986 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 3987 lb_start = off / lb_size; 3988 lb_end = (off + len + lb_size -1) / lb_size; 3989 num_lb = lb_end - lb_start; 3990 3991 udf_c_type = udf_get_c_type(udf_node); 3992 vpart_num = udf_get_record_vpart(ump, udf_c_type); 3993 3994 /* all requests can fail */ 3995 can_fail = true; 3996 3997 /* fid's (directories) can't fail */ 3998 if (udf_c_type == UDF_C_FIDS) 3999 can_fail = false; 4000 4001 /* system files can't fail */ 4002 if (vp->v_vflag & VV_SYSTEM) 4003 can_fail = false; 4004 4005 error = udf_reserve_space(ump, udf_node, udf_c_type, 4006 vpart_num, num_lb, can_fail); 4007 4008 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", 4009 lb_start, lb_end, num_lb)); 4010 4011 return error; 4012 } 4013 4014 4015 /* 4016 * callback from genfs to update our flags 4017 */ 4018 static void 4019 udf_gop_markupdate(struct vnode *vp, int flags) 4020 { 4021 struct udf_node *udf_node = VTOI(vp); 4022 u_long mask = 0; 4023 4024 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 4025 mask = IN_ACCESS; 4026 } 4027 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 4028 if (vp->v_type == VREG) { 4029 mask |= IN_CHANGE | IN_UPDATE; 4030 } else { 4031 mask |= IN_MODIFY; 4032 } 4033 } 4034 if (mask) { 4035 udf_node->i_flags |= mask; 4036 } 4037 } 4038 4039 4040 static const struct genfs_ops udf_genfsops = { 4041 .gop_size = genfs_size, 4042 .gop_alloc = udf_gop_alloc, 4043 .gop_write = genfs_gop_write_rwmap, 4044 .gop_markupdate = udf_gop_markupdate, 4045 }; 4046 4047 4048 /* --------------------------------------------------------------------- */ 4049 4050 int 4051 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 4052 { 4053 union dscrptr *dscr; 4054 int error; 4055 4056 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 4057 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 4058 4059 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 4060 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 4061 (void) udf_validate_tag_and_crc_sums(dscr); 4062 4063 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 4064 dscr, sector, sector); 4065 4066 free(dscr, M_TEMP); 4067 4068 return error; 4069 } 4070 4071 4072 /* --------------------------------------------------------------------- */ 4073 4074 /* UDF<->unix converters */ 4075 4076 /* --------------------------------------------------------------------- */ 4077 4078 static mode_t 4079 udf_perm_to_unix_mode(uint32_t perm) 4080 { 4081 mode_t mode; 4082 4083 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 4084 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 4085 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 4086 4087 return mode; 4088 } 4089 4090 /* --------------------------------------------------------------------- */ 4091 4092 static uint32_t 4093 unix_mode_to_udf_perm(mode_t mode) 4094 { 4095 uint32_t perm; 4096 4097 perm = ((mode & S_IRWXO) ); 4098 perm |= ((mode & S_IRWXG) << 2); 4099 perm |= ((mode & S_IRWXU) << 4); 4100 perm |= ((mode & S_IWOTH) << 3); 4101 perm |= ((mode & S_IWGRP) << 5); 4102 perm |= ((mode & S_IWUSR) << 7); 4103 4104 return perm; 4105 } 4106 4107 /* --------------------------------------------------------------------- */ 4108 4109 static uint32_t 4110 udf_icb_to_unix_filetype(uint32_t icbftype) 4111 { 4112 switch (icbftype) { 4113 case UDF_ICB_FILETYPE_DIRECTORY : 4114 case UDF_ICB_FILETYPE_STREAMDIR : 4115 return S_IFDIR; 4116 case UDF_ICB_FILETYPE_FIFO : 4117 return S_IFIFO; 4118 case UDF_ICB_FILETYPE_CHARDEVICE : 4119 return S_IFCHR; 4120 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4121 return S_IFBLK; 4122 case UDF_ICB_FILETYPE_RANDOMACCESS : 4123 case UDF_ICB_FILETYPE_REALTIME : 4124 return S_IFREG; 4125 case UDF_ICB_FILETYPE_SYMLINK : 4126 return S_IFLNK; 4127 case UDF_ICB_FILETYPE_SOCKET : 4128 return S_IFSOCK; 4129 } 4130 /* no idea what this is */ 4131 return 0; 4132 } 4133 4134 /* --------------------------------------------------------------------- */ 4135 4136 void 4137 udf_to_unix_name(char *result, int result_len, char *id, int len, 4138 struct charspec *chsp) 4139 { 4140 uint16_t *raw_name, *unix_name; 4141 uint16_t *inchp, ch; 4142 uint8_t *outchp; 4143 const char *osta_id = "OSTA Compressed Unicode"; 4144 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4145 4146 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4147 unix_name = raw_name + 1024; /* split space in half */ 4148 assert(sizeof(char) == sizeof(uint8_t)); 4149 outchp = (uint8_t *) result; 4150 4151 is_osta_typ0 = (chsp->type == 0); 4152 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4153 if (is_osta_typ0) { 4154 /* TODO clean up */ 4155 *raw_name = *unix_name = 0; 4156 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4157 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4158 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4159 /* output UTF8 */ 4160 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4161 ch = *inchp; 4162 nout = wput_utf8(outchp, result_len, ch); 4163 outchp += nout; result_len -= nout; 4164 if (!ch) break; 4165 } 4166 *outchp++ = 0; 4167 } else { 4168 /* assume 8bit char length byte latin-1 */ 4169 assert(*id == 8); 4170 assert(strlen((char *) (id+1)) <= NAME_MAX); 4171 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4172 } 4173 free(raw_name, M_UDFTEMP); 4174 } 4175 4176 /* --------------------------------------------------------------------- */ 4177 4178 void 4179 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4180 struct charspec *chsp) 4181 { 4182 uint16_t *raw_name; 4183 uint16_t *outchp; 4184 const char *inchp; 4185 const char *osta_id = "OSTA Compressed Unicode"; 4186 int udf_chars, is_osta_typ0, bits; 4187 size_t cnt; 4188 4189 /* allocate temporary unicode-16 buffer */ 4190 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4191 4192 /* convert utf8 to unicode-16 */ 4193 *raw_name = 0; 4194 inchp = name; 4195 outchp = raw_name; 4196 bits = 8; 4197 for (cnt = name_len, udf_chars = 0; cnt;) { 4198 *outchp = wget_utf8(&inchp, &cnt); 4199 if (*outchp > 0xff) 4200 bits=16; 4201 outchp++; 4202 udf_chars++; 4203 } 4204 /* null terminate just in case */ 4205 *outchp++ = 0; 4206 4207 is_osta_typ0 = (chsp->type == 0); 4208 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4209 if (is_osta_typ0) { 4210 udf_chars = udf_CompressUnicode(udf_chars, bits, 4211 (unicode_t *) raw_name, 4212 (byte *) result); 4213 } else { 4214 printf("unix to udf name: no CHSP0 ?\n"); 4215 /* XXX assume 8bit char length byte latin-1 */ 4216 *result++ = 8; udf_chars = 1; 4217 strncpy(result, name + 1, name_len); 4218 udf_chars += name_len; 4219 } 4220 *result_len = udf_chars; 4221 free(raw_name, M_UDFTEMP); 4222 } 4223 4224 /* --------------------------------------------------------------------- */ 4225 4226 void 4227 udf_timestamp_to_timespec(struct udf_mount *ump, 4228 struct timestamp *timestamp, 4229 struct timespec *timespec) 4230 { 4231 struct clock_ymdhms ymdhms; 4232 uint32_t usecs, secs, nsecs; 4233 uint16_t tz; 4234 4235 /* fill in ymdhms structure from timestamp */ 4236 memset(&ymdhms, 0, sizeof(ymdhms)); 4237 ymdhms.dt_year = udf_rw16(timestamp->year); 4238 ymdhms.dt_mon = timestamp->month; 4239 ymdhms.dt_day = timestamp->day; 4240 ymdhms.dt_wday = 0; /* ? */ 4241 ymdhms.dt_hour = timestamp->hour; 4242 ymdhms.dt_min = timestamp->minute; 4243 ymdhms.dt_sec = timestamp->second; 4244 4245 secs = clock_ymdhms_to_secs(&ymdhms); 4246 usecs = timestamp->usec + 4247 100*timestamp->hund_usec + 10000*timestamp->centisec; 4248 nsecs = usecs * 1000; 4249 4250 /* 4251 * Calculate the time zone. The timezone is 12 bit signed 2's 4252 * compliment, so we gotta do some extra magic to handle it right. 4253 */ 4254 tz = udf_rw16(timestamp->type_tz); 4255 tz &= 0x0fff; /* only lower 12 bits are significant */ 4256 if (tz & 0x0800) /* sign extention */ 4257 tz |= 0xf000; 4258 4259 /* TODO check timezone conversion */ 4260 /* check if we are specified a timezone to convert */ 4261 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4262 if ((int16_t) tz != -2047) 4263 secs -= (int16_t) tz * 60; 4264 } else { 4265 secs -= ump->mount_args.gmtoff; 4266 } 4267 4268 timespec->tv_sec = secs; 4269 timespec->tv_nsec = nsecs; 4270 } 4271 4272 4273 void 4274 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4275 { 4276 struct clock_ymdhms ymdhms; 4277 uint32_t husec, usec, csec; 4278 4279 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4280 4281 usec = timespec->tv_nsec / 1000; 4282 husec = usec / 100; 4283 usec -= husec * 100; /* only 0-99 in usec */ 4284 csec = husec / 100; /* only 0-99 in csec */ 4285 husec -= csec * 100; /* only 0-99 in husec */ 4286 4287 /* set method 1 for CUT/GMT */ 4288 timestamp->type_tz = udf_rw16((1<<12) + 0); 4289 timestamp->year = udf_rw16(ymdhms.dt_year); 4290 timestamp->month = ymdhms.dt_mon; 4291 timestamp->day = ymdhms.dt_day; 4292 timestamp->hour = ymdhms.dt_hour; 4293 timestamp->minute = ymdhms.dt_min; 4294 timestamp->second = ymdhms.dt_sec; 4295 timestamp->centisec = csec; 4296 timestamp->hund_usec = husec; 4297 timestamp->usec = usec; 4298 } 4299 4300 /* --------------------------------------------------------------------- */ 4301 4302 /* 4303 * Attribute and filetypes converters with get/set pairs 4304 */ 4305 4306 uint32_t 4307 udf_getaccessmode(struct udf_node *udf_node) 4308 { 4309 struct file_entry *fe = udf_node->fe; 4310 struct extfile_entry *efe = udf_node->efe; 4311 uint32_t udf_perm, icbftype; 4312 uint32_t mode, ftype; 4313 uint16_t icbflags; 4314 4315 UDF_LOCK_NODE(udf_node, 0); 4316 if (fe) { 4317 udf_perm = udf_rw32(fe->perm); 4318 icbftype = fe->icbtag.file_type; 4319 icbflags = udf_rw16(fe->icbtag.flags); 4320 } else { 4321 assert(udf_node->efe); 4322 udf_perm = udf_rw32(efe->perm); 4323 icbftype = efe->icbtag.file_type; 4324 icbflags = udf_rw16(efe->icbtag.flags); 4325 } 4326 4327 mode = udf_perm_to_unix_mode(udf_perm); 4328 ftype = udf_icb_to_unix_filetype(icbftype); 4329 4330 /* set suid, sgid, sticky from flags in fe/efe */ 4331 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4332 mode |= S_ISUID; 4333 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4334 mode |= S_ISGID; 4335 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4336 mode |= S_ISVTX; 4337 4338 UDF_UNLOCK_NODE(udf_node, 0); 4339 4340 return mode | ftype; 4341 } 4342 4343 4344 void 4345 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4346 { 4347 struct file_entry *fe = udf_node->fe; 4348 struct extfile_entry *efe = udf_node->efe; 4349 uint32_t udf_perm; 4350 uint16_t icbflags; 4351 4352 UDF_LOCK_NODE(udf_node, 0); 4353 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4354 if (fe) { 4355 icbflags = udf_rw16(fe->icbtag.flags); 4356 } else { 4357 icbflags = udf_rw16(efe->icbtag.flags); 4358 } 4359 4360 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4361 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4362 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4363 if (mode & S_ISUID) 4364 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4365 if (mode & S_ISGID) 4366 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4367 if (mode & S_ISVTX) 4368 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4369 4370 if (fe) { 4371 fe->perm = udf_rw32(udf_perm); 4372 fe->icbtag.flags = udf_rw16(icbflags); 4373 } else { 4374 efe->perm = udf_rw32(udf_perm); 4375 efe->icbtag.flags = udf_rw16(icbflags); 4376 } 4377 4378 UDF_UNLOCK_NODE(udf_node, 0); 4379 } 4380 4381 4382 void 4383 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4384 { 4385 struct udf_mount *ump = udf_node->ump; 4386 struct file_entry *fe = udf_node->fe; 4387 struct extfile_entry *efe = udf_node->efe; 4388 uid_t uid; 4389 gid_t gid; 4390 4391 UDF_LOCK_NODE(udf_node, 0); 4392 if (fe) { 4393 uid = (uid_t)udf_rw32(fe->uid); 4394 gid = (gid_t)udf_rw32(fe->gid); 4395 } else { 4396 assert(udf_node->efe); 4397 uid = (uid_t)udf_rw32(efe->uid); 4398 gid = (gid_t)udf_rw32(efe->gid); 4399 } 4400 4401 /* do the uid/gid translation game */ 4402 if (uid == (uid_t) -1) 4403 uid = ump->mount_args.anon_uid; 4404 if (gid == (gid_t) -1) 4405 gid = ump->mount_args.anon_gid; 4406 4407 *uidp = uid; 4408 *gidp = gid; 4409 4410 UDF_UNLOCK_NODE(udf_node, 0); 4411 } 4412 4413 4414 void 4415 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4416 { 4417 struct udf_mount *ump = udf_node->ump; 4418 struct file_entry *fe = udf_node->fe; 4419 struct extfile_entry *efe = udf_node->efe; 4420 uid_t nobody_uid; 4421 gid_t nobody_gid; 4422 4423 UDF_LOCK_NODE(udf_node, 0); 4424 4425 /* do the uid/gid translation game */ 4426 nobody_uid = ump->mount_args.nobody_uid; 4427 nobody_gid = ump->mount_args.nobody_gid; 4428 if (uid == nobody_uid) 4429 uid = (uid_t) -1; 4430 if (gid == nobody_gid) 4431 gid = (gid_t) -1; 4432 4433 if (fe) { 4434 fe->uid = udf_rw32((uint32_t) uid); 4435 fe->gid = udf_rw32((uint32_t) gid); 4436 } else { 4437 efe->uid = udf_rw32((uint32_t) uid); 4438 efe->gid = udf_rw32((uint32_t) gid); 4439 } 4440 4441 UDF_UNLOCK_NODE(udf_node, 0); 4442 } 4443 4444 4445 /* --------------------------------------------------------------------- */ 4446 4447 4448 int 4449 udf_dirhash_fill(struct udf_node *dir_node) 4450 { 4451 struct vnode *dvp = dir_node->vnode; 4452 struct dirhash *dirh; 4453 struct file_entry *fe = dir_node->fe; 4454 struct extfile_entry *efe = dir_node->efe; 4455 struct fileid_desc *fid; 4456 struct dirent *dirent; 4457 uint64_t file_size, pre_diroffset, diroffset; 4458 uint32_t lb_size; 4459 int error; 4460 4461 /* make sure we have a dirhash to work on */ 4462 dirh = dir_node->dir_hash; 4463 KASSERT(dirh); 4464 KASSERT(dirh->refcnt > 0); 4465 4466 if (dirh->flags & DIRH_BROKEN) 4467 return EIO; 4468 if (dirh->flags & DIRH_COMPLETE) 4469 return 0; 4470 4471 /* make sure we have a clean dirhash to add to */ 4472 dirhash_purge_entries(dirh); 4473 4474 /* get directory filesize */ 4475 if (fe) { 4476 file_size = udf_rw64(fe->inf_len); 4477 } else { 4478 assert(efe); 4479 file_size = udf_rw64(efe->inf_len); 4480 } 4481 4482 /* allocate temporary space for fid */ 4483 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4484 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4485 4486 /* allocate temporary space for dirent */ 4487 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4488 4489 error = 0; 4490 diroffset = 0; 4491 while (diroffset < file_size) { 4492 /* transfer a new fid/dirent */ 4493 pre_diroffset = diroffset; 4494 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4495 if (error) { 4496 /* TODO what to do? continue but not add? */ 4497 dirh->flags |= DIRH_BROKEN; 4498 dirhash_purge_entries(dirh); 4499 break; 4500 } 4501 4502 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4503 /* register deleted extent for reuse */ 4504 dirhash_enter_freed(dirh, pre_diroffset, 4505 udf_fidsize(fid)); 4506 } else { 4507 /* append to the dirhash */ 4508 dirhash_enter(dirh, dirent, pre_diroffset, 4509 udf_fidsize(fid), 0); 4510 } 4511 } 4512 dirh->flags |= DIRH_COMPLETE; 4513 4514 free(fid, M_UDFTEMP); 4515 free(dirent, M_UDFTEMP); 4516 4517 return error; 4518 } 4519 4520 4521 /* --------------------------------------------------------------------- */ 4522 4523 /* 4524 * Directory read and manipulation functions. 4525 * 4526 */ 4527 4528 int 4529 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4530 struct long_ad *icb_loc, int *found) 4531 { 4532 struct udf_node *dir_node = VTOI(vp); 4533 struct dirhash *dirh; 4534 struct dirhash_entry *dirh_ep; 4535 struct fileid_desc *fid; 4536 struct dirent *dirent; 4537 uint64_t diroffset; 4538 uint32_t lb_size; 4539 int hit, error; 4540 4541 /* set default return */ 4542 *found = 0; 4543 4544 /* get our dirhash and make sure its read in */ 4545 dirhash_get(&dir_node->dir_hash); 4546 error = udf_dirhash_fill(dir_node); 4547 if (error) { 4548 dirhash_put(dir_node->dir_hash); 4549 return error; 4550 } 4551 dirh = dir_node->dir_hash; 4552 4553 /* allocate temporary space for fid */ 4554 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4555 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4556 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4557 4558 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4559 namelen, namelen, name)); 4560 4561 /* search our dirhash hits */ 4562 memset(icb_loc, 0, sizeof(*icb_loc)); 4563 dirh_ep = NULL; 4564 for (;;) { 4565 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4566 /* if no hit, abort the search */ 4567 if (!hit) 4568 break; 4569 4570 /* check this hit */ 4571 diroffset = dirh_ep->offset; 4572 4573 /* transfer a new fid/dirent */ 4574 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4575 if (error) 4576 break; 4577 4578 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4579 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4580 4581 /* see if its our entry */ 4582 #ifdef DIAGNOSTIC 4583 if (dirent->d_namlen != namelen) { 4584 printf("WARNING: dirhash_lookup() returned wrong " 4585 "d_namelen: %d and ought to be %d\n", 4586 dirent->d_namlen, namelen); 4587 printf("\tlooked for `%s' and got `%s'\n", 4588 name, dirent->d_name); 4589 } 4590 #endif 4591 if (strncmp(dirent->d_name, name, namelen) == 0) { 4592 *found = 1; 4593 *icb_loc = fid->icb; 4594 break; 4595 } 4596 } 4597 free(fid, M_UDFTEMP); 4598 free(dirent, M_UDFTEMP); 4599 4600 dirhash_put(dir_node->dir_hash); 4601 4602 return error; 4603 } 4604 4605 /* --------------------------------------------------------------------- */ 4606 4607 static int 4608 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4609 struct long_ad *node_icb, struct long_ad *parent_icb, 4610 uint64_t parent_unique_id) 4611 { 4612 struct timespec now; 4613 struct icb_tag *icb; 4614 struct filetimes_extattr_entry *ft_extattr; 4615 uint64_t unique_id; 4616 uint32_t fidsize, lb_num; 4617 uint8_t *bpos; 4618 int crclen, attrlen; 4619 4620 lb_num = udf_rw32(node_icb->loc.lb_num); 4621 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4622 icb = &fe->icbtag; 4623 4624 /* 4625 * Always use strategy type 4 unless on WORM wich we don't support 4626 * (yet). Fill in defaults and set for internal allocation of data. 4627 */ 4628 icb->strat_type = udf_rw16(4); 4629 icb->max_num_entries = udf_rw16(1); 4630 icb->file_type = file_type; /* 8 bit */ 4631 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4632 4633 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4634 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4635 4636 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4637 4638 vfs_timestamp(&now); 4639 udf_timespec_to_timestamp(&now, &fe->atime); 4640 udf_timespec_to_timestamp(&now, &fe->attrtime); 4641 udf_timespec_to_timestamp(&now, &fe->mtime); 4642 4643 udf_set_regid(&fe->imp_id, IMPL_NAME); 4644 udf_add_impl_regid(ump, &fe->imp_id); 4645 4646 unique_id = udf_advance_uniqueid(ump); 4647 fe->unique_id = udf_rw64(unique_id); 4648 fe->l_ea = udf_rw32(0); 4649 4650 /* create extended attribute to record our creation time */ 4651 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4652 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4653 memset(ft_extattr, 0, attrlen); 4654 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4655 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4656 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4657 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4658 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4659 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4660 4661 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4662 (struct extattr_entry *) ft_extattr); 4663 free(ft_extattr, M_UDFTEMP); 4664 4665 /* if its a directory, create '..' */ 4666 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4667 fidsize = 0; 4668 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4669 fidsize = udf_create_parentfid(ump, 4670 (struct fileid_desc *) bpos, parent_icb, 4671 parent_unique_id); 4672 } 4673 4674 /* record fidlength information */ 4675 fe->inf_len = udf_rw64(fidsize); 4676 fe->l_ad = udf_rw32(fidsize); 4677 fe->logblks_rec = udf_rw64(0); /* intern */ 4678 4679 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4680 crclen += udf_rw32(fe->l_ea) + fidsize; 4681 fe->tag.desc_crc_len = udf_rw16(crclen); 4682 4683 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4684 4685 return fidsize; 4686 } 4687 4688 /* --------------------------------------------------------------------- */ 4689 4690 static int 4691 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4692 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4693 uint64_t parent_unique_id) 4694 { 4695 struct timespec now; 4696 struct icb_tag *icb; 4697 uint64_t unique_id; 4698 uint32_t fidsize, lb_num; 4699 uint8_t *bpos; 4700 int crclen; 4701 4702 lb_num = udf_rw32(node_icb->loc.lb_num); 4703 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4704 icb = &efe->icbtag; 4705 4706 /* 4707 * Always use strategy type 4 unless on WORM wich we don't support 4708 * (yet). Fill in defaults and set for internal allocation of data. 4709 */ 4710 icb->strat_type = udf_rw16(4); 4711 icb->max_num_entries = udf_rw16(1); 4712 icb->file_type = file_type; /* 8 bit */ 4713 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4714 4715 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4716 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4717 4718 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4719 4720 vfs_timestamp(&now); 4721 udf_timespec_to_timestamp(&now, &efe->ctime); 4722 udf_timespec_to_timestamp(&now, &efe->atime); 4723 udf_timespec_to_timestamp(&now, &efe->attrtime); 4724 udf_timespec_to_timestamp(&now, &efe->mtime); 4725 4726 udf_set_regid(&efe->imp_id, IMPL_NAME); 4727 udf_add_impl_regid(ump, &efe->imp_id); 4728 4729 unique_id = udf_advance_uniqueid(ump); 4730 efe->unique_id = udf_rw64(unique_id); 4731 efe->l_ea = udf_rw32(0); 4732 4733 /* if its a directory, create '..' */ 4734 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4735 fidsize = 0; 4736 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4737 fidsize = udf_create_parentfid(ump, 4738 (struct fileid_desc *) bpos, parent_icb, 4739 parent_unique_id); 4740 } 4741 4742 /* record fidlength information */ 4743 efe->obj_size = udf_rw64(fidsize); 4744 efe->inf_len = udf_rw64(fidsize); 4745 efe->l_ad = udf_rw32(fidsize); 4746 efe->logblks_rec = udf_rw64(0); /* intern */ 4747 4748 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4749 crclen += udf_rw32(efe->l_ea) + fidsize; 4750 efe->tag.desc_crc_len = udf_rw16(crclen); 4751 4752 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4753 4754 return fidsize; 4755 } 4756 4757 /* --------------------------------------------------------------------- */ 4758 4759 int 4760 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4761 struct udf_node *udf_node, struct componentname *cnp) 4762 { 4763 struct vnode *dvp = dir_node->vnode; 4764 struct dirhash *dirh; 4765 struct dirhash_entry *dirh_ep; 4766 struct file_entry *fe = dir_node->fe; 4767 struct extfile_entry *efe = dir_node->efe; 4768 struct fileid_desc *fid; 4769 struct dirent *dirent; 4770 uint64_t diroffset; 4771 uint32_t lb_size, fidsize; 4772 int found, error; 4773 char const *name = cnp->cn_nameptr; 4774 int namelen = cnp->cn_namelen; 4775 int hit, refcnt; 4776 4777 /* get our dirhash and make sure its read in */ 4778 dirhash_get(&dir_node->dir_hash); 4779 error = udf_dirhash_fill(dir_node); 4780 if (error) { 4781 dirhash_put(dir_node->dir_hash); 4782 return error; 4783 } 4784 dirh = dir_node->dir_hash; 4785 4786 /* get directory filesize */ 4787 if (!fe) { 4788 assert(efe); 4789 } 4790 4791 /* allocate temporary space for fid */ 4792 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4793 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4794 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4795 4796 /* search our dirhash hits */ 4797 found = 0; 4798 dirh_ep = NULL; 4799 for (;;) { 4800 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4801 /* if no hit, abort the search */ 4802 if (!hit) 4803 break; 4804 4805 /* check this hit */ 4806 diroffset = dirh_ep->offset; 4807 4808 /* transfer a new fid/dirent */ 4809 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4810 if (error) 4811 break; 4812 4813 /* see if its our entry */ 4814 KASSERT(dirent->d_namlen == namelen); 4815 if (strncmp(dirent->d_name, name, namelen) == 0) { 4816 found = 1; 4817 break; 4818 } 4819 } 4820 4821 if (!found) 4822 error = ENOENT; 4823 if (error) 4824 goto error_out; 4825 4826 /* mark deleted */ 4827 fid->file_char |= UDF_FILE_CHAR_DEL; 4828 #ifdef UDF_COMPLETE_DELETE 4829 memset(&fid->icb, 0, sizeof(fid->icb)); 4830 #endif 4831 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4832 4833 /* get size of fid and compensate for the read_fid_stream advance */ 4834 fidsize = udf_fidsize(fid); 4835 diroffset -= fidsize; 4836 4837 /* write out */ 4838 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4839 fid, fidsize, diroffset, 4840 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4841 FSCRED, NULL, NULL); 4842 if (error) 4843 goto error_out; 4844 4845 /* get reference count of attached node */ 4846 if (udf_node->fe) { 4847 refcnt = udf_rw16(udf_node->fe->link_cnt); 4848 } else { 4849 KASSERT(udf_node->efe); 4850 refcnt = udf_rw16(udf_node->efe->link_cnt); 4851 } 4852 #ifdef UDF_COMPLETE_DELETE 4853 /* substract reference counter in attached node */ 4854 refcnt -= 1; 4855 if (udf_node->fe) { 4856 udf_node->fe->link_cnt = udf_rw16(refcnt); 4857 } else { 4858 udf_node->efe->link_cnt = udf_rw16(refcnt); 4859 } 4860 4861 /* prevent writeout when refcnt == 0 */ 4862 if (refcnt == 0) 4863 udf_node->i_flags |= IN_DELETED; 4864 4865 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4866 int drefcnt; 4867 4868 /* substract reference counter in directory node */ 4869 /* note subtract 2 (?) for its was also backreferenced */ 4870 if (dir_node->fe) { 4871 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4872 drefcnt -= 1; 4873 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4874 } else { 4875 KASSERT(dir_node->efe); 4876 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4877 drefcnt -= 1; 4878 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4879 } 4880 } 4881 4882 udf_node->i_flags |= IN_MODIFIED; 4883 dir_node->i_flags |= IN_MODIFIED; 4884 #endif 4885 /* if it is/was a hardlink adjust the file count */ 4886 if (refcnt > 0) 4887 udf_adjust_filecount(udf_node, -1); 4888 4889 /* remove from the dirhash */ 4890 dirhash_remove(dirh, dirent, diroffset, 4891 udf_fidsize(fid)); 4892 4893 error_out: 4894 free(fid, M_UDFTEMP); 4895 free(dirent, M_UDFTEMP); 4896 4897 dirhash_put(dir_node->dir_hash); 4898 4899 return error; 4900 } 4901 4902 /* --------------------------------------------------------------------- */ 4903 4904 int 4905 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, 4906 struct udf_node *new_parent_node) 4907 { 4908 struct vnode *dvp = dir_node->vnode; 4909 struct dirhash *dirh; 4910 struct dirhash_entry *dirh_ep; 4911 struct file_entry *fe; 4912 struct extfile_entry *efe; 4913 struct fileid_desc *fid; 4914 struct dirent *dirent; 4915 uint64_t diroffset; 4916 uint64_t new_parent_unique_id; 4917 uint32_t lb_size, fidsize; 4918 int found, error; 4919 char const *name = ".."; 4920 int namelen = 2; 4921 int hit; 4922 4923 /* get our dirhash and make sure its read in */ 4924 dirhash_get(&dir_node->dir_hash); 4925 error = udf_dirhash_fill(dir_node); 4926 if (error) { 4927 dirhash_put(dir_node->dir_hash); 4928 return error; 4929 } 4930 dirh = dir_node->dir_hash; 4931 4932 /* get new parent's unique ID */ 4933 fe = new_parent_node->fe; 4934 efe = new_parent_node->efe; 4935 if (fe) { 4936 new_parent_unique_id = udf_rw64(fe->unique_id); 4937 } else { 4938 assert(efe); 4939 new_parent_unique_id = udf_rw64(efe->unique_id); 4940 } 4941 4942 /* get directory filesize */ 4943 fe = dir_node->fe; 4944 efe = dir_node->efe; 4945 if (!fe) { 4946 assert(efe); 4947 } 4948 4949 /* allocate temporary space for fid */ 4950 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4951 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4952 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4953 4954 /* 4955 * NOTE the standard does not dictate the FID entry '..' should be 4956 * first, though in practice it will most likely be. 4957 */ 4958 4959 /* search our dirhash hits */ 4960 found = 0; 4961 dirh_ep = NULL; 4962 for (;;) { 4963 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4964 /* if no hit, abort the search */ 4965 if (!hit) 4966 break; 4967 4968 /* check this hit */ 4969 diroffset = dirh_ep->offset; 4970 4971 /* transfer a new fid/dirent */ 4972 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4973 if (error) 4974 break; 4975 4976 /* see if its our entry */ 4977 KASSERT(dirent->d_namlen == namelen); 4978 if (strncmp(dirent->d_name, name, namelen) == 0) { 4979 found = 1; 4980 break; 4981 } 4982 } 4983 4984 if (!found) 4985 error = ENOENT; 4986 if (error) 4987 goto error_out; 4988 4989 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ 4990 fid->icb = new_parent_node->write_loc; 4991 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); 4992 4993 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4994 4995 /* get size of fid and compensate for the read_fid_stream advance */ 4996 fidsize = udf_fidsize(fid); 4997 diroffset -= fidsize; 4998 4999 /* write out */ 5000 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 5001 fid, fidsize, diroffset, 5002 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5003 FSCRED, NULL, NULL); 5004 5005 /* nothing to be done in the dirhash */ 5006 5007 error_out: 5008 free(fid, M_UDFTEMP); 5009 free(dirent, M_UDFTEMP); 5010 5011 dirhash_put(dir_node->dir_hash); 5012 5013 return error; 5014 } 5015 5016 /* --------------------------------------------------------------------- */ 5017 5018 /* 5019 * We are not allowed to split the fid tag itself over an logical block so 5020 * check the space remaining in the logical block. 5021 * 5022 * We try to select the smallest candidate for recycling or when none is 5023 * found, append a new one at the end of the directory. 5024 */ 5025 5026 int 5027 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 5028 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 5029 { 5030 struct vnode *dvp = dir_node->vnode; 5031 struct dirhash *dirh; 5032 struct dirhash_entry *dirh_ep; 5033 struct fileid_desc *fid; 5034 struct icb_tag *icbtag; 5035 struct charspec osta_charspec; 5036 struct dirent dirent; 5037 uint64_t unique_id, dir_size; 5038 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 5039 uint32_t chosen_size, chosen_size_diff; 5040 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 5041 int file_char, refcnt, icbflags, addr_type, hit, error; 5042 5043 /* get our dirhash and make sure its read in */ 5044 dirhash_get(&dir_node->dir_hash); 5045 error = udf_dirhash_fill(dir_node); 5046 if (error) { 5047 dirhash_put(dir_node->dir_hash); 5048 return error; 5049 } 5050 dirh = dir_node->dir_hash; 5051 5052 /* get info */ 5053 lb_size = udf_rw32(ump->logical_vol->lb_size); 5054 udf_osta_charset(&osta_charspec); 5055 5056 if (dir_node->fe) { 5057 dir_size = udf_rw64(dir_node->fe->inf_len); 5058 icbtag = &dir_node->fe->icbtag; 5059 } else { 5060 dir_size = udf_rw64(dir_node->efe->inf_len); 5061 icbtag = &dir_node->efe->icbtag; 5062 } 5063 5064 icbflags = udf_rw16(icbtag->flags); 5065 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5066 5067 if (udf_node->fe) { 5068 unique_id = udf_rw64(udf_node->fe->unique_id); 5069 refcnt = udf_rw16(udf_node->fe->link_cnt); 5070 } else { 5071 unique_id = udf_rw64(udf_node->efe->unique_id); 5072 refcnt = udf_rw16(udf_node->efe->link_cnt); 5073 } 5074 5075 if (refcnt > 0) { 5076 unique_id = udf_advance_uniqueid(ump); 5077 udf_adjust_filecount(udf_node, 1); 5078 } 5079 5080 /* determine file characteristics */ 5081 file_char = 0; /* visible non deleted file and not stream metadata */ 5082 if (vap->va_type == VDIR) 5083 file_char = UDF_FILE_CHAR_DIR; 5084 5085 /* malloc scrap buffer */ 5086 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 5087 5088 /* calculate _minimum_ fid size */ 5089 unix_to_udf_name((char *) fid->data, &fid->l_fi, 5090 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5091 fidsize = UDF_FID_SIZE + fid->l_fi; 5092 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 5093 5094 /* find position that will fit the FID */ 5095 chosen_fid_pos = dir_size; 5096 chosen_size = 0; 5097 chosen_size_diff = UINT_MAX; 5098 5099 /* shut up gcc */ 5100 dirent.d_namlen = 0; 5101 5102 /* search our dirhash hits */ 5103 error = 0; 5104 dirh_ep = NULL; 5105 for (;;) { 5106 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 5107 /* if no hit, abort the search */ 5108 if (!hit) 5109 break; 5110 5111 /* check this hit for size */ 5112 this_fidsize = dirh_ep->entry_size; 5113 5114 /* check this hit */ 5115 fid_pos = dirh_ep->offset; 5116 end_fid_pos = fid_pos + this_fidsize; 5117 size_diff = this_fidsize - fidsize; 5118 lb_rest = lb_size - (end_fid_pos % lb_size); 5119 5120 #ifndef UDF_COMPLETE_DELETE 5121 /* transfer a new fid/dirent */ 5122 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 5123 if (error) 5124 goto error_out; 5125 5126 /* only reuse entries that are wiped */ 5127 /* check if the len + loc are marked zero */ 5128 if (udf_rw32(fid->icb.len) != 0) 5129 continue; 5130 if (udf_rw32(fid->icb.loc.lb_num) != 0) 5131 continue; 5132 if (udf_rw16(fid->icb.loc.part_num) != 0) 5133 continue; 5134 #endif /* UDF_COMPLETE_DELETE */ 5135 5136 /* select if not splitting the tag and its smaller */ 5137 if ((size_diff >= 0) && 5138 (size_diff < chosen_size_diff) && 5139 (lb_rest >= sizeof(struct desc_tag))) 5140 { 5141 /* UDF 2.3.4.2+3 specifies rules for iu size */ 5142 if ((size_diff == 0) || (size_diff >= 32)) { 5143 chosen_fid_pos = fid_pos; 5144 chosen_size = this_fidsize; 5145 chosen_size_diff = size_diff; 5146 } 5147 } 5148 } 5149 5150 5151 /* extend directory if no other candidate found */ 5152 if (chosen_size == 0) { 5153 chosen_fid_pos = dir_size; 5154 chosen_size = fidsize; 5155 chosen_size_diff = 0; 5156 5157 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 5158 if (addr_type == UDF_ICB_INTERN_ALLOC) { 5159 /* pre-grow directory to see if we're to switch */ 5160 udf_grow_node(dir_node, dir_size + chosen_size); 5161 5162 icbflags = udf_rw16(icbtag->flags); 5163 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5164 } 5165 5166 /* make sure the next fid desc_tag won't be splitted */ 5167 if (addr_type != UDF_ICB_INTERN_ALLOC) { 5168 end_fid_pos = chosen_fid_pos + chosen_size; 5169 lb_rest = lb_size - (end_fid_pos % lb_size); 5170 5171 /* pad with implementation use regid if needed */ 5172 if (lb_rest < sizeof(struct desc_tag)) 5173 chosen_size += 32; 5174 } 5175 } 5176 chosen_size_diff = chosen_size - fidsize; 5177 5178 /* populate the FID */ 5179 memset(fid, 0, lb_size); 5180 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 5181 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 5182 fid->file_char = file_char; 5183 fid->icb = udf_node->loc; 5184 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 5185 fid->l_iu = udf_rw16(0); 5186 5187 if (chosen_size > fidsize) { 5188 /* insert implementation-use regid to space it correctly */ 5189 fid->l_iu = udf_rw16(chosen_size_diff); 5190 5191 /* set implementation use */ 5192 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 5193 udf_add_impl_regid(ump, (struct regid *) fid->data); 5194 } 5195 5196 /* fill in name */ 5197 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 5198 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5199 5200 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 5201 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5202 5203 /* writeout FID/update parent directory */ 5204 error = vn_rdwr(UIO_WRITE, dvp, 5205 fid, chosen_size, chosen_fid_pos, 5206 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5207 FSCRED, NULL, NULL); 5208 5209 if (error) 5210 goto error_out; 5211 5212 /* add reference counter in attached node */ 5213 if (udf_node->fe) { 5214 refcnt = udf_rw16(udf_node->fe->link_cnt); 5215 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5216 } else { 5217 KASSERT(udf_node->efe); 5218 refcnt = udf_rw16(udf_node->efe->link_cnt); 5219 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5220 } 5221 5222 /* mark not deleted if it was... just in case, but do warn */ 5223 if (udf_node->i_flags & IN_DELETED) { 5224 printf("udf: warning, marking a file undeleted\n"); 5225 udf_node->i_flags &= ~IN_DELETED; 5226 } 5227 5228 if (file_char & UDF_FILE_CHAR_DIR) { 5229 /* add reference counter in directory node for '..' */ 5230 if (dir_node->fe) { 5231 refcnt = udf_rw16(dir_node->fe->link_cnt); 5232 refcnt++; 5233 dir_node->fe->link_cnt = udf_rw16(refcnt); 5234 } else { 5235 KASSERT(dir_node->efe); 5236 refcnt = udf_rw16(dir_node->efe->link_cnt); 5237 refcnt++; 5238 dir_node->efe->link_cnt = udf_rw16(refcnt); 5239 } 5240 } 5241 5242 /* append to the dirhash */ 5243 /* NOTE do not use dirent anymore or it won't match later! */ 5244 udf_to_unix_name(dirent.d_name, NAME_MAX, 5245 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec); 5246 dirent.d_namlen = strlen(dirent.d_name); 5247 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5248 udf_fidsize(fid), 1); 5249 5250 /* note updates */ 5251 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5252 /* VN_KNOTE(udf_node, ...) */ 5253 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5254 5255 error_out: 5256 free(fid, M_TEMP); 5257 5258 dirhash_put(dir_node->dir_hash); 5259 5260 return error; 5261 } 5262 5263 /* --------------------------------------------------------------------- */ 5264 5265 /* 5266 * Each node can have an attached streamdir node though not recursively. These 5267 * are otherwise known as named substreams/named extended attributes that have 5268 * no size limitations. 5269 * 5270 * `Normal' extended attributes are indicated with a number and are recorded 5271 * in either the fe/efe descriptor itself for small descriptors or recorded in 5272 * the attached extended attribute file. Since these spaces can get 5273 * fragmented, care ought to be taken. 5274 * 5275 * Since the size of the space reserved for allocation descriptors is limited, 5276 * there is a mechanim provided for extending this space; this is done by a 5277 * special extent to allow schrinking of the allocations without breaking the 5278 * linkage to the allocation extent descriptor. 5279 */ 5280 5281 int 5282 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5283 struct udf_node **udf_noderes) 5284 { 5285 union dscrptr *dscr; 5286 struct udf_node *udf_node; 5287 struct vnode *nvp; 5288 struct long_ad icb_loc, last_fe_icb_loc; 5289 uint64_t file_size; 5290 uint32_t lb_size, sector, dummy; 5291 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5292 int slot, eof, error; 5293 5294 DPRINTF(NODE, ("udf_get_node called\n")); 5295 *udf_noderes = udf_node = NULL; 5296 5297 /* lock to disallow simultanious creation of same udf_node */ 5298 mutex_enter(&ump->get_node_lock); 5299 5300 DPRINTF(NODE, ("\tlookup in hash table\n")); 5301 /* lookup in hash table */ 5302 assert(ump); 5303 assert(node_icb_loc); 5304 udf_node = udf_node_lookup(ump, node_icb_loc); 5305 if (udf_node) { 5306 DPRINTF(NODE, ("\tgot it from the hash!\n")); 5307 /* vnode is returned locked */ 5308 *udf_noderes = udf_node; 5309 mutex_exit(&ump->get_node_lock); 5310 return 0; 5311 } 5312 5313 /* garbage check: translate udf_node_icb_loc to sectornr */ 5314 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); 5315 if (error) { 5316 DPRINTF(NODE, ("\tcan't translate icb address!\n")); 5317 /* no use, this will fail anyway */ 5318 mutex_exit(&ump->get_node_lock); 5319 return EINVAL; 5320 } 5321 5322 /* build udf_node (do initialise!) */ 5323 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5324 memset(udf_node, 0, sizeof(struct udf_node)); 5325 5326 DPRINTF(NODE, ("\tget new vnode\n")); 5327 /* give it a vnode */ 5328 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, NULL, &nvp); 5329 if (error) { 5330 pool_put(&udf_node_pool, udf_node); 5331 mutex_exit(&ump->get_node_lock); 5332 return error; 5333 } 5334 5335 /* always return locked vnode */ 5336 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { 5337 /* recycle vnode and unlock; simultanious will fail too */ 5338 ungetnewvnode(nvp); 5339 mutex_exit(&ump->get_node_lock); 5340 return error; 5341 } 5342 5343 /* initialise crosslinks, note location of fe/efe for hashing */ 5344 udf_node->ump = ump; 5345 udf_node->vnode = nvp; 5346 nvp->v_data = udf_node; 5347 udf_node->loc = *node_icb_loc; 5348 udf_node->lockf = 0; 5349 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5350 cv_init(&udf_node->node_lock, "udf_nlk"); 5351 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */ 5352 udf_node->outstanding_bufs = 0; 5353 udf_node->outstanding_nodedscr = 0; 5354 udf_node->uncommitted_lbs = 0; 5355 5356 /* check if we're fetching the root */ 5357 if (ump->fileset_desc) 5358 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5359 sizeof(struct long_ad)) == 0) 5360 nvp->v_vflag |= VV_ROOT; 5361 5362 /* insert into the hash lookup */ 5363 udf_register_node(udf_node); 5364 5365 /* safe to unlock, the entry is in the hash table, vnode is locked */ 5366 mutex_exit(&ump->get_node_lock); 5367 5368 icb_loc = *node_icb_loc; 5369 needs_indirect = 0; 5370 strat4096 = 0; 5371 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5372 file_size = 0; 5373 lb_size = udf_rw32(ump->logical_vol->lb_size); 5374 5375 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5376 do { 5377 /* try to read in fe/efe */ 5378 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5379 5380 /* blank sector marks end of sequence, check this */ 5381 if ((dscr == NULL) && (!strat4096)) 5382 error = ENOENT; 5383 5384 /* break if read error or blank sector */ 5385 if (error || (dscr == NULL)) 5386 break; 5387 5388 /* process descriptor based on the descriptor type */ 5389 dscr_type = udf_rw16(dscr->tag.id); 5390 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5391 5392 /* if dealing with an indirect entry, follow the link */ 5393 if (dscr_type == TAGID_INDIRECTENTRY) { 5394 needs_indirect = 0; 5395 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5396 icb_loc = dscr->inde.indirect_icb; 5397 continue; 5398 } 5399 5400 /* only file entries and extended file entries allowed here */ 5401 if ((dscr_type != TAGID_FENTRY) && 5402 (dscr_type != TAGID_EXTFENTRY)) { 5403 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5404 error = ENOENT; 5405 break; 5406 } 5407 5408 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5409 5410 /* choose this one */ 5411 last_fe_icb_loc = icb_loc; 5412 5413 /* record and process/update (ext)fentry */ 5414 if (dscr_type == TAGID_FENTRY) { 5415 if (udf_node->fe) 5416 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5417 udf_node->fe); 5418 udf_node->fe = &dscr->fe; 5419 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5420 udf_file_type = udf_node->fe->icbtag.file_type; 5421 file_size = udf_rw64(udf_node->fe->inf_len); 5422 } else { 5423 if (udf_node->efe) 5424 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5425 udf_node->efe); 5426 udf_node->efe = &dscr->efe; 5427 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5428 udf_file_type = udf_node->efe->icbtag.file_type; 5429 file_size = udf_rw64(udf_node->efe->inf_len); 5430 } 5431 5432 /* check recording strategy (structure) */ 5433 5434 /* 5435 * Strategy 4096 is a daisy linked chain terminating with an 5436 * unrecorded sector or a TERM descriptor. The next 5437 * descriptor is to be found in the sector that follows the 5438 * current sector. 5439 */ 5440 if (strat == 4096) { 5441 strat4096 = 1; 5442 needs_indirect = 1; 5443 5444 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5445 } 5446 5447 /* 5448 * Strategy 4 is the normal strategy and terminates, but if 5449 * we're in strategy 4096, we can't have strategy 4 mixed in 5450 */ 5451 5452 if (strat == 4) { 5453 if (strat4096) { 5454 error = EINVAL; 5455 break; 5456 } 5457 break; /* done */ 5458 } 5459 } while (!error); 5460 5461 /* first round of cleanup code */ 5462 if (error) { 5463 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5464 /* recycle udf_node */ 5465 udf_dispose_node(udf_node); 5466 5467 VOP_UNLOCK(nvp); 5468 nvp->v_data = NULL; 5469 ungetnewvnode(nvp); 5470 5471 return EINVAL; /* error code ok? */ 5472 } 5473 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5474 5475 /* assert no references to dscr anymore beyong this point */ 5476 assert((udf_node->fe) || (udf_node->efe)); 5477 dscr = NULL; 5478 5479 /* 5480 * Remember where to record an updated version of the descriptor. If 5481 * there is a sequence of indirect entries, icb_loc will have been 5482 * updated. Its the write disipline to allocate new space and to make 5483 * sure the chain is maintained. 5484 * 5485 * `needs_indirect' flags if the next location is to be filled with 5486 * with an indirect entry. 5487 */ 5488 udf_node->write_loc = icb_loc; 5489 udf_node->needs_indirect = needs_indirect; 5490 5491 /* 5492 * Go trough all allocations extents of this descriptor and when 5493 * encountering a redirect read in the allocation extension. These are 5494 * daisy-chained. 5495 */ 5496 UDF_LOCK_NODE(udf_node, 0); 5497 udf_node->num_extensions = 0; 5498 5499 error = 0; 5500 slot = 0; 5501 for (;;) { 5502 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5503 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5504 "lb_num = %d, part = %d\n", slot, eof, 5505 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5506 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5507 udf_rw32(icb_loc.loc.lb_num), 5508 udf_rw16(icb_loc.loc.part_num))); 5509 if (eof) 5510 break; 5511 slot++; 5512 5513 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5514 continue; 5515 5516 DPRINTF(NODE, ("\tgot redirect extent\n")); 5517 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5518 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5519 "too many allocation extensions on " 5520 "udf_node\n")); 5521 error = EINVAL; 5522 break; 5523 } 5524 5525 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5526 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5527 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5528 "extension size in udf_node\n")); 5529 error = EINVAL; 5530 break; 5531 } 5532 5533 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5534 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5535 /* load in allocation extent */ 5536 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5537 if (error || (dscr == NULL)) 5538 break; 5539 5540 /* process read-in descriptor */ 5541 dscr_type = udf_rw16(dscr->tag.id); 5542 5543 if (dscr_type != TAGID_ALLOCEXTENT) { 5544 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5545 error = ENOENT; 5546 break; 5547 } 5548 5549 DPRINTF(NODE, ("\trecording redirect extent\n")); 5550 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5551 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5552 5553 udf_node->num_extensions++; 5554 5555 } /* while */ 5556 UDF_UNLOCK_NODE(udf_node, 0); 5557 5558 /* second round of cleanup code */ 5559 if (error) { 5560 /* recycle udf_node */ 5561 udf_dispose_node(udf_node); 5562 5563 VOP_UNLOCK(nvp); 5564 nvp->v_data = NULL; 5565 ungetnewvnode(nvp); 5566 5567 return EINVAL; /* error code ok? */ 5568 } 5569 5570 DPRINTF(NODE, ("\tnode read in fine\n")); 5571 5572 /* 5573 * Translate UDF filetypes into vnode types. 5574 * 5575 * Systemfiles like the meta main and mirror files are not treated as 5576 * normal files, so we type them as having no type. UDF dictates that 5577 * they are not allowed to be visible. 5578 */ 5579 5580 switch (udf_file_type) { 5581 case UDF_ICB_FILETYPE_DIRECTORY : 5582 case UDF_ICB_FILETYPE_STREAMDIR : 5583 nvp->v_type = VDIR; 5584 break; 5585 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5586 nvp->v_type = VBLK; 5587 break; 5588 case UDF_ICB_FILETYPE_CHARDEVICE : 5589 nvp->v_type = VCHR; 5590 break; 5591 case UDF_ICB_FILETYPE_SOCKET : 5592 nvp->v_type = VSOCK; 5593 break; 5594 case UDF_ICB_FILETYPE_FIFO : 5595 nvp->v_type = VFIFO; 5596 break; 5597 case UDF_ICB_FILETYPE_SYMLINK : 5598 nvp->v_type = VLNK; 5599 break; 5600 case UDF_ICB_FILETYPE_VAT : 5601 case UDF_ICB_FILETYPE_META_MAIN : 5602 case UDF_ICB_FILETYPE_META_MIRROR : 5603 nvp->v_type = VNON; 5604 break; 5605 case UDF_ICB_FILETYPE_RANDOMACCESS : 5606 case UDF_ICB_FILETYPE_REALTIME : 5607 nvp->v_type = VREG; 5608 break; 5609 default: 5610 /* YIKES, something else */ 5611 nvp->v_type = VNON; 5612 } 5613 5614 /* TODO specfs, fifofs etc etc. vnops setting */ 5615 5616 /* don't forget to set vnode's v_size */ 5617 uvm_vnp_setsize(nvp, file_size); 5618 5619 /* TODO ext attr and streamdir udf_nodes */ 5620 5621 *udf_noderes = udf_node; 5622 5623 return 0; 5624 } 5625 5626 /* --------------------------------------------------------------------- */ 5627 5628 int 5629 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5630 { 5631 union dscrptr *dscr; 5632 struct long_ad *loc; 5633 int extnr, error; 5634 5635 DPRINTF(NODE, ("udf_writeout_node called\n")); 5636 5637 KASSERT(udf_node->outstanding_bufs == 0); 5638 KASSERT(udf_node->outstanding_nodedscr == 0); 5639 5640 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5641 5642 if (udf_node->i_flags & IN_DELETED) { 5643 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5644 udf_cleanup_reservation(udf_node); 5645 return 0; 5646 } 5647 5648 /* lock node; unlocked in callback */ 5649 UDF_LOCK_NODE(udf_node, 0); 5650 5651 /* remove pending reservations, we're written out */ 5652 udf_cleanup_reservation(udf_node); 5653 5654 /* at least one descriptor writeout */ 5655 udf_node->outstanding_nodedscr = 1; 5656 5657 /* we're going to write out the descriptor so clear the flags */ 5658 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5659 5660 /* if we were rebuild, write out the allocation extents */ 5661 if (udf_node->i_flags & IN_NODE_REBUILD) { 5662 /* mark outstanding node descriptors and issue them */ 5663 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5664 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5665 loc = &udf_node->ext_loc[extnr]; 5666 dscr = (union dscrptr *) udf_node->ext[extnr]; 5667 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5668 if (error) 5669 return error; 5670 } 5671 /* mark allocation extents written out */ 5672 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5673 } 5674 5675 if (udf_node->fe) { 5676 KASSERT(udf_node->efe == NULL); 5677 dscr = (union dscrptr *) udf_node->fe; 5678 } else { 5679 KASSERT(udf_node->efe); 5680 KASSERT(udf_node->fe == NULL); 5681 dscr = (union dscrptr *) udf_node->efe; 5682 } 5683 KASSERT(dscr); 5684 5685 loc = &udf_node->write_loc; 5686 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5687 5688 return error; 5689 } 5690 5691 /* --------------------------------------------------------------------- */ 5692 5693 int 5694 udf_dispose_node(struct udf_node *udf_node) 5695 { 5696 struct vnode *vp; 5697 int extnr; 5698 5699 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5700 if (!udf_node) { 5701 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5702 return 0; 5703 } 5704 5705 vp = udf_node->vnode; 5706 #ifdef DIAGNOSTIC 5707 if (vp->v_numoutput) 5708 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5709 "v_numoutput = %d", udf_node, vp->v_numoutput); 5710 #endif 5711 5712 udf_cleanup_reservation(udf_node); 5713 5714 /* TODO extended attributes and streamdir */ 5715 5716 /* remove dirhash if present */ 5717 dirhash_purge(&udf_node->dir_hash); 5718 5719 /* remove from our hash lookup table */ 5720 udf_deregister_node(udf_node); 5721 5722 /* destroy our lock */ 5723 mutex_destroy(&udf_node->node_mutex); 5724 cv_destroy(&udf_node->node_lock); 5725 5726 /* dissociate our udf_node from the vnode */ 5727 genfs_node_destroy(udf_node->vnode); 5728 vp->v_data = NULL; 5729 5730 /* free associated memory and the node itself */ 5731 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5732 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5733 udf_node->ext[extnr]); 5734 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5735 } 5736 5737 if (udf_node->fe) 5738 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5739 udf_node->fe); 5740 if (udf_node->efe) 5741 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5742 udf_node->efe); 5743 5744 udf_node->fe = (void *) 0xdeadaaaa; 5745 udf_node->efe = (void *) 0xdeadbbbb; 5746 udf_node->ump = (void *) 0xdeadbeef; 5747 pool_put(&udf_node_pool, udf_node); 5748 5749 return 0; 5750 } 5751 5752 5753 5754 /* 5755 * create a new node using the specified vnodeops, vap and cnp but with the 5756 * udf_file_type. This allows special files to be created. Use with care. 5757 */ 5758 5759 static int 5760 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type, 5761 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp) 5762 { 5763 union dscrptr *dscr; 5764 struct udf_node *dir_node = VTOI(dvp); 5765 struct udf_node *udf_node; 5766 struct udf_mount *ump = dir_node->ump; 5767 struct vnode *nvp; 5768 struct long_ad node_icb_loc; 5769 uint64_t parent_unique_id; 5770 uint64_t lmapping; 5771 uint32_t lb_size, lb_num; 5772 uint16_t vpart_num; 5773 uid_t uid; 5774 gid_t gid, parent_gid; 5775 int fid_size, error; 5776 5777 lb_size = udf_rw32(ump->logical_vol->lb_size); 5778 *vpp = NULL; 5779 5780 /* allocate vnode */ 5781 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, NULL, &nvp); 5782 if (error) 5783 return error; 5784 5785 /* lock node */ 5786 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY); 5787 if (error) 5788 goto error_out_unget; 5789 5790 /* reserve space for one logical block */ 5791 vpart_num = ump->node_part; 5792 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 5793 vpart_num, 1, /* can_fail */ true); 5794 if (error) 5795 goto error_out_unlock; 5796 5797 /* allocate node */ 5798 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 5799 vpart_num, 1, &lmapping); 5800 if (error) 5801 goto error_out_unreserve; 5802 lb_num = lmapping; 5803 5804 /* initialise pointer to location */ 5805 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5806 node_icb_loc.len = udf_rw32(lb_size); 5807 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5808 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5809 5810 /* build udf_node (do initialise!) */ 5811 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5812 memset(udf_node, 0, sizeof(struct udf_node)); 5813 5814 /* initialise crosslinks, note location of fe/efe for hashing */ 5815 /* bugalert: synchronise with udf_get_node() */ 5816 udf_node->ump = ump; 5817 udf_node->vnode = nvp; 5818 nvp->v_data = udf_node; 5819 udf_node->loc = node_icb_loc; 5820 udf_node->write_loc = node_icb_loc; 5821 udf_node->lockf = 0; 5822 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5823 cv_init(&udf_node->node_lock, "udf_nlk"); 5824 udf_node->outstanding_bufs = 0; 5825 udf_node->outstanding_nodedscr = 0; 5826 udf_node->uncommitted_lbs = 0; 5827 5828 /* initialise genfs */ 5829 genfs_node_init(nvp, &udf_genfsops); 5830 5831 /* insert into the hash lookup */ 5832 udf_register_node(udf_node); 5833 5834 /* get parent's unique ID for refering '..' if its a directory */ 5835 if (dir_node->fe) { 5836 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5837 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5838 } else { 5839 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5840 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5841 } 5842 5843 /* get descriptor */ 5844 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5845 5846 /* choose a fe or an efe for it */ 5847 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5848 udf_node->fe = &dscr->fe; 5849 fid_size = udf_create_new_fe(ump, udf_node->fe, 5850 udf_file_type, &udf_node->loc, 5851 &dir_node->loc, parent_unique_id); 5852 /* TODO add extended attribute for creation time */ 5853 } else { 5854 udf_node->efe = &dscr->efe; 5855 fid_size = udf_create_new_efe(ump, udf_node->efe, 5856 udf_file_type, &udf_node->loc, 5857 &dir_node->loc, parent_unique_id); 5858 } 5859 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5860 5861 /* update vnode's size and type */ 5862 nvp->v_type = vap->va_type; 5863 uvm_vnp_setsize(nvp, fid_size); 5864 5865 /* set access mode */ 5866 udf_setaccessmode(udf_node, vap->va_mode); 5867 5868 /* set ownership */ 5869 uid = kauth_cred_geteuid(cnp->cn_cred); 5870 gid = parent_gid; 5871 udf_setownership(udf_node, uid, gid); 5872 5873 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5874 if (error) { 5875 /* free disc allocation for node */ 5876 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5877 5878 /* recycle udf_node */ 5879 udf_dispose_node(udf_node); 5880 vput(nvp); 5881 5882 *vpp = NULL; 5883 return error; 5884 } 5885 5886 /* adjust file count */ 5887 udf_adjust_filecount(udf_node, 1); 5888 5889 /* return result */ 5890 *vpp = nvp; 5891 5892 return 0; 5893 5894 error_out_unreserve: 5895 udf_do_unreserve_space(ump, NULL, vpart_num, 1); 5896 5897 error_out_unlock: 5898 VOP_UNLOCK(nvp); 5899 5900 error_out_unget: 5901 nvp->v_data = NULL; 5902 ungetnewvnode(nvp); 5903 5904 return error; 5905 } 5906 5907 5908 int 5909 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5910 struct componentname *cnp) 5911 { 5912 int (**vnodeops)(void *); 5913 int udf_file_type; 5914 5915 DPRINTF(NODE, ("udf_create_node called\n")); 5916 5917 /* what type are we creating ? */ 5918 vnodeops = udf_vnodeop_p; 5919 /* start with a default */ 5920 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5921 5922 *vpp = NULL; 5923 5924 switch (vap->va_type) { 5925 case VREG : 5926 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5927 break; 5928 case VDIR : 5929 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5930 break; 5931 case VLNK : 5932 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5933 break; 5934 case VBLK : 5935 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5936 /* specfs */ 5937 return ENOTSUP; 5938 break; 5939 case VCHR : 5940 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5941 /* specfs */ 5942 return ENOTSUP; 5943 break; 5944 case VFIFO : 5945 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5946 /* specfs */ 5947 return ENOTSUP; 5948 break; 5949 case VSOCK : 5950 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5951 /* specfs */ 5952 return ENOTSUP; 5953 break; 5954 case VNON : 5955 case VBAD : 5956 default : 5957 /* nothing; can we even create these? */ 5958 return EINVAL; 5959 } 5960 5961 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp); 5962 } 5963 5964 /* --------------------------------------------------------------------- */ 5965 5966 static void 5967 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5968 { 5969 struct udf_mount *ump = udf_node->ump; 5970 uint32_t lb_size, lb_num, len, num_lb; 5971 uint16_t vpart_num; 5972 5973 /* is there really one? */ 5974 if (mem == NULL) 5975 return; 5976 5977 /* got a descriptor here */ 5978 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5979 lb_num = udf_rw32(loc->loc.lb_num); 5980 vpart_num = udf_rw16(loc->loc.part_num); 5981 5982 lb_size = udf_rw32(ump->logical_vol->lb_size); 5983 num_lb = (len + lb_size -1) / lb_size; 5984 5985 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5986 } 5987 5988 void 5989 udf_delete_node(struct udf_node *udf_node) 5990 { 5991 void *dscr; 5992 struct long_ad *loc; 5993 int extnr, lvint, dummy; 5994 5995 /* paranoia check on integrity; should be open!; we could panic */ 5996 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5997 if (lvint == UDF_INTEGRITY_CLOSED) 5998 printf("\tIntegrity was CLOSED!\n"); 5999 6000 /* whatever the node type, change its size to zero */ 6001 (void) udf_resize_node(udf_node, 0, &dummy); 6002 6003 /* force it to be `clean'; no use writing it out */ 6004 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 6005 IN_CHANGE | IN_UPDATE | IN_MODIFY); 6006 6007 /* adjust file count */ 6008 udf_adjust_filecount(udf_node, -1); 6009 6010 /* 6011 * Free its allocated descriptors; memory will be released when 6012 * vop_reclaim() is called. 6013 */ 6014 loc = &udf_node->loc; 6015 6016 dscr = udf_node->fe; 6017 udf_free_descriptor_space(udf_node, loc, dscr); 6018 dscr = udf_node->efe; 6019 udf_free_descriptor_space(udf_node, loc, dscr); 6020 6021 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 6022 dscr = udf_node->ext[extnr]; 6023 loc = &udf_node->ext_loc[extnr]; 6024 udf_free_descriptor_space(udf_node, loc, dscr); 6025 } 6026 } 6027 6028 /* --------------------------------------------------------------------- */ 6029 6030 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 6031 int 6032 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 6033 { 6034 struct file_entry *fe = udf_node->fe; 6035 struct extfile_entry *efe = udf_node->efe; 6036 uint64_t file_size; 6037 int error; 6038 6039 if (fe) { 6040 file_size = udf_rw64(fe->inf_len); 6041 } else { 6042 assert(udf_node->efe); 6043 file_size = udf_rw64(efe->inf_len); 6044 } 6045 6046 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 6047 file_size, new_size)); 6048 6049 /* if not changing, we're done */ 6050 if (file_size == new_size) 6051 return 0; 6052 6053 *extended = (new_size > file_size); 6054 if (*extended) { 6055 error = udf_grow_node(udf_node, new_size); 6056 } else { 6057 error = udf_shrink_node(udf_node, new_size); 6058 } 6059 6060 return error; 6061 } 6062 6063 6064 /* --------------------------------------------------------------------- */ 6065 6066 void 6067 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 6068 struct timespec *mod, struct timespec *birth) 6069 { 6070 struct timespec now; 6071 struct file_entry *fe; 6072 struct extfile_entry *efe; 6073 struct filetimes_extattr_entry *ft_extattr; 6074 struct timestamp *atime, *mtime, *attrtime, *ctime; 6075 struct timestamp fe_ctime; 6076 struct timespec cur_birth; 6077 uint32_t offset, a_l; 6078 uint8_t *filedata; 6079 int error; 6080 6081 /* protect against rogue values */ 6082 if (!udf_node) 6083 return; 6084 6085 fe = udf_node->fe; 6086 efe = udf_node->efe; 6087 6088 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 6089 return; 6090 6091 /* get descriptor information */ 6092 if (fe) { 6093 atime = &fe->atime; 6094 mtime = &fe->mtime; 6095 attrtime = &fe->attrtime; 6096 filedata = fe->data; 6097 6098 /* initial save dummy setting */ 6099 ctime = &fe_ctime; 6100 6101 /* check our extended attribute if present */ 6102 error = udf_extattr_search_intern(udf_node, 6103 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 6104 if (!error) { 6105 ft_extattr = (struct filetimes_extattr_entry *) 6106 (filedata + offset); 6107 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 6108 ctime = &ft_extattr->times[0]; 6109 } 6110 /* TODO create the extended attribute if not found ? */ 6111 } else { 6112 assert(udf_node->efe); 6113 atime = &efe->atime; 6114 mtime = &efe->mtime; 6115 attrtime = &efe->attrtime; 6116 ctime = &efe->ctime; 6117 } 6118 6119 vfs_timestamp(&now); 6120 6121 /* set access time */ 6122 if (udf_node->i_flags & IN_ACCESS) { 6123 if (acc == NULL) 6124 acc = &now; 6125 udf_timespec_to_timestamp(acc, atime); 6126 } 6127 6128 /* set modification time */ 6129 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 6130 if (mod == NULL) 6131 mod = &now; 6132 udf_timespec_to_timestamp(mod, mtime); 6133 6134 /* ensure birthtime is older than set modification! */ 6135 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 6136 if ((cur_birth.tv_sec > mod->tv_sec) || 6137 ((cur_birth.tv_sec == mod->tv_sec) && 6138 (cur_birth.tv_nsec > mod->tv_nsec))) { 6139 udf_timespec_to_timestamp(mod, ctime); 6140 } 6141 } 6142 6143 /* update birthtime if specified */ 6144 /* XXX we assume here that given birthtime is older than mod */ 6145 if (birth && (birth->tv_sec != VNOVAL)) { 6146 udf_timespec_to_timestamp(birth, ctime); 6147 } 6148 6149 /* set change time */ 6150 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 6151 udf_timespec_to_timestamp(&now, attrtime); 6152 6153 /* notify updates to the node itself */ 6154 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 6155 udf_node->i_flags |= IN_ACCESSED; 6156 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 6157 udf_node->i_flags |= IN_MODIFIED; 6158 6159 /* clear modification flags */ 6160 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 6161 } 6162 6163 /* --------------------------------------------------------------------- */ 6164 6165 int 6166 udf_update(struct vnode *vp, struct timespec *acc, 6167 struct timespec *mod, struct timespec *birth, int updflags) 6168 { 6169 union dscrptr *dscrptr; 6170 struct udf_node *udf_node = VTOI(vp); 6171 struct udf_mount *ump = udf_node->ump; 6172 struct regid *impl_id; 6173 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 6174 int waitfor, flags; 6175 6176 #ifdef DEBUG 6177 char bits[128]; 6178 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 6179 updflags)); 6180 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 6181 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 6182 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 6183 #endif 6184 6185 /* set our times */ 6186 udf_itimes(udf_node, acc, mod, birth); 6187 6188 /* set our implementation id */ 6189 if (udf_node->fe) { 6190 dscrptr = (union dscrptr *) udf_node->fe; 6191 impl_id = &udf_node->fe->imp_id; 6192 } else { 6193 dscrptr = (union dscrptr *) udf_node->efe; 6194 impl_id = &udf_node->efe->imp_id; 6195 } 6196 6197 /* set our ID */ 6198 udf_set_regid(impl_id, IMPL_NAME); 6199 udf_add_impl_regid(ump, impl_id); 6200 6201 /* update our crc! on RMW we are not allowed to change a thing */ 6202 udf_validate_tag_and_crc_sums(dscrptr); 6203 6204 /* if called when mounted readonly, never write back */ 6205 if (vp->v_mount->mnt_flag & MNT_RDONLY) 6206 return 0; 6207 6208 /* check if the node is dirty 'enough'*/ 6209 if (updflags & UPDATE_CLOSE) { 6210 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6211 } else { 6212 flags = udf_node->i_flags & IN_MODIFIED; 6213 } 6214 if (flags == 0) 6215 return 0; 6216 6217 /* determine if we need to write sync or async */ 6218 waitfor = 0; 6219 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6220 /* sync mounted */ 6221 waitfor = updflags & UPDATE_WAIT; 6222 if (updflags & UPDATE_DIROP) 6223 waitfor |= UPDATE_WAIT; 6224 } 6225 if (waitfor) 6226 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6227 6228 return 0; 6229 } 6230 6231 6232 /* --------------------------------------------------------------------- */ 6233 6234 6235 /* 6236 * Read one fid and process it into a dirent and advance to the next (*fid) 6237 * has to be allocated a logical block in size, (*dirent) struct dirent length 6238 */ 6239 6240 int 6241 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6242 struct fileid_desc *fid, struct dirent *dirent) 6243 { 6244 struct udf_node *dir_node = VTOI(vp); 6245 struct udf_mount *ump = dir_node->ump; 6246 struct file_entry *fe = dir_node->fe; 6247 struct extfile_entry *efe = dir_node->efe; 6248 uint32_t fid_size, lb_size; 6249 uint64_t file_size; 6250 char *fid_name; 6251 int enough, error; 6252 6253 assert(fid); 6254 assert(dirent); 6255 assert(dir_node); 6256 assert(offset); 6257 assert(*offset != 1); 6258 6259 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6260 /* check if we're past the end of the directory */ 6261 if (fe) { 6262 file_size = udf_rw64(fe->inf_len); 6263 } else { 6264 assert(dir_node->efe); 6265 file_size = udf_rw64(efe->inf_len); 6266 } 6267 if (*offset >= file_size) 6268 return EINVAL; 6269 6270 /* get maximum length of FID descriptor */ 6271 lb_size = udf_rw32(ump->logical_vol->lb_size); 6272 6273 /* initialise return values */ 6274 fid_size = 0; 6275 memset(dirent, 0, sizeof(struct dirent)); 6276 memset(fid, 0, lb_size); 6277 6278 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6279 if (!enough) { 6280 /* short dir ... */ 6281 return EIO; 6282 } 6283 6284 error = vn_rdwr(UIO_READ, vp, 6285 fid, MIN(file_size - (*offset), lb_size), *offset, 6286 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6287 NULL, NULL); 6288 if (error) 6289 return error; 6290 6291 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6292 /* 6293 * Check if we got a whole descriptor. 6294 * TODO Try to `resync' directory stream when something is very wrong. 6295 */ 6296 6297 /* check if our FID header is OK */ 6298 error = udf_check_tag(fid); 6299 if (error) { 6300 goto brokendir; 6301 } 6302 DPRINTF(FIDS, ("\ttag check ok\n")); 6303 6304 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6305 error = EIO; 6306 goto brokendir; 6307 } 6308 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6309 6310 /* check for length */ 6311 fid_size = udf_fidsize(fid); 6312 enough = (file_size - (*offset) >= fid_size); 6313 if (!enough) { 6314 error = EIO; 6315 goto brokendir; 6316 } 6317 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6318 6319 /* check FID contents */ 6320 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6321 brokendir: 6322 if (error) { 6323 /* note that is sometimes a bit quick to report */ 6324 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6325 /* RESYNC? */ 6326 /* TODO: use udf_resync_fid_stream */ 6327 return EIO; 6328 } 6329 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6330 6331 /* we got a whole and valid descriptor! */ 6332 DPRINTF(FIDS, ("\tinterpret FID\n")); 6333 6334 /* create resulting dirent structure */ 6335 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6336 udf_to_unix_name(dirent->d_name, NAME_MAX, 6337 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6338 6339 /* '..' has no name, so provide one */ 6340 if (fid->file_char & UDF_FILE_CHAR_PAR) 6341 strcpy(dirent->d_name, ".."); 6342 6343 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ 6344 dirent->d_namlen = strlen(dirent->d_name); 6345 dirent->d_reclen = _DIRENT_SIZE(dirent); 6346 6347 /* 6348 * Note that its not worth trying to go for the filetypes now... its 6349 * too expensive too 6350 */ 6351 dirent->d_type = DT_UNKNOWN; 6352 6353 /* initial guess for filetype we can make */ 6354 if (fid->file_char & UDF_FILE_CHAR_DIR) 6355 dirent->d_type = DT_DIR; 6356 6357 /* advance */ 6358 *offset += fid_size; 6359 6360 return error; 6361 } 6362 6363 6364 /* --------------------------------------------------------------------- */ 6365 6366 static void 6367 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor, 6368 int pass, int *ndirty) 6369 { 6370 struct udf_node *udf_node, *n_udf_node; 6371 struct vnode *vp; 6372 int vdirty, error; 6373 int on_type, on_flags, on_vnode; 6374 6375 derailed: 6376 KASSERT(mutex_owned(&mntvnode_lock)); 6377 6378 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6379 udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6380 for (;udf_node; udf_node = n_udf_node) { 6381 DPRINTF(SYNC, (".")); 6382 6383 udf_node->i_flags &= ~IN_SYNCED; 6384 vp = udf_node->vnode; 6385 6386 mutex_enter(vp->v_interlock); 6387 n_udf_node = rb_tree_iterate(&ump->udf_node_tree, 6388 udf_node, RB_DIR_RIGHT); 6389 6390 if (n_udf_node) 6391 n_udf_node->i_flags |= IN_SYNCED; 6392 6393 /* system nodes are not synced this way */ 6394 if (vp->v_vflag & VV_SYSTEM) { 6395 mutex_exit(vp->v_interlock); 6396 continue; 6397 } 6398 6399 /* check if its dirty enough to even try */ 6400 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON); 6401 on_flags = ((udf_node->i_flags & 6402 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0); 6403 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd) 6404 && UVM_OBJ_IS_CLEAN(&vp->v_uobj); 6405 if (on_type || (on_flags || on_vnode)) { /* XXX */ 6406 /* not dirty (enough?) */ 6407 mutex_exit(vp->v_interlock); 6408 continue; 6409 } 6410 6411 mutex_exit(&mntvnode_lock); 6412 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT); 6413 if (error) { 6414 mutex_enter(&mntvnode_lock); 6415 if (error == ENOENT) 6416 goto derailed; 6417 *ndirty += 1; 6418 continue; 6419 } 6420 6421 switch (pass) { 6422 case 1: 6423 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6424 break; 6425 case 2: 6426 vdirty = vp->v_numoutput; 6427 if (vp->v_tag == VT_UDF) 6428 vdirty += udf_node->outstanding_bufs + 6429 udf_node->outstanding_nodedscr; 6430 if (vdirty == 0) 6431 VOP_FSYNC(vp, cred, 0,0,0); 6432 *ndirty += vdirty; 6433 break; 6434 case 3: 6435 vdirty = vp->v_numoutput; 6436 if (vp->v_tag == VT_UDF) 6437 vdirty += udf_node->outstanding_bufs + 6438 udf_node->outstanding_nodedscr; 6439 *ndirty += vdirty; 6440 break; 6441 } 6442 6443 vput(vp); 6444 mutex_enter(&mntvnode_lock); 6445 } 6446 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6447 } 6448 6449 6450 void 6451 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6452 { 6453 int dummy, ndirty; 6454 6455 mutex_enter(&mntvnode_lock); 6456 recount: 6457 dummy = 0; 6458 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6459 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6460 udf_sync_pass(ump, cred, waitfor, 1, &dummy); 6461 6462 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6463 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6464 udf_sync_pass(ump, cred, waitfor, 2, &dummy); 6465 6466 if (waitfor == MNT_WAIT) { 6467 ndirty = ump->devvp->v_numoutput; 6468 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6469 ndirty)); 6470 udf_sync_pass(ump, cred, waitfor, 3, &ndirty); 6471 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6472 ndirty)); 6473 6474 if (ndirty) { 6475 /* 1/4 second wait */ 6476 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 6477 hz/4); 6478 goto recount; 6479 } 6480 } 6481 6482 mutex_exit(&mntvnode_lock); 6483 } 6484 6485 /* --------------------------------------------------------------------- */ 6486 6487 /* 6488 * Read and write file extent in/from the buffer. 6489 * 6490 * The splitup of the extent into seperate request-buffers is to minimise 6491 * copying around as much as possible. 6492 * 6493 * block based file reading and writing 6494 */ 6495 6496 static int 6497 udf_read_internal(struct udf_node *node, uint8_t *blob) 6498 { 6499 struct udf_mount *ump; 6500 struct file_entry *fe = node->fe; 6501 struct extfile_entry *efe = node->efe; 6502 uint64_t inflen; 6503 uint32_t sector_size; 6504 uint8_t *pos; 6505 int icbflags, addr_type; 6506 6507 /* get extent and do some paranoia checks */ 6508 ump = node->ump; 6509 sector_size = ump->discinfo.sector_size; 6510 6511 if (fe) { 6512 inflen = udf_rw64(fe->inf_len); 6513 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6514 icbflags = udf_rw16(fe->icbtag.flags); 6515 } else { 6516 assert(node->efe); 6517 inflen = udf_rw64(efe->inf_len); 6518 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6519 icbflags = udf_rw16(efe->icbtag.flags); 6520 } 6521 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6522 6523 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6524 assert(inflen < sector_size); 6525 6526 /* copy out info */ 6527 memset(blob, 0, sector_size); 6528 memcpy(blob, pos, inflen); 6529 6530 return 0; 6531 } 6532 6533 6534 static int 6535 udf_write_internal(struct udf_node *node, uint8_t *blob) 6536 { 6537 struct udf_mount *ump; 6538 struct file_entry *fe = node->fe; 6539 struct extfile_entry *efe = node->efe; 6540 uint64_t inflen; 6541 uint32_t sector_size; 6542 uint8_t *pos; 6543 int icbflags, addr_type; 6544 6545 /* get extent and do some paranoia checks */ 6546 ump = node->ump; 6547 sector_size = ump->discinfo.sector_size; 6548 6549 if (fe) { 6550 inflen = udf_rw64(fe->inf_len); 6551 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6552 icbflags = udf_rw16(fe->icbtag.flags); 6553 } else { 6554 assert(node->efe); 6555 inflen = udf_rw64(efe->inf_len); 6556 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6557 icbflags = udf_rw16(efe->icbtag.flags); 6558 } 6559 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6560 6561 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6562 assert(inflen < sector_size); 6563 6564 /* copy in blob */ 6565 /* memset(pos, 0, inflen); */ 6566 memcpy(pos, blob, inflen); 6567 6568 return 0; 6569 } 6570 6571 6572 void 6573 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6574 { 6575 struct buf *nestbuf; 6576 struct udf_mount *ump = udf_node->ump; 6577 uint64_t *mapping; 6578 uint64_t run_start; 6579 uint32_t sector_size; 6580 uint32_t buf_offset, sector, rbuflen, rblk; 6581 uint32_t from, lblkno; 6582 uint32_t sectors; 6583 uint8_t *buf_pos; 6584 int error, run_length, what; 6585 6586 sector_size = udf_node->ump->discinfo.sector_size; 6587 6588 from = buf->b_blkno; 6589 sectors = buf->b_bcount / sector_size; 6590 6591 what = udf_get_c_type(udf_node); 6592 6593 /* assure we have enough translation slots */ 6594 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6595 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6596 6597 if (sectors > UDF_MAX_MAPPINGS) { 6598 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6599 buf->b_error = EIO; 6600 biodone(buf); 6601 return; 6602 } 6603 6604 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6605 6606 error = 0; 6607 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6608 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6609 if (error) { 6610 buf->b_error = error; 6611 biodone(buf); 6612 goto out; 6613 } 6614 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6615 6616 /* pre-check if its an internal */ 6617 if (*mapping == UDF_TRANS_INTERN) { 6618 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6619 if (error) 6620 buf->b_error = error; 6621 biodone(buf); 6622 goto out; 6623 } 6624 DPRINTF(READ, ("\tnot intern\n")); 6625 6626 #ifdef DEBUG 6627 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6628 printf("Returned translation table:\n"); 6629 for (sector = 0; sector < sectors; sector++) { 6630 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6631 } 6632 } 6633 #endif 6634 6635 /* request read-in of data from disc sheduler */ 6636 buf->b_resid = buf->b_bcount; 6637 for (sector = 0; sector < sectors; sector++) { 6638 buf_offset = sector * sector_size; 6639 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6640 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6641 6642 /* check if its zero or unmapped to stop reading */ 6643 switch (mapping[sector]) { 6644 case UDF_TRANS_UNMAPPED: 6645 case UDF_TRANS_ZERO: 6646 /* copy zero sector TODO runlength like below */ 6647 memset(buf_pos, 0, sector_size); 6648 DPRINTF(READ, ("\treturning zero sector\n")); 6649 nestiobuf_done(buf, sector_size, 0); 6650 break; 6651 default : 6652 DPRINTF(READ, ("\tread sector " 6653 "%"PRIu64"\n", mapping[sector])); 6654 6655 lblkno = from + sector; 6656 run_start = mapping[sector]; 6657 run_length = 1; 6658 while (sector < sectors-1) { 6659 if (mapping[sector+1] != mapping[sector]+1) 6660 break; 6661 run_length++; 6662 sector++; 6663 } 6664 6665 /* 6666 * nest an iobuf and mark it for async reading. Since 6667 * we're using nested buffers, they can't be cached by 6668 * design. 6669 */ 6670 rbuflen = run_length * sector_size; 6671 rblk = run_start * (sector_size/DEV_BSIZE); 6672 6673 nestbuf = getiobuf(NULL, true); 6674 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6675 /* nestbuf is B_ASYNC */ 6676 6677 /* identify this nestbuf */ 6678 nestbuf->b_lblkno = lblkno; 6679 assert(nestbuf->b_vp == udf_node->vnode); 6680 6681 /* CD shedules on raw blkno */ 6682 nestbuf->b_blkno = rblk; 6683 nestbuf->b_proc = NULL; 6684 nestbuf->b_rawblkno = rblk; 6685 nestbuf->b_udf_c_type = what; 6686 6687 udf_discstrat_queuebuf(ump, nestbuf); 6688 } 6689 } 6690 out: 6691 /* if we're synchronously reading, wait for the completion */ 6692 if ((buf->b_flags & B_ASYNC) == 0) 6693 biowait(buf); 6694 6695 DPRINTF(READ, ("\tend of read_filebuf\n")); 6696 free(mapping, M_TEMP); 6697 return; 6698 } 6699 6700 6701 void 6702 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6703 { 6704 struct buf *nestbuf; 6705 struct udf_mount *ump = udf_node->ump; 6706 uint64_t *mapping; 6707 uint64_t run_start; 6708 uint32_t lb_size; 6709 uint32_t buf_offset, lb_num, rbuflen, rblk; 6710 uint32_t from, lblkno; 6711 uint32_t num_lb; 6712 int error, run_length, what, s; 6713 6714 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6715 6716 from = buf->b_blkno; 6717 num_lb = buf->b_bcount / lb_size; 6718 6719 what = udf_get_c_type(udf_node); 6720 6721 /* assure we have enough translation slots */ 6722 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6723 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6724 6725 if (num_lb > UDF_MAX_MAPPINGS) { 6726 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6727 buf->b_error = EIO; 6728 biodone(buf); 6729 return; 6730 } 6731 6732 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6733 6734 error = 0; 6735 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6736 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6737 if (error) { 6738 buf->b_error = error; 6739 biodone(buf); 6740 goto out; 6741 } 6742 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6743 6744 /* if its internally mapped, we can write it in the descriptor itself */ 6745 if (*mapping == UDF_TRANS_INTERN) { 6746 /* TODO paranoia check if we ARE going to have enough space */ 6747 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6748 if (error) 6749 buf->b_error = error; 6750 biodone(buf); 6751 goto out; 6752 } 6753 DPRINTF(WRITE, ("\tnot intern\n")); 6754 6755 /* request write out of data to disc sheduler */ 6756 buf->b_resid = buf->b_bcount; 6757 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6758 buf_offset = lb_num * lb_size; 6759 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6760 6761 /* 6762 * Mappings are not that important here. Just before we write 6763 * the lb_num we late-allocate them when needed and update the 6764 * mapping in the udf_node. 6765 */ 6766 6767 /* XXX why not ignore the mapping altogether ? */ 6768 DPRINTF(WRITE, ("\twrite lb_num " 6769 "%"PRIu64, mapping[lb_num])); 6770 6771 lblkno = from + lb_num; 6772 run_start = mapping[lb_num]; 6773 run_length = 1; 6774 while (lb_num < num_lb-1) { 6775 if (mapping[lb_num+1] != mapping[lb_num]+1) 6776 if (mapping[lb_num+1] != mapping[lb_num]) 6777 break; 6778 run_length++; 6779 lb_num++; 6780 } 6781 DPRINTF(WRITE, ("+ %d\n", run_length)); 6782 6783 /* nest an iobuf on the master buffer for the extent */ 6784 rbuflen = run_length * lb_size; 6785 rblk = run_start * (lb_size/DEV_BSIZE); 6786 6787 nestbuf = getiobuf(NULL, true); 6788 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6789 /* nestbuf is B_ASYNC */ 6790 6791 /* identify this nestbuf */ 6792 nestbuf->b_lblkno = lblkno; 6793 KASSERT(nestbuf->b_vp == udf_node->vnode); 6794 6795 /* CD shedules on raw blkno */ 6796 nestbuf->b_blkno = rblk; 6797 nestbuf->b_proc = NULL; 6798 nestbuf->b_rawblkno = rblk; 6799 nestbuf->b_udf_c_type = what; 6800 6801 /* increment our outstanding bufs counter */ 6802 s = splbio(); 6803 udf_node->outstanding_bufs++; 6804 splx(s); 6805 6806 udf_discstrat_queuebuf(ump, nestbuf); 6807 } 6808 out: 6809 /* if we're synchronously writing, wait for the completion */ 6810 if ((buf->b_flags & B_ASYNC) == 0) 6811 biowait(buf); 6812 6813 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6814 free(mapping, M_TEMP); 6815 return; 6816 } 6817 6818 /* --------------------------------------------------------------------- */ 6819