xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* $NetBSD: udf_subr.c,v 1.141 2018/06/06 01:49:09 maya Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.141 2018/06/06 01:49:09 maya Exp $");
33 #endif /* not lint */
34 
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61 
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65 
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69 
70 
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72 
73 #define UDF_SET_SYSTEMFILE(vp) \
74 	/* XXXAD Is the vnode locked? */	\
75 	(vp)->v_vflag |= VV_SYSTEM;		\
76 	vref((vp));			\
77 	vput((vp));			\
78 
79 extern int syncer_maxdelay;     /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81 
82 /* --------------------------------------------------------------------- */
83 
84 //#ifdef DEBUG
85 #if 1
86 
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 	int i, j;
92 
93 	printf("blob = %p\n", blob);
94 	printf("dump of %d bytes\n", dlen);
95 
96 	for (i = 0; i < dlen; i+ = 16) {
97 		printf("%04x ", i);
98 		for (j = 0; j < 16; j++) {
99 			if (i+j < dlen) {
100 				printf("%02x ", blob[i+j]);
101 			} else {
102 				printf("   ");
103 			}
104 		}
105 		for (j = 0; j < 16; j++) {
106 			if (i+j < dlen) {
107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
108 					printf("%c", blob[i+j]);
109 				} else {
110 					printf(".");
111 				}
112 			}
113 		}
114 		printf("\n");
115 	}
116 	printf("\n");
117 	Debugger();
118 }
119 #endif
120 
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 	char   bits[128];
125 	struct mmc_discinfo *di = &ump->discinfo;
126 
127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 		return;
129 
130 	printf("Device/media info  :\n");
131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
132 	printf("\tderived class      %d\n", di->mmc_class);
133 	printf("\tsector size        %d\n", di->sector_size);
134 	printf("\tdisc state         %d\n", di->disc_state);
135 	printf("\tlast ses state     %d\n", di->last_session_state);
136 	printf("\tbg format state    %d\n", di->bg_format_state);
137 	printf("\tfrst track         %d\n", di->first_track);
138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 	printf("\tdisc flags         %s\n", bits);
143 	printf("\tdisc id            %x\n", di->disc_id);
144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
145 
146 	printf("\tnum sessions       %d\n", di->num_sessions);
147 	printf("\tnum tracks         %d\n", di->num_tracks);
148 
149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 	printf("\tcapabilities cur   %s\n", bits);
151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 	printf("\tcapabilities cap   %s\n", bits);
153 }
154 
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 	char   bits[128];
159 
160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 		return;
162 
163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 	printf("\tflags               %s\n", bits);
169 
170 	printf("\ttrack start         %d\n", trackinfo->track_start);
171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
174 	printf("\ttrack size          %d\n", trackinfo->track_size);
175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177 
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182 
183 
184 /* --------------------------------------------------------------------- */
185 
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 	struct vnode *devvp = ump->devvp;
191 	uint64_t psize;
192 	unsigned secsize;
193 	struct mmc_discinfo *di;
194 	int error;
195 
196 	DPRINTF(VOLUMES, ("read/update disc info\n"));
197 	di = &ump->discinfo;
198 	memset(di, 0, sizeof(struct mmc_discinfo));
199 
200 	/* check if we're on a MMC capable device, i.e. CD/DVD */
201 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 	if (error == 0) {
203 		udf_dump_discinfo(ump);
204 		return 0;
205 	}
206 
207 	/* disc partition support */
208 	error = getdisksize(devvp, &psize, &secsize);
209 	if (error)
210 		return error;
211 
212 	/* set up a disc info profile for partitions */
213 	di->mmc_profile		= 0x01;	/* disc type */
214 	di->mmc_class		= MMC_CLASS_DISC;
215 	di->disc_state		= MMC_STATE_CLOSED;
216 	di->last_session_state	= MMC_STATE_CLOSED;
217 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
218 	di->link_block_penalty	= 0;
219 
220 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 	di->mmc_cap    = di->mmc_cur;
223 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224 
225 	/* TODO problem with last_possible_lba on resizable VND; request */
226 	di->last_possible_lba = psize;
227 	di->sector_size       = secsize;
228 
229 	di->num_sessions = 1;
230 	di->num_tracks   = 1;
231 
232 	di->first_track  = 1;
233 	di->first_track_last_session = di->last_track_last_session = 1;
234 
235 	udf_dump_discinfo(ump);
236 	return 0;
237 }
238 
239 
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 	struct vnode *devvp = ump->devvp;
244 	struct mmc_discinfo *di = &ump->discinfo;
245 	int error, class;
246 
247 	DPRINTF(VOLUMES, ("read track info\n"));
248 
249 	class = di->mmc_class;
250 	if (class != MMC_CLASS_DISC) {
251 		/* tracknr specified in struct ti */
252 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 		return error;
254 	}
255 
256 	/* disc partition support */
257 	if (ti->tracknr != 1)
258 		return EIO;
259 
260 	/* create fake ti (TODO check for resized vnds) */
261 	ti->sessionnr  = 1;
262 
263 	ti->track_mode = 0;	/* XXX */
264 	ti->data_mode  = 0;	/* XXX */
265 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266 
267 	ti->track_start    = 0;
268 	ti->packet_size    = 1;
269 
270 	/* TODO support for resizable vnd */
271 	ti->track_size    = di->last_possible_lba;
272 	ti->next_writable = di->last_possible_lba;
273 	ti->last_recorded = ti->next_writable;
274 	ti->free_blocks   = 0;
275 
276 	return 0;
277 }
278 
279 
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 	struct mmc_writeparams mmc_writeparams;
284 	int error;
285 
286 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 		return 0;
288 
289 	/*
290 	 * only CD burning normally needs setting up, but other disc types
291 	 * might need other settings to be made. The MMC framework will set up
292 	 * the nessisary recording parameters according to the disc
293 	 * characteristics read in. Modifications can be made in the discinfo
294 	 * structure passed to change the nature of the disc.
295 	 */
296 
297 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
299 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
300 
301 	/*
302 	 * UDF dictates first track to determine track mode for the whole
303 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 	 * To prevent problems with a `reserved' track in front we start with
305 	 * the 2nd track and if that is not valid, go for the 1st.
306 	 */
307 	mmc_writeparams.tracknr = 2;
308 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
309 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
310 
311 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 			FKIOCTL, NOCRED);
313 	if (error) {
314 		mmc_writeparams.tracknr = 1;
315 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 				&mmc_writeparams, FKIOCTL, NOCRED);
317 	}
318 	return error;
319 }
320 
321 
322 void
323 udf_mmc_synchronise_caches(struct udf_mount *ump)
324 {
325 	struct mmc_op mmc_op;
326 
327 	DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n"));
328 
329 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 		return;
331 
332 	/* discs are done now */
333 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 		return;
335 
336 	memset(&mmc_op, 0, sizeof(struct mmc_op));
337 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338 
339 	/* ignore return code */
340 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341 }
342 
343 /* --------------------------------------------------------------------- */
344 
345 /* track/session searching for mounting */
346 int
347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
348 		  int *first_tracknr, int *last_tracknr)
349 {
350 	struct mmc_trackinfo trackinfo;
351 	uint32_t tracknr, start_track, num_tracks;
352 	int error;
353 
354 	/* if negative, sessionnr is relative to last session */
355 	if (args->sessionnr < 0) {
356 		args->sessionnr += ump->discinfo.num_sessions;
357 	}
358 
359 	/* sanity */
360 	if (args->sessionnr < 0)
361 		args->sessionnr = 0;
362 	if (args->sessionnr > ump->discinfo.num_sessions)
363 		args->sessionnr = ump->discinfo.num_sessions;
364 
365 	/* search the tracks for this session, zero session nr indicates last */
366 	if (args->sessionnr == 0)
367 		args->sessionnr = ump->discinfo.num_sessions;
368 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
369 		args->sessionnr--;
370 
371 	/* sanity again */
372 	if (args->sessionnr < 0)
373 		args->sessionnr = 0;
374 
375 	/* search the first and last track of the specified session */
376 	num_tracks  = ump->discinfo.num_tracks;
377 	start_track = ump->discinfo.first_track;
378 
379 	/* search for first track of this session */
380 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
381 		/* get track info */
382 		trackinfo.tracknr = tracknr;
383 		error = udf_update_trackinfo(ump, &trackinfo);
384 		if (error)
385 			return error;
386 
387 		if (trackinfo.sessionnr == args->sessionnr)
388 			break;
389 	}
390 	*first_tracknr = tracknr;
391 
392 	/* search for last track of this session */
393 	for (;tracknr <= num_tracks; tracknr++) {
394 		/* get track info */
395 		trackinfo.tracknr = tracknr;
396 		error = udf_update_trackinfo(ump, &trackinfo);
397 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
398 			tracknr--;
399 			break;
400 		}
401 	}
402 	if (tracknr > num_tracks)
403 		tracknr--;
404 
405 	*last_tracknr = tracknr;
406 
407 	if (*last_tracknr < *first_tracknr) {
408 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
409 			"drive returned garbage\n");
410 		return EINVAL;
411 	}
412 
413 	assert(*last_tracknr >= *first_tracknr);
414 	return 0;
415 }
416 
417 
418 /*
419  * NOTE: this is the only routine in this file that directly peeks into the
420  * metadata file but since its at a larval state of the mount it can't hurt.
421  *
422  * XXX candidate for udf_allocation.c
423  * XXX clean me up!, change to new node reading code.
424  */
425 
426 static void
427 udf_check_track_metadata_overlap(struct udf_mount *ump,
428 	struct mmc_trackinfo *trackinfo)
429 {
430 	struct part_desc *part;
431 	struct file_entry      *fe;
432 	struct extfile_entry   *efe;
433 	struct short_ad        *s_ad;
434 	struct long_ad         *l_ad;
435 	uint32_t track_start, track_end;
436 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
437 	uint32_t sector_size, len, alloclen, plb_num;
438 	uint8_t *pos;
439 	int addr_type, icblen, icbflags;
440 
441 	/* get our track extents */
442 	track_start = trackinfo->track_start;
443 	track_end   = track_start + trackinfo->track_size;
444 
445 	/* get our base partition extent */
446 	KASSERT(ump->node_part == ump->fids_part);
447 	part = ump->partitions[ump->vtop[ump->node_part]];
448 	phys_part_start = udf_rw32(part->start_loc);
449 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
450 
451 	/* no use if its outside the physical partition */
452 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
453 		return;
454 
455 	/*
456 	 * now follow all extents in the fe/efe to see if they refer to this
457 	 * track
458 	 */
459 
460 	sector_size = ump->discinfo.sector_size;
461 
462 	/* XXX should we claim exclusive access to the metafile ? */
463 	/* TODO: move to new node read code */
464 	fe  = ump->metadata_node->fe;
465 	efe = ump->metadata_node->efe;
466 	if (fe) {
467 		alloclen = udf_rw32(fe->l_ad);
468 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
469 		icbflags = udf_rw16(fe->icbtag.flags);
470 	} else {
471 		assert(efe);
472 		alloclen = udf_rw32(efe->l_ad);
473 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
474 		icbflags = udf_rw16(efe->icbtag.flags);
475 	}
476 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
477 
478 	while (alloclen) {
479 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
480 			icblen = sizeof(struct short_ad);
481 			s_ad   = (struct short_ad *) pos;
482 			len        = udf_rw32(s_ad->len);
483 			plb_num    = udf_rw32(s_ad->lb_num);
484 		} else {
485 			/* should not be present, but why not */
486 			icblen = sizeof(struct long_ad);
487 			l_ad   = (struct long_ad *) pos;
488 			len        = udf_rw32(l_ad->len);
489 			plb_num    = udf_rw32(l_ad->loc.lb_num);
490 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
491 		}
492 		/* process extent */
493 		len     = UDF_EXT_LEN(len);
494 
495 		part_start = phys_part_start + plb_num;
496 		part_end   = part_start + (len / sector_size);
497 
498 		if ((part_start >= track_start) && (part_end <= track_end)) {
499 			/* extent is enclosed within this track */
500 			ump->metadata_track = *trackinfo;
501 			return;
502 		}
503 
504 		pos        += icblen;
505 		alloclen   -= icblen;
506 	}
507 }
508 
509 
510 int
511 udf_search_writing_tracks(struct udf_mount *ump)
512 {
513 	struct vnode *devvp = ump->devvp;
514 	struct mmc_trackinfo trackinfo;
515 	struct mmc_op        mmc_op;
516 	struct part_desc *part;
517 	uint32_t tracknr, start_track, num_tracks;
518 	uint32_t track_start, track_end, part_start, part_end;
519 	int node_alloc, error;
520 
521 	/*
522 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
523 	 * the last session might be open but in the UDF device model at most
524 	 * three tracks can be open: a reserved track for delayed ISO VRS
525 	 * writing, a data track and a metadata track. We search here for the
526 	 * data track and the metadata track. Note that the reserved track is
527 	 * troublesome but can be detected by its small size of < 512 sectors.
528 	 */
529 
530 	/* update discinfo since it might have changed */
531 	error = udf_update_discinfo(ump);
532 	if (error)
533 		return error;
534 
535 	num_tracks  = ump->discinfo.num_tracks;
536 	start_track = ump->discinfo.first_track;
537 
538 	/* fetch info on first and possibly only track */
539 	trackinfo.tracknr = start_track;
540 	error = udf_update_trackinfo(ump, &trackinfo);
541 	if (error)
542 		return error;
543 
544 	/* copy results to our mount point */
545 	ump->data_track     = trackinfo;
546 	ump->metadata_track = trackinfo;
547 
548 	/* if not sequential, we're done */
549 	if (num_tracks == 1)
550 		return 0;
551 
552 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
553 		/* get track info */
554 		trackinfo.tracknr = tracknr;
555 		error = udf_update_trackinfo(ump, &trackinfo);
556 		if (error)
557 			return error;
558 
559 		/*
560 		 * If this track is marked damaged, ask for repair. This is an
561 		 * optional command, so ignore its error but report warning.
562 		 */
563 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
564 			memset(&mmc_op, 0, sizeof(mmc_op));
565 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
566 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
567 			mmc_op.tracknr     = tracknr;
568 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
569 			if (error)
570 				(void)printf("Drive can't explicitly repair "
571 					"damaged track %d, but it might "
572 					"autorepair\n", tracknr);
573 
574 			/* reget track info */
575 			error = udf_update_trackinfo(ump, &trackinfo);
576 			if (error)
577 				return error;
578 		}
579 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
580 			continue;
581 
582 		track_start = trackinfo.track_start;
583 		track_end   = track_start + trackinfo.track_size;
584 
585 		/* check for overlap on data partition */
586 		part = ump->partitions[ump->data_part];
587 		part_start = udf_rw32(part->start_loc);
588 		part_end   = part_start + udf_rw32(part->part_len);
589 		if ((part_start < track_end) && (part_end > track_start)) {
590 			ump->data_track = trackinfo;
591 			/* TODO check if UDF partition data_part is writable */
592 		}
593 
594 		/* check for overlap on metadata partition */
595 		node_alloc = ump->vtop_alloc[ump->node_part];
596 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
597 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
598 			udf_check_track_metadata_overlap(ump, &trackinfo);
599 		} else {
600 			ump->metadata_track = trackinfo;
601 		}
602 	}
603 
604 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
605 		return EROFS;
606 
607 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
608 		return EROFS;
609 
610 	return 0;
611 }
612 
613 /* --------------------------------------------------------------------- */
614 
615 /*
616  * Check if the blob starts with a good UDF tag. Tags are protected by a
617  * checksum over the reader except one byte at position 4 that is the checksum
618  * itself.
619  */
620 
621 int
622 udf_check_tag(void *blob)
623 {
624 	struct desc_tag *tag = blob;
625 	uint8_t *pos, sum, cnt;
626 
627 	/* check TAG header checksum */
628 	pos = (uint8_t *) tag;
629 	sum = 0;
630 
631 	for(cnt = 0; cnt < 16; cnt++) {
632 		if (cnt != 4)
633 			sum += *pos;
634 		pos++;
635 	}
636 	if (sum != tag->cksum) {
637 		/* bad tag header checksum; this is not a valid tag */
638 		return EINVAL;
639 	}
640 
641 	return 0;
642 }
643 
644 
645 /*
646  * check tag payload will check descriptor CRC as specified.
647  * If the descriptor is too long, it will return EIO otherwise EINVAL.
648  */
649 
650 int
651 udf_check_tag_payload(void *blob, uint32_t max_length)
652 {
653 	struct desc_tag *tag = blob;
654 	uint16_t crc, crc_len;
655 
656 	crc_len = udf_rw16(tag->desc_crc_len);
657 
658 	/* check payload CRC if applicable */
659 	if (crc_len == 0)
660 		return 0;
661 
662 	if (crc_len > max_length)
663 		return EIO;
664 
665 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
666 	if (crc != udf_rw16(tag->desc_crc)) {
667 		/* bad payload CRC; this is a broken tag */
668 		return EINVAL;
669 	}
670 
671 	return 0;
672 }
673 
674 
675 void
676 udf_validate_tag_sum(void *blob)
677 {
678 	struct desc_tag *tag = blob;
679 	uint8_t *pos, sum, cnt;
680 
681 	/* calculate TAG header checksum */
682 	pos = (uint8_t *) tag;
683 	sum = 0;
684 
685 	for(cnt = 0; cnt < 16; cnt++) {
686 		if (cnt != 4) sum += *pos;
687 		pos++;
688 	}
689 	tag->cksum = sum;	/* 8 bit */
690 }
691 
692 
693 /* assumes sector number of descriptor to be saved already present */
694 void
695 udf_validate_tag_and_crc_sums(void *blob)
696 {
697 	struct desc_tag *tag  = blob;
698 	uint8_t         *btag = (uint8_t *) tag;
699 	uint16_t crc, crc_len;
700 
701 	crc_len = udf_rw16(tag->desc_crc_len);
702 
703 	/* check payload CRC if applicable */
704 	if (crc_len > 0) {
705 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
706 		tag->desc_crc = udf_rw16(crc);
707 	}
708 
709 	/* calculate TAG header checksum */
710 	udf_validate_tag_sum(blob);
711 }
712 
713 /* --------------------------------------------------------------------- */
714 
715 /*
716  * XXX note the different semantics from udfclient: for FIDs it still rounds
717  * up to sectors. Use udf_fidsize() for a correct length.
718  */
719 
720 int
721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
722 {
723 	uint32_t size, tag_id, num_lb, elmsz;
724 
725 	tag_id = udf_rw16(dscr->tag.id);
726 
727 	switch (tag_id) {
728 	case TAGID_LOGVOL :
729 		size  = sizeof(struct logvol_desc) - 1;
730 		size += udf_rw32(dscr->lvd.mt_l);
731 		break;
732 	case TAGID_UNALLOC_SPACE :
733 		elmsz = sizeof(struct extent_ad);
734 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
735 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
736 		break;
737 	case TAGID_FID :
738 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
739 		size = (size + 3) & ~3;
740 		break;
741 	case TAGID_LOGVOL_INTEGRITY :
742 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
743 		size += udf_rw32(dscr->lvid.l_iu);
744 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
745 		break;
746 	case TAGID_SPACE_BITMAP :
747 		size  = sizeof(struct space_bitmap_desc) - 1;
748 		size += udf_rw32(dscr->sbd.num_bytes);
749 		break;
750 	case TAGID_SPARING_TABLE :
751 		elmsz = sizeof(struct spare_map_entry);
752 		size  = sizeof(struct udf_sparing_table) - elmsz;
753 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
754 		break;
755 	case TAGID_FENTRY :
756 		size  = sizeof(struct file_entry);
757 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
758 		break;
759 	case TAGID_EXTFENTRY :
760 		size  = sizeof(struct extfile_entry);
761 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
762 		break;
763 	case TAGID_FSD :
764 		size  = sizeof(struct fileset_desc);
765 		break;
766 	default :
767 		size = sizeof(union dscrptr);
768 		break;
769 	}
770 
771 	if ((size == 0) || (lb_size == 0))
772 		return 0;
773 
774 	if (lb_size == 1)
775 		return size;
776 
777 	/* round up in sectors */
778 	num_lb = (size + lb_size -1) / lb_size;
779 	return num_lb * lb_size;
780 }
781 
782 
783 int
784 udf_fidsize(struct fileid_desc *fid)
785 {
786 	uint32_t size;
787 
788 	if (udf_rw16(fid->tag.id) != TAGID_FID)
789 		panic("got udf_fidsize on non FID\n");
790 
791 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
792 	size = (size + 3) & ~3;
793 
794 	return size;
795 }
796 
797 /* --------------------------------------------------------------------- */
798 
799 void
800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
801 {
802 	int ret;
803 
804 	mutex_enter(&udf_node->node_mutex);
805 	/* wait until free */
806 	while (udf_node->i_flags & IN_LOCKED) {
807 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
808 		/* TODO check if we should return error; abort */
809 		if (ret == EWOULDBLOCK) {
810 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
811 				"wanted at %s:%d, previously locked at %s:%d\n",
812 				udf_node, fname, lineno,
813 				udf_node->lock_fname, udf_node->lock_lineno));
814 		}
815 	}
816 	/* grab */
817 	udf_node->i_flags |= IN_LOCKED | flag;
818 	/* debug */
819 	udf_node->lock_fname  = fname;
820 	udf_node->lock_lineno = lineno;
821 
822 	mutex_exit(&udf_node->node_mutex);
823 }
824 
825 
826 void
827 udf_unlock_node(struct udf_node *udf_node, int flag)
828 {
829 	mutex_enter(&udf_node->node_mutex);
830 	udf_node->i_flags &= ~(IN_LOCKED | flag);
831 	cv_broadcast(&udf_node->node_lock);
832 	mutex_exit(&udf_node->node_mutex);
833 }
834 
835 
836 /* --------------------------------------------------------------------- */
837 
838 static int
839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
840 {
841 	int error;
842 
843 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
844 			(union dscrptr **) dst);
845 	if (!error) {
846 		/* blank terminator blocks are not allowed here */
847 		if (*dst == NULL)
848 			return ENOENT;
849 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
850 			error = ENOENT;
851 			free(*dst, M_UDFVOLD);
852 			*dst = NULL;
853 			DPRINTF(VOLUMES, ("Not an anchor\n"));
854 		}
855 	}
856 
857 	return error;
858 }
859 
860 
861 int
862 udf_read_anchors(struct udf_mount *ump)
863 {
864 	struct udf_args *args = &ump->mount_args;
865 	struct mmc_trackinfo first_track;
866 	struct mmc_trackinfo second_track;
867 	struct mmc_trackinfo last_track;
868 	struct anchor_vdp **anchorsp;
869 	uint32_t track_start;
870 	uint32_t track_end;
871 	uint32_t positions[4];
872 	int first_tracknr, last_tracknr;
873 	int error, anch, ok, first_anchor;
874 
875 	/* search the first and last track of the specified session */
876 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
877 	if (!error) {
878 		first_track.tracknr = first_tracknr;
879 		error = udf_update_trackinfo(ump, &first_track);
880 	}
881 	if (!error) {
882 		last_track.tracknr = last_tracknr;
883 		error = udf_update_trackinfo(ump, &last_track);
884 	}
885 	if ((!error) && (first_tracknr != last_tracknr)) {
886 		second_track.tracknr = first_tracknr+1;
887 		error = udf_update_trackinfo(ump, &second_track);
888 	}
889 	if (error) {
890 		printf("UDF mount: reading disc geometry failed\n");
891 		return 0;
892 	}
893 
894 	track_start = first_track.track_start;
895 
896 	/* `end' is not as straitforward as start. */
897 	track_end =   last_track.track_start
898 		    + last_track.track_size - last_track.free_blocks - 1;
899 
900 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
901 		/* end of track is not straitforward here */
902 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
903 			track_end = last_track.last_recorded;
904 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
905 			track_end = last_track.next_writable
906 				    - ump->discinfo.link_block_penalty;
907 	}
908 
909 	/* its no use reading a blank track */
910 	first_anchor = 0;
911 	if (first_track.flags & MMC_TRACKINFO_BLANK)
912 		first_anchor = 1;
913 
914 	/* get our packet size */
915 	ump->packet_size = first_track.packet_size;
916 	if (first_track.flags & MMC_TRACKINFO_BLANK)
917 		ump->packet_size = second_track.packet_size;
918 
919 	if (ump->packet_size <= 1) {
920 		/* take max, but not bigger than 64 */
921 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
922 		ump->packet_size = MIN(ump->packet_size, 64);
923 	}
924 	KASSERT(ump->packet_size >= 1);
925 
926 	/* read anchors start+256, start+512, end-256, end */
927 	positions[0] = track_start+256;
928 	positions[1] =   track_end-256;
929 	positions[2] =   track_end;
930 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
931 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
932 
933 	ok = 0;
934 	anchorsp = ump->anchors;
935 	for (anch = first_anchor; anch < 4; anch++) {
936 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
937 		    positions[anch]));
938 		error = udf_read_anchor(ump, positions[anch], anchorsp);
939 		if (!error) {
940 			anchorsp++;
941 			ok++;
942 		}
943 	}
944 
945 	/* VATs are only recorded on sequential media, but initialise */
946 	ump->first_possible_vat_location = track_start + 2;
947 	ump->last_possible_vat_location  = track_end;
948 
949 	return ok;
950 }
951 
952 /* --------------------------------------------------------------------- */
953 
954 int
955 udf_get_c_type(struct udf_node *udf_node)
956 {
957 	int isdir, what;
958 
959 	isdir  = (udf_node->vnode->v_type == VDIR);
960 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
961 
962 	if (udf_node->ump)
963 		if (udf_node == udf_node->ump->metadatabitmap_node)
964 			what = UDF_C_METADATA_SBM;
965 
966 	return what;
967 }
968 
969 
970 int
971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
972 {
973 	int vpart_num;
974 
975 	vpart_num = ump->data_part;
976 	if (udf_c_type == UDF_C_NODE)
977 		vpart_num = ump->node_part;
978 	if (udf_c_type == UDF_C_FIDS)
979 		vpart_num = ump->fids_part;
980 
981 	return vpart_num;
982 }
983 
984 
985 /*
986  * BUGALERT: some rogue implementations use random physical partition
987  * numbers to break other implementations so lookup the number.
988  */
989 
990 static uint16_t
991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
992 {
993 	struct part_desc *part;
994 	uint16_t phys_part;
995 
996 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
997 		part = ump->partitions[phys_part];
998 		if (part == NULL)
999 			break;
1000 		if (udf_rw16(part->part_num) == raw_phys_part)
1001 			break;
1002 	}
1003 	return phys_part;
1004 }
1005 
1006 /* --------------------------------------------------------------------- */
1007 
1008 /* we dont try to be smart; we just record the parts */
1009 #define UDF_UPDATE_DSCR(name, dscr) \
1010 	if (name) \
1011 		free(name, M_UDFVOLD); \
1012 	name = dscr;
1013 
1014 static int
1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1016 {
1017 	uint16_t phys_part, raw_phys_part;
1018 
1019 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1020 	    udf_rw16(dscr->tag.id)));
1021 	switch (udf_rw16(dscr->tag.id)) {
1022 	case TAGID_PRI_VOL :		/* primary partition		*/
1023 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1024 		break;
1025 	case TAGID_LOGVOL :		/* logical volume		*/
1026 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1027 		break;
1028 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
1029 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1030 		break;
1031 	case TAGID_IMP_VOL :		/* implementation		*/
1032 		/* XXX do we care about multiple impl. descr ? */
1033 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1034 		break;
1035 	case TAGID_PARTITION :		/* physical partition		*/
1036 		/* not much use if its not allocated */
1037 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1038 			free(dscr, M_UDFVOLD);
1039 			break;
1040 		}
1041 
1042 		/*
1043 		 * BUGALERT: some rogue implementations use random physical
1044 		 * partition numbers to break other implementations so lookup
1045 		 * the number.
1046 		 */
1047 		raw_phys_part = udf_rw16(dscr->pd.part_num);
1048 		phys_part = udf_find_raw_phys(ump, raw_phys_part);
1049 
1050 		if (phys_part == UDF_PARTITIONS) {
1051 			free(dscr, M_UDFVOLD);
1052 			return EINVAL;
1053 		}
1054 
1055 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1056 		break;
1057 	case TAGID_VOL :		/* volume space extender; rare	*/
1058 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1059 		free(dscr, M_UDFVOLD);
1060 		break;
1061 	default :
1062 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1063 		    udf_rw16(dscr->tag.id)));
1064 		free(dscr, M_UDFVOLD);
1065 	}
1066 
1067 	return 0;
1068 }
1069 #undef UDF_UPDATE_DSCR
1070 
1071 /* --------------------------------------------------------------------- */
1072 
1073 static int
1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1075 {
1076 	union dscrptr *dscr;
1077 	uint32_t sector_size, dscr_size;
1078 	int error;
1079 
1080 	sector_size = ump->discinfo.sector_size;
1081 
1082 	/* loc is sectornr, len is in bytes */
1083 	error = EIO;
1084 	while (len) {
1085 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1086 		if (error)
1087 			return error;
1088 
1089 		/* blank block is a terminator */
1090 		if (dscr == NULL)
1091 			return 0;
1092 
1093 		/* TERM descriptor is a terminator */
1094 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1095 			free(dscr, M_UDFVOLD);
1096 			return 0;
1097 		}
1098 
1099 		/* process all others */
1100 		dscr_size = udf_tagsize(dscr, sector_size);
1101 		error = udf_process_vds_descriptor(ump, dscr);
1102 		if (error) {
1103 			free(dscr, M_UDFVOLD);
1104 			break;
1105 		}
1106 		assert((dscr_size % sector_size) == 0);
1107 
1108 		len -= dscr_size;
1109 		loc += dscr_size / sector_size;
1110 	}
1111 
1112 	return error;
1113 }
1114 
1115 
1116 int
1117 udf_read_vds_space(struct udf_mount *ump)
1118 {
1119 	/* struct udf_args *args = &ump->mount_args; */
1120 	struct anchor_vdp *anchor, *anchor2;
1121 	size_t size;
1122 	uint32_t main_loc, main_len;
1123 	uint32_t reserve_loc, reserve_len;
1124 	int error;
1125 
1126 	/*
1127 	 * read in VDS space provided by the anchors; if one descriptor read
1128 	 * fails, try the mirror sector.
1129 	 *
1130 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1131 	 * avoids the `compatibility features' of DirectCD that may confuse
1132 	 * stuff completely.
1133 	 */
1134 
1135 	anchor  = ump->anchors[0];
1136 	anchor2 = ump->anchors[1];
1137 	assert(anchor);
1138 
1139 	if (anchor2) {
1140 		size = sizeof(struct extent_ad);
1141 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1142 			anchor = anchor2;
1143 		/* reserve is specified to be a literal copy of main */
1144 	}
1145 
1146 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
1147 	main_len    = udf_rw32(anchor->main_vds_ex.len);
1148 
1149 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1150 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1151 
1152 	error = udf_read_vds_extent(ump, main_loc, main_len);
1153 	if (error) {
1154 		printf("UDF mount: reading in reserve VDS extent\n");
1155 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1156 	}
1157 
1158 	return error;
1159 }
1160 
1161 /* --------------------------------------------------------------------- */
1162 
1163 /*
1164  * Read in the logical volume integrity sequence pointed to by our logical
1165  * volume descriptor. Its a sequence that can be extended using fields in the
1166  * integrity descriptor itself. On sequential media only one is found, on
1167  * rewritable media a sequence of descriptors can be found as a form of
1168  * history keeping and on non sequential write-once media the chain is vital
1169  * to allow more and more descriptors to be written. The last descriptor
1170  * written in an extent needs to claim space for a new extent.
1171  */
1172 
1173 static int
1174 udf_retrieve_lvint(struct udf_mount *ump)
1175 {
1176 	union dscrptr *dscr;
1177 	struct logvol_int_desc *lvint;
1178 	struct udf_lvintq *trace;
1179 	uint32_t lb_size, lbnum, len;
1180 	int dscr_type, error, trace_len;
1181 
1182 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1183 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1184 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1185 
1186 	/* clean trace */
1187 	memset(ump->lvint_trace, 0,
1188 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1189 
1190 	trace_len    = 0;
1191 	trace        = ump->lvint_trace;
1192 	trace->start = lbnum;
1193 	trace->end   = lbnum + len/lb_size;
1194 	trace->pos   = 0;
1195 	trace->wpos  = 0;
1196 
1197 	lvint = NULL;
1198 	dscr  = NULL;
1199 	error = 0;
1200 	while (len) {
1201 		trace->pos  = lbnum - trace->start;
1202 		trace->wpos = trace->pos + 1;
1203 
1204 		/* read in our integrity descriptor */
1205 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1206 		if (!error) {
1207 			if (dscr == NULL) {
1208 				trace->wpos = trace->pos;
1209 				break;		/* empty terminates */
1210 			}
1211 			dscr_type = udf_rw16(dscr->tag.id);
1212 			if (dscr_type == TAGID_TERM) {
1213 				trace->wpos = trace->pos;
1214 				break;		/* clean terminator */
1215 			}
1216 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1217 				/* fatal... corrupt disc */
1218 				error = ENOENT;
1219 				break;
1220 			}
1221 			if (lvint)
1222 				free(lvint, M_UDFVOLD);
1223 			lvint = &dscr->lvid;
1224 			dscr = NULL;
1225 		} /* else hope for the best... maybe the next is ok */
1226 
1227 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1228 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1229 
1230 		/* proceed sequential */
1231 		lbnum += 1;
1232 		len    -= lb_size;
1233 
1234 		/* are we linking to a new piece? */
1235 		if (dscr && lvint->next_extent.len) {
1236 			len    = udf_rw32(lvint->next_extent.len);
1237 			lbnum = udf_rw32(lvint->next_extent.loc);
1238 
1239 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1240 				/* IEK! segment link full... */
1241 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
1242 				error = EINVAL;
1243 			} else {
1244 				trace++;
1245 				trace_len++;
1246 
1247 				trace->start = lbnum;
1248 				trace->end   = lbnum + len/lb_size;
1249 				trace->pos   = 0;
1250 				trace->wpos  = 0;
1251 			}
1252 		}
1253 	}
1254 
1255 	/* clean up the mess, esp. when there is an error */
1256 	if (dscr)
1257 		free(dscr, M_UDFVOLD);
1258 
1259 	if (error && lvint) {
1260 		free(lvint, M_UDFVOLD);
1261 		lvint = NULL;
1262 	}
1263 
1264 	if (!lvint)
1265 		error = ENOENT;
1266 
1267 	ump->logvol_integrity = lvint;
1268 	return error;
1269 }
1270 
1271 
1272 static int
1273 udf_loose_lvint_history(struct udf_mount *ump)
1274 {
1275 	union dscrptr **bufs, *dscr, *last_dscr;
1276 	struct udf_lvintq *trace, *in_trace, *out_trace;
1277 	struct logvol_int_desc *lvint;
1278 	uint32_t in_ext, in_pos, in_len;
1279 	uint32_t out_ext, out_wpos, out_len;
1280 	uint32_t lb_num;
1281 	uint32_t len, start;
1282 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
1283 	int losing;
1284 	int error;
1285 
1286 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1287 
1288 	/* search smallest extent */
1289 	trace = &ump->lvint_trace[0];
1290 	minext = trace->end - trace->start;
1291 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1292 		trace = &ump->lvint_trace[ext];
1293 		extlen = trace->end - trace->start;
1294 		if (extlen == 0)
1295 			break;
1296 		minext = MIN(minext, extlen);
1297 	}
1298 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
1299 	/* no sense wiping all */
1300 	if (losing == minext)
1301 		losing--;
1302 
1303 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1304 
1305 	/* get buffer for pieces */
1306 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1307 
1308 	in_ext    = 0;
1309 	in_pos    = losing;
1310 	in_trace  = &ump->lvint_trace[in_ext];
1311 	in_len    = in_trace->end - in_trace->start;
1312 	out_ext   = 0;
1313 	out_wpos  = 0;
1314 	out_trace = &ump->lvint_trace[out_ext];
1315 	out_len   = out_trace->end - out_trace->start;
1316 
1317 	last_dscr = NULL;
1318 	for(;;) {
1319 		out_trace->pos  = out_wpos;
1320 		out_trace->wpos = out_trace->pos;
1321 		if (in_pos >= in_len) {
1322 			in_ext++;
1323 			in_pos = 0;
1324 			in_trace = &ump->lvint_trace[in_ext];
1325 			in_len   = in_trace->end - in_trace->start;
1326 		}
1327 		if (out_wpos >= out_len) {
1328 			out_ext++;
1329 			out_wpos = 0;
1330 			out_trace = &ump->lvint_trace[out_ext];
1331 			out_len   = out_trace->end - out_trace->start;
1332 		}
1333 		/* copy overlap contents */
1334 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1335 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1336 		if (cpy_len == 0)
1337 			break;
1338 
1339 		/* copy */
1340 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1341 		for (cnt = 0; cnt < cpy_len; cnt++) {
1342 			/* read in our integrity descriptor */
1343 			lb_num = in_trace->start + in_pos + cnt;
1344 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1345 				&dscr);
1346 			if (error) {
1347 				/* copy last one */
1348 				dscr = last_dscr;
1349 			}
1350 			bufs[cnt] = dscr;
1351 			if (!error) {
1352 				if (dscr == NULL) {
1353 					out_trace->pos  = out_wpos + cnt;
1354 					out_trace->wpos = out_trace->pos;
1355 					break;		/* empty terminates */
1356 				}
1357 				dscr_type = udf_rw16(dscr->tag.id);
1358 				if (dscr_type == TAGID_TERM) {
1359 					out_trace->pos  = out_wpos + cnt;
1360 					out_trace->wpos = out_trace->pos;
1361 					break;		/* clean terminator */
1362 				}
1363 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1364 					panic(  "UDF integrity sequence "
1365 						"corrupted while mounted!\n");
1366 				}
1367 				last_dscr = dscr;
1368 			}
1369 		}
1370 
1371 		/* patch up if first entry was on error */
1372 		if (bufs[0] == NULL) {
1373 			for (cnt = 0; cnt < cpy_len; cnt++)
1374 				if (bufs[cnt] != NULL)
1375 					break;
1376 			last_dscr = bufs[cnt];
1377 			for (; cnt > 0; cnt--) {
1378 				bufs[cnt] = last_dscr;
1379 			}
1380 		}
1381 
1382 		/* glue + write out */
1383 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1384 		for (cnt = 0; cnt < cpy_len; cnt++) {
1385 			lb_num = out_trace->start + out_wpos + cnt;
1386 			lvint  = &bufs[cnt]->lvid;
1387 
1388 			/* set continuation */
1389 			len = 0;
1390 			start = 0;
1391 			if (out_wpos + cnt == out_len) {
1392 				/* get continuation */
1393 				trace = &ump->lvint_trace[out_ext+1];
1394 				len   = trace->end - trace->start;
1395 				start = trace->start;
1396 			}
1397 			lvint->next_extent.len = udf_rw32(len);
1398 			lvint->next_extent.loc = udf_rw32(start);
1399 
1400 			lb_num = trace->start + trace->wpos;
1401 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1402 				bufs[cnt], lb_num, lb_num);
1403 			DPRINTFIF(VOLUMES, error,
1404 				("error writing lvint lb_num\n"));
1405 		}
1406 
1407 		/* free non repeating descriptors */
1408 		last_dscr = NULL;
1409 		for (cnt = 0; cnt < cpy_len; cnt++) {
1410 			if (bufs[cnt] != last_dscr)
1411 				free(bufs[cnt], M_UDFVOLD);
1412 			last_dscr = bufs[cnt];
1413 		}
1414 
1415 		/* advance */
1416 		in_pos   += cpy_len;
1417 		out_wpos += cpy_len;
1418 	}
1419 
1420 	free(bufs, M_TEMP);
1421 
1422 	return 0;
1423 }
1424 
1425 
1426 static int
1427 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1428 {
1429 	struct udf_lvintq *trace;
1430 	struct timeval  now_v;
1431 	struct timespec now_s;
1432 	uint32_t sector;
1433 	int logvol_integrity;
1434 	int space, error;
1435 
1436 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1437 
1438 again:
1439 	/* get free space in last chunk */
1440 	trace = ump->lvint_trace;
1441 	while (trace->wpos > (trace->end - trace->start)) {
1442 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1443 				  "wpos = %d\n", trace->start, trace->end,
1444 				  trace->pos, trace->wpos));
1445 		trace++;
1446 	}
1447 
1448 	/* check if there is space to append */
1449 	space = (trace->end - trace->start) - trace->wpos;
1450 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1451 			  "space = %d\n", trace->start, trace->end, trace->pos,
1452 			  trace->wpos, space));
1453 
1454 	/* get state */
1455 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1456 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1457 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1458 			/* TODO extent LVINT space if possible */
1459 			return EROFS;
1460 		}
1461 	}
1462 
1463 	if (space < 1) {
1464 		if (lvflag & UDF_APPENDONLY_LVINT)
1465 			return EROFS;
1466 		/* loose history by re-writing extents */
1467 		error = udf_loose_lvint_history(ump);
1468 		if (error)
1469 			return error;
1470 		goto again;
1471 	}
1472 
1473 	/* update our integrity descriptor to identify us and timestamp it */
1474 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1475 	microtime(&now_v);
1476 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1477 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1478 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1479 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1480 
1481 	/* writeout integrity descriptor */
1482 	sector = trace->start + trace->wpos;
1483 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1484 			(union dscrptr *) ump->logvol_integrity,
1485 			sector, sector);
1486 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1487 	if (error)
1488 		return error;
1489 
1490 	/* advance write position */
1491 	trace->wpos++; space--;
1492 	if (space >= 1) {
1493 		/* append terminator */
1494 		sector = trace->start + trace->wpos;
1495 		error = udf_write_terminator(ump, sector);
1496 
1497 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1498 	}
1499 
1500 	space = (trace->end - trace->start) - trace->wpos;
1501 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1502 		"space = %d\n", trace->start, trace->end, trace->pos,
1503 		trace->wpos, space));
1504 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1505 		"successfull\n"));
1506 
1507 	return error;
1508 }
1509 
1510 /* --------------------------------------------------------------------- */
1511 
1512 static int
1513 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1514 {
1515 	union dscrptr        *dscr;
1516 	/* struct udf_args *args = &ump->mount_args; */
1517 	struct part_desc     *partd;
1518 	struct part_hdr_desc *parthdr;
1519 	struct udf_bitmap    *bitmap;
1520 	uint32_t phys_part;
1521 	uint32_t lb_num, len;
1522 	int error, dscr_type;
1523 
1524 	/* unallocated space map */
1525 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1526 		partd = ump->partitions[phys_part];
1527 		if (partd == NULL)
1528 			continue;
1529 		parthdr = &partd->_impl_use.part_hdr;
1530 
1531 		lb_num  = udf_rw32(partd->start_loc);
1532 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1533 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
1534 		if (len == 0)
1535 			continue;
1536 
1537 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1538 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1539 		if (!error && dscr) {
1540 			/* analyse */
1541 			dscr_type = udf_rw16(dscr->tag.id);
1542 			if (dscr_type == TAGID_SPACE_BITMAP) {
1543 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1544 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1545 
1546 				/* fill in ump->part_unalloc_bits */
1547 				bitmap = &ump->part_unalloc_bits[phys_part];
1548 				bitmap->blob  = (uint8_t *) dscr;
1549 				bitmap->bits  = dscr->sbd.data;
1550 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1551 				bitmap->pages = NULL;	/* TODO */
1552 				bitmap->data_pos     = 0;
1553 				bitmap->metadata_pos = 0;
1554 			} else {
1555 				free(dscr, M_UDFVOLD);
1556 
1557 				printf( "UDF mount: error reading unallocated "
1558 					"space bitmap\n");
1559 				return EROFS;
1560 			}
1561 		} else {
1562 			/* blank not allowed */
1563 			printf("UDF mount: blank unallocated space bitmap\n");
1564 			return EROFS;
1565 		}
1566 	}
1567 
1568 	/* unallocated space table (not supported) */
1569 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1570 		partd = ump->partitions[phys_part];
1571 		if (partd == NULL)
1572 			continue;
1573 		parthdr = &partd->_impl_use.part_hdr;
1574 
1575 		len     = udf_rw32(parthdr->unalloc_space_table.len);
1576 		if (len) {
1577 			printf("UDF mount: space tables not supported\n");
1578 			return EROFS;
1579 		}
1580 	}
1581 
1582 	/* freed space map */
1583 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1584 		partd = ump->partitions[phys_part];
1585 		if (partd == NULL)
1586 			continue;
1587 		parthdr = &partd->_impl_use.part_hdr;
1588 
1589 		/* freed space map */
1590 		lb_num  = udf_rw32(partd->start_loc);
1591 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1592 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
1593 		if (len == 0)
1594 			continue;
1595 
1596 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1597 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1598 		if (!error && dscr) {
1599 			/* analyse */
1600 			dscr_type = udf_rw16(dscr->tag.id);
1601 			if (dscr_type == TAGID_SPACE_BITMAP) {
1602 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1603 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
1604 
1605 				/* fill in ump->part_freed_bits */
1606 				bitmap = &ump->part_unalloc_bits[phys_part];
1607 				bitmap->blob  = (uint8_t *) dscr;
1608 				bitmap->bits  = dscr->sbd.data;
1609 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1610 				bitmap->pages = NULL;	/* TODO */
1611 				bitmap->data_pos     = 0;
1612 				bitmap->metadata_pos = 0;
1613 			} else {
1614 				free(dscr, M_UDFVOLD);
1615 
1616 				printf( "UDF mount: error reading freed  "
1617 					"space bitmap\n");
1618 				return EROFS;
1619 			}
1620 		} else {
1621 			/* blank not allowed */
1622 			printf("UDF mount: blank freed space bitmap\n");
1623 			return EROFS;
1624 		}
1625 	}
1626 
1627 	/* freed space table (not supported) */
1628 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1629 		partd = ump->partitions[phys_part];
1630 		if (partd == NULL)
1631 			continue;
1632 		parthdr = &partd->_impl_use.part_hdr;
1633 
1634 		len     = udf_rw32(parthdr->freed_space_table.len);
1635 		if (len) {
1636 			printf("UDF mount: space tables not supported\n");
1637 			return EROFS;
1638 		}
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 
1645 /* TODO implement async writeout */
1646 int
1647 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1648 {
1649 	union dscrptr        *dscr;
1650 	/* struct udf_args *args = &ump->mount_args; */
1651 	struct part_desc     *partd;
1652 	struct part_hdr_desc *parthdr;
1653 	uint32_t phys_part;
1654 	uint32_t lb_num, len, ptov;
1655 	int error_all, error;
1656 
1657 	error_all = 0;
1658 	/* unallocated space map */
1659 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1660 		partd = ump->partitions[phys_part];
1661 		if (partd == NULL)
1662 			continue;
1663 		parthdr = &partd->_impl_use.part_hdr;
1664 
1665 		ptov   = udf_rw32(partd->start_loc);
1666 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1667 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
1668 		if (len == 0)
1669 			continue;
1670 
1671 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1672 			lb_num + ptov));
1673 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1674 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1675 				(union dscrptr *) dscr,
1676 				ptov + lb_num, lb_num);
1677 		if (error) {
1678 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1679 			error_all = error;
1680 		}
1681 	}
1682 
1683 	/* freed space map */
1684 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1685 		partd = ump->partitions[phys_part];
1686 		if (partd == NULL)
1687 			continue;
1688 		parthdr = &partd->_impl_use.part_hdr;
1689 
1690 		/* freed space map */
1691 		ptov   = udf_rw32(partd->start_loc);
1692 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1693 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
1694 		if (len == 0)
1695 			continue;
1696 
1697 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1698 			lb_num + ptov));
1699 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1700 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1701 				(union dscrptr *) dscr,
1702 				ptov + lb_num, lb_num);
1703 		if (error) {
1704 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1705 			error_all = error;
1706 		}
1707 	}
1708 
1709 	return error_all;
1710 }
1711 
1712 
1713 static int
1714 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1715 {
1716 	struct udf_node	     *bitmap_node;
1717 	union dscrptr        *dscr;
1718 	struct udf_bitmap    *bitmap;
1719 	uint64_t inflen;
1720 	int error, dscr_type;
1721 
1722 	bitmap_node = ump->metadatabitmap_node;
1723 
1724 	/* only read in when metadata bitmap node is read in */
1725 	if (bitmap_node == NULL)
1726 		return 0;
1727 
1728 	if (bitmap_node->fe) {
1729 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1730 	} else {
1731 		KASSERT(bitmap_node->efe);
1732 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1733 	}
1734 
1735 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1736 		"%"PRIu64" bytes\n", inflen));
1737 
1738 	/* allocate space for bitmap */
1739 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1740 	if (!dscr)
1741 		return ENOMEM;
1742 
1743 	/* set vnode type to regular file or we can't read from it! */
1744 	bitmap_node->vnode->v_type = VREG;
1745 
1746 	/* read in complete metadata bitmap file */
1747 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1748 			dscr,
1749 			inflen, 0,
1750 			UIO_SYSSPACE,
1751 			IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1752 			NULL, NULL);
1753 	if (error) {
1754 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1755 		goto errorout;
1756 	}
1757 
1758 	/* analyse */
1759 	dscr_type = udf_rw16(dscr->tag.id);
1760 	if (dscr_type == TAGID_SPACE_BITMAP) {
1761 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1762 		ump->metadata_unalloc_dscr = &dscr->sbd;
1763 
1764 		/* fill in bitmap bits */
1765 		bitmap = &ump->metadata_unalloc_bits;
1766 		bitmap->blob  = (uint8_t *) dscr;
1767 		bitmap->bits  = dscr->sbd.data;
1768 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1769 		bitmap->pages = NULL;	/* TODO */
1770 		bitmap->data_pos     = 0;
1771 		bitmap->metadata_pos = 0;
1772 	} else {
1773 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1774 		goto errorout;
1775 	}
1776 
1777 	return 0;
1778 
1779 errorout:
1780 	free(dscr, M_UDFVOLD);
1781 	printf( "UDF mount: error reading unallocated "
1782 		"space bitmap for metadata partition\n");
1783 	return EROFS;
1784 }
1785 
1786 
1787 int
1788 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1789 {
1790 	struct udf_node	     *bitmap_node;
1791 	union dscrptr        *dscr;
1792 	uint64_t new_inflen;
1793 	int dummy, error;
1794 
1795 	bitmap_node = ump->metadatabitmap_node;
1796 
1797 	/* only write out when metadata bitmap node is known */
1798 	if (bitmap_node == NULL)
1799 		return 0;
1800 
1801 	if (!bitmap_node->fe) {
1802 		KASSERT(bitmap_node->efe);
1803 	}
1804 
1805 	/* reduce length to zero */
1806 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1807 	new_inflen = udf_tagsize(dscr, 1);
1808 
1809 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1810 		" for %"PRIu64" bytes\n", new_inflen));
1811 
1812 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1813 	if (error)
1814 		printf("Error resizing metadata space bitmap\n");
1815 
1816 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1817 			dscr,
1818 			new_inflen, 0,
1819 			UIO_SYSSPACE,
1820 			IO_ALTSEMANTICS, FSCRED,
1821 			NULL, NULL);
1822 
1823 	bitmap_node->i_flags |= IN_MODIFIED;
1824 	error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1825 	if (error == 0)
1826 		error = VOP_FSYNC(bitmap_node->vnode,
1827 				FSCRED, FSYNC_WAIT, 0, 0);
1828 
1829 	if (error)
1830 		printf( "Error writing out metadata partition unalloced "
1831 			"space bitmap!\n");
1832 
1833 	return error;
1834 }
1835 
1836 
1837 /* --------------------------------------------------------------------- */
1838 
1839 /*
1840  * Checks if ump's vds information is correct and complete
1841  */
1842 
1843 int
1844 udf_process_vds(struct udf_mount *ump) {
1845 	union udf_pmap *mapping;
1846 	/* struct udf_args *args = &ump->mount_args; */
1847 	struct logvol_int_desc *lvint;
1848 	struct udf_logvol_info *lvinfo;
1849 	uint32_t n_pm;
1850 	uint8_t *pmap_pos;
1851 	char *domain_name, *map_name;
1852 	const char *check_name;
1853 	char bits[128];
1854 	int pmap_stype, pmap_size;
1855 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1856 	int n_phys, n_virt, n_spar, n_meta;
1857 	int len;
1858 
1859 	if (ump == NULL)
1860 		return ENOENT;
1861 
1862 	/* we need at least an anchor (trivial, but for safety) */
1863 	if (ump->anchors[0] == NULL)
1864 		return EINVAL;
1865 
1866 	/* we need at least one primary and one logical volume descriptor */
1867 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1868 		return EINVAL;
1869 
1870 	/* we need at least one partition descriptor */
1871 	if (ump->partitions[0] == NULL)
1872 		return EINVAL;
1873 
1874 	/* check logical volume sector size verses device sector size */
1875 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1876 		printf("UDF mount: format violation, lb_size != sector size\n");
1877 		return EINVAL;
1878 	}
1879 
1880 	/* check domain name */
1881 	domain_name = ump->logical_vol->domain_id.id;
1882 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1883 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1884 		return EINVAL;
1885 	}
1886 
1887 	/* retrieve logical volume integrity sequence */
1888 	(void)udf_retrieve_lvint(ump);
1889 
1890 	/*
1891 	 * We need at least one logvol integrity descriptor recorded.  Note
1892 	 * that its OK to have an open logical volume integrity here. The VAT
1893 	 * will close/update the integrity.
1894 	 */
1895 	if (ump->logvol_integrity == NULL)
1896 		return EINVAL;
1897 
1898 	/* process derived structures */
1899 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1900 	lvint  = ump->logvol_integrity;
1901 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1902 	ump->logvol_info = lvinfo;
1903 
1904 	/* TODO check udf versions? */
1905 
1906 	/*
1907 	 * check logvol mappings: effective virt->log partmap translation
1908 	 * check and recording of the mapping results. Saves expensive
1909 	 * strncmp() in tight places.
1910 	 */
1911 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1912 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1913 	pmap_pos =  ump->logical_vol->maps;
1914 
1915 	if (n_pm > UDF_PMAPS) {
1916 		printf("UDF mount: too many mappings\n");
1917 		return EINVAL;
1918 	}
1919 
1920 	/* count types and set partition numbers */
1921 	ump->data_part = ump->node_part = ump->fids_part = 0;
1922 	n_phys = n_virt = n_spar = n_meta = 0;
1923 	for (log_part = 0; log_part < n_pm; log_part++) {
1924 		mapping = (union udf_pmap *) pmap_pos;
1925 		pmap_stype = pmap_pos[0];
1926 		pmap_size  = pmap_pos[1];
1927 		switch (pmap_stype) {
1928 		case 1:	/* physical mapping */
1929 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1930 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1931 			pmap_type = UDF_VTOP_TYPE_PHYS;
1932 			n_phys++;
1933 			ump->data_part = log_part;
1934 			ump->node_part = log_part;
1935 			ump->fids_part = log_part;
1936 			break;
1937 		case 2: /* virtual/sparable/meta mapping */
1938 			map_name  = mapping->pm2.part_id.id;
1939 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1940 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1941 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1942 			len = UDF_REGID_ID_SIZE;
1943 
1944 			check_name = "*UDF Virtual Partition";
1945 			if (strncmp(map_name, check_name, len) == 0) {
1946 				pmap_type = UDF_VTOP_TYPE_VIRT;
1947 				n_virt++;
1948 				ump->node_part = log_part;
1949 				break;
1950 			}
1951 			check_name = "*UDF Sparable Partition";
1952 			if (strncmp(map_name, check_name, len) == 0) {
1953 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1954 				n_spar++;
1955 				ump->data_part = log_part;
1956 				ump->node_part = log_part;
1957 				ump->fids_part = log_part;
1958 				break;
1959 			}
1960 			check_name = "*UDF Metadata Partition";
1961 			if (strncmp(map_name, check_name, len) == 0) {
1962 				pmap_type = UDF_VTOP_TYPE_META;
1963 				n_meta++;
1964 				ump->node_part = log_part;
1965 				ump->fids_part = log_part;
1966 				break;
1967 			}
1968 			break;
1969 		default:
1970 			return EINVAL;
1971 		}
1972 
1973 		/*
1974 		 * BUGALERT: some rogue implementations use random physical
1975 		 * partition numbers to break other implementations so lookup
1976 		 * the number.
1977 		 */
1978 		phys_part = udf_find_raw_phys(ump, raw_phys_part);
1979 
1980 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1981 		    raw_phys_part, phys_part, pmap_type));
1982 
1983 		if (phys_part == UDF_PARTITIONS)
1984 			return EINVAL;
1985 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1986 			return EINVAL;
1987 
1988 		ump->vtop   [log_part] = phys_part;
1989 		ump->vtop_tp[log_part] = pmap_type;
1990 
1991 		pmap_pos += pmap_size;
1992 	}
1993 	/* not winning the beauty contest */
1994 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1995 
1996 	/* test some basic UDF assertions/requirements */
1997 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1998 		return EINVAL;
1999 
2000 	if (n_virt) {
2001 		if ((n_phys == 0) || n_spar || n_meta)
2002 			return EINVAL;
2003 	}
2004 	if (n_spar + n_phys == 0)
2005 		return EINVAL;
2006 
2007 	/* select allocation type for each logical partition */
2008 	for (log_part = 0; log_part < n_pm; log_part++) {
2009 		maps_on = ump->vtop[log_part];
2010 		switch (ump->vtop_tp[log_part]) {
2011 		case UDF_VTOP_TYPE_PHYS :
2012 			assert(maps_on == log_part);
2013 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2014 			break;
2015 		case UDF_VTOP_TYPE_VIRT :
2016 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2017 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2018 			break;
2019 		case UDF_VTOP_TYPE_SPARABLE :
2020 			assert(maps_on == log_part);
2021 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2022 			break;
2023 		case UDF_VTOP_TYPE_META :
2024 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2025 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2026 				/* special case for UDF 2.60 */
2027 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2028 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2029 			}
2030 			break;
2031 		default:
2032 			panic("bad alloction type in udf's ump->vtop\n");
2033 		}
2034 	}
2035 
2036 	/* determine logical volume open/closure actions */
2037 	if (n_virt) {
2038 		ump->lvopen  = 0;
2039 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2040 			ump->lvopen |= UDF_OPEN_SESSION ;
2041 		ump->lvclose = UDF_WRITE_VAT;
2042 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2043 			ump->lvclose |= UDF_CLOSE_SESSION;
2044 	} else {
2045 		/* `normal' rewritable or non sequential media */
2046 		ump->lvopen  = UDF_WRITE_LVINT;
2047 		ump->lvclose = UDF_WRITE_LVINT;
2048 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2049 			ump->lvopen  |=  UDF_APPENDONLY_LVINT;
2050 		if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2051 			ump->lvopen  &= ~UDF_APPENDONLY_LVINT;
2052 	}
2053 
2054 	/*
2055 	 * Determine sheduler error behaviour. For virtual partitions, update
2056 	 * the trackinfo; for sparable partitions replace a whole block on the
2057 	 * sparable table. Allways requeue.
2058 	 */
2059 	ump->lvreadwrite = 0;
2060 	if (n_virt)
2061 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2062 	if (n_spar)
2063 		ump->lvreadwrite = UDF_REMAP_BLOCK;
2064 
2065 	/*
2066 	 * Select our sheduler
2067 	 */
2068 	ump->strategy = &udf_strat_rmw;
2069 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2070 		ump->strategy = &udf_strat_sequential;
2071 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2072 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2073 			ump->strategy = &udf_strat_direct;
2074 	if (n_spar)
2075 		ump->strategy = &udf_strat_rmw;
2076 
2077 #if 0
2078 	/* read-only access won't benefit from the other shedulers */
2079 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2080 		ump->strategy = &udf_strat_direct;
2081 #endif
2082 
2083 	/* print results */
2084 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
2085 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2086 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
2087 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2088 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
2089 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2090 
2091 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2092 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
2093 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2094 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2095 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2096 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2097 
2098 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2099 		(ump->strategy == &udf_strat_direct) ? "Direct" :
2100 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
2101 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2102 
2103 	/* signal its OK for now */
2104 	return 0;
2105 }
2106 
2107 /* --------------------------------------------------------------------- */
2108 
2109 /*
2110  * Update logical volume name in all structures that keep a record of it. We
2111  * use memmove since each of them might be specified as a source.
2112  *
2113  * Note that it doesn't update the VAT structure!
2114  */
2115 
2116 static void
2117 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2118 {
2119 	struct logvol_desc     *lvd = NULL;
2120 	struct fileset_desc    *fsd = NULL;
2121 	struct udf_lv_info     *lvi = NULL;
2122 
2123 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2124 	lvd = ump->logical_vol;
2125 	fsd = ump->fileset_desc;
2126 	if (ump->implementation)
2127 		lvi = &ump->implementation->_impl_use.lv_info;
2128 
2129 	/* logvol's id might be specified as origional so use memmove here */
2130 	memmove(lvd->logvol_id, logvol_id, 128);
2131 	if (fsd)
2132 		memmove(fsd->logvol_id, logvol_id, 128);
2133 	if (lvi)
2134 		memmove(lvi->logvol_id, logvol_id, 128);
2135 }
2136 
2137 /* --------------------------------------------------------------------- */
2138 
2139 void
2140 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2141 	uint32_t sector)
2142 {
2143 	assert(ump->logical_vol);
2144 
2145 	tag->id 		= udf_rw16(tagid);
2146 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
2147 	tag->cksum		= 0;
2148 	tag->reserved		= 0;
2149 	tag->serial_num		= ump->logical_vol->tag.serial_num;
2150 	tag->tag_loc            = udf_rw32(sector);
2151 }
2152 
2153 
2154 uint64_t
2155 udf_advance_uniqueid(struct udf_mount *ump)
2156 {
2157 	uint64_t unique_id;
2158 
2159 	mutex_enter(&ump->logvol_mutex);
2160 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2161 	if (unique_id < 0x10)
2162 		unique_id = 0x10;
2163 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2164 	mutex_exit(&ump->logvol_mutex);
2165 
2166 	return unique_id;
2167 }
2168 
2169 
2170 static void
2171 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2172 {
2173 	struct udf_mount *ump = udf_node->ump;
2174 	uint32_t num_dirs, num_files;
2175 	int udf_file_type;
2176 
2177 	/* get file type */
2178 	if (udf_node->fe) {
2179 		udf_file_type = udf_node->fe->icbtag.file_type;
2180 	} else {
2181 		udf_file_type = udf_node->efe->icbtag.file_type;
2182 	}
2183 
2184 	/* adjust file count */
2185 	mutex_enter(&ump->allocate_mutex);
2186 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2187 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
2188 		ump->logvol_info->num_directories =
2189 			udf_rw32((num_dirs + sign));
2190 	} else {
2191 		num_files = udf_rw32(ump->logvol_info->num_files);
2192 		ump->logvol_info->num_files =
2193 			udf_rw32((num_files + sign));
2194 	}
2195 	mutex_exit(&ump->allocate_mutex);
2196 }
2197 
2198 
2199 void
2200 udf_osta_charset(struct charspec *charspec)
2201 {
2202 	memset(charspec, 0, sizeof(struct charspec));
2203 	charspec->type = 0;
2204 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2205 }
2206 
2207 
2208 /* first call udf_set_regid and then the suffix */
2209 void
2210 udf_set_regid(struct regid *regid, char const *name)
2211 {
2212 	memset(regid, 0, sizeof(struct regid));
2213 	regid->flags    = 0;		/* not dirty and not protected */
2214 	strcpy((char *) regid->id, name);
2215 }
2216 
2217 
2218 void
2219 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2220 {
2221 	uint16_t *ver;
2222 
2223 	ver  = (uint16_t *) regid->id_suffix;
2224 	*ver = ump->logvol_info->min_udf_readver;
2225 }
2226 
2227 
2228 void
2229 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2230 {
2231 	uint16_t *ver;
2232 
2233 	ver  = (uint16_t *) regid->id_suffix;
2234 	*ver = ump->logvol_info->min_udf_readver;
2235 
2236 	regid->id_suffix[2] = 4;	/* unix */
2237 	regid->id_suffix[3] = 8;	/* NetBSD */
2238 }
2239 
2240 
2241 void
2242 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2243 {
2244 	regid->id_suffix[0] = 4;	/* unix */
2245 	regid->id_suffix[1] = 8;	/* NetBSD */
2246 }
2247 
2248 
2249 void
2250 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2251 {
2252 	regid->id_suffix[0] = APP_VERSION_MAIN;
2253 	regid->id_suffix[1] = APP_VERSION_SUB;
2254 }
2255 
2256 static int
2257 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2258 	struct long_ad *parent, uint64_t unique_id)
2259 {
2260 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
2261 	int fidsize = 40;
2262 
2263 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2264 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
2265 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2266 	fid->icb = *parent;
2267 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2268 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2269 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2270 
2271 	return fidsize;
2272 }
2273 
2274 /* --------------------------------------------------------------------- */
2275 
2276 /*
2277  * Extended attribute support. UDF knows of 3 places for extended attributes:
2278  *
2279  * (a) inside the file's (e)fe in the length of the extended attribute area
2280  * before the allocation descriptors/filedata
2281  *
2282  * (b) in a file referenced by (e)fe->ext_attr_icb and
2283  *
2284  * (c) in the e(fe)'s associated stream directory that can hold various
2285  * sub-files. In the stream directory a few fixed named subfiles are reserved
2286  * for NT/Unix ACL's and OS/2 attributes.
2287  *
2288  * NOTE: Extended attributes are read randomly but allways written
2289  * *atomicaly*. For ACL's this interface is propably different but not known
2290  * to me yet.
2291  *
2292  * Order of extended attributes in a space :
2293  *   ECMA 167 EAs
2294  *   Non block aligned Implementation Use EAs
2295  *   Block aligned Implementation Use EAs
2296  *   Application Use EAs
2297  */
2298 
2299 static int
2300 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2301 {
2302 	uint16_t   *spos;
2303 
2304 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2305 		/* checksum valid? */
2306 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2307 		spos = (uint16_t *) implext->data;
2308 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2309 			return EINVAL;
2310 	}
2311 	return 0;
2312 }
2313 
2314 static void
2315 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2316 {
2317 	uint16_t   *spos;
2318 
2319 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2320 		/* set checksum */
2321 		spos = (uint16_t *) implext->data;
2322 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2323 	}
2324 }
2325 
2326 
2327 int
2328 udf_extattr_search_intern(struct udf_node *node,
2329 	uint32_t sattr, char const *sattrname,
2330 	uint32_t *offsetp, uint32_t *lengthp)
2331 {
2332 	struct extattrhdr_desc    *eahdr;
2333 	struct extattr_entry      *attrhdr;
2334 	struct impl_extattr_entry *implext;
2335 	uint32_t    offset, a_l, sector_size;
2336 	 int32_t    l_ea;
2337 	uint8_t    *pos;
2338 	int         error;
2339 
2340 	/* get mountpoint */
2341 	sector_size = node->ump->discinfo.sector_size;
2342 
2343 	/* get information from fe/efe */
2344 	if (node->fe) {
2345 		l_ea  = udf_rw32(node->fe->l_ea);
2346 		eahdr = (struct extattrhdr_desc *) node->fe->data;
2347 	} else {
2348 		assert(node->efe);
2349 		l_ea  = udf_rw32(node->efe->l_ea);
2350 		eahdr = (struct extattrhdr_desc *) node->efe->data;
2351 	}
2352 
2353 	/* something recorded here? */
2354 	if (l_ea == 0)
2355 		return ENOENT;
2356 
2357 	/* check extended attribute tag; what to do if it fails? */
2358 	error = udf_check_tag(eahdr);
2359 	if (error)
2360 		return EINVAL;
2361 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2362 		return EINVAL;
2363 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2364 	if (error)
2365 		return EINVAL;
2366 
2367 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2368 
2369 	/* looking for Ecma-167 attributes? */
2370 	offset = sizeof(struct extattrhdr_desc);
2371 
2372 	/* looking for either implemenation use or application use */
2373 	if (sattr == 2048) {				/* [4/48.10.8] */
2374 		offset = udf_rw32(eahdr->impl_attr_loc);
2375 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2376 			return ENOENT;
2377 	}
2378 	if (sattr == 65536) {				/* [4/48.10.9] */
2379 		offset = udf_rw32(eahdr->appl_attr_loc);
2380 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2381 			return ENOENT;
2382 	}
2383 
2384 	/* paranoia check offset and l_ea */
2385 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2386 		return EINVAL;
2387 
2388 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2389 
2390 	/* find our extended attribute  */
2391 	l_ea -= offset;
2392 	pos = (uint8_t *) eahdr + offset;
2393 
2394 	while (l_ea >= sizeof(struct extattr_entry)) {
2395 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2396 		attrhdr = (struct extattr_entry *) pos;
2397 		implext = (struct impl_extattr_entry *) pos;
2398 
2399 		/* get complete attribute length and check for roque values */
2400 		a_l = udf_rw32(attrhdr->a_l);
2401 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2402 				udf_rw32(attrhdr->type),
2403 				attrhdr->subtype, a_l, l_ea));
2404 		if ((a_l == 0) || (a_l > l_ea))
2405 			return EINVAL;
2406 
2407 		if (attrhdr->type != sattr)
2408 			goto next_attribute;
2409 
2410 		/* we might have found it! */
2411 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
2412 			*offsetp = offset;
2413 			*lengthp = a_l;
2414 			return 0;		/* success */
2415 		}
2416 
2417 		/*
2418 		 * Implementation use and application use extended attributes
2419 		 * have a name to identify. They share the same structure only
2420 		 * UDF implementation use extended attributes have a checksum
2421 		 * we need to check
2422 		 */
2423 
2424 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2425 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
2426 			/* we have found our appl/implementation attribute */
2427 			*offsetp = offset;
2428 			*lengthp = a_l;
2429 			return 0;		/* success */
2430 		}
2431 
2432 next_attribute:
2433 		/* next attribute */
2434 		pos    += a_l;
2435 		l_ea   -= a_l;
2436 		offset += a_l;
2437 	}
2438 	/* not found */
2439 	return ENOENT;
2440 }
2441 
2442 
2443 static void
2444 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2445 	struct extattr_entry *extattr)
2446 {
2447 	struct file_entry      *fe;
2448 	struct extfile_entry   *efe;
2449 	struct extattrhdr_desc *extattrhdr;
2450 	struct impl_extattr_entry *implext;
2451 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2452 	uint32_t *l_eap, l_ad;
2453 	uint16_t *spos;
2454 	uint8_t *bpos, *data;
2455 
2456 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2457 		fe    = &dscr->fe;
2458 		data  = fe->data;
2459 		l_eap = &fe->l_ea;
2460 		l_ad  = udf_rw32(fe->l_ad);
2461 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2462 		efe   = &dscr->efe;
2463 		data  = efe->data;
2464 		l_eap = &efe->l_ea;
2465 		l_ad  = udf_rw32(efe->l_ad);
2466 	} else {
2467 		panic("Bad tag passed to udf_extattr_insert_internal");
2468 	}
2469 
2470 	/* can't append already written to file descriptors yet */
2471 	assert(l_ad == 0);
2472 	__USE(l_ad);
2473 
2474 	/* should have a header! */
2475 	extattrhdr = (struct extattrhdr_desc *) data;
2476 	l_ea = udf_rw32(*l_eap);
2477 	if (l_ea == 0) {
2478 		/* create empty extended attribute header */
2479 		exthdr_len = sizeof(struct extattrhdr_desc);
2480 
2481 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2482 			/* loc */ 0);
2483 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2484 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2485 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
2486 
2487 		/* record extended attribute header length */
2488 		l_ea = exthdr_len;
2489 		*l_eap = udf_rw32(l_ea);
2490 	}
2491 
2492 	/* extract locations */
2493 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2494 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2495 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2496 		impl_attr_loc = l_ea;
2497 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2498 		appl_attr_loc = l_ea;
2499 
2500 	/* Ecma 167 EAs */
2501 	if (udf_rw32(extattr->type) < 2048) {
2502 		assert(impl_attr_loc == l_ea);
2503 		assert(appl_attr_loc == l_ea);
2504 	}
2505 
2506 	/* implementation use extended attributes */
2507 	if (udf_rw32(extattr->type) == 2048) {
2508 		assert(appl_attr_loc == l_ea);
2509 
2510 		/* calculate and write extended attribute header checksum */
2511 		implext = (struct impl_extattr_entry *) extattr;
2512 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
2513 		spos = (uint16_t *) implext->data;
2514 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2515 	}
2516 
2517 	/* application use extended attributes */
2518 	assert(udf_rw32(extattr->type) != 65536);
2519 	assert(appl_attr_loc == l_ea);
2520 
2521 	/* append the attribute at the end of the current space */
2522 	bpos = data + udf_rw32(*l_eap);
2523 	a_l  = udf_rw32(extattr->a_l);
2524 
2525 	/* update impl. attribute locations */
2526 	if (udf_rw32(extattr->type) < 2048) {
2527 		impl_attr_loc = l_ea + a_l;
2528 		appl_attr_loc = l_ea + a_l;
2529 	}
2530 	if (udf_rw32(extattr->type) == 2048) {
2531 		appl_attr_loc = l_ea + a_l;
2532 	}
2533 
2534 	/* copy and advance */
2535 	memcpy(bpos, extattr, a_l);
2536 	l_ea += a_l;
2537 	*l_eap = udf_rw32(l_ea);
2538 
2539 	/* do the `dance` again backwards */
2540 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2541 		if (impl_attr_loc == l_ea)
2542 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2543 		if (appl_attr_loc == l_ea)
2544 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2545 	}
2546 
2547 	/* store offsets */
2548 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2549 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2550 }
2551 
2552 
2553 /* --------------------------------------------------------------------- */
2554 
2555 static int
2556 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2557 {
2558 	struct udf_mount       *ump;
2559 	struct udf_logvol_info *lvinfo;
2560 	struct impl_extattr_entry     *implext;
2561 	struct vatlvext_extattr_entry  lvext;
2562 	const char *extstr = "*UDF VAT LVExtension";
2563 	uint64_t    vat_uniqueid;
2564 	uint32_t    offset, a_l;
2565 	uint8_t    *ea_start, *lvextpos;
2566 	int         error;
2567 
2568 	/* get mountpoint and lvinfo */
2569 	ump    = vat_node->ump;
2570 	lvinfo = ump->logvol_info;
2571 
2572 	/* get information from fe/efe */
2573 	if (vat_node->fe) {
2574 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2575 		ea_start     = vat_node->fe->data;
2576 	} else {
2577 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2578 		ea_start     = vat_node->efe->data;
2579 	}
2580 
2581 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2582 	if (error)
2583 		return error;
2584 
2585 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2586 	error = udf_impl_extattr_check(implext);
2587 	if (error)
2588 		return error;
2589 
2590 	/* paranoia */
2591 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2592 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2593 		return EINVAL;
2594 	}
2595 
2596 	/*
2597 	 * we have found our "VAT LVExtension attribute. BUT due to a
2598 	 * bug in the specification it might not be word aligned so
2599 	 * copy first to avoid panics on some machines (!!)
2600 	 */
2601 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2602 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2603 	memcpy(&lvext, lvextpos, sizeof(lvext));
2604 
2605 	/* check if it was updated the last time */
2606 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2607 		lvinfo->num_files       = lvext.num_files;
2608 		lvinfo->num_directories = lvext.num_directories;
2609 		udf_update_logvolname(ump, lvext.logvol_id);
2610 	} else {
2611 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2612 		/* replace VAT LVExt by free space EA */
2613 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2614 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2615 		udf_calc_impl_extattr_checksum(implext);
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 
2622 static int
2623 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2624 {
2625 	struct udf_mount       *ump;
2626 	struct udf_logvol_info *lvinfo;
2627 	struct impl_extattr_entry     *implext;
2628 	struct vatlvext_extattr_entry  lvext;
2629 	const char *extstr = "*UDF VAT LVExtension";
2630 	uint64_t    vat_uniqueid;
2631 	uint32_t    offset, a_l;
2632 	uint8_t    *ea_start, *lvextpos;
2633 	int         error;
2634 
2635 	/* get mountpoint and lvinfo */
2636 	ump    = vat_node->ump;
2637 	lvinfo = ump->logvol_info;
2638 
2639 	/* get information from fe/efe */
2640 	if (vat_node->fe) {
2641 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2642 		ea_start     = vat_node->fe->data;
2643 	} else {
2644 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2645 		ea_start     = vat_node->efe->data;
2646 	}
2647 
2648 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2649 	if (error)
2650 		return error;
2651 	/* found, it existed */
2652 
2653 	/* paranoia */
2654 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2655 	error = udf_impl_extattr_check(implext);
2656 	if (error) {
2657 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2658 		return error;
2659 	}
2660 	/* it is correct */
2661 
2662 	/*
2663 	 * we have found our "VAT LVExtension attribute. BUT due to a
2664 	 * bug in the specification it might not be word aligned so
2665 	 * copy first to avoid panics on some machines (!!)
2666 	 */
2667 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2668 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2669 
2670 	lvext.unique_id_chk   = vat_uniqueid;
2671 	lvext.num_files       = lvinfo->num_files;
2672 	lvext.num_directories = lvinfo->num_directories;
2673 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2674 
2675 	memcpy(lvextpos, &lvext, sizeof(lvext));
2676 
2677 	return 0;
2678 }
2679 
2680 /* --------------------------------------------------------------------- */
2681 
2682 int
2683 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2684 {
2685 	struct udf_mount *ump = vat_node->ump;
2686 
2687 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2688 		return EINVAL;
2689 
2690 	memcpy(blob, ump->vat_table + offset, size);
2691 	return 0;
2692 }
2693 
2694 int
2695 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2696 {
2697 	struct udf_mount *ump = vat_node->ump;
2698 	uint32_t offset_high;
2699 	uint8_t *new_vat_table;
2700 
2701 	/* extent VAT allocation if needed */
2702 	offset_high = offset + size;
2703 	if (offset_high >= ump->vat_table_alloc_len) {
2704 		/* realloc */
2705 		new_vat_table = realloc(ump->vat_table,
2706 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2707 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
2708 		if (!new_vat_table) {
2709 			printf("udf_vat_write: can't extent VAT, out of mem\n");
2710 			return ENOMEM;
2711 		}
2712 		ump->vat_table = new_vat_table;
2713 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2714 	}
2715 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2716 
2717 	memcpy(ump->vat_table + offset, blob, size);
2718 	return 0;
2719 }
2720 
2721 /* --------------------------------------------------------------------- */
2722 
2723 /* TODO support previous VAT location writeout */
2724 static int
2725 udf_update_vat_descriptor(struct udf_mount *ump)
2726 {
2727 	struct udf_node *vat_node = ump->vat_node;
2728 	struct udf_logvol_info *lvinfo = ump->logvol_info;
2729 	struct icb_tag *icbtag;
2730 	struct udf_oldvat_tail *oldvat_tl;
2731 	struct udf_vat *vat;
2732 	uint64_t unique_id;
2733 	uint32_t lb_size;
2734 	uint8_t *raw_vat;
2735 	int filetype, error;
2736 
2737 	KASSERT(vat_node);
2738 	KASSERT(lvinfo);
2739 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2740 
2741 	/* get our new unique_id */
2742 	unique_id = udf_advance_uniqueid(ump);
2743 
2744 	/* get information from fe/efe */
2745 	if (vat_node->fe) {
2746 		icbtag    = &vat_node->fe->icbtag;
2747 		vat_node->fe->unique_id = udf_rw64(unique_id);
2748 	} else {
2749 		icbtag = &vat_node->efe->icbtag;
2750 		vat_node->efe->unique_id = udf_rw64(unique_id);
2751 	}
2752 
2753 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2754 	filetype = icbtag->file_type;
2755 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2756 
2757 	/* allocate piece to process head or tail of VAT file */
2758 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2759 
2760 	if (filetype == 0) {
2761 		/*
2762 		 * Update "*UDF VAT LVExtension" extended attribute from the
2763 		 * lvint if present.
2764 		 */
2765 		udf_update_vat_extattr_from_lvid(vat_node);
2766 
2767 		/* setup identifying regid */
2768 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2769 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2770 
2771 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2772 		udf_add_udf_regid(ump, &oldvat_tl->id);
2773 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2774 
2775 		/* write out new tail of virtual allocation table file */
2776 		error = udf_vat_write(vat_node, raw_vat,
2777 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2778 	} else {
2779 		/* compose the VAT2 header */
2780 		vat = (struct udf_vat *) raw_vat;
2781 		memset(vat, 0, sizeof(struct udf_vat));
2782 
2783 		vat->header_len       = udf_rw16(152);	/* as per spec */
2784 		vat->impl_use_len     = udf_rw16(0);
2785 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2786 		vat->prev_vat         = udf_rw32(0xffffffff);
2787 		vat->num_files        = lvinfo->num_files;
2788 		vat->num_directories  = lvinfo->num_directories;
2789 		vat->min_udf_readver  = lvinfo->min_udf_readver;
2790 		vat->min_udf_writever = lvinfo->min_udf_writever;
2791 		vat->max_udf_writever = lvinfo->max_udf_writever;
2792 
2793 		error = udf_vat_write(vat_node, raw_vat,
2794 			sizeof(struct udf_vat), 0);
2795 	}
2796 	free(raw_vat, M_TEMP);
2797 
2798 	return error;	/* success! */
2799 }
2800 
2801 
2802 int
2803 udf_writeout_vat(struct udf_mount *ump)
2804 {
2805 	struct udf_node *vat_node = ump->vat_node;
2806 	int error;
2807 
2808 	KASSERT(vat_node);
2809 
2810 	DPRINTF(CALL, ("udf_writeout_vat\n"));
2811 
2812 //	mutex_enter(&ump->allocate_mutex);
2813 	udf_update_vat_descriptor(ump);
2814 
2815 	/* write out the VAT contents ; TODO intelligent writing */
2816 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2817 		ump->vat_table, ump->vat_table_len, 0,
2818 		UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2819 	if (error) {
2820 		printf("udf_writeout_vat: failed to write out VAT contents\n");
2821 		goto out;
2822 	}
2823 
2824 //	mutex_exit(&ump->allocate_mutex);
2825 
2826 	error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2827 	if (error)
2828 		goto out;
2829 	error = VOP_FSYNC(ump->vat_node->vnode,
2830 			FSCRED, FSYNC_WAIT, 0, 0);
2831 	if (error)
2832 		printf("udf_writeout_vat: error writing VAT node!\n");
2833 out:
2834 	return error;
2835 }
2836 
2837 /* --------------------------------------------------------------------- */
2838 
2839 /*
2840  * Read in relevant pieces of VAT file and check if its indeed a VAT file
2841  * descriptor. If OK, read in complete VAT file.
2842  */
2843 
2844 static int
2845 udf_check_for_vat(struct udf_node *vat_node)
2846 {
2847 	struct udf_mount *ump;
2848 	struct icb_tag   *icbtag;
2849 	struct timestamp *mtime;
2850 	struct udf_vat   *vat;
2851 	struct udf_oldvat_tail *oldvat_tl;
2852 	struct udf_logvol_info *lvinfo;
2853 	uint64_t  unique_id;
2854 	uint32_t  vat_length;
2855 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
2856 	uint32_t  sector_size;
2857 	uint32_t *raw_vat;
2858 	uint8_t  *vat_table;
2859 	char     *regid_name;
2860 	int filetype;
2861 	int error;
2862 
2863 	/* vat_length is really 64 bits though impossible */
2864 
2865 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
2866 	if (!vat_node)
2867 		return ENOENT;
2868 
2869 	/* get mount info */
2870 	ump = vat_node->ump;
2871 	sector_size = udf_rw32(ump->logical_vol->lb_size);
2872 
2873 	/* check assertions */
2874 	assert(vat_node->fe || vat_node->efe);
2875 	assert(ump->logvol_integrity);
2876 
2877 	/* set vnode type to regular file or we can't read from it! */
2878 	vat_node->vnode->v_type = VREG;
2879 
2880 	/* get information from fe/efe */
2881 	if (vat_node->fe) {
2882 		vat_length = udf_rw64(vat_node->fe->inf_len);
2883 		icbtag    = &vat_node->fe->icbtag;
2884 		mtime     = &vat_node->fe->mtime;
2885 		unique_id = udf_rw64(vat_node->fe->unique_id);
2886 	} else {
2887 		vat_length = udf_rw64(vat_node->efe->inf_len);
2888 		icbtag = &vat_node->efe->icbtag;
2889 		mtime  = &vat_node->efe->mtime;
2890 		unique_id = udf_rw64(vat_node->efe->unique_id);
2891 	}
2892 
2893 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2894 	filetype = icbtag->file_type;
2895 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2896 		return ENOENT;
2897 
2898 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2899 
2900 	vat_table_alloc_len =
2901 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2902 			* UDF_VAT_CHUNKSIZE;
2903 
2904 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2905 		M_CANFAIL | M_WAITOK);
2906 	if (vat_table == NULL) {
2907 		printf("allocation of %d bytes failed for VAT\n",
2908 			vat_table_alloc_len);
2909 		return ENOMEM;
2910 	}
2911 
2912 	/* allocate piece to read in head or tail of VAT file */
2913 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2914 
2915 	/*
2916 	 * check contents of the file if its the old 1.50 VAT table format.
2917 	 * Its notoriously broken and allthough some implementations support an
2918 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
2919 	 * to be useable since a lot of implementations don't maintain it.
2920 	 */
2921 	lvinfo = ump->logvol_info;
2922 
2923 	if (filetype == 0) {
2924 		/* definition */
2925 		vat_offset  = 0;
2926 		vat_entries = (vat_length-36)/4;
2927 
2928 		/* read in tail of virtual allocation table file */
2929 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2930 				(uint8_t *) raw_vat,
2931 				sizeof(struct udf_oldvat_tail),
2932 				vat_entries * 4,
2933 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2934 				NULL, NULL);
2935 		if (error)
2936 			goto out;
2937 
2938 		/* check 1.50 VAT */
2939 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2940 		regid_name = (char *) oldvat_tl->id.id;
2941 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2942 		if (error) {
2943 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2944 			error = ENOENT;
2945 			goto out;
2946 		}
2947 
2948 		/*
2949 		 * update LVID from "*UDF VAT LVExtension" extended attribute
2950 		 * if present.
2951 		 */
2952 		udf_update_lvid_from_vat_extattr(vat_node);
2953 	} else {
2954 		/* read in head of virtual allocation table file */
2955 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2956 				(uint8_t *) raw_vat,
2957 				sizeof(struct udf_vat), 0,
2958 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2959 				NULL, NULL);
2960 		if (error)
2961 			goto out;
2962 
2963 		/* definition */
2964 		vat = (struct udf_vat *) raw_vat;
2965 		vat_offset  = vat->header_len;
2966 		vat_entries = (vat_length - vat_offset)/4;
2967 
2968 		assert(lvinfo);
2969 		lvinfo->num_files        = vat->num_files;
2970 		lvinfo->num_directories  = vat->num_directories;
2971 		lvinfo->min_udf_readver  = vat->min_udf_readver;
2972 		lvinfo->min_udf_writever = vat->min_udf_writever;
2973 		lvinfo->max_udf_writever = vat->max_udf_writever;
2974 
2975 		udf_update_logvolname(ump, vat->logvol_id);
2976 	}
2977 
2978 	/* read in complete VAT file */
2979 	error = vn_rdwr(UIO_READ, vat_node->vnode,
2980 			vat_table,
2981 			vat_length, 0,
2982 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2983 			NULL, NULL);
2984 	if (error)
2985 		printf("read in of complete VAT file failed (error %d)\n",
2986 			error);
2987 	if (error)
2988 		goto out;
2989 
2990 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2991 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2992 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2993 	ump->logvol_integrity->time           = *mtime;
2994 
2995 	/* if we're updating, free old allocated space */
2996 	if (ump->vat_table)
2997 		free(ump->vat_table, M_UDFVOLD);
2998 
2999 	ump->vat_table_len = vat_length;
3000 	ump->vat_table_alloc_len = vat_table_alloc_len;
3001 	ump->vat_table   = vat_table;
3002 	ump->vat_offset  = vat_offset;
3003 	ump->vat_entries = vat_entries;
3004 	ump->vat_last_free_lb = 0;		/* start at beginning */
3005 
3006 out:
3007 	if (error) {
3008 		if (vat_table)
3009 			free(vat_table, M_UDFVOLD);
3010 	}
3011 	free(raw_vat, M_TEMP);
3012 
3013 	return error;
3014 }
3015 
3016 /* --------------------------------------------------------------------- */
3017 
3018 static int
3019 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3020 {
3021 	struct udf_node *vat_node, *accepted_vat_node;
3022 	struct long_ad	 icb_loc;
3023 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
3024 	int error;
3025 
3026 	/* mapping info not needed */
3027 	mapping = mapping;
3028 
3029 	DPRINTF(VOLUMES, ("Searching VAT\n"));
3030 
3031 	/*
3032 	 * Start reading forward in blocks from the first possible vat
3033 	 * location. If not found in this block, start again a bit before
3034 	 * until we get a hit.
3035 	 */
3036 	late_vat_loc = ump->last_possible_vat_location;
3037 	early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location);
3038 
3039 	DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc));
3040 	accepted_vat_node = NULL;
3041 	do {
3042 		vat_loc = early_vat_loc;
3043 		DPRINTF(VOLUMES, ("\tchecking range %d to %d\n",
3044 			early_vat_loc, late_vat_loc));
3045 		do {
3046 			DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n",
3047 				vat_loc));
3048 			icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3049 			icb_loc.loc.lb_num   = udf_rw32(vat_loc);
3050 
3051 			error = udf_get_node(ump, &icb_loc, &vat_node);
3052 			if (!error) {
3053 				error = udf_check_for_vat(vat_node);
3054 				vat_node->i_flags = 0;	/* reset access */
3055 			}
3056 			if (!error) {
3057 				DPRINTFIF(VOLUMES, !error,
3058 					("VAT candidate accepted at %d\n",
3059 					 vat_loc));
3060 				if (accepted_vat_node)
3061 					vput(accepted_vat_node->vnode);
3062 				accepted_vat_node = vat_node;
3063 				accepted_vat_node->i_flags |= IN_NO_DELETE;
3064 				vat_node = NULL;
3065 			}
3066 			if (vat_node)
3067 				vput(vat_node->vnode);
3068 			vat_loc++;	/* walk forward */
3069 		} while (vat_loc < late_vat_loc);
3070 		if (accepted_vat_node)
3071 			break;
3072 
3073 		early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location);
3074 		late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location);
3075 	} while (late_vat_loc > ump->first_possible_vat_location);
3076 
3077 	/* keep our last accepted VAT node around */
3078 	if (accepted_vat_node) {
3079 		/* revert no delete flag again to avoid potential side effects */
3080 		accepted_vat_node->i_flags &= ~IN_NO_DELETE;
3081 
3082 		UDF_SET_SYSTEMFILE(accepted_vat_node->vnode);
3083 		ump->vat_node = accepted_vat_node;
3084 		return 0;
3085 	}
3086 
3087 	return error;
3088 }
3089 
3090 /* --------------------------------------------------------------------- */
3091 
3092 static int
3093 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3094 {
3095 	union dscrptr *dscr;
3096 	struct part_map_spare *pms = &mapping->pms;
3097 	uint32_t lb_num;
3098 	int spar, error;
3099 
3100 	/*
3101 	 * The partition mapping passed on to us specifies the information we
3102 	 * need to locate and initialise the sparable partition mapping
3103 	 * information we need.
3104 	 */
3105 
3106 	DPRINTF(VOLUMES, ("Read sparable table\n"));
3107 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
3108 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
3109 
3110 	for (spar = 0; spar < pms->n_st; spar++) {
3111 		lb_num = pms->st_loc[spar];
3112 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3113 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3114 		if (!error && dscr) {
3115 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3116 				if (ump->sparing_table)
3117 					free(ump->sparing_table, M_UDFVOLD);
3118 				ump->sparing_table = &dscr->spt;
3119 				dscr = NULL;
3120 				DPRINTF(VOLUMES,
3121 				    ("Sparing table accepted (%d entries)\n",
3122 				     udf_rw16(ump->sparing_table->rt_l)));
3123 				break;	/* we're done */
3124 			}
3125 		}
3126 		if (dscr)
3127 			free(dscr, M_UDFVOLD);
3128 	}
3129 
3130 	if (ump->sparing_table)
3131 		return 0;
3132 
3133 	return ENOENT;
3134 }
3135 
3136 /* --------------------------------------------------------------------- */
3137 
3138 static int
3139 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3140 {
3141 	struct part_map_meta *pmm = &mapping->pmm;
3142 	struct long_ad	 icb_loc;
3143 	struct vnode *vp;
3144 	uint16_t raw_phys_part, phys_part;
3145 	int error;
3146 
3147 	/*
3148 	 * BUGALERT: some rogue implementations use random physical
3149 	 * partition numbers to break other implementations so lookup
3150 	 * the number.
3151 	 */
3152 
3153 	/* extract our allocation parameters set up on format */
3154 	ump->metadata_alloc_unit_size     = udf_rw32(mapping->pmm.alloc_unit_size);
3155 	ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3156 	ump->metadata_flags = mapping->pmm.flags;
3157 
3158 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3159 	raw_phys_part = udf_rw16(pmm->part_num);
3160 	phys_part = udf_find_raw_phys(ump, raw_phys_part);
3161 
3162 	icb_loc.loc.part_num = udf_rw16(phys_part);
3163 
3164 	DPRINTF(VOLUMES, ("Metadata file\n"));
3165 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
3166 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3167 	if (ump->metadata_node) {
3168 		vp = ump->metadata_node->vnode;
3169 		UDF_SET_SYSTEMFILE(vp);
3170 	}
3171 
3172 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
3173 	if (icb_loc.loc.lb_num != -1) {
3174 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
3175 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3176 		if (ump->metadatamirror_node) {
3177 			vp = ump->metadatamirror_node->vnode;
3178 			UDF_SET_SYSTEMFILE(vp);
3179 		}
3180 	}
3181 
3182 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
3183 	if (icb_loc.loc.lb_num != -1) {
3184 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3185 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3186 		if (ump->metadatabitmap_node) {
3187 			vp = ump->metadatabitmap_node->vnode;
3188 			UDF_SET_SYSTEMFILE(vp);
3189 		}
3190 	}
3191 
3192 	/* if we're mounting read-only we relax the requirements */
3193 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3194 		error = EFAULT;
3195 		if (ump->metadata_node)
3196 			error = 0;
3197 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3198 			printf( "udf mount: Metadata file not readable, "
3199 				"substituting Metadata copy file\n");
3200 			ump->metadata_node = ump->metadatamirror_node;
3201 			ump->metadatamirror_node = NULL;
3202 			error = 0;
3203 		}
3204 	} else {
3205 		/* mounting read/write */
3206 		/* XXX DISABLED! metadata writing is not working yet XXX */
3207 		if (error)
3208 			error = EROFS;
3209 	}
3210 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3211 				   "metadata files\n"));
3212 	return error;
3213 }
3214 
3215 /* --------------------------------------------------------------------- */
3216 
3217 int
3218 udf_read_vds_tables(struct udf_mount *ump)
3219 {
3220 	union udf_pmap *mapping;
3221 	/* struct udf_args *args = &ump->mount_args; */
3222 	uint32_t n_pm;
3223 	uint32_t log_part;
3224 	uint8_t *pmap_pos;
3225 	int pmap_size;
3226 	int error;
3227 
3228 	/* Iterate (again) over the part mappings for locations   */
3229 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
3230 	pmap_pos =  ump->logical_vol->maps;
3231 
3232 	for (log_part = 0; log_part < n_pm; log_part++) {
3233 		mapping = (union udf_pmap *) pmap_pos;
3234 		switch (ump->vtop_tp[log_part]) {
3235 		case UDF_VTOP_TYPE_PHYS :
3236 			/* nothing */
3237 			break;
3238 		case UDF_VTOP_TYPE_VIRT :
3239 			/* search and load VAT */
3240 			error = udf_search_vat(ump, mapping);
3241 			if (error)
3242 				return ENOENT;
3243 			break;
3244 		case UDF_VTOP_TYPE_SPARABLE :
3245 			/* load one of the sparable tables */
3246 			error = udf_read_sparables(ump, mapping);
3247 			if (error)
3248 				return ENOENT;
3249 			break;
3250 		case UDF_VTOP_TYPE_META :
3251 			/* load the associated file descriptors */
3252 			error = udf_read_metadata_nodes(ump, mapping);
3253 			if (error)
3254 				return ENOENT;
3255 			break;
3256 		default:
3257 			break;
3258 		}
3259 		pmap_size  = pmap_pos[1];
3260 		pmap_pos  += pmap_size;
3261 	}
3262 
3263 	/* read in and check unallocated and free space info if writing */
3264 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3265 		error = udf_read_physical_partition_spacetables(ump);
3266 		if (error)
3267 			return error;
3268 
3269 		/* also read in metadata partition spacebitmap if defined */
3270 		error = udf_read_metadata_partition_spacetable(ump);
3271 			return error;
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 /* --------------------------------------------------------------------- */
3278 
3279 int
3280 udf_read_rootdirs(struct udf_mount *ump)
3281 {
3282 	union dscrptr *dscr;
3283 	/* struct udf_args *args = &ump->mount_args; */
3284 	struct udf_node *rootdir_node, *streamdir_node;
3285 	struct long_ad  fsd_loc, *dir_loc;
3286 	uint32_t lb_num, dummy;
3287 	uint32_t fsd_len;
3288 	int dscr_type;
3289 	int error;
3290 
3291 	/* TODO implement FSD reading in separate function like integrity? */
3292 	/* get fileset descriptor sequence */
3293 	fsd_loc = ump->logical_vol->lv_fsd_loc;
3294 	fsd_len = udf_rw32(fsd_loc.len);
3295 
3296 	dscr  = NULL;
3297 	error = 0;
3298 	while (fsd_len || error) {
3299 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3300 		/* translate fsd_loc to lb_num */
3301 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3302 		if (error)
3303 			break;
3304 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3305 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3306 		/* end markers */
3307 		if (error || (dscr == NULL))
3308 			break;
3309 
3310 		/* analyse */
3311 		dscr_type = udf_rw16(dscr->tag.id);
3312 		if (dscr_type == TAGID_TERM)
3313 			break;
3314 		if (dscr_type != TAGID_FSD) {
3315 			free(dscr, M_UDFVOLD);
3316 			return ENOENT;
3317 		}
3318 
3319 		/*
3320 		 * TODO check for multiple fileset descriptors; its only
3321 		 * picking the last now. Also check for FSD
3322 		 * correctness/interpretability
3323 		 */
3324 
3325 		/* update */
3326 		if (ump->fileset_desc) {
3327 			free(ump->fileset_desc, M_UDFVOLD);
3328 		}
3329 		ump->fileset_desc = &dscr->fsd;
3330 		dscr = NULL;
3331 
3332 		/* continue to the next fsd */
3333 		fsd_len -= ump->discinfo.sector_size;
3334 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3335 
3336 		/* follow up to fsd->next_ex (long_ad) if its not null */
3337 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3338 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3339 			fsd_loc = ump->fileset_desc->next_ex;
3340 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3341 		}
3342 	}
3343 	if (dscr)
3344 		free(dscr, M_UDFVOLD);
3345 
3346 	/* there has to be one */
3347 	if (ump->fileset_desc == NULL)
3348 		return ENOENT;
3349 
3350 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
3351 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3352 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3353 
3354 	/*
3355 	 * Now the FSD is known, read in the rootdirectory and if one exists,
3356 	 * the system stream dir. Some files in the system streamdir are not
3357 	 * wanted in this implementation since they are not maintained. If
3358 	 * writing is enabled we'll delete these files if they exist.
3359 	 */
3360 
3361 	rootdir_node = streamdir_node = NULL;
3362 	dir_loc = NULL;
3363 
3364 	/* try to read in the rootdir */
3365 	dir_loc = &ump->fileset_desc->rootdir_icb;
3366 	error = udf_get_node(ump, dir_loc, &rootdir_node);
3367 	if (error)
3368 		return ENOENT;
3369 
3370 	/* aparently it read in fine */
3371 
3372 	/*
3373 	 * Try the system stream directory; not very likely in the ones we
3374 	 * test, but for completeness.
3375 	 */
3376 	dir_loc = &ump->fileset_desc->streamdir_icb;
3377 	if (udf_rw32(dir_loc->len)) {
3378 		printf("udf_read_rootdirs: streamdir defined ");
3379 		error = udf_get_node(ump, dir_loc, &streamdir_node);
3380 		if (error) {
3381 			printf("but error in streamdir reading\n");
3382 		} else {
3383 			printf("but ignored\n");
3384 			/*
3385 			 * TODO process streamdir `baddies' i.e. files we dont
3386 			 * want if R/W
3387 			 */
3388 		}
3389 	}
3390 
3391 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3392 
3393 	/* release the vnodes again; they'll be auto-recycled later */
3394 	if (streamdir_node) {
3395 		vput(streamdir_node->vnode);
3396 	}
3397 	if (rootdir_node) {
3398 		vput(rootdir_node->vnode);
3399 	}
3400 
3401 	return 0;
3402 }
3403 
3404 /* --------------------------------------------------------------------- */
3405 
3406 /* To make absolutely sure we are NOT returning zero, add one :) */
3407 
3408 long
3409 udf_get_node_id(const struct long_ad *icbptr)
3410 {
3411 	/* ought to be enough since each mountpoint has its own chain */
3412 	return udf_rw32(icbptr->loc.lb_num) + 1;
3413 }
3414 
3415 
3416 int
3417 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3418 {
3419 	if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3420 		return -1;
3421 	if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3422 		return 1;
3423 
3424 	if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3425 		return -1;
3426 	if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3427 		return 1;
3428 
3429 	return 0;
3430 }
3431 
3432 
3433 static int
3434 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3435 {
3436 	const struct udf_node *a_node = a;
3437 	const struct udf_node *b_node = b;
3438 
3439 	return udf_compare_icb(&a_node->loc, &b_node->loc);
3440 }
3441 
3442 
3443 static int
3444 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3445 {
3446 	const struct udf_node *a_node = a;
3447 	const struct long_ad * const icb = key;
3448 
3449 	return udf_compare_icb(&a_node->loc, icb);
3450 }
3451 
3452 
3453 static const rb_tree_ops_t udf_node_rbtree_ops = {
3454 	.rbto_compare_nodes = udf_compare_rbnodes,
3455 	.rbto_compare_key = udf_compare_rbnode_icb,
3456 	.rbto_node_offset = offsetof(struct udf_node, rbnode),
3457 	.rbto_context = NULL
3458 };
3459 
3460 
3461 void
3462 udf_init_nodes_tree(struct udf_mount *ump)
3463 {
3464 
3465 	rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3466 }
3467 
3468 
3469 /* --------------------------------------------------------------------- */
3470 
3471 static int
3472 udf_validate_session_start(struct udf_mount *ump)
3473 {
3474 	struct mmc_trackinfo trackinfo;
3475 	struct vrs_desc *vrs;
3476 	uint32_t tracknr, sessionnr, sector, sector_size;
3477 	uint32_t iso9660_vrs, write_track_start;
3478 	uint8_t *buffer, *blank, *pos;
3479 	int blks, max_sectors, vrs_len;
3480 	int error;
3481 
3482 	/* disc appendable? */
3483 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
3484 		return EROFS;
3485 
3486 	/* already written here? if so, there should be an ISO VDS */
3487 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3488 		return 0;
3489 
3490 	/*
3491 	 * Check if the first track of the session is blank and if so, copy or
3492 	 * create a dummy ISO descriptor so the disc is valid again.
3493 	 */
3494 
3495 	tracknr = ump->discinfo.first_track_last_session;
3496 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3497 	trackinfo.tracknr = tracknr;
3498 	error = udf_update_trackinfo(ump, &trackinfo);
3499 	if (error)
3500 		return error;
3501 
3502 	udf_dump_trackinfo(&trackinfo);
3503 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3504 	KASSERT(trackinfo.sessionnr > 1);
3505 
3506 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3507 	write_track_start = trackinfo.next_writable;
3508 
3509 	/* we have to copy the ISO VRS from a former session */
3510 	DPRINTF(VOLUMES, ("validate_session_start: "
3511 			"blank or reserved track, copying VRS\n"));
3512 
3513 	/* sessionnr should be the session we're mounting */
3514 	sessionnr = ump->mount_args.sessionnr;
3515 
3516 	/* start at the first track */
3517 	tracknr   = ump->discinfo.first_track;
3518 	while (tracknr <= ump->discinfo.num_tracks) {
3519 		trackinfo.tracknr = tracknr;
3520 		error = udf_update_trackinfo(ump, &trackinfo);
3521 		if (error) {
3522 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3523 			return error;
3524 		}
3525 		if (trackinfo.sessionnr == sessionnr)
3526 			break;
3527 		tracknr++;
3528 	}
3529 	if (trackinfo.sessionnr != sessionnr) {
3530 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3531 		return ENOENT;
3532 	}
3533 
3534 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3535 	udf_dump_trackinfo(&trackinfo);
3536 
3537         /*
3538          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3539          * minimum ISO `sector size' 2048
3540          */
3541 	sector_size = ump->discinfo.sector_size;
3542 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3543 		 + trackinfo.track_start;
3544 
3545 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3546 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3547 	blks = MAX(1, 2048 / sector_size);
3548 
3549 	error = 0;
3550 	for (sector = 0; sector < max_sectors; sector += blks) {
3551 		pos = buffer + sector * sector_size;
3552 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3553 			iso9660_vrs + sector, blks);
3554 		if (error)
3555 			break;
3556 		/* check this ISO descriptor */
3557 		vrs = (struct vrs_desc *) pos;
3558 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3559 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3560 			continue;
3561 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3562 			continue;
3563 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3564 			continue;
3565 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3566 			continue;
3567 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3568 			continue;
3569 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3570 			break;
3571 		/* now what? for now, end of sequence */
3572 		break;
3573 	}
3574 	vrs_len = sector + blks;
3575 	if (error) {
3576 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3577 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3578 
3579 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
3580 
3581 		vrs = (struct vrs_desc *) (buffer);
3582 		vrs->struct_type = 0;
3583 		vrs->version     = 1;
3584 		memcpy(vrs->identifier,VRS_BEA01, 5);
3585 
3586 		vrs = (struct vrs_desc *) (buffer + 2048);
3587 		vrs->struct_type = 0;
3588 		vrs->version     = 1;
3589 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3590 			memcpy(vrs->identifier,VRS_NSR02, 5);
3591 		} else {
3592 			memcpy(vrs->identifier,VRS_NSR03, 5);
3593 		}
3594 
3595 		vrs = (struct vrs_desc *) (buffer + 4096);
3596 		vrs->struct_type = 0;
3597 		vrs->version     = 1;
3598 		memcpy(vrs->identifier, VRS_TEA01, 5);
3599 
3600 		vrs_len = 3*blks;
3601 	}
3602 
3603 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3604 
3605         /*
3606          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3607          * minimum ISO `sector size' 2048
3608          */
3609 	sector_size = ump->discinfo.sector_size;
3610 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3611 		 + write_track_start;
3612 
3613 	/* write out 32 kb */
3614 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
3615 	memset(blank, 0, sector_size);
3616 	error = 0;
3617 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3618 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3619 			blank, sector, 1);
3620 		if (error)
3621 			break;
3622 	}
3623 	if (!error) {
3624 		/* write out our ISO VRS */
3625 		KASSERT(sector == iso9660_vrs);
3626 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3627 				sector, vrs_len);
3628 		sector += vrs_len;
3629 	}
3630 	if (!error) {
3631 		/* fill upto the first anchor at S+256 */
3632 		for (; sector < write_track_start+256; sector++) {
3633 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3634 				blank, sector, 1);
3635 			if (error)
3636 				break;
3637 		}
3638 	}
3639 	if (!error) {
3640 		/* write out anchor; write at ABSOLUTE place! */
3641 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3642 			(union dscrptr *) ump->anchors[0], sector, sector);
3643 		if (error)
3644 			printf("writeout of anchor failed!\n");
3645 	}
3646 
3647 	free(blank, M_TEMP);
3648 	free(buffer, M_TEMP);
3649 
3650 	if (error)
3651 		printf("udf_open_session: error writing iso vrs! : "
3652 				"leaving disc in compromised state!\n");
3653 
3654 	/* synchronise device caches */
3655 	(void) udf_synchronise_caches(ump);
3656 
3657 	return error;
3658 }
3659 
3660 
3661 int
3662 udf_open_logvol(struct udf_mount *ump)
3663 {
3664 	int logvol_integrity;
3665 	int error;
3666 
3667 	/* already/still open? */
3668 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3669 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
3670 		return 0;
3671 
3672 	/* can we open it ? */
3673 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3674 		return EROFS;
3675 
3676 	/* setup write parameters */
3677 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3678 	if ((error = udf_setup_writeparams(ump)) != 0)
3679 		return error;
3680 
3681 	/* determine data and metadata tracks (most likely same) */
3682 	error = udf_search_writing_tracks(ump);
3683 	if (error) {
3684 		/* most likely lack of space */
3685 		printf("udf_open_logvol: error searching writing tracks\n");
3686 		return EROFS;
3687 	}
3688 
3689 	/* writeout/update lvint on disc or only in memory */
3690 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
3691 	if (ump->lvopen & UDF_OPEN_SESSION) {
3692 		/* TODO optional track reservation opening */
3693 		error = udf_validate_session_start(ump);
3694 		if (error)
3695 			return error;
3696 
3697 		/* determine data and metadata tracks again */
3698 		error = udf_search_writing_tracks(ump);
3699 
3700 		if (ump->lvclose & UDF_WRITE_VAT) {
3701 			/*
3702 			 * we writeout the VAT to get a self-sustained session
3703 			 * for fsck
3704 			 */
3705 			DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3706 
3707 			/* write out the VAT data and all its descriptors */
3708 			DPRINTF(VOLUMES, ("writeout vat_node\n"));
3709 			udf_writeout_vat(ump);
3710 
3711 			/* force everything to be synchronized on the device */
3712 			(void) udf_synchronise_caches(ump);
3713 		}
3714 	}
3715 
3716 	/* mark it open */
3717 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3718 
3719 	/* do we need to write it out? */
3720 	if (ump->lvopen & UDF_WRITE_LVINT) {
3721 		error = udf_writeout_lvint(ump, ump->lvopen);
3722 		/* if we couldn't write it mark it closed again */
3723 		if (error) {
3724 			ump->logvol_integrity->integrity_type =
3725 						udf_rw32(UDF_INTEGRITY_CLOSED);
3726 			return error;
3727 		}
3728 	}
3729 
3730 	return 0;
3731 }
3732 
3733 
3734 int
3735 udf_close_logvol(struct udf_mount *ump, int mntflags)
3736 {
3737 	struct vnode *devvp = ump->devvp;
3738 	struct mmc_op mmc_op;
3739 	int logvol_integrity;
3740 	int error = 0, error1 = 0, error2 = 0;
3741 	int tracknr;
3742 	int nvats, n, nok;
3743 
3744 	/* already/still closed? */
3745 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3746 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3747 		return 0;
3748 
3749 	/* writeout/update lvint or write out VAT */
3750 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3751 #ifdef DIAGNOSTIC
3752 	if (ump->lvclose & UDF_CLOSE_SESSION)
3753 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
3754 #endif
3755 
3756 	if (ump->lvclose & UDF_WRITE_VAT) {
3757 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3758 
3759 		/* write out the VAT data and all its descriptors */
3760 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
3761 		udf_writeout_vat(ump);
3762 
3763 		/* at least two DVD packets and 3 CD-R packets */
3764 		nvats = 32;
3765 
3766 #if notyet
3767 		/*
3768 		 * TODO calculate the available space and if the disc is
3769 		 * allmost full, write out till end-256-1 with banks, write
3770 		 * AVDP and fill up with VATs, then close session and close
3771 		 * disc.
3772 		 */
3773 		if (ump->lvclose & UDF_FINALISE_DISC) {
3774 			error = udf_write_phys_dscr_sync(ump, NULL,
3775 					UDF_C_FLOAT_DSCR,
3776 					(union dscrptr *) ump->anchors[0],
3777 					0, 0);
3778 			if (error)
3779 				printf("writeout of anchor failed!\n");
3780 
3781 			/* pad space with VAT ICBs */
3782 			nvats = 256;
3783 		}
3784 #endif
3785 
3786 		/* write out a number of VAT nodes */
3787 		nok = 0;
3788 		for (n = 0; n < nvats; n++) {
3789 			/* will now only write last FE/EFE */
3790 			ump->vat_node->i_flags |= IN_MODIFIED;
3791 			error = VOP_FSYNC(ump->vat_node->vnode,
3792 					FSCRED, FSYNC_WAIT, 0, 0);
3793 			if (!error)
3794 				nok++;
3795 		}
3796 		/* force everything to be synchronized on the device */
3797 		(void) udf_synchronise_caches(ump);
3798 
3799 		if (nok < 14) {
3800 			/* arbitrary; but at least one or two CD frames */
3801 			printf("writeout of at least 14 VATs failed\n");
3802 			return error;
3803 		}
3804 	}
3805 
3806 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
3807 
3808 	/* finish closing of session */
3809 	if (ump->lvclose & UDF_CLOSE_SESSION) {
3810 		DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3811 			"as requested\n"));
3812 		error = udf_validate_session_start(ump);
3813 		if (error)
3814 			return error;
3815 
3816 		(void) udf_synchronise_caches(ump);
3817 
3818 		/* close all associated tracks */
3819 		tracknr = ump->discinfo.first_track_last_session;
3820 		error = 0;
3821 		while (tracknr <= ump->discinfo.last_track_last_session) {
3822 			DPRINTF(VOLUMES, ("\tclosing possible open "
3823 				"track %d\n", tracknr));
3824 			memset(&mmc_op, 0, sizeof(mmc_op));
3825 			mmc_op.operation   = MMC_OP_CLOSETRACK;
3826 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3827 			mmc_op.tracknr     = tracknr;
3828 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3829 					FKIOCTL, NOCRED);
3830 			if (error)
3831 				printf("udf_close_logvol: closing of "
3832 					"track %d failed\n", tracknr);
3833 			tracknr ++;
3834 		}
3835 		if (!error) {
3836 			DPRINTF(VOLUMES, ("closing session\n"));
3837 			memset(&mmc_op, 0, sizeof(mmc_op));
3838 			mmc_op.operation   = MMC_OP_CLOSESESSION;
3839 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3840 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
3841 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3842 					FKIOCTL, NOCRED);
3843 			if (error)
3844 				printf("udf_close_logvol: closing of session"
3845 						"failed\n");
3846 		}
3847 		if (!error)
3848 			ump->lvopen |= UDF_OPEN_SESSION;
3849 		if (error) {
3850 			printf("udf_close_logvol: leaving disc as it is\n");
3851 			ump->lvclose &= ~UDF_FINALISE_DISC;
3852 		}
3853 	}
3854 
3855 	if (ump->lvclose & UDF_FINALISE_DISC) {
3856 		memset(&mmc_op, 0, sizeof(mmc_op));
3857 		mmc_op.operation   = MMC_OP_FINALISEDISC;
3858 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3859 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
3860 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3861 				FKIOCTL, NOCRED);
3862 		if (error)
3863 			printf("udf_close_logvol: finalising disc"
3864 					"failed\n");
3865 	}
3866 
3867 	/* write out partition bitmaps if requested */
3868 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3869 		/* sync writeout metadata spacetable if existing */
3870 		error1 = udf_write_metadata_partition_spacetable(ump, true);
3871 		if (error1)
3872 			printf( "udf_close_logvol: writeout of metadata space "
3873 				"bitmap failed\n");
3874 
3875 		/* sync writeout partition spacetables */
3876 		error2 = udf_write_physical_partition_spacetables(ump, true);
3877 		if (error2)
3878 			printf( "udf_close_logvol: writeout of space tables "
3879 				"failed\n");
3880 
3881 		if (error1 || error2)
3882 			return (error1 | error2);
3883 
3884 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3885 	}
3886 
3887 	/* write out metadata partition nodes if requested */
3888 	if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3889 		/* sync writeout metadata descriptor node */
3890 		error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3891 		if (error1)
3892 			printf( "udf_close_logvol: writeout of metadata partition "
3893 				"node failed\n");
3894 
3895 		/* duplicate metadata partition descriptor if needed */
3896 		udf_synchronise_metadatamirror_node(ump);
3897 
3898 		/* sync writeout metadatamirror descriptor node */
3899 		error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3900 		if (error2)
3901 			printf( "udf_close_logvol: writeout of metadata partition "
3902 				"mirror node failed\n");
3903 
3904 		if (error1 || error2)
3905 			return (error1 | error2);
3906 
3907 		ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3908 	}
3909 
3910 	/* mark it closed */
3911 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3912 
3913 	/* do we need to write out the logical volume integrity? */
3914 	if (ump->lvclose & UDF_WRITE_LVINT)
3915 		error = udf_writeout_lvint(ump, ump->lvopen);
3916 	if (error) {
3917 		/* HELP now what? mark it open again for now */
3918 		ump->logvol_integrity->integrity_type =
3919 			udf_rw32(UDF_INTEGRITY_OPEN);
3920 		return error;
3921 	}
3922 
3923 	(void) udf_synchronise_caches(ump);
3924 
3925 	return 0;
3926 }
3927 
3928 /* --------------------------------------------------------------------- */
3929 
3930 /*
3931  * Genfs interfacing
3932  *
3933  * static const struct genfs_ops udf_genfsops = {
3934  * 	.gop_size = genfs_size,
3935  * 		size of transfers
3936  * 	.gop_alloc = udf_gop_alloc,
3937  * 		allocate len bytes at offset
3938  * 	.gop_write = genfs_gop_write,
3939  * 		putpages interface code
3940  * 	.gop_markupdate = udf_gop_markupdate,
3941  * 		set update/modify flags etc.
3942  * }
3943  */
3944 
3945 /*
3946  * Genfs interface. These four functions are the only ones defined though not
3947  * documented... great....
3948  */
3949 
3950 /*
3951  * Called for allocating an extent of the file either by VOP_WRITE() or by
3952  * genfs filling up gaps.
3953  */
3954 static int
3955 udf_gop_alloc(struct vnode *vp, off_t off,
3956     off_t len, int flags, kauth_cred_t cred)
3957 {
3958 	struct udf_node *udf_node = VTOI(vp);
3959 	struct udf_mount *ump = udf_node->ump;
3960 	uint64_t lb_start, lb_end;
3961 	uint32_t lb_size, num_lb;
3962 	int udf_c_type, vpart_num, can_fail;
3963 	int error;
3964 
3965 	DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3966 		off, len, flags? "SYNC":"NONE"));
3967 
3968 	/*
3969 	 * request the pages of our vnode and see how many pages will need to
3970 	 * be allocated and reserve that space
3971 	 */
3972 	lb_size  = udf_rw32(udf_node->ump->logical_vol->lb_size);
3973 	lb_start = off / lb_size;
3974 	lb_end   = (off + len + lb_size -1) / lb_size;
3975 	num_lb   = lb_end - lb_start;
3976 
3977 	udf_c_type = udf_get_c_type(udf_node);
3978 	vpart_num  = udf_get_record_vpart(ump, udf_c_type);
3979 
3980 	/* all requests can fail */
3981 	can_fail   = true;
3982 
3983 	/* fid's (directories) can't fail */
3984 	if (udf_c_type == UDF_C_FIDS)
3985 		can_fail   = false;
3986 
3987 	/* system files can't fail */
3988 	if (vp->v_vflag & VV_SYSTEM)
3989 		can_fail = false;
3990 
3991 	error = udf_reserve_space(ump, udf_node, udf_c_type,
3992 		vpart_num, num_lb, can_fail);
3993 
3994 	DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
3995 		lb_start, lb_end, num_lb));
3996 
3997 	return error;
3998 }
3999 
4000 
4001 /*
4002  * callback from genfs to update our flags
4003  */
4004 static void
4005 udf_gop_markupdate(struct vnode *vp, int flags)
4006 {
4007 	struct udf_node *udf_node = VTOI(vp);
4008 	u_long mask = 0;
4009 
4010 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4011 		mask = IN_ACCESS;
4012 	}
4013 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4014 		if (vp->v_type == VREG) {
4015 			mask |= IN_CHANGE | IN_UPDATE;
4016 		} else {
4017 			mask |= IN_MODIFY;
4018 		}
4019 	}
4020 	if (mask) {
4021 		udf_node->i_flags |= mask;
4022 	}
4023 }
4024 
4025 
4026 static const struct genfs_ops udf_genfsops = {
4027 	.gop_size = genfs_size,
4028 	.gop_alloc = udf_gop_alloc,
4029 	.gop_write = genfs_gop_write_rwmap,
4030 	.gop_markupdate = udf_gop_markupdate,
4031 	.gop_putrange = genfs_gop_putrange,
4032 };
4033 
4034 
4035 /* --------------------------------------------------------------------- */
4036 
4037 int
4038 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4039 {
4040 	union dscrptr *dscr;
4041 	int error;
4042 
4043 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4044 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4045 
4046 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4047 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4048 	(void) udf_validate_tag_and_crc_sums(dscr);
4049 
4050 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4051 			dscr, sector, sector);
4052 
4053 	free(dscr, M_TEMP);
4054 
4055 	return error;
4056 }
4057 
4058 
4059 /* --------------------------------------------------------------------- */
4060 
4061 /* UDF<->unix converters */
4062 
4063 /* --------------------------------------------------------------------- */
4064 
4065 static mode_t
4066 udf_perm_to_unix_mode(uint32_t perm)
4067 {
4068 	mode_t mode;
4069 
4070 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
4071 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
4072 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4073 
4074 	return mode;
4075 }
4076 
4077 /* --------------------------------------------------------------------- */
4078 
4079 static uint32_t
4080 unix_mode_to_udf_perm(mode_t mode)
4081 {
4082 	uint32_t perm;
4083 
4084 	perm  = ((mode & S_IRWXO)     );
4085 	perm |= ((mode & S_IRWXG) << 2);
4086 	perm |= ((mode & S_IRWXU) << 4);
4087 	perm |= ((mode & S_IWOTH) << 3);
4088 	perm |= ((mode & S_IWGRP) << 5);
4089 	perm |= ((mode & S_IWUSR) << 7);
4090 
4091 	return perm;
4092 }
4093 
4094 /* --------------------------------------------------------------------- */
4095 
4096 static uint32_t
4097 udf_icb_to_unix_filetype(uint32_t icbftype)
4098 {
4099 	switch (icbftype) {
4100 	case UDF_ICB_FILETYPE_DIRECTORY :
4101 	case UDF_ICB_FILETYPE_STREAMDIR :
4102 		return S_IFDIR;
4103 	case UDF_ICB_FILETYPE_FIFO :
4104 		return S_IFIFO;
4105 	case UDF_ICB_FILETYPE_CHARDEVICE :
4106 		return S_IFCHR;
4107 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
4108 		return S_IFBLK;
4109 	case UDF_ICB_FILETYPE_RANDOMACCESS :
4110 	case UDF_ICB_FILETYPE_REALTIME :
4111 		return S_IFREG;
4112 	case UDF_ICB_FILETYPE_SYMLINK :
4113 		return S_IFLNK;
4114 	case UDF_ICB_FILETYPE_SOCKET :
4115 		return S_IFSOCK;
4116 	}
4117 	/* no idea what this is */
4118 	return 0;
4119 }
4120 
4121 /* --------------------------------------------------------------------- */
4122 
4123 void
4124 udf_to_unix_name(char *result, int result_len, char *id, int len,
4125 	struct charspec *chsp)
4126 {
4127 	uint16_t   *raw_name, *unix_name;
4128 	uint16_t   *inchp, ch;
4129 	uint8_t	   *outchp;
4130 	const char *osta_id = "OSTA Compressed Unicode";
4131 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
4132 
4133 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4134 	unix_name = raw_name + 1024;			/* split space in half */
4135 	assert(sizeof(char) == sizeof(uint8_t));
4136 	outchp = (uint8_t *) result;
4137 
4138 	is_osta_typ0  = (chsp->type == 0);
4139 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4140 	if (is_osta_typ0) {
4141 		/* TODO clean up */
4142 		*raw_name = *unix_name = 0;
4143 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4144 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4145 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4146 		/* output UTF8 */
4147 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4148 			ch = *inchp;
4149 			nout = wput_utf8(outchp, result_len, ch);
4150 			outchp += nout; result_len -= nout;
4151 			if (!ch) break;
4152 		}
4153 		*outchp++ = 0;
4154 	} else {
4155 		/* assume 8bit char length byte latin-1 */
4156 		assert(*id == 8);
4157 		assert(strlen((char *) (id+1)) <= NAME_MAX);
4158 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4159 	}
4160 	free(raw_name, M_UDFTEMP);
4161 }
4162 
4163 /* --------------------------------------------------------------------- */
4164 
4165 void
4166 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4167 	struct charspec *chsp)
4168 {
4169 	uint16_t   *raw_name;
4170 	uint16_t   *outchp;
4171 	const char *inchp;
4172 	const char *osta_id = "OSTA Compressed Unicode";
4173 	int         udf_chars, is_osta_typ0, bits;
4174 	size_t      cnt;
4175 
4176 	/* allocate temporary unicode-16 buffer */
4177 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4178 
4179 	/* convert utf8 to unicode-16 */
4180 	*raw_name = 0;
4181 	inchp  = name;
4182 	outchp = raw_name;
4183 	bits = 8;
4184 	for (cnt = name_len, udf_chars = 0; cnt;) {
4185 		*outchp = wget_utf8(&inchp, &cnt);
4186 		if (*outchp > 0xff)
4187 			bits=16;
4188 		outchp++;
4189 		udf_chars++;
4190 	}
4191 	/* null terminate just in case */
4192 	*outchp++ = 0;
4193 
4194 	is_osta_typ0  = (chsp->type == 0);
4195 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4196 	if (is_osta_typ0) {
4197 		udf_chars = udf_CompressUnicode(udf_chars, bits,
4198 				(unicode_t *) raw_name,
4199 				(byte *) result);
4200 	} else {
4201 		printf("unix to udf name: no CHSP0 ?\n");
4202 		/* XXX assume 8bit char length byte latin-1 */
4203 		*result++ = 8; udf_chars = 1;
4204 		strncpy(result, name + 1, name_len);
4205 		udf_chars += name_len;
4206 	}
4207 	*result_len = udf_chars;
4208 	free(raw_name, M_UDFTEMP);
4209 }
4210 
4211 /* --------------------------------------------------------------------- */
4212 
4213 void
4214 udf_timestamp_to_timespec(struct udf_mount *ump,
4215 			  struct timestamp *timestamp,
4216 			  struct timespec  *timespec)
4217 {
4218 	struct clock_ymdhms ymdhms;
4219 	uint32_t usecs, secs, nsecs;
4220 	uint16_t tz;
4221 
4222 	/* fill in ymdhms structure from timestamp */
4223 	memset(&ymdhms, 0, sizeof(ymdhms));
4224 	ymdhms.dt_year = udf_rw16(timestamp->year);
4225 	ymdhms.dt_mon  = timestamp->month;
4226 	ymdhms.dt_day  = timestamp->day;
4227 	ymdhms.dt_wday = 0; /* ? */
4228 	ymdhms.dt_hour = timestamp->hour;
4229 	ymdhms.dt_min  = timestamp->minute;
4230 	ymdhms.dt_sec  = timestamp->second;
4231 
4232 	secs = clock_ymdhms_to_secs(&ymdhms);
4233 	usecs = timestamp->usec +
4234 		100*timestamp->hund_usec + 10000*timestamp->centisec;
4235 	nsecs = usecs * 1000;
4236 
4237 	/*
4238 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
4239 	 * compliment, so we gotta do some extra magic to handle it right.
4240 	 */
4241 	tz  = udf_rw16(timestamp->type_tz);
4242 	tz &= 0x0fff;			/* only lower 12 bits are significant */
4243 	if (tz & 0x0800)		/* sign extention */
4244 		tz |= 0xf000;
4245 
4246 	/* TODO check timezone conversion */
4247 	/* check if we are specified a timezone to convert */
4248 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
4249 		if ((int16_t) tz != -2047)
4250 			secs -= (int16_t) tz * 60;
4251 	} else {
4252 		secs -= ump->mount_args.gmtoff;
4253 	}
4254 
4255 	timespec->tv_sec  = secs;
4256 	timespec->tv_nsec = nsecs;
4257 }
4258 
4259 
4260 void
4261 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4262 {
4263 	struct clock_ymdhms ymdhms;
4264 	uint32_t husec, usec, csec;
4265 
4266 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4267 
4268 	usec   = timespec->tv_nsec / 1000;
4269 	husec  =  usec / 100;
4270 	usec  -= husec * 100;				/* only 0-99 in usec  */
4271 	csec   = husec / 100;				/* only 0-99 in csec  */
4272 	husec -=  csec * 100;				/* only 0-99 in husec */
4273 
4274 	/* set method 1 for CUT/GMT */
4275 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
4276 	timestamp->year		= udf_rw16(ymdhms.dt_year);
4277 	timestamp->month	= ymdhms.dt_mon;
4278 	timestamp->day		= ymdhms.dt_day;
4279 	timestamp->hour		= ymdhms.dt_hour;
4280 	timestamp->minute	= ymdhms.dt_min;
4281 	timestamp->second	= ymdhms.dt_sec;
4282 	timestamp->centisec	= csec;
4283 	timestamp->hund_usec	= husec;
4284 	timestamp->usec		= usec;
4285 }
4286 
4287 /* --------------------------------------------------------------------- */
4288 
4289 /*
4290  * Attribute and filetypes converters with get/set pairs
4291  */
4292 
4293 uint32_t
4294 udf_getaccessmode(struct udf_node *udf_node)
4295 {
4296 	struct file_entry     *fe = udf_node->fe;
4297 	struct extfile_entry *efe = udf_node->efe;
4298 	uint32_t udf_perm, icbftype;
4299 	uint32_t mode, ftype;
4300 	uint16_t icbflags;
4301 
4302 	UDF_LOCK_NODE(udf_node, 0);
4303 	if (fe) {
4304 		udf_perm = udf_rw32(fe->perm);
4305 		icbftype = fe->icbtag.file_type;
4306 		icbflags = udf_rw16(fe->icbtag.flags);
4307 	} else {
4308 		assert(udf_node->efe);
4309 		udf_perm = udf_rw32(efe->perm);
4310 		icbftype = efe->icbtag.file_type;
4311 		icbflags = udf_rw16(efe->icbtag.flags);
4312 	}
4313 
4314 	mode  = udf_perm_to_unix_mode(udf_perm);
4315 	ftype = udf_icb_to_unix_filetype(icbftype);
4316 
4317 	/* set suid, sgid, sticky from flags in fe/efe */
4318 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4319 		mode |= S_ISUID;
4320 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4321 		mode |= S_ISGID;
4322 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4323 		mode |= S_ISVTX;
4324 
4325 	UDF_UNLOCK_NODE(udf_node, 0);
4326 
4327 	return mode | ftype;
4328 }
4329 
4330 
4331 void
4332 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4333 {
4334 	struct file_entry    *fe  = udf_node->fe;
4335 	struct extfile_entry *efe = udf_node->efe;
4336 	uint32_t udf_perm;
4337 	uint16_t icbflags;
4338 
4339 	UDF_LOCK_NODE(udf_node, 0);
4340 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4341 	if (fe) {
4342 		icbflags = udf_rw16(fe->icbtag.flags);
4343 	} else {
4344 		icbflags = udf_rw16(efe->icbtag.flags);
4345 	}
4346 
4347 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4348 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4349 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4350 	if (mode & S_ISUID)
4351 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4352 	if (mode & S_ISGID)
4353 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4354 	if (mode & S_ISVTX)
4355 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4356 
4357 	if (fe) {
4358 		fe->perm  = udf_rw32(udf_perm);
4359 		fe->icbtag.flags  = udf_rw16(icbflags);
4360 	} else {
4361 		efe->perm = udf_rw32(udf_perm);
4362 		efe->icbtag.flags = udf_rw16(icbflags);
4363 	}
4364 
4365 	UDF_UNLOCK_NODE(udf_node, 0);
4366 }
4367 
4368 
4369 void
4370 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4371 {
4372 	struct udf_mount     *ump = udf_node->ump;
4373 	struct file_entry    *fe  = udf_node->fe;
4374 	struct extfile_entry *efe = udf_node->efe;
4375 	uid_t uid;
4376 	gid_t gid;
4377 
4378 	UDF_LOCK_NODE(udf_node, 0);
4379 	if (fe) {
4380 		uid = (uid_t)udf_rw32(fe->uid);
4381 		gid = (gid_t)udf_rw32(fe->gid);
4382 	} else {
4383 		assert(udf_node->efe);
4384 		uid = (uid_t)udf_rw32(efe->uid);
4385 		gid = (gid_t)udf_rw32(efe->gid);
4386 	}
4387 
4388 	/* do the uid/gid translation game */
4389 	if (uid == (uid_t) -1)
4390 		uid = ump->mount_args.anon_uid;
4391 	if (gid == (gid_t) -1)
4392 		gid = ump->mount_args.anon_gid;
4393 
4394 	*uidp = uid;
4395 	*gidp = gid;
4396 
4397 	UDF_UNLOCK_NODE(udf_node, 0);
4398 }
4399 
4400 
4401 void
4402 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4403 {
4404 	struct udf_mount     *ump = udf_node->ump;
4405 	struct file_entry    *fe  = udf_node->fe;
4406 	struct extfile_entry *efe = udf_node->efe;
4407 	uid_t nobody_uid;
4408 	gid_t nobody_gid;
4409 
4410 	UDF_LOCK_NODE(udf_node, 0);
4411 
4412 	/* do the uid/gid translation game */
4413 	nobody_uid = ump->mount_args.nobody_uid;
4414 	nobody_gid = ump->mount_args.nobody_gid;
4415 	if (uid == nobody_uid)
4416 		uid = (uid_t) -1;
4417 	if (gid == nobody_gid)
4418 		gid = (gid_t) -1;
4419 
4420 	if (fe) {
4421 		fe->uid  = udf_rw32((uint32_t) uid);
4422 		fe->gid  = udf_rw32((uint32_t) gid);
4423 	} else {
4424 		efe->uid = udf_rw32((uint32_t) uid);
4425 		efe->gid = udf_rw32((uint32_t) gid);
4426 	}
4427 
4428 	UDF_UNLOCK_NODE(udf_node, 0);
4429 }
4430 
4431 
4432 /* --------------------------------------------------------------------- */
4433 
4434 
4435 int
4436 udf_dirhash_fill(struct udf_node *dir_node)
4437 {
4438 	struct vnode *dvp = dir_node->vnode;
4439 	struct dirhash *dirh;
4440 	struct file_entry    *fe  = dir_node->fe;
4441 	struct extfile_entry *efe = dir_node->efe;
4442 	struct fileid_desc *fid;
4443 	struct dirent *dirent;
4444 	uint64_t file_size, pre_diroffset, diroffset;
4445 	uint32_t lb_size;
4446 	int error;
4447 
4448 	/* make sure we have a dirhash to work on */
4449 	dirh = dir_node->dir_hash;
4450 	KASSERT(dirh);
4451 	KASSERT(dirh->refcnt > 0);
4452 
4453 	if (dirh->flags & DIRH_BROKEN)
4454 		return EIO;
4455 	if (dirh->flags & DIRH_COMPLETE)
4456 		return 0;
4457 
4458 	/* make sure we have a clean dirhash to add to */
4459 	dirhash_purge_entries(dirh);
4460 
4461 	/* get directory filesize */
4462 	if (fe) {
4463 		file_size = udf_rw64(fe->inf_len);
4464 	} else {
4465 		assert(efe);
4466 		file_size = udf_rw64(efe->inf_len);
4467 	}
4468 
4469 	/* allocate temporary space for fid */
4470 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4471 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4472 
4473 	/* allocate temporary space for dirent */
4474 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4475 
4476 	error = 0;
4477 	diroffset = 0;
4478 	while (diroffset < file_size) {
4479 		/* transfer a new fid/dirent */
4480 		pre_diroffset = diroffset;
4481 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4482 		if (error) {
4483 			/* TODO what to do? continue but not add? */
4484 			dirh->flags |= DIRH_BROKEN;
4485 			dirhash_purge_entries(dirh);
4486 			break;
4487 		}
4488 
4489 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4490 			/* register deleted extent for reuse */
4491 			dirhash_enter_freed(dirh, pre_diroffset,
4492 				udf_fidsize(fid));
4493 		} else {
4494 			/* append to the dirhash */
4495 			dirhash_enter(dirh, dirent, pre_diroffset,
4496 				udf_fidsize(fid), 0);
4497 		}
4498 	}
4499 	dirh->flags |= DIRH_COMPLETE;
4500 
4501 	free(fid, M_UDFTEMP);
4502 	free(dirent, M_UDFTEMP);
4503 
4504 	return error;
4505 }
4506 
4507 
4508 /* --------------------------------------------------------------------- */
4509 
4510 /*
4511  * Directory read and manipulation functions.
4512  *
4513  */
4514 
4515 int
4516 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4517        struct long_ad *icb_loc, int *found)
4518 {
4519 	struct udf_node  *dir_node = VTOI(vp);
4520 	struct dirhash       *dirh;
4521 	struct dirhash_entry *dirh_ep;
4522 	struct fileid_desc *fid;
4523 	struct dirent *dirent, *s_dirent;
4524 	struct charspec osta_charspec;
4525 	uint64_t diroffset;
4526 	uint32_t lb_size;
4527 	int hit, error;
4528 
4529 	/* set default return */
4530 	*found = 0;
4531 
4532 	/* get our dirhash and make sure its read in */
4533 	dirhash_get(&dir_node->dir_hash);
4534 	error = udf_dirhash_fill(dir_node);
4535 	if (error) {
4536 		dirhash_put(dir_node->dir_hash);
4537 		return error;
4538 	}
4539 	dirh = dir_node->dir_hash;
4540 
4541 	/* allocate temporary space for fid */
4542 	lb_size  = udf_rw32(dir_node->ump->logical_vol->lb_size);
4543 	fid      = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4544 	dirent   = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4545 	s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4546 
4547 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4548 		namelen, namelen, name));
4549 
4550 	/* convert given unix name to canonical unix name */
4551 	udf_osta_charset(&osta_charspec);
4552 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
4553 		name, namelen, &osta_charspec);
4554 	udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4555 		(char *) fid->data, fid->l_fi,
4556 		&osta_charspec);
4557 	s_dirent->d_namlen = strlen(s_dirent->d_name);
4558 
4559 	/* search our dirhash hits */
4560 	memset(icb_loc, 0, sizeof(*icb_loc));
4561 	dirh_ep = NULL;
4562 	for (;;) {
4563 		hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4564 		/* if no hit, abort the search */
4565 		if (!hit)
4566 			break;
4567 
4568 		/* check this hit */
4569 		diroffset = dirh_ep->offset;
4570 
4571 		/* transfer a new fid/dirent */
4572 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4573 		if (error)
4574 			break;
4575 
4576 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4577 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4578 
4579 		/* see if its our entry */
4580 		if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4581 			*found = 1;
4582 			*icb_loc = fid->icb;
4583 			break;
4584 		}
4585 	}
4586 	free(fid, M_UDFTEMP);
4587 	free(dirent, M_UDFTEMP);
4588 	free(s_dirent, M_UDFTEMP);
4589 
4590 	dirhash_put(dir_node->dir_hash);
4591 
4592 	return error;
4593 }
4594 
4595 /* --------------------------------------------------------------------- */
4596 
4597 static int
4598 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4599 	struct long_ad *node_icb, struct long_ad *parent_icb,
4600 	uint64_t parent_unique_id)
4601 {
4602 	struct timespec now;
4603 	struct icb_tag *icb;
4604 	struct filetimes_extattr_entry *ft_extattr;
4605 	uint64_t unique_id;
4606 	uint32_t fidsize, lb_num;
4607 	uint8_t *bpos;
4608 	int crclen, attrlen;
4609 
4610 	lb_num = udf_rw32(node_icb->loc.lb_num);
4611 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4612 	icb = &fe->icbtag;
4613 
4614 	/*
4615 	 * Always use strategy type 4 unless on WORM wich we don't support
4616 	 * (yet). Fill in defaults and set for internal allocation of data.
4617 	 */
4618 	icb->strat_type      = udf_rw16(4);
4619 	icb->max_num_entries = udf_rw16(1);
4620 	icb->file_type       = file_type;	/* 8 bit */
4621 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4622 
4623 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4624 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
4625 
4626 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4627 
4628 	vfs_timestamp(&now);
4629 	udf_timespec_to_timestamp(&now, &fe->atime);
4630 	udf_timespec_to_timestamp(&now, &fe->attrtime);
4631 	udf_timespec_to_timestamp(&now, &fe->mtime);
4632 
4633 	udf_set_regid(&fe->imp_id, IMPL_NAME);
4634 	udf_add_impl_regid(ump, &fe->imp_id);
4635 
4636 	unique_id = udf_advance_uniqueid(ump);
4637 	fe->unique_id = udf_rw64(unique_id);
4638 	fe->l_ea = udf_rw32(0);
4639 
4640 	/* create extended attribute to record our creation time */
4641 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4642 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4643 	memset(ft_extattr, 0, attrlen);
4644 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4645 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
4646 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4647 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4648 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4649 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4650 
4651 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4652 		(struct extattr_entry *) ft_extattr);
4653 	free(ft_extattr, M_UDFTEMP);
4654 
4655 	/* if its a directory, create '..' */
4656 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4657 	fidsize = 0;
4658 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4659 		fidsize = udf_create_parentfid(ump,
4660 			(struct fileid_desc *) bpos, parent_icb,
4661 			parent_unique_id);
4662 	}
4663 
4664 	/* record fidlength information */
4665 	fe->inf_len = udf_rw64(fidsize);
4666 	fe->l_ad    = udf_rw32(fidsize);
4667 	fe->logblks_rec = udf_rw64(0);		/* intern */
4668 
4669 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4670 	crclen += udf_rw32(fe->l_ea) + fidsize;
4671 	fe->tag.desc_crc_len = udf_rw16(crclen);
4672 
4673 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4674 
4675 	return fidsize;
4676 }
4677 
4678 /* --------------------------------------------------------------------- */
4679 
4680 static int
4681 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4682 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4683 	uint64_t parent_unique_id)
4684 {
4685 	struct timespec now;
4686 	struct icb_tag *icb;
4687 	uint64_t unique_id;
4688 	uint32_t fidsize, lb_num;
4689 	uint8_t *bpos;
4690 	int crclen;
4691 
4692 	lb_num = udf_rw32(node_icb->loc.lb_num);
4693 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4694 	icb = &efe->icbtag;
4695 
4696 	/*
4697 	 * Always use strategy type 4 unless on WORM wich we don't support
4698 	 * (yet). Fill in defaults and set for internal allocation of data.
4699 	 */
4700 	icb->strat_type      = udf_rw16(4);
4701 	icb->max_num_entries = udf_rw16(1);
4702 	icb->file_type       = file_type;	/* 8 bit */
4703 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4704 
4705 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4706 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
4707 
4708 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4709 
4710 	vfs_timestamp(&now);
4711 	udf_timespec_to_timestamp(&now, &efe->ctime);
4712 	udf_timespec_to_timestamp(&now, &efe->atime);
4713 	udf_timespec_to_timestamp(&now, &efe->attrtime);
4714 	udf_timespec_to_timestamp(&now, &efe->mtime);
4715 
4716 	udf_set_regid(&efe->imp_id, IMPL_NAME);
4717 	udf_add_impl_regid(ump, &efe->imp_id);
4718 
4719 	unique_id = udf_advance_uniqueid(ump);
4720 	efe->unique_id = udf_rw64(unique_id);
4721 	efe->l_ea = udf_rw32(0);
4722 
4723 	/* if its a directory, create '..' */
4724 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4725 	fidsize = 0;
4726 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4727 		fidsize = udf_create_parentfid(ump,
4728 			(struct fileid_desc *) bpos, parent_icb,
4729 			parent_unique_id);
4730 	}
4731 
4732 	/* record fidlength information */
4733 	efe->obj_size = udf_rw64(fidsize);
4734 	efe->inf_len  = udf_rw64(fidsize);
4735 	efe->l_ad     = udf_rw32(fidsize);
4736 	efe->logblks_rec = udf_rw64(0);		/* intern */
4737 
4738 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4739 	crclen += udf_rw32(efe->l_ea) + fidsize;
4740 	efe->tag.desc_crc_len = udf_rw16(crclen);
4741 
4742 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4743 
4744 	return fidsize;
4745 }
4746 
4747 /* --------------------------------------------------------------------- */
4748 
4749 int
4750 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4751 	struct udf_node *udf_node, struct componentname *cnp)
4752 {
4753 	struct vnode *dvp = dir_node->vnode;
4754 	struct dirhash       *dirh;
4755 	struct dirhash_entry *dirh_ep;
4756 	struct file_entry    *fe  = dir_node->fe;
4757 	struct fileid_desc *fid;
4758 	struct dirent *dirent, *s_dirent;
4759 	struct charspec osta_charspec;
4760 	uint64_t diroffset;
4761 	uint32_t lb_size, fidsize;
4762 	int found, error;
4763 	int hit, refcnt;
4764 
4765 	/* get our dirhash and make sure its read in */
4766 	dirhash_get(&dir_node->dir_hash);
4767 	error = udf_dirhash_fill(dir_node);
4768 	if (error) {
4769 		dirhash_put(dir_node->dir_hash);
4770 		return error;
4771 	}
4772 	dirh = dir_node->dir_hash;
4773 
4774 	/* get directory filesize */
4775 	if (!fe) {
4776 		assert(dir_node->efe);
4777 	}
4778 
4779 	/* allocate temporary space for fid and dirents */
4780 	lb_size  = udf_rw32(dir_node->ump->logical_vol->lb_size);
4781 	fid      = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4782 	dirent   = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4783 	s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4784 
4785 	/* convert given unix name to canonical unix name */
4786 	udf_osta_charset(&osta_charspec);
4787 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
4788 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4789 	udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4790 		(char *) fid->data, fid->l_fi,
4791 		&osta_charspec);
4792 	s_dirent->d_namlen = strlen(s_dirent->d_name);
4793 
4794 	/* search our dirhash hits */
4795 	found = 0;
4796 	dirh_ep = NULL;
4797 	for (;;) {
4798 		hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4799 		/* if no hit, abort the search */
4800 		if (!hit)
4801 			break;
4802 
4803 		/* check this hit */
4804 		diroffset = dirh_ep->offset;
4805 
4806 		/* transfer a new fid/dirent */
4807 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4808 		if (error)
4809 			break;
4810 
4811 		/* see if its our entry */
4812 		KASSERT(dirent->d_namlen == s_dirent->d_namlen);
4813 		if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4814 			found = 1;
4815 			break;
4816 		}
4817 	}
4818 
4819 	if (!found)
4820 		error = ENOENT;
4821 	if (error)
4822 		goto error_out;
4823 
4824 	/* mark deleted */
4825 	fid->file_char |= UDF_FILE_CHAR_DEL;
4826 #ifdef UDF_COMPLETE_DELETE
4827 	memset(&fid->icb, 0, sizeof(fid->icb));
4828 #endif
4829 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4830 
4831 	/* get size of fid and compensate for the read_fid_stream advance */
4832 	fidsize = udf_fidsize(fid);
4833 	diroffset -= fidsize;
4834 
4835 	/* write out */
4836 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4837 			fid, fidsize, diroffset,
4838 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4839 			FSCRED, NULL, NULL);
4840 	if (error)
4841 		goto error_out;
4842 
4843 	/* get reference count of attached node */
4844 	if (udf_node->fe) {
4845 		refcnt = udf_rw16(udf_node->fe->link_cnt);
4846 	} else {
4847 		KASSERT(udf_node->efe);
4848 		refcnt = udf_rw16(udf_node->efe->link_cnt);
4849 	}
4850 #ifdef UDF_COMPLETE_DELETE
4851 	/* substract reference counter in attached node */
4852 	refcnt -= 1;
4853 	if (udf_node->fe) {
4854 		udf_node->fe->link_cnt = udf_rw16(refcnt);
4855 	} else {
4856 		udf_node->efe->link_cnt = udf_rw16(refcnt);
4857 	}
4858 
4859 	/* prevent writeout when refcnt == 0 */
4860 	if (refcnt == 0)
4861 		udf_node->i_flags |= IN_DELETED;
4862 
4863 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
4864 		int drefcnt;
4865 
4866 		/* substract reference counter in directory node */
4867 		/* note subtract 2 (?) for its was also backreferenced */
4868 		if (dir_node->fe) {
4869 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
4870 			drefcnt -= 1;
4871 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
4872 		} else {
4873 			KASSERT(dir_node->efe);
4874 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
4875 			drefcnt -= 1;
4876 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
4877 		}
4878 	}
4879 
4880 	udf_node->i_flags |= IN_MODIFIED;
4881 	dir_node->i_flags |= IN_MODIFIED;
4882 #endif
4883 	/* if it is/was a hardlink adjust the file count */
4884 	if (refcnt > 0)
4885 		udf_adjust_filecount(udf_node, -1);
4886 
4887 	/* remove from the dirhash */
4888 	dirhash_remove(dirh, dirent, diroffset,
4889 		udf_fidsize(fid));
4890 
4891 error_out:
4892 	free(fid, M_UDFTEMP);
4893 	free(dirent, M_UDFTEMP);
4894 	free(s_dirent, M_UDFTEMP);
4895 
4896 	dirhash_put(dir_node->dir_hash);
4897 
4898 	return error;
4899 }
4900 
4901 /* --------------------------------------------------------------------- */
4902 
4903 int
4904 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4905 	struct udf_node *new_parent_node)
4906 {
4907 	struct vnode *dvp = dir_node->vnode;
4908 	struct dirhash       *dirh;
4909 	struct dirhash_entry *dirh_ep;
4910 	struct file_entry    *fe;
4911 	struct extfile_entry *efe;
4912 	struct fileid_desc *fid;
4913 	struct dirent *dirent;
4914 	uint64_t diroffset;
4915 	uint64_t new_parent_unique_id;
4916 	uint32_t lb_size, fidsize;
4917 	int found, error;
4918 	char const *name  = "..";
4919 	int namelen = 2;
4920 	int hit;
4921 
4922 	/* get our dirhash and make sure its read in */
4923 	dirhash_get(&dir_node->dir_hash);
4924 	error = udf_dirhash_fill(dir_node);
4925 	if (error) {
4926 		dirhash_put(dir_node->dir_hash);
4927 		return error;
4928 	}
4929 	dirh = dir_node->dir_hash;
4930 
4931 	/* get new parent's unique ID */
4932 	fe  = new_parent_node->fe;
4933 	efe = new_parent_node->efe;
4934 	if (fe) {
4935 		new_parent_unique_id = udf_rw64(fe->unique_id);
4936 	} else {
4937 		assert(efe);
4938 		new_parent_unique_id = udf_rw64(efe->unique_id);
4939 	}
4940 
4941 	/* get directory filesize */
4942 	fe  = dir_node->fe;
4943 	efe = dir_node->efe;
4944 	if (!fe) {
4945 		assert(efe);
4946 	}
4947 
4948 	/* allocate temporary space for fid */
4949 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4950 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4951 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4952 
4953 	/*
4954 	 * NOTE the standard does not dictate the FID entry '..' should be
4955 	 * first, though in practice it will most likely be.
4956 	 */
4957 
4958 	/* search our dirhash hits */
4959 	found = 0;
4960 	dirh_ep = NULL;
4961 	for (;;) {
4962 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4963 		/* if no hit, abort the search */
4964 		if (!hit)
4965 			break;
4966 
4967 		/* check this hit */
4968 		diroffset = dirh_ep->offset;
4969 
4970 		/* transfer a new fid/dirent */
4971 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4972 		if (error)
4973 			break;
4974 
4975 		/* see if its our entry */
4976 		KASSERT(dirent->d_namlen == namelen);
4977 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4978 			found = 1;
4979 			break;
4980 		}
4981 	}
4982 
4983 	if (!found)
4984 		error = ENOENT;
4985 	if (error)
4986 		goto error_out;
4987 
4988 	/* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4989 	fid->icb = new_parent_node->write_loc;
4990 	fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4991 
4992 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4993 
4994 	/* get size of fid and compensate for the read_fid_stream advance */
4995 	fidsize = udf_fidsize(fid);
4996 	diroffset -= fidsize;
4997 
4998 	/* write out */
4999 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5000 			fid, fidsize, diroffset,
5001 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5002 			FSCRED, NULL, NULL);
5003 
5004 	/* nothing to be done in the dirhash */
5005 
5006 error_out:
5007 	free(fid, M_UDFTEMP);
5008 	free(dirent, M_UDFTEMP);
5009 
5010 	dirhash_put(dir_node->dir_hash);
5011 
5012 	return error;
5013 }
5014 
5015 /* --------------------------------------------------------------------- */
5016 
5017 /*
5018  * We are not allowed to split the fid tag itself over an logical block so
5019  * check the space remaining in the logical block.
5020  *
5021  * We try to select the smallest candidate for recycling or when none is
5022  * found, append a new one at the end of the directory.
5023  */
5024 
5025 int
5026 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5027 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5028 {
5029 	struct vnode *dvp = dir_node->vnode;
5030 	struct dirhash       *dirh;
5031 	struct dirhash_entry *dirh_ep;
5032 	struct fileid_desc   *fid;
5033 	struct icb_tag       *icbtag;
5034 	struct charspec osta_charspec;
5035 	struct dirent   dirent;
5036 	uint64_t unique_id, dir_size;
5037 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5038 	uint32_t chosen_size, chosen_size_diff;
5039 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5040 	int file_char, refcnt, icbflags, addr_type, hit, error;
5041 
5042 	/* get our dirhash and make sure its read in */
5043 	dirhash_get(&dir_node->dir_hash);
5044 	error = udf_dirhash_fill(dir_node);
5045 	if (error) {
5046 		dirhash_put(dir_node->dir_hash);
5047 		return error;
5048 	}
5049 	dirh = dir_node->dir_hash;
5050 
5051 	/* get info */
5052 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5053 	udf_osta_charset(&osta_charspec);
5054 
5055 	if (dir_node->fe) {
5056 		dir_size = udf_rw64(dir_node->fe->inf_len);
5057 		icbtag   = &dir_node->fe->icbtag;
5058 	} else {
5059 		dir_size = udf_rw64(dir_node->efe->inf_len);
5060 		icbtag   = &dir_node->efe->icbtag;
5061 	}
5062 
5063 	icbflags   = udf_rw16(icbtag->flags);
5064 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5065 
5066 	if (udf_node->fe) {
5067 		unique_id = udf_rw64(udf_node->fe->unique_id);
5068 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
5069 	} else {
5070 		unique_id = udf_rw64(udf_node->efe->unique_id);
5071 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
5072 	}
5073 
5074 	if (refcnt > 0) {
5075 		unique_id = udf_advance_uniqueid(ump);
5076 		udf_adjust_filecount(udf_node, 1);
5077 	}
5078 
5079 	/* determine file characteristics */
5080 	file_char = 0;	/* visible non deleted file and not stream metadata */
5081 	if (vap->va_type == VDIR)
5082 		file_char = UDF_FILE_CHAR_DIR;
5083 
5084 	/* malloc scrap buffer */
5085 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5086 
5087 	/* calculate _minimum_ fid size */
5088 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
5089 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5090 	fidsize = UDF_FID_SIZE + fid->l_fi;
5091 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
5092 
5093 	/* find position that will fit the FID */
5094 	chosen_fid_pos   = dir_size;
5095 	chosen_size      = 0;
5096 	chosen_size_diff = UINT_MAX;
5097 
5098 	/* shut up gcc */
5099 	dirent.d_namlen = 0;
5100 
5101 	/* search our dirhash hits */
5102 	error = 0;
5103 	dirh_ep = NULL;
5104 	for (;;) {
5105 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5106 		/* if no hit, abort the search */
5107 		if (!hit)
5108 			break;
5109 
5110 		/* check this hit for size */
5111 		this_fidsize = dirh_ep->entry_size;
5112 
5113 		/* check this hit */
5114 		fid_pos     = dirh_ep->offset;
5115 		end_fid_pos = fid_pos + this_fidsize;
5116 		size_diff   = this_fidsize - fidsize;
5117 		lb_rest = lb_size - (end_fid_pos % lb_size);
5118 
5119 #ifndef UDF_COMPLETE_DELETE
5120 		/* transfer a new fid/dirent */
5121 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5122 		if (error)
5123 			goto error_out;
5124 
5125 		/* only reuse entries that are wiped */
5126 		/* check if the len + loc are marked zero */
5127 		if (udf_rw32(fid->icb.len) != 0)
5128 			continue;
5129 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
5130 			continue;
5131 		if (udf_rw16(fid->icb.loc.part_num) != 0)
5132 			continue;
5133 #endif	/* UDF_COMPLETE_DELETE */
5134 
5135 		/* select if not splitting the tag and its smaller */
5136 		if ((size_diff >= 0)  &&
5137 			(size_diff < chosen_size_diff) &&
5138 			(lb_rest >= sizeof(struct desc_tag)))
5139 		{
5140 			/* UDF 2.3.4.2+3 specifies rules for iu size */
5141 			if ((size_diff == 0) || (size_diff >= 32)) {
5142 				chosen_fid_pos   = fid_pos;
5143 				chosen_size      = this_fidsize;
5144 				chosen_size_diff = size_diff;
5145 			}
5146 		}
5147 	}
5148 
5149 
5150 	/* extend directory if no other candidate found */
5151 	if (chosen_size == 0) {
5152 		chosen_fid_pos   = dir_size;
5153 		chosen_size      = fidsize;
5154 		chosen_size_diff = 0;
5155 
5156 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5157 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
5158 			/* pre-grow directory to see if we're to switch */
5159 			udf_grow_node(dir_node, dir_size + chosen_size);
5160 
5161 			icbflags   = udf_rw16(icbtag->flags);
5162 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5163 		}
5164 
5165 		/* make sure the next fid desc_tag won't be splitted */
5166 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
5167 			end_fid_pos = chosen_fid_pos + chosen_size;
5168 			lb_rest = lb_size - (end_fid_pos % lb_size);
5169 
5170 			/* pad with implementation use regid if needed */
5171 			if (lb_rest < sizeof(struct desc_tag))
5172 				chosen_size += 32;
5173 		}
5174 	}
5175 	chosen_size_diff = chosen_size - fidsize;
5176 
5177 	/* populate the FID */
5178 	memset(fid, 0, lb_size);
5179 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5180 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
5181 	fid->file_char           = file_char;
5182 	fid->icb                 = udf_node->loc;
5183 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5184 	fid->l_iu                = udf_rw16(0);
5185 
5186 	if (chosen_size > fidsize) {
5187 		/* insert implementation-use regid to space it correctly */
5188 		fid->l_iu = udf_rw16(chosen_size_diff);
5189 
5190 		/* set implementation use */
5191 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5192 		udf_add_impl_regid(ump, (struct regid *) fid->data);
5193 	}
5194 
5195 	/* fill in name */
5196 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5197 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5198 
5199 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5200 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5201 
5202 	/* writeout FID/update parent directory */
5203 	error = vn_rdwr(UIO_WRITE, dvp,
5204 			fid, chosen_size, chosen_fid_pos,
5205 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5206 			FSCRED, NULL, NULL);
5207 
5208 	if (error)
5209 		goto error_out;
5210 
5211 	/* add reference counter in attached node */
5212 	if (udf_node->fe) {
5213 		refcnt = udf_rw16(udf_node->fe->link_cnt);
5214 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5215 	} else {
5216 		KASSERT(udf_node->efe);
5217 		refcnt = udf_rw16(udf_node->efe->link_cnt);
5218 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5219 	}
5220 
5221 	/* mark not deleted if it was... just in case, but do warn */
5222 	if (udf_node->i_flags & IN_DELETED) {
5223 		printf("udf: warning, marking a file undeleted\n");
5224 		udf_node->i_flags &= ~IN_DELETED;
5225 	}
5226 
5227 	if (file_char & UDF_FILE_CHAR_DIR) {
5228 		/* add reference counter in directory node for '..' */
5229 		if (dir_node->fe) {
5230 			refcnt = udf_rw16(dir_node->fe->link_cnt);
5231 			refcnt++;
5232 			dir_node->fe->link_cnt = udf_rw16(refcnt);
5233 		} else {
5234 			KASSERT(dir_node->efe);
5235 			refcnt = udf_rw16(dir_node->efe->link_cnt);
5236 			refcnt++;
5237 			dir_node->efe->link_cnt = udf_rw16(refcnt);
5238 		}
5239 	}
5240 
5241 	/* append to the dirhash */
5242 	/* NOTE do not use dirent anymore or it won't match later! */
5243 	udf_to_unix_name(dirent.d_name, NAME_MAX,
5244 		(char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5245 	dirent.d_namlen = strlen(dirent.d_name);
5246 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
5247 		udf_fidsize(fid), 1);
5248 
5249 	/* note updates */
5250 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5251 	/* VN_KNOTE(udf_node,  ...) */
5252 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5253 
5254 error_out:
5255 	free(fid, M_TEMP);
5256 
5257 	dirhash_put(dir_node->dir_hash);
5258 
5259 	return error;
5260 }
5261 
5262 /* --------------------------------------------------------------------- */
5263 
5264 /*
5265  * Each node can have an attached streamdir node though not recursively. These
5266  * are otherwise known as named substreams/named extended attributes that have
5267  * no size limitations.
5268  *
5269  * `Normal' extended attributes are indicated with a number and are recorded
5270  * in either the fe/efe descriptor itself for small descriptors or recorded in
5271  * the attached extended attribute file. Since these spaces can get
5272  * fragmented, care ought to be taken.
5273  *
5274  * Since the size of the space reserved for allocation descriptors is limited,
5275  * there is a mechanim provided for extending this space; this is done by a
5276  * special extent to allow schrinking of the allocations without breaking the
5277  * linkage to the allocation extent descriptor.
5278  */
5279 
5280 int
5281 udf_loadvnode(struct mount *mp, struct vnode *vp,
5282      const void *key, size_t key_len, const void **new_key)
5283 {
5284 	union dscrptr   *dscr;
5285 	struct udf_mount *ump;
5286 	struct udf_node *udf_node;
5287 	struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5288 	uint64_t file_size;
5289 	uint32_t lb_size, sector, dummy;
5290 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5291 	int slot, eof, error;
5292 	int num_indir_followed = 0;
5293 
5294 	DPRINTF(NODE, ("udf_loadvnode called\n"));
5295 	udf_node = NULL;
5296 	ump = VFSTOUDF(mp);
5297 
5298 	KASSERT(key_len == sizeof(node_icb_loc.loc));
5299 	memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5300 	node_icb_loc.len = ump->logical_vol->lb_size;
5301 	memcpy(&node_icb_loc.loc, key, key_len);
5302 
5303 	/* garbage check: translate udf_node_icb_loc to sectornr */
5304 	error = udf_translate_vtop(ump, &node_icb_loc, &sector, &dummy);
5305 	if (error) {
5306 		DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5307 		/* no use, this will fail anyway */
5308 		return EINVAL;
5309 	}
5310 
5311 	/* build udf_node (do initialise!) */
5312 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5313 	memset(udf_node, 0, sizeof(struct udf_node));
5314 
5315 	vp->v_tag = VT_UDF;
5316 	vp->v_op = udf_vnodeop_p;
5317 	vp->v_data = udf_node;
5318 
5319 	/* initialise crosslinks, note location of fe/efe for hashing */
5320 	udf_node->ump    =  ump;
5321 	udf_node->vnode  =  vp;
5322 	udf_node->loc    =  node_icb_loc;
5323 	udf_node->lockf  =  0;
5324 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5325 	cv_init(&udf_node->node_lock, "udf_nlk");
5326 	genfs_node_init(vp, &udf_genfsops);	/* inititise genfs */
5327 	udf_node->outstanding_bufs = 0;
5328 	udf_node->outstanding_nodedscr = 0;
5329 	udf_node->uncommitted_lbs = 0;
5330 
5331 	/* check if we're fetching the root */
5332 	if (ump->fileset_desc)
5333 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5334 		    sizeof(struct long_ad)) == 0)
5335 			vp->v_vflag |= VV_ROOT;
5336 
5337 	icb_loc = node_icb_loc;
5338 	needs_indirect = 0;
5339 	strat4096 = 0;
5340 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5341 	file_size = 0;
5342 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5343 
5344 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
5345 	do {
5346 		/* try to read in fe/efe */
5347 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5348 
5349 		/* blank sector marks end of sequence, check this */
5350 		if ((dscr == NULL) &&  (!strat4096))
5351 			error = ENOENT;
5352 
5353 		/* break if read error or blank sector */
5354 		if (error || (dscr == NULL))
5355 			break;
5356 
5357 		/* process descriptor based on the descriptor type */
5358 		dscr_type = udf_rw16(dscr->tag.id);
5359 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5360 
5361 		/* if dealing with an indirect entry, follow the link */
5362 		if (dscr_type == TAGID_INDIRECTENTRY) {
5363 			needs_indirect = 0;
5364 			next_icb_loc = dscr->inde.indirect_icb;
5365 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5366 			icb_loc = next_icb_loc;
5367 			if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5368 				error = EMLINK;
5369 				break;
5370 			}
5371 			continue;
5372 		}
5373 
5374 		/* only file entries and extended file entries allowed here */
5375 		if ((dscr_type != TAGID_FENTRY) &&
5376 		    (dscr_type != TAGID_EXTFENTRY)) {
5377 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5378 			error = ENOENT;
5379 			break;
5380 		}
5381 
5382 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5383 
5384 		/* choose this one */
5385 		last_fe_icb_loc = icb_loc;
5386 
5387 		/* record and process/update (ext)fentry */
5388 		if (dscr_type == TAGID_FENTRY) {
5389 			if (udf_node->fe)
5390 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5391 					udf_node->fe);
5392 			udf_node->fe  = &dscr->fe;
5393 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5394 			udf_file_type = udf_node->fe->icbtag.file_type;
5395 			file_size = udf_rw64(udf_node->fe->inf_len);
5396 		} else {
5397 			if (udf_node->efe)
5398 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5399 					udf_node->efe);
5400 			udf_node->efe = &dscr->efe;
5401 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5402 			udf_file_type = udf_node->efe->icbtag.file_type;
5403 			file_size = udf_rw64(udf_node->efe->inf_len);
5404 		}
5405 
5406 		/* check recording strategy (structure) */
5407 
5408 		/*
5409 		 * Strategy 4096 is a daisy linked chain terminating with an
5410 		 * unrecorded sector or a TERM descriptor. The next
5411 		 * descriptor is to be found in the sector that follows the
5412 		 * current sector.
5413 		 */
5414 		if (strat == 4096) {
5415 			strat4096 = 1;
5416 			needs_indirect = 1;
5417 
5418 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5419 		}
5420 
5421 		/*
5422 		 * Strategy 4 is the normal strategy and terminates, but if
5423 		 * we're in strategy 4096, we can't have strategy 4 mixed in
5424 		 */
5425 
5426 		if (strat == 4) {
5427 			if (strat4096) {
5428 				error = EINVAL;
5429 				break;
5430 			}
5431 			break;		/* done */
5432 		}
5433 	} while (!error);
5434 
5435 	/* first round of cleanup code */
5436 	if (error) {
5437 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5438 		/* recycle udf_node */
5439 		udf_dispose_node(udf_node);
5440 
5441 		return EINVAL;		/* error code ok? */
5442 	}
5443 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5444 
5445 	/* assert no references to dscr anymore beyong this point */
5446 	assert((udf_node->fe) || (udf_node->efe));
5447 	dscr = NULL;
5448 
5449 	/*
5450 	 * Remember where to record an updated version of the descriptor. If
5451 	 * there is a sequence of indirect entries, icb_loc will have been
5452 	 * updated. Its the write disipline to allocate new space and to make
5453 	 * sure the chain is maintained.
5454 	 *
5455 	 * `needs_indirect' flags if the next location is to be filled with
5456 	 * with an indirect entry.
5457 	 */
5458 	udf_node->write_loc = icb_loc;
5459 	udf_node->needs_indirect = needs_indirect;
5460 
5461 	/*
5462 	 * Go trough all allocations extents of this descriptor and when
5463 	 * encountering a redirect read in the allocation extension. These are
5464 	 * daisy-chained.
5465 	 */
5466 	UDF_LOCK_NODE(udf_node, 0);
5467 	udf_node->num_extensions = 0;
5468 
5469 	error   = 0;
5470 	slot    = 0;
5471 	for (;;) {
5472 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5473 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5474 			"lb_num = %d, part = %d\n", slot, eof,
5475 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5476 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5477 			udf_rw32(icb_loc.loc.lb_num),
5478 			udf_rw16(icb_loc.loc.part_num)));
5479 		if (eof)
5480 			break;
5481 		slot++;
5482 
5483 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5484 			continue;
5485 
5486 		DPRINTF(NODE, ("\tgot redirect extent\n"));
5487 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5488 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5489 					"too many allocation extensions on "
5490 					"udf_node\n"));
5491 			error = EINVAL;
5492 			break;
5493 		}
5494 
5495 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5496 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5497 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5498 					"extension size in udf_node\n"));
5499 			error = EINVAL;
5500 			break;
5501 		}
5502 
5503 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5504 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5505 		/* load in allocation extent */
5506 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5507 		if (error || (dscr == NULL))
5508 			break;
5509 
5510 		/* process read-in descriptor */
5511 		dscr_type = udf_rw16(dscr->tag.id);
5512 
5513 		if (dscr_type != TAGID_ALLOCEXTENT) {
5514 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5515 			error = ENOENT;
5516 			break;
5517 		}
5518 
5519 		DPRINTF(NODE, ("\trecording redirect extent\n"));
5520 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5521 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5522 
5523 		udf_node->num_extensions++;
5524 
5525 	} /* while */
5526 	UDF_UNLOCK_NODE(udf_node, 0);
5527 
5528 	/* second round of cleanup code */
5529 	if (error) {
5530 		/* recycle udf_node */
5531 		udf_dispose_node(udf_node);
5532 
5533 		return EINVAL;		/* error code ok? */
5534 	}
5535 
5536 	DPRINTF(NODE, ("\tnode read in fine\n"));
5537 
5538 	/*
5539 	 * Translate UDF filetypes into vnode types.
5540 	 *
5541 	 * Systemfiles like the meta main and mirror files are not treated as
5542 	 * normal files, so we type them as having no type. UDF dictates that
5543 	 * they are not allowed to be visible.
5544 	 */
5545 
5546 	switch (udf_file_type) {
5547 	case UDF_ICB_FILETYPE_DIRECTORY :
5548 	case UDF_ICB_FILETYPE_STREAMDIR :
5549 		vp->v_type = VDIR;
5550 		break;
5551 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
5552 		vp->v_type = VBLK;
5553 		break;
5554 	case UDF_ICB_FILETYPE_CHARDEVICE :
5555 		vp->v_type = VCHR;
5556 		break;
5557 	case UDF_ICB_FILETYPE_SOCKET :
5558 		vp->v_type = VSOCK;
5559 		break;
5560 	case UDF_ICB_FILETYPE_FIFO :
5561 		vp->v_type = VFIFO;
5562 		break;
5563 	case UDF_ICB_FILETYPE_SYMLINK :
5564 		vp->v_type = VLNK;
5565 		break;
5566 	case UDF_ICB_FILETYPE_VAT :
5567 	case UDF_ICB_FILETYPE_META_MAIN :
5568 	case UDF_ICB_FILETYPE_META_MIRROR :
5569 		vp->v_type = VNON;
5570 		break;
5571 	case UDF_ICB_FILETYPE_RANDOMACCESS :
5572 	case UDF_ICB_FILETYPE_REALTIME :
5573 		vp->v_type = VREG;
5574 		break;
5575 	default:
5576 		/* YIKES, something else */
5577 		vp->v_type = VNON;
5578 	}
5579 
5580 	/* TODO specfs, fifofs etc etc. vnops setting */
5581 
5582 	/* don't forget to set vnode's v_size */
5583 	uvm_vnp_setsize(vp, file_size);
5584 
5585 	/* TODO ext attr and streamdir udf_nodes */
5586 
5587 	*new_key = &udf_node->loc.loc;
5588 
5589 	return 0;
5590 }
5591 
5592 int
5593 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5594 	     struct udf_node **udf_noderes)
5595 {
5596 	int error;
5597 	struct vnode *vp;
5598 
5599 	*udf_noderes = NULL;
5600 
5601 	error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5602 	    sizeof(node_icb_loc->loc), &vp);
5603 	if (error)
5604 		return error;
5605 	error = vn_lock(vp, LK_EXCLUSIVE);
5606 	if (error) {
5607 		vrele(vp);
5608 		return error;
5609 	}
5610 	*udf_noderes = VTOI(vp);
5611 	return 0;
5612 }
5613 
5614 /* --------------------------------------------------------------------- */
5615 
5616 int
5617 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5618 {
5619 	union dscrptr *dscr;
5620 	struct long_ad *loc;
5621 	int extnr, error;
5622 
5623 	DPRINTF(NODE, ("udf_writeout_node called\n"));
5624 
5625 	KASSERT(udf_node->outstanding_bufs == 0);
5626 	KASSERT(udf_node->outstanding_nodedscr == 0);
5627 
5628 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5629 
5630 	if (udf_node->i_flags & IN_DELETED) {
5631 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5632 		udf_cleanup_reservation(udf_node);
5633 		return 0;
5634 	}
5635 
5636 	/* lock node; unlocked in callback */
5637 	UDF_LOCK_NODE(udf_node, 0);
5638 
5639 	/* remove pending reservations, we're written out */
5640 	udf_cleanup_reservation(udf_node);
5641 
5642 	/* at least one descriptor writeout */
5643 	udf_node->outstanding_nodedscr = 1;
5644 
5645 	/* we're going to write out the descriptor so clear the flags */
5646 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5647 
5648 	/* if we were rebuild, write out the allocation extents */
5649 	if (udf_node->i_flags & IN_NODE_REBUILD) {
5650 		/* mark outstanding node descriptors and issue them */
5651 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
5652 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5653 			loc = &udf_node->ext_loc[extnr];
5654 			dscr = (union dscrptr *) udf_node->ext[extnr];
5655 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5656 			if (error)
5657 				return error;
5658 		}
5659 		/* mark allocation extents written out */
5660 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
5661 	}
5662 
5663 	if (udf_node->fe) {
5664 		KASSERT(udf_node->efe == NULL);
5665 		dscr = (union dscrptr *) udf_node->fe;
5666 	} else {
5667 		KASSERT(udf_node->efe);
5668 		KASSERT(udf_node->fe == NULL);
5669 		dscr = (union dscrptr *) udf_node->efe;
5670 	}
5671 	KASSERT(dscr);
5672 
5673 	loc = &udf_node->write_loc;
5674 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5675 
5676 	return error;
5677 }
5678 
5679 /* --------------------------------------------------------------------- */
5680 
5681 int
5682 udf_dispose_node(struct udf_node *udf_node)
5683 {
5684 	struct vnode *vp;
5685 	int extnr;
5686 
5687 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5688 	if (!udf_node) {
5689 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5690 		return 0;
5691 	}
5692 
5693 	vp  = udf_node->vnode;
5694 #ifdef DIAGNOSTIC
5695 	if (vp->v_numoutput)
5696 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
5697 				"v_numoutput = %d", udf_node, vp->v_numoutput);
5698 #endif
5699 
5700 	udf_cleanup_reservation(udf_node);
5701 
5702 	/* TODO extended attributes and streamdir */
5703 
5704 	/* remove dirhash if present */
5705 	dirhash_purge(&udf_node->dir_hash);
5706 
5707 	/* destroy our lock */
5708 	mutex_destroy(&udf_node->node_mutex);
5709 	cv_destroy(&udf_node->node_lock);
5710 
5711 	/* dissociate our udf_node from the vnode */
5712 	genfs_node_destroy(udf_node->vnode);
5713 	mutex_enter(vp->v_interlock);
5714 	vp->v_data = NULL;
5715 	mutex_exit(vp->v_interlock);
5716 
5717 	/* free associated memory and the node itself */
5718 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5719 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5720 			udf_node->ext[extnr]);
5721 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
5722 	}
5723 
5724 	if (udf_node->fe)
5725 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5726 			udf_node->fe);
5727 	if (udf_node->efe)
5728 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5729 			udf_node->efe);
5730 
5731 	udf_node->fe  = (void *) 0xdeadaaaa;
5732 	udf_node->efe = (void *) 0xdeadbbbb;
5733 	udf_node->ump = (void *) 0xdeadbeef;
5734 	pool_put(&udf_node_pool, udf_node);
5735 
5736 	return 0;
5737 }
5738 
5739 
5740 
5741 /*
5742  * create a new node using the specified dvp, vap and cnp.
5743  * This allows special files to be created. Use with care.
5744  */
5745 
5746 int
5747 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5748     struct vattr *vap, kauth_cred_t cred,
5749     size_t *key_len, const void **new_key)
5750 {
5751 	union dscrptr *dscr;
5752 	struct udf_node *dir_node = VTOI(dvp);
5753 	struct udf_node *udf_node;
5754 	struct udf_mount *ump = dir_node->ump;
5755 	struct long_ad node_icb_loc;
5756 	uint64_t parent_unique_id;
5757 	uint64_t lmapping;
5758 	uint32_t lb_size, lb_num;
5759 	uint16_t vpart_num;
5760 	uid_t uid;
5761 	gid_t gid, parent_gid;
5762 	int (**vnodeops)(void *);
5763 	int udf_file_type, fid_size, error;
5764 
5765 	vnodeops = udf_vnodeop_p;
5766 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5767 
5768 	switch (vap->va_type) {
5769 	case VREG :
5770 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5771 		break;
5772 	case VDIR :
5773 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5774 		break;
5775 	case VLNK :
5776 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5777 		break;
5778 	case VBLK :
5779 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5780 		/* specfs */
5781 		return ENOTSUP;
5782 		break;
5783 	case VCHR :
5784 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5785 		/* specfs */
5786 		return ENOTSUP;
5787 		break;
5788 	case VFIFO :
5789 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
5790 		/* fifofs */
5791 		return ENOTSUP;
5792 		break;
5793 	case VSOCK :
5794 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5795 		return ENOTSUP;
5796 		break;
5797 	case VNON :
5798 	case VBAD :
5799 	default :
5800 		/* nothing; can we even create these? */
5801 		return EINVAL;
5802 	}
5803 
5804 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5805 
5806 	/* reserve space for one logical block */
5807 	vpart_num = ump->node_part;
5808 	error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5809 		vpart_num, 1, /* can_fail */ true);
5810 	if (error)
5811 		return error;
5812 
5813 	/* allocate node */
5814 	error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5815 			vpart_num, 1, &lmapping);
5816 	if (error) {
5817 		udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5818 		return error;
5819 	}
5820 
5821 	lb_num = lmapping;
5822 
5823 	/* initialise pointer to location */
5824 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
5825 	node_icb_loc.len = udf_rw32(lb_size);
5826 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
5827 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5828 
5829 	/* build udf_node (do initialise!) */
5830 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5831 	memset(udf_node, 0, sizeof(struct udf_node));
5832 
5833 	/* initialise crosslinks, note location of fe/efe for hashing */
5834 	/* bugalert: synchronise with udf_get_node() */
5835 	udf_node->ump       = ump;
5836 	udf_node->vnode     = vp;
5837 	vp->v_data          = udf_node;
5838 	udf_node->loc       = node_icb_loc;
5839 	udf_node->write_loc = node_icb_loc;
5840 	udf_node->lockf     = 0;
5841 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5842 	cv_init(&udf_node->node_lock, "udf_nlk");
5843 	udf_node->outstanding_bufs = 0;
5844 	udf_node->outstanding_nodedscr = 0;
5845 	udf_node->uncommitted_lbs = 0;
5846 
5847 	vp->v_tag = VT_UDF;
5848 	vp->v_op = vnodeops;
5849 
5850 	/* initialise genfs */
5851 	genfs_node_init(vp, &udf_genfsops);
5852 
5853 	/* get parent's unique ID for refering '..' if its a directory */
5854 	if (dir_node->fe) {
5855 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5856 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
5857 	} else {
5858 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5859 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
5860 	}
5861 
5862 	/* get descriptor */
5863 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5864 
5865 	/* choose a fe or an efe for it */
5866 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5867 		udf_node->fe = &dscr->fe;
5868 		fid_size = udf_create_new_fe(ump, udf_node->fe,
5869 			udf_file_type, &udf_node->loc,
5870 			&dir_node->loc, parent_unique_id);
5871 		/* TODO add extended attribute for creation time */
5872 	} else {
5873 		udf_node->efe = &dscr->efe;
5874 		fid_size = udf_create_new_efe(ump, udf_node->efe,
5875 			udf_file_type, &udf_node->loc,
5876 			&dir_node->loc, parent_unique_id);
5877 	}
5878 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5879 
5880 	/* update vnode's size and type */
5881 	vp->v_type = vap->va_type;
5882 	uvm_vnp_setsize(vp, fid_size);
5883 
5884 	/* set access mode */
5885 	udf_setaccessmode(udf_node, vap->va_mode);
5886 
5887 	/* set ownership */
5888 	uid = kauth_cred_geteuid(cred);
5889 	gid = parent_gid;
5890 	udf_setownership(udf_node, uid, gid);
5891 
5892 	*key_len = sizeof(udf_node->loc.loc);
5893 	*new_key = &udf_node->loc.loc;
5894 
5895 	return 0;
5896 }
5897 
5898 
5899 int
5900 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5901 	struct componentname *cnp)
5902 {
5903 	struct udf_node *udf_node, *dir_node = VTOI(dvp);
5904 	struct udf_mount *ump = dir_node->ump;
5905 	int error;
5906 
5907 	error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp);
5908 	if (error)
5909 		return error;
5910 
5911 	udf_node = VTOI(*vpp);
5912 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5913 	if (error) {
5914 		struct long_ad *node_icb_loc = &udf_node->loc;
5915 		uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5916 		uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5917 
5918 		/* free disc allocation for node */
5919 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5920 
5921 		/* recycle udf_node */
5922 		udf_dispose_node(udf_node);
5923 		vrele(*vpp);
5924 
5925 		*vpp = NULL;
5926 		return error;
5927 	}
5928 
5929 	/* adjust file count */
5930 	udf_adjust_filecount(udf_node, 1);
5931 
5932 	return 0;
5933 }
5934 
5935 /* --------------------------------------------------------------------- */
5936 
5937 static void
5938 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5939 {
5940 	struct udf_mount *ump = udf_node->ump;
5941 	uint32_t lb_size, lb_num, len, num_lb;
5942 	uint16_t vpart_num;
5943 
5944 	/* is there really one? */
5945 	if (mem == NULL)
5946 		return;
5947 
5948 	/* got a descriptor here */
5949 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
5950 	lb_num    = udf_rw32(loc->loc.lb_num);
5951 	vpart_num = udf_rw16(loc->loc.part_num);
5952 
5953 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5954 	num_lb = (len + lb_size -1) / lb_size;
5955 
5956 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5957 }
5958 
5959 void
5960 udf_delete_node(struct udf_node *udf_node)
5961 {
5962 	void *dscr;
5963 	struct long_ad *loc;
5964 	int extnr, lvint, dummy;
5965 
5966 	if (udf_node->i_flags & IN_NO_DELETE)
5967 		return;
5968 
5969 	/* paranoia check on integrity; should be open!; we could panic */
5970 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5971 	if (lvint == UDF_INTEGRITY_CLOSED)
5972 		printf("\tIntegrity was CLOSED!\n");
5973 
5974 	/* whatever the node type, change its size to zero */
5975 	(void) udf_resize_node(udf_node, 0, &dummy);
5976 
5977 	/* force it to be `clean'; no use writing it out */
5978 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5979 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
5980 
5981 	/* adjust file count */
5982 	udf_adjust_filecount(udf_node, -1);
5983 
5984 	/*
5985 	 * Free its allocated descriptors; memory will be released when
5986 	 * vop_reclaim() is called.
5987 	 */
5988 	loc = &udf_node->loc;
5989 
5990 	dscr = udf_node->fe;
5991 	udf_free_descriptor_space(udf_node, loc, dscr);
5992 	dscr = udf_node->efe;
5993 	udf_free_descriptor_space(udf_node, loc, dscr);
5994 
5995 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5996 		dscr =  udf_node->ext[extnr];
5997 		loc  = &udf_node->ext_loc[extnr];
5998 		udf_free_descriptor_space(udf_node, loc, dscr);
5999 	}
6000 }
6001 
6002 /* --------------------------------------------------------------------- */
6003 
6004 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6005 int
6006 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6007 {
6008 	struct file_entry    *fe  = udf_node->fe;
6009 	struct extfile_entry *efe = udf_node->efe;
6010 	uint64_t file_size;
6011 	int error;
6012 
6013 	if (fe) {
6014 		file_size  = udf_rw64(fe->inf_len);
6015 	} else {
6016 		assert(udf_node->efe);
6017 		file_size  = udf_rw64(efe->inf_len);
6018 	}
6019 
6020 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6021 			file_size, new_size));
6022 
6023 	/* if not changing, we're done */
6024 	if (file_size == new_size)
6025 		return 0;
6026 
6027 	*extended = (new_size > file_size);
6028 	if (*extended) {
6029 		error = udf_grow_node(udf_node, new_size);
6030 	} else {
6031 		error = udf_shrink_node(udf_node, new_size);
6032 	}
6033 
6034 	return error;
6035 }
6036 
6037 
6038 /* --------------------------------------------------------------------- */
6039 
6040 void
6041 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6042 	struct timespec *mod, struct timespec *birth)
6043 {
6044 	struct timespec now;
6045 	struct file_entry    *fe;
6046 	struct extfile_entry *efe;
6047 	struct filetimes_extattr_entry *ft_extattr;
6048 	struct timestamp *atime, *mtime, *attrtime, *ctime;
6049 	struct timestamp  fe_ctime;
6050 	struct timespec   cur_birth;
6051 	uint32_t offset, a_l;
6052 	uint8_t *filedata;
6053 	int error;
6054 
6055 	/* protect against rogue values */
6056 	if (!udf_node)
6057 		return;
6058 
6059 	fe  = udf_node->fe;
6060 	efe = udf_node->efe;
6061 
6062 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6063 		return;
6064 
6065 	/* get descriptor information */
6066 	if (fe) {
6067 		atime    = &fe->atime;
6068 		mtime    = &fe->mtime;
6069 		attrtime = &fe->attrtime;
6070 		filedata = fe->data;
6071 
6072 		/* initial save dummy setting */
6073 		ctime    = &fe_ctime;
6074 
6075 		/* check our extended attribute if present */
6076 		error = udf_extattr_search_intern(udf_node,
6077 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6078 		if (!error) {
6079 			ft_extattr = (struct filetimes_extattr_entry *)
6080 				(filedata + offset);
6081 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6082 				ctime = &ft_extattr->times[0];
6083 		}
6084 		/* TODO create the extended attribute if not found ? */
6085 	} else {
6086 		assert(udf_node->efe);
6087 		atime    = &efe->atime;
6088 		mtime    = &efe->mtime;
6089 		attrtime = &efe->attrtime;
6090 		ctime    = &efe->ctime;
6091 	}
6092 
6093 	vfs_timestamp(&now);
6094 
6095 	/* set access time */
6096 	if (udf_node->i_flags & IN_ACCESS) {
6097 		if (acc == NULL)
6098 			acc = &now;
6099 		udf_timespec_to_timestamp(acc, atime);
6100 	}
6101 
6102 	/* set modification time */
6103 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6104 		if (mod == NULL)
6105 			mod = &now;
6106 		udf_timespec_to_timestamp(mod, mtime);
6107 
6108 		/* ensure birthtime is older than set modification! */
6109 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6110 		if ((cur_birth.tv_sec > mod->tv_sec) ||
6111 			  ((cur_birth.tv_sec == mod->tv_sec) &&
6112 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
6113 			udf_timespec_to_timestamp(mod, ctime);
6114 		}
6115 	}
6116 
6117 	/* update birthtime if specified */
6118 	/* XXX we assume here that given birthtime is older than mod */
6119 	if (birth && (birth->tv_sec != VNOVAL)) {
6120 		udf_timespec_to_timestamp(birth, ctime);
6121 	}
6122 
6123 	/* set change time */
6124 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6125 		udf_timespec_to_timestamp(&now, attrtime);
6126 
6127 	/* notify updates to the node itself */
6128 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6129 		udf_node->i_flags |= IN_ACCESSED;
6130 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6131 		udf_node->i_flags |= IN_MODIFIED;
6132 
6133 	/* clear modification flags */
6134 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6135 }
6136 
6137 /* --------------------------------------------------------------------- */
6138 
6139 int
6140 udf_update(struct vnode *vp, struct timespec *acc,
6141 	struct timespec *mod, struct timespec *birth, int updflags)
6142 {
6143 	union dscrptr *dscrptr;
6144 	struct udf_node  *udf_node = VTOI(vp);
6145 	struct udf_mount *ump = udf_node->ump;
6146 	struct regid     *impl_id;
6147 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6148 	int waitfor, flags;
6149 
6150 #ifdef DEBUG
6151 	char bits[128];
6152 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6153 		updflags));
6154 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6155 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
6156 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6157 #endif
6158 
6159 	/* set our times */
6160 	udf_itimes(udf_node, acc, mod, birth);
6161 
6162 	/* set our implementation id */
6163 	if (udf_node->fe) {
6164 		dscrptr = (union dscrptr *) udf_node->fe;
6165 		impl_id = &udf_node->fe->imp_id;
6166 	} else {
6167 		dscrptr = (union dscrptr *) udf_node->efe;
6168 		impl_id = &udf_node->efe->imp_id;
6169 	}
6170 
6171 	/* set our ID */
6172 	udf_set_regid(impl_id, IMPL_NAME);
6173 	udf_add_impl_regid(ump, impl_id);
6174 
6175 	/* update our crc! on RMW we are not allowed to change a thing */
6176 	udf_validate_tag_and_crc_sums(dscrptr);
6177 
6178 	/* if called when mounted readonly, never write back */
6179 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
6180 		return 0;
6181 
6182 	/* check if the node is dirty 'enough'*/
6183 	if (updflags & UPDATE_CLOSE) {
6184 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6185 	} else {
6186 		flags = udf_node->i_flags & IN_MODIFIED;
6187 	}
6188 	if (flags == 0)
6189 		return 0;
6190 
6191 	/* determine if we need to write sync or async */
6192 	waitfor = 0;
6193 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6194 		/* sync mounted */
6195 		waitfor = updflags & UPDATE_WAIT;
6196 		if (updflags & UPDATE_DIROP)
6197 			waitfor |= UPDATE_WAIT;
6198 	}
6199 	if (waitfor)
6200 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6201 
6202 	return 0;
6203 }
6204 
6205 
6206 /* --------------------------------------------------------------------- */
6207 
6208 
6209 /*
6210  * Read one fid and process it into a dirent and advance to the next (*fid)
6211  * has to be allocated a logical block in size, (*dirent) struct dirent length
6212  */
6213 
6214 int
6215 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6216 		struct fileid_desc *fid, struct dirent *dirent)
6217 {
6218 	struct udf_node  *dir_node = VTOI(vp);
6219 	struct udf_mount *ump = dir_node->ump;
6220 	struct file_entry    *fe  = dir_node->fe;
6221 	struct extfile_entry *efe = dir_node->efe;
6222 	uint32_t      fid_size, lb_size;
6223 	uint64_t      file_size;
6224 	char         *fid_name;
6225 	int           enough, error;
6226 
6227 	assert(fid);
6228 	assert(dirent);
6229 	assert(dir_node);
6230 	assert(offset);
6231 	assert(*offset != 1);
6232 
6233 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6234 	/* check if we're past the end of the directory */
6235 	if (fe) {
6236 		file_size = udf_rw64(fe->inf_len);
6237 	} else {
6238 		assert(dir_node->efe);
6239 		file_size = udf_rw64(efe->inf_len);
6240 	}
6241 	if (*offset >= file_size)
6242 		return EINVAL;
6243 
6244 	/* get maximum length of FID descriptor */
6245 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6246 
6247 	/* initialise return values */
6248 	fid_size = 0;
6249 	memset(dirent, 0, sizeof(struct dirent));
6250 	memset(fid, 0, lb_size);
6251 
6252 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
6253 	if (!enough) {
6254 		/* short dir ... */
6255 		return EIO;
6256 	}
6257 
6258 	error = vn_rdwr(UIO_READ, vp,
6259 			fid, MIN(file_size - (*offset), lb_size), *offset,
6260 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6261 			NULL, NULL);
6262 	if (error)
6263 		return error;
6264 
6265 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6266 	/*
6267 	 * Check if we got a whole descriptor.
6268 	 * TODO Try to `resync' directory stream when something is very wrong.
6269 	 */
6270 
6271 	/* check if our FID header is OK */
6272 	error = udf_check_tag(fid);
6273 	if (error) {
6274 		goto brokendir;
6275 	}
6276 	DPRINTF(FIDS, ("\ttag check ok\n"));
6277 
6278 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
6279 		error = EIO;
6280 		goto brokendir;
6281 	}
6282 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6283 
6284 	/* check for length */
6285 	fid_size = udf_fidsize(fid);
6286 	enough = (file_size - (*offset) >= fid_size);
6287 	if (!enough) {
6288 		error = EIO;
6289 		goto brokendir;
6290 	}
6291 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6292 
6293 	/* check FID contents */
6294 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6295 brokendir:
6296 	if (error) {
6297 		/* note that is sometimes a bit quick to report */
6298 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
6299 		/* RESYNC? */
6300 		/* TODO: use udf_resync_fid_stream */
6301 		return EIO;
6302 	}
6303 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
6304 
6305 	/* we got a whole and valid descriptor! */
6306 	DPRINTF(FIDS, ("\tinterpret FID\n"));
6307 
6308 	/* create resulting dirent structure */
6309 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6310 	udf_to_unix_name(dirent->d_name, NAME_MAX,
6311 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6312 
6313 	/* '..' has no name, so provide one */
6314 	if (fid->file_char & UDF_FILE_CHAR_PAR)
6315 		strcpy(dirent->d_name, "..");
6316 
6317 	dirent->d_fileno = udf_get_node_id(&fid->icb);	/* inode hash XXX */
6318 	dirent->d_namlen = strlen(dirent->d_name);
6319 	dirent->d_reclen = _DIRENT_SIZE(dirent);
6320 
6321 	/*
6322 	 * Note that its not worth trying to go for the filetypes now... its
6323 	 * too expensive too
6324 	 */
6325 	dirent->d_type = DT_UNKNOWN;
6326 
6327 	/* initial guess for filetype we can make */
6328 	if (fid->file_char & UDF_FILE_CHAR_DIR)
6329 		dirent->d_type = DT_DIR;
6330 
6331 	/* advance */
6332 	*offset += fid_size;
6333 
6334 	return error;
6335 }
6336 
6337 
6338 /* --------------------------------------------------------------------- */
6339 
6340 static void
6341 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
6342 {
6343 	struct udf_node *udf_node, *n_udf_node;
6344 	struct vnode *vp;
6345 	int vdirty, error;
6346 
6347 	KASSERT(mutex_owned(&ump->sync_lock));
6348 
6349 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
6350 	udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6351 	for (;udf_node; udf_node = n_udf_node) {
6352 		DPRINTF(SYNC, ("."));
6353 
6354 		vp = udf_node->vnode;
6355 
6356 		n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6357 		    udf_node, RB_DIR_RIGHT);
6358 
6359 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
6360 		if (error) {
6361 			KASSERT(error == EBUSY);
6362 			*ndirty += 1;
6363 			continue;
6364 		}
6365 
6366 		switch (pass) {
6367 		case 1:
6368 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6369 			break;
6370 		case 2:
6371 			vdirty = vp->v_numoutput;
6372 			if (vp->v_tag == VT_UDF)
6373 				vdirty += udf_node->outstanding_bufs +
6374 					udf_node->outstanding_nodedscr;
6375 			if (vdirty == 0)
6376 				VOP_FSYNC(vp, cred, 0,0,0);
6377 			*ndirty += vdirty;
6378 			break;
6379 		case 3:
6380 			vdirty = vp->v_numoutput;
6381 			if (vp->v_tag == VT_UDF)
6382 				vdirty += udf_node->outstanding_bufs +
6383 					udf_node->outstanding_nodedscr;
6384 			*ndirty += vdirty;
6385 			break;
6386 		}
6387 
6388 		VOP_UNLOCK(vp);
6389 	}
6390 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6391 }
6392 
6393 
6394 static bool
6395 udf_sync_selector(void *cl, struct vnode *vp)
6396 {
6397 	struct udf_node *udf_node;
6398 
6399 	KASSERT(mutex_owned(vp->v_interlock));
6400 
6401 	udf_node = VTOI(vp);
6402 
6403 	if (vp->v_vflag & VV_SYSTEM)
6404 		return false;
6405 	if (vp->v_type == VNON)
6406 		return false;
6407 	if (udf_node == NULL)
6408 		return false;
6409 	if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
6410 		return false;
6411 	if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj))
6412 		return false;
6413 
6414 	return true;
6415 }
6416 
6417 void
6418 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6419 {
6420 	struct vnode_iterator *marker;
6421 	struct vnode *vp;
6422 	struct udf_node *udf_node, *udf_next_node;
6423 	int dummy, ndirty;
6424 
6425 	if (waitfor == MNT_LAZY)
6426 		return;
6427 
6428 	mutex_enter(&ump->sync_lock);
6429 
6430 	/* Fill the rbtree with nodes to sync. */
6431 	vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
6432 	while ((vp = vfs_vnode_iterator_next(marker,
6433 	    udf_sync_selector, NULL)) != NULL) {
6434 		udf_node = VTOI(vp);
6435 		udf_node->i_flags |= IN_SYNCED;
6436 		rb_tree_insert_node(&ump->udf_node_tree, udf_node);
6437 	}
6438 	vfs_vnode_iterator_destroy(marker);
6439 
6440 	dummy = 0;
6441 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6442 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6443 	udf_sync_pass(ump, cred, 1, &dummy);
6444 
6445 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6446 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6447 	udf_sync_pass(ump, cred, 2, &dummy);
6448 
6449 	if (waitfor == MNT_WAIT) {
6450 recount:
6451 		ndirty = ump->devvp->v_numoutput;
6452 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6453 			ndirty));
6454 		udf_sync_pass(ump, cred, 3, &ndirty);
6455 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6456 			ndirty));
6457 
6458 		if (ndirty) {
6459 			/* 1/4 second wait */
6460 			kpause("udfsync2", false, hz/4, NULL);
6461 			goto recount;
6462 		}
6463 	}
6464 
6465 	/* Clean the rbtree. */
6466 	for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6467 	    udf_node; udf_node = udf_next_node) {
6468 		udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
6469 		    udf_node, RB_DIR_RIGHT);
6470 		rb_tree_remove_node(&ump->udf_node_tree, udf_node);
6471 		udf_node->i_flags &= ~IN_SYNCED;
6472 		vrele(udf_node->vnode);
6473 	}
6474 
6475 	mutex_exit(&ump->sync_lock);
6476 }
6477 
6478 /* --------------------------------------------------------------------- */
6479 
6480 /*
6481  * Read and write file extent in/from the buffer.
6482  *
6483  * The splitup of the extent into seperate request-buffers is to minimise
6484  * copying around as much as possible.
6485  *
6486  * block based file reading and writing
6487  */
6488 
6489 static int
6490 udf_read_internal(struct udf_node *node, uint8_t *blob)
6491 {
6492 	struct udf_mount *ump;
6493 	struct file_entry     *fe = node->fe;
6494 	struct extfile_entry *efe = node->efe;
6495 	uint64_t inflen;
6496 	uint32_t sector_size;
6497 	uint8_t  *srcpos;
6498 	int icbflags, addr_type;
6499 
6500 	/* get extent and do some paranoia checks */
6501 	ump = node->ump;
6502 	sector_size = ump->discinfo.sector_size;
6503 
6504 	/*
6505 	 * XXX there should be real bounds-checking logic here,
6506 	 * in case ->l_ea or ->inf_len contains nonsense.
6507 	 */
6508 
6509 	if (fe) {
6510 		inflen   = udf_rw64(fe->inf_len);
6511 		srcpos   = &fe->data[0] + udf_rw32(fe->l_ea);
6512 		icbflags = udf_rw16(fe->icbtag.flags);
6513 	} else {
6514 		assert(node->efe);
6515 		inflen   = udf_rw64(efe->inf_len);
6516 		srcpos   = &efe->data[0] + udf_rw32(efe->l_ea);
6517 		icbflags = udf_rw16(efe->icbtag.flags);
6518 	}
6519 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6520 
6521 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6522 	__USE(addr_type);
6523 	assert(inflen < sector_size);
6524 
6525 	/* copy out info */
6526 	memcpy(blob, srcpos, inflen);
6527 	memset(&blob[inflen], 0, sector_size - inflen);
6528 
6529 	return 0;
6530 }
6531 
6532 
6533 static int
6534 udf_write_internal(struct udf_node *node, uint8_t *blob)
6535 {
6536 	struct udf_mount *ump;
6537 	struct file_entry     *fe = node->fe;
6538 	struct extfile_entry *efe = node->efe;
6539 	uint64_t inflen;
6540 	uint32_t sector_size;
6541 	uint8_t  *pos;
6542 	int icbflags, addr_type;
6543 
6544 	/* get extent and do some paranoia checks */
6545 	ump = node->ump;
6546 	sector_size = ump->discinfo.sector_size;
6547 
6548 	if (fe) {
6549 		inflen   = udf_rw64(fe->inf_len);
6550 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6551 		icbflags = udf_rw16(fe->icbtag.flags);
6552 	} else {
6553 		assert(node->efe);
6554 		inflen   = udf_rw64(efe->inf_len);
6555 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6556 		icbflags = udf_rw16(efe->icbtag.flags);
6557 	}
6558 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6559 
6560 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6561 	__USE(addr_type);
6562 	assert(inflen < sector_size);
6563 	__USE(sector_size);
6564 
6565 	/* copy in blob */
6566 	/* memset(pos, 0, inflen); */
6567 	memcpy(pos, blob, inflen);
6568 
6569 	return 0;
6570 }
6571 
6572 
6573 void
6574 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6575 {
6576 	struct buf *nestbuf;
6577 	struct udf_mount *ump = udf_node->ump;
6578 	uint64_t   *mapping;
6579 	uint64_t    run_start;
6580 	uint32_t    sector_size;
6581 	uint32_t    buf_offset, sector, rbuflen, rblk;
6582 	uint32_t    from, lblkno;
6583 	uint32_t    sectors;
6584 	uint8_t    *buf_pos;
6585 	int error, run_length, what;
6586 
6587 	sector_size = udf_node->ump->discinfo.sector_size;
6588 
6589 	from    = buf->b_blkno;
6590 	sectors = buf->b_bcount / sector_size;
6591 
6592 	what = udf_get_c_type(udf_node);
6593 
6594 	/* assure we have enough translation slots */
6595 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6596 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6597 
6598 	if (sectors > UDF_MAX_MAPPINGS) {
6599 		printf("udf_read_filebuf: implementation limit on bufsize\n");
6600 		buf->b_error  = EIO;
6601 		biodone(buf);
6602 		return;
6603 	}
6604 
6605 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6606 
6607 	error = 0;
6608 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6609 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6610 	if (error) {
6611 		buf->b_error  = error;
6612 		biodone(buf);
6613 		goto out;
6614 	}
6615 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
6616 
6617 	/* pre-check if its an internal */
6618 	if (*mapping == UDF_TRANS_INTERN) {
6619 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6620 		if (error)
6621 			buf->b_error  = error;
6622 		biodone(buf);
6623 		goto out;
6624 	}
6625 	DPRINTF(READ, ("\tnot intern\n"));
6626 
6627 #ifdef DEBUG
6628 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6629 		printf("Returned translation table:\n");
6630 		for (sector = 0; sector < sectors; sector++) {
6631 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6632 		}
6633 	}
6634 #endif
6635 
6636 	/* request read-in of data from disc sheduler */
6637 	buf->b_resid = buf->b_bcount;
6638 	for (sector = 0; sector < sectors; sector++) {
6639 		buf_offset = sector * sector_size;
6640 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6641 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6642 
6643 		/* check if its zero or unmapped to stop reading */
6644 		switch (mapping[sector]) {
6645 		case UDF_TRANS_UNMAPPED:
6646 		case UDF_TRANS_ZERO:
6647 			/* copy zero sector TODO runlength like below */
6648 			memset(buf_pos, 0, sector_size);
6649 			DPRINTF(READ, ("\treturning zero sector\n"));
6650 			nestiobuf_done(buf, sector_size, 0);
6651 			break;
6652 		default :
6653 			DPRINTF(READ, ("\tread sector "
6654 			    "%"PRIu64"\n", mapping[sector]));
6655 
6656 			lblkno = from + sector;
6657 			run_start  = mapping[sector];
6658 			run_length = 1;
6659 			while (sector < sectors-1) {
6660 				if (mapping[sector+1] != mapping[sector]+1)
6661 					break;
6662 				run_length++;
6663 				sector++;
6664 			}
6665 
6666 			/*
6667 			 * nest an iobuf and mark it for async reading. Since
6668 			 * we're using nested buffers, they can't be cached by
6669 			 * design.
6670 			 */
6671 			rbuflen = run_length * sector_size;
6672 			rblk    = run_start  * (sector_size/DEV_BSIZE);
6673 
6674 			nestbuf = getiobuf(NULL, true);
6675 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6676 			/* nestbuf is B_ASYNC */
6677 
6678 			/* identify this nestbuf */
6679 			nestbuf->b_lblkno   = lblkno;
6680 			assert(nestbuf->b_vp == udf_node->vnode);
6681 
6682 			/* CD shedules on raw blkno */
6683 			nestbuf->b_blkno      = rblk;
6684 			nestbuf->b_proc       = NULL;
6685 			nestbuf->b_rawblkno   = rblk;
6686 			nestbuf->b_udf_c_type = what;
6687 
6688 			udf_discstrat_queuebuf(ump, nestbuf);
6689 		}
6690 	}
6691 out:
6692 	/* if we're synchronously reading, wait for the completion */
6693 	if ((buf->b_flags & B_ASYNC) == 0)
6694 		biowait(buf);
6695 
6696 	DPRINTF(READ, ("\tend of read_filebuf\n"));
6697 	free(mapping, M_TEMP);
6698 	return;
6699 }
6700 
6701 
6702 void
6703 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6704 {
6705 	struct buf *nestbuf;
6706 	struct udf_mount *ump = udf_node->ump;
6707 	uint64_t   *mapping;
6708 	uint64_t    run_start;
6709 	uint32_t    lb_size;
6710 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
6711 	uint32_t    from, lblkno;
6712 	uint32_t    num_lb;
6713 	int error, run_length, what, s;
6714 
6715 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6716 
6717 	from   = buf->b_blkno;
6718 	num_lb = buf->b_bcount / lb_size;
6719 
6720 	what = udf_get_c_type(udf_node);
6721 
6722 	/* assure we have enough translation slots */
6723 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6724 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6725 
6726 	if (num_lb > UDF_MAX_MAPPINGS) {
6727 		printf("udf_write_filebuf: implementation limit on bufsize\n");
6728 		buf->b_error  = EIO;
6729 		biodone(buf);
6730 		return;
6731 	}
6732 
6733 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6734 
6735 	error = 0;
6736 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6737 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6738 	if (error) {
6739 		buf->b_error  = error;
6740 		biodone(buf);
6741 		goto out;
6742 	}
6743 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6744 
6745 	/* if its internally mapped, we can write it in the descriptor itself */
6746 	if (*mapping == UDF_TRANS_INTERN) {
6747 		/* TODO paranoia check if we ARE going to have enough space */
6748 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6749 		if (error)
6750 			buf->b_error  = error;
6751 		biodone(buf);
6752 		goto out;
6753 	}
6754 	DPRINTF(WRITE, ("\tnot intern\n"));
6755 
6756 	/* request write out of data to disc sheduler */
6757 	buf->b_resid = buf->b_bcount;
6758 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
6759 		buf_offset = lb_num * lb_size;
6760 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6761 
6762 		/*
6763 		 * Mappings are not that important here. Just before we write
6764 		 * the lb_num we late-allocate them when needed and update the
6765 		 * mapping in the udf_node.
6766 		 */
6767 
6768 		/* XXX why not ignore the mapping altogether ? */
6769 		DPRINTF(WRITE, ("\twrite lb_num "
6770 		    "%"PRIu64, mapping[lb_num]));
6771 
6772 		lblkno = from + lb_num;
6773 		run_start  = mapping[lb_num];
6774 		run_length = 1;
6775 		while (lb_num < num_lb-1) {
6776 			if (mapping[lb_num+1] != mapping[lb_num]+1)
6777 				if (mapping[lb_num+1] != mapping[lb_num])
6778 					break;
6779 			run_length++;
6780 			lb_num++;
6781 		}
6782 		DPRINTF(WRITE, ("+ %d\n", run_length));
6783 
6784 		/* nest an iobuf on the master buffer for the extent */
6785 		rbuflen = run_length * lb_size;
6786 		rblk = run_start * (lb_size/DEV_BSIZE);
6787 
6788 		nestbuf = getiobuf(NULL, true);
6789 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6790 		/* nestbuf is B_ASYNC */
6791 
6792 		/* identify this nestbuf */
6793 		nestbuf->b_lblkno   = lblkno;
6794 		KASSERT(nestbuf->b_vp == udf_node->vnode);
6795 
6796 		/* CD shedules on raw blkno */
6797 		nestbuf->b_blkno      = rblk;
6798 		nestbuf->b_proc       = NULL;
6799 		nestbuf->b_rawblkno   = rblk;
6800 		nestbuf->b_udf_c_type = what;
6801 
6802 		/* increment our outstanding bufs counter */
6803 		s = splbio();
6804 			udf_node->outstanding_bufs++;
6805 		splx(s);
6806 
6807 		udf_discstrat_queuebuf(ump, nestbuf);
6808 	}
6809 out:
6810 	/* if we're synchronously writing, wait for the completion */
6811 	if ((buf->b_flags & B_ASYNC) == 0)
6812 		biowait(buf);
6813 
6814 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6815 	free(mapping, M_TEMP);
6816 	return;
6817 }
6818 
6819 /* --------------------------------------------------------------------- */
6820