1 /* $NetBSD: udf_subr.c,v 1.141 2018/06/06 01:49:09 maya Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.141 2018/06/06 01:49:09 maya Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref((vp)); \ 77 vput((vp)); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 uint64_t psize; 192 unsigned secsize; 193 struct mmc_discinfo *di; 194 int error; 195 196 DPRINTF(VOLUMES, ("read/update disc info\n")); 197 di = &ump->discinfo; 198 memset(di, 0, sizeof(struct mmc_discinfo)); 199 200 /* check if we're on a MMC capable device, i.e. CD/DVD */ 201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 202 if (error == 0) { 203 udf_dump_discinfo(ump); 204 return 0; 205 } 206 207 /* disc partition support */ 208 error = getdisksize(devvp, &psize, &secsize); 209 if (error) 210 return error; 211 212 /* set up a disc info profile for partitions */ 213 di->mmc_profile = 0x01; /* disc type */ 214 di->mmc_class = MMC_CLASS_DISC; 215 di->disc_state = MMC_STATE_CLOSED; 216 di->last_session_state = MMC_STATE_CLOSED; 217 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 218 di->link_block_penalty = 0; 219 220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 222 di->mmc_cap = di->mmc_cur; 223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 224 225 /* TODO problem with last_possible_lba on resizable VND; request */ 226 di->last_possible_lba = psize; 227 di->sector_size = secsize; 228 229 di->num_sessions = 1; 230 di->num_tracks = 1; 231 232 di->first_track = 1; 233 di->first_track_last_session = di->last_track_last_session = 1; 234 235 udf_dump_discinfo(ump); 236 return 0; 237 } 238 239 240 int 241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 242 { 243 struct vnode *devvp = ump->devvp; 244 struct mmc_discinfo *di = &ump->discinfo; 245 int error, class; 246 247 DPRINTF(VOLUMES, ("read track info\n")); 248 249 class = di->mmc_class; 250 if (class != MMC_CLASS_DISC) { 251 /* tracknr specified in struct ti */ 252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 253 return error; 254 } 255 256 /* disc partition support */ 257 if (ti->tracknr != 1) 258 return EIO; 259 260 /* create fake ti (TODO check for resized vnds) */ 261 ti->sessionnr = 1; 262 263 ti->track_mode = 0; /* XXX */ 264 ti->data_mode = 0; /* XXX */ 265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 266 267 ti->track_start = 0; 268 ti->packet_size = 1; 269 270 /* TODO support for resizable vnd */ 271 ti->track_size = di->last_possible_lba; 272 ti->next_writable = di->last_possible_lba; 273 ti->last_recorded = ti->next_writable; 274 ti->free_blocks = 0; 275 276 return 0; 277 } 278 279 280 int 281 udf_setup_writeparams(struct udf_mount *ump) 282 { 283 struct mmc_writeparams mmc_writeparams; 284 int error; 285 286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 287 return 0; 288 289 /* 290 * only CD burning normally needs setting up, but other disc types 291 * might need other settings to be made. The MMC framework will set up 292 * the nessisary recording parameters according to the disc 293 * characteristics read in. Modifications can be made in the discinfo 294 * structure passed to change the nature of the disc. 295 */ 296 297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 300 301 /* 302 * UDF dictates first track to determine track mode for the whole 303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 304 * To prevent problems with a `reserved' track in front we start with 305 * the 2nd track and if that is not valid, go for the 1st. 306 */ 307 mmc_writeparams.tracknr = 2; 308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 310 311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 312 FKIOCTL, NOCRED); 313 if (error) { 314 mmc_writeparams.tracknr = 1; 315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 316 &mmc_writeparams, FKIOCTL, NOCRED); 317 } 318 return error; 319 } 320 321 322 void 323 udf_mmc_synchronise_caches(struct udf_mount *ump) 324 { 325 struct mmc_op mmc_op; 326 327 DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n")); 328 329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 330 return; 331 332 /* discs are done now */ 333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 334 return; 335 336 memset(&mmc_op, 0, sizeof(struct mmc_op)); 337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 338 339 /* ignore return code */ 340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 341 } 342 343 /* --------------------------------------------------------------------- */ 344 345 /* track/session searching for mounting */ 346 int 347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 348 int *first_tracknr, int *last_tracknr) 349 { 350 struct mmc_trackinfo trackinfo; 351 uint32_t tracknr, start_track, num_tracks; 352 int error; 353 354 /* if negative, sessionnr is relative to last session */ 355 if (args->sessionnr < 0) { 356 args->sessionnr += ump->discinfo.num_sessions; 357 } 358 359 /* sanity */ 360 if (args->sessionnr < 0) 361 args->sessionnr = 0; 362 if (args->sessionnr > ump->discinfo.num_sessions) 363 args->sessionnr = ump->discinfo.num_sessions; 364 365 /* search the tracks for this session, zero session nr indicates last */ 366 if (args->sessionnr == 0) 367 args->sessionnr = ump->discinfo.num_sessions; 368 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 369 args->sessionnr--; 370 371 /* sanity again */ 372 if (args->sessionnr < 0) 373 args->sessionnr = 0; 374 375 /* search the first and last track of the specified session */ 376 num_tracks = ump->discinfo.num_tracks; 377 start_track = ump->discinfo.first_track; 378 379 /* search for first track of this session */ 380 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 381 /* get track info */ 382 trackinfo.tracknr = tracknr; 383 error = udf_update_trackinfo(ump, &trackinfo); 384 if (error) 385 return error; 386 387 if (trackinfo.sessionnr == args->sessionnr) 388 break; 389 } 390 *first_tracknr = tracknr; 391 392 /* search for last track of this session */ 393 for (;tracknr <= num_tracks; tracknr++) { 394 /* get track info */ 395 trackinfo.tracknr = tracknr; 396 error = udf_update_trackinfo(ump, &trackinfo); 397 if (error || (trackinfo.sessionnr != args->sessionnr)) { 398 tracknr--; 399 break; 400 } 401 } 402 if (tracknr > num_tracks) 403 tracknr--; 404 405 *last_tracknr = tracknr; 406 407 if (*last_tracknr < *first_tracknr) { 408 printf( "udf_search_tracks: sanity check on drive+disc failed, " 409 "drive returned garbage\n"); 410 return EINVAL; 411 } 412 413 assert(*last_tracknr >= *first_tracknr); 414 return 0; 415 } 416 417 418 /* 419 * NOTE: this is the only routine in this file that directly peeks into the 420 * metadata file but since its at a larval state of the mount it can't hurt. 421 * 422 * XXX candidate for udf_allocation.c 423 * XXX clean me up!, change to new node reading code. 424 */ 425 426 static void 427 udf_check_track_metadata_overlap(struct udf_mount *ump, 428 struct mmc_trackinfo *trackinfo) 429 { 430 struct part_desc *part; 431 struct file_entry *fe; 432 struct extfile_entry *efe; 433 struct short_ad *s_ad; 434 struct long_ad *l_ad; 435 uint32_t track_start, track_end; 436 uint32_t phys_part_start, phys_part_end, part_start, part_end; 437 uint32_t sector_size, len, alloclen, plb_num; 438 uint8_t *pos; 439 int addr_type, icblen, icbflags; 440 441 /* get our track extents */ 442 track_start = trackinfo->track_start; 443 track_end = track_start + trackinfo->track_size; 444 445 /* get our base partition extent */ 446 KASSERT(ump->node_part == ump->fids_part); 447 part = ump->partitions[ump->vtop[ump->node_part]]; 448 phys_part_start = udf_rw32(part->start_loc); 449 phys_part_end = phys_part_start + udf_rw32(part->part_len); 450 451 /* no use if its outside the physical partition */ 452 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 453 return; 454 455 /* 456 * now follow all extents in the fe/efe to see if they refer to this 457 * track 458 */ 459 460 sector_size = ump->discinfo.sector_size; 461 462 /* XXX should we claim exclusive access to the metafile ? */ 463 /* TODO: move to new node read code */ 464 fe = ump->metadata_node->fe; 465 efe = ump->metadata_node->efe; 466 if (fe) { 467 alloclen = udf_rw32(fe->l_ad); 468 pos = &fe->data[0] + udf_rw32(fe->l_ea); 469 icbflags = udf_rw16(fe->icbtag.flags); 470 } else { 471 assert(efe); 472 alloclen = udf_rw32(efe->l_ad); 473 pos = &efe->data[0] + udf_rw32(efe->l_ea); 474 icbflags = udf_rw16(efe->icbtag.flags); 475 } 476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 477 478 while (alloclen) { 479 if (addr_type == UDF_ICB_SHORT_ALLOC) { 480 icblen = sizeof(struct short_ad); 481 s_ad = (struct short_ad *) pos; 482 len = udf_rw32(s_ad->len); 483 plb_num = udf_rw32(s_ad->lb_num); 484 } else { 485 /* should not be present, but why not */ 486 icblen = sizeof(struct long_ad); 487 l_ad = (struct long_ad *) pos; 488 len = udf_rw32(l_ad->len); 489 plb_num = udf_rw32(l_ad->loc.lb_num); 490 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 491 } 492 /* process extent */ 493 len = UDF_EXT_LEN(len); 494 495 part_start = phys_part_start + plb_num; 496 part_end = part_start + (len / sector_size); 497 498 if ((part_start >= track_start) && (part_end <= track_end)) { 499 /* extent is enclosed within this track */ 500 ump->metadata_track = *trackinfo; 501 return; 502 } 503 504 pos += icblen; 505 alloclen -= icblen; 506 } 507 } 508 509 510 int 511 udf_search_writing_tracks(struct udf_mount *ump) 512 { 513 struct vnode *devvp = ump->devvp; 514 struct mmc_trackinfo trackinfo; 515 struct mmc_op mmc_op; 516 struct part_desc *part; 517 uint32_t tracknr, start_track, num_tracks; 518 uint32_t track_start, track_end, part_start, part_end; 519 int node_alloc, error; 520 521 /* 522 * in the CD/(HD)DVD/BD recordable device model a few tracks within 523 * the last session might be open but in the UDF device model at most 524 * three tracks can be open: a reserved track for delayed ISO VRS 525 * writing, a data track and a metadata track. We search here for the 526 * data track and the metadata track. Note that the reserved track is 527 * troublesome but can be detected by its small size of < 512 sectors. 528 */ 529 530 /* update discinfo since it might have changed */ 531 error = udf_update_discinfo(ump); 532 if (error) 533 return error; 534 535 num_tracks = ump->discinfo.num_tracks; 536 start_track = ump->discinfo.first_track; 537 538 /* fetch info on first and possibly only track */ 539 trackinfo.tracknr = start_track; 540 error = udf_update_trackinfo(ump, &trackinfo); 541 if (error) 542 return error; 543 544 /* copy results to our mount point */ 545 ump->data_track = trackinfo; 546 ump->metadata_track = trackinfo; 547 548 /* if not sequential, we're done */ 549 if (num_tracks == 1) 550 return 0; 551 552 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 553 /* get track info */ 554 trackinfo.tracknr = tracknr; 555 error = udf_update_trackinfo(ump, &trackinfo); 556 if (error) 557 return error; 558 559 /* 560 * If this track is marked damaged, ask for repair. This is an 561 * optional command, so ignore its error but report warning. 562 */ 563 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 564 memset(&mmc_op, 0, sizeof(mmc_op)); 565 mmc_op.operation = MMC_OP_REPAIRTRACK; 566 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 567 mmc_op.tracknr = tracknr; 568 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 569 if (error) 570 (void)printf("Drive can't explicitly repair " 571 "damaged track %d, but it might " 572 "autorepair\n", tracknr); 573 574 /* reget track info */ 575 error = udf_update_trackinfo(ump, &trackinfo); 576 if (error) 577 return error; 578 } 579 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 580 continue; 581 582 track_start = trackinfo.track_start; 583 track_end = track_start + trackinfo.track_size; 584 585 /* check for overlap on data partition */ 586 part = ump->partitions[ump->data_part]; 587 part_start = udf_rw32(part->start_loc); 588 part_end = part_start + udf_rw32(part->part_len); 589 if ((part_start < track_end) && (part_end > track_start)) { 590 ump->data_track = trackinfo; 591 /* TODO check if UDF partition data_part is writable */ 592 } 593 594 /* check for overlap on metadata partition */ 595 node_alloc = ump->vtop_alloc[ump->node_part]; 596 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 597 (node_alloc == UDF_ALLOC_METABITMAP)) { 598 udf_check_track_metadata_overlap(ump, &trackinfo); 599 } else { 600 ump->metadata_track = trackinfo; 601 } 602 } 603 604 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 605 return EROFS; 606 607 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 608 return EROFS; 609 610 return 0; 611 } 612 613 /* --------------------------------------------------------------------- */ 614 615 /* 616 * Check if the blob starts with a good UDF tag. Tags are protected by a 617 * checksum over the reader except one byte at position 4 that is the checksum 618 * itself. 619 */ 620 621 int 622 udf_check_tag(void *blob) 623 { 624 struct desc_tag *tag = blob; 625 uint8_t *pos, sum, cnt; 626 627 /* check TAG header checksum */ 628 pos = (uint8_t *) tag; 629 sum = 0; 630 631 for(cnt = 0; cnt < 16; cnt++) { 632 if (cnt != 4) 633 sum += *pos; 634 pos++; 635 } 636 if (sum != tag->cksum) { 637 /* bad tag header checksum; this is not a valid tag */ 638 return EINVAL; 639 } 640 641 return 0; 642 } 643 644 645 /* 646 * check tag payload will check descriptor CRC as specified. 647 * If the descriptor is too long, it will return EIO otherwise EINVAL. 648 */ 649 650 int 651 udf_check_tag_payload(void *blob, uint32_t max_length) 652 { 653 struct desc_tag *tag = blob; 654 uint16_t crc, crc_len; 655 656 crc_len = udf_rw16(tag->desc_crc_len); 657 658 /* check payload CRC if applicable */ 659 if (crc_len == 0) 660 return 0; 661 662 if (crc_len > max_length) 663 return EIO; 664 665 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 666 if (crc != udf_rw16(tag->desc_crc)) { 667 /* bad payload CRC; this is a broken tag */ 668 return EINVAL; 669 } 670 671 return 0; 672 } 673 674 675 void 676 udf_validate_tag_sum(void *blob) 677 { 678 struct desc_tag *tag = blob; 679 uint8_t *pos, sum, cnt; 680 681 /* calculate TAG header checksum */ 682 pos = (uint8_t *) tag; 683 sum = 0; 684 685 for(cnt = 0; cnt < 16; cnt++) { 686 if (cnt != 4) sum += *pos; 687 pos++; 688 } 689 tag->cksum = sum; /* 8 bit */ 690 } 691 692 693 /* assumes sector number of descriptor to be saved already present */ 694 void 695 udf_validate_tag_and_crc_sums(void *blob) 696 { 697 struct desc_tag *tag = blob; 698 uint8_t *btag = (uint8_t *) tag; 699 uint16_t crc, crc_len; 700 701 crc_len = udf_rw16(tag->desc_crc_len); 702 703 /* check payload CRC if applicable */ 704 if (crc_len > 0) { 705 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 706 tag->desc_crc = udf_rw16(crc); 707 } 708 709 /* calculate TAG header checksum */ 710 udf_validate_tag_sum(blob); 711 } 712 713 /* --------------------------------------------------------------------- */ 714 715 /* 716 * XXX note the different semantics from udfclient: for FIDs it still rounds 717 * up to sectors. Use udf_fidsize() for a correct length. 718 */ 719 720 int 721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 722 { 723 uint32_t size, tag_id, num_lb, elmsz; 724 725 tag_id = udf_rw16(dscr->tag.id); 726 727 switch (tag_id) { 728 case TAGID_LOGVOL : 729 size = sizeof(struct logvol_desc) - 1; 730 size += udf_rw32(dscr->lvd.mt_l); 731 break; 732 case TAGID_UNALLOC_SPACE : 733 elmsz = sizeof(struct extent_ad); 734 size = sizeof(struct unalloc_sp_desc) - elmsz; 735 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 736 break; 737 case TAGID_FID : 738 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 739 size = (size + 3) & ~3; 740 break; 741 case TAGID_LOGVOL_INTEGRITY : 742 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 743 size += udf_rw32(dscr->lvid.l_iu); 744 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 745 break; 746 case TAGID_SPACE_BITMAP : 747 size = sizeof(struct space_bitmap_desc) - 1; 748 size += udf_rw32(dscr->sbd.num_bytes); 749 break; 750 case TAGID_SPARING_TABLE : 751 elmsz = sizeof(struct spare_map_entry); 752 size = sizeof(struct udf_sparing_table) - elmsz; 753 size += udf_rw16(dscr->spt.rt_l) * elmsz; 754 break; 755 case TAGID_FENTRY : 756 size = sizeof(struct file_entry); 757 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 758 break; 759 case TAGID_EXTFENTRY : 760 size = sizeof(struct extfile_entry); 761 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 762 break; 763 case TAGID_FSD : 764 size = sizeof(struct fileset_desc); 765 break; 766 default : 767 size = sizeof(union dscrptr); 768 break; 769 } 770 771 if ((size == 0) || (lb_size == 0)) 772 return 0; 773 774 if (lb_size == 1) 775 return size; 776 777 /* round up in sectors */ 778 num_lb = (size + lb_size -1) / lb_size; 779 return num_lb * lb_size; 780 } 781 782 783 int 784 udf_fidsize(struct fileid_desc *fid) 785 { 786 uint32_t size; 787 788 if (udf_rw16(fid->tag.id) != TAGID_FID) 789 panic("got udf_fidsize on non FID\n"); 790 791 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 792 size = (size + 3) & ~3; 793 794 return size; 795 } 796 797 /* --------------------------------------------------------------------- */ 798 799 void 800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 801 { 802 int ret; 803 804 mutex_enter(&udf_node->node_mutex); 805 /* wait until free */ 806 while (udf_node->i_flags & IN_LOCKED) { 807 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 808 /* TODO check if we should return error; abort */ 809 if (ret == EWOULDBLOCK) { 810 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 811 "wanted at %s:%d, previously locked at %s:%d\n", 812 udf_node, fname, lineno, 813 udf_node->lock_fname, udf_node->lock_lineno)); 814 } 815 } 816 /* grab */ 817 udf_node->i_flags |= IN_LOCKED | flag; 818 /* debug */ 819 udf_node->lock_fname = fname; 820 udf_node->lock_lineno = lineno; 821 822 mutex_exit(&udf_node->node_mutex); 823 } 824 825 826 void 827 udf_unlock_node(struct udf_node *udf_node, int flag) 828 { 829 mutex_enter(&udf_node->node_mutex); 830 udf_node->i_flags &= ~(IN_LOCKED | flag); 831 cv_broadcast(&udf_node->node_lock); 832 mutex_exit(&udf_node->node_mutex); 833 } 834 835 836 /* --------------------------------------------------------------------- */ 837 838 static int 839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 840 { 841 int error; 842 843 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 844 (union dscrptr **) dst); 845 if (!error) { 846 /* blank terminator blocks are not allowed here */ 847 if (*dst == NULL) 848 return ENOENT; 849 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 850 error = ENOENT; 851 free(*dst, M_UDFVOLD); 852 *dst = NULL; 853 DPRINTF(VOLUMES, ("Not an anchor\n")); 854 } 855 } 856 857 return error; 858 } 859 860 861 int 862 udf_read_anchors(struct udf_mount *ump) 863 { 864 struct udf_args *args = &ump->mount_args; 865 struct mmc_trackinfo first_track; 866 struct mmc_trackinfo second_track; 867 struct mmc_trackinfo last_track; 868 struct anchor_vdp **anchorsp; 869 uint32_t track_start; 870 uint32_t track_end; 871 uint32_t positions[4]; 872 int first_tracknr, last_tracknr; 873 int error, anch, ok, first_anchor; 874 875 /* search the first and last track of the specified session */ 876 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 877 if (!error) { 878 first_track.tracknr = first_tracknr; 879 error = udf_update_trackinfo(ump, &first_track); 880 } 881 if (!error) { 882 last_track.tracknr = last_tracknr; 883 error = udf_update_trackinfo(ump, &last_track); 884 } 885 if ((!error) && (first_tracknr != last_tracknr)) { 886 second_track.tracknr = first_tracknr+1; 887 error = udf_update_trackinfo(ump, &second_track); 888 } 889 if (error) { 890 printf("UDF mount: reading disc geometry failed\n"); 891 return 0; 892 } 893 894 track_start = first_track.track_start; 895 896 /* `end' is not as straitforward as start. */ 897 track_end = last_track.track_start 898 + last_track.track_size - last_track.free_blocks - 1; 899 900 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 901 /* end of track is not straitforward here */ 902 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 903 track_end = last_track.last_recorded; 904 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 905 track_end = last_track.next_writable 906 - ump->discinfo.link_block_penalty; 907 } 908 909 /* its no use reading a blank track */ 910 first_anchor = 0; 911 if (first_track.flags & MMC_TRACKINFO_BLANK) 912 first_anchor = 1; 913 914 /* get our packet size */ 915 ump->packet_size = first_track.packet_size; 916 if (first_track.flags & MMC_TRACKINFO_BLANK) 917 ump->packet_size = second_track.packet_size; 918 919 if (ump->packet_size <= 1) { 920 /* take max, but not bigger than 64 */ 921 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 922 ump->packet_size = MIN(ump->packet_size, 64); 923 } 924 KASSERT(ump->packet_size >= 1); 925 926 /* read anchors start+256, start+512, end-256, end */ 927 positions[0] = track_start+256; 928 positions[1] = track_end-256; 929 positions[2] = track_end; 930 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 931 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 932 933 ok = 0; 934 anchorsp = ump->anchors; 935 for (anch = first_anchor; anch < 4; anch++) { 936 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 937 positions[anch])); 938 error = udf_read_anchor(ump, positions[anch], anchorsp); 939 if (!error) { 940 anchorsp++; 941 ok++; 942 } 943 } 944 945 /* VATs are only recorded on sequential media, but initialise */ 946 ump->first_possible_vat_location = track_start + 2; 947 ump->last_possible_vat_location = track_end; 948 949 return ok; 950 } 951 952 /* --------------------------------------------------------------------- */ 953 954 int 955 udf_get_c_type(struct udf_node *udf_node) 956 { 957 int isdir, what; 958 959 isdir = (udf_node->vnode->v_type == VDIR); 960 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 961 962 if (udf_node->ump) 963 if (udf_node == udf_node->ump->metadatabitmap_node) 964 what = UDF_C_METADATA_SBM; 965 966 return what; 967 } 968 969 970 int 971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) 972 { 973 int vpart_num; 974 975 vpart_num = ump->data_part; 976 if (udf_c_type == UDF_C_NODE) 977 vpart_num = ump->node_part; 978 if (udf_c_type == UDF_C_FIDS) 979 vpart_num = ump->fids_part; 980 981 return vpart_num; 982 } 983 984 985 /* 986 * BUGALERT: some rogue implementations use random physical partition 987 * numbers to break other implementations so lookup the number. 988 */ 989 990 static uint16_t 991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part) 992 { 993 struct part_desc *part; 994 uint16_t phys_part; 995 996 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 997 part = ump->partitions[phys_part]; 998 if (part == NULL) 999 break; 1000 if (udf_rw16(part->part_num) == raw_phys_part) 1001 break; 1002 } 1003 return phys_part; 1004 } 1005 1006 /* --------------------------------------------------------------------- */ 1007 1008 /* we dont try to be smart; we just record the parts */ 1009 #define UDF_UPDATE_DSCR(name, dscr) \ 1010 if (name) \ 1011 free(name, M_UDFVOLD); \ 1012 name = dscr; 1013 1014 static int 1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 1016 { 1017 uint16_t phys_part, raw_phys_part; 1018 1019 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 1020 udf_rw16(dscr->tag.id))); 1021 switch (udf_rw16(dscr->tag.id)) { 1022 case TAGID_PRI_VOL : /* primary partition */ 1023 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 1024 break; 1025 case TAGID_LOGVOL : /* logical volume */ 1026 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 1027 break; 1028 case TAGID_UNALLOC_SPACE : /* unallocated space */ 1029 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 1030 break; 1031 case TAGID_IMP_VOL : /* implementation */ 1032 /* XXX do we care about multiple impl. descr ? */ 1033 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 1034 break; 1035 case TAGID_PARTITION : /* physical partition */ 1036 /* not much use if its not allocated */ 1037 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 1038 free(dscr, M_UDFVOLD); 1039 break; 1040 } 1041 1042 /* 1043 * BUGALERT: some rogue implementations use random physical 1044 * partition numbers to break other implementations so lookup 1045 * the number. 1046 */ 1047 raw_phys_part = udf_rw16(dscr->pd.part_num); 1048 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1049 1050 if (phys_part == UDF_PARTITIONS) { 1051 free(dscr, M_UDFVOLD); 1052 return EINVAL; 1053 } 1054 1055 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1056 break; 1057 case TAGID_VOL : /* volume space extender; rare */ 1058 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1059 free(dscr, M_UDFVOLD); 1060 break; 1061 default : 1062 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1063 udf_rw16(dscr->tag.id))); 1064 free(dscr, M_UDFVOLD); 1065 } 1066 1067 return 0; 1068 } 1069 #undef UDF_UPDATE_DSCR 1070 1071 /* --------------------------------------------------------------------- */ 1072 1073 static int 1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1075 { 1076 union dscrptr *dscr; 1077 uint32_t sector_size, dscr_size; 1078 int error; 1079 1080 sector_size = ump->discinfo.sector_size; 1081 1082 /* loc is sectornr, len is in bytes */ 1083 error = EIO; 1084 while (len) { 1085 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1086 if (error) 1087 return error; 1088 1089 /* blank block is a terminator */ 1090 if (dscr == NULL) 1091 return 0; 1092 1093 /* TERM descriptor is a terminator */ 1094 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1095 free(dscr, M_UDFVOLD); 1096 return 0; 1097 } 1098 1099 /* process all others */ 1100 dscr_size = udf_tagsize(dscr, sector_size); 1101 error = udf_process_vds_descriptor(ump, dscr); 1102 if (error) { 1103 free(dscr, M_UDFVOLD); 1104 break; 1105 } 1106 assert((dscr_size % sector_size) == 0); 1107 1108 len -= dscr_size; 1109 loc += dscr_size / sector_size; 1110 } 1111 1112 return error; 1113 } 1114 1115 1116 int 1117 udf_read_vds_space(struct udf_mount *ump) 1118 { 1119 /* struct udf_args *args = &ump->mount_args; */ 1120 struct anchor_vdp *anchor, *anchor2; 1121 size_t size; 1122 uint32_t main_loc, main_len; 1123 uint32_t reserve_loc, reserve_len; 1124 int error; 1125 1126 /* 1127 * read in VDS space provided by the anchors; if one descriptor read 1128 * fails, try the mirror sector. 1129 * 1130 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1131 * avoids the `compatibility features' of DirectCD that may confuse 1132 * stuff completely. 1133 */ 1134 1135 anchor = ump->anchors[0]; 1136 anchor2 = ump->anchors[1]; 1137 assert(anchor); 1138 1139 if (anchor2) { 1140 size = sizeof(struct extent_ad); 1141 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1142 anchor = anchor2; 1143 /* reserve is specified to be a literal copy of main */ 1144 } 1145 1146 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1147 main_len = udf_rw32(anchor->main_vds_ex.len); 1148 1149 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1150 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1151 1152 error = udf_read_vds_extent(ump, main_loc, main_len); 1153 if (error) { 1154 printf("UDF mount: reading in reserve VDS extent\n"); 1155 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1156 } 1157 1158 return error; 1159 } 1160 1161 /* --------------------------------------------------------------------- */ 1162 1163 /* 1164 * Read in the logical volume integrity sequence pointed to by our logical 1165 * volume descriptor. Its a sequence that can be extended using fields in the 1166 * integrity descriptor itself. On sequential media only one is found, on 1167 * rewritable media a sequence of descriptors can be found as a form of 1168 * history keeping and on non sequential write-once media the chain is vital 1169 * to allow more and more descriptors to be written. The last descriptor 1170 * written in an extent needs to claim space for a new extent. 1171 */ 1172 1173 static int 1174 udf_retrieve_lvint(struct udf_mount *ump) 1175 { 1176 union dscrptr *dscr; 1177 struct logvol_int_desc *lvint; 1178 struct udf_lvintq *trace; 1179 uint32_t lb_size, lbnum, len; 1180 int dscr_type, error, trace_len; 1181 1182 lb_size = udf_rw32(ump->logical_vol->lb_size); 1183 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1184 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1185 1186 /* clean trace */ 1187 memset(ump->lvint_trace, 0, 1188 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1189 1190 trace_len = 0; 1191 trace = ump->lvint_trace; 1192 trace->start = lbnum; 1193 trace->end = lbnum + len/lb_size; 1194 trace->pos = 0; 1195 trace->wpos = 0; 1196 1197 lvint = NULL; 1198 dscr = NULL; 1199 error = 0; 1200 while (len) { 1201 trace->pos = lbnum - trace->start; 1202 trace->wpos = trace->pos + 1; 1203 1204 /* read in our integrity descriptor */ 1205 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1206 if (!error) { 1207 if (dscr == NULL) { 1208 trace->wpos = trace->pos; 1209 break; /* empty terminates */ 1210 } 1211 dscr_type = udf_rw16(dscr->tag.id); 1212 if (dscr_type == TAGID_TERM) { 1213 trace->wpos = trace->pos; 1214 break; /* clean terminator */ 1215 } 1216 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1217 /* fatal... corrupt disc */ 1218 error = ENOENT; 1219 break; 1220 } 1221 if (lvint) 1222 free(lvint, M_UDFVOLD); 1223 lvint = &dscr->lvid; 1224 dscr = NULL; 1225 } /* else hope for the best... maybe the next is ok */ 1226 1227 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1228 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1229 1230 /* proceed sequential */ 1231 lbnum += 1; 1232 len -= lb_size; 1233 1234 /* are we linking to a new piece? */ 1235 if (dscr && lvint->next_extent.len) { 1236 len = udf_rw32(lvint->next_extent.len); 1237 lbnum = udf_rw32(lvint->next_extent.loc); 1238 1239 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1240 /* IEK! segment link full... */ 1241 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1242 error = EINVAL; 1243 } else { 1244 trace++; 1245 trace_len++; 1246 1247 trace->start = lbnum; 1248 trace->end = lbnum + len/lb_size; 1249 trace->pos = 0; 1250 trace->wpos = 0; 1251 } 1252 } 1253 } 1254 1255 /* clean up the mess, esp. when there is an error */ 1256 if (dscr) 1257 free(dscr, M_UDFVOLD); 1258 1259 if (error && lvint) { 1260 free(lvint, M_UDFVOLD); 1261 lvint = NULL; 1262 } 1263 1264 if (!lvint) 1265 error = ENOENT; 1266 1267 ump->logvol_integrity = lvint; 1268 return error; 1269 } 1270 1271 1272 static int 1273 udf_loose_lvint_history(struct udf_mount *ump) 1274 { 1275 union dscrptr **bufs, *dscr, *last_dscr; 1276 struct udf_lvintq *trace, *in_trace, *out_trace; 1277 struct logvol_int_desc *lvint; 1278 uint32_t in_ext, in_pos, in_len; 1279 uint32_t out_ext, out_wpos, out_len; 1280 uint32_t lb_num; 1281 uint32_t len, start; 1282 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1283 int losing; 1284 int error; 1285 1286 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1287 1288 /* search smallest extent */ 1289 trace = &ump->lvint_trace[0]; 1290 minext = trace->end - trace->start; 1291 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1292 trace = &ump->lvint_trace[ext]; 1293 extlen = trace->end - trace->start; 1294 if (extlen == 0) 1295 break; 1296 minext = MIN(minext, extlen); 1297 } 1298 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1299 /* no sense wiping all */ 1300 if (losing == minext) 1301 losing--; 1302 1303 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1304 1305 /* get buffer for pieces */ 1306 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1307 1308 in_ext = 0; 1309 in_pos = losing; 1310 in_trace = &ump->lvint_trace[in_ext]; 1311 in_len = in_trace->end - in_trace->start; 1312 out_ext = 0; 1313 out_wpos = 0; 1314 out_trace = &ump->lvint_trace[out_ext]; 1315 out_len = out_trace->end - out_trace->start; 1316 1317 last_dscr = NULL; 1318 for(;;) { 1319 out_trace->pos = out_wpos; 1320 out_trace->wpos = out_trace->pos; 1321 if (in_pos >= in_len) { 1322 in_ext++; 1323 in_pos = 0; 1324 in_trace = &ump->lvint_trace[in_ext]; 1325 in_len = in_trace->end - in_trace->start; 1326 } 1327 if (out_wpos >= out_len) { 1328 out_ext++; 1329 out_wpos = 0; 1330 out_trace = &ump->lvint_trace[out_ext]; 1331 out_len = out_trace->end - out_trace->start; 1332 } 1333 /* copy overlap contents */ 1334 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1335 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1336 if (cpy_len == 0) 1337 break; 1338 1339 /* copy */ 1340 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1341 for (cnt = 0; cnt < cpy_len; cnt++) { 1342 /* read in our integrity descriptor */ 1343 lb_num = in_trace->start + in_pos + cnt; 1344 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1345 &dscr); 1346 if (error) { 1347 /* copy last one */ 1348 dscr = last_dscr; 1349 } 1350 bufs[cnt] = dscr; 1351 if (!error) { 1352 if (dscr == NULL) { 1353 out_trace->pos = out_wpos + cnt; 1354 out_trace->wpos = out_trace->pos; 1355 break; /* empty terminates */ 1356 } 1357 dscr_type = udf_rw16(dscr->tag.id); 1358 if (dscr_type == TAGID_TERM) { 1359 out_trace->pos = out_wpos + cnt; 1360 out_trace->wpos = out_trace->pos; 1361 break; /* clean terminator */ 1362 } 1363 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1364 panic( "UDF integrity sequence " 1365 "corrupted while mounted!\n"); 1366 } 1367 last_dscr = dscr; 1368 } 1369 } 1370 1371 /* patch up if first entry was on error */ 1372 if (bufs[0] == NULL) { 1373 for (cnt = 0; cnt < cpy_len; cnt++) 1374 if (bufs[cnt] != NULL) 1375 break; 1376 last_dscr = bufs[cnt]; 1377 for (; cnt > 0; cnt--) { 1378 bufs[cnt] = last_dscr; 1379 } 1380 } 1381 1382 /* glue + write out */ 1383 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1384 for (cnt = 0; cnt < cpy_len; cnt++) { 1385 lb_num = out_trace->start + out_wpos + cnt; 1386 lvint = &bufs[cnt]->lvid; 1387 1388 /* set continuation */ 1389 len = 0; 1390 start = 0; 1391 if (out_wpos + cnt == out_len) { 1392 /* get continuation */ 1393 trace = &ump->lvint_trace[out_ext+1]; 1394 len = trace->end - trace->start; 1395 start = trace->start; 1396 } 1397 lvint->next_extent.len = udf_rw32(len); 1398 lvint->next_extent.loc = udf_rw32(start); 1399 1400 lb_num = trace->start + trace->wpos; 1401 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1402 bufs[cnt], lb_num, lb_num); 1403 DPRINTFIF(VOLUMES, error, 1404 ("error writing lvint lb_num\n")); 1405 } 1406 1407 /* free non repeating descriptors */ 1408 last_dscr = NULL; 1409 for (cnt = 0; cnt < cpy_len; cnt++) { 1410 if (bufs[cnt] != last_dscr) 1411 free(bufs[cnt], M_UDFVOLD); 1412 last_dscr = bufs[cnt]; 1413 } 1414 1415 /* advance */ 1416 in_pos += cpy_len; 1417 out_wpos += cpy_len; 1418 } 1419 1420 free(bufs, M_TEMP); 1421 1422 return 0; 1423 } 1424 1425 1426 static int 1427 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1428 { 1429 struct udf_lvintq *trace; 1430 struct timeval now_v; 1431 struct timespec now_s; 1432 uint32_t sector; 1433 int logvol_integrity; 1434 int space, error; 1435 1436 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1437 1438 again: 1439 /* get free space in last chunk */ 1440 trace = ump->lvint_trace; 1441 while (trace->wpos > (trace->end - trace->start)) { 1442 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1443 "wpos = %d\n", trace->start, trace->end, 1444 trace->pos, trace->wpos)); 1445 trace++; 1446 } 1447 1448 /* check if there is space to append */ 1449 space = (trace->end - trace->start) - trace->wpos; 1450 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1451 "space = %d\n", trace->start, trace->end, trace->pos, 1452 trace->wpos, space)); 1453 1454 /* get state */ 1455 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1456 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1457 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1458 /* TODO extent LVINT space if possible */ 1459 return EROFS; 1460 } 1461 } 1462 1463 if (space < 1) { 1464 if (lvflag & UDF_APPENDONLY_LVINT) 1465 return EROFS; 1466 /* loose history by re-writing extents */ 1467 error = udf_loose_lvint_history(ump); 1468 if (error) 1469 return error; 1470 goto again; 1471 } 1472 1473 /* update our integrity descriptor to identify us and timestamp it */ 1474 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1475 microtime(&now_v); 1476 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1477 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1478 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1479 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1480 1481 /* writeout integrity descriptor */ 1482 sector = trace->start + trace->wpos; 1483 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1484 (union dscrptr *) ump->logvol_integrity, 1485 sector, sector); 1486 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1487 if (error) 1488 return error; 1489 1490 /* advance write position */ 1491 trace->wpos++; space--; 1492 if (space >= 1) { 1493 /* append terminator */ 1494 sector = trace->start + trace->wpos; 1495 error = udf_write_terminator(ump, sector); 1496 1497 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1498 } 1499 1500 space = (trace->end - trace->start) - trace->wpos; 1501 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1502 "space = %d\n", trace->start, trace->end, trace->pos, 1503 trace->wpos, space)); 1504 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1505 "successfull\n")); 1506 1507 return error; 1508 } 1509 1510 /* --------------------------------------------------------------------- */ 1511 1512 static int 1513 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1514 { 1515 union dscrptr *dscr; 1516 /* struct udf_args *args = &ump->mount_args; */ 1517 struct part_desc *partd; 1518 struct part_hdr_desc *parthdr; 1519 struct udf_bitmap *bitmap; 1520 uint32_t phys_part; 1521 uint32_t lb_num, len; 1522 int error, dscr_type; 1523 1524 /* unallocated space map */ 1525 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1526 partd = ump->partitions[phys_part]; 1527 if (partd == NULL) 1528 continue; 1529 parthdr = &partd->_impl_use.part_hdr; 1530 1531 lb_num = udf_rw32(partd->start_loc); 1532 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1533 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1534 if (len == 0) 1535 continue; 1536 1537 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1538 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1539 if (!error && dscr) { 1540 /* analyse */ 1541 dscr_type = udf_rw16(dscr->tag.id); 1542 if (dscr_type == TAGID_SPACE_BITMAP) { 1543 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1544 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1545 1546 /* fill in ump->part_unalloc_bits */ 1547 bitmap = &ump->part_unalloc_bits[phys_part]; 1548 bitmap->blob = (uint8_t *) dscr; 1549 bitmap->bits = dscr->sbd.data; 1550 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1551 bitmap->pages = NULL; /* TODO */ 1552 bitmap->data_pos = 0; 1553 bitmap->metadata_pos = 0; 1554 } else { 1555 free(dscr, M_UDFVOLD); 1556 1557 printf( "UDF mount: error reading unallocated " 1558 "space bitmap\n"); 1559 return EROFS; 1560 } 1561 } else { 1562 /* blank not allowed */ 1563 printf("UDF mount: blank unallocated space bitmap\n"); 1564 return EROFS; 1565 } 1566 } 1567 1568 /* unallocated space table (not supported) */ 1569 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1570 partd = ump->partitions[phys_part]; 1571 if (partd == NULL) 1572 continue; 1573 parthdr = &partd->_impl_use.part_hdr; 1574 1575 len = udf_rw32(parthdr->unalloc_space_table.len); 1576 if (len) { 1577 printf("UDF mount: space tables not supported\n"); 1578 return EROFS; 1579 } 1580 } 1581 1582 /* freed space map */ 1583 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1584 partd = ump->partitions[phys_part]; 1585 if (partd == NULL) 1586 continue; 1587 parthdr = &partd->_impl_use.part_hdr; 1588 1589 /* freed space map */ 1590 lb_num = udf_rw32(partd->start_loc); 1591 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1592 len = udf_rw32(parthdr->freed_space_bitmap.len); 1593 if (len == 0) 1594 continue; 1595 1596 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1597 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1598 if (!error && dscr) { 1599 /* analyse */ 1600 dscr_type = udf_rw16(dscr->tag.id); 1601 if (dscr_type == TAGID_SPACE_BITMAP) { 1602 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1603 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1604 1605 /* fill in ump->part_freed_bits */ 1606 bitmap = &ump->part_unalloc_bits[phys_part]; 1607 bitmap->blob = (uint8_t *) dscr; 1608 bitmap->bits = dscr->sbd.data; 1609 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1610 bitmap->pages = NULL; /* TODO */ 1611 bitmap->data_pos = 0; 1612 bitmap->metadata_pos = 0; 1613 } else { 1614 free(dscr, M_UDFVOLD); 1615 1616 printf( "UDF mount: error reading freed " 1617 "space bitmap\n"); 1618 return EROFS; 1619 } 1620 } else { 1621 /* blank not allowed */ 1622 printf("UDF mount: blank freed space bitmap\n"); 1623 return EROFS; 1624 } 1625 } 1626 1627 /* freed space table (not supported) */ 1628 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1629 partd = ump->partitions[phys_part]; 1630 if (partd == NULL) 1631 continue; 1632 parthdr = &partd->_impl_use.part_hdr; 1633 1634 len = udf_rw32(parthdr->freed_space_table.len); 1635 if (len) { 1636 printf("UDF mount: space tables not supported\n"); 1637 return EROFS; 1638 } 1639 } 1640 1641 return 0; 1642 } 1643 1644 1645 /* TODO implement async writeout */ 1646 int 1647 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1648 { 1649 union dscrptr *dscr; 1650 /* struct udf_args *args = &ump->mount_args; */ 1651 struct part_desc *partd; 1652 struct part_hdr_desc *parthdr; 1653 uint32_t phys_part; 1654 uint32_t lb_num, len, ptov; 1655 int error_all, error; 1656 1657 error_all = 0; 1658 /* unallocated space map */ 1659 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1660 partd = ump->partitions[phys_part]; 1661 if (partd == NULL) 1662 continue; 1663 parthdr = &partd->_impl_use.part_hdr; 1664 1665 ptov = udf_rw32(partd->start_loc); 1666 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1667 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1668 if (len == 0) 1669 continue; 1670 1671 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1672 lb_num + ptov)); 1673 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1674 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1675 (union dscrptr *) dscr, 1676 ptov + lb_num, lb_num); 1677 if (error) { 1678 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1679 error_all = error; 1680 } 1681 } 1682 1683 /* freed space map */ 1684 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1685 partd = ump->partitions[phys_part]; 1686 if (partd == NULL) 1687 continue; 1688 parthdr = &partd->_impl_use.part_hdr; 1689 1690 /* freed space map */ 1691 ptov = udf_rw32(partd->start_loc); 1692 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1693 len = udf_rw32(parthdr->freed_space_bitmap.len); 1694 if (len == 0) 1695 continue; 1696 1697 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1698 lb_num + ptov)); 1699 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1700 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1701 (union dscrptr *) dscr, 1702 ptov + lb_num, lb_num); 1703 if (error) { 1704 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1705 error_all = error; 1706 } 1707 } 1708 1709 return error_all; 1710 } 1711 1712 1713 static int 1714 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1715 { 1716 struct udf_node *bitmap_node; 1717 union dscrptr *dscr; 1718 struct udf_bitmap *bitmap; 1719 uint64_t inflen; 1720 int error, dscr_type; 1721 1722 bitmap_node = ump->metadatabitmap_node; 1723 1724 /* only read in when metadata bitmap node is read in */ 1725 if (bitmap_node == NULL) 1726 return 0; 1727 1728 if (bitmap_node->fe) { 1729 inflen = udf_rw64(bitmap_node->fe->inf_len); 1730 } else { 1731 KASSERT(bitmap_node->efe); 1732 inflen = udf_rw64(bitmap_node->efe->inf_len); 1733 } 1734 1735 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1736 "%"PRIu64" bytes\n", inflen)); 1737 1738 /* allocate space for bitmap */ 1739 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1740 if (!dscr) 1741 return ENOMEM; 1742 1743 /* set vnode type to regular file or we can't read from it! */ 1744 bitmap_node->vnode->v_type = VREG; 1745 1746 /* read in complete metadata bitmap file */ 1747 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1748 dscr, 1749 inflen, 0, 1750 UIO_SYSSPACE, 1751 IO_SYNC | IO_ALTSEMANTICS, FSCRED, 1752 NULL, NULL); 1753 if (error) { 1754 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1755 goto errorout; 1756 } 1757 1758 /* analyse */ 1759 dscr_type = udf_rw16(dscr->tag.id); 1760 if (dscr_type == TAGID_SPACE_BITMAP) { 1761 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1762 ump->metadata_unalloc_dscr = &dscr->sbd; 1763 1764 /* fill in bitmap bits */ 1765 bitmap = &ump->metadata_unalloc_bits; 1766 bitmap->blob = (uint8_t *) dscr; 1767 bitmap->bits = dscr->sbd.data; 1768 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1769 bitmap->pages = NULL; /* TODO */ 1770 bitmap->data_pos = 0; 1771 bitmap->metadata_pos = 0; 1772 } else { 1773 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1774 goto errorout; 1775 } 1776 1777 return 0; 1778 1779 errorout: 1780 free(dscr, M_UDFVOLD); 1781 printf( "UDF mount: error reading unallocated " 1782 "space bitmap for metadata partition\n"); 1783 return EROFS; 1784 } 1785 1786 1787 int 1788 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1789 { 1790 struct udf_node *bitmap_node; 1791 union dscrptr *dscr; 1792 uint64_t new_inflen; 1793 int dummy, error; 1794 1795 bitmap_node = ump->metadatabitmap_node; 1796 1797 /* only write out when metadata bitmap node is known */ 1798 if (bitmap_node == NULL) 1799 return 0; 1800 1801 if (!bitmap_node->fe) { 1802 KASSERT(bitmap_node->efe); 1803 } 1804 1805 /* reduce length to zero */ 1806 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1807 new_inflen = udf_tagsize(dscr, 1); 1808 1809 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap " 1810 " for %"PRIu64" bytes\n", new_inflen)); 1811 1812 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1813 if (error) 1814 printf("Error resizing metadata space bitmap\n"); 1815 1816 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1817 dscr, 1818 new_inflen, 0, 1819 UIO_SYSSPACE, 1820 IO_ALTSEMANTICS, FSCRED, 1821 NULL, NULL); 1822 1823 bitmap_node->i_flags |= IN_MODIFIED; 1824 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT); 1825 if (error == 0) 1826 error = VOP_FSYNC(bitmap_node->vnode, 1827 FSCRED, FSYNC_WAIT, 0, 0); 1828 1829 if (error) 1830 printf( "Error writing out metadata partition unalloced " 1831 "space bitmap!\n"); 1832 1833 return error; 1834 } 1835 1836 1837 /* --------------------------------------------------------------------- */ 1838 1839 /* 1840 * Checks if ump's vds information is correct and complete 1841 */ 1842 1843 int 1844 udf_process_vds(struct udf_mount *ump) { 1845 union udf_pmap *mapping; 1846 /* struct udf_args *args = &ump->mount_args; */ 1847 struct logvol_int_desc *lvint; 1848 struct udf_logvol_info *lvinfo; 1849 uint32_t n_pm; 1850 uint8_t *pmap_pos; 1851 char *domain_name, *map_name; 1852 const char *check_name; 1853 char bits[128]; 1854 int pmap_stype, pmap_size; 1855 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1856 int n_phys, n_virt, n_spar, n_meta; 1857 int len; 1858 1859 if (ump == NULL) 1860 return ENOENT; 1861 1862 /* we need at least an anchor (trivial, but for safety) */ 1863 if (ump->anchors[0] == NULL) 1864 return EINVAL; 1865 1866 /* we need at least one primary and one logical volume descriptor */ 1867 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1868 return EINVAL; 1869 1870 /* we need at least one partition descriptor */ 1871 if (ump->partitions[0] == NULL) 1872 return EINVAL; 1873 1874 /* check logical volume sector size verses device sector size */ 1875 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1876 printf("UDF mount: format violation, lb_size != sector size\n"); 1877 return EINVAL; 1878 } 1879 1880 /* check domain name */ 1881 domain_name = ump->logical_vol->domain_id.id; 1882 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1883 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1884 return EINVAL; 1885 } 1886 1887 /* retrieve logical volume integrity sequence */ 1888 (void)udf_retrieve_lvint(ump); 1889 1890 /* 1891 * We need at least one logvol integrity descriptor recorded. Note 1892 * that its OK to have an open logical volume integrity here. The VAT 1893 * will close/update the integrity. 1894 */ 1895 if (ump->logvol_integrity == NULL) 1896 return EINVAL; 1897 1898 /* process derived structures */ 1899 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1900 lvint = ump->logvol_integrity; 1901 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1902 ump->logvol_info = lvinfo; 1903 1904 /* TODO check udf versions? */ 1905 1906 /* 1907 * check logvol mappings: effective virt->log partmap translation 1908 * check and recording of the mapping results. Saves expensive 1909 * strncmp() in tight places. 1910 */ 1911 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1912 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1913 pmap_pos = ump->logical_vol->maps; 1914 1915 if (n_pm > UDF_PMAPS) { 1916 printf("UDF mount: too many mappings\n"); 1917 return EINVAL; 1918 } 1919 1920 /* count types and set partition numbers */ 1921 ump->data_part = ump->node_part = ump->fids_part = 0; 1922 n_phys = n_virt = n_spar = n_meta = 0; 1923 for (log_part = 0; log_part < n_pm; log_part++) { 1924 mapping = (union udf_pmap *) pmap_pos; 1925 pmap_stype = pmap_pos[0]; 1926 pmap_size = pmap_pos[1]; 1927 switch (pmap_stype) { 1928 case 1: /* physical mapping */ 1929 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1930 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1931 pmap_type = UDF_VTOP_TYPE_PHYS; 1932 n_phys++; 1933 ump->data_part = log_part; 1934 ump->node_part = log_part; 1935 ump->fids_part = log_part; 1936 break; 1937 case 2: /* virtual/sparable/meta mapping */ 1938 map_name = mapping->pm2.part_id.id; 1939 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1940 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1941 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1942 len = UDF_REGID_ID_SIZE; 1943 1944 check_name = "*UDF Virtual Partition"; 1945 if (strncmp(map_name, check_name, len) == 0) { 1946 pmap_type = UDF_VTOP_TYPE_VIRT; 1947 n_virt++; 1948 ump->node_part = log_part; 1949 break; 1950 } 1951 check_name = "*UDF Sparable Partition"; 1952 if (strncmp(map_name, check_name, len) == 0) { 1953 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1954 n_spar++; 1955 ump->data_part = log_part; 1956 ump->node_part = log_part; 1957 ump->fids_part = log_part; 1958 break; 1959 } 1960 check_name = "*UDF Metadata Partition"; 1961 if (strncmp(map_name, check_name, len) == 0) { 1962 pmap_type = UDF_VTOP_TYPE_META; 1963 n_meta++; 1964 ump->node_part = log_part; 1965 ump->fids_part = log_part; 1966 break; 1967 } 1968 break; 1969 default: 1970 return EINVAL; 1971 } 1972 1973 /* 1974 * BUGALERT: some rogue implementations use random physical 1975 * partition numbers to break other implementations so lookup 1976 * the number. 1977 */ 1978 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1979 1980 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1981 raw_phys_part, phys_part, pmap_type)); 1982 1983 if (phys_part == UDF_PARTITIONS) 1984 return EINVAL; 1985 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1986 return EINVAL; 1987 1988 ump->vtop [log_part] = phys_part; 1989 ump->vtop_tp[log_part] = pmap_type; 1990 1991 pmap_pos += pmap_size; 1992 } 1993 /* not winning the beauty contest */ 1994 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1995 1996 /* test some basic UDF assertions/requirements */ 1997 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 1998 return EINVAL; 1999 2000 if (n_virt) { 2001 if ((n_phys == 0) || n_spar || n_meta) 2002 return EINVAL; 2003 } 2004 if (n_spar + n_phys == 0) 2005 return EINVAL; 2006 2007 /* select allocation type for each logical partition */ 2008 for (log_part = 0; log_part < n_pm; log_part++) { 2009 maps_on = ump->vtop[log_part]; 2010 switch (ump->vtop_tp[log_part]) { 2011 case UDF_VTOP_TYPE_PHYS : 2012 assert(maps_on == log_part); 2013 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2014 break; 2015 case UDF_VTOP_TYPE_VIRT : 2016 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 2017 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2018 break; 2019 case UDF_VTOP_TYPE_SPARABLE : 2020 assert(maps_on == log_part); 2021 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2022 break; 2023 case UDF_VTOP_TYPE_META : 2024 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 2025 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 2026 /* special case for UDF 2.60 */ 2027 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 2028 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2029 } 2030 break; 2031 default: 2032 panic("bad alloction type in udf's ump->vtop\n"); 2033 } 2034 } 2035 2036 /* determine logical volume open/closure actions */ 2037 if (n_virt) { 2038 ump->lvopen = 0; 2039 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2040 ump->lvopen |= UDF_OPEN_SESSION ; 2041 ump->lvclose = UDF_WRITE_VAT; 2042 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2043 ump->lvclose |= UDF_CLOSE_SESSION; 2044 } else { 2045 /* `normal' rewritable or non sequential media */ 2046 ump->lvopen = UDF_WRITE_LVINT; 2047 ump->lvclose = UDF_WRITE_LVINT; 2048 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2049 ump->lvopen |= UDF_APPENDONLY_LVINT; 2050 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2051 ump->lvopen &= ~UDF_APPENDONLY_LVINT; 2052 } 2053 2054 /* 2055 * Determine sheduler error behaviour. For virtual partitions, update 2056 * the trackinfo; for sparable partitions replace a whole block on the 2057 * sparable table. Allways requeue. 2058 */ 2059 ump->lvreadwrite = 0; 2060 if (n_virt) 2061 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2062 if (n_spar) 2063 ump->lvreadwrite = UDF_REMAP_BLOCK; 2064 2065 /* 2066 * Select our sheduler 2067 */ 2068 ump->strategy = &udf_strat_rmw; 2069 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2070 ump->strategy = &udf_strat_sequential; 2071 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2072 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2073 ump->strategy = &udf_strat_direct; 2074 if (n_spar) 2075 ump->strategy = &udf_strat_rmw; 2076 2077 #if 0 2078 /* read-only access won't benefit from the other shedulers */ 2079 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2080 ump->strategy = &udf_strat_direct; 2081 #endif 2082 2083 /* print results */ 2084 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2085 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2086 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2088 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2090 2091 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2092 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2094 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2095 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2096 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2097 2098 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2099 (ump->strategy == &udf_strat_direct) ? "Direct" : 2100 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2101 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2102 2103 /* signal its OK for now */ 2104 return 0; 2105 } 2106 2107 /* --------------------------------------------------------------------- */ 2108 2109 /* 2110 * Update logical volume name in all structures that keep a record of it. We 2111 * use memmove since each of them might be specified as a source. 2112 * 2113 * Note that it doesn't update the VAT structure! 2114 */ 2115 2116 static void 2117 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2118 { 2119 struct logvol_desc *lvd = NULL; 2120 struct fileset_desc *fsd = NULL; 2121 struct udf_lv_info *lvi = NULL; 2122 2123 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2124 lvd = ump->logical_vol; 2125 fsd = ump->fileset_desc; 2126 if (ump->implementation) 2127 lvi = &ump->implementation->_impl_use.lv_info; 2128 2129 /* logvol's id might be specified as origional so use memmove here */ 2130 memmove(lvd->logvol_id, logvol_id, 128); 2131 if (fsd) 2132 memmove(fsd->logvol_id, logvol_id, 128); 2133 if (lvi) 2134 memmove(lvi->logvol_id, logvol_id, 128); 2135 } 2136 2137 /* --------------------------------------------------------------------- */ 2138 2139 void 2140 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2141 uint32_t sector) 2142 { 2143 assert(ump->logical_vol); 2144 2145 tag->id = udf_rw16(tagid); 2146 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2147 tag->cksum = 0; 2148 tag->reserved = 0; 2149 tag->serial_num = ump->logical_vol->tag.serial_num; 2150 tag->tag_loc = udf_rw32(sector); 2151 } 2152 2153 2154 uint64_t 2155 udf_advance_uniqueid(struct udf_mount *ump) 2156 { 2157 uint64_t unique_id; 2158 2159 mutex_enter(&ump->logvol_mutex); 2160 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2161 if (unique_id < 0x10) 2162 unique_id = 0x10; 2163 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2164 mutex_exit(&ump->logvol_mutex); 2165 2166 return unique_id; 2167 } 2168 2169 2170 static void 2171 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2172 { 2173 struct udf_mount *ump = udf_node->ump; 2174 uint32_t num_dirs, num_files; 2175 int udf_file_type; 2176 2177 /* get file type */ 2178 if (udf_node->fe) { 2179 udf_file_type = udf_node->fe->icbtag.file_type; 2180 } else { 2181 udf_file_type = udf_node->efe->icbtag.file_type; 2182 } 2183 2184 /* adjust file count */ 2185 mutex_enter(&ump->allocate_mutex); 2186 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2187 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2188 ump->logvol_info->num_directories = 2189 udf_rw32((num_dirs + sign)); 2190 } else { 2191 num_files = udf_rw32(ump->logvol_info->num_files); 2192 ump->logvol_info->num_files = 2193 udf_rw32((num_files + sign)); 2194 } 2195 mutex_exit(&ump->allocate_mutex); 2196 } 2197 2198 2199 void 2200 udf_osta_charset(struct charspec *charspec) 2201 { 2202 memset(charspec, 0, sizeof(struct charspec)); 2203 charspec->type = 0; 2204 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2205 } 2206 2207 2208 /* first call udf_set_regid and then the suffix */ 2209 void 2210 udf_set_regid(struct regid *regid, char const *name) 2211 { 2212 memset(regid, 0, sizeof(struct regid)); 2213 regid->flags = 0; /* not dirty and not protected */ 2214 strcpy((char *) regid->id, name); 2215 } 2216 2217 2218 void 2219 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2220 { 2221 uint16_t *ver; 2222 2223 ver = (uint16_t *) regid->id_suffix; 2224 *ver = ump->logvol_info->min_udf_readver; 2225 } 2226 2227 2228 void 2229 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2230 { 2231 uint16_t *ver; 2232 2233 ver = (uint16_t *) regid->id_suffix; 2234 *ver = ump->logvol_info->min_udf_readver; 2235 2236 regid->id_suffix[2] = 4; /* unix */ 2237 regid->id_suffix[3] = 8; /* NetBSD */ 2238 } 2239 2240 2241 void 2242 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2243 { 2244 regid->id_suffix[0] = 4; /* unix */ 2245 regid->id_suffix[1] = 8; /* NetBSD */ 2246 } 2247 2248 2249 void 2250 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2251 { 2252 regid->id_suffix[0] = APP_VERSION_MAIN; 2253 regid->id_suffix[1] = APP_VERSION_SUB; 2254 } 2255 2256 static int 2257 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2258 struct long_ad *parent, uint64_t unique_id) 2259 { 2260 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2261 int fidsize = 40; 2262 2263 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2264 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2265 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2266 fid->icb = *parent; 2267 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2268 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2269 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2270 2271 return fidsize; 2272 } 2273 2274 /* --------------------------------------------------------------------- */ 2275 2276 /* 2277 * Extended attribute support. UDF knows of 3 places for extended attributes: 2278 * 2279 * (a) inside the file's (e)fe in the length of the extended attribute area 2280 * before the allocation descriptors/filedata 2281 * 2282 * (b) in a file referenced by (e)fe->ext_attr_icb and 2283 * 2284 * (c) in the e(fe)'s associated stream directory that can hold various 2285 * sub-files. In the stream directory a few fixed named subfiles are reserved 2286 * for NT/Unix ACL's and OS/2 attributes. 2287 * 2288 * NOTE: Extended attributes are read randomly but allways written 2289 * *atomicaly*. For ACL's this interface is propably different but not known 2290 * to me yet. 2291 * 2292 * Order of extended attributes in a space : 2293 * ECMA 167 EAs 2294 * Non block aligned Implementation Use EAs 2295 * Block aligned Implementation Use EAs 2296 * Application Use EAs 2297 */ 2298 2299 static int 2300 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2301 { 2302 uint16_t *spos; 2303 2304 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2305 /* checksum valid? */ 2306 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2307 spos = (uint16_t *) implext->data; 2308 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2309 return EINVAL; 2310 } 2311 return 0; 2312 } 2313 2314 static void 2315 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2316 { 2317 uint16_t *spos; 2318 2319 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2320 /* set checksum */ 2321 spos = (uint16_t *) implext->data; 2322 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2323 } 2324 } 2325 2326 2327 int 2328 udf_extattr_search_intern(struct udf_node *node, 2329 uint32_t sattr, char const *sattrname, 2330 uint32_t *offsetp, uint32_t *lengthp) 2331 { 2332 struct extattrhdr_desc *eahdr; 2333 struct extattr_entry *attrhdr; 2334 struct impl_extattr_entry *implext; 2335 uint32_t offset, a_l, sector_size; 2336 int32_t l_ea; 2337 uint8_t *pos; 2338 int error; 2339 2340 /* get mountpoint */ 2341 sector_size = node->ump->discinfo.sector_size; 2342 2343 /* get information from fe/efe */ 2344 if (node->fe) { 2345 l_ea = udf_rw32(node->fe->l_ea); 2346 eahdr = (struct extattrhdr_desc *) node->fe->data; 2347 } else { 2348 assert(node->efe); 2349 l_ea = udf_rw32(node->efe->l_ea); 2350 eahdr = (struct extattrhdr_desc *) node->efe->data; 2351 } 2352 2353 /* something recorded here? */ 2354 if (l_ea == 0) 2355 return ENOENT; 2356 2357 /* check extended attribute tag; what to do if it fails? */ 2358 error = udf_check_tag(eahdr); 2359 if (error) 2360 return EINVAL; 2361 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2362 return EINVAL; 2363 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2364 if (error) 2365 return EINVAL; 2366 2367 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2368 2369 /* looking for Ecma-167 attributes? */ 2370 offset = sizeof(struct extattrhdr_desc); 2371 2372 /* looking for either implemenation use or application use */ 2373 if (sattr == 2048) { /* [4/48.10.8] */ 2374 offset = udf_rw32(eahdr->impl_attr_loc); 2375 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2376 return ENOENT; 2377 } 2378 if (sattr == 65536) { /* [4/48.10.9] */ 2379 offset = udf_rw32(eahdr->appl_attr_loc); 2380 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2381 return ENOENT; 2382 } 2383 2384 /* paranoia check offset and l_ea */ 2385 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2386 return EINVAL; 2387 2388 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2389 2390 /* find our extended attribute */ 2391 l_ea -= offset; 2392 pos = (uint8_t *) eahdr + offset; 2393 2394 while (l_ea >= sizeof(struct extattr_entry)) { 2395 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2396 attrhdr = (struct extattr_entry *) pos; 2397 implext = (struct impl_extattr_entry *) pos; 2398 2399 /* get complete attribute length and check for roque values */ 2400 a_l = udf_rw32(attrhdr->a_l); 2401 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2402 udf_rw32(attrhdr->type), 2403 attrhdr->subtype, a_l, l_ea)); 2404 if ((a_l == 0) || (a_l > l_ea)) 2405 return EINVAL; 2406 2407 if (attrhdr->type != sattr) 2408 goto next_attribute; 2409 2410 /* we might have found it! */ 2411 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2412 *offsetp = offset; 2413 *lengthp = a_l; 2414 return 0; /* success */ 2415 } 2416 2417 /* 2418 * Implementation use and application use extended attributes 2419 * have a name to identify. They share the same structure only 2420 * UDF implementation use extended attributes have a checksum 2421 * we need to check 2422 */ 2423 2424 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2425 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2426 /* we have found our appl/implementation attribute */ 2427 *offsetp = offset; 2428 *lengthp = a_l; 2429 return 0; /* success */ 2430 } 2431 2432 next_attribute: 2433 /* next attribute */ 2434 pos += a_l; 2435 l_ea -= a_l; 2436 offset += a_l; 2437 } 2438 /* not found */ 2439 return ENOENT; 2440 } 2441 2442 2443 static void 2444 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2445 struct extattr_entry *extattr) 2446 { 2447 struct file_entry *fe; 2448 struct extfile_entry *efe; 2449 struct extattrhdr_desc *extattrhdr; 2450 struct impl_extattr_entry *implext; 2451 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2452 uint32_t *l_eap, l_ad; 2453 uint16_t *spos; 2454 uint8_t *bpos, *data; 2455 2456 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2457 fe = &dscr->fe; 2458 data = fe->data; 2459 l_eap = &fe->l_ea; 2460 l_ad = udf_rw32(fe->l_ad); 2461 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2462 efe = &dscr->efe; 2463 data = efe->data; 2464 l_eap = &efe->l_ea; 2465 l_ad = udf_rw32(efe->l_ad); 2466 } else { 2467 panic("Bad tag passed to udf_extattr_insert_internal"); 2468 } 2469 2470 /* can't append already written to file descriptors yet */ 2471 assert(l_ad == 0); 2472 __USE(l_ad); 2473 2474 /* should have a header! */ 2475 extattrhdr = (struct extattrhdr_desc *) data; 2476 l_ea = udf_rw32(*l_eap); 2477 if (l_ea == 0) { 2478 /* create empty extended attribute header */ 2479 exthdr_len = sizeof(struct extattrhdr_desc); 2480 2481 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2482 /* loc */ 0); 2483 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2484 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2485 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2486 2487 /* record extended attribute header length */ 2488 l_ea = exthdr_len; 2489 *l_eap = udf_rw32(l_ea); 2490 } 2491 2492 /* extract locations */ 2493 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2494 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2495 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2496 impl_attr_loc = l_ea; 2497 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2498 appl_attr_loc = l_ea; 2499 2500 /* Ecma 167 EAs */ 2501 if (udf_rw32(extattr->type) < 2048) { 2502 assert(impl_attr_loc == l_ea); 2503 assert(appl_attr_loc == l_ea); 2504 } 2505 2506 /* implementation use extended attributes */ 2507 if (udf_rw32(extattr->type) == 2048) { 2508 assert(appl_attr_loc == l_ea); 2509 2510 /* calculate and write extended attribute header checksum */ 2511 implext = (struct impl_extattr_entry *) extattr; 2512 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2513 spos = (uint16_t *) implext->data; 2514 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2515 } 2516 2517 /* application use extended attributes */ 2518 assert(udf_rw32(extattr->type) != 65536); 2519 assert(appl_attr_loc == l_ea); 2520 2521 /* append the attribute at the end of the current space */ 2522 bpos = data + udf_rw32(*l_eap); 2523 a_l = udf_rw32(extattr->a_l); 2524 2525 /* update impl. attribute locations */ 2526 if (udf_rw32(extattr->type) < 2048) { 2527 impl_attr_loc = l_ea + a_l; 2528 appl_attr_loc = l_ea + a_l; 2529 } 2530 if (udf_rw32(extattr->type) == 2048) { 2531 appl_attr_loc = l_ea + a_l; 2532 } 2533 2534 /* copy and advance */ 2535 memcpy(bpos, extattr, a_l); 2536 l_ea += a_l; 2537 *l_eap = udf_rw32(l_ea); 2538 2539 /* do the `dance` again backwards */ 2540 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2541 if (impl_attr_loc == l_ea) 2542 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2543 if (appl_attr_loc == l_ea) 2544 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2545 } 2546 2547 /* store offsets */ 2548 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2549 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2550 } 2551 2552 2553 /* --------------------------------------------------------------------- */ 2554 2555 static int 2556 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2557 { 2558 struct udf_mount *ump; 2559 struct udf_logvol_info *lvinfo; 2560 struct impl_extattr_entry *implext; 2561 struct vatlvext_extattr_entry lvext; 2562 const char *extstr = "*UDF VAT LVExtension"; 2563 uint64_t vat_uniqueid; 2564 uint32_t offset, a_l; 2565 uint8_t *ea_start, *lvextpos; 2566 int error; 2567 2568 /* get mountpoint and lvinfo */ 2569 ump = vat_node->ump; 2570 lvinfo = ump->logvol_info; 2571 2572 /* get information from fe/efe */ 2573 if (vat_node->fe) { 2574 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2575 ea_start = vat_node->fe->data; 2576 } else { 2577 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2578 ea_start = vat_node->efe->data; 2579 } 2580 2581 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2582 if (error) 2583 return error; 2584 2585 implext = (struct impl_extattr_entry *) (ea_start + offset); 2586 error = udf_impl_extattr_check(implext); 2587 if (error) 2588 return error; 2589 2590 /* paranoia */ 2591 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2592 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2593 return EINVAL; 2594 } 2595 2596 /* 2597 * we have found our "VAT LVExtension attribute. BUT due to a 2598 * bug in the specification it might not be word aligned so 2599 * copy first to avoid panics on some machines (!!) 2600 */ 2601 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2602 lvextpos = implext->data + udf_rw32(implext->iu_l); 2603 memcpy(&lvext, lvextpos, sizeof(lvext)); 2604 2605 /* check if it was updated the last time */ 2606 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2607 lvinfo->num_files = lvext.num_files; 2608 lvinfo->num_directories = lvext.num_directories; 2609 udf_update_logvolname(ump, lvext.logvol_id); 2610 } else { 2611 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2612 /* replace VAT LVExt by free space EA */ 2613 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2614 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2615 udf_calc_impl_extattr_checksum(implext); 2616 } 2617 2618 return 0; 2619 } 2620 2621 2622 static int 2623 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2624 { 2625 struct udf_mount *ump; 2626 struct udf_logvol_info *lvinfo; 2627 struct impl_extattr_entry *implext; 2628 struct vatlvext_extattr_entry lvext; 2629 const char *extstr = "*UDF VAT LVExtension"; 2630 uint64_t vat_uniqueid; 2631 uint32_t offset, a_l; 2632 uint8_t *ea_start, *lvextpos; 2633 int error; 2634 2635 /* get mountpoint and lvinfo */ 2636 ump = vat_node->ump; 2637 lvinfo = ump->logvol_info; 2638 2639 /* get information from fe/efe */ 2640 if (vat_node->fe) { 2641 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2642 ea_start = vat_node->fe->data; 2643 } else { 2644 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2645 ea_start = vat_node->efe->data; 2646 } 2647 2648 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2649 if (error) 2650 return error; 2651 /* found, it existed */ 2652 2653 /* paranoia */ 2654 implext = (struct impl_extattr_entry *) (ea_start + offset); 2655 error = udf_impl_extattr_check(implext); 2656 if (error) { 2657 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2658 return error; 2659 } 2660 /* it is correct */ 2661 2662 /* 2663 * we have found our "VAT LVExtension attribute. BUT due to a 2664 * bug in the specification it might not be word aligned so 2665 * copy first to avoid panics on some machines (!!) 2666 */ 2667 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2668 lvextpos = implext->data + udf_rw32(implext->iu_l); 2669 2670 lvext.unique_id_chk = vat_uniqueid; 2671 lvext.num_files = lvinfo->num_files; 2672 lvext.num_directories = lvinfo->num_directories; 2673 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2674 2675 memcpy(lvextpos, &lvext, sizeof(lvext)); 2676 2677 return 0; 2678 } 2679 2680 /* --------------------------------------------------------------------- */ 2681 2682 int 2683 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2684 { 2685 struct udf_mount *ump = vat_node->ump; 2686 2687 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2688 return EINVAL; 2689 2690 memcpy(blob, ump->vat_table + offset, size); 2691 return 0; 2692 } 2693 2694 int 2695 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2696 { 2697 struct udf_mount *ump = vat_node->ump; 2698 uint32_t offset_high; 2699 uint8_t *new_vat_table; 2700 2701 /* extent VAT allocation if needed */ 2702 offset_high = offset + size; 2703 if (offset_high >= ump->vat_table_alloc_len) { 2704 /* realloc */ 2705 new_vat_table = realloc(ump->vat_table, 2706 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2707 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2708 if (!new_vat_table) { 2709 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2710 return ENOMEM; 2711 } 2712 ump->vat_table = new_vat_table; 2713 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2714 } 2715 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2716 2717 memcpy(ump->vat_table + offset, blob, size); 2718 return 0; 2719 } 2720 2721 /* --------------------------------------------------------------------- */ 2722 2723 /* TODO support previous VAT location writeout */ 2724 static int 2725 udf_update_vat_descriptor(struct udf_mount *ump) 2726 { 2727 struct udf_node *vat_node = ump->vat_node; 2728 struct udf_logvol_info *lvinfo = ump->logvol_info; 2729 struct icb_tag *icbtag; 2730 struct udf_oldvat_tail *oldvat_tl; 2731 struct udf_vat *vat; 2732 uint64_t unique_id; 2733 uint32_t lb_size; 2734 uint8_t *raw_vat; 2735 int filetype, error; 2736 2737 KASSERT(vat_node); 2738 KASSERT(lvinfo); 2739 lb_size = udf_rw32(ump->logical_vol->lb_size); 2740 2741 /* get our new unique_id */ 2742 unique_id = udf_advance_uniqueid(ump); 2743 2744 /* get information from fe/efe */ 2745 if (vat_node->fe) { 2746 icbtag = &vat_node->fe->icbtag; 2747 vat_node->fe->unique_id = udf_rw64(unique_id); 2748 } else { 2749 icbtag = &vat_node->efe->icbtag; 2750 vat_node->efe->unique_id = udf_rw64(unique_id); 2751 } 2752 2753 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2754 filetype = icbtag->file_type; 2755 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2756 2757 /* allocate piece to process head or tail of VAT file */ 2758 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2759 2760 if (filetype == 0) { 2761 /* 2762 * Update "*UDF VAT LVExtension" extended attribute from the 2763 * lvint if present. 2764 */ 2765 udf_update_vat_extattr_from_lvid(vat_node); 2766 2767 /* setup identifying regid */ 2768 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2769 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2770 2771 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2772 udf_add_udf_regid(ump, &oldvat_tl->id); 2773 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2774 2775 /* write out new tail of virtual allocation table file */ 2776 error = udf_vat_write(vat_node, raw_vat, 2777 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2778 } else { 2779 /* compose the VAT2 header */ 2780 vat = (struct udf_vat *) raw_vat; 2781 memset(vat, 0, sizeof(struct udf_vat)); 2782 2783 vat->header_len = udf_rw16(152); /* as per spec */ 2784 vat->impl_use_len = udf_rw16(0); 2785 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2786 vat->prev_vat = udf_rw32(0xffffffff); 2787 vat->num_files = lvinfo->num_files; 2788 vat->num_directories = lvinfo->num_directories; 2789 vat->min_udf_readver = lvinfo->min_udf_readver; 2790 vat->min_udf_writever = lvinfo->min_udf_writever; 2791 vat->max_udf_writever = lvinfo->max_udf_writever; 2792 2793 error = udf_vat_write(vat_node, raw_vat, 2794 sizeof(struct udf_vat), 0); 2795 } 2796 free(raw_vat, M_TEMP); 2797 2798 return error; /* success! */ 2799 } 2800 2801 2802 int 2803 udf_writeout_vat(struct udf_mount *ump) 2804 { 2805 struct udf_node *vat_node = ump->vat_node; 2806 int error; 2807 2808 KASSERT(vat_node); 2809 2810 DPRINTF(CALL, ("udf_writeout_vat\n")); 2811 2812 // mutex_enter(&ump->allocate_mutex); 2813 udf_update_vat_descriptor(ump); 2814 2815 /* write out the VAT contents ; TODO intelligent writing */ 2816 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2817 ump->vat_table, ump->vat_table_len, 0, 2818 UIO_SYSSPACE, 0, FSCRED, NULL, NULL); 2819 if (error) { 2820 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2821 goto out; 2822 } 2823 2824 // mutex_exit(&ump->allocate_mutex); 2825 2826 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 2827 if (error) 2828 goto out; 2829 error = VOP_FSYNC(ump->vat_node->vnode, 2830 FSCRED, FSYNC_WAIT, 0, 0); 2831 if (error) 2832 printf("udf_writeout_vat: error writing VAT node!\n"); 2833 out: 2834 return error; 2835 } 2836 2837 /* --------------------------------------------------------------------- */ 2838 2839 /* 2840 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2841 * descriptor. If OK, read in complete VAT file. 2842 */ 2843 2844 static int 2845 udf_check_for_vat(struct udf_node *vat_node) 2846 { 2847 struct udf_mount *ump; 2848 struct icb_tag *icbtag; 2849 struct timestamp *mtime; 2850 struct udf_vat *vat; 2851 struct udf_oldvat_tail *oldvat_tl; 2852 struct udf_logvol_info *lvinfo; 2853 uint64_t unique_id; 2854 uint32_t vat_length; 2855 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2856 uint32_t sector_size; 2857 uint32_t *raw_vat; 2858 uint8_t *vat_table; 2859 char *regid_name; 2860 int filetype; 2861 int error; 2862 2863 /* vat_length is really 64 bits though impossible */ 2864 2865 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2866 if (!vat_node) 2867 return ENOENT; 2868 2869 /* get mount info */ 2870 ump = vat_node->ump; 2871 sector_size = udf_rw32(ump->logical_vol->lb_size); 2872 2873 /* check assertions */ 2874 assert(vat_node->fe || vat_node->efe); 2875 assert(ump->logvol_integrity); 2876 2877 /* set vnode type to regular file or we can't read from it! */ 2878 vat_node->vnode->v_type = VREG; 2879 2880 /* get information from fe/efe */ 2881 if (vat_node->fe) { 2882 vat_length = udf_rw64(vat_node->fe->inf_len); 2883 icbtag = &vat_node->fe->icbtag; 2884 mtime = &vat_node->fe->mtime; 2885 unique_id = udf_rw64(vat_node->fe->unique_id); 2886 } else { 2887 vat_length = udf_rw64(vat_node->efe->inf_len); 2888 icbtag = &vat_node->efe->icbtag; 2889 mtime = &vat_node->efe->mtime; 2890 unique_id = udf_rw64(vat_node->efe->unique_id); 2891 } 2892 2893 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2894 filetype = icbtag->file_type; 2895 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2896 return ENOENT; 2897 2898 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2899 2900 vat_table_alloc_len = 2901 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2902 * UDF_VAT_CHUNKSIZE; 2903 2904 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2905 M_CANFAIL | M_WAITOK); 2906 if (vat_table == NULL) { 2907 printf("allocation of %d bytes failed for VAT\n", 2908 vat_table_alloc_len); 2909 return ENOMEM; 2910 } 2911 2912 /* allocate piece to read in head or tail of VAT file */ 2913 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2914 2915 /* 2916 * check contents of the file if its the old 1.50 VAT table format. 2917 * Its notoriously broken and allthough some implementations support an 2918 * extention as defined in the UDF 1.50 errata document, its doubtfull 2919 * to be useable since a lot of implementations don't maintain it. 2920 */ 2921 lvinfo = ump->logvol_info; 2922 2923 if (filetype == 0) { 2924 /* definition */ 2925 vat_offset = 0; 2926 vat_entries = (vat_length-36)/4; 2927 2928 /* read in tail of virtual allocation table file */ 2929 error = vn_rdwr(UIO_READ, vat_node->vnode, 2930 (uint8_t *) raw_vat, 2931 sizeof(struct udf_oldvat_tail), 2932 vat_entries * 4, 2933 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2934 NULL, NULL); 2935 if (error) 2936 goto out; 2937 2938 /* check 1.50 VAT */ 2939 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2940 regid_name = (char *) oldvat_tl->id.id; 2941 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2942 if (error) { 2943 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2944 error = ENOENT; 2945 goto out; 2946 } 2947 2948 /* 2949 * update LVID from "*UDF VAT LVExtension" extended attribute 2950 * if present. 2951 */ 2952 udf_update_lvid_from_vat_extattr(vat_node); 2953 } else { 2954 /* read in head of virtual allocation table file */ 2955 error = vn_rdwr(UIO_READ, vat_node->vnode, 2956 (uint8_t *) raw_vat, 2957 sizeof(struct udf_vat), 0, 2958 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2959 NULL, NULL); 2960 if (error) 2961 goto out; 2962 2963 /* definition */ 2964 vat = (struct udf_vat *) raw_vat; 2965 vat_offset = vat->header_len; 2966 vat_entries = (vat_length - vat_offset)/4; 2967 2968 assert(lvinfo); 2969 lvinfo->num_files = vat->num_files; 2970 lvinfo->num_directories = vat->num_directories; 2971 lvinfo->min_udf_readver = vat->min_udf_readver; 2972 lvinfo->min_udf_writever = vat->min_udf_writever; 2973 lvinfo->max_udf_writever = vat->max_udf_writever; 2974 2975 udf_update_logvolname(ump, vat->logvol_id); 2976 } 2977 2978 /* read in complete VAT file */ 2979 error = vn_rdwr(UIO_READ, vat_node->vnode, 2980 vat_table, 2981 vat_length, 0, 2982 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2983 NULL, NULL); 2984 if (error) 2985 printf("read in of complete VAT file failed (error %d)\n", 2986 error); 2987 if (error) 2988 goto out; 2989 2990 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2991 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 2992 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2993 ump->logvol_integrity->time = *mtime; 2994 2995 /* if we're updating, free old allocated space */ 2996 if (ump->vat_table) 2997 free(ump->vat_table, M_UDFVOLD); 2998 2999 ump->vat_table_len = vat_length; 3000 ump->vat_table_alloc_len = vat_table_alloc_len; 3001 ump->vat_table = vat_table; 3002 ump->vat_offset = vat_offset; 3003 ump->vat_entries = vat_entries; 3004 ump->vat_last_free_lb = 0; /* start at beginning */ 3005 3006 out: 3007 if (error) { 3008 if (vat_table) 3009 free(vat_table, M_UDFVOLD); 3010 } 3011 free(raw_vat, M_TEMP); 3012 3013 return error; 3014 } 3015 3016 /* --------------------------------------------------------------------- */ 3017 3018 static int 3019 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 3020 { 3021 struct udf_node *vat_node, *accepted_vat_node; 3022 struct long_ad icb_loc; 3023 uint32_t early_vat_loc, late_vat_loc, vat_loc; 3024 int error; 3025 3026 /* mapping info not needed */ 3027 mapping = mapping; 3028 3029 DPRINTF(VOLUMES, ("Searching VAT\n")); 3030 3031 /* 3032 * Start reading forward in blocks from the first possible vat 3033 * location. If not found in this block, start again a bit before 3034 * until we get a hit. 3035 */ 3036 late_vat_loc = ump->last_possible_vat_location; 3037 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location); 3038 3039 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc)); 3040 accepted_vat_node = NULL; 3041 do { 3042 vat_loc = early_vat_loc; 3043 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n", 3044 early_vat_loc, late_vat_loc)); 3045 do { 3046 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n", 3047 vat_loc)); 3048 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3049 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3050 3051 error = udf_get_node(ump, &icb_loc, &vat_node); 3052 if (!error) { 3053 error = udf_check_for_vat(vat_node); 3054 vat_node->i_flags = 0; /* reset access */ 3055 } 3056 if (!error) { 3057 DPRINTFIF(VOLUMES, !error, 3058 ("VAT candidate accepted at %d\n", 3059 vat_loc)); 3060 if (accepted_vat_node) 3061 vput(accepted_vat_node->vnode); 3062 accepted_vat_node = vat_node; 3063 accepted_vat_node->i_flags |= IN_NO_DELETE; 3064 vat_node = NULL; 3065 } 3066 if (vat_node) 3067 vput(vat_node->vnode); 3068 vat_loc++; /* walk forward */ 3069 } while (vat_loc < late_vat_loc); 3070 if (accepted_vat_node) 3071 break; 3072 3073 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location); 3074 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location); 3075 } while (late_vat_loc > ump->first_possible_vat_location); 3076 3077 /* keep our last accepted VAT node around */ 3078 if (accepted_vat_node) { 3079 /* revert no delete flag again to avoid potential side effects */ 3080 accepted_vat_node->i_flags &= ~IN_NO_DELETE; 3081 3082 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode); 3083 ump->vat_node = accepted_vat_node; 3084 return 0; 3085 } 3086 3087 return error; 3088 } 3089 3090 /* --------------------------------------------------------------------- */ 3091 3092 static int 3093 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3094 { 3095 union dscrptr *dscr; 3096 struct part_map_spare *pms = &mapping->pms; 3097 uint32_t lb_num; 3098 int spar, error; 3099 3100 /* 3101 * The partition mapping passed on to us specifies the information we 3102 * need to locate and initialise the sparable partition mapping 3103 * information we need. 3104 */ 3105 3106 DPRINTF(VOLUMES, ("Read sparable table\n")); 3107 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3108 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3109 3110 for (spar = 0; spar < pms->n_st; spar++) { 3111 lb_num = pms->st_loc[spar]; 3112 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3113 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3114 if (!error && dscr) { 3115 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3116 if (ump->sparing_table) 3117 free(ump->sparing_table, M_UDFVOLD); 3118 ump->sparing_table = &dscr->spt; 3119 dscr = NULL; 3120 DPRINTF(VOLUMES, 3121 ("Sparing table accepted (%d entries)\n", 3122 udf_rw16(ump->sparing_table->rt_l))); 3123 break; /* we're done */ 3124 } 3125 } 3126 if (dscr) 3127 free(dscr, M_UDFVOLD); 3128 } 3129 3130 if (ump->sparing_table) 3131 return 0; 3132 3133 return ENOENT; 3134 } 3135 3136 /* --------------------------------------------------------------------- */ 3137 3138 static int 3139 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3140 { 3141 struct part_map_meta *pmm = &mapping->pmm; 3142 struct long_ad icb_loc; 3143 struct vnode *vp; 3144 uint16_t raw_phys_part, phys_part; 3145 int error; 3146 3147 /* 3148 * BUGALERT: some rogue implementations use random physical 3149 * partition numbers to break other implementations so lookup 3150 * the number. 3151 */ 3152 3153 /* extract our allocation parameters set up on format */ 3154 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); 3155 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); 3156 ump->metadata_flags = mapping->pmm.flags; 3157 3158 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3159 raw_phys_part = udf_rw16(pmm->part_num); 3160 phys_part = udf_find_raw_phys(ump, raw_phys_part); 3161 3162 icb_loc.loc.part_num = udf_rw16(phys_part); 3163 3164 DPRINTF(VOLUMES, ("Metadata file\n")); 3165 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3166 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3167 if (ump->metadata_node) { 3168 vp = ump->metadata_node->vnode; 3169 UDF_SET_SYSTEMFILE(vp); 3170 } 3171 3172 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3173 if (icb_loc.loc.lb_num != -1) { 3174 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3175 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3176 if (ump->metadatamirror_node) { 3177 vp = ump->metadatamirror_node->vnode; 3178 UDF_SET_SYSTEMFILE(vp); 3179 } 3180 } 3181 3182 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3183 if (icb_loc.loc.lb_num != -1) { 3184 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3185 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3186 if (ump->metadatabitmap_node) { 3187 vp = ump->metadatabitmap_node->vnode; 3188 UDF_SET_SYSTEMFILE(vp); 3189 } 3190 } 3191 3192 /* if we're mounting read-only we relax the requirements */ 3193 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3194 error = EFAULT; 3195 if (ump->metadata_node) 3196 error = 0; 3197 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3198 printf( "udf mount: Metadata file not readable, " 3199 "substituting Metadata copy file\n"); 3200 ump->metadata_node = ump->metadatamirror_node; 3201 ump->metadatamirror_node = NULL; 3202 error = 0; 3203 } 3204 } else { 3205 /* mounting read/write */ 3206 /* XXX DISABLED! metadata writing is not working yet XXX */ 3207 if (error) 3208 error = EROFS; 3209 } 3210 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3211 "metadata files\n")); 3212 return error; 3213 } 3214 3215 /* --------------------------------------------------------------------- */ 3216 3217 int 3218 udf_read_vds_tables(struct udf_mount *ump) 3219 { 3220 union udf_pmap *mapping; 3221 /* struct udf_args *args = &ump->mount_args; */ 3222 uint32_t n_pm; 3223 uint32_t log_part; 3224 uint8_t *pmap_pos; 3225 int pmap_size; 3226 int error; 3227 3228 /* Iterate (again) over the part mappings for locations */ 3229 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3230 pmap_pos = ump->logical_vol->maps; 3231 3232 for (log_part = 0; log_part < n_pm; log_part++) { 3233 mapping = (union udf_pmap *) pmap_pos; 3234 switch (ump->vtop_tp[log_part]) { 3235 case UDF_VTOP_TYPE_PHYS : 3236 /* nothing */ 3237 break; 3238 case UDF_VTOP_TYPE_VIRT : 3239 /* search and load VAT */ 3240 error = udf_search_vat(ump, mapping); 3241 if (error) 3242 return ENOENT; 3243 break; 3244 case UDF_VTOP_TYPE_SPARABLE : 3245 /* load one of the sparable tables */ 3246 error = udf_read_sparables(ump, mapping); 3247 if (error) 3248 return ENOENT; 3249 break; 3250 case UDF_VTOP_TYPE_META : 3251 /* load the associated file descriptors */ 3252 error = udf_read_metadata_nodes(ump, mapping); 3253 if (error) 3254 return ENOENT; 3255 break; 3256 default: 3257 break; 3258 } 3259 pmap_size = pmap_pos[1]; 3260 pmap_pos += pmap_size; 3261 } 3262 3263 /* read in and check unallocated and free space info if writing */ 3264 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3265 error = udf_read_physical_partition_spacetables(ump); 3266 if (error) 3267 return error; 3268 3269 /* also read in metadata partition spacebitmap if defined */ 3270 error = udf_read_metadata_partition_spacetable(ump); 3271 return error; 3272 } 3273 3274 return 0; 3275 } 3276 3277 /* --------------------------------------------------------------------- */ 3278 3279 int 3280 udf_read_rootdirs(struct udf_mount *ump) 3281 { 3282 union dscrptr *dscr; 3283 /* struct udf_args *args = &ump->mount_args; */ 3284 struct udf_node *rootdir_node, *streamdir_node; 3285 struct long_ad fsd_loc, *dir_loc; 3286 uint32_t lb_num, dummy; 3287 uint32_t fsd_len; 3288 int dscr_type; 3289 int error; 3290 3291 /* TODO implement FSD reading in separate function like integrity? */ 3292 /* get fileset descriptor sequence */ 3293 fsd_loc = ump->logical_vol->lv_fsd_loc; 3294 fsd_len = udf_rw32(fsd_loc.len); 3295 3296 dscr = NULL; 3297 error = 0; 3298 while (fsd_len || error) { 3299 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3300 /* translate fsd_loc to lb_num */ 3301 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3302 if (error) 3303 break; 3304 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3305 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3306 /* end markers */ 3307 if (error || (dscr == NULL)) 3308 break; 3309 3310 /* analyse */ 3311 dscr_type = udf_rw16(dscr->tag.id); 3312 if (dscr_type == TAGID_TERM) 3313 break; 3314 if (dscr_type != TAGID_FSD) { 3315 free(dscr, M_UDFVOLD); 3316 return ENOENT; 3317 } 3318 3319 /* 3320 * TODO check for multiple fileset descriptors; its only 3321 * picking the last now. Also check for FSD 3322 * correctness/interpretability 3323 */ 3324 3325 /* update */ 3326 if (ump->fileset_desc) { 3327 free(ump->fileset_desc, M_UDFVOLD); 3328 } 3329 ump->fileset_desc = &dscr->fsd; 3330 dscr = NULL; 3331 3332 /* continue to the next fsd */ 3333 fsd_len -= ump->discinfo.sector_size; 3334 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3335 3336 /* follow up to fsd->next_ex (long_ad) if its not null */ 3337 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3338 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3339 fsd_loc = ump->fileset_desc->next_ex; 3340 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3341 } 3342 } 3343 if (dscr) 3344 free(dscr, M_UDFVOLD); 3345 3346 /* there has to be one */ 3347 if (ump->fileset_desc == NULL) 3348 return ENOENT; 3349 3350 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3351 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3352 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3353 3354 /* 3355 * Now the FSD is known, read in the rootdirectory and if one exists, 3356 * the system stream dir. Some files in the system streamdir are not 3357 * wanted in this implementation since they are not maintained. If 3358 * writing is enabled we'll delete these files if they exist. 3359 */ 3360 3361 rootdir_node = streamdir_node = NULL; 3362 dir_loc = NULL; 3363 3364 /* try to read in the rootdir */ 3365 dir_loc = &ump->fileset_desc->rootdir_icb; 3366 error = udf_get_node(ump, dir_loc, &rootdir_node); 3367 if (error) 3368 return ENOENT; 3369 3370 /* aparently it read in fine */ 3371 3372 /* 3373 * Try the system stream directory; not very likely in the ones we 3374 * test, but for completeness. 3375 */ 3376 dir_loc = &ump->fileset_desc->streamdir_icb; 3377 if (udf_rw32(dir_loc->len)) { 3378 printf("udf_read_rootdirs: streamdir defined "); 3379 error = udf_get_node(ump, dir_loc, &streamdir_node); 3380 if (error) { 3381 printf("but error in streamdir reading\n"); 3382 } else { 3383 printf("but ignored\n"); 3384 /* 3385 * TODO process streamdir `baddies' i.e. files we dont 3386 * want if R/W 3387 */ 3388 } 3389 } 3390 3391 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3392 3393 /* release the vnodes again; they'll be auto-recycled later */ 3394 if (streamdir_node) { 3395 vput(streamdir_node->vnode); 3396 } 3397 if (rootdir_node) { 3398 vput(rootdir_node->vnode); 3399 } 3400 3401 return 0; 3402 } 3403 3404 /* --------------------------------------------------------------------- */ 3405 3406 /* To make absolutely sure we are NOT returning zero, add one :) */ 3407 3408 long 3409 udf_get_node_id(const struct long_ad *icbptr) 3410 { 3411 /* ought to be enough since each mountpoint has its own chain */ 3412 return udf_rw32(icbptr->loc.lb_num) + 1; 3413 } 3414 3415 3416 int 3417 udf_compare_icb(const struct long_ad *a, const struct long_ad *b) 3418 { 3419 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) 3420 return -1; 3421 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) 3422 return 1; 3423 3424 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) 3425 return -1; 3426 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) 3427 return 1; 3428 3429 return 0; 3430 } 3431 3432 3433 static int 3434 udf_compare_rbnodes(void *ctx, const void *a, const void *b) 3435 { 3436 const struct udf_node *a_node = a; 3437 const struct udf_node *b_node = b; 3438 3439 return udf_compare_icb(&a_node->loc, &b_node->loc); 3440 } 3441 3442 3443 static int 3444 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) 3445 { 3446 const struct udf_node *a_node = a; 3447 const struct long_ad * const icb = key; 3448 3449 return udf_compare_icb(&a_node->loc, icb); 3450 } 3451 3452 3453 static const rb_tree_ops_t udf_node_rbtree_ops = { 3454 .rbto_compare_nodes = udf_compare_rbnodes, 3455 .rbto_compare_key = udf_compare_rbnode_icb, 3456 .rbto_node_offset = offsetof(struct udf_node, rbnode), 3457 .rbto_context = NULL 3458 }; 3459 3460 3461 void 3462 udf_init_nodes_tree(struct udf_mount *ump) 3463 { 3464 3465 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); 3466 } 3467 3468 3469 /* --------------------------------------------------------------------- */ 3470 3471 static int 3472 udf_validate_session_start(struct udf_mount *ump) 3473 { 3474 struct mmc_trackinfo trackinfo; 3475 struct vrs_desc *vrs; 3476 uint32_t tracknr, sessionnr, sector, sector_size; 3477 uint32_t iso9660_vrs, write_track_start; 3478 uint8_t *buffer, *blank, *pos; 3479 int blks, max_sectors, vrs_len; 3480 int error; 3481 3482 /* disc appendable? */ 3483 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3484 return EROFS; 3485 3486 /* already written here? if so, there should be an ISO VDS */ 3487 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3488 return 0; 3489 3490 /* 3491 * Check if the first track of the session is blank and if so, copy or 3492 * create a dummy ISO descriptor so the disc is valid again. 3493 */ 3494 3495 tracknr = ump->discinfo.first_track_last_session; 3496 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3497 trackinfo.tracknr = tracknr; 3498 error = udf_update_trackinfo(ump, &trackinfo); 3499 if (error) 3500 return error; 3501 3502 udf_dump_trackinfo(&trackinfo); 3503 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3504 KASSERT(trackinfo.sessionnr > 1); 3505 3506 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3507 write_track_start = trackinfo.next_writable; 3508 3509 /* we have to copy the ISO VRS from a former session */ 3510 DPRINTF(VOLUMES, ("validate_session_start: " 3511 "blank or reserved track, copying VRS\n")); 3512 3513 /* sessionnr should be the session we're mounting */ 3514 sessionnr = ump->mount_args.sessionnr; 3515 3516 /* start at the first track */ 3517 tracknr = ump->discinfo.first_track; 3518 while (tracknr <= ump->discinfo.num_tracks) { 3519 trackinfo.tracknr = tracknr; 3520 error = udf_update_trackinfo(ump, &trackinfo); 3521 if (error) { 3522 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3523 return error; 3524 } 3525 if (trackinfo.sessionnr == sessionnr) 3526 break; 3527 tracknr++; 3528 } 3529 if (trackinfo.sessionnr != sessionnr) { 3530 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3531 return ENOENT; 3532 } 3533 3534 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3535 udf_dump_trackinfo(&trackinfo); 3536 3537 /* 3538 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3539 * minimum ISO `sector size' 2048 3540 */ 3541 sector_size = ump->discinfo.sector_size; 3542 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3543 + trackinfo.track_start; 3544 3545 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3546 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3547 blks = MAX(1, 2048 / sector_size); 3548 3549 error = 0; 3550 for (sector = 0; sector < max_sectors; sector += blks) { 3551 pos = buffer + sector * sector_size; 3552 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3553 iso9660_vrs + sector, blks); 3554 if (error) 3555 break; 3556 /* check this ISO descriptor */ 3557 vrs = (struct vrs_desc *) pos; 3558 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3559 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3560 continue; 3561 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3562 continue; 3563 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3564 continue; 3565 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3566 continue; 3567 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3568 continue; 3569 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3570 break; 3571 /* now what? for now, end of sequence */ 3572 break; 3573 } 3574 vrs_len = sector + blks; 3575 if (error) { 3576 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3577 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3578 3579 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3580 3581 vrs = (struct vrs_desc *) (buffer); 3582 vrs->struct_type = 0; 3583 vrs->version = 1; 3584 memcpy(vrs->identifier,VRS_BEA01, 5); 3585 3586 vrs = (struct vrs_desc *) (buffer + 2048); 3587 vrs->struct_type = 0; 3588 vrs->version = 1; 3589 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3590 memcpy(vrs->identifier,VRS_NSR02, 5); 3591 } else { 3592 memcpy(vrs->identifier,VRS_NSR03, 5); 3593 } 3594 3595 vrs = (struct vrs_desc *) (buffer + 4096); 3596 vrs->struct_type = 0; 3597 vrs->version = 1; 3598 memcpy(vrs->identifier, VRS_TEA01, 5); 3599 3600 vrs_len = 3*blks; 3601 } 3602 3603 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3604 3605 /* 3606 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3607 * minimum ISO `sector size' 2048 3608 */ 3609 sector_size = ump->discinfo.sector_size; 3610 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3611 + write_track_start; 3612 3613 /* write out 32 kb */ 3614 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3615 memset(blank, 0, sector_size); 3616 error = 0; 3617 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3618 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3619 blank, sector, 1); 3620 if (error) 3621 break; 3622 } 3623 if (!error) { 3624 /* write out our ISO VRS */ 3625 KASSERT(sector == iso9660_vrs); 3626 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3627 sector, vrs_len); 3628 sector += vrs_len; 3629 } 3630 if (!error) { 3631 /* fill upto the first anchor at S+256 */ 3632 for (; sector < write_track_start+256; sector++) { 3633 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3634 blank, sector, 1); 3635 if (error) 3636 break; 3637 } 3638 } 3639 if (!error) { 3640 /* write out anchor; write at ABSOLUTE place! */ 3641 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3642 (union dscrptr *) ump->anchors[0], sector, sector); 3643 if (error) 3644 printf("writeout of anchor failed!\n"); 3645 } 3646 3647 free(blank, M_TEMP); 3648 free(buffer, M_TEMP); 3649 3650 if (error) 3651 printf("udf_open_session: error writing iso vrs! : " 3652 "leaving disc in compromised state!\n"); 3653 3654 /* synchronise device caches */ 3655 (void) udf_synchronise_caches(ump); 3656 3657 return error; 3658 } 3659 3660 3661 int 3662 udf_open_logvol(struct udf_mount *ump) 3663 { 3664 int logvol_integrity; 3665 int error; 3666 3667 /* already/still open? */ 3668 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3669 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3670 return 0; 3671 3672 /* can we open it ? */ 3673 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3674 return EROFS; 3675 3676 /* setup write parameters */ 3677 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3678 if ((error = udf_setup_writeparams(ump)) != 0) 3679 return error; 3680 3681 /* determine data and metadata tracks (most likely same) */ 3682 error = udf_search_writing_tracks(ump); 3683 if (error) { 3684 /* most likely lack of space */ 3685 printf("udf_open_logvol: error searching writing tracks\n"); 3686 return EROFS; 3687 } 3688 3689 /* writeout/update lvint on disc or only in memory */ 3690 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3691 if (ump->lvopen & UDF_OPEN_SESSION) { 3692 /* TODO optional track reservation opening */ 3693 error = udf_validate_session_start(ump); 3694 if (error) 3695 return error; 3696 3697 /* determine data and metadata tracks again */ 3698 error = udf_search_writing_tracks(ump); 3699 3700 if (ump->lvclose & UDF_WRITE_VAT) { 3701 /* 3702 * we writeout the VAT to get a self-sustained session 3703 * for fsck 3704 */ 3705 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3706 3707 /* write out the VAT data and all its descriptors */ 3708 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3709 udf_writeout_vat(ump); 3710 3711 /* force everything to be synchronized on the device */ 3712 (void) udf_synchronise_caches(ump); 3713 } 3714 } 3715 3716 /* mark it open */ 3717 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3718 3719 /* do we need to write it out? */ 3720 if (ump->lvopen & UDF_WRITE_LVINT) { 3721 error = udf_writeout_lvint(ump, ump->lvopen); 3722 /* if we couldn't write it mark it closed again */ 3723 if (error) { 3724 ump->logvol_integrity->integrity_type = 3725 udf_rw32(UDF_INTEGRITY_CLOSED); 3726 return error; 3727 } 3728 } 3729 3730 return 0; 3731 } 3732 3733 3734 int 3735 udf_close_logvol(struct udf_mount *ump, int mntflags) 3736 { 3737 struct vnode *devvp = ump->devvp; 3738 struct mmc_op mmc_op; 3739 int logvol_integrity; 3740 int error = 0, error1 = 0, error2 = 0; 3741 int tracknr; 3742 int nvats, n, nok; 3743 3744 /* already/still closed? */ 3745 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3746 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3747 return 0; 3748 3749 /* writeout/update lvint or write out VAT */ 3750 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3751 #ifdef DIAGNOSTIC 3752 if (ump->lvclose & UDF_CLOSE_SESSION) 3753 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3754 #endif 3755 3756 if (ump->lvclose & UDF_WRITE_VAT) { 3757 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3758 3759 /* write out the VAT data and all its descriptors */ 3760 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3761 udf_writeout_vat(ump); 3762 3763 /* at least two DVD packets and 3 CD-R packets */ 3764 nvats = 32; 3765 3766 #if notyet 3767 /* 3768 * TODO calculate the available space and if the disc is 3769 * allmost full, write out till end-256-1 with banks, write 3770 * AVDP and fill up with VATs, then close session and close 3771 * disc. 3772 */ 3773 if (ump->lvclose & UDF_FINALISE_DISC) { 3774 error = udf_write_phys_dscr_sync(ump, NULL, 3775 UDF_C_FLOAT_DSCR, 3776 (union dscrptr *) ump->anchors[0], 3777 0, 0); 3778 if (error) 3779 printf("writeout of anchor failed!\n"); 3780 3781 /* pad space with VAT ICBs */ 3782 nvats = 256; 3783 } 3784 #endif 3785 3786 /* write out a number of VAT nodes */ 3787 nok = 0; 3788 for (n = 0; n < nvats; n++) { 3789 /* will now only write last FE/EFE */ 3790 ump->vat_node->i_flags |= IN_MODIFIED; 3791 error = VOP_FSYNC(ump->vat_node->vnode, 3792 FSCRED, FSYNC_WAIT, 0, 0); 3793 if (!error) 3794 nok++; 3795 } 3796 /* force everything to be synchronized on the device */ 3797 (void) udf_synchronise_caches(ump); 3798 3799 if (nok < 14) { 3800 /* arbitrary; but at least one or two CD frames */ 3801 printf("writeout of at least 14 VATs failed\n"); 3802 return error; 3803 } 3804 } 3805 3806 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3807 3808 /* finish closing of session */ 3809 if (ump->lvclose & UDF_CLOSE_SESSION) { 3810 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3811 "as requested\n")); 3812 error = udf_validate_session_start(ump); 3813 if (error) 3814 return error; 3815 3816 (void) udf_synchronise_caches(ump); 3817 3818 /* close all associated tracks */ 3819 tracknr = ump->discinfo.first_track_last_session; 3820 error = 0; 3821 while (tracknr <= ump->discinfo.last_track_last_session) { 3822 DPRINTF(VOLUMES, ("\tclosing possible open " 3823 "track %d\n", tracknr)); 3824 memset(&mmc_op, 0, sizeof(mmc_op)); 3825 mmc_op.operation = MMC_OP_CLOSETRACK; 3826 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3827 mmc_op.tracknr = tracknr; 3828 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3829 FKIOCTL, NOCRED); 3830 if (error) 3831 printf("udf_close_logvol: closing of " 3832 "track %d failed\n", tracknr); 3833 tracknr ++; 3834 } 3835 if (!error) { 3836 DPRINTF(VOLUMES, ("closing session\n")); 3837 memset(&mmc_op, 0, sizeof(mmc_op)); 3838 mmc_op.operation = MMC_OP_CLOSESESSION; 3839 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3840 mmc_op.sessionnr = ump->discinfo.num_sessions; 3841 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3842 FKIOCTL, NOCRED); 3843 if (error) 3844 printf("udf_close_logvol: closing of session" 3845 "failed\n"); 3846 } 3847 if (!error) 3848 ump->lvopen |= UDF_OPEN_SESSION; 3849 if (error) { 3850 printf("udf_close_logvol: leaving disc as it is\n"); 3851 ump->lvclose &= ~UDF_FINALISE_DISC; 3852 } 3853 } 3854 3855 if (ump->lvclose & UDF_FINALISE_DISC) { 3856 memset(&mmc_op, 0, sizeof(mmc_op)); 3857 mmc_op.operation = MMC_OP_FINALISEDISC; 3858 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3859 mmc_op.sessionnr = ump->discinfo.num_sessions; 3860 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3861 FKIOCTL, NOCRED); 3862 if (error) 3863 printf("udf_close_logvol: finalising disc" 3864 "failed\n"); 3865 } 3866 3867 /* write out partition bitmaps if requested */ 3868 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3869 /* sync writeout metadata spacetable if existing */ 3870 error1 = udf_write_metadata_partition_spacetable(ump, true); 3871 if (error1) 3872 printf( "udf_close_logvol: writeout of metadata space " 3873 "bitmap failed\n"); 3874 3875 /* sync writeout partition spacetables */ 3876 error2 = udf_write_physical_partition_spacetables(ump, true); 3877 if (error2) 3878 printf( "udf_close_logvol: writeout of space tables " 3879 "failed\n"); 3880 3881 if (error1 || error2) 3882 return (error1 | error2); 3883 3884 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3885 } 3886 3887 /* write out metadata partition nodes if requested */ 3888 if (ump->lvclose & UDF_WRITE_METAPART_NODES) { 3889 /* sync writeout metadata descriptor node */ 3890 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); 3891 if (error1) 3892 printf( "udf_close_logvol: writeout of metadata partition " 3893 "node failed\n"); 3894 3895 /* duplicate metadata partition descriptor if needed */ 3896 udf_synchronise_metadatamirror_node(ump); 3897 3898 /* sync writeout metadatamirror descriptor node */ 3899 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); 3900 if (error2) 3901 printf( "udf_close_logvol: writeout of metadata partition " 3902 "mirror node failed\n"); 3903 3904 if (error1 || error2) 3905 return (error1 | error2); 3906 3907 ump->lvclose &= ~UDF_WRITE_METAPART_NODES; 3908 } 3909 3910 /* mark it closed */ 3911 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3912 3913 /* do we need to write out the logical volume integrity? */ 3914 if (ump->lvclose & UDF_WRITE_LVINT) 3915 error = udf_writeout_lvint(ump, ump->lvopen); 3916 if (error) { 3917 /* HELP now what? mark it open again for now */ 3918 ump->logvol_integrity->integrity_type = 3919 udf_rw32(UDF_INTEGRITY_OPEN); 3920 return error; 3921 } 3922 3923 (void) udf_synchronise_caches(ump); 3924 3925 return 0; 3926 } 3927 3928 /* --------------------------------------------------------------------- */ 3929 3930 /* 3931 * Genfs interfacing 3932 * 3933 * static const struct genfs_ops udf_genfsops = { 3934 * .gop_size = genfs_size, 3935 * size of transfers 3936 * .gop_alloc = udf_gop_alloc, 3937 * allocate len bytes at offset 3938 * .gop_write = genfs_gop_write, 3939 * putpages interface code 3940 * .gop_markupdate = udf_gop_markupdate, 3941 * set update/modify flags etc. 3942 * } 3943 */ 3944 3945 /* 3946 * Genfs interface. These four functions are the only ones defined though not 3947 * documented... great.... 3948 */ 3949 3950 /* 3951 * Called for allocating an extent of the file either by VOP_WRITE() or by 3952 * genfs filling up gaps. 3953 */ 3954 static int 3955 udf_gop_alloc(struct vnode *vp, off_t off, 3956 off_t len, int flags, kauth_cred_t cred) 3957 { 3958 struct udf_node *udf_node = VTOI(vp); 3959 struct udf_mount *ump = udf_node->ump; 3960 uint64_t lb_start, lb_end; 3961 uint32_t lb_size, num_lb; 3962 int udf_c_type, vpart_num, can_fail; 3963 int error; 3964 3965 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", 3966 off, len, flags? "SYNC":"NONE")); 3967 3968 /* 3969 * request the pages of our vnode and see how many pages will need to 3970 * be allocated and reserve that space 3971 */ 3972 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 3973 lb_start = off / lb_size; 3974 lb_end = (off + len + lb_size -1) / lb_size; 3975 num_lb = lb_end - lb_start; 3976 3977 udf_c_type = udf_get_c_type(udf_node); 3978 vpart_num = udf_get_record_vpart(ump, udf_c_type); 3979 3980 /* all requests can fail */ 3981 can_fail = true; 3982 3983 /* fid's (directories) can't fail */ 3984 if (udf_c_type == UDF_C_FIDS) 3985 can_fail = false; 3986 3987 /* system files can't fail */ 3988 if (vp->v_vflag & VV_SYSTEM) 3989 can_fail = false; 3990 3991 error = udf_reserve_space(ump, udf_node, udf_c_type, 3992 vpart_num, num_lb, can_fail); 3993 3994 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", 3995 lb_start, lb_end, num_lb)); 3996 3997 return error; 3998 } 3999 4000 4001 /* 4002 * callback from genfs to update our flags 4003 */ 4004 static void 4005 udf_gop_markupdate(struct vnode *vp, int flags) 4006 { 4007 struct udf_node *udf_node = VTOI(vp); 4008 u_long mask = 0; 4009 4010 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 4011 mask = IN_ACCESS; 4012 } 4013 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 4014 if (vp->v_type == VREG) { 4015 mask |= IN_CHANGE | IN_UPDATE; 4016 } else { 4017 mask |= IN_MODIFY; 4018 } 4019 } 4020 if (mask) { 4021 udf_node->i_flags |= mask; 4022 } 4023 } 4024 4025 4026 static const struct genfs_ops udf_genfsops = { 4027 .gop_size = genfs_size, 4028 .gop_alloc = udf_gop_alloc, 4029 .gop_write = genfs_gop_write_rwmap, 4030 .gop_markupdate = udf_gop_markupdate, 4031 .gop_putrange = genfs_gop_putrange, 4032 }; 4033 4034 4035 /* --------------------------------------------------------------------- */ 4036 4037 int 4038 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 4039 { 4040 union dscrptr *dscr; 4041 int error; 4042 4043 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 4044 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 4045 4046 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 4047 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 4048 (void) udf_validate_tag_and_crc_sums(dscr); 4049 4050 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 4051 dscr, sector, sector); 4052 4053 free(dscr, M_TEMP); 4054 4055 return error; 4056 } 4057 4058 4059 /* --------------------------------------------------------------------- */ 4060 4061 /* UDF<->unix converters */ 4062 4063 /* --------------------------------------------------------------------- */ 4064 4065 static mode_t 4066 udf_perm_to_unix_mode(uint32_t perm) 4067 { 4068 mode_t mode; 4069 4070 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 4071 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 4072 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 4073 4074 return mode; 4075 } 4076 4077 /* --------------------------------------------------------------------- */ 4078 4079 static uint32_t 4080 unix_mode_to_udf_perm(mode_t mode) 4081 { 4082 uint32_t perm; 4083 4084 perm = ((mode & S_IRWXO) ); 4085 perm |= ((mode & S_IRWXG) << 2); 4086 perm |= ((mode & S_IRWXU) << 4); 4087 perm |= ((mode & S_IWOTH) << 3); 4088 perm |= ((mode & S_IWGRP) << 5); 4089 perm |= ((mode & S_IWUSR) << 7); 4090 4091 return perm; 4092 } 4093 4094 /* --------------------------------------------------------------------- */ 4095 4096 static uint32_t 4097 udf_icb_to_unix_filetype(uint32_t icbftype) 4098 { 4099 switch (icbftype) { 4100 case UDF_ICB_FILETYPE_DIRECTORY : 4101 case UDF_ICB_FILETYPE_STREAMDIR : 4102 return S_IFDIR; 4103 case UDF_ICB_FILETYPE_FIFO : 4104 return S_IFIFO; 4105 case UDF_ICB_FILETYPE_CHARDEVICE : 4106 return S_IFCHR; 4107 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4108 return S_IFBLK; 4109 case UDF_ICB_FILETYPE_RANDOMACCESS : 4110 case UDF_ICB_FILETYPE_REALTIME : 4111 return S_IFREG; 4112 case UDF_ICB_FILETYPE_SYMLINK : 4113 return S_IFLNK; 4114 case UDF_ICB_FILETYPE_SOCKET : 4115 return S_IFSOCK; 4116 } 4117 /* no idea what this is */ 4118 return 0; 4119 } 4120 4121 /* --------------------------------------------------------------------- */ 4122 4123 void 4124 udf_to_unix_name(char *result, int result_len, char *id, int len, 4125 struct charspec *chsp) 4126 { 4127 uint16_t *raw_name, *unix_name; 4128 uint16_t *inchp, ch; 4129 uint8_t *outchp; 4130 const char *osta_id = "OSTA Compressed Unicode"; 4131 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4132 4133 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4134 unix_name = raw_name + 1024; /* split space in half */ 4135 assert(sizeof(char) == sizeof(uint8_t)); 4136 outchp = (uint8_t *) result; 4137 4138 is_osta_typ0 = (chsp->type == 0); 4139 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4140 if (is_osta_typ0) { 4141 /* TODO clean up */ 4142 *raw_name = *unix_name = 0; 4143 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4144 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4145 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4146 /* output UTF8 */ 4147 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4148 ch = *inchp; 4149 nout = wput_utf8(outchp, result_len, ch); 4150 outchp += nout; result_len -= nout; 4151 if (!ch) break; 4152 } 4153 *outchp++ = 0; 4154 } else { 4155 /* assume 8bit char length byte latin-1 */ 4156 assert(*id == 8); 4157 assert(strlen((char *) (id+1)) <= NAME_MAX); 4158 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4159 } 4160 free(raw_name, M_UDFTEMP); 4161 } 4162 4163 /* --------------------------------------------------------------------- */ 4164 4165 void 4166 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4167 struct charspec *chsp) 4168 { 4169 uint16_t *raw_name; 4170 uint16_t *outchp; 4171 const char *inchp; 4172 const char *osta_id = "OSTA Compressed Unicode"; 4173 int udf_chars, is_osta_typ0, bits; 4174 size_t cnt; 4175 4176 /* allocate temporary unicode-16 buffer */ 4177 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4178 4179 /* convert utf8 to unicode-16 */ 4180 *raw_name = 0; 4181 inchp = name; 4182 outchp = raw_name; 4183 bits = 8; 4184 for (cnt = name_len, udf_chars = 0; cnt;) { 4185 *outchp = wget_utf8(&inchp, &cnt); 4186 if (*outchp > 0xff) 4187 bits=16; 4188 outchp++; 4189 udf_chars++; 4190 } 4191 /* null terminate just in case */ 4192 *outchp++ = 0; 4193 4194 is_osta_typ0 = (chsp->type == 0); 4195 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4196 if (is_osta_typ0) { 4197 udf_chars = udf_CompressUnicode(udf_chars, bits, 4198 (unicode_t *) raw_name, 4199 (byte *) result); 4200 } else { 4201 printf("unix to udf name: no CHSP0 ?\n"); 4202 /* XXX assume 8bit char length byte latin-1 */ 4203 *result++ = 8; udf_chars = 1; 4204 strncpy(result, name + 1, name_len); 4205 udf_chars += name_len; 4206 } 4207 *result_len = udf_chars; 4208 free(raw_name, M_UDFTEMP); 4209 } 4210 4211 /* --------------------------------------------------------------------- */ 4212 4213 void 4214 udf_timestamp_to_timespec(struct udf_mount *ump, 4215 struct timestamp *timestamp, 4216 struct timespec *timespec) 4217 { 4218 struct clock_ymdhms ymdhms; 4219 uint32_t usecs, secs, nsecs; 4220 uint16_t tz; 4221 4222 /* fill in ymdhms structure from timestamp */ 4223 memset(&ymdhms, 0, sizeof(ymdhms)); 4224 ymdhms.dt_year = udf_rw16(timestamp->year); 4225 ymdhms.dt_mon = timestamp->month; 4226 ymdhms.dt_day = timestamp->day; 4227 ymdhms.dt_wday = 0; /* ? */ 4228 ymdhms.dt_hour = timestamp->hour; 4229 ymdhms.dt_min = timestamp->minute; 4230 ymdhms.dt_sec = timestamp->second; 4231 4232 secs = clock_ymdhms_to_secs(&ymdhms); 4233 usecs = timestamp->usec + 4234 100*timestamp->hund_usec + 10000*timestamp->centisec; 4235 nsecs = usecs * 1000; 4236 4237 /* 4238 * Calculate the time zone. The timezone is 12 bit signed 2's 4239 * compliment, so we gotta do some extra magic to handle it right. 4240 */ 4241 tz = udf_rw16(timestamp->type_tz); 4242 tz &= 0x0fff; /* only lower 12 bits are significant */ 4243 if (tz & 0x0800) /* sign extention */ 4244 tz |= 0xf000; 4245 4246 /* TODO check timezone conversion */ 4247 /* check if we are specified a timezone to convert */ 4248 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4249 if ((int16_t) tz != -2047) 4250 secs -= (int16_t) tz * 60; 4251 } else { 4252 secs -= ump->mount_args.gmtoff; 4253 } 4254 4255 timespec->tv_sec = secs; 4256 timespec->tv_nsec = nsecs; 4257 } 4258 4259 4260 void 4261 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4262 { 4263 struct clock_ymdhms ymdhms; 4264 uint32_t husec, usec, csec; 4265 4266 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4267 4268 usec = timespec->tv_nsec / 1000; 4269 husec = usec / 100; 4270 usec -= husec * 100; /* only 0-99 in usec */ 4271 csec = husec / 100; /* only 0-99 in csec */ 4272 husec -= csec * 100; /* only 0-99 in husec */ 4273 4274 /* set method 1 for CUT/GMT */ 4275 timestamp->type_tz = udf_rw16((1<<12) + 0); 4276 timestamp->year = udf_rw16(ymdhms.dt_year); 4277 timestamp->month = ymdhms.dt_mon; 4278 timestamp->day = ymdhms.dt_day; 4279 timestamp->hour = ymdhms.dt_hour; 4280 timestamp->minute = ymdhms.dt_min; 4281 timestamp->second = ymdhms.dt_sec; 4282 timestamp->centisec = csec; 4283 timestamp->hund_usec = husec; 4284 timestamp->usec = usec; 4285 } 4286 4287 /* --------------------------------------------------------------------- */ 4288 4289 /* 4290 * Attribute and filetypes converters with get/set pairs 4291 */ 4292 4293 uint32_t 4294 udf_getaccessmode(struct udf_node *udf_node) 4295 { 4296 struct file_entry *fe = udf_node->fe; 4297 struct extfile_entry *efe = udf_node->efe; 4298 uint32_t udf_perm, icbftype; 4299 uint32_t mode, ftype; 4300 uint16_t icbflags; 4301 4302 UDF_LOCK_NODE(udf_node, 0); 4303 if (fe) { 4304 udf_perm = udf_rw32(fe->perm); 4305 icbftype = fe->icbtag.file_type; 4306 icbflags = udf_rw16(fe->icbtag.flags); 4307 } else { 4308 assert(udf_node->efe); 4309 udf_perm = udf_rw32(efe->perm); 4310 icbftype = efe->icbtag.file_type; 4311 icbflags = udf_rw16(efe->icbtag.flags); 4312 } 4313 4314 mode = udf_perm_to_unix_mode(udf_perm); 4315 ftype = udf_icb_to_unix_filetype(icbftype); 4316 4317 /* set suid, sgid, sticky from flags in fe/efe */ 4318 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4319 mode |= S_ISUID; 4320 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4321 mode |= S_ISGID; 4322 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4323 mode |= S_ISVTX; 4324 4325 UDF_UNLOCK_NODE(udf_node, 0); 4326 4327 return mode | ftype; 4328 } 4329 4330 4331 void 4332 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4333 { 4334 struct file_entry *fe = udf_node->fe; 4335 struct extfile_entry *efe = udf_node->efe; 4336 uint32_t udf_perm; 4337 uint16_t icbflags; 4338 4339 UDF_LOCK_NODE(udf_node, 0); 4340 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4341 if (fe) { 4342 icbflags = udf_rw16(fe->icbtag.flags); 4343 } else { 4344 icbflags = udf_rw16(efe->icbtag.flags); 4345 } 4346 4347 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4348 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4349 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4350 if (mode & S_ISUID) 4351 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4352 if (mode & S_ISGID) 4353 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4354 if (mode & S_ISVTX) 4355 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4356 4357 if (fe) { 4358 fe->perm = udf_rw32(udf_perm); 4359 fe->icbtag.flags = udf_rw16(icbflags); 4360 } else { 4361 efe->perm = udf_rw32(udf_perm); 4362 efe->icbtag.flags = udf_rw16(icbflags); 4363 } 4364 4365 UDF_UNLOCK_NODE(udf_node, 0); 4366 } 4367 4368 4369 void 4370 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4371 { 4372 struct udf_mount *ump = udf_node->ump; 4373 struct file_entry *fe = udf_node->fe; 4374 struct extfile_entry *efe = udf_node->efe; 4375 uid_t uid; 4376 gid_t gid; 4377 4378 UDF_LOCK_NODE(udf_node, 0); 4379 if (fe) { 4380 uid = (uid_t)udf_rw32(fe->uid); 4381 gid = (gid_t)udf_rw32(fe->gid); 4382 } else { 4383 assert(udf_node->efe); 4384 uid = (uid_t)udf_rw32(efe->uid); 4385 gid = (gid_t)udf_rw32(efe->gid); 4386 } 4387 4388 /* do the uid/gid translation game */ 4389 if (uid == (uid_t) -1) 4390 uid = ump->mount_args.anon_uid; 4391 if (gid == (gid_t) -1) 4392 gid = ump->mount_args.anon_gid; 4393 4394 *uidp = uid; 4395 *gidp = gid; 4396 4397 UDF_UNLOCK_NODE(udf_node, 0); 4398 } 4399 4400 4401 void 4402 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4403 { 4404 struct udf_mount *ump = udf_node->ump; 4405 struct file_entry *fe = udf_node->fe; 4406 struct extfile_entry *efe = udf_node->efe; 4407 uid_t nobody_uid; 4408 gid_t nobody_gid; 4409 4410 UDF_LOCK_NODE(udf_node, 0); 4411 4412 /* do the uid/gid translation game */ 4413 nobody_uid = ump->mount_args.nobody_uid; 4414 nobody_gid = ump->mount_args.nobody_gid; 4415 if (uid == nobody_uid) 4416 uid = (uid_t) -1; 4417 if (gid == nobody_gid) 4418 gid = (gid_t) -1; 4419 4420 if (fe) { 4421 fe->uid = udf_rw32((uint32_t) uid); 4422 fe->gid = udf_rw32((uint32_t) gid); 4423 } else { 4424 efe->uid = udf_rw32((uint32_t) uid); 4425 efe->gid = udf_rw32((uint32_t) gid); 4426 } 4427 4428 UDF_UNLOCK_NODE(udf_node, 0); 4429 } 4430 4431 4432 /* --------------------------------------------------------------------- */ 4433 4434 4435 int 4436 udf_dirhash_fill(struct udf_node *dir_node) 4437 { 4438 struct vnode *dvp = dir_node->vnode; 4439 struct dirhash *dirh; 4440 struct file_entry *fe = dir_node->fe; 4441 struct extfile_entry *efe = dir_node->efe; 4442 struct fileid_desc *fid; 4443 struct dirent *dirent; 4444 uint64_t file_size, pre_diroffset, diroffset; 4445 uint32_t lb_size; 4446 int error; 4447 4448 /* make sure we have a dirhash to work on */ 4449 dirh = dir_node->dir_hash; 4450 KASSERT(dirh); 4451 KASSERT(dirh->refcnt > 0); 4452 4453 if (dirh->flags & DIRH_BROKEN) 4454 return EIO; 4455 if (dirh->flags & DIRH_COMPLETE) 4456 return 0; 4457 4458 /* make sure we have a clean dirhash to add to */ 4459 dirhash_purge_entries(dirh); 4460 4461 /* get directory filesize */ 4462 if (fe) { 4463 file_size = udf_rw64(fe->inf_len); 4464 } else { 4465 assert(efe); 4466 file_size = udf_rw64(efe->inf_len); 4467 } 4468 4469 /* allocate temporary space for fid */ 4470 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4471 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4472 4473 /* allocate temporary space for dirent */ 4474 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4475 4476 error = 0; 4477 diroffset = 0; 4478 while (diroffset < file_size) { 4479 /* transfer a new fid/dirent */ 4480 pre_diroffset = diroffset; 4481 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4482 if (error) { 4483 /* TODO what to do? continue but not add? */ 4484 dirh->flags |= DIRH_BROKEN; 4485 dirhash_purge_entries(dirh); 4486 break; 4487 } 4488 4489 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4490 /* register deleted extent for reuse */ 4491 dirhash_enter_freed(dirh, pre_diroffset, 4492 udf_fidsize(fid)); 4493 } else { 4494 /* append to the dirhash */ 4495 dirhash_enter(dirh, dirent, pre_diroffset, 4496 udf_fidsize(fid), 0); 4497 } 4498 } 4499 dirh->flags |= DIRH_COMPLETE; 4500 4501 free(fid, M_UDFTEMP); 4502 free(dirent, M_UDFTEMP); 4503 4504 return error; 4505 } 4506 4507 4508 /* --------------------------------------------------------------------- */ 4509 4510 /* 4511 * Directory read and manipulation functions. 4512 * 4513 */ 4514 4515 int 4516 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4517 struct long_ad *icb_loc, int *found) 4518 { 4519 struct udf_node *dir_node = VTOI(vp); 4520 struct dirhash *dirh; 4521 struct dirhash_entry *dirh_ep; 4522 struct fileid_desc *fid; 4523 struct dirent *dirent, *s_dirent; 4524 struct charspec osta_charspec; 4525 uint64_t diroffset; 4526 uint32_t lb_size; 4527 int hit, error; 4528 4529 /* set default return */ 4530 *found = 0; 4531 4532 /* get our dirhash and make sure its read in */ 4533 dirhash_get(&dir_node->dir_hash); 4534 error = udf_dirhash_fill(dir_node); 4535 if (error) { 4536 dirhash_put(dir_node->dir_hash); 4537 return error; 4538 } 4539 dirh = dir_node->dir_hash; 4540 4541 /* allocate temporary space for fid */ 4542 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4543 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4544 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4545 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4546 4547 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4548 namelen, namelen, name)); 4549 4550 /* convert given unix name to canonical unix name */ 4551 udf_osta_charset(&osta_charspec); 4552 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4553 name, namelen, &osta_charspec); 4554 udf_to_unix_name(s_dirent->d_name, NAME_MAX, 4555 (char *) fid->data, fid->l_fi, 4556 &osta_charspec); 4557 s_dirent->d_namlen = strlen(s_dirent->d_name); 4558 4559 /* search our dirhash hits */ 4560 memset(icb_loc, 0, sizeof(*icb_loc)); 4561 dirh_ep = NULL; 4562 for (;;) { 4563 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep); 4564 /* if no hit, abort the search */ 4565 if (!hit) 4566 break; 4567 4568 /* check this hit */ 4569 diroffset = dirh_ep->offset; 4570 4571 /* transfer a new fid/dirent */ 4572 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4573 if (error) 4574 break; 4575 4576 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4577 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4578 4579 /* see if its our entry */ 4580 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) { 4581 *found = 1; 4582 *icb_loc = fid->icb; 4583 break; 4584 } 4585 } 4586 free(fid, M_UDFTEMP); 4587 free(dirent, M_UDFTEMP); 4588 free(s_dirent, M_UDFTEMP); 4589 4590 dirhash_put(dir_node->dir_hash); 4591 4592 return error; 4593 } 4594 4595 /* --------------------------------------------------------------------- */ 4596 4597 static int 4598 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4599 struct long_ad *node_icb, struct long_ad *parent_icb, 4600 uint64_t parent_unique_id) 4601 { 4602 struct timespec now; 4603 struct icb_tag *icb; 4604 struct filetimes_extattr_entry *ft_extattr; 4605 uint64_t unique_id; 4606 uint32_t fidsize, lb_num; 4607 uint8_t *bpos; 4608 int crclen, attrlen; 4609 4610 lb_num = udf_rw32(node_icb->loc.lb_num); 4611 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4612 icb = &fe->icbtag; 4613 4614 /* 4615 * Always use strategy type 4 unless on WORM wich we don't support 4616 * (yet). Fill in defaults and set for internal allocation of data. 4617 */ 4618 icb->strat_type = udf_rw16(4); 4619 icb->max_num_entries = udf_rw16(1); 4620 icb->file_type = file_type; /* 8 bit */ 4621 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4622 4623 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4624 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4625 4626 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4627 4628 vfs_timestamp(&now); 4629 udf_timespec_to_timestamp(&now, &fe->atime); 4630 udf_timespec_to_timestamp(&now, &fe->attrtime); 4631 udf_timespec_to_timestamp(&now, &fe->mtime); 4632 4633 udf_set_regid(&fe->imp_id, IMPL_NAME); 4634 udf_add_impl_regid(ump, &fe->imp_id); 4635 4636 unique_id = udf_advance_uniqueid(ump); 4637 fe->unique_id = udf_rw64(unique_id); 4638 fe->l_ea = udf_rw32(0); 4639 4640 /* create extended attribute to record our creation time */ 4641 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4642 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4643 memset(ft_extattr, 0, attrlen); 4644 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4645 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4646 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4647 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4648 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4649 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4650 4651 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4652 (struct extattr_entry *) ft_extattr); 4653 free(ft_extattr, M_UDFTEMP); 4654 4655 /* if its a directory, create '..' */ 4656 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4657 fidsize = 0; 4658 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4659 fidsize = udf_create_parentfid(ump, 4660 (struct fileid_desc *) bpos, parent_icb, 4661 parent_unique_id); 4662 } 4663 4664 /* record fidlength information */ 4665 fe->inf_len = udf_rw64(fidsize); 4666 fe->l_ad = udf_rw32(fidsize); 4667 fe->logblks_rec = udf_rw64(0); /* intern */ 4668 4669 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4670 crclen += udf_rw32(fe->l_ea) + fidsize; 4671 fe->tag.desc_crc_len = udf_rw16(crclen); 4672 4673 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4674 4675 return fidsize; 4676 } 4677 4678 /* --------------------------------------------------------------------- */ 4679 4680 static int 4681 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4682 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4683 uint64_t parent_unique_id) 4684 { 4685 struct timespec now; 4686 struct icb_tag *icb; 4687 uint64_t unique_id; 4688 uint32_t fidsize, lb_num; 4689 uint8_t *bpos; 4690 int crclen; 4691 4692 lb_num = udf_rw32(node_icb->loc.lb_num); 4693 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4694 icb = &efe->icbtag; 4695 4696 /* 4697 * Always use strategy type 4 unless on WORM wich we don't support 4698 * (yet). Fill in defaults and set for internal allocation of data. 4699 */ 4700 icb->strat_type = udf_rw16(4); 4701 icb->max_num_entries = udf_rw16(1); 4702 icb->file_type = file_type; /* 8 bit */ 4703 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4704 4705 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4706 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4707 4708 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4709 4710 vfs_timestamp(&now); 4711 udf_timespec_to_timestamp(&now, &efe->ctime); 4712 udf_timespec_to_timestamp(&now, &efe->atime); 4713 udf_timespec_to_timestamp(&now, &efe->attrtime); 4714 udf_timespec_to_timestamp(&now, &efe->mtime); 4715 4716 udf_set_regid(&efe->imp_id, IMPL_NAME); 4717 udf_add_impl_regid(ump, &efe->imp_id); 4718 4719 unique_id = udf_advance_uniqueid(ump); 4720 efe->unique_id = udf_rw64(unique_id); 4721 efe->l_ea = udf_rw32(0); 4722 4723 /* if its a directory, create '..' */ 4724 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4725 fidsize = 0; 4726 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4727 fidsize = udf_create_parentfid(ump, 4728 (struct fileid_desc *) bpos, parent_icb, 4729 parent_unique_id); 4730 } 4731 4732 /* record fidlength information */ 4733 efe->obj_size = udf_rw64(fidsize); 4734 efe->inf_len = udf_rw64(fidsize); 4735 efe->l_ad = udf_rw32(fidsize); 4736 efe->logblks_rec = udf_rw64(0); /* intern */ 4737 4738 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4739 crclen += udf_rw32(efe->l_ea) + fidsize; 4740 efe->tag.desc_crc_len = udf_rw16(crclen); 4741 4742 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4743 4744 return fidsize; 4745 } 4746 4747 /* --------------------------------------------------------------------- */ 4748 4749 int 4750 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4751 struct udf_node *udf_node, struct componentname *cnp) 4752 { 4753 struct vnode *dvp = dir_node->vnode; 4754 struct dirhash *dirh; 4755 struct dirhash_entry *dirh_ep; 4756 struct file_entry *fe = dir_node->fe; 4757 struct fileid_desc *fid; 4758 struct dirent *dirent, *s_dirent; 4759 struct charspec osta_charspec; 4760 uint64_t diroffset; 4761 uint32_t lb_size, fidsize; 4762 int found, error; 4763 int hit, refcnt; 4764 4765 /* get our dirhash and make sure its read in */ 4766 dirhash_get(&dir_node->dir_hash); 4767 error = udf_dirhash_fill(dir_node); 4768 if (error) { 4769 dirhash_put(dir_node->dir_hash); 4770 return error; 4771 } 4772 dirh = dir_node->dir_hash; 4773 4774 /* get directory filesize */ 4775 if (!fe) { 4776 assert(dir_node->efe); 4777 } 4778 4779 /* allocate temporary space for fid and dirents */ 4780 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4781 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4782 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4783 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4784 4785 /* convert given unix name to canonical unix name */ 4786 udf_osta_charset(&osta_charspec); 4787 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4788 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4789 udf_to_unix_name(s_dirent->d_name, NAME_MAX, 4790 (char *) fid->data, fid->l_fi, 4791 &osta_charspec); 4792 s_dirent->d_namlen = strlen(s_dirent->d_name); 4793 4794 /* search our dirhash hits */ 4795 found = 0; 4796 dirh_ep = NULL; 4797 for (;;) { 4798 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep); 4799 /* if no hit, abort the search */ 4800 if (!hit) 4801 break; 4802 4803 /* check this hit */ 4804 diroffset = dirh_ep->offset; 4805 4806 /* transfer a new fid/dirent */ 4807 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4808 if (error) 4809 break; 4810 4811 /* see if its our entry */ 4812 KASSERT(dirent->d_namlen == s_dirent->d_namlen); 4813 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) { 4814 found = 1; 4815 break; 4816 } 4817 } 4818 4819 if (!found) 4820 error = ENOENT; 4821 if (error) 4822 goto error_out; 4823 4824 /* mark deleted */ 4825 fid->file_char |= UDF_FILE_CHAR_DEL; 4826 #ifdef UDF_COMPLETE_DELETE 4827 memset(&fid->icb, 0, sizeof(fid->icb)); 4828 #endif 4829 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4830 4831 /* get size of fid and compensate for the read_fid_stream advance */ 4832 fidsize = udf_fidsize(fid); 4833 diroffset -= fidsize; 4834 4835 /* write out */ 4836 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4837 fid, fidsize, diroffset, 4838 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4839 FSCRED, NULL, NULL); 4840 if (error) 4841 goto error_out; 4842 4843 /* get reference count of attached node */ 4844 if (udf_node->fe) { 4845 refcnt = udf_rw16(udf_node->fe->link_cnt); 4846 } else { 4847 KASSERT(udf_node->efe); 4848 refcnt = udf_rw16(udf_node->efe->link_cnt); 4849 } 4850 #ifdef UDF_COMPLETE_DELETE 4851 /* substract reference counter in attached node */ 4852 refcnt -= 1; 4853 if (udf_node->fe) { 4854 udf_node->fe->link_cnt = udf_rw16(refcnt); 4855 } else { 4856 udf_node->efe->link_cnt = udf_rw16(refcnt); 4857 } 4858 4859 /* prevent writeout when refcnt == 0 */ 4860 if (refcnt == 0) 4861 udf_node->i_flags |= IN_DELETED; 4862 4863 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4864 int drefcnt; 4865 4866 /* substract reference counter in directory node */ 4867 /* note subtract 2 (?) for its was also backreferenced */ 4868 if (dir_node->fe) { 4869 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4870 drefcnt -= 1; 4871 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4872 } else { 4873 KASSERT(dir_node->efe); 4874 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4875 drefcnt -= 1; 4876 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4877 } 4878 } 4879 4880 udf_node->i_flags |= IN_MODIFIED; 4881 dir_node->i_flags |= IN_MODIFIED; 4882 #endif 4883 /* if it is/was a hardlink adjust the file count */ 4884 if (refcnt > 0) 4885 udf_adjust_filecount(udf_node, -1); 4886 4887 /* remove from the dirhash */ 4888 dirhash_remove(dirh, dirent, diroffset, 4889 udf_fidsize(fid)); 4890 4891 error_out: 4892 free(fid, M_UDFTEMP); 4893 free(dirent, M_UDFTEMP); 4894 free(s_dirent, M_UDFTEMP); 4895 4896 dirhash_put(dir_node->dir_hash); 4897 4898 return error; 4899 } 4900 4901 /* --------------------------------------------------------------------- */ 4902 4903 int 4904 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, 4905 struct udf_node *new_parent_node) 4906 { 4907 struct vnode *dvp = dir_node->vnode; 4908 struct dirhash *dirh; 4909 struct dirhash_entry *dirh_ep; 4910 struct file_entry *fe; 4911 struct extfile_entry *efe; 4912 struct fileid_desc *fid; 4913 struct dirent *dirent; 4914 uint64_t diroffset; 4915 uint64_t new_parent_unique_id; 4916 uint32_t lb_size, fidsize; 4917 int found, error; 4918 char const *name = ".."; 4919 int namelen = 2; 4920 int hit; 4921 4922 /* get our dirhash and make sure its read in */ 4923 dirhash_get(&dir_node->dir_hash); 4924 error = udf_dirhash_fill(dir_node); 4925 if (error) { 4926 dirhash_put(dir_node->dir_hash); 4927 return error; 4928 } 4929 dirh = dir_node->dir_hash; 4930 4931 /* get new parent's unique ID */ 4932 fe = new_parent_node->fe; 4933 efe = new_parent_node->efe; 4934 if (fe) { 4935 new_parent_unique_id = udf_rw64(fe->unique_id); 4936 } else { 4937 assert(efe); 4938 new_parent_unique_id = udf_rw64(efe->unique_id); 4939 } 4940 4941 /* get directory filesize */ 4942 fe = dir_node->fe; 4943 efe = dir_node->efe; 4944 if (!fe) { 4945 assert(efe); 4946 } 4947 4948 /* allocate temporary space for fid */ 4949 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4950 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4951 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4952 4953 /* 4954 * NOTE the standard does not dictate the FID entry '..' should be 4955 * first, though in practice it will most likely be. 4956 */ 4957 4958 /* search our dirhash hits */ 4959 found = 0; 4960 dirh_ep = NULL; 4961 for (;;) { 4962 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4963 /* if no hit, abort the search */ 4964 if (!hit) 4965 break; 4966 4967 /* check this hit */ 4968 diroffset = dirh_ep->offset; 4969 4970 /* transfer a new fid/dirent */ 4971 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4972 if (error) 4973 break; 4974 4975 /* see if its our entry */ 4976 KASSERT(dirent->d_namlen == namelen); 4977 if (strncmp(dirent->d_name, name, namelen) == 0) { 4978 found = 1; 4979 break; 4980 } 4981 } 4982 4983 if (!found) 4984 error = ENOENT; 4985 if (error) 4986 goto error_out; 4987 4988 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ 4989 fid->icb = new_parent_node->write_loc; 4990 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); 4991 4992 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4993 4994 /* get size of fid and compensate for the read_fid_stream advance */ 4995 fidsize = udf_fidsize(fid); 4996 diroffset -= fidsize; 4997 4998 /* write out */ 4999 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 5000 fid, fidsize, diroffset, 5001 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5002 FSCRED, NULL, NULL); 5003 5004 /* nothing to be done in the dirhash */ 5005 5006 error_out: 5007 free(fid, M_UDFTEMP); 5008 free(dirent, M_UDFTEMP); 5009 5010 dirhash_put(dir_node->dir_hash); 5011 5012 return error; 5013 } 5014 5015 /* --------------------------------------------------------------------- */ 5016 5017 /* 5018 * We are not allowed to split the fid tag itself over an logical block so 5019 * check the space remaining in the logical block. 5020 * 5021 * We try to select the smallest candidate for recycling or when none is 5022 * found, append a new one at the end of the directory. 5023 */ 5024 5025 int 5026 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 5027 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 5028 { 5029 struct vnode *dvp = dir_node->vnode; 5030 struct dirhash *dirh; 5031 struct dirhash_entry *dirh_ep; 5032 struct fileid_desc *fid; 5033 struct icb_tag *icbtag; 5034 struct charspec osta_charspec; 5035 struct dirent dirent; 5036 uint64_t unique_id, dir_size; 5037 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 5038 uint32_t chosen_size, chosen_size_diff; 5039 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 5040 int file_char, refcnt, icbflags, addr_type, hit, error; 5041 5042 /* get our dirhash and make sure its read in */ 5043 dirhash_get(&dir_node->dir_hash); 5044 error = udf_dirhash_fill(dir_node); 5045 if (error) { 5046 dirhash_put(dir_node->dir_hash); 5047 return error; 5048 } 5049 dirh = dir_node->dir_hash; 5050 5051 /* get info */ 5052 lb_size = udf_rw32(ump->logical_vol->lb_size); 5053 udf_osta_charset(&osta_charspec); 5054 5055 if (dir_node->fe) { 5056 dir_size = udf_rw64(dir_node->fe->inf_len); 5057 icbtag = &dir_node->fe->icbtag; 5058 } else { 5059 dir_size = udf_rw64(dir_node->efe->inf_len); 5060 icbtag = &dir_node->efe->icbtag; 5061 } 5062 5063 icbflags = udf_rw16(icbtag->flags); 5064 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5065 5066 if (udf_node->fe) { 5067 unique_id = udf_rw64(udf_node->fe->unique_id); 5068 refcnt = udf_rw16(udf_node->fe->link_cnt); 5069 } else { 5070 unique_id = udf_rw64(udf_node->efe->unique_id); 5071 refcnt = udf_rw16(udf_node->efe->link_cnt); 5072 } 5073 5074 if (refcnt > 0) { 5075 unique_id = udf_advance_uniqueid(ump); 5076 udf_adjust_filecount(udf_node, 1); 5077 } 5078 5079 /* determine file characteristics */ 5080 file_char = 0; /* visible non deleted file and not stream metadata */ 5081 if (vap->va_type == VDIR) 5082 file_char = UDF_FILE_CHAR_DIR; 5083 5084 /* malloc scrap buffer */ 5085 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 5086 5087 /* calculate _minimum_ fid size */ 5088 unix_to_udf_name((char *) fid->data, &fid->l_fi, 5089 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5090 fidsize = UDF_FID_SIZE + fid->l_fi; 5091 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 5092 5093 /* find position that will fit the FID */ 5094 chosen_fid_pos = dir_size; 5095 chosen_size = 0; 5096 chosen_size_diff = UINT_MAX; 5097 5098 /* shut up gcc */ 5099 dirent.d_namlen = 0; 5100 5101 /* search our dirhash hits */ 5102 error = 0; 5103 dirh_ep = NULL; 5104 for (;;) { 5105 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 5106 /* if no hit, abort the search */ 5107 if (!hit) 5108 break; 5109 5110 /* check this hit for size */ 5111 this_fidsize = dirh_ep->entry_size; 5112 5113 /* check this hit */ 5114 fid_pos = dirh_ep->offset; 5115 end_fid_pos = fid_pos + this_fidsize; 5116 size_diff = this_fidsize - fidsize; 5117 lb_rest = lb_size - (end_fid_pos % lb_size); 5118 5119 #ifndef UDF_COMPLETE_DELETE 5120 /* transfer a new fid/dirent */ 5121 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 5122 if (error) 5123 goto error_out; 5124 5125 /* only reuse entries that are wiped */ 5126 /* check if the len + loc are marked zero */ 5127 if (udf_rw32(fid->icb.len) != 0) 5128 continue; 5129 if (udf_rw32(fid->icb.loc.lb_num) != 0) 5130 continue; 5131 if (udf_rw16(fid->icb.loc.part_num) != 0) 5132 continue; 5133 #endif /* UDF_COMPLETE_DELETE */ 5134 5135 /* select if not splitting the tag and its smaller */ 5136 if ((size_diff >= 0) && 5137 (size_diff < chosen_size_diff) && 5138 (lb_rest >= sizeof(struct desc_tag))) 5139 { 5140 /* UDF 2.3.4.2+3 specifies rules for iu size */ 5141 if ((size_diff == 0) || (size_diff >= 32)) { 5142 chosen_fid_pos = fid_pos; 5143 chosen_size = this_fidsize; 5144 chosen_size_diff = size_diff; 5145 } 5146 } 5147 } 5148 5149 5150 /* extend directory if no other candidate found */ 5151 if (chosen_size == 0) { 5152 chosen_fid_pos = dir_size; 5153 chosen_size = fidsize; 5154 chosen_size_diff = 0; 5155 5156 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 5157 if (addr_type == UDF_ICB_INTERN_ALLOC) { 5158 /* pre-grow directory to see if we're to switch */ 5159 udf_grow_node(dir_node, dir_size + chosen_size); 5160 5161 icbflags = udf_rw16(icbtag->flags); 5162 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5163 } 5164 5165 /* make sure the next fid desc_tag won't be splitted */ 5166 if (addr_type != UDF_ICB_INTERN_ALLOC) { 5167 end_fid_pos = chosen_fid_pos + chosen_size; 5168 lb_rest = lb_size - (end_fid_pos % lb_size); 5169 5170 /* pad with implementation use regid if needed */ 5171 if (lb_rest < sizeof(struct desc_tag)) 5172 chosen_size += 32; 5173 } 5174 } 5175 chosen_size_diff = chosen_size - fidsize; 5176 5177 /* populate the FID */ 5178 memset(fid, 0, lb_size); 5179 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 5180 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 5181 fid->file_char = file_char; 5182 fid->icb = udf_node->loc; 5183 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 5184 fid->l_iu = udf_rw16(0); 5185 5186 if (chosen_size > fidsize) { 5187 /* insert implementation-use regid to space it correctly */ 5188 fid->l_iu = udf_rw16(chosen_size_diff); 5189 5190 /* set implementation use */ 5191 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 5192 udf_add_impl_regid(ump, (struct regid *) fid->data); 5193 } 5194 5195 /* fill in name */ 5196 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 5197 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5198 5199 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 5200 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5201 5202 /* writeout FID/update parent directory */ 5203 error = vn_rdwr(UIO_WRITE, dvp, 5204 fid, chosen_size, chosen_fid_pos, 5205 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5206 FSCRED, NULL, NULL); 5207 5208 if (error) 5209 goto error_out; 5210 5211 /* add reference counter in attached node */ 5212 if (udf_node->fe) { 5213 refcnt = udf_rw16(udf_node->fe->link_cnt); 5214 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5215 } else { 5216 KASSERT(udf_node->efe); 5217 refcnt = udf_rw16(udf_node->efe->link_cnt); 5218 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5219 } 5220 5221 /* mark not deleted if it was... just in case, but do warn */ 5222 if (udf_node->i_flags & IN_DELETED) { 5223 printf("udf: warning, marking a file undeleted\n"); 5224 udf_node->i_flags &= ~IN_DELETED; 5225 } 5226 5227 if (file_char & UDF_FILE_CHAR_DIR) { 5228 /* add reference counter in directory node for '..' */ 5229 if (dir_node->fe) { 5230 refcnt = udf_rw16(dir_node->fe->link_cnt); 5231 refcnt++; 5232 dir_node->fe->link_cnt = udf_rw16(refcnt); 5233 } else { 5234 KASSERT(dir_node->efe); 5235 refcnt = udf_rw16(dir_node->efe->link_cnt); 5236 refcnt++; 5237 dir_node->efe->link_cnt = udf_rw16(refcnt); 5238 } 5239 } 5240 5241 /* append to the dirhash */ 5242 /* NOTE do not use dirent anymore or it won't match later! */ 5243 udf_to_unix_name(dirent.d_name, NAME_MAX, 5244 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec); 5245 dirent.d_namlen = strlen(dirent.d_name); 5246 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5247 udf_fidsize(fid), 1); 5248 5249 /* note updates */ 5250 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5251 /* VN_KNOTE(udf_node, ...) */ 5252 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5253 5254 error_out: 5255 free(fid, M_TEMP); 5256 5257 dirhash_put(dir_node->dir_hash); 5258 5259 return error; 5260 } 5261 5262 /* --------------------------------------------------------------------- */ 5263 5264 /* 5265 * Each node can have an attached streamdir node though not recursively. These 5266 * are otherwise known as named substreams/named extended attributes that have 5267 * no size limitations. 5268 * 5269 * `Normal' extended attributes are indicated with a number and are recorded 5270 * in either the fe/efe descriptor itself for small descriptors or recorded in 5271 * the attached extended attribute file. Since these spaces can get 5272 * fragmented, care ought to be taken. 5273 * 5274 * Since the size of the space reserved for allocation descriptors is limited, 5275 * there is a mechanim provided for extending this space; this is done by a 5276 * special extent to allow schrinking of the allocations without breaking the 5277 * linkage to the allocation extent descriptor. 5278 */ 5279 5280 int 5281 udf_loadvnode(struct mount *mp, struct vnode *vp, 5282 const void *key, size_t key_len, const void **new_key) 5283 { 5284 union dscrptr *dscr; 5285 struct udf_mount *ump; 5286 struct udf_node *udf_node; 5287 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc; 5288 uint64_t file_size; 5289 uint32_t lb_size, sector, dummy; 5290 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5291 int slot, eof, error; 5292 int num_indir_followed = 0; 5293 5294 DPRINTF(NODE, ("udf_loadvnode called\n")); 5295 udf_node = NULL; 5296 ump = VFSTOUDF(mp); 5297 5298 KASSERT(key_len == sizeof(node_icb_loc.loc)); 5299 memset(&node_icb_loc, 0, sizeof(node_icb_loc)); 5300 node_icb_loc.len = ump->logical_vol->lb_size; 5301 memcpy(&node_icb_loc.loc, key, key_len); 5302 5303 /* garbage check: translate udf_node_icb_loc to sectornr */ 5304 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy); 5305 if (error) { 5306 DPRINTF(NODE, ("\tcan't translate icb address!\n")); 5307 /* no use, this will fail anyway */ 5308 return EINVAL; 5309 } 5310 5311 /* build udf_node (do initialise!) */ 5312 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5313 memset(udf_node, 0, sizeof(struct udf_node)); 5314 5315 vp->v_tag = VT_UDF; 5316 vp->v_op = udf_vnodeop_p; 5317 vp->v_data = udf_node; 5318 5319 /* initialise crosslinks, note location of fe/efe for hashing */ 5320 udf_node->ump = ump; 5321 udf_node->vnode = vp; 5322 udf_node->loc = node_icb_loc; 5323 udf_node->lockf = 0; 5324 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5325 cv_init(&udf_node->node_lock, "udf_nlk"); 5326 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */ 5327 udf_node->outstanding_bufs = 0; 5328 udf_node->outstanding_nodedscr = 0; 5329 udf_node->uncommitted_lbs = 0; 5330 5331 /* check if we're fetching the root */ 5332 if (ump->fileset_desc) 5333 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5334 sizeof(struct long_ad)) == 0) 5335 vp->v_vflag |= VV_ROOT; 5336 5337 icb_loc = node_icb_loc; 5338 needs_indirect = 0; 5339 strat4096 = 0; 5340 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5341 file_size = 0; 5342 lb_size = udf_rw32(ump->logical_vol->lb_size); 5343 5344 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5345 do { 5346 /* try to read in fe/efe */ 5347 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5348 5349 /* blank sector marks end of sequence, check this */ 5350 if ((dscr == NULL) && (!strat4096)) 5351 error = ENOENT; 5352 5353 /* break if read error or blank sector */ 5354 if (error || (dscr == NULL)) 5355 break; 5356 5357 /* process descriptor based on the descriptor type */ 5358 dscr_type = udf_rw16(dscr->tag.id); 5359 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5360 5361 /* if dealing with an indirect entry, follow the link */ 5362 if (dscr_type == TAGID_INDIRECTENTRY) { 5363 needs_indirect = 0; 5364 next_icb_loc = dscr->inde.indirect_icb; 5365 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5366 icb_loc = next_icb_loc; 5367 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) { 5368 error = EMLINK; 5369 break; 5370 } 5371 continue; 5372 } 5373 5374 /* only file entries and extended file entries allowed here */ 5375 if ((dscr_type != TAGID_FENTRY) && 5376 (dscr_type != TAGID_EXTFENTRY)) { 5377 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5378 error = ENOENT; 5379 break; 5380 } 5381 5382 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5383 5384 /* choose this one */ 5385 last_fe_icb_loc = icb_loc; 5386 5387 /* record and process/update (ext)fentry */ 5388 if (dscr_type == TAGID_FENTRY) { 5389 if (udf_node->fe) 5390 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5391 udf_node->fe); 5392 udf_node->fe = &dscr->fe; 5393 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5394 udf_file_type = udf_node->fe->icbtag.file_type; 5395 file_size = udf_rw64(udf_node->fe->inf_len); 5396 } else { 5397 if (udf_node->efe) 5398 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5399 udf_node->efe); 5400 udf_node->efe = &dscr->efe; 5401 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5402 udf_file_type = udf_node->efe->icbtag.file_type; 5403 file_size = udf_rw64(udf_node->efe->inf_len); 5404 } 5405 5406 /* check recording strategy (structure) */ 5407 5408 /* 5409 * Strategy 4096 is a daisy linked chain terminating with an 5410 * unrecorded sector or a TERM descriptor. The next 5411 * descriptor is to be found in the sector that follows the 5412 * current sector. 5413 */ 5414 if (strat == 4096) { 5415 strat4096 = 1; 5416 needs_indirect = 1; 5417 5418 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5419 } 5420 5421 /* 5422 * Strategy 4 is the normal strategy and terminates, but if 5423 * we're in strategy 4096, we can't have strategy 4 mixed in 5424 */ 5425 5426 if (strat == 4) { 5427 if (strat4096) { 5428 error = EINVAL; 5429 break; 5430 } 5431 break; /* done */ 5432 } 5433 } while (!error); 5434 5435 /* first round of cleanup code */ 5436 if (error) { 5437 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5438 /* recycle udf_node */ 5439 udf_dispose_node(udf_node); 5440 5441 return EINVAL; /* error code ok? */ 5442 } 5443 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5444 5445 /* assert no references to dscr anymore beyong this point */ 5446 assert((udf_node->fe) || (udf_node->efe)); 5447 dscr = NULL; 5448 5449 /* 5450 * Remember where to record an updated version of the descriptor. If 5451 * there is a sequence of indirect entries, icb_loc will have been 5452 * updated. Its the write disipline to allocate new space and to make 5453 * sure the chain is maintained. 5454 * 5455 * `needs_indirect' flags if the next location is to be filled with 5456 * with an indirect entry. 5457 */ 5458 udf_node->write_loc = icb_loc; 5459 udf_node->needs_indirect = needs_indirect; 5460 5461 /* 5462 * Go trough all allocations extents of this descriptor and when 5463 * encountering a redirect read in the allocation extension. These are 5464 * daisy-chained. 5465 */ 5466 UDF_LOCK_NODE(udf_node, 0); 5467 udf_node->num_extensions = 0; 5468 5469 error = 0; 5470 slot = 0; 5471 for (;;) { 5472 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5473 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5474 "lb_num = %d, part = %d\n", slot, eof, 5475 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5476 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5477 udf_rw32(icb_loc.loc.lb_num), 5478 udf_rw16(icb_loc.loc.part_num))); 5479 if (eof) 5480 break; 5481 slot++; 5482 5483 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5484 continue; 5485 5486 DPRINTF(NODE, ("\tgot redirect extent\n")); 5487 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5488 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5489 "too many allocation extensions on " 5490 "udf_node\n")); 5491 error = EINVAL; 5492 break; 5493 } 5494 5495 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5496 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5497 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5498 "extension size in udf_node\n")); 5499 error = EINVAL; 5500 break; 5501 } 5502 5503 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5504 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5505 /* load in allocation extent */ 5506 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5507 if (error || (dscr == NULL)) 5508 break; 5509 5510 /* process read-in descriptor */ 5511 dscr_type = udf_rw16(dscr->tag.id); 5512 5513 if (dscr_type != TAGID_ALLOCEXTENT) { 5514 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5515 error = ENOENT; 5516 break; 5517 } 5518 5519 DPRINTF(NODE, ("\trecording redirect extent\n")); 5520 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5521 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5522 5523 udf_node->num_extensions++; 5524 5525 } /* while */ 5526 UDF_UNLOCK_NODE(udf_node, 0); 5527 5528 /* second round of cleanup code */ 5529 if (error) { 5530 /* recycle udf_node */ 5531 udf_dispose_node(udf_node); 5532 5533 return EINVAL; /* error code ok? */ 5534 } 5535 5536 DPRINTF(NODE, ("\tnode read in fine\n")); 5537 5538 /* 5539 * Translate UDF filetypes into vnode types. 5540 * 5541 * Systemfiles like the meta main and mirror files are not treated as 5542 * normal files, so we type them as having no type. UDF dictates that 5543 * they are not allowed to be visible. 5544 */ 5545 5546 switch (udf_file_type) { 5547 case UDF_ICB_FILETYPE_DIRECTORY : 5548 case UDF_ICB_FILETYPE_STREAMDIR : 5549 vp->v_type = VDIR; 5550 break; 5551 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5552 vp->v_type = VBLK; 5553 break; 5554 case UDF_ICB_FILETYPE_CHARDEVICE : 5555 vp->v_type = VCHR; 5556 break; 5557 case UDF_ICB_FILETYPE_SOCKET : 5558 vp->v_type = VSOCK; 5559 break; 5560 case UDF_ICB_FILETYPE_FIFO : 5561 vp->v_type = VFIFO; 5562 break; 5563 case UDF_ICB_FILETYPE_SYMLINK : 5564 vp->v_type = VLNK; 5565 break; 5566 case UDF_ICB_FILETYPE_VAT : 5567 case UDF_ICB_FILETYPE_META_MAIN : 5568 case UDF_ICB_FILETYPE_META_MIRROR : 5569 vp->v_type = VNON; 5570 break; 5571 case UDF_ICB_FILETYPE_RANDOMACCESS : 5572 case UDF_ICB_FILETYPE_REALTIME : 5573 vp->v_type = VREG; 5574 break; 5575 default: 5576 /* YIKES, something else */ 5577 vp->v_type = VNON; 5578 } 5579 5580 /* TODO specfs, fifofs etc etc. vnops setting */ 5581 5582 /* don't forget to set vnode's v_size */ 5583 uvm_vnp_setsize(vp, file_size); 5584 5585 /* TODO ext attr and streamdir udf_nodes */ 5586 5587 *new_key = &udf_node->loc.loc; 5588 5589 return 0; 5590 } 5591 5592 int 5593 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5594 struct udf_node **udf_noderes) 5595 { 5596 int error; 5597 struct vnode *vp; 5598 5599 *udf_noderes = NULL; 5600 5601 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc, 5602 sizeof(node_icb_loc->loc), &vp); 5603 if (error) 5604 return error; 5605 error = vn_lock(vp, LK_EXCLUSIVE); 5606 if (error) { 5607 vrele(vp); 5608 return error; 5609 } 5610 *udf_noderes = VTOI(vp); 5611 return 0; 5612 } 5613 5614 /* --------------------------------------------------------------------- */ 5615 5616 int 5617 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5618 { 5619 union dscrptr *dscr; 5620 struct long_ad *loc; 5621 int extnr, error; 5622 5623 DPRINTF(NODE, ("udf_writeout_node called\n")); 5624 5625 KASSERT(udf_node->outstanding_bufs == 0); 5626 KASSERT(udf_node->outstanding_nodedscr == 0); 5627 5628 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5629 5630 if (udf_node->i_flags & IN_DELETED) { 5631 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5632 udf_cleanup_reservation(udf_node); 5633 return 0; 5634 } 5635 5636 /* lock node; unlocked in callback */ 5637 UDF_LOCK_NODE(udf_node, 0); 5638 5639 /* remove pending reservations, we're written out */ 5640 udf_cleanup_reservation(udf_node); 5641 5642 /* at least one descriptor writeout */ 5643 udf_node->outstanding_nodedscr = 1; 5644 5645 /* we're going to write out the descriptor so clear the flags */ 5646 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5647 5648 /* if we were rebuild, write out the allocation extents */ 5649 if (udf_node->i_flags & IN_NODE_REBUILD) { 5650 /* mark outstanding node descriptors and issue them */ 5651 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5652 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5653 loc = &udf_node->ext_loc[extnr]; 5654 dscr = (union dscrptr *) udf_node->ext[extnr]; 5655 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5656 if (error) 5657 return error; 5658 } 5659 /* mark allocation extents written out */ 5660 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5661 } 5662 5663 if (udf_node->fe) { 5664 KASSERT(udf_node->efe == NULL); 5665 dscr = (union dscrptr *) udf_node->fe; 5666 } else { 5667 KASSERT(udf_node->efe); 5668 KASSERT(udf_node->fe == NULL); 5669 dscr = (union dscrptr *) udf_node->efe; 5670 } 5671 KASSERT(dscr); 5672 5673 loc = &udf_node->write_loc; 5674 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5675 5676 return error; 5677 } 5678 5679 /* --------------------------------------------------------------------- */ 5680 5681 int 5682 udf_dispose_node(struct udf_node *udf_node) 5683 { 5684 struct vnode *vp; 5685 int extnr; 5686 5687 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5688 if (!udf_node) { 5689 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5690 return 0; 5691 } 5692 5693 vp = udf_node->vnode; 5694 #ifdef DIAGNOSTIC 5695 if (vp->v_numoutput) 5696 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5697 "v_numoutput = %d", udf_node, vp->v_numoutput); 5698 #endif 5699 5700 udf_cleanup_reservation(udf_node); 5701 5702 /* TODO extended attributes and streamdir */ 5703 5704 /* remove dirhash if present */ 5705 dirhash_purge(&udf_node->dir_hash); 5706 5707 /* destroy our lock */ 5708 mutex_destroy(&udf_node->node_mutex); 5709 cv_destroy(&udf_node->node_lock); 5710 5711 /* dissociate our udf_node from the vnode */ 5712 genfs_node_destroy(udf_node->vnode); 5713 mutex_enter(vp->v_interlock); 5714 vp->v_data = NULL; 5715 mutex_exit(vp->v_interlock); 5716 5717 /* free associated memory and the node itself */ 5718 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5719 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5720 udf_node->ext[extnr]); 5721 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5722 } 5723 5724 if (udf_node->fe) 5725 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5726 udf_node->fe); 5727 if (udf_node->efe) 5728 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5729 udf_node->efe); 5730 5731 udf_node->fe = (void *) 0xdeadaaaa; 5732 udf_node->efe = (void *) 0xdeadbbbb; 5733 udf_node->ump = (void *) 0xdeadbeef; 5734 pool_put(&udf_node_pool, udf_node); 5735 5736 return 0; 5737 } 5738 5739 5740 5741 /* 5742 * create a new node using the specified dvp, vap and cnp. 5743 * This allows special files to be created. Use with care. 5744 */ 5745 5746 int 5747 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp, 5748 struct vattr *vap, kauth_cred_t cred, 5749 size_t *key_len, const void **new_key) 5750 { 5751 union dscrptr *dscr; 5752 struct udf_node *dir_node = VTOI(dvp); 5753 struct udf_node *udf_node; 5754 struct udf_mount *ump = dir_node->ump; 5755 struct long_ad node_icb_loc; 5756 uint64_t parent_unique_id; 5757 uint64_t lmapping; 5758 uint32_t lb_size, lb_num; 5759 uint16_t vpart_num; 5760 uid_t uid; 5761 gid_t gid, parent_gid; 5762 int (**vnodeops)(void *); 5763 int udf_file_type, fid_size, error; 5764 5765 vnodeops = udf_vnodeop_p; 5766 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5767 5768 switch (vap->va_type) { 5769 case VREG : 5770 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5771 break; 5772 case VDIR : 5773 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5774 break; 5775 case VLNK : 5776 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5777 break; 5778 case VBLK : 5779 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5780 /* specfs */ 5781 return ENOTSUP; 5782 break; 5783 case VCHR : 5784 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5785 /* specfs */ 5786 return ENOTSUP; 5787 break; 5788 case VFIFO : 5789 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5790 /* fifofs */ 5791 return ENOTSUP; 5792 break; 5793 case VSOCK : 5794 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5795 return ENOTSUP; 5796 break; 5797 case VNON : 5798 case VBAD : 5799 default : 5800 /* nothing; can we even create these? */ 5801 return EINVAL; 5802 } 5803 5804 lb_size = udf_rw32(ump->logical_vol->lb_size); 5805 5806 /* reserve space for one logical block */ 5807 vpart_num = ump->node_part; 5808 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 5809 vpart_num, 1, /* can_fail */ true); 5810 if (error) 5811 return error; 5812 5813 /* allocate node */ 5814 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 5815 vpart_num, 1, &lmapping); 5816 if (error) { 5817 udf_do_unreserve_space(ump, NULL, vpart_num, 1); 5818 return error; 5819 } 5820 5821 lb_num = lmapping; 5822 5823 /* initialise pointer to location */ 5824 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5825 node_icb_loc.len = udf_rw32(lb_size); 5826 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5827 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5828 5829 /* build udf_node (do initialise!) */ 5830 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5831 memset(udf_node, 0, sizeof(struct udf_node)); 5832 5833 /* initialise crosslinks, note location of fe/efe for hashing */ 5834 /* bugalert: synchronise with udf_get_node() */ 5835 udf_node->ump = ump; 5836 udf_node->vnode = vp; 5837 vp->v_data = udf_node; 5838 udf_node->loc = node_icb_loc; 5839 udf_node->write_loc = node_icb_loc; 5840 udf_node->lockf = 0; 5841 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5842 cv_init(&udf_node->node_lock, "udf_nlk"); 5843 udf_node->outstanding_bufs = 0; 5844 udf_node->outstanding_nodedscr = 0; 5845 udf_node->uncommitted_lbs = 0; 5846 5847 vp->v_tag = VT_UDF; 5848 vp->v_op = vnodeops; 5849 5850 /* initialise genfs */ 5851 genfs_node_init(vp, &udf_genfsops); 5852 5853 /* get parent's unique ID for refering '..' if its a directory */ 5854 if (dir_node->fe) { 5855 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5856 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5857 } else { 5858 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5859 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5860 } 5861 5862 /* get descriptor */ 5863 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5864 5865 /* choose a fe or an efe for it */ 5866 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5867 udf_node->fe = &dscr->fe; 5868 fid_size = udf_create_new_fe(ump, udf_node->fe, 5869 udf_file_type, &udf_node->loc, 5870 &dir_node->loc, parent_unique_id); 5871 /* TODO add extended attribute for creation time */ 5872 } else { 5873 udf_node->efe = &dscr->efe; 5874 fid_size = udf_create_new_efe(ump, udf_node->efe, 5875 udf_file_type, &udf_node->loc, 5876 &dir_node->loc, parent_unique_id); 5877 } 5878 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5879 5880 /* update vnode's size and type */ 5881 vp->v_type = vap->va_type; 5882 uvm_vnp_setsize(vp, fid_size); 5883 5884 /* set access mode */ 5885 udf_setaccessmode(udf_node, vap->va_mode); 5886 5887 /* set ownership */ 5888 uid = kauth_cred_geteuid(cred); 5889 gid = parent_gid; 5890 udf_setownership(udf_node, uid, gid); 5891 5892 *key_len = sizeof(udf_node->loc.loc); 5893 *new_key = &udf_node->loc.loc; 5894 5895 return 0; 5896 } 5897 5898 5899 int 5900 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5901 struct componentname *cnp) 5902 { 5903 struct udf_node *udf_node, *dir_node = VTOI(dvp); 5904 struct udf_mount *ump = dir_node->ump; 5905 int error; 5906 5907 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp); 5908 if (error) 5909 return error; 5910 5911 udf_node = VTOI(*vpp); 5912 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5913 if (error) { 5914 struct long_ad *node_icb_loc = &udf_node->loc; 5915 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num); 5916 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num); 5917 5918 /* free disc allocation for node */ 5919 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5920 5921 /* recycle udf_node */ 5922 udf_dispose_node(udf_node); 5923 vrele(*vpp); 5924 5925 *vpp = NULL; 5926 return error; 5927 } 5928 5929 /* adjust file count */ 5930 udf_adjust_filecount(udf_node, 1); 5931 5932 return 0; 5933 } 5934 5935 /* --------------------------------------------------------------------- */ 5936 5937 static void 5938 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5939 { 5940 struct udf_mount *ump = udf_node->ump; 5941 uint32_t lb_size, lb_num, len, num_lb; 5942 uint16_t vpart_num; 5943 5944 /* is there really one? */ 5945 if (mem == NULL) 5946 return; 5947 5948 /* got a descriptor here */ 5949 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5950 lb_num = udf_rw32(loc->loc.lb_num); 5951 vpart_num = udf_rw16(loc->loc.part_num); 5952 5953 lb_size = udf_rw32(ump->logical_vol->lb_size); 5954 num_lb = (len + lb_size -1) / lb_size; 5955 5956 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5957 } 5958 5959 void 5960 udf_delete_node(struct udf_node *udf_node) 5961 { 5962 void *dscr; 5963 struct long_ad *loc; 5964 int extnr, lvint, dummy; 5965 5966 if (udf_node->i_flags & IN_NO_DELETE) 5967 return; 5968 5969 /* paranoia check on integrity; should be open!; we could panic */ 5970 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5971 if (lvint == UDF_INTEGRITY_CLOSED) 5972 printf("\tIntegrity was CLOSED!\n"); 5973 5974 /* whatever the node type, change its size to zero */ 5975 (void) udf_resize_node(udf_node, 0, &dummy); 5976 5977 /* force it to be `clean'; no use writing it out */ 5978 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 5979 IN_CHANGE | IN_UPDATE | IN_MODIFY); 5980 5981 /* adjust file count */ 5982 udf_adjust_filecount(udf_node, -1); 5983 5984 /* 5985 * Free its allocated descriptors; memory will be released when 5986 * vop_reclaim() is called. 5987 */ 5988 loc = &udf_node->loc; 5989 5990 dscr = udf_node->fe; 5991 udf_free_descriptor_space(udf_node, loc, dscr); 5992 dscr = udf_node->efe; 5993 udf_free_descriptor_space(udf_node, loc, dscr); 5994 5995 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 5996 dscr = udf_node->ext[extnr]; 5997 loc = &udf_node->ext_loc[extnr]; 5998 udf_free_descriptor_space(udf_node, loc, dscr); 5999 } 6000 } 6001 6002 /* --------------------------------------------------------------------- */ 6003 6004 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 6005 int 6006 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 6007 { 6008 struct file_entry *fe = udf_node->fe; 6009 struct extfile_entry *efe = udf_node->efe; 6010 uint64_t file_size; 6011 int error; 6012 6013 if (fe) { 6014 file_size = udf_rw64(fe->inf_len); 6015 } else { 6016 assert(udf_node->efe); 6017 file_size = udf_rw64(efe->inf_len); 6018 } 6019 6020 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 6021 file_size, new_size)); 6022 6023 /* if not changing, we're done */ 6024 if (file_size == new_size) 6025 return 0; 6026 6027 *extended = (new_size > file_size); 6028 if (*extended) { 6029 error = udf_grow_node(udf_node, new_size); 6030 } else { 6031 error = udf_shrink_node(udf_node, new_size); 6032 } 6033 6034 return error; 6035 } 6036 6037 6038 /* --------------------------------------------------------------------- */ 6039 6040 void 6041 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 6042 struct timespec *mod, struct timespec *birth) 6043 { 6044 struct timespec now; 6045 struct file_entry *fe; 6046 struct extfile_entry *efe; 6047 struct filetimes_extattr_entry *ft_extattr; 6048 struct timestamp *atime, *mtime, *attrtime, *ctime; 6049 struct timestamp fe_ctime; 6050 struct timespec cur_birth; 6051 uint32_t offset, a_l; 6052 uint8_t *filedata; 6053 int error; 6054 6055 /* protect against rogue values */ 6056 if (!udf_node) 6057 return; 6058 6059 fe = udf_node->fe; 6060 efe = udf_node->efe; 6061 6062 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 6063 return; 6064 6065 /* get descriptor information */ 6066 if (fe) { 6067 atime = &fe->atime; 6068 mtime = &fe->mtime; 6069 attrtime = &fe->attrtime; 6070 filedata = fe->data; 6071 6072 /* initial save dummy setting */ 6073 ctime = &fe_ctime; 6074 6075 /* check our extended attribute if present */ 6076 error = udf_extattr_search_intern(udf_node, 6077 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 6078 if (!error) { 6079 ft_extattr = (struct filetimes_extattr_entry *) 6080 (filedata + offset); 6081 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 6082 ctime = &ft_extattr->times[0]; 6083 } 6084 /* TODO create the extended attribute if not found ? */ 6085 } else { 6086 assert(udf_node->efe); 6087 atime = &efe->atime; 6088 mtime = &efe->mtime; 6089 attrtime = &efe->attrtime; 6090 ctime = &efe->ctime; 6091 } 6092 6093 vfs_timestamp(&now); 6094 6095 /* set access time */ 6096 if (udf_node->i_flags & IN_ACCESS) { 6097 if (acc == NULL) 6098 acc = &now; 6099 udf_timespec_to_timestamp(acc, atime); 6100 } 6101 6102 /* set modification time */ 6103 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 6104 if (mod == NULL) 6105 mod = &now; 6106 udf_timespec_to_timestamp(mod, mtime); 6107 6108 /* ensure birthtime is older than set modification! */ 6109 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 6110 if ((cur_birth.tv_sec > mod->tv_sec) || 6111 ((cur_birth.tv_sec == mod->tv_sec) && 6112 (cur_birth.tv_nsec > mod->tv_nsec))) { 6113 udf_timespec_to_timestamp(mod, ctime); 6114 } 6115 } 6116 6117 /* update birthtime if specified */ 6118 /* XXX we assume here that given birthtime is older than mod */ 6119 if (birth && (birth->tv_sec != VNOVAL)) { 6120 udf_timespec_to_timestamp(birth, ctime); 6121 } 6122 6123 /* set change time */ 6124 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 6125 udf_timespec_to_timestamp(&now, attrtime); 6126 6127 /* notify updates to the node itself */ 6128 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 6129 udf_node->i_flags |= IN_ACCESSED; 6130 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 6131 udf_node->i_flags |= IN_MODIFIED; 6132 6133 /* clear modification flags */ 6134 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 6135 } 6136 6137 /* --------------------------------------------------------------------- */ 6138 6139 int 6140 udf_update(struct vnode *vp, struct timespec *acc, 6141 struct timespec *mod, struct timespec *birth, int updflags) 6142 { 6143 union dscrptr *dscrptr; 6144 struct udf_node *udf_node = VTOI(vp); 6145 struct udf_mount *ump = udf_node->ump; 6146 struct regid *impl_id; 6147 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 6148 int waitfor, flags; 6149 6150 #ifdef DEBUG 6151 char bits[128]; 6152 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 6153 updflags)); 6154 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 6155 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 6156 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 6157 #endif 6158 6159 /* set our times */ 6160 udf_itimes(udf_node, acc, mod, birth); 6161 6162 /* set our implementation id */ 6163 if (udf_node->fe) { 6164 dscrptr = (union dscrptr *) udf_node->fe; 6165 impl_id = &udf_node->fe->imp_id; 6166 } else { 6167 dscrptr = (union dscrptr *) udf_node->efe; 6168 impl_id = &udf_node->efe->imp_id; 6169 } 6170 6171 /* set our ID */ 6172 udf_set_regid(impl_id, IMPL_NAME); 6173 udf_add_impl_regid(ump, impl_id); 6174 6175 /* update our crc! on RMW we are not allowed to change a thing */ 6176 udf_validate_tag_and_crc_sums(dscrptr); 6177 6178 /* if called when mounted readonly, never write back */ 6179 if (vp->v_mount->mnt_flag & MNT_RDONLY) 6180 return 0; 6181 6182 /* check if the node is dirty 'enough'*/ 6183 if (updflags & UPDATE_CLOSE) { 6184 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6185 } else { 6186 flags = udf_node->i_flags & IN_MODIFIED; 6187 } 6188 if (flags == 0) 6189 return 0; 6190 6191 /* determine if we need to write sync or async */ 6192 waitfor = 0; 6193 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6194 /* sync mounted */ 6195 waitfor = updflags & UPDATE_WAIT; 6196 if (updflags & UPDATE_DIROP) 6197 waitfor |= UPDATE_WAIT; 6198 } 6199 if (waitfor) 6200 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6201 6202 return 0; 6203 } 6204 6205 6206 /* --------------------------------------------------------------------- */ 6207 6208 6209 /* 6210 * Read one fid and process it into a dirent and advance to the next (*fid) 6211 * has to be allocated a logical block in size, (*dirent) struct dirent length 6212 */ 6213 6214 int 6215 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6216 struct fileid_desc *fid, struct dirent *dirent) 6217 { 6218 struct udf_node *dir_node = VTOI(vp); 6219 struct udf_mount *ump = dir_node->ump; 6220 struct file_entry *fe = dir_node->fe; 6221 struct extfile_entry *efe = dir_node->efe; 6222 uint32_t fid_size, lb_size; 6223 uint64_t file_size; 6224 char *fid_name; 6225 int enough, error; 6226 6227 assert(fid); 6228 assert(dirent); 6229 assert(dir_node); 6230 assert(offset); 6231 assert(*offset != 1); 6232 6233 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6234 /* check if we're past the end of the directory */ 6235 if (fe) { 6236 file_size = udf_rw64(fe->inf_len); 6237 } else { 6238 assert(dir_node->efe); 6239 file_size = udf_rw64(efe->inf_len); 6240 } 6241 if (*offset >= file_size) 6242 return EINVAL; 6243 6244 /* get maximum length of FID descriptor */ 6245 lb_size = udf_rw32(ump->logical_vol->lb_size); 6246 6247 /* initialise return values */ 6248 fid_size = 0; 6249 memset(dirent, 0, sizeof(struct dirent)); 6250 memset(fid, 0, lb_size); 6251 6252 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6253 if (!enough) { 6254 /* short dir ... */ 6255 return EIO; 6256 } 6257 6258 error = vn_rdwr(UIO_READ, vp, 6259 fid, MIN(file_size - (*offset), lb_size), *offset, 6260 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6261 NULL, NULL); 6262 if (error) 6263 return error; 6264 6265 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6266 /* 6267 * Check if we got a whole descriptor. 6268 * TODO Try to `resync' directory stream when something is very wrong. 6269 */ 6270 6271 /* check if our FID header is OK */ 6272 error = udf_check_tag(fid); 6273 if (error) { 6274 goto brokendir; 6275 } 6276 DPRINTF(FIDS, ("\ttag check ok\n")); 6277 6278 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6279 error = EIO; 6280 goto brokendir; 6281 } 6282 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6283 6284 /* check for length */ 6285 fid_size = udf_fidsize(fid); 6286 enough = (file_size - (*offset) >= fid_size); 6287 if (!enough) { 6288 error = EIO; 6289 goto brokendir; 6290 } 6291 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6292 6293 /* check FID contents */ 6294 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6295 brokendir: 6296 if (error) { 6297 /* note that is sometimes a bit quick to report */ 6298 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6299 /* RESYNC? */ 6300 /* TODO: use udf_resync_fid_stream */ 6301 return EIO; 6302 } 6303 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6304 6305 /* we got a whole and valid descriptor! */ 6306 DPRINTF(FIDS, ("\tinterpret FID\n")); 6307 6308 /* create resulting dirent structure */ 6309 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6310 udf_to_unix_name(dirent->d_name, NAME_MAX, 6311 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6312 6313 /* '..' has no name, so provide one */ 6314 if (fid->file_char & UDF_FILE_CHAR_PAR) 6315 strcpy(dirent->d_name, ".."); 6316 6317 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ 6318 dirent->d_namlen = strlen(dirent->d_name); 6319 dirent->d_reclen = _DIRENT_SIZE(dirent); 6320 6321 /* 6322 * Note that its not worth trying to go for the filetypes now... its 6323 * too expensive too 6324 */ 6325 dirent->d_type = DT_UNKNOWN; 6326 6327 /* initial guess for filetype we can make */ 6328 if (fid->file_char & UDF_FILE_CHAR_DIR) 6329 dirent->d_type = DT_DIR; 6330 6331 /* advance */ 6332 *offset += fid_size; 6333 6334 return error; 6335 } 6336 6337 6338 /* --------------------------------------------------------------------- */ 6339 6340 static void 6341 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty) 6342 { 6343 struct udf_node *udf_node, *n_udf_node; 6344 struct vnode *vp; 6345 int vdirty, error; 6346 6347 KASSERT(mutex_owned(&ump->sync_lock)); 6348 6349 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6350 udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6351 for (;udf_node; udf_node = n_udf_node) { 6352 DPRINTF(SYNC, (".")); 6353 6354 vp = udf_node->vnode; 6355 6356 n_udf_node = rb_tree_iterate(&ump->udf_node_tree, 6357 udf_node, RB_DIR_RIGHT); 6358 6359 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 6360 if (error) { 6361 KASSERT(error == EBUSY); 6362 *ndirty += 1; 6363 continue; 6364 } 6365 6366 switch (pass) { 6367 case 1: 6368 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6369 break; 6370 case 2: 6371 vdirty = vp->v_numoutput; 6372 if (vp->v_tag == VT_UDF) 6373 vdirty += udf_node->outstanding_bufs + 6374 udf_node->outstanding_nodedscr; 6375 if (vdirty == 0) 6376 VOP_FSYNC(vp, cred, 0,0,0); 6377 *ndirty += vdirty; 6378 break; 6379 case 3: 6380 vdirty = vp->v_numoutput; 6381 if (vp->v_tag == VT_UDF) 6382 vdirty += udf_node->outstanding_bufs + 6383 udf_node->outstanding_nodedscr; 6384 *ndirty += vdirty; 6385 break; 6386 } 6387 6388 VOP_UNLOCK(vp); 6389 } 6390 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6391 } 6392 6393 6394 static bool 6395 udf_sync_selector(void *cl, struct vnode *vp) 6396 { 6397 struct udf_node *udf_node; 6398 6399 KASSERT(mutex_owned(vp->v_interlock)); 6400 6401 udf_node = VTOI(vp); 6402 6403 if (vp->v_vflag & VV_SYSTEM) 6404 return false; 6405 if (vp->v_type == VNON) 6406 return false; 6407 if (udf_node == NULL) 6408 return false; 6409 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0) 6410 return false; 6411 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj)) 6412 return false; 6413 6414 return true; 6415 } 6416 6417 void 6418 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6419 { 6420 struct vnode_iterator *marker; 6421 struct vnode *vp; 6422 struct udf_node *udf_node, *udf_next_node; 6423 int dummy, ndirty; 6424 6425 if (waitfor == MNT_LAZY) 6426 return; 6427 6428 mutex_enter(&ump->sync_lock); 6429 6430 /* Fill the rbtree with nodes to sync. */ 6431 vfs_vnode_iterator_init(ump->vfs_mountp, &marker); 6432 while ((vp = vfs_vnode_iterator_next(marker, 6433 udf_sync_selector, NULL)) != NULL) { 6434 udf_node = VTOI(vp); 6435 udf_node->i_flags |= IN_SYNCED; 6436 rb_tree_insert_node(&ump->udf_node_tree, udf_node); 6437 } 6438 vfs_vnode_iterator_destroy(marker); 6439 6440 dummy = 0; 6441 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6442 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6443 udf_sync_pass(ump, cred, 1, &dummy); 6444 6445 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6446 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6447 udf_sync_pass(ump, cred, 2, &dummy); 6448 6449 if (waitfor == MNT_WAIT) { 6450 recount: 6451 ndirty = ump->devvp->v_numoutput; 6452 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6453 ndirty)); 6454 udf_sync_pass(ump, cred, 3, &ndirty); 6455 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6456 ndirty)); 6457 6458 if (ndirty) { 6459 /* 1/4 second wait */ 6460 kpause("udfsync2", false, hz/4, NULL); 6461 goto recount; 6462 } 6463 } 6464 6465 /* Clean the rbtree. */ 6466 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6467 udf_node; udf_node = udf_next_node) { 6468 udf_next_node = rb_tree_iterate(&ump->udf_node_tree, 6469 udf_node, RB_DIR_RIGHT); 6470 rb_tree_remove_node(&ump->udf_node_tree, udf_node); 6471 udf_node->i_flags &= ~IN_SYNCED; 6472 vrele(udf_node->vnode); 6473 } 6474 6475 mutex_exit(&ump->sync_lock); 6476 } 6477 6478 /* --------------------------------------------------------------------- */ 6479 6480 /* 6481 * Read and write file extent in/from the buffer. 6482 * 6483 * The splitup of the extent into seperate request-buffers is to minimise 6484 * copying around as much as possible. 6485 * 6486 * block based file reading and writing 6487 */ 6488 6489 static int 6490 udf_read_internal(struct udf_node *node, uint8_t *blob) 6491 { 6492 struct udf_mount *ump; 6493 struct file_entry *fe = node->fe; 6494 struct extfile_entry *efe = node->efe; 6495 uint64_t inflen; 6496 uint32_t sector_size; 6497 uint8_t *srcpos; 6498 int icbflags, addr_type; 6499 6500 /* get extent and do some paranoia checks */ 6501 ump = node->ump; 6502 sector_size = ump->discinfo.sector_size; 6503 6504 /* 6505 * XXX there should be real bounds-checking logic here, 6506 * in case ->l_ea or ->inf_len contains nonsense. 6507 */ 6508 6509 if (fe) { 6510 inflen = udf_rw64(fe->inf_len); 6511 srcpos = &fe->data[0] + udf_rw32(fe->l_ea); 6512 icbflags = udf_rw16(fe->icbtag.flags); 6513 } else { 6514 assert(node->efe); 6515 inflen = udf_rw64(efe->inf_len); 6516 srcpos = &efe->data[0] + udf_rw32(efe->l_ea); 6517 icbflags = udf_rw16(efe->icbtag.flags); 6518 } 6519 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6520 6521 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6522 __USE(addr_type); 6523 assert(inflen < sector_size); 6524 6525 /* copy out info */ 6526 memcpy(blob, srcpos, inflen); 6527 memset(&blob[inflen], 0, sector_size - inflen); 6528 6529 return 0; 6530 } 6531 6532 6533 static int 6534 udf_write_internal(struct udf_node *node, uint8_t *blob) 6535 { 6536 struct udf_mount *ump; 6537 struct file_entry *fe = node->fe; 6538 struct extfile_entry *efe = node->efe; 6539 uint64_t inflen; 6540 uint32_t sector_size; 6541 uint8_t *pos; 6542 int icbflags, addr_type; 6543 6544 /* get extent and do some paranoia checks */ 6545 ump = node->ump; 6546 sector_size = ump->discinfo.sector_size; 6547 6548 if (fe) { 6549 inflen = udf_rw64(fe->inf_len); 6550 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6551 icbflags = udf_rw16(fe->icbtag.flags); 6552 } else { 6553 assert(node->efe); 6554 inflen = udf_rw64(efe->inf_len); 6555 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6556 icbflags = udf_rw16(efe->icbtag.flags); 6557 } 6558 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6559 6560 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6561 __USE(addr_type); 6562 assert(inflen < sector_size); 6563 __USE(sector_size); 6564 6565 /* copy in blob */ 6566 /* memset(pos, 0, inflen); */ 6567 memcpy(pos, blob, inflen); 6568 6569 return 0; 6570 } 6571 6572 6573 void 6574 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6575 { 6576 struct buf *nestbuf; 6577 struct udf_mount *ump = udf_node->ump; 6578 uint64_t *mapping; 6579 uint64_t run_start; 6580 uint32_t sector_size; 6581 uint32_t buf_offset, sector, rbuflen, rblk; 6582 uint32_t from, lblkno; 6583 uint32_t sectors; 6584 uint8_t *buf_pos; 6585 int error, run_length, what; 6586 6587 sector_size = udf_node->ump->discinfo.sector_size; 6588 6589 from = buf->b_blkno; 6590 sectors = buf->b_bcount / sector_size; 6591 6592 what = udf_get_c_type(udf_node); 6593 6594 /* assure we have enough translation slots */ 6595 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6596 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6597 6598 if (sectors > UDF_MAX_MAPPINGS) { 6599 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6600 buf->b_error = EIO; 6601 biodone(buf); 6602 return; 6603 } 6604 6605 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6606 6607 error = 0; 6608 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6609 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6610 if (error) { 6611 buf->b_error = error; 6612 biodone(buf); 6613 goto out; 6614 } 6615 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6616 6617 /* pre-check if its an internal */ 6618 if (*mapping == UDF_TRANS_INTERN) { 6619 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6620 if (error) 6621 buf->b_error = error; 6622 biodone(buf); 6623 goto out; 6624 } 6625 DPRINTF(READ, ("\tnot intern\n")); 6626 6627 #ifdef DEBUG 6628 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6629 printf("Returned translation table:\n"); 6630 for (sector = 0; sector < sectors; sector++) { 6631 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6632 } 6633 } 6634 #endif 6635 6636 /* request read-in of data from disc sheduler */ 6637 buf->b_resid = buf->b_bcount; 6638 for (sector = 0; sector < sectors; sector++) { 6639 buf_offset = sector * sector_size; 6640 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6641 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6642 6643 /* check if its zero or unmapped to stop reading */ 6644 switch (mapping[sector]) { 6645 case UDF_TRANS_UNMAPPED: 6646 case UDF_TRANS_ZERO: 6647 /* copy zero sector TODO runlength like below */ 6648 memset(buf_pos, 0, sector_size); 6649 DPRINTF(READ, ("\treturning zero sector\n")); 6650 nestiobuf_done(buf, sector_size, 0); 6651 break; 6652 default : 6653 DPRINTF(READ, ("\tread sector " 6654 "%"PRIu64"\n", mapping[sector])); 6655 6656 lblkno = from + sector; 6657 run_start = mapping[sector]; 6658 run_length = 1; 6659 while (sector < sectors-1) { 6660 if (mapping[sector+1] != mapping[sector]+1) 6661 break; 6662 run_length++; 6663 sector++; 6664 } 6665 6666 /* 6667 * nest an iobuf and mark it for async reading. Since 6668 * we're using nested buffers, they can't be cached by 6669 * design. 6670 */ 6671 rbuflen = run_length * sector_size; 6672 rblk = run_start * (sector_size/DEV_BSIZE); 6673 6674 nestbuf = getiobuf(NULL, true); 6675 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6676 /* nestbuf is B_ASYNC */ 6677 6678 /* identify this nestbuf */ 6679 nestbuf->b_lblkno = lblkno; 6680 assert(nestbuf->b_vp == udf_node->vnode); 6681 6682 /* CD shedules on raw blkno */ 6683 nestbuf->b_blkno = rblk; 6684 nestbuf->b_proc = NULL; 6685 nestbuf->b_rawblkno = rblk; 6686 nestbuf->b_udf_c_type = what; 6687 6688 udf_discstrat_queuebuf(ump, nestbuf); 6689 } 6690 } 6691 out: 6692 /* if we're synchronously reading, wait for the completion */ 6693 if ((buf->b_flags & B_ASYNC) == 0) 6694 biowait(buf); 6695 6696 DPRINTF(READ, ("\tend of read_filebuf\n")); 6697 free(mapping, M_TEMP); 6698 return; 6699 } 6700 6701 6702 void 6703 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6704 { 6705 struct buf *nestbuf; 6706 struct udf_mount *ump = udf_node->ump; 6707 uint64_t *mapping; 6708 uint64_t run_start; 6709 uint32_t lb_size; 6710 uint32_t buf_offset, lb_num, rbuflen, rblk; 6711 uint32_t from, lblkno; 6712 uint32_t num_lb; 6713 int error, run_length, what, s; 6714 6715 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6716 6717 from = buf->b_blkno; 6718 num_lb = buf->b_bcount / lb_size; 6719 6720 what = udf_get_c_type(udf_node); 6721 6722 /* assure we have enough translation slots */ 6723 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6724 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6725 6726 if (num_lb > UDF_MAX_MAPPINGS) { 6727 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6728 buf->b_error = EIO; 6729 biodone(buf); 6730 return; 6731 } 6732 6733 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6734 6735 error = 0; 6736 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6737 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6738 if (error) { 6739 buf->b_error = error; 6740 biodone(buf); 6741 goto out; 6742 } 6743 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6744 6745 /* if its internally mapped, we can write it in the descriptor itself */ 6746 if (*mapping == UDF_TRANS_INTERN) { 6747 /* TODO paranoia check if we ARE going to have enough space */ 6748 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6749 if (error) 6750 buf->b_error = error; 6751 biodone(buf); 6752 goto out; 6753 } 6754 DPRINTF(WRITE, ("\tnot intern\n")); 6755 6756 /* request write out of data to disc sheduler */ 6757 buf->b_resid = buf->b_bcount; 6758 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6759 buf_offset = lb_num * lb_size; 6760 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6761 6762 /* 6763 * Mappings are not that important here. Just before we write 6764 * the lb_num we late-allocate them when needed and update the 6765 * mapping in the udf_node. 6766 */ 6767 6768 /* XXX why not ignore the mapping altogether ? */ 6769 DPRINTF(WRITE, ("\twrite lb_num " 6770 "%"PRIu64, mapping[lb_num])); 6771 6772 lblkno = from + lb_num; 6773 run_start = mapping[lb_num]; 6774 run_length = 1; 6775 while (lb_num < num_lb-1) { 6776 if (mapping[lb_num+1] != mapping[lb_num]+1) 6777 if (mapping[lb_num+1] != mapping[lb_num]) 6778 break; 6779 run_length++; 6780 lb_num++; 6781 } 6782 DPRINTF(WRITE, ("+ %d\n", run_length)); 6783 6784 /* nest an iobuf on the master buffer for the extent */ 6785 rbuflen = run_length * lb_size; 6786 rblk = run_start * (lb_size/DEV_BSIZE); 6787 6788 nestbuf = getiobuf(NULL, true); 6789 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6790 /* nestbuf is B_ASYNC */ 6791 6792 /* identify this nestbuf */ 6793 nestbuf->b_lblkno = lblkno; 6794 KASSERT(nestbuf->b_vp == udf_node->vnode); 6795 6796 /* CD shedules on raw blkno */ 6797 nestbuf->b_blkno = rblk; 6798 nestbuf->b_proc = NULL; 6799 nestbuf->b_rawblkno = rblk; 6800 nestbuf->b_udf_c_type = what; 6801 6802 /* increment our outstanding bufs counter */ 6803 s = splbio(); 6804 udf_node->outstanding_bufs++; 6805 splx(s); 6806 6807 udf_discstrat_queuebuf(ump, nestbuf); 6808 } 6809 out: 6810 /* if we're synchronously writing, wait for the completion */ 6811 if ((buf->b_flags & B_ASYNC) == 0) 6812 biowait(buf); 6813 6814 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6815 free(mapping, M_TEMP); 6816 return; 6817 } 6818 6819 /* --------------------------------------------------------------------- */ 6820