xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision b7ae68fde0d8ef1c03714e8bbb1ee7c6118ea93b)
1 /* $NetBSD: udf_subr.c,v 1.19 2006/09/28 19:57:26 reinoud Exp $ */
2 
3 /*
4  * Copyright (c) 2006 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  */
35 
36 
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.19 2006/09/28 19:57:26 reinoud Exp $");
40 #endif /* not lint */
41 
42 
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67 
68 #include <fs/udf/ecma167-udf.h>
69 #include <fs/udf/udf_mount.h>
70 
71 #include "udf.h"
72 #include "udf_subr.h"
73 #include "udf_bswap.h"
74 
75 
76 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
77 
78 
79 /* predefines */
80 
81 
82 #if 0
83 {
84 	int i, j, dlen;
85 	uint8_t *blob;
86 
87 	blob = (uint8_t *) fid;
88 	dlen = file_size - (*offset);
89 
90 	printf("blob = %p\n", blob);
91 	printf("dump of %d bytes\n", dlen);
92 
93 	for (i = 0; i < dlen; i+ = 16) {
94 		printf("%04x ", i);
95 		for (j = 0; j < 16; j++) {
96 			if (i+j < dlen) {
97 				printf("%02x ", blob[i+j]);
98 			} else {
99 				printf("   ");
100 			}
101 		}
102 		for (j = 0; j < 16; j++) {
103 			if (i+j < dlen) {
104 				if (blob[i+j]>32 && blob[i+j]! = 127) {
105 					printf("%c", blob[i+j]);
106 				} else {
107 					printf(".");
108 				}
109 			}
110 		}
111 		printf("\n");
112 	}
113 	printf("\n");
114 }
115 Debugger();
116 #endif
117 
118 
119 /* --------------------------------------------------------------------- */
120 
121 /* STUB */
122 
123 static int
124 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
125 {
126 	int sector_size = ump->discinfo.sector_size;
127 	int blks = sector_size / DEV_BSIZE;
128 
129 	/* NOTE bread() checks if block is in cache or not */
130 	return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
131 }
132 
133 
134 /* --------------------------------------------------------------------- */
135 
136 /*
137  * Check if the blob starts with a good UDF tag. Tags are protected by a
138  * checksum over the reader except one byte at position 4 that is the checksum
139  * itself.
140  */
141 
142 int
143 udf_check_tag(void *blob)
144 {
145 	struct desc_tag *tag = blob;
146 	uint8_t *pos, sum, cnt;
147 
148 	/* check TAG header checksum */
149 	pos = (uint8_t *) tag;
150 	sum = 0;
151 
152 	for(cnt = 0; cnt < 16; cnt++) {
153 		if (cnt != 4)
154 			sum += *pos;
155 		pos++;
156 	}
157 	if (sum != tag->cksum) {
158 		/* bad tag header checksum; this is not a valid tag */
159 		return EINVAL;
160 	}
161 
162 	return 0;
163 }
164 
165 /* --------------------------------------------------------------------- */
166 
167 /*
168  * check tag payload will check descriptor CRC as specified.
169  * If the descriptor is too short, it will return EIO otherwise EINVAL.
170  */
171 
172 int
173 udf_check_tag_payload(void *blob, uint32_t max_length)
174 {
175 	struct desc_tag *tag = blob;
176 	uint16_t crc, crc_len;
177 
178 	crc_len = udf_rw16(tag->desc_crc_len);
179 
180 	/* check payload CRC if applicable */
181 	if (crc_len == 0)
182 		return 0;
183 
184 	if (crc_len > max_length)
185 		return EIO;
186 
187 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
188 	if (crc != udf_rw16(tag->desc_crc)) {
189 		/* bad payload CRC; this is a broken tag */
190 		return EINVAL;
191 	}
192 
193 	return 0;
194 }
195 
196 /* --------------------------------------------------------------------- */
197 
198 int
199 udf_validate_tag_sum(void *blob)
200 {
201 	struct desc_tag *tag = blob;
202 	uint8_t *pos, sum, cnt;
203 
204 	/* calculate TAG header checksum */
205 	pos = (uint8_t *) tag;
206 	sum = 0;
207 
208 	for(cnt = 0; cnt < 16; cnt++) {
209 		if (cnt != 4) sum += *pos;
210 		pos++;
211 	}
212 	tag->cksum = sum;	/* 8 bit */
213 
214 	return 0;
215 }
216 
217 /* --------------------------------------------------------------------- */
218 
219 /* assumes sector number of descriptor to be saved already present */
220 
221 int
222 udf_validate_tag_and_crc_sums(void *blob)
223 {
224 	struct desc_tag *tag  = blob;
225 	uint8_t         *btag = (uint8_t *) tag;
226 	uint16_t crc, crc_len;
227 
228 	crc_len = udf_rw16(tag->desc_crc_len);
229 
230 	/* check payload CRC if applicable */
231 	if (crc_len > 0) {
232 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
233 		tag->desc_crc = udf_rw16(crc);
234 	}
235 
236 	/* calculate TAG header checksum */
237 	return udf_validate_tag_sum(blob);
238 }
239 
240 /* --------------------------------------------------------------------- */
241 
242 /*
243  * XXX note the different semantics from udfclient: for FIDs it still rounds
244  * up to sectors. Use udf_fidsize() for a correct length.
245  */
246 
247 int
248 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
249 {
250 	uint32_t size, tag_id, num_secs, elmsz;
251 
252 	tag_id = udf_rw16(dscr->tag.id);
253 
254 	switch (tag_id) {
255 	case TAGID_LOGVOL :
256 		size  = sizeof(struct logvol_desc) - 1;
257 		size += udf_rw32(dscr->lvd.mt_l);
258 		break;
259 	case TAGID_UNALLOC_SPACE :
260 		elmsz = sizeof(struct extent_ad);
261 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
262 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
263 		break;
264 	case TAGID_FID :
265 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
266 		size = (size + 3) & ~3;
267 		break;
268 	case TAGID_LOGVOL_INTEGRITY :
269 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
270 		size += udf_rw32(dscr->lvid.l_iu);
271 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
272 		break;
273 	case TAGID_SPACE_BITMAP :
274 		size  = sizeof(struct space_bitmap_desc) - 1;
275 		size += udf_rw32(dscr->sbd.num_bytes);
276 		break;
277 	case TAGID_SPARING_TABLE :
278 		elmsz = sizeof(struct spare_map_entry);
279 		size  = sizeof(struct udf_sparing_table) - elmsz;
280 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
281 		break;
282 	case TAGID_FENTRY :
283 		size  = sizeof(struct file_entry);
284 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
285 		break;
286 	case TAGID_EXTFENTRY :
287 		size  = sizeof(struct extfile_entry);
288 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
289 		break;
290 	case TAGID_FSD :
291 		size  = sizeof(struct fileset_desc);
292 		break;
293 	default :
294 		size = sizeof(union dscrptr);
295 		break;
296 	}
297 
298 	if ((size == 0) || (udf_sector_size == 0)) return 0;
299 
300 	/* round up in sectors */
301 	num_secs = (size + udf_sector_size -1) / udf_sector_size;
302 	return num_secs * udf_sector_size;
303 }
304 
305 
306 static int
307 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
308 {
309 	uint32_t size;
310 
311 	if (udf_rw16(fid->tag.id) != TAGID_FID)
312 		panic("got udf_fidsize on non FID\n");
313 
314 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
315 	size = (size + 3) & ~3;
316 
317 	return size;
318 }
319 
320 /* --------------------------------------------------------------------- */
321 
322 /*
323  * Problem with read_descriptor are long descriptors spanning more than one
324  * sector. Luckily long descriptors can't be in `logical space'.
325  *
326  * Size of allocated piece is returned in multiple of sector size due to
327  * udf_calc_udf_malloc_size().
328  */
329 
330 int
331 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
332 		    struct malloc_type *mtype, union dscrptr **dstp)
333 {
334 	union dscrptr *src, *dst;
335 	struct buf *bp;
336 	uint8_t *pos;
337 	int blks, blk, dscrlen;
338 	int i, error, sector_size;
339 
340 	sector_size = ump->discinfo.sector_size;
341 
342 	*dstp = dst = NULL;
343 	dscrlen = sector_size;
344 
345 	/* read initial piece */
346 	error = udf_bread(ump, sector, &bp);
347 	DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
348 
349 	if (!error) {
350 		/* check if its a valid tag */
351 		error = udf_check_tag(bp->b_data);
352 		if (error) {
353 			/* check if its an empty block */
354 			pos = bp->b_data;
355 			for (i = 0; i < sector_size; i++, pos++) {
356 				if (*pos) break;
357 			}
358 			if (i == sector_size) {
359 				/* return no error but with no dscrptr */
360 				/* dispose first block */
361 				brelse(bp);
362 				return 0;
363 			}
364 		}
365 	}
366 	DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
367 	if (!error) {
368 		src = (union dscrptr *) bp->b_data;
369 		dscrlen = udf_tagsize(src, sector_size);
370 		dst = malloc(dscrlen, mtype, M_WAITOK);
371 		memcpy(dst, src, sector_size);
372 	}
373 	/* dispose first block */
374 	bp->b_flags |= B_AGE;
375 	brelse(bp);
376 
377 	if (!error && (dscrlen > sector_size)) {
378 		DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
379 		/*
380 		 * Read the rest of descriptor. Since it is only used at mount
381 		 * time its overdone to define and use a specific udf_breadn
382 		 * for this alone.
383 		 */
384 		blks = (dscrlen + sector_size -1) / sector_size;
385 		for (blk = 1; blk < blks; blk++) {
386 			error = udf_bread(ump, sector + blk, &bp);
387 			if (error) {
388 				brelse(bp);
389 				break;
390 			}
391 			pos = (uint8_t *) dst + blk*sector_size;
392 			memcpy(pos, bp->b_data, sector_size);
393 
394 			/* dispose block */
395 			bp->b_flags |= B_AGE;
396 			brelse(bp);
397 		}
398 		DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
399 		    error));
400 	}
401 	if (!error) {
402 		error = udf_check_tag_payload(dst, dscrlen);
403 		DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
404 	}
405 	if (error && dst) {
406 		free(dst, mtype);
407 		dst = NULL;
408 	}
409 	*dstp = dst;
410 
411 	return error;
412 }
413 
414 /* --------------------------------------------------------------------- */
415 #ifdef DEBUG
416 static void
417 udf_dump_discinfo(struct udf_mount *ump)
418 {
419 	char   bits[128];
420 	struct mmc_discinfo *di = &ump->discinfo;
421 
422 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
423 		return;
424 
425 	printf("Device/media info  :\n");
426 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
427 	printf("\tderived class      %d\n", di->mmc_class);
428 	printf("\tsector size        %d\n", di->sector_size);
429 	printf("\tdisc state         %d\n", di->disc_state);
430 	printf("\tlast ses state     %d\n", di->last_session_state);
431 	printf("\tbg format state    %d\n", di->bg_format_state);
432 	printf("\tfrst track         %d\n", di->first_track);
433 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
434 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
435 	printf("\tlink block penalty %d\n", di->link_block_penalty);
436 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
437 		sizeof(bits));
438 	printf("\tdisc flags         %s\n", bits);
439 	printf("\tdisc id            %x\n", di->disc_id);
440 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
441 
442 	printf("\tnum sessions       %d\n", di->num_sessions);
443 	printf("\tnum tracks         %d\n", di->num_tracks);
444 
445 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
446 	printf("\tcapabilities cur   %s\n", bits);
447 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
448 	printf("\tcapabilities cap   %s\n", bits);
449 }
450 #else
451 #define udf_dump_discinfo(a);
452 #endif
453 
454 /* not called often */
455 int
456 udf_update_discinfo(struct udf_mount *ump)
457 {
458 	struct vnode *devvp = ump->devvp;
459 	struct partinfo dpart;
460 	struct mmc_discinfo *di;
461 	int error;
462 
463 	DPRINTF(VOLUMES, ("read/update disc info\n"));
464 	di = &ump->discinfo;
465 	memset(di, 0, sizeof(struct mmc_discinfo));
466 
467 	/* check if we're on a MMC capable device, i.e. CD/DVD */
468 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
469 	if (error == 0) {
470 		udf_dump_discinfo(ump);
471 		return 0;
472 	}
473 
474 	/* disc partition support */
475 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
476 	if (error)
477 		return ENODEV;
478 
479 	/* set up a disc info profile for partitions */
480 	di->mmc_profile		= 0x01;	/* disc type */
481 	di->mmc_class		= MMC_CLASS_DISC;
482 	di->disc_state		= MMC_STATE_CLOSED;
483 	di->last_session_state	= MMC_STATE_CLOSED;
484 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
485 	di->link_block_penalty	= 0;
486 
487 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
488 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
489 	di->mmc_cap    = di->mmc_cur;
490 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
491 
492 	/* TODO problem with last_possible_lba on resizable VND; request */
493 	di->last_possible_lba = dpart.part->p_size;
494 	di->sector_size       = dpart.disklab->d_secsize;
495 	di->blockingnr        = 1;
496 
497 	di->num_sessions = 1;
498 	di->num_tracks   = 1;
499 
500 	di->first_track  = 1;
501 	di->first_track_last_session = di->last_track_last_session = 1;
502 
503 	udf_dump_discinfo(ump);
504 	return 0;
505 }
506 
507 /* --------------------------------------------------------------------- */
508 
509 int
510 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
511 {
512 	struct vnode *devvp = ump->devvp;
513 	struct mmc_discinfo *di = &ump->discinfo;
514 	int error, class;
515 
516 	DPRINTF(VOLUMES, ("read track info\n"));
517 
518 	class = di->mmc_class;
519 	if (class != MMC_CLASS_DISC) {
520 		/* tracknr specified in struct ti */
521 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
522 			NOCRED, NULL);
523 		return error;
524 	}
525 
526 	/* disc partition support */
527 	if (ti->tracknr != 1)
528 		return EIO;
529 
530 	/* create fake ti (TODO check for resized vnds) */
531 	ti->sessionnr  = 1;
532 
533 	ti->track_mode = 0;	/* XXX */
534 	ti->data_mode  = 0;	/* XXX */
535 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
536 
537 	ti->track_start    = 0;
538 	ti->packet_size    = 1;
539 
540 	/* TODO support for resizable vnd */
541 	ti->track_size    = di->last_possible_lba;
542 	ti->next_writable = di->last_possible_lba;
543 	ti->last_recorded = ti->next_writable;
544 	ti->free_blocks   = 0;
545 
546 	return 0;
547 }
548 
549 /* --------------------------------------------------------------------- */
550 
551 /* track/session searching for mounting */
552 
553 static int
554 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
555 		  int *first_tracknr, int *last_tracknr)
556 {
557 	struct mmc_trackinfo trackinfo;
558 	uint32_t tracknr, start_track, num_tracks;
559 	int error;
560 
561 	/* if negative, sessionnr is relative to last session */
562 	if (args->sessionnr < 0) {
563 		args->sessionnr += ump->discinfo.num_sessions;
564 		/* sanity */
565 		if (args->sessionnr < 0)
566 			args->sessionnr = 0;
567 	}
568 
569 	/* sanity */
570 	if (args->sessionnr > ump->discinfo.num_sessions)
571 		args->sessionnr = ump->discinfo.num_sessions;
572 
573 	/* search the tracks for this session, zero session nr indicates last */
574 	if (args->sessionnr == 0) {
575 		args->sessionnr = ump->discinfo.num_sessions;
576 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
577 			args->sessionnr--;
578 		}
579 	}
580 
581 	/* search the first and last track of the specified session */
582 	num_tracks  = ump->discinfo.num_tracks;
583 	start_track = ump->discinfo.first_track;
584 
585 	/* search for first track of this session */
586 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
587 		/* get track info */
588 		trackinfo.tracknr = tracknr;
589 		error = udf_update_trackinfo(ump, &trackinfo);
590 		if (error)
591 			return error;
592 
593 		if (trackinfo.sessionnr == args->sessionnr)
594 			break;
595 	}
596 	*first_tracknr = tracknr;
597 
598 	/* search for last track of this session */
599 	for (;tracknr <= num_tracks; tracknr++) {
600 		/* get track info */
601 		trackinfo.tracknr = tracknr;
602 		error = udf_update_trackinfo(ump, &trackinfo);
603 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
604 			tracknr--;
605 			break;
606 		}
607 	}
608 	if (tracknr > num_tracks)
609 		tracknr--;
610 
611 	*last_tracknr = tracknr;
612 
613 	assert(*last_tracknr >= *first_tracknr);
614 	return 0;
615 }
616 
617 /* --------------------------------------------------------------------- */
618 
619 static int
620 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
621 {
622 	int error;
623 
624 	error = udf_read_descriptor(ump, sector, M_UDFVOLD,
625 			(union dscrptr **) dst);
626 	if (!error) {
627 		/* blank terminator blocks are not allowed here */
628 		if (*dst == NULL)
629 			return ENOENT;
630 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
631 			error = ENOENT;
632 			free(*dst, M_UDFVOLD);
633 			*dst = NULL;
634 			DPRINTF(VOLUMES, ("Not an anchor\n"));
635 		}
636 	}
637 
638 	return error;
639 }
640 
641 
642 int
643 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
644 {
645 	struct mmc_trackinfo first_track;
646 	struct mmc_trackinfo last_track;
647 	struct anchor_vdp **anchorsp;
648 	uint32_t track_start;
649 	uint32_t track_end;
650 	uint32_t positions[4];
651 	int first_tracknr, last_tracknr;
652 	int error, anch, ok, first_anchor;
653 
654 	/* search the first and last track of the specified session */
655 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
656 	if (!error) {
657 		first_track.tracknr = first_tracknr;
658 		error = udf_update_trackinfo(ump, &first_track);
659 	}
660 	if (!error) {
661 		last_track.tracknr = last_tracknr;
662 		error = udf_update_trackinfo(ump, &last_track);
663 	}
664 	if (error) {
665 		printf("UDF mount: reading disc geometry failed\n");
666 		return 0;
667 	}
668 
669 	track_start = first_track.track_start;
670 
671 	/* `end' is not as straitforward as start. */
672 	track_end =   last_track.track_start
673 		    + last_track.track_size - last_track.free_blocks - 1;
674 
675 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
676 		/* end of track is not straitforward here */
677 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
678 			track_end = last_track.last_recorded;
679 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
680 			track_end = last_track.next_writable
681 				    - ump->discinfo.link_block_penalty;
682 	}
683 
684 	/* its no use reading a blank track */
685 	first_anchor = 0;
686 	if (first_track.flags & MMC_TRACKINFO_BLANK)
687 		first_anchor = 1;
688 
689 	/* read anchors start+256, start+512, end-256, end */
690 	positions[0] = track_start+256;
691 	positions[1] =   track_end-256;
692 	positions[2] =   track_end;
693 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
694 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
695 
696 	ok = 0;
697 	anchorsp = ump->anchors;
698 	for (anch = first_anchor; anch < 4; anch++) {
699 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
700 		    positions[anch]));
701 		error = udf_read_anchor(ump, positions[anch], anchorsp);
702 		if (!error) {
703 			anchorsp++;
704 			ok++;
705 		}
706 	}
707 
708 	/* VATs are only recorded on sequential media, but initialise */
709 	ump->first_possible_vat_location = track_start + 256 + 1;
710 	ump->last_possible_vat_location  = track_end
711 		+ ump->discinfo.blockingnr;
712 
713 	return ok;
714 }
715 
716 /* --------------------------------------------------------------------- */
717 
718 /* we dont try to be smart; we just record the parts */
719 #define UDF_UPDATE_DSCR(name, dscr) \
720 	if (name) \
721 		free(name, M_UDFVOLD); \
722 	name = dscr;
723 
724 static int
725 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
726 {
727 	uint16_t partnr;
728 
729 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
730 	    udf_rw16(dscr->tag.id)));
731 	switch (udf_rw16(dscr->tag.id)) {
732 	case TAGID_PRI_VOL :		/* primary partition		*/
733 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
734 		break;
735 	case TAGID_LOGVOL :		/* logical volume		*/
736 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
737 		break;
738 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
739 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
740 		break;
741 	case TAGID_IMP_VOL :		/* implementation		*/
742 		/* XXX do we care about multiple impl. descr ? */
743 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
744 		break;
745 	case TAGID_PARTITION :		/* physical partition		*/
746 		/* not much use if its not allocated */
747 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
748 			free(dscr, M_UDFVOLD);
749 			break;
750 		}
751 
752 		/* check partnr boundaries */
753 		partnr = udf_rw16(dscr->pd.part_num);
754 		if (partnr >= UDF_PARTITIONS)
755 			return EINVAL;
756 
757 		UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
758 		break;
759 	case TAGID_VOL :		/* volume space extender; rare	*/
760 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
761 		free(dscr, M_UDFVOLD);
762 		break;
763 	default :
764 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
765 		    udf_rw16(dscr->tag.id)));
766 		free(dscr, M_UDFVOLD);
767 	}
768 
769 	return 0;
770 }
771 #undef UDF_UPDATE_DSCR
772 
773 /* --------------------------------------------------------------------- */
774 
775 static int
776 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
777 {
778 	union dscrptr *dscr;
779 	uint32_t sector_size, dscr_size;
780 	int error;
781 
782 	sector_size = ump->discinfo.sector_size;
783 
784 	/* loc is sectornr, len is in bytes */
785 	error = EIO;
786 	while (len) {
787 		error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
788 		if (error)
789 			return error;
790 
791 		/* blank block is a terminator */
792 		if (dscr == NULL)
793 			return 0;
794 
795 		/* TERM descriptor is a terminator */
796 		if (udf_rw16(dscr->tag.id) == TAGID_TERM)
797 			return 0;
798 
799 		/* process all others */
800 		dscr_size = udf_tagsize(dscr, sector_size);
801 		error = udf_process_vds_descriptor(ump, dscr);
802 		if (error) {
803 			free(dscr, M_UDFVOLD);
804 			break;
805 		}
806 		assert((dscr_size % sector_size) == 0);
807 
808 		len -= dscr_size;
809 		loc += dscr_size / sector_size;
810 	}
811 
812 	return error;
813 }
814 
815 
816 int
817 udf_read_vds_space(struct udf_mount *ump)
818 {
819 	struct anchor_vdp *anchor, *anchor2;
820 	size_t size;
821 	uint32_t main_loc, main_len;
822 	uint32_t reserve_loc, reserve_len;
823 	int error;
824 
825 	/*
826 	 * read in VDS space provided by the anchors; if one descriptor read
827 	 * fails, try the mirror sector.
828 	 *
829 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
830 	 * avoids the `compatibility features' of DirectCD that may confuse
831 	 * stuff completely.
832 	 */
833 
834 	anchor  = ump->anchors[0];
835 	anchor2 = ump->anchors[1];
836 	assert(anchor);
837 
838 	if (anchor2) {
839 		size = sizeof(struct extent_ad);
840 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
841 			anchor = anchor2;
842 		/* reserve is specified to be a literal copy of main */
843 	}
844 
845 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
846 	main_len    = udf_rw32(anchor->main_vds_ex.len);
847 
848 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
849 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
850 
851 	error = udf_read_vds_extent(ump, main_loc, main_len);
852 	if (error) {
853 		printf("UDF mount: reading in reserve VDS extent\n");
854 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
855 	}
856 
857 	return error;
858 }
859 
860 /* --------------------------------------------------------------------- */
861 
862 /*
863  * Read in the logical volume integrity sequence pointed to by our logical
864  * volume descriptor. Its a sequence that can be extended using fields in the
865  * integrity descriptor itself. On sequential media only one is found, on
866  * rewritable media a sequence of descriptors can be found as a form of
867  * history keeping and on non sequential write-once media the chain is vital
868  * to allow more and more descriptors to be written. The last descriptor
869  * written in an extent needs to claim space for a new extent.
870  */
871 
872 static int
873 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
874 {
875 	union dscrptr *dscr;
876 	struct logvol_int_desc *lvint;
877 	uint32_t sector_size, sector, len;
878 	int dscr_type, error;
879 
880 	sector_size = ump->discinfo.sector_size;
881 	len    = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
882 	sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
883 
884 	lvint = NULL;
885 	dscr  = NULL;
886 	error = 0;
887 	while (len) {
888 		/* read in our integrity descriptor */
889 		error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
890 		if (!error) {
891 			if (dscr == NULL)
892 				break;		/* empty terminates */
893 			dscr_type = udf_rw16(dscr->tag.id);
894 			if (dscr_type == TAGID_TERM) {
895 				break;		/* clean terminator */
896 			}
897 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
898 				/* fatal... corrupt disc */
899 				error = ENOENT;
900 				break;
901 			}
902 			if (lvint)
903 				free(lvint, M_UDFVOLD);
904 			lvint = &dscr->lvid;
905 			dscr = NULL;
906 		} /* else hope for the best... maybe the next is ok */
907 
908 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
909 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
910 
911 		/* proceed sequential */
912 		sector += 1;
913 		len    -= sector_size;
914 
915 		/* are we linking to a new piece? */
916 		if (lvint->next_extent.len) {
917 			len    = udf_rw32(lvint->next_extent.len);
918 			sector = udf_rw32(lvint->next_extent.loc);
919 		}
920 	}
921 
922 	/* clean up the mess, esp. when there is an error */
923 	if (dscr)
924 		free(dscr, M_UDFVOLD);
925 
926 	if (error && lvint) {
927 		free(lvint, M_UDFVOLD);
928 		lvint = NULL;
929 	}
930 
931 	if (!lvint)
932 		error = ENOENT;
933 
934 	*lvintp = lvint;
935 	return error;
936 }
937 
938 /* --------------------------------------------------------------------- */
939 
940 /*
941  * Checks if ump's vds information is correct and complete
942  */
943 
944 int
945 udf_process_vds(struct udf_mount *ump, struct udf_args *args) {
946 	union udf_pmap *mapping;
947 	struct logvol_int_desc *lvint;
948 	struct udf_logvol_info *lvinfo;
949 	uint32_t n_pm, mt_l;
950 	uint8_t *pmap_pos;
951 	char *domain_name, *map_name;
952 	const char *check_name;
953 	int pmap_stype, pmap_size;
954 	int pmap_type, log_part, phys_part;
955 	int n_phys, n_virt, n_spar, n_meta;
956 	int len, error;
957 
958 	if (ump == NULL)
959 		return ENOENT;
960 
961 	/* we need at least an anchor (trivial, but for safety) */
962 	if (ump->anchors[0] == NULL)
963 		return EINVAL;
964 
965 	/* we need at least one primary and one logical volume descriptor */
966 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
967 		return EINVAL;
968 
969 	/* we need at least one partition descriptor */
970 	if (ump->partitions[0] == NULL)
971 		return EINVAL;
972 
973 	/* check logical volume sector size verses device sector size */
974 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
975 		printf("UDF mount: format violation, lb_size != sector size\n");
976 		return EINVAL;
977 	}
978 
979 	domain_name = ump->logical_vol->domain_id.id;
980 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
981 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
982 		return EINVAL;
983 	}
984 
985 	/* retrieve logical volume integrity sequence */
986 	error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
987 
988 	/*
989 	 * We need at least one logvol integrity descriptor recorded.  Note
990 	 * that its OK to have an open logical volume integrity here. The VAT
991 	 * will close/update the integrity.
992 	 */
993 	if (ump->logvol_integrity == NULL)
994 		return EINVAL;
995 
996 	/* process derived structures */
997 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
998 	lvint  = ump->logvol_integrity;
999 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1000 	ump->logvol_info = lvinfo;
1001 
1002 	/* TODO check udf versions? */
1003 
1004 	/*
1005 	 * check logvol mappings: effective virt->log partmap translation
1006 	 * check and recording of the mapping results. Saves expensive
1007 	 * strncmp() in tight places.
1008 	 */
1009 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1010 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1011 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1012 	pmap_pos =  ump->logical_vol->maps;
1013 
1014 	if (n_pm > UDF_PMAPS) {
1015 		printf("UDF mount: too many mappings\n");
1016 		return EINVAL;
1017 	}
1018 
1019 	n_phys = n_virt = n_spar = n_meta = 0;
1020 	for (log_part = 0; log_part < n_pm; log_part++) {
1021 		mapping = (union udf_pmap *) pmap_pos;
1022 		pmap_stype = pmap_pos[0];
1023 		pmap_size  = pmap_pos[1];
1024 		switch (pmap_stype) {
1025 		case 1:	/* physical mapping */
1026 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1027 			phys_part = udf_rw16(mapping->pm1.part_num);
1028 			pmap_type = UDF_VTOP_TYPE_PHYS;
1029 			n_phys++;
1030 			break;
1031 		case 2: /* virtual/sparable/meta mapping */
1032 			map_name  = mapping->pm2.part_id.id;
1033 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1034 			phys_part = udf_rw16(mapping->pm2.part_num);
1035 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1036 			len = UDF_REGID_ID_SIZE;
1037 
1038 			check_name = "*UDF Virtual Partition";
1039 			if (strncmp(map_name, check_name, len) == 0) {
1040 				pmap_type = UDF_VTOP_TYPE_VIRT;
1041 				n_virt++;
1042 				break;
1043 			}
1044 			check_name = "*UDF Sparable Partition";
1045 			if (strncmp(map_name, check_name, len) == 0) {
1046 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1047 				n_spar++;
1048 				break;
1049 			}
1050 			check_name = "*UDF Metadata Partition";
1051 			if (strncmp(map_name, check_name, len) == 0) {
1052 				pmap_type = UDF_VTOP_TYPE_META;
1053 				n_meta++;
1054 				break;
1055 			}
1056 			break;
1057 		default:
1058 			return EINVAL;
1059 		}
1060 
1061 		DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
1062 		    pmap_type));
1063 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1064 			return EINVAL;
1065 
1066 		ump->vtop   [log_part] = phys_part;
1067 		ump->vtop_tp[log_part] = pmap_type;
1068 
1069 		pmap_pos += pmap_size;
1070 	}
1071 	/* not winning the beauty contest */
1072 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1073 
1074 	/* test some basic UDF assertions/requirements */
1075 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1076 		return EINVAL;
1077 
1078 	if (n_virt) {
1079 		if ((n_phys == 0) || n_spar || n_meta)
1080 			return EINVAL;
1081 	}
1082 	if (n_spar + n_phys == 0)
1083 		return EINVAL;
1084 
1085 	/* vat's can only be on a sequential media */
1086 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
1087 	if (n_virt)
1088 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1089 
1090 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1091 	if (n_virt)
1092 		ump->meta_alloc = UDF_ALLOC_VAT;
1093 	if (n_meta)
1094 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
1095 
1096 	/* special cases for pseudo-overwrite */
1097 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1098 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1099 		if (n_meta) {
1100 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1101 		} else {
1102 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1103 		}
1104 	}
1105 
1106 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1107 	    ump->data_alloc, ump->meta_alloc));
1108 	/* TODO determine partitions to write data and metadata ? */
1109 
1110 	/* signal its OK for now */
1111 	return 0;
1112 }
1113 
1114 /* --------------------------------------------------------------------- */
1115 
1116 /*
1117  * Read in complete VAT file and check if its indeed a VAT file descriptor
1118  */
1119 
1120 static int
1121 udf_check_for_vat(struct udf_node *vat_node)
1122 {
1123 	struct udf_mount *ump;
1124 	struct icb_tag   *icbtag;
1125 	struct timestamp *mtime;
1126 	struct regid     *regid;
1127 	struct udf_vat   *vat;
1128 	struct udf_logvol_info *lvinfo;
1129 	uint32_t  vat_length, alloc_length;
1130 	uint32_t  vat_offset, vat_entries;
1131 	uint32_t  sector_size;
1132 	uint32_t  sectors;
1133 	uint32_t *raw_vat;
1134 	char     *regid_name;
1135 	int filetype;
1136 	int error;
1137 
1138 	/* vat_length is really 64 bits though impossible */
1139 
1140 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
1141 	if (!vat_node)
1142 		return ENOENT;
1143 
1144 	/* get mount info */
1145 	ump = vat_node->ump;
1146 
1147 	/* check assertions */
1148 	assert(vat_node->fe || vat_node->efe);
1149 	assert(ump->logvol_integrity);
1150 
1151 	/* get information from fe/efe */
1152 	if (vat_node->fe) {
1153 		vat_length = udf_rw64(vat_node->fe->inf_len);
1154 		icbtag = &vat_node->fe->icbtag;
1155 		mtime  = &vat_node->fe->mtime;
1156 	} else {
1157 		vat_length = udf_rw64(vat_node->efe->inf_len);
1158 		icbtag = &vat_node->efe->icbtag;
1159 		mtime  = &vat_node->efe->mtime;
1160 	}
1161 
1162 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1163 	filetype = icbtag->file_type;
1164 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1165 		return ENOENT;
1166 
1167 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1168 	/* place a sanity check on the length; currently 1Mb in size */
1169 	if (vat_length > 1*1024*1024)
1170 		return ENOENT;
1171 
1172 	/* get sector size */
1173 	sector_size = vat_node->ump->discinfo.sector_size;
1174 
1175 	/* calculate how many sectors to read in and how much to allocate */
1176 	sectors = (vat_length + sector_size -1) / sector_size;
1177 	alloc_length = (sectors + 2) * sector_size;
1178 
1179 	/* try to allocate the space */
1180 	ump->vat_table_alloc_length = alloc_length;
1181 	ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK);
1182 	if (!ump->vat_table)
1183 		return ENOMEM;		/* impossible to allocate */
1184 	DPRINTF(VOLUMES, ("\talloced fine\n"));
1185 
1186 	/* read it in! */
1187 	raw_vat = (uint32_t *) ump->vat_table;
1188 	error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1189 	if (error) {
1190 		DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1191 		/* not completely readable... :( bomb out */
1192 		free(ump->vat_table, M_UDFMNT);
1193 		ump->vat_table = NULL;
1194 		return error;
1195 	}
1196 	DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1197 
1198 	/*
1199 	 * check contents of the file if its the old 1.50 VAT table format.
1200 	 * Its notoriously broken and allthough some implementations support an
1201 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
1202 	 * to be useable since a lot of implementations don't maintain it.
1203 	 */
1204 	lvinfo = ump->logvol_info;
1205 
1206 	if (filetype == 0) {
1207 		/* definition */
1208 		vat_offset  = 0;
1209 		vat_entries = (vat_length-36)/4;
1210 
1211 		/* check 1.50 VAT */
1212 		regid = (struct regid *) (raw_vat + vat_entries);
1213 		regid_name = (char *) regid->id;
1214 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1215 		if (error) {
1216 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1217 			free(ump->vat_table, M_UDFMNT);
1218 			ump->vat_table = NULL;
1219 			return ENOENT;
1220 		}
1221 		/* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1222 	} else {
1223 		vat = (struct udf_vat *) raw_vat;
1224 
1225 		/* definition */
1226 		vat_offset  = vat->header_len;
1227 		vat_entries = (vat_length - vat_offset)/4;
1228 
1229 		assert(lvinfo);
1230 		lvinfo->num_files        = vat->num_files;
1231 		lvinfo->num_directories  = vat->num_directories;
1232 		lvinfo->min_udf_readver  = vat->min_udf_readver;
1233 		lvinfo->min_udf_writever = vat->min_udf_writever;
1234 		lvinfo->max_udf_writever = vat->max_udf_writever;
1235 	}
1236 
1237 	ump->vat_offset  = vat_offset;
1238 	ump->vat_entries = vat_entries;
1239 
1240 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1241 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1242 	ump->logvol_integrity->time           = *mtime;
1243 
1244 	return 0;	/* success! */
1245 }
1246 
1247 /* --------------------------------------------------------------------- */
1248 
1249 static int
1250 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1251 {
1252 	struct udf_node *vat_node;
1253 	struct long_ad	 icb_loc;
1254 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
1255 	int error;
1256 
1257 	/* mapping info not needed */
1258 	mapping = mapping;
1259 
1260 	vat_loc = ump->last_possible_vat_location;
1261 	early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
1262 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1263 	late_vat_loc  = vat_loc + 1024;
1264 
1265 	/* TODO first search last sector? */
1266 	do {
1267 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1268 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1269 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
1270 
1271 		error = udf_get_node(ump, &icb_loc, &vat_node);
1272 		if (!error) error = udf_check_for_vat(vat_node);
1273 		if (!error) break;
1274 		if (vat_node) {
1275 			vput(vat_node->vnode);
1276 			udf_dispose_node(vat_node);
1277 		}
1278 		vat_loc--;	/* walk backwards */
1279 	} while (vat_loc >= early_vat_loc);
1280 
1281 	/* we don't need our VAT node anymore */
1282 	if (vat_node) {
1283 		vput(vat_node->vnode);
1284 		udf_dispose_node(vat_node);
1285 	}
1286 
1287 	return error;
1288 }
1289 
1290 /* --------------------------------------------------------------------- */
1291 
1292 static int
1293 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1294 {
1295 	union dscrptr *dscr;
1296 	struct part_map_spare *pms = (struct part_map_spare *) mapping;
1297 	uint32_t lb_num;
1298 	int spar, error;
1299 
1300 	/*
1301 	 * The partition mapping passed on to us specifies the information we
1302 	 * need to locate and initialise the sparable partition mapping
1303 	 * information we need.
1304 	 */
1305 
1306 	DPRINTF(VOLUMES, ("Read sparable table\n"));
1307 	ump->sparable_packet_len = udf_rw16(pms->packet_len);
1308 	for (spar = 0; spar < pms->n_st; spar++) {
1309 		lb_num = pms->st_loc[spar];
1310 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1311 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1312 		if (!error && dscr) {
1313 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1314 				if (ump->sparing_table)
1315 					free(ump->sparing_table, M_UDFVOLD);
1316 				ump->sparing_table = &dscr->spt;
1317 				dscr = NULL;
1318 				DPRINTF(VOLUMES,
1319 				    ("Sparing table accepted (%d entries)\n",
1320 				     udf_rw16(ump->sparing_table->rt_l)));
1321 				break;	/* we're done */
1322 			}
1323 		}
1324 		if (dscr)
1325 			free(dscr, M_UDFVOLD);
1326 	}
1327 
1328 	if (ump->sparing_table)
1329 		return 0;
1330 
1331 	return ENOENT;
1332 }
1333 
1334 /* --------------------------------------------------------------------- */
1335 
1336 int
1337 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1338 {
1339 	union udf_pmap *mapping;
1340 	uint32_t n_pm, mt_l;
1341 	uint32_t log_part;
1342 	uint8_t *pmap_pos;
1343 	int pmap_size;
1344 	int error;
1345 
1346 	/* We have to iterate again over the part mappings for locations   */
1347 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1348 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1349 	pmap_pos =  ump->logical_vol->maps;
1350 
1351 	for (log_part = 0; log_part < n_pm; log_part++) {
1352 		mapping = (union udf_pmap *) pmap_pos;
1353 		switch (ump->vtop_tp[log_part]) {
1354 		case UDF_VTOP_TYPE_PHYS :
1355 			/* nothing */
1356 			break;
1357 		case UDF_VTOP_TYPE_VIRT :
1358 			/* search and load VAT */
1359 			error = udf_search_vat(ump, mapping);
1360 			if (error)
1361 				return ENOENT;
1362 			break;
1363 		case UDF_VTOP_TYPE_SPARABLE :
1364 			/* load one of the sparable tables */
1365 			error = udf_read_sparables(ump, mapping);
1366 			if (error)
1367 				return ENOENT;
1368 			break;
1369 		case UDF_VTOP_TYPE_META :
1370 			/* TODO load metafile and metabitmapfile FE/EFEs */
1371 			return ENOENT;
1372 		default:
1373 			break;
1374 		}
1375 		pmap_size  = pmap_pos[1];
1376 		pmap_pos  += pmap_size;
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 /* --------------------------------------------------------------------- */
1383 
1384 int
1385 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1386 {
1387 	struct udf_node *rootdir_node, *streamdir_node;
1388 	union dscrptr *dscr;
1389 	struct long_ad  fsd_loc, *dir_loc;
1390 	uint32_t lb_num, dummy;
1391 	uint32_t fsd_len;
1392 	int dscr_type;
1393 	int error;
1394 
1395 	/* TODO implement FSD reading in seperate function like integrity? */
1396 	/* get fileset descriptor sequence */
1397 	fsd_loc = ump->logical_vol->lv_fsd_loc;
1398 	fsd_len = udf_rw32(fsd_loc.len);
1399 
1400 	dscr  = NULL;
1401 	error = 0;
1402 	while (fsd_len || error) {
1403 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1404 		/* translate fsd_loc to lb_num */
1405 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1406 		if (error)
1407 			break;
1408 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1409 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1410 		/* end markers */
1411 		if (error || (dscr == NULL))
1412 			break;
1413 
1414 		/* analyse */
1415 		dscr_type = udf_rw16(dscr->tag.id);
1416 		if (dscr_type == TAGID_TERM)
1417 			break;
1418 		if (dscr_type != TAGID_FSD) {
1419 			free(dscr, M_UDFVOLD);
1420 			return ENOENT;
1421 		}
1422 
1423 		/*
1424 		 * TODO check for multiple fileset descriptors; its only
1425 		 * picking the last now. Also check for FSD
1426 		 * correctness/interpretability
1427 		 */
1428 
1429 		/* update */
1430 		if (ump->fileset_desc) {
1431 			free(ump->fileset_desc, M_UDFVOLD);
1432 		}
1433 		ump->fileset_desc = &dscr->fsd;
1434 		dscr = NULL;
1435 
1436 		/* continue to the next fsd */
1437 		fsd_len -= ump->discinfo.sector_size;
1438 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1439 
1440 		/* follow up to fsd->next_ex (long_ad) if its not null */
1441 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1442 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1443 			fsd_loc = ump->fileset_desc->next_ex;
1444 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1445 		}
1446 	}
1447 	if (dscr)
1448 		free(dscr, M_UDFVOLD);
1449 
1450 	/* there has to be one */
1451 	if (ump->fileset_desc == NULL)
1452 		return ENOENT;
1453 
1454 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
1455 
1456 	/*
1457 	 * Now the FSD is known, read in the rootdirectory and if one exists,
1458 	 * the system stream dir. Some files in the system streamdir are not
1459 	 * wanted in this implementation since they are not maintained. If
1460 	 * writing is enabled we'll delete these files if they exist.
1461 	 */
1462 
1463 	rootdir_node = streamdir_node = NULL;
1464 	dir_loc = NULL;
1465 
1466 	/* try to read in the rootdir */
1467 	dir_loc = &ump->fileset_desc->rootdir_icb;
1468 	error = udf_get_node(ump, dir_loc, &rootdir_node);
1469 	if (error)
1470 		return ENOENT;
1471 
1472 	/* aparently it read in fine */
1473 
1474 	/*
1475 	 * Try the system stream directory; not very likely in the ones we
1476 	 * test, but for completeness.
1477 	 */
1478 	dir_loc = &ump->fileset_desc->streamdir_icb;
1479 	if (udf_rw32(dir_loc->len)) {
1480 		error = udf_get_node(ump, dir_loc, &streamdir_node);
1481 		if (error)
1482 			printf("udf mount: streamdir defined but ignored\n");
1483 		if (!error) {
1484 			/*
1485 			 * TODO process streamdir `baddies' i.e. files we dont
1486 			 * want if R/W
1487 			 */
1488 		}
1489 	}
1490 
1491 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1492 
1493 	/* release the vnodes again; they'll be auto-recycled later */
1494 	if (streamdir_node) {
1495 		vput(streamdir_node->vnode);
1496 	}
1497 	if (rootdir_node) {
1498 		vput(rootdir_node->vnode);
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 /* --------------------------------------------------------------------- */
1505 
1506 int
1507 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1508 		   uint32_t *lb_numres, uint32_t *extres)
1509 {
1510 	struct part_desc       *pdesc;
1511 	struct spare_map_entry *sme;
1512 	uint32_t *trans;
1513 	uint32_t  lb_num, lb_rel, lb_packet;
1514 	int rel, vpart, part;
1515 
1516 	assert(ump && icb_loc && lb_numres);
1517 
1518 	vpart  = udf_rw16(icb_loc->loc.part_num);
1519 	lb_num = udf_rw32(icb_loc->loc.lb_num);
1520 	if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1521 		return EINVAL;
1522 
1523 	switch (ump->vtop_tp[vpart]) {
1524 	case UDF_VTOP_TYPE_RAW :
1525 		/* 1:1 to the end of the device */
1526 		*lb_numres = lb_num;
1527 		*extres = INT_MAX;
1528 		return 0;
1529 	case UDF_VTOP_TYPE_PHYS :
1530 		/* transform into its disc logical block */
1531 		part = ump->vtop[vpart];
1532 		pdesc = ump->partitions[part];
1533 		if (lb_num > udf_rw32(pdesc->part_len))
1534 			return EINVAL;
1535 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1536 
1537 		/* extent from here to the end of the partition */
1538 		*extres = udf_rw32(pdesc->part_len) - lb_num;
1539 		return 0;
1540 	case UDF_VTOP_TYPE_VIRT :
1541 		/* only maps one sector, lookup in VAT */
1542 		if (lb_num >= ump->vat_entries)		/* XXX > or >= ? */
1543 			return EINVAL;
1544 
1545 		/* lookup in virtual allocation table */
1546 		trans  = (uint32_t *) (ump->vat_table + ump->vat_offset);
1547 		lb_num = udf_rw32(trans[lb_num]);
1548 
1549 		/* transform into its disc logical block */
1550 		part = ump->vtop[vpart];
1551 		pdesc = ump->partitions[part];
1552 		if (lb_num > udf_rw32(pdesc->part_len))
1553 			return EINVAL;
1554 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1555 
1556 		/* just one logical block */
1557 		*extres = 1;
1558 		return 0;
1559 	case UDF_VTOP_TYPE_SPARABLE :
1560 		/* check if the packet containing the lb_num is remapped */
1561 		lb_packet = lb_num / ump->sparable_packet_len;
1562 		lb_rel    = lb_num % ump->sparable_packet_len;
1563 
1564 		for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1565 			sme = &ump->sparing_table->entries[rel];
1566 			if (lb_packet == udf_rw32(sme->org)) {
1567 				/* NOTE maps to absolute disc logical block! */
1568 				*lb_numres = udf_rw32(sme->map) + lb_rel;
1569 				*extres    = ump->sparable_packet_len - lb_rel;
1570 				return 0;
1571 			}
1572 		}
1573 
1574 		/* transform into its disc logical block */
1575 		part = ump->vtop[vpart];
1576 		pdesc = ump->partitions[part];
1577 		if (lb_num > udf_rw32(pdesc->part_len))
1578 			return EINVAL;
1579 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1580 
1581 		/* rest of block */
1582 		*extres = ump->sparable_packet_len - lb_rel;
1583 		return 0;
1584 	case UDF_VTOP_TYPE_META :
1585 	default:
1586 		printf("UDF vtop translation scheme %d unimplemented yet\n",
1587 			ump->vtop_tp[vpart]);
1588 	}
1589 
1590 	return EINVAL;
1591 }
1592 
1593 /* --------------------------------------------------------------------- */
1594 
1595 /* To make absolutely sure we are NOT returning zero, add one :) */
1596 
1597 long
1598 udf_calchash(struct long_ad *icbptr)
1599 {
1600 	/* ought to be enough since each mountpoint has its own chain */
1601 	return udf_rw32(icbptr->loc.lb_num) + 1;
1602 }
1603 
1604 /* --------------------------------------------------------------------- */
1605 
1606 static struct udf_node *
1607 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1608 {
1609 	struct udf_node *unp;
1610 	struct vnode *vp;
1611 	uint32_t hashline;
1612 
1613 loop:
1614 	simple_lock(&ump->ihash_slock);
1615 
1616 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1617 	LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1618 		assert(unp);
1619 		if (unp->loc.loc.lb_num   == icbptr->loc.lb_num &&
1620 		    unp->loc.loc.part_num == icbptr->loc.part_num) {
1621 			vp = unp->vnode;
1622 			assert(vp);
1623 			simple_lock(&vp->v_interlock);
1624 			simple_unlock(&ump->ihash_slock);
1625 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1626 				goto loop;
1627 			return unp;
1628 		}
1629 	}
1630 	simple_unlock(&ump->ihash_slock);
1631 
1632 	return NULL;
1633 }
1634 
1635 /* --------------------------------------------------------------------- */
1636 
1637 static void
1638 udf_hashins(struct udf_node *unp)
1639 {
1640 	struct udf_mount *ump;
1641 	uint32_t hashline;
1642 
1643 	ump = unp->ump;
1644 	simple_lock(&ump->ihash_slock);
1645 
1646 	hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1647 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1648 
1649 	simple_unlock(&ump->ihash_slock);
1650 }
1651 
1652 /* --------------------------------------------------------------------- */
1653 
1654 static void
1655 udf_hashrem(struct udf_node *unp)
1656 {
1657 	struct udf_mount *ump;
1658 
1659 	ump = unp->ump;
1660 	simple_lock(&ump->ihash_slock);
1661 
1662 	LIST_REMOVE(unp, hashchain);
1663 
1664 	simple_unlock(&ump->ihash_slock);
1665 }
1666 
1667 /* --------------------------------------------------------------------- */
1668 
1669 int
1670 udf_dispose_locked_node(struct udf_node *node)
1671 {
1672 	if (!node)
1673 		return 0;
1674 	if (node->vnode)
1675 		VOP_UNLOCK(node->vnode, 0);
1676 	return udf_dispose_node(node);
1677 }
1678 
1679 /* --------------------------------------------------------------------- */
1680 
1681 int
1682 udf_dispose_node(struct udf_node *node)
1683 {
1684 	struct vnode *vp;
1685 
1686 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1687 	if (!node) {
1688 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1689 		return 0;
1690 	}
1691 
1692 	vp  = node->vnode;
1693 
1694 	/* TODO extended attributes and streamdir */
1695 
1696 	/* remove from our hash lookup table */
1697 	udf_hashrem(node);
1698 
1699 	/* dissociate our udf_node from the vnode */
1700 	vp->v_data = NULL;
1701 
1702 	/* free associated memory and the node itself */
1703 	if (node->fe)
1704 		pool_put(node->ump->desc_pool, node->fe);
1705 	if (node->efe)
1706 		pool_put(node->ump->desc_pool, node->efe);
1707 	pool_put(&udf_node_pool, node);
1708 
1709 	return 0;
1710 }
1711 
1712 /* --------------------------------------------------------------------- */
1713 
1714 /*
1715  * Genfs interfacing
1716  *
1717  * static const struct genfs_ops udffs_genfsops = {
1718  * 	.gop_size = genfs_size,
1719  * 		size of transfers
1720  * 	.gop_alloc = udf_gop_alloc,
1721  * 		unknown
1722  * 	.gop_write = genfs_gop_write,
1723  * 		putpages interface code
1724  * 	.gop_markupdate = udf_gop_markupdate,
1725  * 		set update/modify flags etc.
1726  * }
1727  */
1728 
1729 /*
1730  * Genfs interface. These four functions are the only ones defined though not
1731  * documented... great.... why is chosen for the `.' initialisers i dont know
1732  * but other filingsystems seem to use it this way.
1733  */
1734 
1735 static int
1736 udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags,
1737     kauth_cred_t cred)
1738 {
1739 	return 0;
1740 }
1741 
1742 
1743 static void
1744 udf_gop_markupdate(struct vnode *vp, int flags)
1745 {
1746 	struct udf_node *udf_node = VTOI(vp);
1747 	u_long mask;
1748 
1749 	udf_node = udf_node;	/* shut up gcc */
1750 
1751 	mask = 0;
1752 #ifdef notyet
1753 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1754 		mask = UDF_SET_ACCESS;
1755 	}
1756 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1757 		mask |= UDF_SET_UPDATE;
1758 	}
1759 	if (mask) {
1760 		udf_node->update_flag |= mask;
1761 	}
1762 #endif
1763 	/* msdosfs doesn't do it, but shouldn't we update the times here? */
1764 }
1765 
1766 
1767 static const struct genfs_ops udf_genfsops = {
1768 	.gop_size = genfs_size,
1769 	.gop_alloc = udf_gop_alloc,
1770 	.gop_write = genfs_gop_write,
1771 	.gop_markupdate = udf_gop_markupdate,
1772 };
1773 
1774 /* --------------------------------------------------------------------- */
1775 
1776 /*
1777  * Each node can have an attached streamdir node though not
1778  * recursively. These are otherwise known as named substreams/named
1779  * extended attributes that have no size limitations.
1780  *
1781  * `Normal' extended attributes are indicated with a number and are recorded
1782  * in either the fe/efe descriptor itself for small descriptors or recorded in
1783  * the attached extended attribute file. Since this file can get fragmented,
1784  * care ought to be taken.
1785  */
1786 
1787 int
1788 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1789 	     struct udf_node **noderes)
1790 {
1791 	union dscrptr   *dscr, *tmpdscr;
1792 	struct udf_node *node;
1793 	struct vnode    *nvp;
1794 	struct long_ad   icb_loc;
1795 	extern int (**udf_vnodeop_p)(void *);
1796 	uint64_t file_size;
1797 	uint32_t lb_size, sector, dummy;
1798 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1799 	int error;
1800 
1801 	DPRINTF(NODE, ("udf_get_node called\n"));
1802 	*noderes = node = NULL;
1803 
1804 	/* lock to disallow simultanious creation of same node */
1805 	lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1806 
1807 	DPRINTF(NODE, ("\tlookup in hash table\n"));
1808 	/* lookup in hash table */
1809 	assert(ump);
1810 	assert(node_icb_loc);
1811 	node = udf_hashget(ump, node_icb_loc);
1812 	if (node) {
1813 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
1814 		/* vnode is returned locked */
1815 		*noderes = node;
1816 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1817 		return 0;
1818 	}
1819 
1820 	/* garbage check: translate node_icb_loc to sectornr */
1821 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
1822 	if (error) {
1823 		/* no use, this will fail anyway */
1824 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1825 		return EINVAL;
1826 	}
1827 
1828 	/* build node (do initialise!) */
1829 	node = pool_get(&udf_node_pool, PR_WAITOK);
1830 	memset(node, 0, sizeof(struct udf_node));
1831 
1832 	DPRINTF(NODE, ("\tget new vnode\n"));
1833 	/* give it a vnode */
1834 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
1835         if (error) {
1836 		pool_put(&udf_node_pool, node);
1837 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1838 		return error;
1839 	}
1840 
1841 	/* allways return locked vnode */
1842 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
1843 		/* recycle vnode and unlock; simultanious will fail too */
1844 		ungetnewvnode(nvp);
1845 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1846 		return error;
1847 	}
1848 
1849 	/* initialise crosslinks, note location of fe/efe for hashing */
1850 	node->ump    =  ump;
1851 	node->vnode  =  nvp;
1852 	nvp->v_data  =  node;
1853 	node->loc    = *node_icb_loc;
1854 	node->lockf  =  0;
1855 
1856 	/* insert into the hash lookup */
1857 	udf_hashins(node);
1858 
1859 	/* safe to unlock, the entry is in the hash table, vnode is locked */
1860 	lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1861 
1862 	icb_loc = *node_icb_loc;
1863 	needs_indirect = 0;
1864 	strat4096 = 0;
1865 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
1866 	file_size = 0;
1867 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1868 
1869 	do {
1870 		error = udf_translate_vtop(ump, &icb_loc, &sector, &dummy);
1871 		if (error)
1872 			break;
1873 
1874 		/* try to read in fe/efe */
1875 		error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
1876 
1877 		/* blank sector marks end of sequence, check this */
1878 		if ((tmpdscr == NULL) &&  (!strat4096))
1879 			error = ENOENT;
1880 
1881 		/* break if read error or blank sector */
1882 		if (error || (tmpdscr == NULL))
1883 			break;
1884 
1885 		/* process descriptor based on the descriptor type */
1886 		dscr_type = udf_rw16(tmpdscr->tag.id);
1887 
1888 		/* if dealing with an indirect entry, follow the link */
1889 		if (dscr_type == TAGID_INDIRECT_ENTRY) {
1890 			needs_indirect = 0;
1891 			icb_loc = tmpdscr->inde.indirect_icb;
1892 			free(tmpdscr, M_UDFTEMP);
1893 			continue;
1894 		}
1895 
1896 		/* only file entries and extended file entries allowed here */
1897 		if ((dscr_type != TAGID_FENTRY) &&
1898 		    (dscr_type != TAGID_EXTFENTRY)) {
1899 			free(tmpdscr, M_UDFTEMP);
1900 			error = ENOENT;
1901 			break;
1902 		}
1903 
1904 		/* get descriptor space from our pool */
1905 		KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
1906 
1907 		dscr = pool_get(ump->desc_pool, PR_WAITOK);
1908 		memcpy(dscr, tmpdscr, lb_size);
1909 		free(tmpdscr, M_UDFTEMP);
1910 
1911 		/* record and process/update (ext)fentry */
1912 		if (dscr_type == TAGID_FENTRY) {
1913 			if (node->fe)
1914 				pool_put(ump->desc_pool, node->fe);
1915 			node->fe  = &dscr->fe;
1916 			strat = udf_rw16(node->fe->icbtag.strat_type);
1917 			udf_file_type = node->fe->icbtag.file_type;
1918 			file_size = udf_rw64(node->fe->inf_len);
1919 		} else {
1920 			if (node->efe)
1921 				pool_put(ump->desc_pool, node->efe);
1922 			node->efe = &dscr->efe;
1923 			strat = udf_rw16(node->efe->icbtag.strat_type);
1924 			udf_file_type = node->efe->icbtag.file_type;
1925 			file_size = udf_rw64(node->efe->inf_len);
1926 		}
1927 
1928 		/* check recording strategy (structure) */
1929 
1930 		/*
1931 		 * Strategy 4096 is a daisy linked chain terminating with an
1932 		 * unrecorded sector or a TERM descriptor. The next
1933 		 * descriptor is to be found in the sector that follows the
1934 		 * current sector.
1935 		 */
1936 		if (strat == 4096) {
1937 			strat4096 = 1;
1938 			needs_indirect = 1;
1939 
1940 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
1941 		}
1942 
1943 		/*
1944 		 * Strategy 4 is the normal strategy and terminates, but if
1945 		 * we're in strategy 4096, we can't have strategy 4 mixed in
1946 		 */
1947 
1948 		if (strat == 4) {
1949 			if (strat4096) {
1950 				error = EINVAL;
1951 				break;
1952 			}
1953 			break;		/* done */
1954 		}
1955 	} while (!error);
1956 
1957 	if (error) {
1958 		/* recycle udf_node */
1959 		udf_dispose_node(node);
1960 
1961 		/* recycle vnode */
1962 		nvp->v_data = NULL;
1963 		ungetnewvnode(nvp);
1964 
1965 		return EINVAL;		/* error code ok? */
1966 	}
1967 
1968 	/* post process and initialise node */
1969 
1970 	/* assert no references to dscr anymore beyong this point */
1971 	assert((node->fe) || (node->efe));
1972 	dscr = NULL;
1973 
1974 	/*
1975 	 * Record where to record an updated version of the descriptor. If
1976 	 * there is a sequence of indirect entries, icb_loc will have been
1977 	 * updated. Its the write disipline to allocate new space and to make
1978 	 * sure the chain is maintained.
1979 	 *
1980 	 * `needs_indirect' flags if the next location is to be filled with
1981 	 * with an indirect entry.
1982 	 */
1983 	node->next_loc = icb_loc;
1984 	node->needs_indirect = needs_indirect;
1985 
1986 	/*
1987 	 * Translate UDF filetypes into vnode types.
1988 	 *
1989 	 * Systemfiles like the meta main and mirror files are not treated as
1990 	 * normal files, so we type them as having no type. UDF dictates that
1991 	 * they are not allowed to be visible.
1992 	 */
1993 
1994 	/* TODO specfs, fifofs etc etc. vnops setting */
1995 	switch (udf_file_type) {
1996 	case UDF_ICB_FILETYPE_DIRECTORY :
1997 	case UDF_ICB_FILETYPE_STREAMDIR :
1998 		nvp->v_type = VDIR;
1999 		break;
2000 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
2001 		nvp->v_type = VBLK;
2002 		break;
2003 	case UDF_ICB_FILETYPE_CHARDEVICE :
2004 		nvp->v_type = VCHR;
2005 		break;
2006 	case UDF_ICB_FILETYPE_SYMLINK :
2007 		nvp->v_type = VLNK;
2008 		break;
2009 	case UDF_ICB_FILETYPE_META_MAIN :
2010 	case UDF_ICB_FILETYPE_META_MIRROR :
2011 		nvp->v_type = VNON;
2012 		break;
2013 	case UDF_ICB_FILETYPE_RANDOMACCESS :
2014 		nvp->v_type = VREG;
2015 		break;
2016 	default:
2017 		/* YIKES, either a block/char device, fifo or something else */
2018 		nvp->v_type = VNON;
2019 	}
2020 
2021 	/* initialise genfs */
2022 	genfs_node_init(nvp, &udf_genfsops);
2023 
2024 	/* don't forget to set vnode's v_size */
2025 	nvp->v_size = file_size;
2026 
2027 	/* TODO ext attr and streamdir nodes */
2028 
2029 	*noderes = node;
2030 
2031 	return 0;
2032 }
2033 
2034 /* --------------------------------------------------------------------- */
2035 
2036 /* UDF<->unix converters */
2037 
2038 /* --------------------------------------------------------------------- */
2039 
2040 static mode_t
2041 udf_perm_to_unix_mode(uint32_t perm)
2042 {
2043 	mode_t mode;
2044 
2045 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
2046 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
2047 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2048 
2049 	return mode;
2050 }
2051 
2052 /* --------------------------------------------------------------------- */
2053 
2054 #ifdef notyet
2055 static uint32_t
2056 unix_mode_to_udf_perm(mode_t mode)
2057 {
2058 	uint32_t perm;
2059 
2060 	perm  = ((mode & S_IRWXO)     );
2061 	perm |= ((mode & S_IRWXG) << 2);
2062 	perm |= ((mode & S_IRWXU) << 4);
2063 	perm |= ((mode & S_IWOTH) << 3);
2064 	perm |= ((mode & S_IWGRP) << 5);
2065 	perm |= ((mode & S_IWUSR) << 7);
2066 
2067 	return perm;
2068 }
2069 #endif
2070 
2071 /* --------------------------------------------------------------------- */
2072 
2073 static uint32_t
2074 udf_icb_to_unix_filetype(uint32_t icbftype)
2075 {
2076 	switch (icbftype) {
2077 	case UDF_ICB_FILETYPE_DIRECTORY :
2078 	case UDF_ICB_FILETYPE_STREAMDIR :
2079 		return S_IFDIR;
2080 	case UDF_ICB_FILETYPE_FIFO :
2081 		return S_IFIFO;
2082 	case UDF_ICB_FILETYPE_CHARDEVICE :
2083 		return S_IFCHR;
2084 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
2085 		return S_IFBLK;
2086 	case UDF_ICB_FILETYPE_RANDOMACCESS :
2087 		return S_IFREG;
2088 	case UDF_ICB_FILETYPE_SYMLINK :
2089 		return S_IFLNK;
2090 	case UDF_ICB_FILETYPE_SOCKET :
2091 		return S_IFSOCK;
2092 	}
2093 	/* no idea what this is */
2094 	return 0;
2095 }
2096 
2097 /* --------------------------------------------------------------------- */
2098 
2099 /* TODO KNF-ify */
2100 
2101 void
2102 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2103 {
2104 	uint16_t *raw_name, *unix_name;
2105 	uint16_t *inchp, ch;
2106 	uint8_t	 *outchp;
2107 	int       ucode_chars, nice_uchars;
2108 
2109 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2110 	unix_name = raw_name + 1024;			/* split space in half */
2111 	assert(sizeof(char) == sizeof(uint8_t));
2112 	outchp = (uint8_t *) result;
2113 	if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2114 		*raw_name = *unix_name = 0;
2115 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2116 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2117 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2118 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2119 			ch = *inchp;
2120 			/* XXX sloppy unicode -> latin */
2121 			*outchp++ = ch & 255;
2122 			if (!ch) break;
2123 		}
2124 		*outchp++ = 0;
2125 	} else {
2126 		/* assume 8bit char length byte latin-1 */
2127 		assert(*id == 8);
2128 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2129 	}
2130 	free(raw_name, M_UDFTEMP);
2131 }
2132 
2133 /* --------------------------------------------------------------------- */
2134 
2135 /* TODO KNF-ify */
2136 
2137 void
2138 unix_to_udf_name(char *result, char *name,
2139 		 uint8_t *result_len, struct charspec *chsp)
2140 {
2141 	uint16_t *raw_name;
2142 	int       udf_chars, name_len;
2143 	char     *inchp;
2144 	uint16_t *outchp;
2145 
2146 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2147 	/* convert latin-1 or whatever to unicode-16 */
2148 	*raw_name = 0;
2149 	name_len  = 0;
2150 	inchp  = name;
2151 	outchp = raw_name;
2152 	while (*inchp) {
2153 		*outchp++ = (uint16_t) (*inchp++);
2154 		name_len++;
2155 	}
2156 
2157 	if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2158 		udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2159 	} else {
2160 		/* XXX assume 8bit char length byte latin-1 */
2161 		*result++ = 8; udf_chars = 1;
2162 		strncpy(result, name + 1, strlen(name+1));
2163 		udf_chars += strlen(name);
2164 	}
2165 	*result_len = udf_chars;
2166 	free(raw_name, M_UDFTEMP);
2167 }
2168 
2169 /* --------------------------------------------------------------------- */
2170 
2171 /*
2172  * Timestamp to timespec conversion code is taken with small modifications
2173  * from FreeBSDs /sys/fs/udf by Scott Long <scottl@freebsd.org>. Added with
2174  * permission from Scott.
2175  */
2176 
2177 static int mon_lens[2][12] = {
2178 	{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
2179 	{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
2180 };
2181 
2182 
2183 static int
2184 udf_isaleapyear(int year)
2185 {
2186 	int i;
2187 
2188 	i  = (year % 4) ? 0 : 1;
2189 	i &= (year % 100) ? 1 : 0;
2190 	i |= (year % 400) ? 0 : 1;
2191 
2192 	return i;
2193 }
2194 
2195 
2196 void
2197 udf_timestamp_to_timespec(struct udf_mount *ump,
2198 			  struct timestamp *timestamp,
2199 		          struct timespec  *timespec)
2200 {
2201 	uint32_t usecs, secs, nsecs;
2202 	uint16_t tz;
2203 	int i, lpyear, daysinyear, year;
2204 
2205 	timespec->tv_sec  = secs  = 0;
2206 	timespec->tv_nsec = nsecs = 0;
2207 
2208        /*
2209 	* DirectCD seems to like using bogus year values.
2210 	*
2211 	* Distrust time->month especially, since it will be used for an array
2212 	* index.
2213 	*/
2214 	year = udf_rw16(timestamp->year);
2215 	if ((year < 1970) || (timestamp->month > 12)) {
2216 		return;
2217 	}
2218 
2219 	/* Calculate the time and day
2220 	 * Day is 1-31, Month is 1-12
2221 	 */
2222 
2223 	usecs = timestamp->usec +
2224 		100*timestamp->hund_usec + 10000*timestamp->centisec;
2225 	nsecs = usecs * 1000;
2226 	secs  = timestamp->second;
2227 	secs += timestamp->minute * 60;
2228 	secs += timestamp->hour * 3600;
2229 	secs += (timestamp->day-1) * 3600 * 24;
2230 
2231 	/* Calclulate the month */
2232 	lpyear = udf_isaleapyear(year);
2233 	for (i = 1; i < timestamp->month; i++)
2234 		secs += mon_lens[lpyear][i-1] * 3600 * 24;
2235 
2236 	for (i = 1970; i < year; i++) {
2237 		daysinyear = udf_isaleapyear(i) + 365 ;
2238 		secs += daysinyear * 3600 * 24;
2239 	}
2240 
2241 	/*
2242 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
2243 	 * compliment, so we gotta do some extra magic to handle it right.
2244 	 */
2245 	tz  = udf_rw16(timestamp->type_tz);
2246 	tz &= 0x0fff;			/* only lower 12 bits are significant */
2247 	if (tz & 0x0800)		/* sign extention */
2248 		tz |= 0xf000;
2249 
2250 	/* TODO check timezone conversion */
2251 	/* check if we are specified a timezone to convert */
2252 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
2253 		if ((int16_t) tz != -2047)
2254 			secs -= (int16_t) tz * 60;
2255 	} else {
2256 		secs -= ump->mount_args.gmtoff;
2257 	}
2258 
2259 	timespec->tv_sec  = secs;
2260 	timespec->tv_nsec = nsecs;
2261 }
2262 
2263 /* --------------------------------------------------------------------- */
2264 
2265 /*
2266  * Attribute and filetypes converters with get/set pairs
2267  */
2268 
2269 uint32_t
2270 udf_getaccessmode(struct udf_node *udf_node)
2271 {
2272 	struct file_entry *fe;
2273 	struct extfile_entry *efe;
2274 	uint32_t udf_perm, icbftype;
2275 	uint32_t mode, ftype;
2276 	uint16_t icbflags;
2277 
2278 	if (udf_node->fe) {
2279 		fe = udf_node->fe;
2280 		udf_perm = udf_rw32(fe->perm);
2281 		icbftype = fe->icbtag.file_type;
2282 		icbflags = udf_rw16(fe->icbtag.flags);
2283 	} else {
2284 		assert(udf_node->efe);
2285 		efe = udf_node->efe;
2286 		udf_perm = udf_rw32(efe->perm);
2287 		icbftype = efe->icbtag.file_type;
2288 		icbflags = udf_rw16(efe->icbtag.flags);
2289 	}
2290 
2291 	mode  = udf_perm_to_unix_mode(udf_perm);
2292 	ftype = udf_icb_to_unix_filetype(icbftype);
2293 
2294 	/* set suid, sgid, sticky from flags in fe/efe */
2295 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2296 		mode |= S_ISUID;
2297 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2298 		mode |= S_ISGID;
2299 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2300 		mode |= S_ISVTX;
2301 
2302 	return mode | ftype;
2303 }
2304 
2305 /* --------------------------------------------------------------------- */
2306 
2307 /*
2308  * Directory read and manipulation functions
2309  */
2310 
2311 int
2312 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2313 		       struct long_ad *icb_loc)
2314 {
2315 	struct udf_node  *dir_node = VTOI(vp);
2316 	struct file_entry    *fe;
2317 	struct extfile_entry *efe;
2318 	struct fileid_desc *fid;
2319 	struct dirent dirent;
2320 	uint64_t file_size, diroffset;
2321 	uint32_t lb_size;
2322 	int found, error;
2323 
2324 	/* get directory filesize */
2325 	if (dir_node->fe) {
2326 		fe = dir_node->fe;
2327 		file_size = udf_rw64(fe->inf_len);
2328 	} else {
2329 		assert(dir_node->efe);
2330 		efe = dir_node->efe;
2331 		file_size = udf_rw64(efe->inf_len);
2332 	}
2333 
2334 	/* allocate temporary space for fid */
2335 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2336 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
2337 
2338 	found = 0;
2339 	diroffset = dir_node->last_diroffset;
2340 	while (!found) {
2341 		/* if not found in this track, turn trough zero */
2342 		if (diroffset >= file_size)
2343 			diroffset = 0;
2344 
2345 		/* transfer a new fid/dirent */
2346 		error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2347 		if (error)
2348 			break;
2349 
2350 		/* skip deleted entries */
2351 		if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) {
2352 			if ((strlen(dirent.d_name) == namelen) &&
2353 			    (strncmp(dirent.d_name, name, namelen) == 0)) {
2354 				found = 1;
2355 				*icb_loc = fid->icb;
2356 			}
2357 		}
2358 
2359 		if (diroffset == dir_node->last_diroffset) {
2360 			/* we have cycled */
2361 			break;
2362 		}
2363 	}
2364 	free(fid, M_TEMP);
2365 	dir_node->last_diroffset = diroffset;
2366 
2367 	return found;
2368 }
2369 
2370 /* --------------------------------------------------------------------- */
2371 
2372 /*
2373  * Read one fid and process it into a dirent and advance to the next (*fid)
2374  * has to be allocated a logical block in size, (*dirent) struct dirent length
2375  */
2376 
2377 int
2378 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2379 		    struct fileid_desc *fid, struct dirent *dirent)
2380 {
2381 	struct udf_node  *dir_node = VTOI(vp);
2382 	struct udf_mount *ump = dir_node->ump;
2383 	struct file_entry    *fe;
2384 	struct extfile_entry *efe;
2385 	struct uio    dir_uio;
2386 	struct iovec  dir_iovec;
2387 	uint32_t      entry_length, lb_size;
2388 	uint64_t      file_size;
2389 	char         *fid_name;
2390 	int           enough, error;
2391 
2392 	assert(fid);
2393 	assert(dirent);
2394 	assert(dir_node);
2395 	assert(offset);
2396 	assert(*offset != 1);
2397 
2398 	DPRINTF(FIDS, ("read_fid_stream called\n"));
2399 	/* check if we're past the end of the directory */
2400 	if (dir_node->fe) {
2401 		fe = dir_node->fe;
2402 		file_size = udf_rw64(fe->inf_len);
2403 	} else {
2404 		assert(dir_node->efe);
2405 		efe = dir_node->efe;
2406 		file_size = udf_rw64(efe->inf_len);
2407 	}
2408 	if (*offset >= file_size)
2409 		return EINVAL;
2410 
2411 	/* get maximum length of FID descriptor */
2412 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2413 
2414 	/* initialise return values */
2415 	entry_length = 0;
2416 	memset(dirent, 0, sizeof(struct dirent));
2417 	memset(fid, 0, lb_size);
2418 
2419 	/* TODO use vn_rdwr instead of creating our own uio */
2420 	/* read part of the directory */
2421 	memset(&dir_uio, 0, sizeof(struct uio));
2422 	dir_uio.uio_rw     = UIO_READ;	/* read into this space */
2423 	dir_uio.uio_iovcnt = 1;
2424 	dir_uio.uio_iov    = &dir_iovec;
2425 	UIO_SETUP_SYSSPACE(&dir_uio);
2426 	dir_iovec.iov_base = fid;
2427 	dir_iovec.iov_len  = lb_size;
2428 	dir_uio.uio_offset = *offset;
2429 
2430 	/* limit length of read in piece */
2431 	dir_uio.uio_resid  = MIN(file_size - (*offset), lb_size);
2432 
2433 	/* read the part into the fid space */
2434 	error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2435 	if (error)
2436 		return error;
2437 
2438 	/*
2439 	 * Check if we got a whole descriptor.
2440 	 * XXX Try to `resync' directory stream when something is very wrong.
2441 	 *
2442 	 */
2443 	enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2444 	if (!enough) {
2445 		/* short dir ... */
2446 		return EIO;
2447 	}
2448 
2449 	/* check if our FID header is OK */
2450 	error = udf_check_tag(fid);
2451 	DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2452 	if (!error) {
2453 		if (udf_rw16(fid->tag.id) != TAGID_FID)
2454 			error = ENOENT;
2455 	}
2456 	DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2457 
2458 	/* check for length */
2459 	if (!error) {
2460 		entry_length = udf_fidsize(fid, lb_size);
2461 		enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2462 	}
2463 	DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2464 	    entry_length, enough?"yes":"no"));
2465 
2466 	if (!enough) {
2467 		/* short dir ... bomb out */
2468 		return EIO;
2469 	}
2470 
2471 	/* check FID contents */
2472 	if (!error) {
2473 		error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2474 		DPRINTF(FIDS, ("\tpayload checked ok\n"));
2475 	}
2476 	if (error) {
2477 		/* note that is sometimes a bit quick to report */
2478 		printf("BROKEN DIRECTORY ENTRY\n");
2479 		/* RESYNC? */
2480 		/* TODO: use udf_resync_fid_stream */
2481 		return EIO;
2482 	}
2483 	DPRINTF(FIDS, ("\tinterpret FID\n"));
2484 
2485 	/* we got a whole and valid descriptor! */
2486 
2487 	/* create resulting dirent structure */
2488 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2489 	udf_to_unix_name(dirent->d_name,
2490 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2491 
2492 	/* '..' has no name, so provide one */
2493 	if (fid->file_char & UDF_FILE_CHAR_PAR)
2494 		strcpy(dirent->d_name, "..");
2495 
2496 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
2497 	dirent->d_namlen = strlen(dirent->d_name);
2498 	dirent->d_reclen = _DIRENT_SIZE(dirent);
2499 
2500 	/*
2501 	 * Note that its not worth trying to go for the filetypes now... its
2502 	 * too expensive too
2503 	 */
2504 	dirent->d_type = DT_UNKNOWN;
2505 
2506 	/* initial guess for filetype we can make */
2507 	if (fid->file_char & UDF_FILE_CHAR_DIR)
2508 		dirent->d_type = DT_DIR;
2509 
2510 	/* advance */
2511 	*offset += entry_length;
2512 
2513 	return error;
2514 }
2515 
2516 /* --------------------------------------------------------------------- */
2517 
2518 /*
2519  * block based file reading and writing
2520  */
2521 
2522 static int
2523 udf_read_internal(struct udf_node *node, uint8_t *blob)
2524 {
2525 	struct udf_mount *ump;
2526 	struct file_entry *fe;
2527 	struct extfile_entry *efe;
2528 	uint64_t inflen;
2529 	uint32_t sector_size;
2530 	uint8_t  *pos;
2531 	int icbflags, addr_type;
2532 
2533 	/* shut up gcc */
2534 	inflen = addr_type = icbflags = 0;
2535 	pos = NULL;
2536 
2537 	/* get extent and do some paranoia checks */
2538 	ump = node->ump;
2539 	sector_size = ump->discinfo.sector_size;
2540 
2541 	fe  = node->fe;
2542 	efe = node->efe;
2543 	if (fe) {
2544 		inflen   = udf_rw64(fe->inf_len);
2545 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
2546 		icbflags = udf_rw16(fe->icbtag.flags);
2547 	}
2548 	if (efe) {
2549 		inflen   = udf_rw64(efe->inf_len);
2550 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
2551 		icbflags = udf_rw16(efe->icbtag.flags);
2552 	}
2553 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2554 
2555 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
2556 	assert(inflen < sector_size);
2557 
2558 	/* copy out info */
2559 	memset(blob, 0, sector_size);
2560 	memcpy(blob, pos, inflen);
2561 
2562 	return 0;
2563 }
2564 
2565 /* --------------------------------------------------------------------- */
2566 
2567 /*
2568  * Read file extent reads an extent specified in sectors from the file. It is
2569  * sector based; i.e. no `fancy' offsets.
2570  */
2571 
2572 int
2573 udf_read_file_extent(struct udf_node *node,
2574 		     uint32_t from, uint32_t sectors,
2575 		     uint8_t *blob)
2576 {
2577 	struct buf buf;
2578 	uint32_t sector_size;
2579 
2580 	BUF_INIT(&buf);
2581 
2582 	sector_size = node->ump->discinfo.sector_size;
2583 
2584 	buf.b_bufsize = sectors * sector_size;
2585 	buf.b_data    = blob;
2586 	buf.b_bcount  = buf.b_bufsize;
2587 	buf.b_resid   = buf.b_bcount;
2588 	buf.b_flags   = B_BUSY | B_READ;
2589 	buf.b_vp      = node->vnode;
2590 	buf.b_proc    = NULL;
2591 
2592 	buf.b_blkno  = from;
2593 	buf.b_lblkno = 0;
2594 	BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2595 
2596 	udf_read_filebuf(node, &buf);
2597 	return biowait(&buf);
2598 }
2599 
2600 
2601 /* --------------------------------------------------------------------- */
2602 
2603 /*
2604  * Read file extent in the buffer.
2605  *
2606  * The splitup of the extent into seperate request-buffers is to minimise
2607  * copying around as much as possible.
2608  */
2609 
2610 
2611 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2612 #define FILEBUFSECT 128
2613 
2614 void
2615 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2616 {
2617 	struct buf *nestbuf;
2618 	uint64_t   *mapping;
2619 	uint64_t    run_start;
2620 	uint32_t    sector_size;
2621 	uint32_t    buf_offset, sector, rbuflen, rblk;
2622 	uint8_t    *buf_pos;
2623 	int error, run_length;
2624 
2625 	uint32_t  from;
2626 	uint32_t  sectors;
2627 
2628 	sector_size = node->ump->discinfo.sector_size;
2629 
2630 	from    = buf->b_blkno;
2631 	sectors = buf->b_bcount / sector_size;
2632 
2633 	/* assure we have enough translation slots */
2634 	KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2635 	KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2636 
2637 	if (sectors > FILEBUFSECT) {
2638 		printf("udf_read_filebuf: implementation limit on bufsize\n");
2639 		buf->b_error  = EIO;
2640 		buf->b_flags |= B_ERROR;
2641 		biodone(buf);
2642 		return;
2643 	}
2644 
2645 	mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2646 
2647 	error = 0;
2648 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2649 	error = udf_translate_file_extent(node, from, sectors, mapping);
2650 	if (error) {
2651 		buf->b_error  = error;
2652 		buf->b_flags |= B_ERROR;
2653 		biodone(buf);
2654 		goto out;
2655 	}
2656 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
2657 
2658 	/* pre-check if internal or parts are zero */
2659 	if (*mapping == UDF_TRANS_INTERN) {
2660 		error = udf_read_internal(node, (uint8_t *) buf->b_data);
2661 		if (error) {
2662 			buf->b_error  = error;
2663 			buf->b_flags |= B_ERROR;
2664 		}
2665 		biodone(buf);
2666 		goto out;
2667 	}
2668 	DPRINTF(READ, ("\tnot intern\n"));
2669 
2670 	/* request read-in of data from disc sheduler */
2671 	buf->b_resid = buf->b_bcount;
2672 	for (sector = 0; sector < sectors; sector++) {
2673 		buf_offset = sector * sector_size;
2674 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
2675 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2676 
2677 		switch (mapping[sector]) {
2678 		case UDF_TRANS_UNMAPPED:
2679 		case UDF_TRANS_ZERO:
2680 			/* copy zero sector */
2681 			memset(buf_pos, 0, sector_size);
2682 			DPRINTF(READ, ("\treturning zero sector\n"));
2683 			nestiobuf_done(buf, sector_size, 0);
2684 			break;
2685 		default :
2686 			DPRINTF(READ, ("\tread sector "
2687 			    "%"PRIu64"\n", mapping[sector]));
2688 
2689 			run_start  = mapping[sector];
2690 			run_length = 1;
2691 			while (sector < sectors-1) {
2692 				if (mapping[sector+1] != mapping[sector]+1)
2693 					break;
2694 				run_length++;
2695 				sector++;
2696 			}
2697 
2698 			/*
2699 			 * nest an iobuf and mark it for async reading. Since
2700 			 * we're using nested buffers, they can't be cached by
2701 			 * design.
2702 			 */
2703 			rbuflen = run_length * sector_size;
2704 			rblk    = run_start  * (sector_size/DEV_BSIZE);
2705 
2706 			nestbuf = getiobuf();
2707 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2708 			/* nestbuf is B_ASYNC */
2709 
2710 			/* CD shedules on raw blkno */
2711 			nestbuf->b_blkno    = rblk;
2712 			nestbuf->b_proc     = NULL;
2713 			nestbuf->b_cylinder = 0;
2714 			nestbuf->b_rawblkno = rblk;
2715 			VOP_STRATEGY(node->ump->devvp, nestbuf);
2716 		}
2717 	}
2718 out:
2719 	DPRINTF(READ, ("\tend of read_filebuf\n"));
2720 	free(mapping, M_TEMP);
2721 	return;
2722 }
2723 #undef FILEBUFSECT
2724 
2725 
2726 /* --------------------------------------------------------------------- */
2727 
2728 /*
2729  * Translate an extent (in sectors) into sector numbers; used for read and
2730  * write operations. DOESNT't check extents.
2731  */
2732 
2733 int
2734 udf_translate_file_extent(struct udf_node *node,
2735 		          uint32_t from, uint32_t pages,
2736 			  uint64_t *map)
2737 {
2738 	struct udf_mount *ump;
2739 	struct file_entry *fe;
2740 	struct extfile_entry *efe;
2741 	struct short_ad *s_ad;
2742 	struct long_ad  *l_ad, t_ad;
2743 	uint64_t transsec;
2744 	uint32_t sector_size, transsec32;
2745 	uint32_t overlap, translen;
2746 	uint32_t vpart_num, lb_num, len, alloclen;
2747 	uint8_t *pos;
2748 	int error, flags, addr_type, icblen, icbflags;
2749 
2750 	if (!node)
2751 		return ENOENT;
2752 
2753 	/* shut up gcc */
2754 	alloclen = addr_type = icbflags = 0;
2755 	pos = NULL;
2756 
2757 	/* do the work */
2758 	ump = node->ump;
2759 	sector_size = ump->discinfo.sector_size;
2760 	fe  = node->fe;
2761 	efe = node->efe;
2762 	if (fe) {
2763 		alloclen = udf_rw32(fe->l_ad);
2764 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
2765 		icbflags = udf_rw16(fe->icbtag.flags);
2766 	}
2767 	if (efe) {
2768 		alloclen = udf_rw32(efe->l_ad);
2769 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
2770 		icbflags = udf_rw16(efe->icbtag.flags);
2771 	}
2772 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2773 
2774 	DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2775 	    "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2776 
2777 	vpart_num = udf_rw16(node->loc.loc.part_num);
2778 	lb_num = len = icblen = 0;	/* shut up gcc */
2779 	while (pages && alloclen) {
2780 		DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2781 		switch (addr_type) {
2782 		case UDF_ICB_INTERN_ALLOC :
2783 			/* TODO check extents? */
2784 			*map = UDF_TRANS_INTERN;
2785 			return 0;
2786 		case UDF_ICB_SHORT_ALLOC :
2787 			icblen = sizeof(struct short_ad);
2788 			s_ad   = (struct short_ad *) pos;
2789 			len       = udf_rw32(s_ad->len);
2790 			lb_num    = udf_rw32(s_ad->lb_num);
2791 			break;
2792 		case UDF_ICB_LONG_ALLOC  :
2793 			icblen = sizeof(struct long_ad);
2794 			l_ad   = (struct long_ad *) pos;
2795 			len       = udf_rw32(l_ad->len);
2796 			lb_num    = udf_rw32(l_ad->loc.lb_num);
2797 			vpart_num = udf_rw16(l_ad->loc.part_num);
2798 			DPRINTFIF(TRANSLATE,
2799 			    (l_ad->impl.im_used.flags &
2800 			     UDF_ADIMP_FLAGS_EXTENT_ERASED),
2801 			    ("UDF: got an `extent erased' flag in long_ad\n"));
2802 			break;
2803 		default:
2804 			/* can't be here */
2805 			return EINVAL;	/* for sure */
2806 		}
2807 
2808 		/* process extent */
2809 		flags   = UDF_EXT_FLAGS(len);
2810 		len     = UDF_EXT_LEN(len);
2811 
2812 		overlap = (len + sector_size -1) / sector_size;
2813 		if (from) {
2814 			if (from > overlap) {
2815 				from -= overlap;
2816 				overlap = 0;
2817 			} else {
2818 				lb_num  += from;	/* advance in extent */
2819 				overlap -= from;
2820 				from = 0;
2821 			}
2822 		}
2823 
2824 		overlap = MIN(overlap, pages);
2825 		while (overlap) {
2826 			switch (flags) {
2827 			case UDF_EXT_REDIRECT :
2828 				/* no support for allocation extentions yet */
2829 				/* TODO support for allocation extention */
2830 				return ENOENT;
2831 			case UDF_EXT_FREED :
2832 			case UDF_EXT_FREE :
2833 				transsec = UDF_TRANS_ZERO;
2834 				translen = overlap;
2835 				while (overlap && pages && translen) {
2836 					*map++ = transsec;
2837 					lb_num++;
2838 					overlap--; pages--; translen--;
2839 				}
2840 				break;
2841 			case UDF_EXT_ALLOCATED :
2842 				t_ad.loc.lb_num   = udf_rw32(lb_num);
2843 				t_ad.loc.part_num = udf_rw16(vpart_num);
2844 				error = udf_translate_vtop(ump,
2845 						&t_ad, &transsec32, &translen);
2846 				transsec = transsec32;
2847 				if (error)
2848 					return error;
2849 				while (overlap && pages && translen) {
2850 					*map++ = transsec;
2851 					lb_num++; transsec++;
2852 					overlap--; pages--; translen--;
2853 				}
2854 				break;
2855 			}
2856 		}
2857 		pos      += icblen;
2858 		alloclen -= icblen;
2859 	}
2860 	return 0;
2861 }
2862 
2863 /* --------------------------------------------------------------------- */
2864 
2865