1 /* $NetBSD: udf_subr.c,v 1.72 2008/08/29 15:04:18 reinoud Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.72 2008/08/29 15:04:18 reinoud Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_quota.h" 38 #include "opt_compat_netbsd.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/sysctl.h> 44 #include <sys/namei.h> 45 #include <sys/proc.h> 46 #include <sys/kernel.h> 47 #include <sys/vnode.h> 48 #include <miscfs/genfs/genfs_node.h> 49 #include <sys/mount.h> 50 #include <sys/buf.h> 51 #include <sys/file.h> 52 #include <sys/device.h> 53 #include <sys/disklabel.h> 54 #include <sys/ioctl.h> 55 #include <sys/malloc.h> 56 #include <sys/dirent.h> 57 #include <sys/stat.h> 58 #include <sys/conf.h> 59 #include <sys/kauth.h> 60 #include <fs/unicode.h> 61 #include <dev/clock_subr.h> 62 63 #include <fs/udf/ecma167-udf.h> 64 #include <fs/udf/udf_mount.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref(vp); \ 77 vput(vp); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits, 142 sizeof(bits)); 143 printf("\tdisc flags %s\n", bits); 144 printf("\tdisc id %x\n", di->disc_id); 145 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 146 147 printf("\tnum sessions %d\n", di->num_sessions); 148 printf("\tnum tracks %d\n", di->num_tracks); 149 150 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits)); 151 printf("\tcapabilities cur %s\n", bits); 152 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits)); 153 printf("\tcapabilities cap %s\n", bits); 154 } 155 #else 156 #define udf_dump_discinfo(a); 157 #endif 158 159 160 /* --------------------------------------------------------------------- */ 161 162 /* not called often */ 163 int 164 udf_update_discinfo(struct udf_mount *ump) 165 { 166 struct vnode *devvp = ump->devvp; 167 struct partinfo dpart; 168 struct mmc_discinfo *di; 169 int error; 170 171 DPRINTF(VOLUMES, ("read/update disc info\n")); 172 di = &ump->discinfo; 173 memset(di, 0, sizeof(struct mmc_discinfo)); 174 175 /* check if we're on a MMC capable device, i.e. CD/DVD */ 176 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 177 if (error == 0) { 178 udf_dump_discinfo(ump); 179 return 0; 180 } 181 182 /* disc partition support */ 183 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED); 184 if (error) 185 return ENODEV; 186 187 /* set up a disc info profile for partitions */ 188 di->mmc_profile = 0x01; /* disc type */ 189 di->mmc_class = MMC_CLASS_DISC; 190 di->disc_state = MMC_STATE_CLOSED; 191 di->last_session_state = MMC_STATE_CLOSED; 192 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 193 di->link_block_penalty = 0; 194 195 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 196 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 197 di->mmc_cap = di->mmc_cur; 198 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 199 200 /* TODO problem with last_possible_lba on resizable VND; request */ 201 di->last_possible_lba = dpart.part->p_size; 202 di->sector_size = dpart.disklab->d_secsize; 203 204 di->num_sessions = 1; 205 di->num_tracks = 1; 206 207 di->first_track = 1; 208 di->first_track_last_session = di->last_track_last_session = 1; 209 210 udf_dump_discinfo(ump); 211 return 0; 212 } 213 214 215 int 216 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 217 { 218 struct vnode *devvp = ump->devvp; 219 struct mmc_discinfo *di = &ump->discinfo; 220 int error, class; 221 222 DPRINTF(VOLUMES, ("read track info\n")); 223 224 class = di->mmc_class; 225 if (class != MMC_CLASS_DISC) { 226 /* tracknr specified in struct ti */ 227 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 228 return error; 229 } 230 231 /* disc partition support */ 232 if (ti->tracknr != 1) 233 return EIO; 234 235 /* create fake ti (TODO check for resized vnds) */ 236 ti->sessionnr = 1; 237 238 ti->track_mode = 0; /* XXX */ 239 ti->data_mode = 0; /* XXX */ 240 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 241 242 ti->track_start = 0; 243 ti->packet_size = 1; 244 245 /* TODO support for resizable vnd */ 246 ti->track_size = di->last_possible_lba; 247 ti->next_writable = di->last_possible_lba; 248 ti->last_recorded = ti->next_writable; 249 ti->free_blocks = 0; 250 251 return 0; 252 } 253 254 255 int 256 udf_setup_writeparams(struct udf_mount *ump) 257 { 258 struct mmc_writeparams mmc_writeparams; 259 int error; 260 261 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 262 return 0; 263 264 /* 265 * only CD burning normally needs setting up, but other disc types 266 * might need other settings to be made. The MMC framework will set up 267 * the nessisary recording parameters according to the disc 268 * characteristics read in. Modifications can be made in the discinfo 269 * structure passed to change the nature of the disc. 270 */ 271 272 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 273 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 274 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 275 276 /* 277 * UDF dictates first track to determine track mode for the whole 278 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 279 * To prevent problems with a `reserved' track in front we start with 280 * the 2nd track and if that is not valid, go for the 1st. 281 */ 282 mmc_writeparams.tracknr = 2; 283 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 284 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 285 286 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 287 FKIOCTL, NOCRED); 288 if (error) { 289 mmc_writeparams.tracknr = 1; 290 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 291 &mmc_writeparams, FKIOCTL, NOCRED); 292 } 293 return error; 294 } 295 296 297 int 298 udf_synchronise_caches(struct udf_mount *ump) 299 { 300 struct mmc_op mmc_op; 301 302 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 303 304 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 305 return 0; 306 307 /* discs are done now */ 308 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 309 return 0; 310 311 bzero(&mmc_op, sizeof(struct mmc_op)); 312 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 313 314 /* ignore return code */ 315 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 316 317 return 0; 318 } 319 320 /* --------------------------------------------------------------------- */ 321 322 /* track/session searching for mounting */ 323 int 324 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 325 int *first_tracknr, int *last_tracknr) 326 { 327 struct mmc_trackinfo trackinfo; 328 uint32_t tracknr, start_track, num_tracks; 329 int error; 330 331 /* if negative, sessionnr is relative to last session */ 332 if (args->sessionnr < 0) { 333 args->sessionnr += ump->discinfo.num_sessions; 334 } 335 336 /* sanity */ 337 if (args->sessionnr < 0) 338 args->sessionnr = 0; 339 if (args->sessionnr > ump->discinfo.num_sessions) 340 args->sessionnr = ump->discinfo.num_sessions; 341 342 /* search the tracks for this session, zero session nr indicates last */ 343 if (args->sessionnr == 0) 344 args->sessionnr = ump->discinfo.num_sessions; 345 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 346 args->sessionnr--; 347 348 /* sanity again */ 349 if (args->sessionnr < 0) 350 args->sessionnr = 0; 351 352 /* search the first and last track of the specified session */ 353 num_tracks = ump->discinfo.num_tracks; 354 start_track = ump->discinfo.first_track; 355 356 /* search for first track of this session */ 357 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 358 /* get track info */ 359 trackinfo.tracknr = tracknr; 360 error = udf_update_trackinfo(ump, &trackinfo); 361 if (error) 362 return error; 363 364 if (trackinfo.sessionnr == args->sessionnr) 365 break; 366 } 367 *first_tracknr = tracknr; 368 369 /* search for last track of this session */ 370 for (;tracknr <= num_tracks; tracknr++) { 371 /* get track info */ 372 trackinfo.tracknr = tracknr; 373 error = udf_update_trackinfo(ump, &trackinfo); 374 if (error || (trackinfo.sessionnr != args->sessionnr)) { 375 tracknr--; 376 break; 377 } 378 } 379 if (tracknr > num_tracks) 380 tracknr--; 381 382 *last_tracknr = tracknr; 383 384 if (*last_tracknr < *first_tracknr) { 385 printf( "udf_search_tracks: sanity check on drive+disc failed, " 386 "drive returned garbage\n"); 387 return EINVAL; 388 } 389 390 assert(*last_tracknr >= *first_tracknr); 391 return 0; 392 } 393 394 395 /* 396 * NOTE: this is the only routine in this file that directly peeks into the 397 * metadata file but since its at a larval state of the mount it can't hurt. 398 * 399 * XXX candidate for udf_allocation.c 400 * XXX clean me up!, change to new node reading code. 401 */ 402 403 static void 404 udf_check_track_metadata_overlap(struct udf_mount *ump, 405 struct mmc_trackinfo *trackinfo) 406 { 407 struct part_desc *part; 408 struct file_entry *fe; 409 struct extfile_entry *efe; 410 struct short_ad *s_ad; 411 struct long_ad *l_ad; 412 uint32_t track_start, track_end; 413 uint32_t phys_part_start, phys_part_end, part_start, part_end; 414 uint32_t sector_size, len, alloclen, plb_num; 415 uint8_t *pos; 416 int addr_type, icblen, icbflags, flags; 417 418 /* get our track extents */ 419 track_start = trackinfo->track_start; 420 track_end = track_start + trackinfo->track_size; 421 422 /* get our base partition extent */ 423 KASSERT(ump->node_part == ump->fids_part); 424 part = ump->partitions[ump->node_part]; 425 phys_part_start = udf_rw32(part->start_loc); 426 phys_part_end = phys_part_start + udf_rw32(part->part_len); 427 428 /* no use if its outside the physical partition */ 429 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 430 return; 431 432 /* 433 * now follow all extents in the fe/efe to see if they refer to this 434 * track 435 */ 436 437 sector_size = ump->discinfo.sector_size; 438 439 /* XXX should we claim exclusive access to the metafile ? */ 440 /* TODO: move to new node read code */ 441 fe = ump->metadata_node->fe; 442 efe = ump->metadata_node->efe; 443 if (fe) { 444 alloclen = udf_rw32(fe->l_ad); 445 pos = &fe->data[0] + udf_rw32(fe->l_ea); 446 icbflags = udf_rw16(fe->icbtag.flags); 447 } else { 448 assert(efe); 449 alloclen = udf_rw32(efe->l_ad); 450 pos = &efe->data[0] + udf_rw32(efe->l_ea); 451 icbflags = udf_rw16(efe->icbtag.flags); 452 } 453 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 454 455 while (alloclen) { 456 if (addr_type == UDF_ICB_SHORT_ALLOC) { 457 icblen = sizeof(struct short_ad); 458 s_ad = (struct short_ad *) pos; 459 len = udf_rw32(s_ad->len); 460 plb_num = udf_rw32(s_ad->lb_num); 461 } else { 462 /* should not be present, but why not */ 463 icblen = sizeof(struct long_ad); 464 l_ad = (struct long_ad *) pos; 465 len = udf_rw32(l_ad->len); 466 plb_num = udf_rw32(l_ad->loc.lb_num); 467 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 468 } 469 /* process extent */ 470 flags = UDF_EXT_FLAGS(len); 471 len = UDF_EXT_LEN(len); 472 473 part_start = phys_part_start + plb_num; 474 part_end = part_start + (len / sector_size); 475 476 if ((part_start >= track_start) && (part_end <= track_end)) { 477 /* extent is enclosed within this track */ 478 ump->metadata_track = *trackinfo; 479 return; 480 } 481 482 pos += icblen; 483 alloclen -= icblen; 484 } 485 } 486 487 488 int 489 udf_search_writing_tracks(struct udf_mount *ump) 490 { 491 struct mmc_trackinfo trackinfo; 492 struct part_desc *part; 493 uint32_t tracknr, start_track, num_tracks; 494 uint32_t track_start, track_end, part_start, part_end; 495 int node_alloc, error; 496 497 /* 498 * in the CD/(HD)DVD/BD recordable device model a few tracks within 499 * the last session might be open but in the UDF device model at most 500 * three tracks can be open: a reserved track for delayed ISO VRS 501 * writing, a data track and a metadata track. We search here for the 502 * data track and the metadata track. Note that the reserved track is 503 * troublesome but can be detected by its small size of < 512 sectors. 504 */ 505 506 num_tracks = ump->discinfo.num_tracks; 507 start_track = ump->discinfo.first_track; 508 509 /* fetch info on first and possibly only track */ 510 trackinfo.tracknr = start_track; 511 error = udf_update_trackinfo(ump, &trackinfo); 512 if (error) 513 return error; 514 515 /* copy results to our mount point */ 516 ump->data_track = trackinfo; 517 ump->metadata_track = trackinfo; 518 519 /* if not sequential, we're done */ 520 if (num_tracks == 1) 521 return 0; 522 523 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 524 /* get track info */ 525 trackinfo.tracknr = tracknr; 526 error = udf_update_trackinfo(ump, &trackinfo); 527 if (error) 528 return error; 529 530 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 531 continue; 532 533 track_start = trackinfo.track_start; 534 track_end = track_start + trackinfo.track_size; 535 536 /* check for overlap on data partition */ 537 part = ump->partitions[ump->data_part]; 538 part_start = udf_rw32(part->start_loc); 539 part_end = part_start + udf_rw32(part->part_len); 540 if ((part_start < track_end) && (part_end > track_start)) { 541 ump->data_track = trackinfo; 542 /* TODO check if UDF partition data_part is writable */ 543 } 544 545 /* check for overlap on metadata partition */ 546 node_alloc = ump->vtop_alloc[ump->node_part]; 547 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 548 (node_alloc == UDF_ALLOC_METABITMAP)) { 549 udf_check_track_metadata_overlap(ump, &trackinfo); 550 } else { 551 ump->metadata_track = trackinfo; 552 } 553 } 554 555 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 556 return EROFS; 557 558 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 559 return EROFS; 560 561 return 0; 562 } 563 564 /* --------------------------------------------------------------------- */ 565 566 /* 567 * Check if the blob starts with a good UDF tag. Tags are protected by a 568 * checksum over the reader except one byte at position 4 that is the checksum 569 * itself. 570 */ 571 572 int 573 udf_check_tag(void *blob) 574 { 575 struct desc_tag *tag = blob; 576 uint8_t *pos, sum, cnt; 577 578 /* check TAG header checksum */ 579 pos = (uint8_t *) tag; 580 sum = 0; 581 582 for(cnt = 0; cnt < 16; cnt++) { 583 if (cnt != 4) 584 sum += *pos; 585 pos++; 586 } 587 if (sum != tag->cksum) { 588 /* bad tag header checksum; this is not a valid tag */ 589 return EINVAL; 590 } 591 592 return 0; 593 } 594 595 596 /* 597 * check tag payload will check descriptor CRC as specified. 598 * If the descriptor is too long, it will return EIO otherwise EINVAL. 599 */ 600 601 int 602 udf_check_tag_payload(void *blob, uint32_t max_length) 603 { 604 struct desc_tag *tag = blob; 605 uint16_t crc, crc_len; 606 607 crc_len = udf_rw16(tag->desc_crc_len); 608 609 /* check payload CRC if applicable */ 610 if (crc_len == 0) 611 return 0; 612 613 if (crc_len > max_length) 614 return EIO; 615 616 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 617 if (crc != udf_rw16(tag->desc_crc)) { 618 /* bad payload CRC; this is a broken tag */ 619 return EINVAL; 620 } 621 622 return 0; 623 } 624 625 626 void 627 udf_validate_tag_sum(void *blob) 628 { 629 struct desc_tag *tag = blob; 630 uint8_t *pos, sum, cnt; 631 632 /* calculate TAG header checksum */ 633 pos = (uint8_t *) tag; 634 sum = 0; 635 636 for(cnt = 0; cnt < 16; cnt++) { 637 if (cnt != 4) sum += *pos; 638 pos++; 639 } 640 tag->cksum = sum; /* 8 bit */ 641 } 642 643 644 /* assumes sector number of descriptor to be saved already present */ 645 void 646 udf_validate_tag_and_crc_sums(void *blob) 647 { 648 struct desc_tag *tag = blob; 649 uint8_t *btag = (uint8_t *) tag; 650 uint16_t crc, crc_len; 651 652 crc_len = udf_rw16(tag->desc_crc_len); 653 654 /* check payload CRC if applicable */ 655 if (crc_len > 0) { 656 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 657 tag->desc_crc = udf_rw16(crc); 658 } 659 660 /* calculate TAG header checksum */ 661 udf_validate_tag_sum(blob); 662 } 663 664 /* --------------------------------------------------------------------- */ 665 666 /* 667 * XXX note the different semantics from udfclient: for FIDs it still rounds 668 * up to sectors. Use udf_fidsize() for a correct length. 669 */ 670 671 int 672 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 673 { 674 uint32_t size, tag_id, num_lb, elmsz; 675 676 tag_id = udf_rw16(dscr->tag.id); 677 678 switch (tag_id) { 679 case TAGID_LOGVOL : 680 size = sizeof(struct logvol_desc) - 1; 681 size += udf_rw32(dscr->lvd.mt_l); 682 break; 683 case TAGID_UNALLOC_SPACE : 684 elmsz = sizeof(struct extent_ad); 685 size = sizeof(struct unalloc_sp_desc) - elmsz; 686 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 687 break; 688 case TAGID_FID : 689 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 690 size = (size + 3) & ~3; 691 break; 692 case TAGID_LOGVOL_INTEGRITY : 693 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 694 size += udf_rw32(dscr->lvid.l_iu); 695 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 696 break; 697 case TAGID_SPACE_BITMAP : 698 size = sizeof(struct space_bitmap_desc) - 1; 699 size += udf_rw32(dscr->sbd.num_bytes); 700 break; 701 case TAGID_SPARING_TABLE : 702 elmsz = sizeof(struct spare_map_entry); 703 size = sizeof(struct udf_sparing_table) - elmsz; 704 size += udf_rw16(dscr->spt.rt_l) * elmsz; 705 break; 706 case TAGID_FENTRY : 707 size = sizeof(struct file_entry); 708 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 709 break; 710 case TAGID_EXTFENTRY : 711 size = sizeof(struct extfile_entry); 712 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 713 break; 714 case TAGID_FSD : 715 size = sizeof(struct fileset_desc); 716 break; 717 default : 718 size = sizeof(union dscrptr); 719 break; 720 } 721 722 if ((size == 0) || (lb_size == 0)) 723 return 0; 724 725 if (lb_size == 1) 726 return size; 727 728 /* round up in sectors */ 729 num_lb = (size + lb_size -1) / lb_size; 730 return num_lb * lb_size; 731 } 732 733 734 int 735 udf_fidsize(struct fileid_desc *fid) 736 { 737 uint32_t size; 738 739 if (udf_rw16(fid->tag.id) != TAGID_FID) 740 panic("got udf_fidsize on non FID\n"); 741 742 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 743 size = (size + 3) & ~3; 744 745 return size; 746 } 747 748 /* --------------------------------------------------------------------- */ 749 750 void 751 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 752 { 753 int ret; 754 755 mutex_enter(&udf_node->node_mutex); 756 /* wait until free */ 757 while (udf_node->i_flags & IN_LOCKED) { 758 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 759 /* TODO check if we should return error; abort */ 760 if (ret == EWOULDBLOCK) { 761 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 762 "wanted at %s:%d, previously locked at %s:%d\n", 763 udf_node, fname, lineno, 764 udf_node->lock_fname, udf_node->lock_lineno)); 765 } 766 } 767 /* grab */ 768 udf_node->i_flags |= IN_LOCKED | flag; 769 /* debug */ 770 udf_node->lock_fname = fname; 771 udf_node->lock_lineno = lineno; 772 773 mutex_exit(&udf_node->node_mutex); 774 } 775 776 777 void 778 udf_unlock_node(struct udf_node *udf_node, int flag) 779 { 780 mutex_enter(&udf_node->node_mutex); 781 udf_node->i_flags &= ~(IN_LOCKED | flag); 782 cv_broadcast(&udf_node->node_lock); 783 mutex_exit(&udf_node->node_mutex); 784 } 785 786 787 /* --------------------------------------------------------------------- */ 788 789 static int 790 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 791 { 792 int error; 793 794 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 795 (union dscrptr **) dst); 796 if (!error) { 797 /* blank terminator blocks are not allowed here */ 798 if (*dst == NULL) 799 return ENOENT; 800 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 801 error = ENOENT; 802 free(*dst, M_UDFVOLD); 803 *dst = NULL; 804 DPRINTF(VOLUMES, ("Not an anchor\n")); 805 } 806 } 807 808 return error; 809 } 810 811 812 int 813 udf_read_anchors(struct udf_mount *ump) 814 { 815 struct udf_args *args = &ump->mount_args; 816 struct mmc_trackinfo first_track; 817 struct mmc_trackinfo second_track; 818 struct mmc_trackinfo last_track; 819 struct anchor_vdp **anchorsp; 820 uint32_t track_start; 821 uint32_t track_end; 822 uint32_t positions[4]; 823 int first_tracknr, last_tracknr; 824 int error, anch, ok, first_anchor; 825 826 /* search the first and last track of the specified session */ 827 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 828 if (!error) { 829 first_track.tracknr = first_tracknr; 830 error = udf_update_trackinfo(ump, &first_track); 831 } 832 if (!error) { 833 last_track.tracknr = last_tracknr; 834 error = udf_update_trackinfo(ump, &last_track); 835 } 836 if ((!error) && (first_tracknr != last_tracknr)) { 837 second_track.tracknr = first_tracknr+1; 838 error = udf_update_trackinfo(ump, &second_track); 839 } 840 if (error) { 841 printf("UDF mount: reading disc geometry failed\n"); 842 return 0; 843 } 844 845 track_start = first_track.track_start; 846 847 /* `end' is not as straitforward as start. */ 848 track_end = last_track.track_start 849 + last_track.track_size - last_track.free_blocks - 1; 850 851 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 852 /* end of track is not straitforward here */ 853 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 854 track_end = last_track.last_recorded; 855 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 856 track_end = last_track.next_writable 857 - ump->discinfo.link_block_penalty; 858 } 859 860 /* its no use reading a blank track */ 861 first_anchor = 0; 862 if (first_track.flags & MMC_TRACKINFO_BLANK) 863 first_anchor = 1; 864 865 /* get our packet size */ 866 ump->packet_size = first_track.packet_size; 867 if (first_track.flags & MMC_TRACKINFO_BLANK) 868 ump->packet_size = second_track.packet_size; 869 870 if (ump->packet_size <= 1) { 871 /* take max, but not bigger than 64 */ 872 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 873 ump->packet_size = MIN(ump->packet_size, 64); 874 } 875 KASSERT(ump->packet_size >= 1); 876 877 /* read anchors start+256, start+512, end-256, end */ 878 positions[0] = track_start+256; 879 positions[1] = track_end-256; 880 positions[2] = track_end; 881 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 882 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 883 884 ok = 0; 885 anchorsp = ump->anchors; 886 for (anch = first_anchor; anch < 4; anch++) { 887 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 888 positions[anch])); 889 error = udf_read_anchor(ump, positions[anch], anchorsp); 890 if (!error) { 891 anchorsp++; 892 ok++; 893 } 894 } 895 896 /* VATs are only recorded on sequential media, but initialise */ 897 ump->first_possible_vat_location = track_start + 2; 898 ump->last_possible_vat_location = track_end + last_track.packet_size; 899 900 return ok; 901 } 902 903 /* --------------------------------------------------------------------- */ 904 905 /* we dont try to be smart; we just record the parts */ 906 #define UDF_UPDATE_DSCR(name, dscr) \ 907 if (name) \ 908 free(name, M_UDFVOLD); \ 909 name = dscr; 910 911 static int 912 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 913 { 914 struct part_desc *part; 915 uint16_t phys_part, raw_phys_part; 916 917 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 918 udf_rw16(dscr->tag.id))); 919 switch (udf_rw16(dscr->tag.id)) { 920 case TAGID_PRI_VOL : /* primary partition */ 921 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 922 break; 923 case TAGID_LOGVOL : /* logical volume */ 924 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 925 break; 926 case TAGID_UNALLOC_SPACE : /* unallocated space */ 927 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 928 break; 929 case TAGID_IMP_VOL : /* implementation */ 930 /* XXX do we care about multiple impl. descr ? */ 931 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 932 break; 933 case TAGID_PARTITION : /* physical partition */ 934 /* not much use if its not allocated */ 935 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 936 free(dscr, M_UDFVOLD); 937 break; 938 } 939 940 /* 941 * BUGALERT: some rogue implementations use random physical 942 * partion numbers to break other implementations so lookup 943 * the number. 944 */ 945 raw_phys_part = udf_rw16(dscr->pd.part_num); 946 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 947 part = ump->partitions[phys_part]; 948 if (part == NULL) 949 break; 950 if (udf_rw16(part->part_num) == raw_phys_part) 951 break; 952 } 953 if (phys_part == UDF_PARTITIONS) { 954 free(dscr, M_UDFVOLD); 955 return EINVAL; 956 } 957 958 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 959 break; 960 case TAGID_VOL : /* volume space extender; rare */ 961 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 962 free(dscr, M_UDFVOLD); 963 break; 964 default : 965 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 966 udf_rw16(dscr->tag.id))); 967 free(dscr, M_UDFVOLD); 968 } 969 970 return 0; 971 } 972 #undef UDF_UPDATE_DSCR 973 974 /* --------------------------------------------------------------------- */ 975 976 static int 977 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 978 { 979 union dscrptr *dscr; 980 uint32_t sector_size, dscr_size; 981 int error; 982 983 sector_size = ump->discinfo.sector_size; 984 985 /* loc is sectornr, len is in bytes */ 986 error = EIO; 987 while (len) { 988 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 989 if (error) 990 return error; 991 992 /* blank block is a terminator */ 993 if (dscr == NULL) 994 return 0; 995 996 /* TERM descriptor is a terminator */ 997 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 998 free(dscr, M_UDFVOLD); 999 return 0; 1000 } 1001 1002 /* process all others */ 1003 dscr_size = udf_tagsize(dscr, sector_size); 1004 error = udf_process_vds_descriptor(ump, dscr); 1005 if (error) { 1006 free(dscr, M_UDFVOLD); 1007 break; 1008 } 1009 assert((dscr_size % sector_size) == 0); 1010 1011 len -= dscr_size; 1012 loc += dscr_size / sector_size; 1013 } 1014 1015 return error; 1016 } 1017 1018 1019 int 1020 udf_read_vds_space(struct udf_mount *ump) 1021 { 1022 /* struct udf_args *args = &ump->mount_args; */ 1023 struct anchor_vdp *anchor, *anchor2; 1024 size_t size; 1025 uint32_t main_loc, main_len; 1026 uint32_t reserve_loc, reserve_len; 1027 int error; 1028 1029 /* 1030 * read in VDS space provided by the anchors; if one descriptor read 1031 * fails, try the mirror sector. 1032 * 1033 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1034 * avoids the `compatibility features' of DirectCD that may confuse 1035 * stuff completely. 1036 */ 1037 1038 anchor = ump->anchors[0]; 1039 anchor2 = ump->anchors[1]; 1040 assert(anchor); 1041 1042 if (anchor2) { 1043 size = sizeof(struct extent_ad); 1044 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1045 anchor = anchor2; 1046 /* reserve is specified to be a literal copy of main */ 1047 } 1048 1049 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1050 main_len = udf_rw32(anchor->main_vds_ex.len); 1051 1052 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1053 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1054 1055 error = udf_read_vds_extent(ump, main_loc, main_len); 1056 if (error) { 1057 printf("UDF mount: reading in reserve VDS extent\n"); 1058 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1059 } 1060 1061 return error; 1062 } 1063 1064 /* --------------------------------------------------------------------- */ 1065 1066 /* 1067 * Read in the logical volume integrity sequence pointed to by our logical 1068 * volume descriptor. Its a sequence that can be extended using fields in the 1069 * integrity descriptor itself. On sequential media only one is found, on 1070 * rewritable media a sequence of descriptors can be found as a form of 1071 * history keeping and on non sequential write-once media the chain is vital 1072 * to allow more and more descriptors to be written. The last descriptor 1073 * written in an extent needs to claim space for a new extent. 1074 */ 1075 1076 static int 1077 udf_retrieve_lvint(struct udf_mount *ump) 1078 { 1079 union dscrptr *dscr; 1080 struct logvol_int_desc *lvint; 1081 struct udf_lvintq *trace; 1082 uint32_t lb_size, lbnum, len; 1083 int dscr_type, error, trace_len; 1084 1085 lb_size = udf_rw32(ump->logical_vol->lb_size); 1086 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1087 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1088 1089 /* clean trace */ 1090 memset(ump->lvint_trace, 0, 1091 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1092 1093 trace_len = 0; 1094 trace = ump->lvint_trace; 1095 trace->start = lbnum; 1096 trace->end = lbnum + len/lb_size; 1097 trace->pos = 0; 1098 trace->wpos = 0; 1099 1100 lvint = NULL; 1101 dscr = NULL; 1102 error = 0; 1103 while (len) { 1104 trace->pos = lbnum - trace->start; 1105 trace->wpos = trace->pos + 1; 1106 1107 /* read in our integrity descriptor */ 1108 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1109 if (!error) { 1110 if (dscr == NULL) { 1111 trace->wpos = trace->pos; 1112 break; /* empty terminates */ 1113 } 1114 dscr_type = udf_rw16(dscr->tag.id); 1115 if (dscr_type == TAGID_TERM) { 1116 trace->wpos = trace->pos; 1117 break; /* clean terminator */ 1118 } 1119 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1120 /* fatal... corrupt disc */ 1121 error = ENOENT; 1122 break; 1123 } 1124 if (lvint) 1125 free(lvint, M_UDFVOLD); 1126 lvint = &dscr->lvid; 1127 dscr = NULL; 1128 } /* else hope for the best... maybe the next is ok */ 1129 1130 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1131 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1132 1133 /* proceed sequential */ 1134 lbnum += 1; 1135 len -= lb_size; 1136 1137 /* are we linking to a new piece? */ 1138 if (dscr && lvint->next_extent.len) { 1139 len = udf_rw32(lvint->next_extent.len); 1140 lbnum = udf_rw32(lvint->next_extent.loc); 1141 1142 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1143 /* IEK! segment link full... */ 1144 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1145 error = EINVAL; 1146 } else { 1147 trace++; 1148 trace_len++; 1149 1150 trace->start = lbnum; 1151 trace->end = lbnum + len/lb_size; 1152 trace->pos = 0; 1153 trace->wpos = 0; 1154 } 1155 } 1156 } 1157 1158 /* clean up the mess, esp. when there is an error */ 1159 if (dscr) 1160 free(dscr, M_UDFVOLD); 1161 1162 if (error && lvint) { 1163 free(lvint, M_UDFVOLD); 1164 lvint = NULL; 1165 } 1166 1167 if (!lvint) 1168 error = ENOENT; 1169 1170 ump->logvol_integrity = lvint; 1171 return error; 1172 } 1173 1174 1175 static int 1176 udf_loose_lvint_history(struct udf_mount *ump) 1177 { 1178 union dscrptr **bufs, *dscr, *last_dscr; 1179 struct udf_lvintq *trace, *in_trace, *out_trace; 1180 struct logvol_int_desc *lvint; 1181 uint32_t in_ext, in_pos, in_len; 1182 uint32_t out_ext, out_wpos, out_len; 1183 uint32_t lb_size, packet_size, lb_num; 1184 uint32_t len, start; 1185 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1186 int losing; 1187 int error; 1188 1189 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1190 1191 lb_size = udf_rw32(ump->logical_vol->lb_size); 1192 packet_size = ump->data_track.packet_size; /* XXX data track */ 1193 1194 /* search smallest extent */ 1195 trace = &ump->lvint_trace[0]; 1196 minext = trace->end - trace->start; 1197 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1198 trace = &ump->lvint_trace[ext]; 1199 extlen = trace->end - trace->start; 1200 if (extlen == 0) 1201 break; 1202 minext = MIN(minext, extlen); 1203 } 1204 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1205 /* no sense wiping all */ 1206 if (losing == minext) 1207 losing--; 1208 1209 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1210 1211 /* get buffer for pieces */ 1212 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1213 1214 in_ext = 0; 1215 in_pos = losing; 1216 in_trace = &ump->lvint_trace[in_ext]; 1217 in_len = in_trace->end - in_trace->start; 1218 out_ext = 0; 1219 out_wpos = 0; 1220 out_trace = &ump->lvint_trace[out_ext]; 1221 out_len = out_trace->end - out_trace->start; 1222 1223 last_dscr = NULL; 1224 for(;;) { 1225 out_trace->pos = out_wpos; 1226 out_trace->wpos = out_trace->pos; 1227 if (in_pos >= in_len) { 1228 in_ext++; 1229 in_pos = 0; 1230 in_trace = &ump->lvint_trace[in_ext]; 1231 in_len = in_trace->end - in_trace->start; 1232 } 1233 if (out_wpos >= out_len) { 1234 out_ext++; 1235 out_wpos = 0; 1236 out_trace = &ump->lvint_trace[out_ext]; 1237 out_len = out_trace->end - out_trace->start; 1238 } 1239 /* copy overlap contents */ 1240 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1241 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1242 if (cpy_len == 0) 1243 break; 1244 1245 /* copy */ 1246 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1247 for (cnt = 0; cnt < cpy_len; cnt++) { 1248 /* read in our integrity descriptor */ 1249 lb_num = in_trace->start + in_pos + cnt; 1250 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1251 &dscr); 1252 if (error) { 1253 /* copy last one */ 1254 dscr = last_dscr; 1255 } 1256 bufs[cnt] = dscr; 1257 if (!error) { 1258 if (dscr == NULL) { 1259 out_trace->pos = out_wpos + cnt; 1260 out_trace->wpos = out_trace->pos; 1261 break; /* empty terminates */ 1262 } 1263 dscr_type = udf_rw16(dscr->tag.id); 1264 if (dscr_type == TAGID_TERM) { 1265 out_trace->pos = out_wpos + cnt; 1266 out_trace->wpos = out_trace->pos; 1267 break; /* clean terminator */ 1268 } 1269 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1270 panic( "UDF integrity sequence " 1271 "corrupted while mounted!\n"); 1272 } 1273 last_dscr = dscr; 1274 } 1275 } 1276 1277 /* patch up if first entry was on error */ 1278 if (bufs[0] == NULL) { 1279 for (cnt = 0; cnt < cpy_len; cnt++) 1280 if (bufs[cnt] != NULL) 1281 break; 1282 last_dscr = bufs[cnt]; 1283 for (; cnt > 0; cnt--) { 1284 bufs[cnt] = last_dscr; 1285 } 1286 } 1287 1288 /* glue + write out */ 1289 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1290 for (cnt = 0; cnt < cpy_len; cnt++) { 1291 lb_num = out_trace->start + out_wpos + cnt; 1292 lvint = &bufs[cnt]->lvid; 1293 1294 /* set continuation */ 1295 len = 0; 1296 start = 0; 1297 if (out_wpos + cnt == out_len) { 1298 /* get continuation */ 1299 trace = &ump->lvint_trace[out_ext+1]; 1300 len = trace->end - trace->start; 1301 start = trace->start; 1302 } 1303 lvint->next_extent.len = udf_rw32(len); 1304 lvint->next_extent.loc = udf_rw32(start); 1305 1306 lb_num = trace->start + trace->wpos; 1307 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1308 bufs[cnt], lb_num, lb_num); 1309 DPRINTFIF(VOLUMES, error, 1310 ("error writing lvint lb_num\n")); 1311 } 1312 1313 /* free non repeating descriptors */ 1314 last_dscr = NULL; 1315 for (cnt = 0; cnt < cpy_len; cnt++) { 1316 if (bufs[cnt] != last_dscr) 1317 free(bufs[cnt], M_UDFVOLD); 1318 last_dscr = bufs[cnt]; 1319 } 1320 1321 /* advance */ 1322 in_pos += cpy_len; 1323 out_wpos += cpy_len; 1324 } 1325 1326 free(bufs, M_TEMP); 1327 1328 return 0; 1329 } 1330 1331 1332 static int 1333 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1334 { 1335 struct udf_lvintq *trace; 1336 struct timeval now_v; 1337 struct timespec now_s; 1338 uint32_t sector; 1339 int logvol_integrity; 1340 int space, error; 1341 1342 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1343 1344 again: 1345 /* get free space in last chunk */ 1346 trace = ump->lvint_trace; 1347 while (trace->wpos > (trace->end - trace->start)) { 1348 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1349 "wpos = %d\n", trace->start, trace->end, 1350 trace->pos, trace->wpos)); 1351 trace++; 1352 } 1353 1354 /* check if there is space to append */ 1355 space = (trace->end - trace->start) - trace->wpos; 1356 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1357 "space = %d\n", trace->start, trace->end, trace->pos, 1358 trace->wpos, space)); 1359 1360 /* get state */ 1361 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1362 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1363 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1364 /* don't allow this logvol to be opened */ 1365 /* TODO extent LVINT space if possible */ 1366 return EROFS; 1367 } 1368 } 1369 1370 if (space < 1) { 1371 if (lvflag & UDF_APPENDONLY_LVINT) 1372 return EROFS; 1373 /* loose history by re-writing extents */ 1374 error = udf_loose_lvint_history(ump); 1375 if (error) 1376 return error; 1377 goto again; 1378 } 1379 1380 /* update our integrity descriptor to identify us and timestamp it */ 1381 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1382 microtime(&now_v); 1383 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1384 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1385 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1386 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1387 1388 /* writeout integrity descriptor */ 1389 sector = trace->start + trace->wpos; 1390 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1391 (union dscrptr *) ump->logvol_integrity, 1392 sector, sector); 1393 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1394 if (error) 1395 return error; 1396 1397 /* advance write position */ 1398 trace->wpos++; space--; 1399 if (space >= 1) { 1400 /* append terminator */ 1401 sector = trace->start + trace->wpos; 1402 error = udf_write_terminator(ump, sector); 1403 1404 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1405 } 1406 1407 space = (trace->end - trace->start) - trace->wpos; 1408 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1409 "space = %d\n", trace->start, trace->end, trace->pos, 1410 trace->wpos, space)); 1411 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1412 "successfull\n")); 1413 1414 return error; 1415 } 1416 1417 /* --------------------------------------------------------------------- */ 1418 1419 static int 1420 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1421 { 1422 union dscrptr *dscr; 1423 /* struct udf_args *args = &ump->mount_args; */ 1424 struct part_desc *partd; 1425 struct part_hdr_desc *parthdr; 1426 struct udf_bitmap *bitmap; 1427 uint32_t phys_part; 1428 uint32_t lb_num, len; 1429 int error, dscr_type; 1430 1431 /* unallocated space map */ 1432 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1433 partd = ump->partitions[phys_part]; 1434 if (partd == NULL) 1435 continue; 1436 parthdr = &partd->_impl_use.part_hdr; 1437 1438 lb_num = udf_rw32(partd->start_loc); 1439 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1440 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1441 if (len == 0) 1442 continue; 1443 1444 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1445 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1446 if (!error && dscr) { 1447 /* analyse */ 1448 dscr_type = udf_rw16(dscr->tag.id); 1449 if (dscr_type == TAGID_SPACE_BITMAP) { 1450 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1451 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1452 1453 /* fill in ump->part_unalloc_bits */ 1454 bitmap = &ump->part_unalloc_bits[phys_part]; 1455 bitmap->blob = (uint8_t *) dscr; 1456 bitmap->bits = dscr->sbd.data; 1457 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1458 bitmap->pages = NULL; /* TODO */ 1459 bitmap->data_pos = 0; 1460 bitmap->metadata_pos = 0; 1461 } else { 1462 free(dscr, M_UDFVOLD); 1463 1464 printf( "UDF mount: error reading unallocated " 1465 "space bitmap\n"); 1466 return EROFS; 1467 } 1468 } else { 1469 /* blank not allowed */ 1470 printf("UDF mount: blank unallocated space bitmap\n"); 1471 return EROFS; 1472 } 1473 } 1474 1475 /* unallocated space table (not supported) */ 1476 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1477 partd = ump->partitions[phys_part]; 1478 if (partd == NULL) 1479 continue; 1480 parthdr = &partd->_impl_use.part_hdr; 1481 1482 len = udf_rw32(parthdr->unalloc_space_table.len); 1483 if (len) { 1484 printf("UDF mount: space tables not supported\n"); 1485 return EROFS; 1486 } 1487 } 1488 1489 /* freed space map */ 1490 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1491 partd = ump->partitions[phys_part]; 1492 if (partd == NULL) 1493 continue; 1494 parthdr = &partd->_impl_use.part_hdr; 1495 1496 /* freed space map */ 1497 lb_num = udf_rw32(partd->start_loc); 1498 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1499 len = udf_rw32(parthdr->freed_space_bitmap.len); 1500 if (len == 0) 1501 continue; 1502 1503 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1504 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1505 if (!error && dscr) { 1506 /* analyse */ 1507 dscr_type = udf_rw16(dscr->tag.id); 1508 if (dscr_type == TAGID_SPACE_BITMAP) { 1509 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1510 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1511 1512 /* fill in ump->part_freed_bits */ 1513 bitmap = &ump->part_unalloc_bits[phys_part]; 1514 bitmap->blob = (uint8_t *) dscr; 1515 bitmap->bits = dscr->sbd.data; 1516 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1517 bitmap->pages = NULL; /* TODO */ 1518 bitmap->data_pos = 0; 1519 bitmap->metadata_pos = 0; 1520 } else { 1521 free(dscr, M_UDFVOLD); 1522 1523 printf( "UDF mount: error reading freed " 1524 "space bitmap\n"); 1525 return EROFS; 1526 } 1527 } else { 1528 /* blank not allowed */ 1529 printf("UDF mount: blank freed space bitmap\n"); 1530 return EROFS; 1531 } 1532 } 1533 1534 /* freed space table (not supported) */ 1535 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1536 partd = ump->partitions[phys_part]; 1537 if (partd == NULL) 1538 continue; 1539 parthdr = &partd->_impl_use.part_hdr; 1540 1541 len = udf_rw32(parthdr->freed_space_table.len); 1542 if (len) { 1543 printf("UDF mount: space tables not supported\n"); 1544 return EROFS; 1545 } 1546 } 1547 1548 return 0; 1549 } 1550 1551 1552 /* TODO implement async writeout */ 1553 int 1554 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1555 { 1556 union dscrptr *dscr; 1557 /* struct udf_args *args = &ump->mount_args; */ 1558 struct part_desc *partd; 1559 struct part_hdr_desc *parthdr; 1560 uint32_t phys_part; 1561 uint32_t lb_num, len, ptov; 1562 int error_all, error; 1563 1564 error_all = 0; 1565 /* unallocated space map */ 1566 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1567 partd = ump->partitions[phys_part]; 1568 if (partd == NULL) 1569 continue; 1570 parthdr = &partd->_impl_use.part_hdr; 1571 1572 ptov = udf_rw32(partd->start_loc); 1573 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1574 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1575 if (len == 0) 1576 continue; 1577 1578 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1579 lb_num + ptov)); 1580 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1581 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1582 (union dscrptr *) dscr, 1583 ptov + lb_num, lb_num); 1584 if (error) { 1585 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1586 error_all = error; 1587 } 1588 } 1589 1590 /* freed space map */ 1591 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1592 partd = ump->partitions[phys_part]; 1593 if (partd == NULL) 1594 continue; 1595 parthdr = &partd->_impl_use.part_hdr; 1596 1597 /* freed space map */ 1598 ptov = udf_rw32(partd->start_loc); 1599 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1600 len = udf_rw32(parthdr->freed_space_bitmap.len); 1601 if (len == 0) 1602 continue; 1603 1604 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1605 lb_num + ptov)); 1606 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1607 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1608 (union dscrptr *) dscr, 1609 ptov + lb_num, lb_num); 1610 if (error) { 1611 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1612 error_all = error; 1613 } 1614 } 1615 1616 return error_all; 1617 } 1618 1619 1620 static int 1621 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1622 { 1623 struct udf_node *bitmap_node; 1624 union dscrptr *dscr; 1625 struct udf_bitmap *bitmap; 1626 uint64_t inflen; 1627 int error, dscr_type; 1628 1629 bitmap_node = ump->metadatabitmap_node; 1630 1631 /* only read in when metadata bitmap node is read in */ 1632 if (bitmap_node == NULL) 1633 return 0; 1634 1635 if (bitmap_node->fe) { 1636 inflen = udf_rw64(bitmap_node->fe->inf_len); 1637 } else { 1638 KASSERT(bitmap_node->efe); 1639 inflen = udf_rw64(bitmap_node->efe->inf_len); 1640 } 1641 1642 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1643 "%"PRIu64" bytes\n", inflen)); 1644 1645 /* allocate space for bitmap */ 1646 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1647 if (!dscr) 1648 return ENOMEM; 1649 1650 /* set vnode type to regular file or we can't read from it! */ 1651 bitmap_node->vnode->v_type = VREG; 1652 1653 /* read in complete metadata bitmap file */ 1654 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1655 dscr, 1656 inflen, 0, 1657 UIO_SYSSPACE, 1658 IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED, 1659 NULL, NULL); 1660 if (error) { 1661 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1662 goto errorout; 1663 } 1664 1665 /* analyse */ 1666 dscr_type = udf_rw16(dscr->tag.id); 1667 if (dscr_type == TAGID_SPACE_BITMAP) { 1668 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1669 ump->metadata_unalloc_dscr = &dscr->sbd; 1670 1671 /* fill in bitmap bits */ 1672 bitmap = &ump->metadata_unalloc_bits; 1673 bitmap->blob = (uint8_t *) dscr; 1674 bitmap->bits = dscr->sbd.data; 1675 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1676 bitmap->pages = NULL; /* TODO */ 1677 bitmap->data_pos = 0; 1678 bitmap->metadata_pos = 0; 1679 } else { 1680 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1681 goto errorout; 1682 } 1683 1684 return 0; 1685 1686 errorout: 1687 free(dscr, M_UDFVOLD); 1688 printf( "UDF mount: error reading unallocated " 1689 "space bitmap for metadata partition\n"); 1690 return EROFS; 1691 } 1692 1693 1694 int 1695 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1696 { 1697 struct udf_node *bitmap_node; 1698 union dscrptr *dscr; 1699 uint64_t inflen, new_inflen; 1700 int dummy, error; 1701 1702 bitmap_node = ump->metadatabitmap_node; 1703 1704 /* only write out when metadata bitmap node is known */ 1705 if (bitmap_node == NULL) 1706 return 0; 1707 1708 if (bitmap_node->fe) { 1709 inflen = udf_rw64(bitmap_node->fe->inf_len); 1710 } else { 1711 KASSERT(bitmap_node->efe); 1712 inflen = udf_rw64(bitmap_node->efe->inf_len); 1713 } 1714 1715 /* reduce length to zero */ 1716 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1717 new_inflen = udf_tagsize(dscr, 1); 1718 1719 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from " 1720 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen)); 1721 1722 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1723 if (error) 1724 printf("Error resizing metadata space bitmap\n"); 1725 1726 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1727 dscr, 1728 new_inflen, 0, 1729 UIO_SYSSPACE, 1730 IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED, 1731 NULL, NULL); 1732 1733 bitmap_node->i_flags |= IN_MODIFIED; 1734 vflushbuf(bitmap_node->vnode, 1 /* sync */); 1735 1736 error = VOP_FSYNC(bitmap_node->vnode, 1737 FSCRED, FSYNC_WAIT, 0, 0); 1738 1739 if (error) 1740 printf( "Error writing out metadata partition unalloced " 1741 "space bitmap!\n"); 1742 1743 return error; 1744 } 1745 1746 1747 /* --------------------------------------------------------------------- */ 1748 1749 /* 1750 * Checks if ump's vds information is correct and complete 1751 */ 1752 1753 int 1754 udf_process_vds(struct udf_mount *ump) { 1755 union udf_pmap *mapping; 1756 /* struct udf_args *args = &ump->mount_args; */ 1757 struct logvol_int_desc *lvint; 1758 struct udf_logvol_info *lvinfo; 1759 struct part_desc *part; 1760 uint32_t n_pm, mt_l; 1761 uint8_t *pmap_pos; 1762 char *domain_name, *map_name; 1763 const char *check_name; 1764 char bits[128]; 1765 int pmap_stype, pmap_size; 1766 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1767 int n_phys, n_virt, n_spar, n_meta; 1768 int len, error; 1769 1770 if (ump == NULL) 1771 return ENOENT; 1772 1773 /* we need at least an anchor (trivial, but for safety) */ 1774 if (ump->anchors[0] == NULL) 1775 return EINVAL; 1776 1777 /* we need at least one primary and one logical volume descriptor */ 1778 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1779 return EINVAL; 1780 1781 /* we need at least one partition descriptor */ 1782 if (ump->partitions[0] == NULL) 1783 return EINVAL; 1784 1785 /* check logical volume sector size verses device sector size */ 1786 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1787 printf("UDF mount: format violation, lb_size != sector size\n"); 1788 return EINVAL; 1789 } 1790 1791 /* check domain name */ 1792 domain_name = ump->logical_vol->domain_id.id; 1793 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1794 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1795 return EINVAL; 1796 } 1797 1798 /* retrieve logical volume integrity sequence */ 1799 error = udf_retrieve_lvint(ump); 1800 1801 /* 1802 * We need at least one logvol integrity descriptor recorded. Note 1803 * that its OK to have an open logical volume integrity here. The VAT 1804 * will close/update the integrity. 1805 */ 1806 if (ump->logvol_integrity == NULL) 1807 return EINVAL; 1808 1809 /* process derived structures */ 1810 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1811 lvint = ump->logvol_integrity; 1812 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1813 ump->logvol_info = lvinfo; 1814 1815 /* TODO check udf versions? */ 1816 1817 /* 1818 * check logvol mappings: effective virt->log partmap translation 1819 * check and recording of the mapping results. Saves expensive 1820 * strncmp() in tight places. 1821 */ 1822 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1823 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1824 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 1825 pmap_pos = ump->logical_vol->maps; 1826 1827 if (n_pm > UDF_PMAPS) { 1828 printf("UDF mount: too many mappings\n"); 1829 return EINVAL; 1830 } 1831 1832 /* count types and set partition numbers */ 1833 ump->data_part = ump->node_part = ump->fids_part = 0; 1834 n_phys = n_virt = n_spar = n_meta = 0; 1835 for (log_part = 0; log_part < n_pm; log_part++) { 1836 mapping = (union udf_pmap *) pmap_pos; 1837 pmap_stype = pmap_pos[0]; 1838 pmap_size = pmap_pos[1]; 1839 switch (pmap_stype) { 1840 case 1: /* physical mapping */ 1841 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1842 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1843 pmap_type = UDF_VTOP_TYPE_PHYS; 1844 n_phys++; 1845 ump->data_part = log_part; 1846 ump->node_part = log_part; 1847 ump->fids_part = log_part; 1848 break; 1849 case 2: /* virtual/sparable/meta mapping */ 1850 map_name = mapping->pm2.part_id.id; 1851 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1852 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1853 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1854 len = UDF_REGID_ID_SIZE; 1855 1856 check_name = "*UDF Virtual Partition"; 1857 if (strncmp(map_name, check_name, len) == 0) { 1858 pmap_type = UDF_VTOP_TYPE_VIRT; 1859 n_virt++; 1860 ump->node_part = log_part; 1861 break; 1862 } 1863 check_name = "*UDF Sparable Partition"; 1864 if (strncmp(map_name, check_name, len) == 0) { 1865 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1866 n_spar++; 1867 ump->data_part = log_part; 1868 ump->node_part = log_part; 1869 ump->fids_part = log_part; 1870 break; 1871 } 1872 check_name = "*UDF Metadata Partition"; 1873 if (strncmp(map_name, check_name, len) == 0) { 1874 pmap_type = UDF_VTOP_TYPE_META; 1875 n_meta++; 1876 ump->node_part = log_part; 1877 ump->fids_part = log_part; 1878 break; 1879 } 1880 break; 1881 default: 1882 return EINVAL; 1883 } 1884 1885 /* 1886 * BUGALERT: some rogue implementations use random physical 1887 * partion numbers to break other implementations so lookup 1888 * the number. 1889 */ 1890 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1891 part = ump->partitions[phys_part]; 1892 if (part == NULL) 1893 continue; 1894 if (udf_rw16(part->part_num) == raw_phys_part) 1895 break; 1896 } 1897 1898 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1899 raw_phys_part, phys_part, pmap_type)); 1900 1901 if (phys_part == UDF_PARTITIONS) 1902 return EINVAL; 1903 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1904 return EINVAL; 1905 1906 ump->vtop [log_part] = phys_part; 1907 ump->vtop_tp[log_part] = pmap_type; 1908 1909 pmap_pos += pmap_size; 1910 } 1911 /* not winning the beauty contest */ 1912 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1913 1914 /* test some basic UDF assertions/requirements */ 1915 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 1916 return EINVAL; 1917 1918 if (n_virt) { 1919 if ((n_phys == 0) || n_spar || n_meta) 1920 return EINVAL; 1921 } 1922 if (n_spar + n_phys == 0) 1923 return EINVAL; 1924 1925 /* select allocation type for each logical partition */ 1926 for (log_part = 0; log_part < n_pm; log_part++) { 1927 maps_on = ump->vtop[log_part]; 1928 switch (ump->vtop_tp[log_part]) { 1929 case UDF_VTOP_TYPE_PHYS : 1930 assert(maps_on == log_part); 1931 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 1932 break; 1933 case UDF_VTOP_TYPE_VIRT : 1934 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 1935 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 1936 break; 1937 case UDF_VTOP_TYPE_SPARABLE : 1938 assert(maps_on == log_part); 1939 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 1940 break; 1941 case UDF_VTOP_TYPE_META : 1942 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 1943 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 1944 /* special case for UDF 2.60 */ 1945 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 1946 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 1947 } 1948 break; 1949 default: 1950 panic("bad alloction type in udf's ump->vtop\n"); 1951 } 1952 } 1953 1954 /* determine logical volume open/closure actions */ 1955 if (n_virt) { 1956 ump->lvopen = 0; 1957 if (ump->discinfo.last_session_state == MMC_STATE_CLOSED) 1958 ump->lvopen |= UDF_OPEN_SESSION ; 1959 ump->lvclose = UDF_WRITE_VAT; 1960 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 1961 ump->lvclose |= UDF_CLOSE_SESSION; 1962 } else { 1963 /* `normal' rewritable or non sequential media */ 1964 ump->lvopen = UDF_WRITE_LVINT; 1965 ump->lvclose = UDF_WRITE_LVINT; 1966 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 1967 ump->lvopen |= UDF_APPENDONLY_LVINT; 1968 } 1969 1970 /* 1971 * Determine sheduler error behaviour. For virtual partions, update 1972 * the trackinfo; for sparable partitions replace a whole block on the 1973 * sparable table. Allways requeue. 1974 */ 1975 ump->lvreadwrite = 0; 1976 if (n_virt) 1977 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 1978 if (n_spar) 1979 ump->lvreadwrite = UDF_REMAP_BLOCK; 1980 1981 /* 1982 * Select our sheduler 1983 */ 1984 ump->strategy = &udf_strat_rmw; 1985 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 1986 ump->strategy = &udf_strat_sequential; 1987 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 1988 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 1989 ump->strategy = &udf_strat_direct; 1990 if (n_spar) 1991 ump->strategy = &udf_strat_rmw; 1992 1993 /* print results */ 1994 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 1995 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 1996 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 1997 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 1998 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 1999 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2000 2001 bitmask_snprintf(ump->lvopen, UDFLOGVOL_BITS, bits, sizeof(bits)); 2002 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2003 bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits)); 2004 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2005 bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits)); 2006 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2007 2008 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2009 (ump->strategy == &udf_strat_direct) ? "Direct" : 2010 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2011 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2012 2013 /* signal its OK for now */ 2014 return 0; 2015 } 2016 2017 /* --------------------------------------------------------------------- */ 2018 2019 /* 2020 * Update logical volume name in all structures that keep a record of it. We 2021 * use memmove since each of them might be specified as a source. 2022 * 2023 * Note that it doesn't update the VAT structure! 2024 */ 2025 2026 static void 2027 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2028 { 2029 struct logvol_desc *lvd = NULL; 2030 struct fileset_desc *fsd = NULL; 2031 struct udf_lv_info *lvi = NULL; 2032 2033 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2034 lvd = ump->logical_vol; 2035 fsd = ump->fileset_desc; 2036 if (ump->implementation) 2037 lvi = &ump->implementation->_impl_use.lv_info; 2038 2039 /* logvol's id might be specified as origional so use memmove here */ 2040 memmove(lvd->logvol_id, logvol_id, 128); 2041 if (fsd) 2042 memmove(fsd->logvol_id, logvol_id, 128); 2043 if (lvi) 2044 memmove(lvi->logvol_id, logvol_id, 128); 2045 } 2046 2047 /* --------------------------------------------------------------------- */ 2048 2049 void 2050 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2051 uint32_t sector) 2052 { 2053 assert(ump->logical_vol); 2054 2055 tag->id = udf_rw16(tagid); 2056 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2057 tag->cksum = 0; 2058 tag->reserved = 0; 2059 tag->serial_num = ump->logical_vol->tag.serial_num; 2060 tag->tag_loc = udf_rw32(sector); 2061 } 2062 2063 2064 uint64_t 2065 udf_advance_uniqueid(struct udf_mount *ump) 2066 { 2067 uint64_t unique_id; 2068 2069 mutex_enter(&ump->logvol_mutex); 2070 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2071 if (unique_id < 0x10) 2072 unique_id = 0x10; 2073 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2074 mutex_exit(&ump->logvol_mutex); 2075 2076 return unique_id; 2077 } 2078 2079 2080 static void 2081 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2082 { 2083 struct udf_mount *ump = udf_node->ump; 2084 uint32_t num_dirs, num_files; 2085 int udf_file_type; 2086 2087 /* get file type */ 2088 if (udf_node->fe) { 2089 udf_file_type = udf_node->fe->icbtag.file_type; 2090 } else { 2091 udf_file_type = udf_node->efe->icbtag.file_type; 2092 } 2093 2094 /* adjust file count */ 2095 mutex_enter(&ump->allocate_mutex); 2096 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2097 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2098 ump->logvol_info->num_directories = 2099 udf_rw32((num_dirs + sign)); 2100 } else { 2101 num_files = udf_rw32(ump->logvol_info->num_files); 2102 ump->logvol_info->num_files = 2103 udf_rw32((num_files + sign)); 2104 } 2105 mutex_exit(&ump->allocate_mutex); 2106 } 2107 2108 2109 void 2110 udf_osta_charset(struct charspec *charspec) 2111 { 2112 bzero(charspec, sizeof(struct charspec)); 2113 charspec->type = 0; 2114 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2115 } 2116 2117 2118 /* first call udf_set_regid and then the suffix */ 2119 void 2120 udf_set_regid(struct regid *regid, char const *name) 2121 { 2122 bzero(regid, sizeof(struct regid)); 2123 regid->flags = 0; /* not dirty and not protected */ 2124 strcpy((char *) regid->id, name); 2125 } 2126 2127 2128 void 2129 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2130 { 2131 uint16_t *ver; 2132 2133 ver = (uint16_t *) regid->id_suffix; 2134 *ver = ump->logvol_info->min_udf_readver; 2135 } 2136 2137 2138 void 2139 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2140 { 2141 uint16_t *ver; 2142 2143 ver = (uint16_t *) regid->id_suffix; 2144 *ver = ump->logvol_info->min_udf_readver; 2145 2146 regid->id_suffix[2] = 4; /* unix */ 2147 regid->id_suffix[3] = 8; /* NetBSD */ 2148 } 2149 2150 2151 void 2152 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2153 { 2154 regid->id_suffix[0] = 4; /* unix */ 2155 regid->id_suffix[1] = 8; /* NetBSD */ 2156 } 2157 2158 2159 void 2160 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2161 { 2162 regid->id_suffix[0] = APP_VERSION_MAIN; 2163 regid->id_suffix[1] = APP_VERSION_SUB; 2164 } 2165 2166 static int 2167 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2168 struct long_ad *parent, uint64_t unique_id) 2169 { 2170 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2171 int fidsize = 40; 2172 2173 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2174 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2175 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2176 fid->icb = *parent; 2177 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2178 fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH; 2179 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2180 2181 return fidsize; 2182 } 2183 2184 /* --------------------------------------------------------------------- */ 2185 2186 /* 2187 * Extended attribute support. UDF knows of 3 places for extended attributes: 2188 * 2189 * (a) inside the file's (e)fe in the length of the extended attribute area 2190 * before the allocation descriptors/filedata 2191 * 2192 * (b) in a file referenced by (e)fe->ext_attr_icb and 2193 * 2194 * (c) in the e(fe)'s associated stream directory that can hold various 2195 * sub-files. In the stream directory a few fixed named subfiles are reserved 2196 * for NT/Unix ACL's and OS/2 attributes. 2197 * 2198 * NOTE: Extended attributes are read randomly but allways written 2199 * *atomicaly*. For ACL's this interface is propably different but not known 2200 * to me yet. 2201 * 2202 * Order of extended attributes in a space : 2203 * ECMA 167 EAs 2204 * Non block aligned Implementation Use EAs 2205 * Block aligned Implementation Use EAs 2206 * Application Use EAs 2207 */ 2208 2209 static int 2210 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2211 { 2212 uint16_t *spos; 2213 2214 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2215 /* checksum valid? */ 2216 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2217 spos = (uint16_t *) implext->data; 2218 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2219 return EINVAL; 2220 } 2221 return 0; 2222 } 2223 2224 static void 2225 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2226 { 2227 uint16_t *spos; 2228 2229 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2230 /* set checksum */ 2231 spos = (uint16_t *) implext->data; 2232 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2233 } 2234 } 2235 2236 2237 int 2238 udf_extattr_search_intern(struct udf_node *node, 2239 uint32_t sattr, char const *sattrname, 2240 uint32_t *offsetp, uint32_t *lengthp) 2241 { 2242 struct extattrhdr_desc *eahdr; 2243 struct extattr_entry *attrhdr; 2244 struct impl_extattr_entry *implext; 2245 uint32_t offset, a_l, sector_size; 2246 int32_t l_ea; 2247 uint8_t *pos; 2248 int error; 2249 2250 /* get mountpoint */ 2251 sector_size = node->ump->discinfo.sector_size; 2252 2253 /* get information from fe/efe */ 2254 if (node->fe) { 2255 l_ea = udf_rw32(node->fe->l_ea); 2256 eahdr = (struct extattrhdr_desc *) node->fe->data; 2257 } else { 2258 assert(node->efe); 2259 l_ea = udf_rw32(node->efe->l_ea); 2260 eahdr = (struct extattrhdr_desc *) node->efe->data; 2261 } 2262 2263 /* something recorded here? */ 2264 if (l_ea == 0) 2265 return ENOENT; 2266 2267 /* check extended attribute tag; what to do if it fails? */ 2268 error = udf_check_tag(eahdr); 2269 if (error) 2270 return EINVAL; 2271 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2272 return EINVAL; 2273 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2274 if (error) 2275 return EINVAL; 2276 2277 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2278 2279 /* looking for Ecma-167 attributes? */ 2280 offset = sizeof(struct extattrhdr_desc); 2281 2282 /* looking for either implemenation use or application use */ 2283 if (sattr == 2048) { /* [4/48.10.8] */ 2284 offset = udf_rw32(eahdr->impl_attr_loc); 2285 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2286 return ENOENT; 2287 } 2288 if (sattr == 65536) { /* [4/48.10.9] */ 2289 offset = udf_rw32(eahdr->appl_attr_loc); 2290 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2291 return ENOENT; 2292 } 2293 2294 /* paranoia check offset and l_ea */ 2295 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2296 return EINVAL; 2297 2298 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2299 2300 /* find our extended attribute */ 2301 l_ea -= offset; 2302 pos = (uint8_t *) eahdr + offset; 2303 2304 while (l_ea >= sizeof(struct extattr_entry)) { 2305 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2306 attrhdr = (struct extattr_entry *) pos; 2307 implext = (struct impl_extattr_entry *) pos; 2308 2309 /* get complete attribute length and check for roque values */ 2310 a_l = udf_rw32(attrhdr->a_l); 2311 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2312 udf_rw32(attrhdr->type), 2313 attrhdr->subtype, a_l, l_ea)); 2314 if ((a_l == 0) || (a_l > l_ea)) 2315 return EINVAL; 2316 2317 if (attrhdr->type != sattr) 2318 goto next_attribute; 2319 2320 /* we might have found it! */ 2321 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2322 *offsetp = offset; 2323 *lengthp = a_l; 2324 return 0; /* success */ 2325 } 2326 2327 /* 2328 * Implementation use and application use extended attributes 2329 * have a name to identify. They share the same structure only 2330 * UDF implementation use extended attributes have a checksum 2331 * we need to check 2332 */ 2333 2334 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2335 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2336 /* we have found our appl/implementation attribute */ 2337 *offsetp = offset; 2338 *lengthp = a_l; 2339 return 0; /* success */ 2340 } 2341 2342 next_attribute: 2343 /* next attribute */ 2344 pos += a_l; 2345 l_ea -= a_l; 2346 offset += a_l; 2347 } 2348 /* not found */ 2349 return ENOENT; 2350 } 2351 2352 2353 static void 2354 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2355 struct extattr_entry *extattr) 2356 { 2357 struct file_entry *fe; 2358 struct extfile_entry *efe; 2359 struct extattrhdr_desc *extattrhdr; 2360 struct impl_extattr_entry *implext; 2361 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2362 uint32_t *l_eap, l_ad; 2363 uint16_t *spos; 2364 uint8_t *bpos, *data; 2365 2366 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2367 fe = &dscr->fe; 2368 data = fe->data; 2369 l_eap = &fe->l_ea; 2370 l_ad = udf_rw32(fe->l_ad); 2371 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2372 efe = &dscr->efe; 2373 data = efe->data; 2374 l_eap = &efe->l_ea; 2375 l_ad = udf_rw32(efe->l_ad); 2376 } else { 2377 panic("Bad tag passed to udf_extattr_insert_internal"); 2378 } 2379 2380 /* can't append already written to file descriptors yet */ 2381 assert(l_ad == 0); 2382 2383 /* should have a header! */ 2384 extattrhdr = (struct extattrhdr_desc *) data; 2385 l_ea = udf_rw32(*l_eap); 2386 if (l_ea == 0) { 2387 /* create empty extended attribute header */ 2388 exthdr_len = sizeof(struct extattrhdr_desc); 2389 2390 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2391 /* loc */ 0); 2392 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2393 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2394 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2395 2396 /* record extended attribute header length */ 2397 l_ea = exthdr_len; 2398 *l_eap = udf_rw32(l_ea); 2399 } 2400 2401 /* extract locations */ 2402 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2403 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2404 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2405 impl_attr_loc = l_ea; 2406 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2407 appl_attr_loc = l_ea; 2408 2409 /* Ecma 167 EAs */ 2410 if (udf_rw32(extattr->type) < 2048) { 2411 assert(impl_attr_loc == l_ea); 2412 assert(appl_attr_loc == l_ea); 2413 } 2414 2415 /* implementation use extended attributes */ 2416 if (udf_rw32(extattr->type) == 2048) { 2417 assert(appl_attr_loc == l_ea); 2418 2419 /* calculate and write extended attribute header checksum */ 2420 implext = (struct impl_extattr_entry *) extattr; 2421 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2422 spos = (uint16_t *) implext->data; 2423 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2424 } 2425 2426 /* application use extended attributes */ 2427 assert(udf_rw32(extattr->type) != 65536); 2428 assert(appl_attr_loc == l_ea); 2429 2430 /* append the attribute at the end of the current space */ 2431 bpos = data + udf_rw32(*l_eap); 2432 a_l = udf_rw32(extattr->a_l); 2433 2434 /* update impl. attribute locations */ 2435 if (udf_rw32(extattr->type) < 2048) { 2436 impl_attr_loc = l_ea + a_l; 2437 appl_attr_loc = l_ea + a_l; 2438 } 2439 if (udf_rw32(extattr->type) == 2048) { 2440 appl_attr_loc = l_ea + a_l; 2441 } 2442 2443 /* copy and advance */ 2444 memcpy(bpos, extattr, a_l); 2445 l_ea += a_l; 2446 *l_eap = udf_rw32(l_ea); 2447 2448 /* do the `dance` again backwards */ 2449 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2450 if (impl_attr_loc == l_ea) 2451 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2452 if (appl_attr_loc == l_ea) 2453 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2454 } 2455 2456 /* store offsets */ 2457 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2458 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2459 } 2460 2461 2462 /* --------------------------------------------------------------------- */ 2463 2464 static int 2465 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2466 { 2467 struct udf_mount *ump; 2468 struct udf_logvol_info *lvinfo; 2469 struct impl_extattr_entry *implext; 2470 struct vatlvext_extattr_entry lvext; 2471 const char *extstr = "*UDF VAT LVExtension"; 2472 uint64_t vat_uniqueid; 2473 uint32_t offset, a_l; 2474 uint8_t *ea_start, *lvextpos; 2475 int error; 2476 2477 /* get mountpoint and lvinfo */ 2478 ump = vat_node->ump; 2479 lvinfo = ump->logvol_info; 2480 2481 /* get information from fe/efe */ 2482 if (vat_node->fe) { 2483 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2484 ea_start = vat_node->fe->data; 2485 } else { 2486 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2487 ea_start = vat_node->efe->data; 2488 } 2489 2490 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2491 if (error) 2492 return error; 2493 2494 implext = (struct impl_extattr_entry *) (ea_start + offset); 2495 error = udf_impl_extattr_check(implext); 2496 if (error) 2497 return error; 2498 2499 /* paranoia */ 2500 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2501 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2502 return EINVAL; 2503 } 2504 2505 /* 2506 * we have found our "VAT LVExtension attribute. BUT due to a 2507 * bug in the specification it might not be word aligned so 2508 * copy first to avoid panics on some machines (!!) 2509 */ 2510 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2511 lvextpos = implext->data + udf_rw32(implext->iu_l); 2512 memcpy(&lvext, lvextpos, sizeof(lvext)); 2513 2514 /* check if it was updated the last time */ 2515 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2516 lvinfo->num_files = lvext.num_files; 2517 lvinfo->num_directories = lvext.num_directories; 2518 udf_update_logvolname(ump, lvext.logvol_id); 2519 } else { 2520 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2521 /* replace VAT LVExt by free space EA */ 2522 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2523 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2524 udf_calc_impl_extattr_checksum(implext); 2525 } 2526 2527 return 0; 2528 } 2529 2530 2531 static int 2532 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2533 { 2534 struct udf_mount *ump; 2535 struct udf_logvol_info *lvinfo; 2536 struct impl_extattr_entry *implext; 2537 struct vatlvext_extattr_entry lvext; 2538 const char *extstr = "*UDF VAT LVExtension"; 2539 uint64_t vat_uniqueid; 2540 uint32_t offset, a_l; 2541 uint8_t *ea_start, *lvextpos; 2542 int error; 2543 2544 /* get mountpoint and lvinfo */ 2545 ump = vat_node->ump; 2546 lvinfo = ump->logvol_info; 2547 2548 /* get information from fe/efe */ 2549 if (vat_node->fe) { 2550 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2551 ea_start = vat_node->fe->data; 2552 } else { 2553 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2554 ea_start = vat_node->efe->data; 2555 } 2556 2557 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2558 if (error) 2559 return error; 2560 /* found, it existed */ 2561 2562 /* paranoia */ 2563 implext = (struct impl_extattr_entry *) (ea_start + offset); 2564 error = udf_impl_extattr_check(implext); 2565 if (error) { 2566 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2567 return error; 2568 } 2569 /* it is correct */ 2570 2571 /* 2572 * we have found our "VAT LVExtension attribute. BUT due to a 2573 * bug in the specification it might not be word aligned so 2574 * copy first to avoid panics on some machines (!!) 2575 */ 2576 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2577 lvextpos = implext->data + udf_rw32(implext->iu_l); 2578 2579 lvext.unique_id_chk = vat_uniqueid; 2580 lvext.num_files = lvinfo->num_files; 2581 lvext.num_directories = lvinfo->num_directories; 2582 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2583 2584 memcpy(lvextpos, &lvext, sizeof(lvext)); 2585 2586 return 0; 2587 } 2588 2589 /* --------------------------------------------------------------------- */ 2590 2591 int 2592 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2593 { 2594 struct udf_mount *ump = vat_node->ump; 2595 2596 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2597 return EINVAL; 2598 2599 memcpy(blob, ump->vat_table + offset, size); 2600 return 0; 2601 } 2602 2603 int 2604 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2605 { 2606 struct udf_mount *ump = vat_node->ump; 2607 uint32_t offset_high; 2608 uint8_t *new_vat_table; 2609 2610 /* extent VAT allocation if needed */ 2611 offset_high = offset + size; 2612 if (offset_high >= ump->vat_table_alloc_len) { 2613 /* realloc */ 2614 new_vat_table = realloc(ump->vat_table, 2615 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2616 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2617 if (!new_vat_table) { 2618 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2619 return ENOMEM; 2620 } 2621 ump->vat_table = new_vat_table; 2622 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2623 } 2624 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2625 2626 memcpy(ump->vat_table + offset, blob, size); 2627 return 0; 2628 } 2629 2630 /* --------------------------------------------------------------------- */ 2631 2632 /* TODO support previous VAT location writeout */ 2633 static int 2634 udf_update_vat_descriptor(struct udf_mount *ump) 2635 { 2636 struct udf_node *vat_node = ump->vat_node; 2637 struct udf_logvol_info *lvinfo = ump->logvol_info; 2638 struct icb_tag *icbtag; 2639 struct udf_oldvat_tail *oldvat_tl; 2640 struct udf_vat *vat; 2641 uint64_t unique_id; 2642 uint32_t lb_size; 2643 uint8_t *raw_vat; 2644 int filetype, error; 2645 2646 KASSERT(vat_node); 2647 KASSERT(lvinfo); 2648 lb_size = udf_rw32(ump->logical_vol->lb_size); 2649 2650 /* get our new unique_id */ 2651 unique_id = udf_advance_uniqueid(ump); 2652 2653 /* get information from fe/efe */ 2654 if (vat_node->fe) { 2655 icbtag = &vat_node->fe->icbtag; 2656 vat_node->fe->unique_id = udf_rw64(unique_id); 2657 } else { 2658 icbtag = &vat_node->efe->icbtag; 2659 vat_node->efe->unique_id = udf_rw64(unique_id); 2660 } 2661 2662 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2663 filetype = icbtag->file_type; 2664 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2665 2666 /* allocate piece to process head or tail of VAT file */ 2667 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2668 2669 if (filetype == 0) { 2670 /* 2671 * Update "*UDF VAT LVExtension" extended attribute from the 2672 * lvint if present. 2673 */ 2674 udf_update_vat_extattr_from_lvid(vat_node); 2675 2676 /* setup identifying regid */ 2677 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2678 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2679 2680 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2681 udf_add_udf_regid(ump, &oldvat_tl->id); 2682 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2683 2684 /* write out new tail of virtual allocation table file */ 2685 error = udf_vat_write(vat_node, raw_vat, 2686 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2687 } else { 2688 /* compose the VAT2 header */ 2689 vat = (struct udf_vat *) raw_vat; 2690 memset(vat, 0, sizeof(struct udf_vat)); 2691 2692 vat->header_len = udf_rw16(152); /* as per spec */ 2693 vat->impl_use_len = udf_rw16(0); 2694 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2695 vat->prev_vat = udf_rw32(0xffffffff); 2696 vat->num_files = lvinfo->num_files; 2697 vat->num_directories = lvinfo->num_directories; 2698 vat->min_udf_readver = lvinfo->min_udf_readver; 2699 vat->min_udf_writever = lvinfo->min_udf_writever; 2700 vat->max_udf_writever = lvinfo->max_udf_writever; 2701 2702 error = udf_vat_write(vat_node, raw_vat, 2703 sizeof(struct udf_vat), 0); 2704 } 2705 free(raw_vat, M_TEMP); 2706 2707 return error; /* success! */ 2708 } 2709 2710 2711 int 2712 udf_writeout_vat(struct udf_mount *ump) 2713 { 2714 struct udf_node *vat_node = ump->vat_node; 2715 uint32_t vat_length; 2716 int error; 2717 2718 KASSERT(vat_node); 2719 2720 DPRINTF(CALL, ("udf_writeout_vat\n")); 2721 2722 mutex_enter(&ump->allocate_mutex); 2723 udf_update_vat_descriptor(ump); 2724 2725 /* write out the VAT contents ; TODO intelligent writing */ 2726 vat_length = ump->vat_table_len; 2727 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2728 ump->vat_table, ump->vat_table_len, 0, 2729 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL); 2730 if (error) { 2731 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2732 goto out; 2733 } 2734 2735 mutex_exit(&ump->allocate_mutex); 2736 2737 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 2738 error = VOP_FSYNC(ump->vat_node->vnode, 2739 FSCRED, FSYNC_WAIT, 0, 0); 2740 if (error) 2741 printf("udf_writeout_vat: error writing VAT node!\n"); 2742 out: 2743 2744 return error; 2745 } 2746 2747 /* --------------------------------------------------------------------- */ 2748 2749 /* 2750 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2751 * descriptor. If OK, read in complete VAT file. 2752 */ 2753 2754 static int 2755 udf_check_for_vat(struct udf_node *vat_node) 2756 { 2757 struct udf_mount *ump; 2758 struct icb_tag *icbtag; 2759 struct timestamp *mtime; 2760 struct udf_vat *vat; 2761 struct udf_oldvat_tail *oldvat_tl; 2762 struct udf_logvol_info *lvinfo; 2763 uint64_t unique_id; 2764 uint32_t vat_length; 2765 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2766 uint32_t sector_size; 2767 uint32_t *raw_vat; 2768 uint8_t *vat_table; 2769 char *regid_name; 2770 int filetype; 2771 int error; 2772 2773 /* vat_length is really 64 bits though impossible */ 2774 2775 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2776 if (!vat_node) 2777 return ENOENT; 2778 2779 /* get mount info */ 2780 ump = vat_node->ump; 2781 sector_size = udf_rw32(ump->logical_vol->lb_size); 2782 2783 /* check assertions */ 2784 assert(vat_node->fe || vat_node->efe); 2785 assert(ump->logvol_integrity); 2786 2787 /* set vnode type to regular file or we can't read from it! */ 2788 vat_node->vnode->v_type = VREG; 2789 2790 /* get information from fe/efe */ 2791 if (vat_node->fe) { 2792 vat_length = udf_rw64(vat_node->fe->inf_len); 2793 icbtag = &vat_node->fe->icbtag; 2794 mtime = &vat_node->fe->mtime; 2795 unique_id = udf_rw64(vat_node->fe->unique_id); 2796 } else { 2797 vat_length = udf_rw64(vat_node->efe->inf_len); 2798 icbtag = &vat_node->efe->icbtag; 2799 mtime = &vat_node->efe->mtime; 2800 unique_id = udf_rw64(vat_node->efe->unique_id); 2801 } 2802 2803 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2804 filetype = icbtag->file_type; 2805 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2806 return ENOENT; 2807 2808 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2809 2810 vat_table_alloc_len = 2811 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2812 * UDF_VAT_CHUNKSIZE; 2813 2814 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2815 M_CANFAIL | M_WAITOK); 2816 if (vat_table == NULL) { 2817 printf("allocation of %d bytes failed for VAT\n", 2818 vat_table_alloc_len); 2819 return ENOMEM; 2820 } 2821 2822 /* allocate piece to read in head or tail of VAT file */ 2823 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2824 2825 /* 2826 * check contents of the file if its the old 1.50 VAT table format. 2827 * Its notoriously broken and allthough some implementations support an 2828 * extention as defined in the UDF 1.50 errata document, its doubtfull 2829 * to be useable since a lot of implementations don't maintain it. 2830 */ 2831 lvinfo = ump->logvol_info; 2832 2833 if (filetype == 0) { 2834 /* definition */ 2835 vat_offset = 0; 2836 vat_entries = (vat_length-36)/4; 2837 2838 /* read in tail of virtual allocation table file */ 2839 error = vn_rdwr(UIO_READ, vat_node->vnode, 2840 (uint8_t *) raw_vat, 2841 sizeof(struct udf_oldvat_tail), 2842 vat_entries * 4, 2843 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2844 NULL, NULL); 2845 if (error) 2846 goto out; 2847 2848 /* check 1.50 VAT */ 2849 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2850 regid_name = (char *) oldvat_tl->id.id; 2851 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2852 if (error) { 2853 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2854 error = ENOENT; 2855 goto out; 2856 } 2857 2858 /* 2859 * update LVID from "*UDF VAT LVExtension" extended attribute 2860 * if present. 2861 */ 2862 udf_update_lvid_from_vat_extattr(vat_node); 2863 } else { 2864 /* read in head of virtual allocation table file */ 2865 error = vn_rdwr(UIO_READ, vat_node->vnode, 2866 (uint8_t *) raw_vat, 2867 sizeof(struct udf_vat), 0, 2868 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2869 NULL, NULL); 2870 if (error) 2871 goto out; 2872 2873 /* definition */ 2874 vat = (struct udf_vat *) raw_vat; 2875 vat_offset = vat->header_len; 2876 vat_entries = (vat_length - vat_offset)/4; 2877 2878 assert(lvinfo); 2879 lvinfo->num_files = vat->num_files; 2880 lvinfo->num_directories = vat->num_directories; 2881 lvinfo->min_udf_readver = vat->min_udf_readver; 2882 lvinfo->min_udf_writever = vat->min_udf_writever; 2883 lvinfo->max_udf_writever = vat->max_udf_writever; 2884 2885 udf_update_logvolname(ump, vat->logvol_id); 2886 } 2887 2888 /* read in complete VAT file */ 2889 error = vn_rdwr(UIO_READ, vat_node->vnode, 2890 vat_table, 2891 vat_length, 0, 2892 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2893 NULL, NULL); 2894 if (error) 2895 printf("read in of complete VAT file failed (error %d)\n", 2896 error); 2897 if (error) 2898 goto out; 2899 2900 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2901 ump->logvol_integrity->lvint_next_unique_id = unique_id; 2902 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2903 ump->logvol_integrity->time = *mtime; 2904 2905 ump->vat_table_len = vat_length; 2906 ump->vat_table_alloc_len = vat_table_alloc_len; 2907 ump->vat_table = vat_table; 2908 ump->vat_offset = vat_offset; 2909 ump->vat_entries = vat_entries; 2910 ump->vat_last_free_lb = 0; /* start at beginning */ 2911 2912 out: 2913 if (error) { 2914 if (vat_table) 2915 free(vat_table, M_UDFVOLD); 2916 } 2917 free(raw_vat, M_TEMP); 2918 2919 return error; 2920 } 2921 2922 /* --------------------------------------------------------------------- */ 2923 2924 static int 2925 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 2926 { 2927 struct udf_node *vat_node; 2928 struct long_ad icb_loc; 2929 uint32_t early_vat_loc, late_vat_loc, vat_loc; 2930 int error; 2931 2932 /* mapping info not needed */ 2933 mapping = mapping; 2934 2935 vat_loc = ump->last_possible_vat_location; 2936 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 2937 2938 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 2939 vat_loc, early_vat_loc)); 2940 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 2941 late_vat_loc = vat_loc + 1024; 2942 2943 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 2944 vat_loc, early_vat_loc)); 2945 2946 /* start looking from the end of the range */ 2947 do { 2948 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 2949 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 2950 icb_loc.loc.lb_num = udf_rw32(vat_loc); 2951 2952 error = udf_get_node(ump, &icb_loc, &vat_node); 2953 if (!error) { 2954 error = udf_check_for_vat(vat_node); 2955 DPRINTFIF(VOLUMES, !error, 2956 ("VAT accepted at %d\n", vat_loc)); 2957 if (!error) 2958 break; 2959 } 2960 if (vat_node) { 2961 vput(vat_node->vnode); 2962 vat_node = NULL; 2963 } 2964 vat_loc--; /* walk backwards */ 2965 } while (vat_loc >= early_vat_loc); 2966 2967 /* keep our VAT node around */ 2968 if (vat_node) { 2969 UDF_SET_SYSTEMFILE(vat_node->vnode); 2970 ump->vat_node = vat_node; 2971 } 2972 2973 return error; 2974 } 2975 2976 /* --------------------------------------------------------------------- */ 2977 2978 static int 2979 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 2980 { 2981 union dscrptr *dscr; 2982 struct part_map_spare *pms = &mapping->pms; 2983 uint32_t lb_num; 2984 int spar, error; 2985 2986 /* 2987 * The partition mapping passed on to us specifies the information we 2988 * need to locate and initialise the sparable partition mapping 2989 * information we need. 2990 */ 2991 2992 DPRINTF(VOLUMES, ("Read sparable table\n")); 2993 ump->sparable_packet_size = udf_rw16(pms->packet_len); 2994 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 2995 2996 for (spar = 0; spar < pms->n_st; spar++) { 2997 lb_num = pms->st_loc[spar]; 2998 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 2999 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3000 if (!error && dscr) { 3001 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3002 if (ump->sparing_table) 3003 free(ump->sparing_table, M_UDFVOLD); 3004 ump->sparing_table = &dscr->spt; 3005 dscr = NULL; 3006 DPRINTF(VOLUMES, 3007 ("Sparing table accepted (%d entries)\n", 3008 udf_rw16(ump->sparing_table->rt_l))); 3009 break; /* we're done */ 3010 } 3011 } 3012 if (dscr) 3013 free(dscr, M_UDFVOLD); 3014 } 3015 3016 if (ump->sparing_table) 3017 return 0; 3018 3019 return ENOENT; 3020 } 3021 3022 /* --------------------------------------------------------------------- */ 3023 3024 static int 3025 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3026 { 3027 struct part_map_meta *pmm = &mapping->pmm; 3028 struct long_ad icb_loc; 3029 struct vnode *vp; 3030 int error; 3031 3032 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3033 icb_loc.loc.part_num = pmm->part_num; 3034 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3035 DPRINTF(VOLUMES, ("Metadata file\n")); 3036 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3037 if (ump->metadata_node) { 3038 vp = ump->metadata_node->vnode; 3039 UDF_SET_SYSTEMFILE(vp); 3040 } 3041 3042 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3043 if (icb_loc.loc.lb_num != -1) { 3044 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3045 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3046 if (ump->metadatamirror_node) { 3047 vp = ump->metadatamirror_node->vnode; 3048 UDF_SET_SYSTEMFILE(vp); 3049 } 3050 } 3051 3052 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3053 if (icb_loc.loc.lb_num != -1) { 3054 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3055 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3056 if (ump->metadatabitmap_node) { 3057 vp = ump->metadatabitmap_node->vnode; 3058 UDF_SET_SYSTEMFILE(vp); 3059 } 3060 } 3061 3062 /* if we're mounting read-only we relax the requirements */ 3063 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3064 error = EFAULT; 3065 if (ump->metadata_node) 3066 error = 0; 3067 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3068 printf( "udf mount: Metadata file not readable, " 3069 "substituting Metadata copy file\n"); 3070 ump->metadata_node = ump->metadatamirror_node; 3071 ump->metadatamirror_node = NULL; 3072 error = 0; 3073 } 3074 } else { 3075 /* mounting read/write */ 3076 /* XXX DISABLED! metadata writing is not working yet XXX */ 3077 if (error) 3078 error = EROFS; 3079 } 3080 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3081 "metadata files\n")); 3082 return error; 3083 } 3084 3085 /* --------------------------------------------------------------------- */ 3086 3087 int 3088 udf_read_vds_tables(struct udf_mount *ump) 3089 { 3090 union udf_pmap *mapping; 3091 /* struct udf_args *args = &ump->mount_args; */ 3092 uint32_t n_pm, mt_l; 3093 uint32_t log_part; 3094 uint8_t *pmap_pos; 3095 int pmap_size; 3096 int error; 3097 3098 /* Iterate (again) over the part mappings for locations */ 3099 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3100 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 3101 pmap_pos = ump->logical_vol->maps; 3102 3103 for (log_part = 0; log_part < n_pm; log_part++) { 3104 mapping = (union udf_pmap *) pmap_pos; 3105 switch (ump->vtop_tp[log_part]) { 3106 case UDF_VTOP_TYPE_PHYS : 3107 /* nothing */ 3108 break; 3109 case UDF_VTOP_TYPE_VIRT : 3110 /* search and load VAT */ 3111 error = udf_search_vat(ump, mapping); 3112 if (error) 3113 return ENOENT; 3114 break; 3115 case UDF_VTOP_TYPE_SPARABLE : 3116 /* load one of the sparable tables */ 3117 error = udf_read_sparables(ump, mapping); 3118 if (error) 3119 return ENOENT; 3120 break; 3121 case UDF_VTOP_TYPE_META : 3122 /* load the associated file descriptors */ 3123 error = udf_read_metadata_nodes(ump, mapping); 3124 if (error) 3125 return ENOENT; 3126 break; 3127 default: 3128 break; 3129 } 3130 pmap_size = pmap_pos[1]; 3131 pmap_pos += pmap_size; 3132 } 3133 3134 /* read in and check unallocated and free space info if writing */ 3135 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3136 error = udf_read_physical_partition_spacetables(ump); 3137 if (error) 3138 return error; 3139 3140 /* also read in metadata partion spacebitmap if defined */ 3141 error = udf_read_metadata_partition_spacetable(ump); 3142 return error; 3143 } 3144 3145 return 0; 3146 } 3147 3148 /* --------------------------------------------------------------------- */ 3149 3150 int 3151 udf_read_rootdirs(struct udf_mount *ump) 3152 { 3153 union dscrptr *dscr; 3154 /* struct udf_args *args = &ump->mount_args; */ 3155 struct udf_node *rootdir_node, *streamdir_node; 3156 struct long_ad fsd_loc, *dir_loc; 3157 uint32_t lb_num, dummy; 3158 uint32_t fsd_len; 3159 int dscr_type; 3160 int error; 3161 3162 /* TODO implement FSD reading in separate function like integrity? */ 3163 /* get fileset descriptor sequence */ 3164 fsd_loc = ump->logical_vol->lv_fsd_loc; 3165 fsd_len = udf_rw32(fsd_loc.len); 3166 3167 dscr = NULL; 3168 error = 0; 3169 while (fsd_len || error) { 3170 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3171 /* translate fsd_loc to lb_num */ 3172 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3173 if (error) 3174 break; 3175 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3176 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3177 /* end markers */ 3178 if (error || (dscr == NULL)) 3179 break; 3180 3181 /* analyse */ 3182 dscr_type = udf_rw16(dscr->tag.id); 3183 if (dscr_type == TAGID_TERM) 3184 break; 3185 if (dscr_type != TAGID_FSD) { 3186 free(dscr, M_UDFVOLD); 3187 return ENOENT; 3188 } 3189 3190 /* 3191 * TODO check for multiple fileset descriptors; its only 3192 * picking the last now. Also check for FSD 3193 * correctness/interpretability 3194 */ 3195 3196 /* update */ 3197 if (ump->fileset_desc) { 3198 free(ump->fileset_desc, M_UDFVOLD); 3199 } 3200 ump->fileset_desc = &dscr->fsd; 3201 dscr = NULL; 3202 3203 /* continue to the next fsd */ 3204 fsd_len -= ump->discinfo.sector_size; 3205 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3206 3207 /* follow up to fsd->next_ex (long_ad) if its not null */ 3208 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3209 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3210 fsd_loc = ump->fileset_desc->next_ex; 3211 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3212 } 3213 } 3214 if (dscr) 3215 free(dscr, M_UDFVOLD); 3216 3217 /* there has to be one */ 3218 if (ump->fileset_desc == NULL) 3219 return ENOENT; 3220 3221 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3222 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3223 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3224 3225 /* 3226 * Now the FSD is known, read in the rootdirectory and if one exists, 3227 * the system stream dir. Some files in the system streamdir are not 3228 * wanted in this implementation since they are not maintained. If 3229 * writing is enabled we'll delete these files if they exist. 3230 */ 3231 3232 rootdir_node = streamdir_node = NULL; 3233 dir_loc = NULL; 3234 3235 /* try to read in the rootdir */ 3236 dir_loc = &ump->fileset_desc->rootdir_icb; 3237 error = udf_get_node(ump, dir_loc, &rootdir_node); 3238 if (error) 3239 return ENOENT; 3240 3241 /* aparently it read in fine */ 3242 3243 /* 3244 * Try the system stream directory; not very likely in the ones we 3245 * test, but for completeness. 3246 */ 3247 dir_loc = &ump->fileset_desc->streamdir_icb; 3248 if (udf_rw32(dir_loc->len)) { 3249 printf("udf_read_rootdirs: streamdir defined "); 3250 error = udf_get_node(ump, dir_loc, &streamdir_node); 3251 if (error) { 3252 printf("but error in streamdir reading\n"); 3253 } else { 3254 printf("but ignored\n"); 3255 /* 3256 * TODO process streamdir `baddies' i.e. files we dont 3257 * want if R/W 3258 */ 3259 } 3260 } 3261 3262 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3263 3264 /* release the vnodes again; they'll be auto-recycled later */ 3265 if (streamdir_node) { 3266 vput(streamdir_node->vnode); 3267 } 3268 if (rootdir_node) { 3269 vput(rootdir_node->vnode); 3270 } 3271 3272 return 0; 3273 } 3274 3275 /* --------------------------------------------------------------------- */ 3276 3277 /* To make absolutely sure we are NOT returning zero, add one :) */ 3278 3279 long 3280 udf_calchash(struct long_ad *icbptr) 3281 { 3282 /* ought to be enough since each mountpoint has its own chain */ 3283 return udf_rw32(icbptr->loc.lb_num) + 1; 3284 } 3285 3286 3287 static struct udf_node * 3288 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr) 3289 { 3290 struct udf_node *node; 3291 struct vnode *vp; 3292 uint32_t hashline; 3293 3294 loop: 3295 mutex_enter(&ump->ihash_lock); 3296 3297 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK; 3298 LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) { 3299 assert(node); 3300 if (node->loc.loc.lb_num == icbptr->loc.lb_num && 3301 node->loc.loc.part_num == icbptr->loc.part_num) { 3302 vp = node->vnode; 3303 assert(vp); 3304 mutex_enter(&vp->v_interlock); 3305 mutex_exit(&ump->ihash_lock); 3306 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) 3307 goto loop; 3308 return node; 3309 } 3310 } 3311 mutex_exit(&ump->ihash_lock); 3312 3313 return NULL; 3314 } 3315 3316 3317 static void 3318 udf_sorted_list_insert(struct udf_node *node) 3319 { 3320 struct udf_mount *ump; 3321 struct udf_node *s_node, *last_node; 3322 uint32_t loc, s_loc; 3323 3324 ump = node->ump; 3325 last_node = NULL; /* XXX gcc */ 3326 3327 if (LIST_EMPTY(&ump->sorted_udf_nodes)) { 3328 LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain); 3329 return; 3330 } 3331 3332 /* 3333 * We sort on logical block number here and not on physical block 3334 * number here. Ideally we should go for the physical block nr to get 3335 * better sync performance though this sort will ensure that packets 3336 * won't get spit up unnessisarily. 3337 */ 3338 3339 loc = udf_rw32(node->loc.loc.lb_num); 3340 LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) { 3341 s_loc = udf_rw32(s_node->loc.loc.lb_num); 3342 if (s_loc > loc) { 3343 LIST_INSERT_BEFORE(s_node, node, sortchain); 3344 return; 3345 } 3346 last_node = s_node; 3347 } 3348 LIST_INSERT_AFTER(last_node, node, sortchain); 3349 } 3350 3351 3352 static void 3353 udf_register_node(struct udf_node *node) 3354 { 3355 struct udf_mount *ump; 3356 struct udf_node *chk; 3357 uint32_t hashline; 3358 3359 ump = node->ump; 3360 mutex_enter(&ump->ihash_lock); 3361 3362 /* add to our hash table */ 3363 hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK; 3364 #ifdef DEBUG 3365 LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) { 3366 assert(chk); 3367 if (chk->loc.loc.lb_num == node->loc.loc.lb_num && 3368 chk->loc.loc.part_num == node->loc.loc.part_num) 3369 panic("Double node entered\n"); 3370 } 3371 #else 3372 chk = NULL; 3373 #endif 3374 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain); 3375 3376 /* add to our sorted list */ 3377 udf_sorted_list_insert(node); 3378 3379 mutex_exit(&ump->ihash_lock); 3380 } 3381 3382 3383 static void 3384 udf_deregister_node(struct udf_node *node) 3385 { 3386 struct udf_mount *ump; 3387 3388 ump = node->ump; 3389 mutex_enter(&ump->ihash_lock); 3390 3391 /* from hash and sorted list */ 3392 LIST_REMOVE(node, hashchain); 3393 LIST_REMOVE(node, sortchain); 3394 3395 mutex_exit(&ump->ihash_lock); 3396 } 3397 3398 /* --------------------------------------------------------------------- */ 3399 3400 int 3401 udf_open_logvol(struct udf_mount *ump) 3402 { 3403 int logvol_integrity; 3404 int error; 3405 3406 /* already/still open? */ 3407 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3408 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3409 return 0; 3410 3411 /* can we open it ? */ 3412 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3413 return EROFS; 3414 3415 /* setup write parameters */ 3416 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3417 if ((error = udf_setup_writeparams(ump)) != 0) 3418 return error; 3419 3420 /* determine data and metadata tracks (most likely same) */ 3421 error = udf_search_writing_tracks(ump); 3422 if (error) { 3423 /* most likely lack of space */ 3424 printf("udf_open_logvol: error searching writing tracks\n"); 3425 return EROFS; 3426 } 3427 3428 /* writeout/update lvint on disc or only in memory */ 3429 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3430 if (ump->lvopen & UDF_OPEN_SESSION) { 3431 /* TODO implement writeout of VRS + VDS */ 3432 printf( "udf_open_logvol:Opening a closed session not yet " 3433 "implemented\n"); 3434 return EROFS; 3435 3436 /* determine data and metadata tracks again */ 3437 error = udf_search_writing_tracks(ump); 3438 } 3439 3440 /* mark it open */ 3441 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3442 3443 /* do we need to write it out? */ 3444 if (ump->lvopen & UDF_WRITE_LVINT) { 3445 error = udf_writeout_lvint(ump, ump->lvopen); 3446 /* if we couldn't write it mark it closed again */ 3447 if (error) { 3448 ump->logvol_integrity->integrity_type = 3449 udf_rw32(UDF_INTEGRITY_CLOSED); 3450 return error; 3451 } 3452 } 3453 3454 return 0; 3455 } 3456 3457 3458 int 3459 udf_close_logvol(struct udf_mount *ump, int mntflags) 3460 { 3461 int logvol_integrity; 3462 int error = 0, error1 = 0, error2 = 0; 3463 int n; 3464 3465 /* already/still closed? */ 3466 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3467 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3468 return 0; 3469 3470 /* writeout/update lvint or write out VAT */ 3471 DPRINTF(VOLUMES, ("Closing logical volume\n")); 3472 if (ump->lvclose & UDF_WRITE_VAT) { 3473 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3474 3475 /* write out the VAT node */ 3476 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3477 udf_writeout_vat(ump); 3478 3479 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 3480 for (n = 0; n < 16; n++) { 3481 ump->vat_node->i_flags |= IN_MODIFIED; 3482 error = VOP_FSYNC(ump->vat_node->vnode, 3483 FSCRED, FSYNC_WAIT, 0, 0); 3484 } 3485 if (error) { 3486 printf("udf_close_logvol: writeout of VAT failed\n"); 3487 return error; 3488 } 3489 } 3490 3491 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3492 /* sync writeout metadata spacetable if existing */ 3493 error1 = udf_write_metadata_partition_spacetable(ump, true); 3494 if (error1) 3495 printf( "udf_close_logvol: writeout of metadata space " 3496 "bitmap failed\n"); 3497 3498 /* sync writeout partition spacetables */ 3499 error2 = udf_write_physical_partition_spacetables(ump, true); 3500 if (error2) 3501 printf( "udf_close_logvol: writeout of space tables " 3502 "failed\n"); 3503 3504 if (error1 || error2) 3505 return (error1 | error2); 3506 3507 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3508 } 3509 3510 if (ump->lvclose & UDF_CLOSE_SESSION) { 3511 printf("TODO: Closing a session is not yet implemented\n"); 3512 return EROFS; 3513 ump->lvopen |= UDF_OPEN_SESSION; 3514 } 3515 3516 /* mark it closed */ 3517 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3518 3519 /* do we need to write out the logical volume integrity */ 3520 if (ump->lvclose & UDF_WRITE_LVINT) 3521 error = udf_writeout_lvint(ump, ump->lvopen); 3522 if (error) { 3523 /* HELP now what? mark it open again for now */ 3524 ump->logvol_integrity->integrity_type = 3525 udf_rw32(UDF_INTEGRITY_OPEN); 3526 return error; 3527 } 3528 3529 (void) udf_synchronise_caches(ump); 3530 3531 return 0; 3532 } 3533 3534 /* --------------------------------------------------------------------- */ 3535 3536 /* 3537 * Genfs interfacing 3538 * 3539 * static const struct genfs_ops udf_genfsops = { 3540 * .gop_size = genfs_size, 3541 * size of transfers 3542 * .gop_alloc = udf_gop_alloc, 3543 * allocate len bytes at offset 3544 * .gop_write = genfs_gop_write, 3545 * putpages interface code 3546 * .gop_markupdate = udf_gop_markupdate, 3547 * set update/modify flags etc. 3548 * } 3549 */ 3550 3551 /* 3552 * Genfs interface. These four functions are the only ones defined though not 3553 * documented... great.... 3554 */ 3555 3556 /* 3557 * Callback from genfs to allocate len bytes at offset off; only called when 3558 * filling up gaps in the allocation. 3559 */ 3560 /* XXX should we check if there is space enough in udf_gop_alloc? */ 3561 static int 3562 udf_gop_alloc(struct vnode *vp, off_t off, 3563 off_t len, int flags, kauth_cred_t cred) 3564 { 3565 #if 0 3566 struct udf_node *udf_node = VTOI(vp); 3567 struct udf_mount *ump = udf_node->ump; 3568 uint32_t lb_size, num_lb; 3569 #endif 3570 3571 DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n")); 3572 DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len)); 3573 3574 return 0; 3575 } 3576 3577 3578 /* 3579 * callback from genfs to update our flags 3580 */ 3581 static void 3582 udf_gop_markupdate(struct vnode *vp, int flags) 3583 { 3584 struct udf_node *udf_node = VTOI(vp); 3585 u_long mask = 0; 3586 3587 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 3588 mask = IN_ACCESS; 3589 } 3590 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 3591 if (vp->v_type == VREG) { 3592 mask |= IN_CHANGE | IN_UPDATE; 3593 } else { 3594 mask |= IN_MODIFY; 3595 } 3596 } 3597 if (mask) { 3598 udf_node->i_flags |= mask; 3599 } 3600 } 3601 3602 3603 static const struct genfs_ops udf_genfsops = { 3604 .gop_size = genfs_size, 3605 .gop_alloc = udf_gop_alloc, 3606 .gop_write = genfs_gop_write_rwmap, 3607 .gop_markupdate = udf_gop_markupdate, 3608 }; 3609 3610 3611 /* --------------------------------------------------------------------- */ 3612 3613 int 3614 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 3615 { 3616 union dscrptr *dscr; 3617 int error; 3618 3619 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK); 3620 bzero(dscr, ump->discinfo.sector_size); 3621 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 3622 3623 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 3624 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 3625 (void) udf_validate_tag_and_crc_sums(dscr); 3626 3627 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 3628 dscr, sector, sector); 3629 3630 free(dscr, M_TEMP); 3631 3632 return error; 3633 } 3634 3635 3636 /* --------------------------------------------------------------------- */ 3637 3638 /* UDF<->unix converters */ 3639 3640 /* --------------------------------------------------------------------- */ 3641 3642 static mode_t 3643 udf_perm_to_unix_mode(uint32_t perm) 3644 { 3645 mode_t mode; 3646 3647 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 3648 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 3649 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 3650 3651 return mode; 3652 } 3653 3654 /* --------------------------------------------------------------------- */ 3655 3656 static uint32_t 3657 unix_mode_to_udf_perm(mode_t mode) 3658 { 3659 uint32_t perm; 3660 3661 perm = ((mode & S_IRWXO) ); 3662 perm |= ((mode & S_IRWXG) << 2); 3663 perm |= ((mode & S_IRWXU) << 4); 3664 perm |= ((mode & S_IWOTH) << 3); 3665 perm |= ((mode & S_IWGRP) << 5); 3666 perm |= ((mode & S_IWUSR) << 7); 3667 3668 return perm; 3669 } 3670 3671 /* --------------------------------------------------------------------- */ 3672 3673 static uint32_t 3674 udf_icb_to_unix_filetype(uint32_t icbftype) 3675 { 3676 switch (icbftype) { 3677 case UDF_ICB_FILETYPE_DIRECTORY : 3678 case UDF_ICB_FILETYPE_STREAMDIR : 3679 return S_IFDIR; 3680 case UDF_ICB_FILETYPE_FIFO : 3681 return S_IFIFO; 3682 case UDF_ICB_FILETYPE_CHARDEVICE : 3683 return S_IFCHR; 3684 case UDF_ICB_FILETYPE_BLOCKDEVICE : 3685 return S_IFBLK; 3686 case UDF_ICB_FILETYPE_RANDOMACCESS : 3687 case UDF_ICB_FILETYPE_REALTIME : 3688 return S_IFREG; 3689 case UDF_ICB_FILETYPE_SYMLINK : 3690 return S_IFLNK; 3691 case UDF_ICB_FILETYPE_SOCKET : 3692 return S_IFSOCK; 3693 } 3694 /* no idea what this is */ 3695 return 0; 3696 } 3697 3698 /* --------------------------------------------------------------------- */ 3699 3700 void 3701 udf_to_unix_name(char *result, int result_len, char *id, int len, 3702 struct charspec *chsp) 3703 { 3704 uint16_t *raw_name, *unix_name; 3705 uint16_t *inchp, ch; 3706 uint8_t *outchp; 3707 const char *osta_id = "OSTA Compressed Unicode"; 3708 int ucode_chars, nice_uchars, is_osta_typ0, nout; 3709 3710 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 3711 unix_name = raw_name + 1024; /* split space in half */ 3712 assert(sizeof(char) == sizeof(uint8_t)); 3713 outchp = (uint8_t *) result; 3714 3715 is_osta_typ0 = (chsp->type == 0); 3716 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 3717 if (is_osta_typ0) { 3718 /* TODO clean up */ 3719 *raw_name = *unix_name = 0; 3720 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 3721 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 3722 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 3723 /* output UTF8 */ 3724 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 3725 ch = *inchp; 3726 nout = wput_utf8(outchp, result_len, ch); 3727 outchp += nout; result_len -= nout; 3728 if (!ch) break; 3729 } 3730 *outchp++ = 0; 3731 } else { 3732 /* assume 8bit char length byte latin-1 */ 3733 assert(*id == 8); 3734 assert(strlen((char *) (id+1)) <= MAXNAMLEN); 3735 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 3736 } 3737 free(raw_name, M_UDFTEMP); 3738 } 3739 3740 /* --------------------------------------------------------------------- */ 3741 3742 void 3743 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 3744 struct charspec *chsp) 3745 { 3746 uint16_t *raw_name; 3747 uint16_t *outchp; 3748 const char *inchp; 3749 const char *osta_id = "OSTA Compressed Unicode"; 3750 int udf_chars, is_osta_typ0, bits; 3751 size_t cnt; 3752 3753 /* allocate temporary unicode-16 buffer */ 3754 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 3755 3756 /* convert utf8 to unicode-16 */ 3757 *raw_name = 0; 3758 inchp = name; 3759 outchp = raw_name; 3760 bits = 8; 3761 for (cnt = name_len, udf_chars = 0; cnt;) { 3762 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/ 3763 *outchp = wget_utf8(&inchp, &cnt); 3764 if (*outchp > 0xff) 3765 bits=16; 3766 outchp++; 3767 udf_chars++; 3768 } 3769 /* null terminate just in case */ 3770 *outchp++ = 0; 3771 3772 is_osta_typ0 = (chsp->type == 0); 3773 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 3774 if (is_osta_typ0) { 3775 udf_chars = udf_CompressUnicode(udf_chars, bits, 3776 (unicode_t *) raw_name, 3777 (byte *) result); 3778 } else { 3779 printf("unix to udf name: no CHSP0 ?\n"); 3780 /* XXX assume 8bit char length byte latin-1 */ 3781 *result++ = 8; udf_chars = 1; 3782 strncpy(result, name + 1, name_len); 3783 udf_chars += name_len; 3784 } 3785 *result_len = udf_chars; 3786 free(raw_name, M_UDFTEMP); 3787 } 3788 3789 /* --------------------------------------------------------------------- */ 3790 3791 void 3792 udf_timestamp_to_timespec(struct udf_mount *ump, 3793 struct timestamp *timestamp, 3794 struct timespec *timespec) 3795 { 3796 struct clock_ymdhms ymdhms; 3797 uint32_t usecs, secs, nsecs; 3798 uint16_t tz; 3799 3800 /* fill in ymdhms structure from timestamp */ 3801 memset(&ymdhms, 0, sizeof(ymdhms)); 3802 ymdhms.dt_year = udf_rw16(timestamp->year); 3803 ymdhms.dt_mon = timestamp->month; 3804 ymdhms.dt_day = timestamp->day; 3805 ymdhms.dt_wday = 0; /* ? */ 3806 ymdhms.dt_hour = timestamp->hour; 3807 ymdhms.dt_min = timestamp->minute; 3808 ymdhms.dt_sec = timestamp->second; 3809 3810 secs = clock_ymdhms_to_secs(&ymdhms); 3811 usecs = timestamp->usec + 3812 100*timestamp->hund_usec + 10000*timestamp->centisec; 3813 nsecs = usecs * 1000; 3814 3815 /* 3816 * Calculate the time zone. The timezone is 12 bit signed 2's 3817 * compliment, so we gotta do some extra magic to handle it right. 3818 */ 3819 tz = udf_rw16(timestamp->type_tz); 3820 tz &= 0x0fff; /* only lower 12 bits are significant */ 3821 if (tz & 0x0800) /* sign extention */ 3822 tz |= 0xf000; 3823 3824 /* TODO check timezone conversion */ 3825 /* check if we are specified a timezone to convert */ 3826 if (udf_rw16(timestamp->type_tz) & 0x1000) { 3827 if ((int16_t) tz != -2047) 3828 secs -= (int16_t) tz * 60; 3829 } else { 3830 secs -= ump->mount_args.gmtoff; 3831 } 3832 3833 timespec->tv_sec = secs; 3834 timespec->tv_nsec = nsecs; 3835 } 3836 3837 3838 void 3839 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 3840 { 3841 struct clock_ymdhms ymdhms; 3842 uint32_t husec, usec, csec; 3843 3844 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 3845 3846 usec = timespec->tv_nsec / 1000; 3847 husec = usec / 100; 3848 usec -= husec * 100; /* only 0-99 in usec */ 3849 csec = husec / 100; /* only 0-99 in csec */ 3850 husec -= csec * 100; /* only 0-99 in husec */ 3851 3852 /* set method 1 for CUT/GMT */ 3853 timestamp->type_tz = udf_rw16((1<<12) + 0); 3854 timestamp->year = udf_rw16(ymdhms.dt_year); 3855 timestamp->month = ymdhms.dt_mon; 3856 timestamp->day = ymdhms.dt_day; 3857 timestamp->hour = ymdhms.dt_hour; 3858 timestamp->minute = ymdhms.dt_min; 3859 timestamp->second = ymdhms.dt_sec; 3860 timestamp->centisec = csec; 3861 timestamp->hund_usec = husec; 3862 timestamp->usec = usec; 3863 } 3864 3865 /* --------------------------------------------------------------------- */ 3866 3867 /* 3868 * Attribute and filetypes converters with get/set pairs 3869 */ 3870 3871 uint32_t 3872 udf_getaccessmode(struct udf_node *udf_node) 3873 { 3874 struct file_entry *fe = udf_node->fe;; 3875 struct extfile_entry *efe = udf_node->efe; 3876 uint32_t udf_perm, icbftype; 3877 uint32_t mode, ftype; 3878 uint16_t icbflags; 3879 3880 UDF_LOCK_NODE(udf_node, 0); 3881 if (fe) { 3882 udf_perm = udf_rw32(fe->perm); 3883 icbftype = fe->icbtag.file_type; 3884 icbflags = udf_rw16(fe->icbtag.flags); 3885 } else { 3886 assert(udf_node->efe); 3887 udf_perm = udf_rw32(efe->perm); 3888 icbftype = efe->icbtag.file_type; 3889 icbflags = udf_rw16(efe->icbtag.flags); 3890 } 3891 3892 mode = udf_perm_to_unix_mode(udf_perm); 3893 ftype = udf_icb_to_unix_filetype(icbftype); 3894 3895 /* set suid, sgid, sticky from flags in fe/efe */ 3896 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 3897 mode |= S_ISUID; 3898 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 3899 mode |= S_ISGID; 3900 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 3901 mode |= S_ISVTX; 3902 3903 UDF_UNLOCK_NODE(udf_node, 0); 3904 3905 return mode | ftype; 3906 } 3907 3908 3909 void 3910 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 3911 { 3912 struct file_entry *fe = udf_node->fe; 3913 struct extfile_entry *efe = udf_node->efe; 3914 uint32_t udf_perm; 3915 uint16_t icbflags; 3916 3917 UDF_LOCK_NODE(udf_node, 0); 3918 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 3919 if (fe) { 3920 icbflags = udf_rw16(fe->icbtag.flags); 3921 } else { 3922 icbflags = udf_rw16(efe->icbtag.flags); 3923 } 3924 3925 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 3926 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 3927 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 3928 if (mode & S_ISUID) 3929 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 3930 if (mode & S_ISGID) 3931 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 3932 if (mode & S_ISVTX) 3933 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 3934 3935 if (fe) { 3936 fe->perm = udf_rw32(udf_perm); 3937 fe->icbtag.flags = udf_rw16(icbflags); 3938 } else { 3939 efe->perm = udf_rw32(udf_perm); 3940 efe->icbtag.flags = udf_rw16(icbflags); 3941 } 3942 3943 UDF_UNLOCK_NODE(udf_node, 0); 3944 } 3945 3946 3947 void 3948 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 3949 { 3950 struct udf_mount *ump = udf_node->ump; 3951 struct file_entry *fe = udf_node->fe; 3952 struct extfile_entry *efe = udf_node->efe; 3953 uid_t uid; 3954 gid_t gid; 3955 3956 UDF_LOCK_NODE(udf_node, 0); 3957 if (fe) { 3958 uid = (uid_t)udf_rw32(fe->uid); 3959 gid = (gid_t)udf_rw32(fe->gid); 3960 } else { 3961 assert(udf_node->efe); 3962 uid = (uid_t)udf_rw32(efe->uid); 3963 gid = (gid_t)udf_rw32(efe->gid); 3964 } 3965 3966 /* do the uid/gid translation game */ 3967 if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) { 3968 uid = ump->mount_args.anon_uid; 3969 gid = ump->mount_args.anon_gid; 3970 } 3971 *uidp = uid; 3972 *gidp = gid; 3973 3974 UDF_UNLOCK_NODE(udf_node, 0); 3975 } 3976 3977 3978 void 3979 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 3980 { 3981 struct udf_mount *ump = udf_node->ump; 3982 struct file_entry *fe = udf_node->fe; 3983 struct extfile_entry *efe = udf_node->efe; 3984 uid_t nobody_uid; 3985 gid_t nobody_gid; 3986 3987 UDF_LOCK_NODE(udf_node, 0); 3988 3989 /* do the uid/gid translation game */ 3990 nobody_uid = ump->mount_args.nobody_uid; 3991 nobody_gid = ump->mount_args.nobody_gid; 3992 if ((uid == nobody_uid) && (gid == nobody_gid)) { 3993 uid = (uid_t) -1; 3994 gid = (gid_t) -1; 3995 } 3996 3997 if (fe) { 3998 fe->uid = udf_rw32((uint32_t) uid); 3999 fe->gid = udf_rw32((uint32_t) gid); 4000 } else { 4001 efe->uid = udf_rw32((uint32_t) uid); 4002 efe->gid = udf_rw32((uint32_t) gid); 4003 } 4004 4005 UDF_UNLOCK_NODE(udf_node, 0); 4006 } 4007 4008 4009 /* --------------------------------------------------------------------- */ 4010 4011 /* 4012 * UDF dirhash implementation 4013 */ 4014 4015 static uint32_t 4016 udf_dirhash_hash(const char *str, int namelen) 4017 { 4018 uint32_t hash = 5381; 4019 int i, c; 4020 4021 for (i = 0; i < namelen; i++) { 4022 c = *str++; 4023 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */ 4024 } 4025 return hash; 4026 } 4027 4028 4029 static void 4030 udf_dirhash_purge(struct udf_dirhash *dirh) 4031 { 4032 struct udf_dirhash_entry *dirh_e; 4033 uint32_t hashline; 4034 4035 if (dirh == NULL) 4036 return; 4037 4038 if (dirh->size == 0) 4039 return; 4040 4041 for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) { 4042 dirh_e = LIST_FIRST(&dirh->entries[hashline]); 4043 while (dirh_e) { 4044 LIST_REMOVE(dirh_e, next); 4045 pool_put(&udf_dirhash_entry_pool, dirh_e); 4046 dirh_e = LIST_FIRST(&dirh->entries[hashline]); 4047 } 4048 } 4049 dirh_e = LIST_FIRST(&dirh->free_entries); 4050 4051 while (dirh_e) { 4052 LIST_REMOVE(dirh_e, next); 4053 pool_put(&udf_dirhash_entry_pool, dirh_e); 4054 dirh_e = LIST_FIRST(&dirh->entries[hashline]); 4055 } 4056 4057 dirh->flags &= ~UDF_DIRH_COMPLETE; 4058 dirh->flags |= UDF_DIRH_PURGED; 4059 4060 udf_dirhashsize -= dirh->size; 4061 dirh->size = 0; 4062 } 4063 4064 4065 static void 4066 udf_dirhash_destroy(struct udf_dirhash **dirhp) 4067 { 4068 struct udf_dirhash *dirh = *dirhp; 4069 4070 if (dirh == NULL) 4071 return; 4072 4073 mutex_enter(&udf_dirhashmutex); 4074 4075 udf_dirhash_purge(dirh); 4076 TAILQ_REMOVE(&udf_dirhash_queue, dirh, next); 4077 pool_put(&udf_dirhash_pool, dirh); 4078 4079 *dirhp = NULL; 4080 4081 mutex_exit(&udf_dirhashmutex); 4082 } 4083 4084 4085 static void 4086 udf_dirhash_get(struct udf_dirhash **dirhp) 4087 { 4088 struct udf_dirhash *dirh; 4089 uint32_t hashline; 4090 4091 mutex_enter(&udf_dirhashmutex); 4092 4093 dirh = *dirhp; 4094 if (*dirhp == NULL) { 4095 dirh = pool_get(&udf_dirhash_pool, PR_WAITOK); 4096 *dirhp = dirh; 4097 memset(dirh, 0, sizeof(struct udf_dirhash)); 4098 for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) 4099 LIST_INIT(&dirh->entries[hashline]); 4100 dirh->size = 0; 4101 dirh->refcnt = 0; 4102 dirh->flags = 0; 4103 } else { 4104 TAILQ_REMOVE(&udf_dirhash_queue, dirh, next); 4105 } 4106 4107 dirh->refcnt++; 4108 TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next); 4109 4110 mutex_exit(&udf_dirhashmutex); 4111 } 4112 4113 4114 static void 4115 udf_dirhash_put(struct udf_dirhash *dirh) 4116 { 4117 mutex_enter(&udf_dirhashmutex); 4118 dirh->refcnt--; 4119 mutex_exit(&udf_dirhashmutex); 4120 } 4121 4122 4123 static void 4124 udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid, 4125 struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new) 4126 { 4127 struct udf_dirhash *dirh, *del_dirh, *prev_dirh; 4128 struct udf_dirhash_entry *dirh_e; 4129 uint32_t hashvalue, hashline; 4130 int entrysize; 4131 4132 /* make sure we have a dirhash to work on */ 4133 dirh = dir_node->dir_hash; 4134 KASSERT(dirh); 4135 KASSERT(dirh->refcnt > 0); 4136 4137 /* are we trying to re-enter an entry? */ 4138 if (!new && (dirh->flags & UDF_DIRH_COMPLETE)) 4139 return; 4140 4141 /* calculate our hash */ 4142 hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen); 4143 hashline = hashvalue & UDF_DIRHASH_HASHMASK; 4144 4145 /* lookup and insert entry if not there yet */ 4146 LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) { 4147 /* check for hash collision */ 4148 if (dirh_e->hashvalue != hashvalue) 4149 continue; 4150 if (dirh_e->offset != offset) 4151 continue; 4152 /* got it already */ 4153 KASSERT(dirh_e->d_namlen == dirent->d_namlen); 4154 KASSERT(dirh_e->fid_size == fid_size); 4155 return; 4156 } 4157 4158 DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n", 4159 offset, fid_size, dirent->d_namlen, 4160 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4161 4162 /* check if entry is in free space list */ 4163 LIST_FOREACH(dirh_e, &dirh->free_entries, next) { 4164 if (dirh_e->offset == offset) { 4165 DPRINTF(DIRHASH, ("\tremoving free entry\n")); 4166 LIST_REMOVE(dirh_e, next); 4167 break; 4168 } 4169 } 4170 4171 /* ensure we are not passing the dirhash limit */ 4172 entrysize = sizeof(struct udf_dirhash_entry); 4173 if (udf_dirhashsize + entrysize > udf_maxdirhashsize) { 4174 del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash); 4175 KASSERT(del_dirh); 4176 while (udf_dirhashsize + entrysize > udf_maxdirhashsize) { 4177 /* no use trying to delete myself */ 4178 if (del_dirh == dirh) 4179 break; 4180 prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next); 4181 if (del_dirh->refcnt == 0) 4182 udf_dirhash_purge(del_dirh); 4183 del_dirh = prev_dirh; 4184 } 4185 } 4186 4187 /* add to the hashline */ 4188 dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK); 4189 memset(dirh_e, 0, sizeof(struct udf_dirhash_entry)); 4190 4191 dirh_e->hashvalue = hashvalue; 4192 dirh_e->offset = offset; 4193 dirh_e->d_namlen = dirent->d_namlen; 4194 dirh_e->fid_size = fid_size; 4195 4196 dirh->size += sizeof(struct udf_dirhash_entry); 4197 udf_dirhashsize += sizeof(struct udf_dirhash_entry); 4198 LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next); 4199 } 4200 4201 4202 static void 4203 udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset, 4204 uint32_t fid_size) 4205 { 4206 struct udf_dirhash *dirh; 4207 struct udf_dirhash_entry *dirh_e; 4208 4209 /* make sure we have a dirhash to work on */ 4210 dirh = dir_node->dir_hash; 4211 KASSERT(dirh); 4212 KASSERT(dirh->refcnt > 0); 4213 4214 #ifdef DEBUG 4215 /* check for double entry of free space */ 4216 LIST_FOREACH(dirh_e, &dirh->free_entries, next) 4217 KASSERT(dirh_e->offset != offset); 4218 #endif 4219 4220 DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n", 4221 offset, fid_size)); 4222 dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK); 4223 memset(dirh_e, 0, sizeof(struct udf_dirhash_entry)); 4224 4225 dirh_e->hashvalue = 0; /* not relevant */ 4226 dirh_e->offset = offset; 4227 dirh_e->d_namlen = 0; /* not relevant */ 4228 dirh_e->fid_size = fid_size; 4229 4230 /* XXX it might be preferable to append them at the tail */ 4231 LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next); 4232 dirh->size += sizeof(struct udf_dirhash_entry); 4233 udf_dirhashsize += sizeof(struct udf_dirhash_entry); 4234 } 4235 4236 4237 static void 4238 udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent, 4239 uint64_t offset, uint32_t fid_size) 4240 { 4241 struct udf_dirhash *dirh; 4242 struct udf_dirhash_entry *dirh_e; 4243 uint32_t hashvalue, hashline; 4244 4245 DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n", 4246 offset, fid_size, 4247 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4248 4249 /* make sure we have a dirhash to work on */ 4250 dirh = dir_node->dir_hash; 4251 KASSERT(dirh); 4252 KASSERT(dirh->refcnt > 0); 4253 4254 /* calculate our hash */ 4255 hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen); 4256 hashline = hashvalue & UDF_DIRHASH_HASHMASK; 4257 4258 /* lookup entry */ 4259 LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) { 4260 /* check for hash collision */ 4261 if (dirh_e->hashvalue != hashvalue) 4262 continue; 4263 if (dirh_e->offset != offset) 4264 continue; 4265 4266 /* got it! */ 4267 KASSERT(dirh_e->d_namlen == dirent->d_namlen); 4268 KASSERT(dirh_e->fid_size == fid_size); 4269 LIST_REMOVE(dirh_e, next); 4270 dirh->size -= sizeof(struct udf_dirhash_entry); 4271 udf_dirhashsize -= sizeof(struct udf_dirhash_entry); 4272 4273 udf_dirhash_enter_freed(dir_node, offset, fid_size); 4274 return; 4275 } 4276 4277 /* not found! */ 4278 panic("dirhash_remove couldn't find entry in hash table\n"); 4279 } 4280 4281 4282 /* BUGALERT: don't use result longer than needed, never past the node lock */ 4283 /* call with NULL *result initially and it will return nonzero if again */ 4284 static int 4285 udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen, 4286 struct udf_dirhash_entry **result) 4287 { 4288 struct udf_dirhash *dirh; 4289 struct udf_dirhash_entry *dirh_e; 4290 uint32_t hashvalue, hashline; 4291 4292 KASSERT(VOP_ISLOCKED(dir_node->vnode)); 4293 4294 /* make sure we have a dirhash to work on */ 4295 dirh = dir_node->dir_hash; 4296 KASSERT(dirh); 4297 KASSERT(dirh->refcnt > 0); 4298 4299 /* start where we were */ 4300 if (*result) { 4301 KASSERT(dir_node->dir_hash); 4302 dirh_e = *result; 4303 4304 /* retrieve information to avoid recalculation and advance */ 4305 hashvalue = dirh_e->hashvalue; 4306 dirh_e = LIST_NEXT(*result, next); 4307 } else { 4308 /* calculate our hash and lookup all entries in hashline */ 4309 hashvalue = udf_dirhash_hash(d_name, d_namlen); 4310 hashline = hashvalue & UDF_DIRHASH_HASHMASK; 4311 dirh_e = LIST_FIRST(&dirh->entries[hashline]); 4312 } 4313 4314 for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) { 4315 /* check for hash collision */ 4316 if (dirh_e->hashvalue != hashvalue) 4317 continue; 4318 if (dirh_e->d_namlen != d_namlen) 4319 continue; 4320 /* might have an entry in the cache */ 4321 *result = dirh_e; 4322 return 1; 4323 } 4324 4325 *result = NULL; 4326 return 0; 4327 } 4328 4329 4330 /* BUGALERT: don't use result longer than needed, never past the node lock */ 4331 /* call with NULL *result initially and it will return nonzero if again */ 4332 static int 4333 udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize, 4334 struct udf_dirhash_entry **result) 4335 { 4336 struct udf_dirhash *dirh; 4337 struct udf_dirhash_entry *dirh_e; 4338 4339 KASSERT(VOP_ISLOCKED(dir_node->vnode)); 4340 4341 /* make sure we have a dirhash to work on */ 4342 dirh = dir_node->dir_hash; 4343 KASSERT(dirh); 4344 KASSERT(dirh->refcnt > 0); 4345 4346 /* start where we were */ 4347 if (*result) { 4348 KASSERT(dir_node->dir_hash); 4349 dirh_e = LIST_NEXT(*result, next); 4350 } else { 4351 /* lookup all entries that match */ 4352 dirh_e = LIST_FIRST(&dirh->free_entries); 4353 } 4354 4355 for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) { 4356 /* check for minimum size */ 4357 if (dirh_e->fid_size < min_fidsize) 4358 continue; 4359 /* might be a candidate */ 4360 *result = dirh_e; 4361 return 1; 4362 } 4363 4364 *result = NULL; 4365 return 0; 4366 } 4367 4368 4369 static int 4370 udf_dirhash_fill(struct udf_node *dir_node) 4371 { 4372 struct vnode *dvp = dir_node->vnode; 4373 struct udf_dirhash *dirh; 4374 struct file_entry *fe = dir_node->fe; 4375 struct extfile_entry *efe = dir_node->efe; 4376 struct fileid_desc *fid; 4377 struct dirent *dirent; 4378 uint64_t file_size, pre_diroffset, diroffset; 4379 uint32_t lb_size; 4380 int error; 4381 4382 /* make sure we have a dirhash to work on */ 4383 dirh = dir_node->dir_hash; 4384 KASSERT(dirh); 4385 KASSERT(dirh->refcnt > 0); 4386 4387 if (dirh->flags & UDF_DIRH_BROKEN) 4388 return EIO; 4389 if (dirh->flags & UDF_DIRH_COMPLETE) 4390 return 0; 4391 4392 /* make sure we have a clean dirhash to add to */ 4393 udf_dirhash_purge(dirh); 4394 4395 /* get directory filesize */ 4396 if (fe) { 4397 file_size = udf_rw64(fe->inf_len); 4398 } else { 4399 assert(efe); 4400 file_size = udf_rw64(efe->inf_len); 4401 } 4402 4403 /* allocate temporary space for fid */ 4404 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4405 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4406 4407 /* allocate temporary space for dirent */ 4408 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4409 4410 error = 0; 4411 diroffset = 0; 4412 while (diroffset < file_size) { 4413 /* transfer a new fid/dirent */ 4414 pre_diroffset = diroffset; 4415 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4416 if (error) { 4417 /* TODO what to do? continue but not add? */ 4418 dirh->flags |= UDF_DIRH_BROKEN; 4419 udf_dirhash_purge(dirh); 4420 break; 4421 } 4422 4423 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4424 /* register deleted extent for reuse */ 4425 udf_dirhash_enter_freed(dir_node, pre_diroffset, 4426 udf_fidsize(fid)); 4427 } else { 4428 /* append to the dirhash */ 4429 udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset, 4430 udf_fidsize(fid), 0); 4431 } 4432 } 4433 dirh->flags |= UDF_DIRH_COMPLETE; 4434 4435 free(fid, M_UDFTEMP); 4436 free(dirent, M_UDFTEMP); 4437 4438 return error; 4439 } 4440 4441 4442 /* --------------------------------------------------------------------- */ 4443 4444 /* 4445 * Directory read and manipulation functions. 4446 * 4447 * Note that if the file is found, the cached diroffset position *before* the 4448 * advance is remembered. Thus if the same filename is lookup again just after 4449 * this lookup its immediately found. 4450 */ 4451 4452 int 4453 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4454 struct long_ad *icb_loc, int *found) 4455 { 4456 struct udf_node *dir_node = VTOI(vp); 4457 struct udf_dirhash_entry *dirh_ep; 4458 struct fileid_desc *fid; 4459 struct dirent *dirent; 4460 uint64_t diroffset; 4461 uint32_t lb_size; 4462 int hit, error; 4463 4464 /* set default return */ 4465 *found = 0; 4466 4467 /* get our dirhash and make sure its read in */ 4468 udf_dirhash_get(&dir_node->dir_hash); 4469 error = udf_dirhash_fill(dir_node); 4470 if (error) { 4471 udf_dirhash_put(dir_node->dir_hash); 4472 return error; 4473 } 4474 4475 /* allocate temporary space for fid */ 4476 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4477 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4478 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4479 4480 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4481 namelen, namelen, name)); 4482 4483 /* search our dirhash hits */ 4484 memset(icb_loc, 0, sizeof(*icb_loc)); 4485 dirh_ep = NULL; 4486 for (;;) { 4487 hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep); 4488 /* if no hit, abort the search */ 4489 if (!hit) 4490 break; 4491 4492 /* check this hit */ 4493 diroffset = dirh_ep->offset; 4494 4495 /* transfer a new fid/dirent */ 4496 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4497 if (error) 4498 break; 4499 4500 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4501 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4502 4503 /* see if its our entry */ 4504 KASSERT(dirent->d_namlen == namelen); 4505 if (strncmp(dirent->d_name, name, namelen) == 0) { 4506 *found = 1; 4507 *icb_loc = fid->icb; 4508 break; 4509 } 4510 } 4511 free(fid, M_UDFTEMP); 4512 free(dirent, M_UDFTEMP); 4513 4514 udf_dirhash_put(dir_node->dir_hash); 4515 4516 return error; 4517 } 4518 4519 /* --------------------------------------------------------------------- */ 4520 4521 static int 4522 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4523 struct long_ad *node_icb, struct long_ad *parent_icb, 4524 uint64_t parent_unique_id) 4525 { 4526 struct timespec now; 4527 struct icb_tag *icb; 4528 struct filetimes_extattr_entry *ft_extattr; 4529 uint64_t unique_id; 4530 uint32_t fidsize, lb_num; 4531 uint8_t *bpos; 4532 int crclen, attrlen; 4533 4534 lb_num = udf_rw32(node_icb->loc.lb_num); 4535 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4536 icb = &fe->icbtag; 4537 4538 /* 4539 * Always use strategy type 4 unless on WORM wich we don't support 4540 * (yet). Fill in defaults and set for internal allocation of data. 4541 */ 4542 icb->strat_type = udf_rw16(4); 4543 icb->max_num_entries = udf_rw16(1); 4544 icb->file_type = file_type; /* 8 bit */ 4545 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4546 4547 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4548 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4549 4550 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4551 4552 vfs_timestamp(&now); 4553 udf_timespec_to_timestamp(&now, &fe->atime); 4554 udf_timespec_to_timestamp(&now, &fe->attrtime); 4555 udf_timespec_to_timestamp(&now, &fe->mtime); 4556 4557 udf_set_regid(&fe->imp_id, IMPL_NAME); 4558 udf_add_impl_regid(ump, &fe->imp_id); 4559 4560 unique_id = udf_advance_uniqueid(ump); 4561 fe->unique_id = udf_rw64(unique_id); 4562 fe->l_ea = udf_rw32(0); 4563 4564 /* create extended attribute to record our creation time */ 4565 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4566 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4567 memset(ft_extattr, 0, attrlen); 4568 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4569 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4570 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4571 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4572 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4573 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4574 4575 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4576 (struct extattr_entry *) ft_extattr); 4577 free(ft_extattr, M_UDFTEMP); 4578 4579 /* if its a directory, create '..' */ 4580 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4581 fidsize = 0; 4582 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4583 fidsize = udf_create_parentfid(ump, 4584 (struct fileid_desc *) bpos, parent_icb, 4585 parent_unique_id); 4586 } 4587 4588 /* record fidlength information */ 4589 fe->inf_len = udf_rw64(fidsize); 4590 fe->l_ad = udf_rw32(fidsize); 4591 fe->logblks_rec = udf_rw64(0); /* intern */ 4592 4593 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4594 crclen += udf_rw32(fe->l_ea) + fidsize; 4595 fe->tag.desc_crc_len = udf_rw16(crclen); 4596 4597 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4598 4599 return fidsize; 4600 } 4601 4602 /* --------------------------------------------------------------------- */ 4603 4604 static int 4605 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4606 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4607 uint64_t parent_unique_id) 4608 { 4609 struct timespec now; 4610 struct icb_tag *icb; 4611 uint64_t unique_id; 4612 uint32_t fidsize, lb_num; 4613 uint8_t *bpos; 4614 int crclen; 4615 4616 lb_num = udf_rw32(node_icb->loc.lb_num); 4617 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4618 icb = &efe->icbtag; 4619 4620 /* 4621 * Always use strategy type 4 unless on WORM wich we don't support 4622 * (yet). Fill in defaults and set for internal allocation of data. 4623 */ 4624 icb->strat_type = udf_rw16(4); 4625 icb->max_num_entries = udf_rw16(1); 4626 icb->file_type = file_type; /* 8 bit */ 4627 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4628 4629 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4630 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4631 4632 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4633 4634 vfs_timestamp(&now); 4635 udf_timespec_to_timestamp(&now, &efe->ctime); 4636 udf_timespec_to_timestamp(&now, &efe->atime); 4637 udf_timespec_to_timestamp(&now, &efe->attrtime); 4638 udf_timespec_to_timestamp(&now, &efe->mtime); 4639 4640 udf_set_regid(&efe->imp_id, IMPL_NAME); 4641 udf_add_impl_regid(ump, &efe->imp_id); 4642 4643 unique_id = udf_advance_uniqueid(ump); 4644 efe->unique_id = udf_rw64(unique_id); 4645 efe->l_ea = udf_rw32(0); 4646 4647 /* if its a directory, create '..' */ 4648 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4649 fidsize = 0; 4650 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4651 fidsize = udf_create_parentfid(ump, 4652 (struct fileid_desc *) bpos, parent_icb, 4653 parent_unique_id); 4654 } 4655 4656 /* record fidlength information */ 4657 efe->obj_size = udf_rw64(fidsize); 4658 efe->inf_len = udf_rw64(fidsize); 4659 efe->l_ad = udf_rw32(fidsize); 4660 efe->logblks_rec = udf_rw64(0); /* intern */ 4661 4662 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4663 crclen += udf_rw32(efe->l_ea) + fidsize; 4664 efe->tag.desc_crc_len = udf_rw16(crclen); 4665 4666 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4667 4668 return fidsize; 4669 } 4670 4671 /* --------------------------------------------------------------------- */ 4672 4673 int 4674 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4675 struct udf_node *udf_node, struct componentname *cnp) 4676 { 4677 struct vnode *dvp = dir_node->vnode; 4678 struct udf_dirhash_entry *dirh_ep; 4679 struct file_entry *fe = dir_node->fe; 4680 struct extfile_entry *efe = dir_node->efe; 4681 struct fileid_desc *fid; 4682 struct dirent *dirent; 4683 uint64_t file_size, diroffset; 4684 uint32_t lb_size, fidsize; 4685 int found, error; 4686 char const *name = cnp->cn_nameptr; 4687 int namelen = cnp->cn_namelen; 4688 int hit, refcnt; 4689 4690 /* get our dirhash and make sure its read in */ 4691 udf_dirhash_get(&dir_node->dir_hash); 4692 error = udf_dirhash_fill(dir_node); 4693 if (error) { 4694 udf_dirhash_put(dir_node->dir_hash); 4695 return error; 4696 } 4697 4698 /* get directory filesize */ 4699 if (fe) { 4700 file_size = udf_rw64(fe->inf_len); 4701 } else { 4702 assert(efe); 4703 file_size = udf_rw64(efe->inf_len); 4704 } 4705 4706 /* allocate temporary space for fid */ 4707 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4708 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4709 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4710 4711 /* search our dirhash hits */ 4712 found = 0; 4713 dirh_ep = NULL; 4714 for (;;) { 4715 hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep); 4716 /* if no hit, abort the search */ 4717 if (!hit) 4718 break; 4719 4720 /* check this hit */ 4721 diroffset = dirh_ep->offset; 4722 4723 /* transfer a new fid/dirent */ 4724 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4725 if (error) 4726 break; 4727 4728 /* see if its our entry */ 4729 KASSERT(dirent->d_namlen == namelen); 4730 if (strncmp(dirent->d_name, name, namelen) == 0) { 4731 found = 1; 4732 break; 4733 } 4734 } 4735 4736 if (!found) 4737 error = ENOENT; 4738 if (error) 4739 goto error_out; 4740 4741 /* mark deleted */ 4742 fid->file_char |= UDF_FILE_CHAR_DEL; 4743 #ifdef UDF_COMPLETE_DELETE 4744 memset(&fid->icb, 0, sizeof(fid->icb)); 4745 #endif 4746 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4747 4748 /* get size of fid and compensate for the read_fid_stream advance */ 4749 fidsize = udf_fidsize(fid); 4750 diroffset -= fidsize; 4751 4752 /* write out */ 4753 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4754 fid, fidsize, diroffset, 4755 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4756 FSCRED, NULL, NULL); 4757 if (error) 4758 goto error_out; 4759 4760 /* get reference count of attached node */ 4761 if (udf_node->fe) { 4762 refcnt = udf_rw16(udf_node->fe->link_cnt); 4763 } else { 4764 KASSERT(udf_node->efe); 4765 refcnt = udf_rw16(udf_node->efe->link_cnt); 4766 } 4767 #ifdef UDF_COMPLETE_DELETE 4768 /* substract reference counter in attached node */ 4769 refcnt -= 1; 4770 if (udf_node->fe) { 4771 udf_node->fe->link_cnt = udf_rw16(refcnt); 4772 } else { 4773 udf_node->efe->link_cnt = udf_rw16(refcnt); 4774 } 4775 4776 /* prevent writeout when refcnt == 0 */ 4777 if (refcnt == 0) 4778 udf_node->i_flags |= IN_DELETED; 4779 4780 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4781 int drefcnt; 4782 4783 /* substract reference counter in directory node */ 4784 /* note subtract 2 (?) for its was also backreferenced */ 4785 if (dir_node->fe) { 4786 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4787 drefcnt -= 1; 4788 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4789 } else { 4790 KASSERT(dir_node->efe); 4791 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4792 drefcnt -= 1; 4793 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4794 } 4795 } 4796 4797 udf_node->i_flags |= IN_MODIFIED; 4798 dir_node->i_flags |= IN_MODIFIED; 4799 #endif 4800 /* if it is/was a hardlink adjust the file count */ 4801 if (refcnt > 0) 4802 udf_adjust_filecount(udf_node, -1); 4803 4804 /* remove from the dirhash */ 4805 udf_dirhash_remove(dir_node, dirent, diroffset, 4806 udf_fidsize(fid)); 4807 4808 error_out: 4809 free(fid, M_UDFTEMP); 4810 free(dirent, M_UDFTEMP); 4811 4812 udf_dirhash_put(dir_node->dir_hash); 4813 4814 return error; 4815 } 4816 4817 /* --------------------------------------------------------------------- */ 4818 4819 /* 4820 * We are not allowed to split the fid tag itself over an logical block so 4821 * check the space remaining in the logical block. 4822 * 4823 * We try to select the smallest candidate for recycling or when none is 4824 * found, append a new one at the end of the directory. 4825 */ 4826 4827 int 4828 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 4829 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 4830 { 4831 struct vnode *dvp = dir_node->vnode; 4832 struct udf_dirhash_entry *dirh_ep; 4833 struct fileid_desc *fid; 4834 struct icb_tag *icbtag; 4835 struct charspec osta_charspec; 4836 struct dirent dirent; 4837 uint64_t unique_id, dir_size, diroffset; 4838 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 4839 uint32_t chosen_size, chosen_size_diff; 4840 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 4841 int file_char, refcnt, icbflags, addr_type, hit, error; 4842 4843 /* get our dirhash and make sure its read in */ 4844 udf_dirhash_get(&dir_node->dir_hash); 4845 error = udf_dirhash_fill(dir_node); 4846 if (error) { 4847 udf_dirhash_put(dir_node->dir_hash); 4848 return error; 4849 } 4850 4851 /* get info */ 4852 lb_size = udf_rw32(ump->logical_vol->lb_size); 4853 udf_osta_charset(&osta_charspec); 4854 4855 if (dir_node->fe) { 4856 dir_size = udf_rw64(dir_node->fe->inf_len); 4857 icbtag = &dir_node->fe->icbtag; 4858 } else { 4859 dir_size = udf_rw64(dir_node->efe->inf_len); 4860 icbtag = &dir_node->efe->icbtag; 4861 } 4862 4863 icbflags = udf_rw16(icbtag->flags); 4864 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 4865 4866 if (udf_node->fe) { 4867 unique_id = udf_rw64(udf_node->fe->unique_id); 4868 refcnt = udf_rw16(udf_node->fe->link_cnt); 4869 } else { 4870 unique_id = udf_rw64(udf_node->efe->unique_id); 4871 refcnt = udf_rw16(udf_node->efe->link_cnt); 4872 } 4873 4874 if (refcnt > 0) { 4875 unique_id = udf_advance_uniqueid(ump); 4876 udf_adjust_filecount(udf_node, 1); 4877 } 4878 4879 /* determine file characteristics */ 4880 file_char = 0; /* visible non deleted file and not stream metadata */ 4881 if (vap->va_type == VDIR) 4882 file_char = UDF_FILE_CHAR_DIR; 4883 4884 /* malloc scrap buffer */ 4885 fid = malloc(lb_size, M_TEMP, M_WAITOK); 4886 bzero(fid, lb_size); 4887 4888 /* calculate _minimum_ fid size */ 4889 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4890 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4891 fidsize = UDF_FID_SIZE + fid->l_fi; 4892 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 4893 4894 /* find position that will fit the FID */ 4895 chosen_fid_pos = dir_size; 4896 chosen_size = 0; 4897 chosen_size_diff = UINT_MAX; 4898 4899 /* shut up gcc */ 4900 dirent.d_namlen = 0; 4901 4902 /* search our dirhash hits */ 4903 error = 0; 4904 dirh_ep = NULL; 4905 for (;;) { 4906 hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep); 4907 /* if no hit, abort the search */ 4908 if (!hit) 4909 break; 4910 4911 /* check this hit for size */ 4912 this_fidsize = dirh_ep->fid_size; 4913 4914 /* check this hit */ 4915 fid_pos = dirh_ep->offset; 4916 end_fid_pos = fid_pos + this_fidsize; 4917 size_diff = this_fidsize - fidsize; 4918 lb_rest = lb_size - (end_fid_pos % lb_size); 4919 4920 #ifndef UDF_COMPLETE_DELETE 4921 /* transfer a new fid/dirent */ 4922 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 4923 if (error) 4924 goto error_out; 4925 4926 /* only reuse entries that are wiped */ 4927 /* check if the len + loc are marked zero */ 4928 if (udf_rw32(fid->icb.len != 0)) 4929 continue; 4930 if (udf_rw32(fid->icb.loc.lb_num) != 0) 4931 continue; 4932 if (udf_rw16(fid->icb.loc.part_num != 0)) 4933 continue; 4934 #endif /* UDF_COMPLETE_DELETE */ 4935 4936 /* select if not splitting the tag and its smaller */ 4937 if ((size_diff >= 0) && 4938 (size_diff < chosen_size_diff) && 4939 (lb_rest >= sizeof(struct desc_tag))) 4940 { 4941 /* UDF 2.3.4.2+3 specifies rules for iu size */ 4942 if ((size_diff == 0) || (size_diff >= 32)) { 4943 chosen_fid_pos = fid_pos; 4944 chosen_size = this_fidsize; 4945 chosen_size_diff = size_diff; 4946 } 4947 } 4948 } 4949 4950 4951 /* extend directory if no other candidate found */ 4952 if (chosen_size == 0) { 4953 chosen_fid_pos = dir_size; 4954 chosen_size = fidsize; 4955 chosen_size_diff = 0; 4956 4957 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 4958 if (addr_type == UDF_ICB_INTERN_ALLOC) { 4959 /* pre-grow directory to see if we're to switch */ 4960 udf_grow_node(dir_node, dir_size + chosen_size); 4961 4962 icbflags = udf_rw16(icbtag->flags); 4963 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 4964 } 4965 4966 /* make sure the next fid desc_tag won't be splitted */ 4967 if (addr_type != UDF_ICB_INTERN_ALLOC) { 4968 end_fid_pos = chosen_fid_pos + chosen_size; 4969 lb_rest = lb_size - (end_fid_pos % lb_size); 4970 4971 /* pad with implementation use regid if needed */ 4972 if (lb_rest < sizeof(struct desc_tag)) 4973 chosen_size += 32; 4974 } 4975 } 4976 chosen_size_diff = chosen_size - fidsize; 4977 diroffset = chosen_fid_pos + chosen_size; 4978 4979 /* populate the FID */ 4980 memset(fid, 0, lb_size); 4981 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 4982 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 4983 fid->file_char = file_char; 4984 fid->icb = udf_node->loc; 4985 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 4986 fid->l_iu = udf_rw16(0); 4987 4988 if (chosen_size > fidsize) { 4989 /* insert implementation-use regid to space it correctly */ 4990 fid->l_iu = udf_rw16(chosen_size_diff); 4991 4992 /* set implementation use */ 4993 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 4994 udf_add_impl_regid(ump, (struct regid *) fid->data); 4995 } 4996 4997 /* fill in name */ 4998 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 4999 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5000 5001 fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH; 5002 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5003 5004 /* writeout FID/update parent directory */ 5005 error = vn_rdwr(UIO_WRITE, dvp, 5006 fid, chosen_size, chosen_fid_pos, 5007 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5008 FSCRED, NULL, NULL); 5009 5010 if (error) 5011 goto error_out; 5012 5013 /* add reference counter in attached node */ 5014 if (udf_node->fe) { 5015 refcnt = udf_rw16(udf_node->fe->link_cnt); 5016 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5017 } else { 5018 KASSERT(udf_node->efe); 5019 refcnt = udf_rw16(udf_node->efe->link_cnt); 5020 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5021 } 5022 5023 /* mark not deleted if it was... just in case, but do warn */ 5024 if (udf_node->i_flags & IN_DELETED) { 5025 printf("udf: warning, marking a file undeleted\n"); 5026 udf_node->i_flags &= ~IN_DELETED; 5027 } 5028 5029 if (file_char & UDF_FILE_CHAR_DIR) { 5030 /* add reference counter in directory node for '..' */ 5031 if (dir_node->fe) { 5032 refcnt = udf_rw16(dir_node->fe->link_cnt); 5033 refcnt++; 5034 dir_node->fe->link_cnt = udf_rw16(refcnt); 5035 } else { 5036 KASSERT(dir_node->efe); 5037 refcnt = udf_rw16(dir_node->efe->link_cnt); 5038 refcnt++; 5039 dir_node->efe->link_cnt = udf_rw16(refcnt); 5040 } 5041 } 5042 5043 /* append to the dirhash */ 5044 dirent.d_namlen = cnp->cn_namelen; 5045 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen); 5046 udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos, 5047 udf_fidsize(fid), 1); 5048 5049 /* note updates */ 5050 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5051 /* VN_KNOTE(udf_node, ...) */ 5052 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5053 5054 error_out: 5055 free(fid, M_TEMP); 5056 5057 udf_dirhash_put(dir_node->dir_hash); 5058 5059 return error; 5060 } 5061 5062 /* --------------------------------------------------------------------- */ 5063 5064 /* 5065 * Each node can have an attached streamdir node though not recursively. These 5066 * are otherwise known as named substreams/named extended attributes that have 5067 * no size limitations. 5068 * 5069 * `Normal' extended attributes are indicated with a number and are recorded 5070 * in either the fe/efe descriptor itself for small descriptors or recorded in 5071 * the attached extended attribute file. Since these spaces can get 5072 * fragmented, care ought to be taken. 5073 * 5074 * Since the size of the space reserved for allocation descriptors is limited, 5075 * there is a mechanim provided for extending this space; this is done by a 5076 * special extent to allow schrinking of the allocations without breaking the 5077 * linkage to the allocation extent descriptor. 5078 */ 5079 5080 int 5081 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5082 struct udf_node **udf_noderes) 5083 { 5084 union dscrptr *dscr; 5085 struct udf_node *udf_node; 5086 struct vnode *nvp; 5087 struct long_ad icb_loc, last_fe_icb_loc; 5088 uint64_t file_size; 5089 uint32_t lb_size, sector, dummy; 5090 uint8_t *file_data; 5091 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5092 int slot, eof, error; 5093 5094 DPRINTF(NODE, ("udf_get_node called\n")); 5095 *udf_noderes = udf_node = NULL; 5096 5097 /* lock to disallow simultanious creation of same udf_node */ 5098 mutex_enter(&ump->get_node_lock); 5099 5100 DPRINTF(NODE, ("\tlookup in hash table\n")); 5101 /* lookup in hash table */ 5102 assert(ump); 5103 assert(node_icb_loc); 5104 udf_node = udf_hash_lookup(ump, node_icb_loc); 5105 if (udf_node) { 5106 DPRINTF(NODE, ("\tgot it from the hash!\n")); 5107 /* vnode is returned locked */ 5108 *udf_noderes = udf_node; 5109 mutex_exit(&ump->get_node_lock); 5110 return 0; 5111 } 5112 5113 /* garbage check: translate udf_node_icb_loc to sectornr */ 5114 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); 5115 if (error) { 5116 /* no use, this will fail anyway */ 5117 mutex_exit(&ump->get_node_lock); 5118 return EINVAL; 5119 } 5120 5121 /* build udf_node (do initialise!) */ 5122 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5123 memset(udf_node, 0, sizeof(struct udf_node)); 5124 5125 DPRINTF(NODE, ("\tget new vnode\n")); 5126 /* give it a vnode */ 5127 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp); 5128 if (error) { 5129 pool_put(&udf_node_pool, udf_node); 5130 mutex_exit(&ump->get_node_lock); 5131 return error; 5132 } 5133 5134 /* always return locked vnode */ 5135 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { 5136 /* recycle vnode and unlock; simultanious will fail too */ 5137 ungetnewvnode(nvp); 5138 mutex_exit(&ump->get_node_lock); 5139 return error; 5140 } 5141 5142 /* initialise crosslinks, note location of fe/efe for hashing */ 5143 udf_node->ump = ump; 5144 udf_node->vnode = nvp; 5145 nvp->v_data = udf_node; 5146 udf_node->loc = *node_icb_loc; 5147 udf_node->lockf = 0; 5148 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5149 cv_init(&udf_node->node_lock, "udf_nlk"); 5150 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */ 5151 udf_node->outstanding_bufs = 0; 5152 udf_node->outstanding_nodedscr = 0; 5153 5154 /* insert into the hash lookup */ 5155 udf_register_node(udf_node); 5156 5157 /* safe to unlock, the entry is in the hash table, vnode is locked */ 5158 mutex_exit(&ump->get_node_lock); 5159 5160 icb_loc = *node_icb_loc; 5161 needs_indirect = 0; 5162 strat4096 = 0; 5163 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5164 file_size = 0; 5165 file_data = NULL; 5166 lb_size = udf_rw32(ump->logical_vol->lb_size); 5167 5168 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5169 do { 5170 /* try to read in fe/efe */ 5171 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5172 5173 /* blank sector marks end of sequence, check this */ 5174 if ((dscr == NULL) && (!strat4096)) 5175 error = ENOENT; 5176 5177 /* break if read error or blank sector */ 5178 if (error || (dscr == NULL)) 5179 break; 5180 5181 /* process descriptor based on the descriptor type */ 5182 dscr_type = udf_rw16(dscr->tag.id); 5183 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5184 5185 /* if dealing with an indirect entry, follow the link */ 5186 if (dscr_type == TAGID_INDIRECTENTRY) { 5187 needs_indirect = 0; 5188 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5189 icb_loc = dscr->inde.indirect_icb; 5190 continue; 5191 } 5192 5193 /* only file entries and extended file entries allowed here */ 5194 if ((dscr_type != TAGID_FENTRY) && 5195 (dscr_type != TAGID_EXTFENTRY)) { 5196 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5197 error = ENOENT; 5198 break; 5199 } 5200 5201 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5202 5203 /* choose this one */ 5204 last_fe_icb_loc = icb_loc; 5205 5206 /* record and process/update (ext)fentry */ 5207 file_data = NULL; 5208 if (dscr_type == TAGID_FENTRY) { 5209 if (udf_node->fe) 5210 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5211 udf_node->fe); 5212 udf_node->fe = &dscr->fe; 5213 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5214 udf_file_type = udf_node->fe->icbtag.file_type; 5215 file_size = udf_rw64(udf_node->fe->inf_len); 5216 file_data = udf_node->fe->data; 5217 } else { 5218 if (udf_node->efe) 5219 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5220 udf_node->efe); 5221 udf_node->efe = &dscr->efe; 5222 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5223 udf_file_type = udf_node->efe->icbtag.file_type; 5224 file_size = udf_rw64(udf_node->efe->inf_len); 5225 file_data = udf_node->efe->data; 5226 } 5227 5228 /* check recording strategy (structure) */ 5229 5230 /* 5231 * Strategy 4096 is a daisy linked chain terminating with an 5232 * unrecorded sector or a TERM descriptor. The next 5233 * descriptor is to be found in the sector that follows the 5234 * current sector. 5235 */ 5236 if (strat == 4096) { 5237 strat4096 = 1; 5238 needs_indirect = 1; 5239 5240 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5241 } 5242 5243 /* 5244 * Strategy 4 is the normal strategy and terminates, but if 5245 * we're in strategy 4096, we can't have strategy 4 mixed in 5246 */ 5247 5248 if (strat == 4) { 5249 if (strat4096) { 5250 error = EINVAL; 5251 break; 5252 } 5253 break; /* done */ 5254 } 5255 } while (!error); 5256 5257 /* first round of cleanup code */ 5258 if (error) { 5259 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5260 /* recycle udf_node */ 5261 udf_dispose_node(udf_node); 5262 5263 vlockmgr(nvp->v_vnlock, LK_RELEASE); 5264 nvp->v_data = NULL; 5265 ungetnewvnode(nvp); 5266 5267 return EINVAL; /* error code ok? */ 5268 } 5269 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5270 5271 /* assert no references to dscr anymore beyong this point */ 5272 assert((udf_node->fe) || (udf_node->efe)); 5273 dscr = NULL; 5274 5275 /* 5276 * Remember where to record an updated version of the descriptor. If 5277 * there is a sequence of indirect entries, icb_loc will have been 5278 * updated. Its the write disipline to allocate new space and to make 5279 * sure the chain is maintained. 5280 * 5281 * `needs_indirect' flags if the next location is to be filled with 5282 * with an indirect entry. 5283 */ 5284 udf_node->write_loc = icb_loc; 5285 udf_node->needs_indirect = needs_indirect; 5286 5287 /* 5288 * Go trough all allocations extents of this descriptor and when 5289 * encountering a redirect read in the allocation extension. These are 5290 * daisy-chained. 5291 */ 5292 UDF_LOCK_NODE(udf_node, 0); 5293 udf_node->num_extensions = 0; 5294 5295 error = 0; 5296 slot = 0; 5297 for (;;) { 5298 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5299 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5300 "lb_num = %d, part = %d\n", slot, eof, 5301 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5302 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5303 udf_rw32(icb_loc.loc.lb_num), 5304 udf_rw16(icb_loc.loc.part_num))); 5305 if (eof) 5306 break; 5307 slot++; 5308 5309 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5310 continue; 5311 5312 DPRINTF(NODE, ("\tgot redirect extent\n")); 5313 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5314 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5315 "too many allocation extensions on " 5316 "udf_node\n")); 5317 error = EINVAL; 5318 break; 5319 } 5320 5321 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5322 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5323 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5324 "extension size in udf_node\n")); 5325 error = EINVAL; 5326 break; 5327 } 5328 5329 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5330 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5331 /* load in allocation extent */ 5332 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5333 if (error || (dscr == NULL)) 5334 break; 5335 5336 /* process read-in descriptor */ 5337 dscr_type = udf_rw16(dscr->tag.id); 5338 5339 if (dscr_type != TAGID_ALLOCEXTENT) { 5340 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5341 error = ENOENT; 5342 break; 5343 } 5344 5345 DPRINTF(NODE, ("\trecording redirect extent\n")); 5346 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5347 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5348 5349 udf_node->num_extensions++; 5350 5351 } /* while */ 5352 UDF_UNLOCK_NODE(udf_node, 0); 5353 5354 /* second round of cleanup code */ 5355 if (error) { 5356 /* recycle udf_node */ 5357 udf_dispose_node(udf_node); 5358 5359 vlockmgr(nvp->v_vnlock, LK_RELEASE); 5360 nvp->v_data = NULL; 5361 ungetnewvnode(nvp); 5362 5363 return EINVAL; /* error code ok? */ 5364 } 5365 5366 DPRINTF(NODE, ("\tnode read in fine\n")); 5367 5368 /* 5369 * Translate UDF filetypes into vnode types. 5370 * 5371 * Systemfiles like the meta main and mirror files are not treated as 5372 * normal files, so we type them as having no type. UDF dictates that 5373 * they are not allowed to be visible. 5374 */ 5375 5376 switch (udf_file_type) { 5377 case UDF_ICB_FILETYPE_DIRECTORY : 5378 case UDF_ICB_FILETYPE_STREAMDIR : 5379 nvp->v_type = VDIR; 5380 break; 5381 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5382 nvp->v_type = VBLK; 5383 break; 5384 case UDF_ICB_FILETYPE_CHARDEVICE : 5385 nvp->v_type = VCHR; 5386 break; 5387 case UDF_ICB_FILETYPE_SOCKET : 5388 nvp->v_type = VSOCK; 5389 break; 5390 case UDF_ICB_FILETYPE_FIFO : 5391 nvp->v_type = VFIFO; 5392 break; 5393 case UDF_ICB_FILETYPE_SYMLINK : 5394 nvp->v_type = VLNK; 5395 break; 5396 case UDF_ICB_FILETYPE_VAT : 5397 case UDF_ICB_FILETYPE_META_MAIN : 5398 case UDF_ICB_FILETYPE_META_MIRROR : 5399 nvp->v_type = VNON; 5400 break; 5401 case UDF_ICB_FILETYPE_RANDOMACCESS : 5402 case UDF_ICB_FILETYPE_REALTIME : 5403 nvp->v_type = VREG; 5404 break; 5405 default: 5406 /* YIKES, something else */ 5407 nvp->v_type = VNON; 5408 } 5409 5410 /* TODO specfs, fifofs etc etc. vnops setting */ 5411 5412 /* don't forget to set vnode's v_size */ 5413 uvm_vnp_setsize(nvp, file_size); 5414 5415 /* TODO ext attr and streamdir udf_nodes */ 5416 5417 *udf_noderes = udf_node; 5418 5419 return 0; 5420 } 5421 5422 /* --------------------------------------------------------------------- */ 5423 5424 int 5425 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5426 { 5427 union dscrptr *dscr; 5428 struct long_ad *loc; 5429 int extnr, flags, error; 5430 5431 DPRINTF(NODE, ("udf_writeout_node called\n")); 5432 5433 KASSERT(udf_node->outstanding_bufs == 0); 5434 KASSERT(udf_node->outstanding_nodedscr == 0); 5435 5436 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5437 5438 if (udf_node->i_flags & IN_DELETED) { 5439 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5440 return 0; 5441 } 5442 5443 /* lock node */ 5444 flags = waitfor ? 0 : IN_CALLBACK_ULK; 5445 UDF_LOCK_NODE(udf_node, flags); 5446 5447 /* at least one descriptor writeout */ 5448 udf_node->outstanding_nodedscr = 1; 5449 5450 /* we're going to write out the descriptor so clear the flags */ 5451 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5452 5453 /* if we were rebuild, write out the allocation extents */ 5454 if (udf_node->i_flags & IN_NODE_REBUILD) { 5455 /* mark outstanding node descriptors and issue them */ 5456 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5457 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5458 loc = &udf_node->ext_loc[extnr]; 5459 dscr = (union dscrptr *) udf_node->ext[extnr]; 5460 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5461 if (error) 5462 return error; 5463 } 5464 /* mark allocation extents written out */ 5465 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5466 } 5467 5468 if (udf_node->fe) { 5469 KASSERT(udf_node->efe == NULL); 5470 dscr = (union dscrptr *) udf_node->fe; 5471 } else { 5472 KASSERT(udf_node->efe); 5473 KASSERT(udf_node->fe == NULL); 5474 dscr = (union dscrptr *) udf_node->efe; 5475 } 5476 KASSERT(dscr); 5477 5478 loc = &udf_node->write_loc; 5479 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5480 return error; 5481 } 5482 5483 /* --------------------------------------------------------------------- */ 5484 5485 int 5486 udf_dispose_node(struct udf_node *udf_node) 5487 { 5488 struct vnode *vp; 5489 int extnr; 5490 5491 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5492 if (!udf_node) { 5493 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5494 return 0; 5495 } 5496 5497 vp = udf_node->vnode; 5498 #ifdef DIAGNOSTIC 5499 if (vp->v_numoutput) 5500 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5501 "v_numoutput = %d", udf_node, vp->v_numoutput); 5502 #endif 5503 5504 /* wait until out of sync (just in case we happen to stumble over one */ 5505 KASSERT(!mutex_owned(&mntvnode_lock)); 5506 mutex_enter(&mntvnode_lock); 5507 while (udf_node->i_flags & IN_SYNCED) { 5508 cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock, 5509 hz/16); 5510 } 5511 mutex_exit(&mntvnode_lock); 5512 5513 /* TODO extended attributes and streamdir */ 5514 5515 /* remove dirhash if present */ 5516 udf_dirhash_destroy(&udf_node->dir_hash); 5517 5518 /* remove from our hash lookup table */ 5519 udf_deregister_node(udf_node); 5520 5521 /* destroy our lock */ 5522 mutex_destroy(&udf_node->node_mutex); 5523 cv_destroy(&udf_node->node_lock); 5524 5525 /* dissociate our udf_node from the vnode */ 5526 genfs_node_destroy(udf_node->vnode); 5527 vp->v_data = NULL; 5528 5529 /* free associated memory and the node itself */ 5530 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5531 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5532 udf_node->ext[extnr]); 5533 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5534 } 5535 5536 if (udf_node->fe) 5537 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5538 udf_node->fe); 5539 if (udf_node->efe) 5540 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5541 udf_node->efe); 5542 5543 udf_node->fe = (void *) 0xdeadaaaa; 5544 udf_node->efe = (void *) 0xdeadbbbb; 5545 udf_node->ump = (void *) 0xdeadbeef; 5546 pool_put(&udf_node_pool, udf_node); 5547 5548 return 0; 5549 } 5550 5551 5552 5553 /* 5554 * create a new node using the specified vnodeops, vap and cnp but with the 5555 * udf_file_type. This allows special files to be created. Use with care. 5556 */ 5557 5558 static int 5559 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type, 5560 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp) 5561 { 5562 union dscrptr *dscr; 5563 struct udf_node *dir_node = VTOI(dvp);; 5564 struct udf_node *udf_node; 5565 struct udf_mount *ump = dir_node->ump; 5566 struct vnode *nvp; 5567 struct long_ad node_icb_loc; 5568 uint64_t parent_unique_id; 5569 uint64_t lmapping; 5570 uint32_t lb_size, lb_num; 5571 uint16_t vpart_num; 5572 uid_t uid; 5573 gid_t gid, parent_gid; 5574 int fid_size, error; 5575 5576 lb_size = udf_rw32(ump->logical_vol->lb_size); 5577 *vpp = NULL; 5578 5579 /* allocate vnode */ 5580 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp); 5581 if (error) 5582 return error; 5583 5584 /* lock node */ 5585 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY); 5586 if (error) { 5587 nvp->v_data = NULL; 5588 ungetnewvnode(nvp); 5589 return error; 5590 } 5591 5592 /* get disc allocation for one logical block */ 5593 vpart_num = ump->node_part; 5594 error = udf_pre_allocate_space(ump, UDF_C_NODE, 1, 5595 vpart_num, &lmapping); 5596 lb_num = lmapping; 5597 if (error) { 5598 vlockmgr(nvp->v_vnlock, LK_RELEASE); 5599 ungetnewvnode(nvp); 5600 return error; 5601 } 5602 5603 /* initialise pointer to location */ 5604 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5605 node_icb_loc.len = lb_size; 5606 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5607 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5608 5609 /* build udf_node (do initialise!) */ 5610 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5611 memset(udf_node, 0, sizeof(struct udf_node)); 5612 5613 /* initialise crosslinks, note location of fe/efe for hashing */ 5614 /* bugalert: synchronise with udf_get_node() */ 5615 udf_node->ump = ump; 5616 udf_node->vnode = nvp; 5617 nvp->v_data = udf_node; 5618 udf_node->loc = node_icb_loc; 5619 udf_node->write_loc = node_icb_loc; 5620 udf_node->lockf = 0; 5621 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5622 cv_init(&udf_node->node_lock, "udf_nlk"); 5623 udf_node->outstanding_bufs = 0; 5624 udf_node->outstanding_nodedscr = 0; 5625 5626 /* initialise genfs */ 5627 genfs_node_init(nvp, &udf_genfsops); 5628 5629 /* insert into the hash lookup */ 5630 udf_register_node(udf_node); 5631 5632 /* get parent's unique ID for refering '..' if its a directory */ 5633 if (dir_node->fe) { 5634 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5635 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5636 } else { 5637 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5638 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5639 } 5640 5641 /* get descriptor */ 5642 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5643 5644 /* choose a fe or an efe for it */ 5645 if (ump->logical_vol->tag.descriptor_ver == 2) { 5646 udf_node->fe = &dscr->fe; 5647 fid_size = udf_create_new_fe(ump, udf_node->fe, 5648 udf_file_type, &udf_node->loc, 5649 &dir_node->loc, parent_unique_id); 5650 /* TODO add extended attribute for creation time */ 5651 } else { 5652 udf_node->efe = &dscr->efe; 5653 fid_size = udf_create_new_efe(ump, udf_node->efe, 5654 udf_file_type, &udf_node->loc, 5655 &dir_node->loc, parent_unique_id); 5656 } 5657 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5658 5659 /* update vnode's size and type */ 5660 nvp->v_type = vap->va_type; 5661 uvm_vnp_setsize(nvp, fid_size); 5662 5663 /* set access mode */ 5664 udf_setaccessmode(udf_node, vap->va_mode); 5665 5666 /* set ownership */ 5667 uid = kauth_cred_geteuid(cnp->cn_cred); 5668 gid = parent_gid; 5669 udf_setownership(udf_node, uid, gid); 5670 5671 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5672 if (error) { 5673 /* free disc allocation for node */ 5674 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5675 5676 /* recycle udf_node */ 5677 udf_dispose_node(udf_node); 5678 vput(nvp); 5679 5680 *vpp = NULL; 5681 return error; 5682 } 5683 5684 /* adjust file count */ 5685 udf_adjust_filecount(udf_node, 1); 5686 5687 /* return result */ 5688 *vpp = nvp; 5689 5690 return 0; 5691 } 5692 5693 5694 int 5695 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5696 struct componentname *cnp) 5697 { 5698 int (**vnodeops)(void *); 5699 int udf_file_type; 5700 5701 DPRINTF(NODE, ("udf_create_node called\n")); 5702 5703 /* what type are we creating ? */ 5704 vnodeops = udf_vnodeop_p; 5705 /* start with a default */ 5706 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5707 5708 *vpp = NULL; 5709 5710 switch (vap->va_type) { 5711 case VREG : 5712 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5713 break; 5714 case VDIR : 5715 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5716 break; 5717 case VLNK : 5718 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5719 break; 5720 case VBLK : 5721 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5722 /* specfs */ 5723 return ENOTSUP; 5724 break; 5725 case VCHR : 5726 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5727 /* specfs */ 5728 return ENOTSUP; 5729 break; 5730 case VFIFO : 5731 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5732 /* specfs */ 5733 return ENOTSUP; 5734 break; 5735 case VSOCK : 5736 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5737 /* specfs */ 5738 return ENOTSUP; 5739 break; 5740 case VNON : 5741 case VBAD : 5742 default : 5743 /* nothing; can we even create these? */ 5744 return EINVAL; 5745 } 5746 5747 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp); 5748 } 5749 5750 /* --------------------------------------------------------------------- */ 5751 5752 static void 5753 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5754 { 5755 struct udf_mount *ump = udf_node->ump; 5756 uint32_t lb_size, lb_num, len, num_lb; 5757 uint16_t vpart_num; 5758 5759 /* is there really one? */ 5760 if (mem == NULL) 5761 return; 5762 5763 /* got a descriptor here */ 5764 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5765 lb_num = udf_rw32(loc->loc.lb_num); 5766 vpart_num = udf_rw16(loc->loc.part_num); 5767 5768 lb_size = udf_rw32(ump->logical_vol->lb_size); 5769 num_lb = (len + lb_size -1) / lb_size; 5770 5771 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5772 } 5773 5774 void 5775 udf_delete_node(struct udf_node *udf_node) 5776 { 5777 void *dscr; 5778 struct udf_mount *ump; 5779 struct long_ad *loc; 5780 int extnr, lvint, dummy; 5781 5782 ump = udf_node->ump; 5783 5784 /* paranoia check on integrity; should be open!; we could panic */ 5785 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5786 if (lvint == UDF_INTEGRITY_CLOSED) 5787 printf("\tIntegrity was CLOSED!\n"); 5788 5789 /* whatever the node type, change its size to zero */ 5790 (void) udf_resize_node(udf_node, 0, &dummy); 5791 5792 /* force it to be `clean'; no use writing it out */ 5793 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 5794 IN_CHANGE | IN_UPDATE | IN_MODIFY); 5795 5796 /* adjust file count */ 5797 udf_adjust_filecount(udf_node, -1); 5798 5799 /* 5800 * Free its allocated descriptors; memory will be released when 5801 * vop_reclaim() is called. 5802 */ 5803 loc = &udf_node->loc; 5804 5805 dscr = udf_node->fe; 5806 udf_free_descriptor_space(udf_node, loc, dscr); 5807 dscr = udf_node->efe; 5808 udf_free_descriptor_space(udf_node, loc, dscr); 5809 5810 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 5811 dscr = udf_node->ext[extnr]; 5812 loc = &udf_node->ext_loc[extnr]; 5813 udf_free_descriptor_space(udf_node, loc, dscr); 5814 } 5815 } 5816 5817 /* --------------------------------------------------------------------- */ 5818 5819 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 5820 int 5821 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 5822 { 5823 struct file_entry *fe = udf_node->fe; 5824 struct extfile_entry *efe = udf_node->efe; 5825 uint64_t file_size; 5826 int error; 5827 5828 if (fe) { 5829 file_size = udf_rw64(fe->inf_len); 5830 } else { 5831 assert(udf_node->efe); 5832 file_size = udf_rw64(efe->inf_len); 5833 } 5834 5835 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 5836 file_size, new_size)); 5837 5838 /* if not changing, we're done */ 5839 if (file_size == new_size) 5840 return 0; 5841 5842 *extended = (new_size > file_size); 5843 if (*extended) { 5844 error = udf_grow_node(udf_node, new_size); 5845 } else { 5846 error = udf_shrink_node(udf_node, new_size); 5847 } 5848 5849 return error; 5850 } 5851 5852 5853 /* --------------------------------------------------------------------- */ 5854 5855 void 5856 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 5857 struct timespec *mod, struct timespec *birth) 5858 { 5859 struct timespec now; 5860 struct file_entry *fe; 5861 struct extfile_entry *efe; 5862 struct filetimes_extattr_entry *ft_extattr; 5863 struct timestamp *atime, *mtime, *attrtime, *ctime; 5864 struct timestamp fe_ctime; 5865 struct timespec cur_birth; 5866 uint32_t offset, a_l; 5867 uint8_t *filedata; 5868 int error; 5869 5870 /* protect against rogue values */ 5871 if (!udf_node) 5872 return; 5873 5874 fe = udf_node->fe; 5875 efe = udf_node->efe; 5876 5877 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 5878 return; 5879 5880 /* get descriptor information */ 5881 if (fe) { 5882 atime = &fe->atime; 5883 mtime = &fe->mtime; 5884 attrtime = &fe->attrtime; 5885 filedata = fe->data; 5886 5887 /* initial save dummy setting */ 5888 ctime = &fe_ctime; 5889 5890 /* check our extended attribute if present */ 5891 error = udf_extattr_search_intern(udf_node, 5892 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 5893 if (!error) { 5894 ft_extattr = (struct filetimes_extattr_entry *) 5895 (filedata + offset); 5896 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 5897 ctime = &ft_extattr->times[0]; 5898 } 5899 /* TODO create the extended attribute if not found ? */ 5900 } else { 5901 assert(udf_node->efe); 5902 atime = &efe->atime; 5903 mtime = &efe->mtime; 5904 attrtime = &efe->attrtime; 5905 ctime = &efe->ctime; 5906 } 5907 5908 vfs_timestamp(&now); 5909 5910 /* set access time */ 5911 if (udf_node->i_flags & IN_ACCESS) { 5912 if (acc == NULL) 5913 acc = &now; 5914 udf_timespec_to_timestamp(acc, atime); 5915 } 5916 5917 /* set modification time */ 5918 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 5919 if (mod == NULL) 5920 mod = &now; 5921 udf_timespec_to_timestamp(mod, mtime); 5922 5923 /* ensure birthtime is older than set modification! */ 5924 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 5925 if ((cur_birth.tv_sec > mod->tv_sec) || 5926 ((cur_birth.tv_sec == mod->tv_sec) && 5927 (cur_birth.tv_nsec > mod->tv_nsec))) { 5928 udf_timespec_to_timestamp(mod, ctime); 5929 } 5930 } 5931 5932 /* update birthtime if specified */ 5933 /* XXX we asume here that given birthtime is older than mod */ 5934 if (birth && (birth->tv_sec != VNOVAL)) { 5935 udf_timespec_to_timestamp(birth, ctime); 5936 } 5937 5938 /* set change time */ 5939 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 5940 udf_timespec_to_timestamp(&now, attrtime); 5941 5942 /* notify updates to the node itself */ 5943 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 5944 udf_node->i_flags |= IN_ACCESSED; 5945 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 5946 udf_node->i_flags |= IN_MODIFIED; 5947 5948 /* clear modification flags */ 5949 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 5950 } 5951 5952 /* --------------------------------------------------------------------- */ 5953 5954 int 5955 udf_update(struct vnode *vp, struct timespec *acc, 5956 struct timespec *mod, struct timespec *birth, int updflags) 5957 { 5958 union dscrptr *dscrptr; 5959 struct udf_node *udf_node = VTOI(vp); 5960 struct udf_mount *ump = udf_node->ump; 5961 struct regid *impl_id; 5962 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 5963 int waitfor, flags; 5964 5965 #ifdef DEBUG 5966 char bits[128]; 5967 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 5968 updflags)); 5969 bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits)); 5970 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 5971 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 5972 #endif 5973 5974 /* set our times */ 5975 udf_itimes(udf_node, acc, mod, birth); 5976 5977 /* set our implementation id */ 5978 if (udf_node->fe) { 5979 dscrptr = (union dscrptr *) udf_node->fe; 5980 impl_id = &udf_node->fe->imp_id; 5981 } else { 5982 dscrptr = (union dscrptr *) udf_node->efe; 5983 impl_id = &udf_node->efe->imp_id; 5984 } 5985 5986 /* set our ID */ 5987 udf_set_regid(impl_id, IMPL_NAME); 5988 udf_add_impl_regid(ump, impl_id); 5989 5990 /* update our crc! on RMW we are not allowed to change a thing */ 5991 udf_validate_tag_and_crc_sums(dscrptr); 5992 5993 /* if called when mounted readonly, never write back */ 5994 if (vp->v_mount->mnt_flag & MNT_RDONLY) 5995 return 0; 5996 5997 /* check if the node is dirty 'enough'*/ 5998 if (updflags & UPDATE_CLOSE) { 5999 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6000 } else { 6001 flags = udf_node->i_flags & IN_MODIFIED; 6002 } 6003 if (flags == 0) 6004 return 0; 6005 6006 /* determine if we need to write sync or async */ 6007 waitfor = 0; 6008 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6009 /* sync mounted */ 6010 waitfor = updflags & UPDATE_WAIT; 6011 if (updflags & UPDATE_DIROP) 6012 waitfor |= UPDATE_WAIT; 6013 } 6014 if (waitfor) 6015 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6016 6017 return 0; 6018 } 6019 6020 6021 /* --------------------------------------------------------------------- */ 6022 6023 6024 /* 6025 * Read one fid and process it into a dirent and advance to the next (*fid) 6026 * has to be allocated a logical block in size, (*dirent) struct dirent length 6027 */ 6028 6029 int 6030 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6031 struct fileid_desc *fid, struct dirent *dirent) 6032 { 6033 struct udf_node *dir_node = VTOI(vp); 6034 struct udf_mount *ump = dir_node->ump; 6035 struct file_entry *fe = dir_node->fe; 6036 struct extfile_entry *efe = dir_node->efe; 6037 uint32_t fid_size, lb_size; 6038 uint64_t file_size; 6039 char *fid_name; 6040 int enough, error; 6041 6042 assert(fid); 6043 assert(dirent); 6044 assert(dir_node); 6045 assert(offset); 6046 assert(*offset != 1); 6047 6048 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6049 /* check if we're past the end of the directory */ 6050 if (fe) { 6051 file_size = udf_rw64(fe->inf_len); 6052 } else { 6053 assert(dir_node->efe); 6054 file_size = udf_rw64(efe->inf_len); 6055 } 6056 if (*offset >= file_size) 6057 return EINVAL; 6058 6059 /* get maximum length of FID descriptor */ 6060 lb_size = udf_rw32(ump->logical_vol->lb_size); 6061 6062 /* initialise return values */ 6063 fid_size = 0; 6064 memset(dirent, 0, sizeof(struct dirent)); 6065 memset(fid, 0, lb_size); 6066 6067 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6068 if (!enough) { 6069 /* short dir ... */ 6070 return EIO; 6071 } 6072 6073 error = vn_rdwr(UIO_READ, vp, 6074 fid, MIN(file_size - (*offset), lb_size), *offset, 6075 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6076 NULL, NULL); 6077 if (error) 6078 return error; 6079 6080 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6081 /* 6082 * Check if we got a whole descriptor. 6083 * TODO Try to `resync' directory stream when something is very wrong. 6084 */ 6085 6086 /* check if our FID header is OK */ 6087 error = udf_check_tag(fid); 6088 if (error) { 6089 goto brokendir; 6090 } 6091 DPRINTF(FIDS, ("\ttag check ok\n")); 6092 6093 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6094 error = EIO; 6095 goto brokendir; 6096 } 6097 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6098 6099 /* check for length */ 6100 fid_size = udf_fidsize(fid); 6101 enough = (file_size - (*offset) >= fid_size); 6102 if (!enough) { 6103 error = EIO; 6104 goto brokendir; 6105 } 6106 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6107 6108 /* check FID contents */ 6109 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6110 brokendir: 6111 if (error) { 6112 /* note that is sometimes a bit quick to report */ 6113 printf("BROKEN DIRECTORY ENTRY\n"); 6114 /* RESYNC? */ 6115 /* TODO: use udf_resync_fid_stream */ 6116 return EIO; 6117 } 6118 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6119 6120 /* we got a whole and valid descriptor! */ 6121 DPRINTF(FIDS, ("\tinterpret FID\n")); 6122 6123 /* create resulting dirent structure */ 6124 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6125 udf_to_unix_name(dirent->d_name, MAXNAMLEN, 6126 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6127 6128 /* '..' has no name, so provide one */ 6129 if (fid->file_char & UDF_FILE_CHAR_PAR) 6130 strcpy(dirent->d_name, ".."); 6131 6132 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */ 6133 dirent->d_namlen = strlen(dirent->d_name); 6134 dirent->d_reclen = _DIRENT_SIZE(dirent); 6135 6136 /* 6137 * Note that its not worth trying to go for the filetypes now... its 6138 * too expensive too 6139 */ 6140 dirent->d_type = DT_UNKNOWN; 6141 6142 /* initial guess for filetype we can make */ 6143 if (fid->file_char & UDF_FILE_CHAR_DIR) 6144 dirent->d_type = DT_DIR; 6145 6146 /* advance */ 6147 *offset += fid_size; 6148 6149 return error; 6150 } 6151 6152 6153 /* --------------------------------------------------------------------- */ 6154 6155 static void 6156 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor, 6157 int pass, int *ndirty) 6158 { 6159 struct udf_node *udf_node, *n_udf_node; 6160 struct vnode *vp; 6161 int vdirty, error; 6162 int on_type, on_flags, on_vnode; 6163 6164 derailed: 6165 KASSERT(mutex_owned(&mntvnode_lock)); 6166 6167 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6168 udf_node = LIST_FIRST(&ump->sorted_udf_nodes); 6169 for (;udf_node; udf_node = n_udf_node) { 6170 DPRINTF(SYNC, (".")); 6171 6172 udf_node->i_flags &= ~IN_SYNCED; 6173 vp = udf_node->vnode; 6174 6175 mutex_enter(&vp->v_interlock); 6176 n_udf_node = LIST_NEXT(udf_node, sortchain); 6177 if (n_udf_node) 6178 n_udf_node->i_flags |= IN_SYNCED; 6179 6180 /* system nodes are not synced this way */ 6181 if (vp->v_vflag & VV_SYSTEM) { 6182 mutex_exit(&vp->v_interlock); 6183 continue; 6184 } 6185 6186 /* check if its dirty enough to even try */ 6187 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON); 6188 on_flags = ((udf_node->i_flags & 6189 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0); 6190 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd) 6191 && UVM_OBJ_IS_CLEAN(&vp->v_uobj); 6192 if (on_type || (on_flags || on_vnode)) { /* XXX */ 6193 /* not dirty (enough?) */ 6194 mutex_exit(&vp->v_interlock); 6195 continue; 6196 } 6197 6198 mutex_exit(&mntvnode_lock); 6199 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK); 6200 if (error) { 6201 mutex_enter(&mntvnode_lock); 6202 if (error == ENOENT) 6203 goto derailed; 6204 *ndirty += 1; 6205 continue; 6206 } 6207 6208 switch (pass) { 6209 case 1: 6210 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6211 break; 6212 case 2: 6213 vdirty = vp->v_numoutput; 6214 if (vp->v_tag == VT_UDF) 6215 vdirty += udf_node->outstanding_bufs + 6216 udf_node->outstanding_nodedscr; 6217 if (vdirty == 0) 6218 VOP_FSYNC(vp, cred, 0,0,0); 6219 *ndirty += vdirty; 6220 break; 6221 case 3: 6222 vdirty = vp->v_numoutput; 6223 if (vp->v_tag == VT_UDF) 6224 vdirty += udf_node->outstanding_bufs + 6225 udf_node->outstanding_nodedscr; 6226 *ndirty += vdirty; 6227 break; 6228 } 6229 6230 vput(vp); 6231 mutex_enter(&mntvnode_lock); 6232 } 6233 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6234 } 6235 6236 6237 void 6238 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6239 { 6240 int dummy, ndirty; 6241 6242 mutex_enter(&mntvnode_lock); 6243 recount: 6244 dummy = 0; 6245 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6246 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6247 udf_sync_pass(ump, cred, waitfor, 1, &dummy); 6248 6249 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6250 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6251 udf_sync_pass(ump, cred, waitfor, 2, &dummy); 6252 6253 if (waitfor == MNT_WAIT) { 6254 ndirty = ump->devvp->v_numoutput; 6255 DPRINTF(NODE, ("counting pending blocks: on devvp %d\n", 6256 ndirty)); 6257 udf_sync_pass(ump, cred, waitfor, 3, &ndirty); 6258 DPRINTF(NODE, ("counted num dirty pending blocks %d\n", 6259 ndirty)); 6260 6261 if (ndirty) { 6262 /* 1/4 second wait */ 6263 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 6264 hz/4); 6265 goto recount; 6266 } 6267 } 6268 6269 mutex_exit(&mntvnode_lock); 6270 } 6271 6272 /* --------------------------------------------------------------------- */ 6273 6274 /* 6275 * Read and write file extent in/from the buffer. 6276 * 6277 * The splitup of the extent into seperate request-buffers is to minimise 6278 * copying around as much as possible. 6279 * 6280 * block based file reading and writing 6281 */ 6282 6283 static int 6284 udf_read_internal(struct udf_node *node, uint8_t *blob) 6285 { 6286 struct udf_mount *ump; 6287 struct file_entry *fe = node->fe; 6288 struct extfile_entry *efe = node->efe; 6289 uint64_t inflen; 6290 uint32_t sector_size; 6291 uint8_t *pos; 6292 int icbflags, addr_type; 6293 6294 /* get extent and do some paranoia checks */ 6295 ump = node->ump; 6296 sector_size = ump->discinfo.sector_size; 6297 6298 if (fe) { 6299 inflen = udf_rw64(fe->inf_len); 6300 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6301 icbflags = udf_rw16(fe->icbtag.flags); 6302 } else { 6303 assert(node->efe); 6304 inflen = udf_rw64(efe->inf_len); 6305 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6306 icbflags = udf_rw16(efe->icbtag.flags); 6307 } 6308 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6309 6310 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6311 assert(inflen < sector_size); 6312 6313 /* copy out info */ 6314 memset(blob, 0, sector_size); 6315 memcpy(blob, pos, inflen); 6316 6317 return 0; 6318 } 6319 6320 6321 static int 6322 udf_write_internal(struct udf_node *node, uint8_t *blob) 6323 { 6324 struct udf_mount *ump; 6325 struct file_entry *fe = node->fe; 6326 struct extfile_entry *efe = node->efe; 6327 uint64_t inflen; 6328 uint32_t sector_size; 6329 uint8_t *pos; 6330 int icbflags, addr_type; 6331 6332 /* get extent and do some paranoia checks */ 6333 ump = node->ump; 6334 sector_size = ump->discinfo.sector_size; 6335 6336 if (fe) { 6337 inflen = udf_rw64(fe->inf_len); 6338 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6339 icbflags = udf_rw16(fe->icbtag.flags); 6340 } else { 6341 assert(node->efe); 6342 inflen = udf_rw64(efe->inf_len); 6343 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6344 icbflags = udf_rw16(efe->icbtag.flags); 6345 } 6346 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6347 6348 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6349 assert(inflen < sector_size); 6350 6351 /* copy in blob */ 6352 /* memset(pos, 0, inflen); */ 6353 memcpy(pos, blob, inflen); 6354 6355 return 0; 6356 } 6357 6358 6359 void 6360 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6361 { 6362 struct buf *nestbuf; 6363 struct udf_mount *ump = udf_node->ump; 6364 uint64_t *mapping; 6365 uint64_t run_start; 6366 uint32_t sector_size; 6367 uint32_t buf_offset, sector, rbuflen, rblk; 6368 uint32_t from, lblkno; 6369 uint32_t sectors; 6370 uint8_t *buf_pos; 6371 int error, run_length, isdir, what; 6372 6373 sector_size = udf_node->ump->discinfo.sector_size; 6374 6375 from = buf->b_blkno; 6376 sectors = buf->b_bcount / sector_size; 6377 6378 isdir = (udf_node->vnode->v_type == VDIR); 6379 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 6380 6381 /* assure we have enough translation slots */ 6382 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6383 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6384 6385 if (sectors > UDF_MAX_MAPPINGS) { 6386 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6387 buf->b_error = EIO; 6388 biodone(buf); 6389 return; 6390 } 6391 6392 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6393 6394 error = 0; 6395 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6396 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6397 if (error) { 6398 buf->b_error = error; 6399 biodone(buf); 6400 goto out; 6401 } 6402 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6403 6404 /* pre-check if its an internal */ 6405 if (*mapping == UDF_TRANS_INTERN) { 6406 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6407 if (error) 6408 buf->b_error = error; 6409 biodone(buf); 6410 goto out; 6411 } 6412 DPRINTF(READ, ("\tnot intern\n")); 6413 6414 #ifdef DEBUG 6415 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6416 printf("Returned translation table:\n"); 6417 for (sector = 0; sector < sectors; sector++) { 6418 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6419 } 6420 } 6421 #endif 6422 6423 /* request read-in of data from disc sheduler */ 6424 buf->b_resid = buf->b_bcount; 6425 for (sector = 0; sector < sectors; sector++) { 6426 buf_offset = sector * sector_size; 6427 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6428 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6429 6430 /* check if its zero or unmapped to stop reading */ 6431 switch (mapping[sector]) { 6432 case UDF_TRANS_UNMAPPED: 6433 case UDF_TRANS_ZERO: 6434 /* copy zero sector TODO runlength like below */ 6435 memset(buf_pos, 0, sector_size); 6436 DPRINTF(READ, ("\treturning zero sector\n")); 6437 nestiobuf_done(buf, sector_size, 0); 6438 break; 6439 default : 6440 DPRINTF(READ, ("\tread sector " 6441 "%"PRIu64"\n", mapping[sector])); 6442 6443 lblkno = from + sector; 6444 run_start = mapping[sector]; 6445 run_length = 1; 6446 while (sector < sectors-1) { 6447 if (mapping[sector+1] != mapping[sector]+1) 6448 break; 6449 run_length++; 6450 sector++; 6451 } 6452 6453 /* 6454 * nest an iobuf and mark it for async reading. Since 6455 * we're using nested buffers, they can't be cached by 6456 * design. 6457 */ 6458 rbuflen = run_length * sector_size; 6459 rblk = run_start * (sector_size/DEV_BSIZE); 6460 6461 nestbuf = getiobuf(NULL, true); 6462 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6463 /* nestbuf is B_ASYNC */ 6464 6465 /* identify this nestbuf */ 6466 nestbuf->b_lblkno = lblkno; 6467 assert(nestbuf->b_vp == udf_node->vnode); 6468 6469 /* CD shedules on raw blkno */ 6470 nestbuf->b_blkno = rblk; 6471 nestbuf->b_proc = NULL; 6472 nestbuf->b_rawblkno = rblk; 6473 nestbuf->b_udf_c_type = what; 6474 6475 udf_discstrat_queuebuf(ump, nestbuf); 6476 } 6477 } 6478 out: 6479 /* if we're synchronously reading, wait for the completion */ 6480 if ((buf->b_flags & B_ASYNC) == 0) 6481 biowait(buf); 6482 6483 DPRINTF(READ, ("\tend of read_filebuf\n")); 6484 free(mapping, M_TEMP); 6485 return; 6486 } 6487 6488 6489 void 6490 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6491 { 6492 struct buf *nestbuf; 6493 struct udf_mount *ump = udf_node->ump; 6494 uint64_t *mapping; 6495 uint64_t run_start; 6496 uint32_t lb_size; 6497 uint32_t buf_offset, lb_num, rbuflen, rblk; 6498 uint32_t from, lblkno; 6499 uint32_t num_lb; 6500 uint8_t *buf_pos; 6501 int error, run_length, isdir, what, s; 6502 6503 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6504 6505 from = buf->b_blkno; 6506 num_lb = buf->b_bcount / lb_size; 6507 6508 isdir = (udf_node->vnode->v_type == VDIR); 6509 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 6510 6511 if (udf_node == ump->metadatabitmap_node) 6512 what = UDF_C_METADATA_SBM; 6513 6514 /* assure we have enough translation slots */ 6515 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6516 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6517 6518 if (num_lb > UDF_MAX_MAPPINGS) { 6519 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6520 buf->b_error = EIO; 6521 biodone(buf); 6522 return; 6523 } 6524 6525 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6526 6527 error = 0; 6528 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6529 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6530 if (error) { 6531 buf->b_error = error; 6532 biodone(buf); 6533 goto out; 6534 } 6535 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6536 6537 /* if its internally mapped, we can write it in the descriptor itself */ 6538 if (*mapping == UDF_TRANS_INTERN) { 6539 /* TODO paranoia check if we ARE going to have enough space */ 6540 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6541 if (error) 6542 buf->b_error = error; 6543 biodone(buf); 6544 goto out; 6545 } 6546 DPRINTF(WRITE, ("\tnot intern\n")); 6547 6548 /* request write out of data to disc sheduler */ 6549 buf->b_resid = buf->b_bcount; 6550 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6551 buf_offset = lb_num * lb_size; 6552 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6553 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6554 6555 /* 6556 * Mappings are not that important here. Just before we write 6557 * the lb_num we late-allocate them when needed and update the 6558 * mapping in the udf_node. 6559 */ 6560 6561 /* XXX why not ignore the mapping altogether ? */ 6562 /* TODO estimate here how much will be late-allocated */ 6563 DPRINTF(WRITE, ("\twrite lb_num " 6564 "%"PRIu64, mapping[lb_num])); 6565 6566 lblkno = from + lb_num; 6567 run_start = mapping[lb_num]; 6568 run_length = 1; 6569 while (lb_num < num_lb-1) { 6570 if (mapping[lb_num+1] != mapping[lb_num]+1) 6571 if (mapping[lb_num+1] != mapping[lb_num]) 6572 break; 6573 run_length++; 6574 lb_num++; 6575 } 6576 DPRINTF(WRITE, ("+ %d\n", run_length)); 6577 6578 /* nest an iobuf on the master buffer for the extent */ 6579 rbuflen = run_length * lb_size; 6580 rblk = run_start * (lb_size/DEV_BSIZE); 6581 6582 #if 0 6583 /* if its zero or unmapped, our blknr gets -1 for unmapped */ 6584 switch (mapping[lb_num]) { 6585 case UDF_TRANS_UNMAPPED: 6586 case UDF_TRANS_ZERO: 6587 rblk = -1; 6588 break; 6589 default: 6590 rblk = run_start * (lb_size/DEV_BSIZE); 6591 break; 6592 } 6593 #endif 6594 6595 nestbuf = getiobuf(NULL, true); 6596 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6597 /* nestbuf is B_ASYNC */ 6598 6599 /* identify this nestbuf */ 6600 nestbuf->b_lblkno = lblkno; 6601 KASSERT(nestbuf->b_vp == udf_node->vnode); 6602 6603 /* CD shedules on raw blkno */ 6604 nestbuf->b_blkno = rblk; 6605 nestbuf->b_proc = NULL; 6606 nestbuf->b_rawblkno = rblk; 6607 nestbuf->b_udf_c_type = what; 6608 6609 /* increment our outstanding bufs counter */ 6610 s = splbio(); 6611 udf_node->outstanding_bufs++; 6612 splx(s); 6613 6614 udf_discstrat_queuebuf(ump, nestbuf); 6615 } 6616 out: 6617 /* if we're synchronously writing, wait for the completion */ 6618 if ((buf->b_flags & B_ASYNC) == 0) 6619 biowait(buf); 6620 6621 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6622 free(mapping, M_TEMP); 6623 return; 6624 } 6625 6626 /* --------------------------------------------------------------------- */ 6627 6628 6629