xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision b78992537496bc71ee3d761f9fe0be0fc0a9a001)
1 /* $NetBSD: udf_subr.c,v 1.72 2008/08/29 15:04:18 reinoud Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.72 2008/08/29 15:04:18 reinoud Exp $");
33 #endif /* not lint */
34 
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_quota.h"
38 #include "opt_compat_netbsd.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysctl.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/vnode.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <sys/mount.h>
50 #include <sys/buf.h>
51 #include <sys/file.h>
52 #include <sys/device.h>
53 #include <sys/disklabel.h>
54 #include <sys/ioctl.h>
55 #include <sys/malloc.h>
56 #include <sys/dirent.h>
57 #include <sys/stat.h>
58 #include <sys/conf.h>
59 #include <sys/kauth.h>
60 #include <fs/unicode.h>
61 #include <dev/clock_subr.h>
62 
63 #include <fs/udf/ecma167-udf.h>
64 #include <fs/udf/udf_mount.h>
65 
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69 
70 
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72 
73 #define UDF_SET_SYSTEMFILE(vp) \
74 	/* XXXAD Is the vnode locked? */	\
75 	(vp)->v_vflag |= VV_SYSTEM;		\
76 	vref(vp);			\
77 	vput(vp);			\
78 
79 extern int syncer_maxdelay;     /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81 
82 /* --------------------------------------------------------------------- */
83 
84 //#ifdef DEBUG
85 #if 1
86 
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 	int i, j;
92 
93 	printf("blob = %p\n", blob);
94 	printf("dump of %d bytes\n", dlen);
95 
96 	for (i = 0; i < dlen; i+ = 16) {
97 		printf("%04x ", i);
98 		for (j = 0; j < 16; j++) {
99 			if (i+j < dlen) {
100 				printf("%02x ", blob[i+j]);
101 			} else {
102 				printf("   ");
103 			}
104 		}
105 		for (j = 0; j < 16; j++) {
106 			if (i+j < dlen) {
107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
108 					printf("%c", blob[i+j]);
109 				} else {
110 					printf(".");
111 				}
112 			}
113 		}
114 		printf("\n");
115 	}
116 	printf("\n");
117 	Debugger();
118 }
119 #endif
120 
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 	char   bits[128];
125 	struct mmc_discinfo *di = &ump->discinfo;
126 
127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 		return;
129 
130 	printf("Device/media info  :\n");
131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
132 	printf("\tderived class      %d\n", di->mmc_class);
133 	printf("\tsector size        %d\n", di->sector_size);
134 	printf("\tdisc state         %d\n", di->disc_state);
135 	printf("\tlast ses state     %d\n", di->last_session_state);
136 	printf("\tbg format state    %d\n", di->bg_format_state);
137 	printf("\tfrst track         %d\n", di->first_track);
138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
141 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
142 		sizeof(bits));
143 	printf("\tdisc flags         %s\n", bits);
144 	printf("\tdisc id            %x\n", di->disc_id);
145 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
146 
147 	printf("\tnum sessions       %d\n", di->num_sessions);
148 	printf("\tnum tracks         %d\n", di->num_tracks);
149 
150 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
151 	printf("\tcapabilities cur   %s\n", bits);
152 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
153 	printf("\tcapabilities cap   %s\n", bits);
154 }
155 #else
156 #define udf_dump_discinfo(a);
157 #endif
158 
159 
160 /* --------------------------------------------------------------------- */
161 
162 /* not called often */
163 int
164 udf_update_discinfo(struct udf_mount *ump)
165 {
166 	struct vnode *devvp = ump->devvp;
167 	struct partinfo dpart;
168 	struct mmc_discinfo *di;
169 	int error;
170 
171 	DPRINTF(VOLUMES, ("read/update disc info\n"));
172 	di = &ump->discinfo;
173 	memset(di, 0, sizeof(struct mmc_discinfo));
174 
175 	/* check if we're on a MMC capable device, i.e. CD/DVD */
176 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
177 	if (error == 0) {
178 		udf_dump_discinfo(ump);
179 		return 0;
180 	}
181 
182 	/* disc partition support */
183 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
184 	if (error)
185 		return ENODEV;
186 
187 	/* set up a disc info profile for partitions */
188 	di->mmc_profile		= 0x01;	/* disc type */
189 	di->mmc_class		= MMC_CLASS_DISC;
190 	di->disc_state		= MMC_STATE_CLOSED;
191 	di->last_session_state	= MMC_STATE_CLOSED;
192 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
193 	di->link_block_penalty	= 0;
194 
195 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
196 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
197 	di->mmc_cap    = di->mmc_cur;
198 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
199 
200 	/* TODO problem with last_possible_lba on resizable VND; request */
201 	di->last_possible_lba = dpart.part->p_size;
202 	di->sector_size       = dpart.disklab->d_secsize;
203 
204 	di->num_sessions = 1;
205 	di->num_tracks   = 1;
206 
207 	di->first_track  = 1;
208 	di->first_track_last_session = di->last_track_last_session = 1;
209 
210 	udf_dump_discinfo(ump);
211 	return 0;
212 }
213 
214 
215 int
216 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
217 {
218 	struct vnode *devvp = ump->devvp;
219 	struct mmc_discinfo *di = &ump->discinfo;
220 	int error, class;
221 
222 	DPRINTF(VOLUMES, ("read track info\n"));
223 
224 	class = di->mmc_class;
225 	if (class != MMC_CLASS_DISC) {
226 		/* tracknr specified in struct ti */
227 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
228 		return error;
229 	}
230 
231 	/* disc partition support */
232 	if (ti->tracknr != 1)
233 		return EIO;
234 
235 	/* create fake ti (TODO check for resized vnds) */
236 	ti->sessionnr  = 1;
237 
238 	ti->track_mode = 0;	/* XXX */
239 	ti->data_mode  = 0;	/* XXX */
240 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
241 
242 	ti->track_start    = 0;
243 	ti->packet_size    = 1;
244 
245 	/* TODO support for resizable vnd */
246 	ti->track_size    = di->last_possible_lba;
247 	ti->next_writable = di->last_possible_lba;
248 	ti->last_recorded = ti->next_writable;
249 	ti->free_blocks   = 0;
250 
251 	return 0;
252 }
253 
254 
255 int
256 udf_setup_writeparams(struct udf_mount *ump)
257 {
258 	struct mmc_writeparams mmc_writeparams;
259 	int error;
260 
261 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
262 		return 0;
263 
264 	/*
265 	 * only CD burning normally needs setting up, but other disc types
266 	 * might need other settings to be made. The MMC framework will set up
267 	 * the nessisary recording parameters according to the disc
268 	 * characteristics read in. Modifications can be made in the discinfo
269 	 * structure passed to change the nature of the disc.
270 	 */
271 
272 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
273 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
274 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
275 
276 	/*
277 	 * UDF dictates first track to determine track mode for the whole
278 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
279 	 * To prevent problems with a `reserved' track in front we start with
280 	 * the 2nd track and if that is not valid, go for the 1st.
281 	 */
282 	mmc_writeparams.tracknr = 2;
283 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
284 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
285 
286 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
287 			FKIOCTL, NOCRED);
288 	if (error) {
289 		mmc_writeparams.tracknr = 1;
290 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
291 				&mmc_writeparams, FKIOCTL, NOCRED);
292 	}
293 	return error;
294 }
295 
296 
297 int
298 udf_synchronise_caches(struct udf_mount *ump)
299 {
300 	struct mmc_op mmc_op;
301 
302 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
303 
304 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
305 		return 0;
306 
307 	/* discs are done now */
308 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
309 		return 0;
310 
311 	bzero(&mmc_op, sizeof(struct mmc_op));
312 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
313 
314 	/* ignore return code */
315 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
316 
317 	return 0;
318 }
319 
320 /* --------------------------------------------------------------------- */
321 
322 /* track/session searching for mounting */
323 int
324 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
325 		  int *first_tracknr, int *last_tracknr)
326 {
327 	struct mmc_trackinfo trackinfo;
328 	uint32_t tracknr, start_track, num_tracks;
329 	int error;
330 
331 	/* if negative, sessionnr is relative to last session */
332 	if (args->sessionnr < 0) {
333 		args->sessionnr += ump->discinfo.num_sessions;
334 	}
335 
336 	/* sanity */
337 	if (args->sessionnr < 0)
338 		args->sessionnr = 0;
339 	if (args->sessionnr > ump->discinfo.num_sessions)
340 		args->sessionnr = ump->discinfo.num_sessions;
341 
342 	/* search the tracks for this session, zero session nr indicates last */
343 	if (args->sessionnr == 0)
344 		args->sessionnr = ump->discinfo.num_sessions;
345 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
346 		args->sessionnr--;
347 
348 	/* sanity again */
349 	if (args->sessionnr < 0)
350 		args->sessionnr = 0;
351 
352 	/* search the first and last track of the specified session */
353 	num_tracks  = ump->discinfo.num_tracks;
354 	start_track = ump->discinfo.first_track;
355 
356 	/* search for first track of this session */
357 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
358 		/* get track info */
359 		trackinfo.tracknr = tracknr;
360 		error = udf_update_trackinfo(ump, &trackinfo);
361 		if (error)
362 			return error;
363 
364 		if (trackinfo.sessionnr == args->sessionnr)
365 			break;
366 	}
367 	*first_tracknr = tracknr;
368 
369 	/* search for last track of this session */
370 	for (;tracknr <= num_tracks; tracknr++) {
371 		/* get track info */
372 		trackinfo.tracknr = tracknr;
373 		error = udf_update_trackinfo(ump, &trackinfo);
374 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
375 			tracknr--;
376 			break;
377 		}
378 	}
379 	if (tracknr > num_tracks)
380 		tracknr--;
381 
382 	*last_tracknr = tracknr;
383 
384 	if (*last_tracknr < *first_tracknr) {
385 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
386 			"drive returned garbage\n");
387 		return EINVAL;
388 	}
389 
390 	assert(*last_tracknr >= *first_tracknr);
391 	return 0;
392 }
393 
394 
395 /*
396  * NOTE: this is the only routine in this file that directly peeks into the
397  * metadata file but since its at a larval state of the mount it can't hurt.
398  *
399  * XXX candidate for udf_allocation.c
400  * XXX clean me up!, change to new node reading code.
401  */
402 
403 static void
404 udf_check_track_metadata_overlap(struct udf_mount *ump,
405 	struct mmc_trackinfo *trackinfo)
406 {
407 	struct part_desc *part;
408 	struct file_entry      *fe;
409 	struct extfile_entry   *efe;
410 	struct short_ad        *s_ad;
411 	struct long_ad         *l_ad;
412 	uint32_t track_start, track_end;
413 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
414 	uint32_t sector_size, len, alloclen, plb_num;
415 	uint8_t *pos;
416 	int addr_type, icblen, icbflags, flags;
417 
418 	/* get our track extents */
419 	track_start = trackinfo->track_start;
420 	track_end   = track_start + trackinfo->track_size;
421 
422 	/* get our base partition extent */
423 	KASSERT(ump->node_part == ump->fids_part);
424 	part = ump->partitions[ump->node_part];
425 	phys_part_start = udf_rw32(part->start_loc);
426 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
427 
428 	/* no use if its outside the physical partition */
429 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
430 		return;
431 
432 	/*
433 	 * now follow all extents in the fe/efe to see if they refer to this
434 	 * track
435 	 */
436 
437 	sector_size = ump->discinfo.sector_size;
438 
439 	/* XXX should we claim exclusive access to the metafile ? */
440 	/* TODO: move to new node read code */
441 	fe  = ump->metadata_node->fe;
442 	efe = ump->metadata_node->efe;
443 	if (fe) {
444 		alloclen = udf_rw32(fe->l_ad);
445 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
446 		icbflags = udf_rw16(fe->icbtag.flags);
447 	} else {
448 		assert(efe);
449 		alloclen = udf_rw32(efe->l_ad);
450 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
451 		icbflags = udf_rw16(efe->icbtag.flags);
452 	}
453 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
454 
455 	while (alloclen) {
456 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
457 			icblen = sizeof(struct short_ad);
458 			s_ad   = (struct short_ad *) pos;
459 			len        = udf_rw32(s_ad->len);
460 			plb_num    = udf_rw32(s_ad->lb_num);
461 		} else {
462 			/* should not be present, but why not */
463 			icblen = sizeof(struct long_ad);
464 			l_ad   = (struct long_ad *) pos;
465 			len        = udf_rw32(l_ad->len);
466 			plb_num    = udf_rw32(l_ad->loc.lb_num);
467 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
468 		}
469 		/* process extent */
470 		flags   = UDF_EXT_FLAGS(len);
471 		len     = UDF_EXT_LEN(len);
472 
473 		part_start = phys_part_start + plb_num;
474 		part_end   = part_start + (len / sector_size);
475 
476 		if ((part_start >= track_start) && (part_end <= track_end)) {
477 			/* extent is enclosed within this track */
478 			ump->metadata_track = *trackinfo;
479 			return;
480 		}
481 
482 		pos        += icblen;
483 		alloclen   -= icblen;
484 	}
485 }
486 
487 
488 int
489 udf_search_writing_tracks(struct udf_mount *ump)
490 {
491 	struct mmc_trackinfo trackinfo;
492 	struct part_desc *part;
493 	uint32_t tracknr, start_track, num_tracks;
494 	uint32_t track_start, track_end, part_start, part_end;
495 	int node_alloc, error;
496 
497 	/*
498 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
499 	 * the last session might be open but in the UDF device model at most
500 	 * three tracks can be open: a reserved track for delayed ISO VRS
501 	 * writing, a data track and a metadata track. We search here for the
502 	 * data track and the metadata track. Note that the reserved track is
503 	 * troublesome but can be detected by its small size of < 512 sectors.
504 	 */
505 
506 	num_tracks  = ump->discinfo.num_tracks;
507 	start_track = ump->discinfo.first_track;
508 
509 	/* fetch info on first and possibly only track */
510 	trackinfo.tracknr = start_track;
511 	error = udf_update_trackinfo(ump, &trackinfo);
512 	if (error)
513 		return error;
514 
515 	/* copy results to our mount point */
516 	ump->data_track     = trackinfo;
517 	ump->metadata_track = trackinfo;
518 
519 	/* if not sequential, we're done */
520 	if (num_tracks == 1)
521 		return 0;
522 
523 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
524 		/* get track info */
525 		trackinfo.tracknr = tracknr;
526 		error = udf_update_trackinfo(ump, &trackinfo);
527 		if (error)
528 			return error;
529 
530 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
531 			continue;
532 
533 		track_start = trackinfo.track_start;
534 		track_end   = track_start + trackinfo.track_size;
535 
536 		/* check for overlap on data partition */
537 		part = ump->partitions[ump->data_part];
538 		part_start = udf_rw32(part->start_loc);
539 		part_end   = part_start + udf_rw32(part->part_len);
540 		if ((part_start < track_end) && (part_end > track_start)) {
541 			ump->data_track = trackinfo;
542 			/* TODO check if UDF partition data_part is writable */
543 		}
544 
545 		/* check for overlap on metadata partition */
546 		node_alloc = ump->vtop_alloc[ump->node_part];
547 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
548 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
549 			udf_check_track_metadata_overlap(ump, &trackinfo);
550 		} else {
551 			ump->metadata_track = trackinfo;
552 		}
553 	}
554 
555 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
556 		return EROFS;
557 
558 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
559 		return EROFS;
560 
561 	return 0;
562 }
563 
564 /* --------------------------------------------------------------------- */
565 
566 /*
567  * Check if the blob starts with a good UDF tag. Tags are protected by a
568  * checksum over the reader except one byte at position 4 that is the checksum
569  * itself.
570  */
571 
572 int
573 udf_check_tag(void *blob)
574 {
575 	struct desc_tag *tag = blob;
576 	uint8_t *pos, sum, cnt;
577 
578 	/* check TAG header checksum */
579 	pos = (uint8_t *) tag;
580 	sum = 0;
581 
582 	for(cnt = 0; cnt < 16; cnt++) {
583 		if (cnt != 4)
584 			sum += *pos;
585 		pos++;
586 	}
587 	if (sum != tag->cksum) {
588 		/* bad tag header checksum; this is not a valid tag */
589 		return EINVAL;
590 	}
591 
592 	return 0;
593 }
594 
595 
596 /*
597  * check tag payload will check descriptor CRC as specified.
598  * If the descriptor is too long, it will return EIO otherwise EINVAL.
599  */
600 
601 int
602 udf_check_tag_payload(void *blob, uint32_t max_length)
603 {
604 	struct desc_tag *tag = blob;
605 	uint16_t crc, crc_len;
606 
607 	crc_len = udf_rw16(tag->desc_crc_len);
608 
609 	/* check payload CRC if applicable */
610 	if (crc_len == 0)
611 		return 0;
612 
613 	if (crc_len > max_length)
614 		return EIO;
615 
616 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
617 	if (crc != udf_rw16(tag->desc_crc)) {
618 		/* bad payload CRC; this is a broken tag */
619 		return EINVAL;
620 	}
621 
622 	return 0;
623 }
624 
625 
626 void
627 udf_validate_tag_sum(void *blob)
628 {
629 	struct desc_tag *tag = blob;
630 	uint8_t *pos, sum, cnt;
631 
632 	/* calculate TAG header checksum */
633 	pos = (uint8_t *) tag;
634 	sum = 0;
635 
636 	for(cnt = 0; cnt < 16; cnt++) {
637 		if (cnt != 4) sum += *pos;
638 		pos++;
639 	}
640 	tag->cksum = sum;	/* 8 bit */
641 }
642 
643 
644 /* assumes sector number of descriptor to be saved already present */
645 void
646 udf_validate_tag_and_crc_sums(void *blob)
647 {
648 	struct desc_tag *tag  = blob;
649 	uint8_t         *btag = (uint8_t *) tag;
650 	uint16_t crc, crc_len;
651 
652 	crc_len = udf_rw16(tag->desc_crc_len);
653 
654 	/* check payload CRC if applicable */
655 	if (crc_len > 0) {
656 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
657 		tag->desc_crc = udf_rw16(crc);
658 	}
659 
660 	/* calculate TAG header checksum */
661 	udf_validate_tag_sum(blob);
662 }
663 
664 /* --------------------------------------------------------------------- */
665 
666 /*
667  * XXX note the different semantics from udfclient: for FIDs it still rounds
668  * up to sectors. Use udf_fidsize() for a correct length.
669  */
670 
671 int
672 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
673 {
674 	uint32_t size, tag_id, num_lb, elmsz;
675 
676 	tag_id = udf_rw16(dscr->tag.id);
677 
678 	switch (tag_id) {
679 	case TAGID_LOGVOL :
680 		size  = sizeof(struct logvol_desc) - 1;
681 		size += udf_rw32(dscr->lvd.mt_l);
682 		break;
683 	case TAGID_UNALLOC_SPACE :
684 		elmsz = sizeof(struct extent_ad);
685 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
686 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
687 		break;
688 	case TAGID_FID :
689 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
690 		size = (size + 3) & ~3;
691 		break;
692 	case TAGID_LOGVOL_INTEGRITY :
693 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
694 		size += udf_rw32(dscr->lvid.l_iu);
695 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
696 		break;
697 	case TAGID_SPACE_BITMAP :
698 		size  = sizeof(struct space_bitmap_desc) - 1;
699 		size += udf_rw32(dscr->sbd.num_bytes);
700 		break;
701 	case TAGID_SPARING_TABLE :
702 		elmsz = sizeof(struct spare_map_entry);
703 		size  = sizeof(struct udf_sparing_table) - elmsz;
704 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
705 		break;
706 	case TAGID_FENTRY :
707 		size  = sizeof(struct file_entry);
708 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
709 		break;
710 	case TAGID_EXTFENTRY :
711 		size  = sizeof(struct extfile_entry);
712 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
713 		break;
714 	case TAGID_FSD :
715 		size  = sizeof(struct fileset_desc);
716 		break;
717 	default :
718 		size = sizeof(union dscrptr);
719 		break;
720 	}
721 
722 	if ((size == 0) || (lb_size == 0))
723 		return 0;
724 
725 	if (lb_size == 1)
726 		return size;
727 
728 	/* round up in sectors */
729 	num_lb = (size + lb_size -1) / lb_size;
730 	return num_lb * lb_size;
731 }
732 
733 
734 int
735 udf_fidsize(struct fileid_desc *fid)
736 {
737 	uint32_t size;
738 
739 	if (udf_rw16(fid->tag.id) != TAGID_FID)
740 		panic("got udf_fidsize on non FID\n");
741 
742 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
743 	size = (size + 3) & ~3;
744 
745 	return size;
746 }
747 
748 /* --------------------------------------------------------------------- */
749 
750 void
751 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
752 {
753 	int ret;
754 
755 	mutex_enter(&udf_node->node_mutex);
756 	/* wait until free */
757 	while (udf_node->i_flags & IN_LOCKED) {
758 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
759 		/* TODO check if we should return error; abort */
760 		if (ret == EWOULDBLOCK) {
761 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
762 				"wanted at %s:%d, previously locked at %s:%d\n",
763 				udf_node, fname, lineno,
764 				udf_node->lock_fname, udf_node->lock_lineno));
765 		}
766 	}
767 	/* grab */
768 	udf_node->i_flags |= IN_LOCKED | flag;
769 	/* debug */
770 	udf_node->lock_fname  = fname;
771 	udf_node->lock_lineno = lineno;
772 
773 	mutex_exit(&udf_node->node_mutex);
774 }
775 
776 
777 void
778 udf_unlock_node(struct udf_node *udf_node, int flag)
779 {
780 	mutex_enter(&udf_node->node_mutex);
781 	udf_node->i_flags &= ~(IN_LOCKED | flag);
782 	cv_broadcast(&udf_node->node_lock);
783 	mutex_exit(&udf_node->node_mutex);
784 }
785 
786 
787 /* --------------------------------------------------------------------- */
788 
789 static int
790 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
791 {
792 	int error;
793 
794 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
795 			(union dscrptr **) dst);
796 	if (!error) {
797 		/* blank terminator blocks are not allowed here */
798 		if (*dst == NULL)
799 			return ENOENT;
800 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
801 			error = ENOENT;
802 			free(*dst, M_UDFVOLD);
803 			*dst = NULL;
804 			DPRINTF(VOLUMES, ("Not an anchor\n"));
805 		}
806 	}
807 
808 	return error;
809 }
810 
811 
812 int
813 udf_read_anchors(struct udf_mount *ump)
814 {
815 	struct udf_args *args = &ump->mount_args;
816 	struct mmc_trackinfo first_track;
817 	struct mmc_trackinfo second_track;
818 	struct mmc_trackinfo last_track;
819 	struct anchor_vdp **anchorsp;
820 	uint32_t track_start;
821 	uint32_t track_end;
822 	uint32_t positions[4];
823 	int first_tracknr, last_tracknr;
824 	int error, anch, ok, first_anchor;
825 
826 	/* search the first and last track of the specified session */
827 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
828 	if (!error) {
829 		first_track.tracknr = first_tracknr;
830 		error = udf_update_trackinfo(ump, &first_track);
831 	}
832 	if (!error) {
833 		last_track.tracknr = last_tracknr;
834 		error = udf_update_trackinfo(ump, &last_track);
835 	}
836 	if ((!error) && (first_tracknr != last_tracknr)) {
837 		second_track.tracknr = first_tracknr+1;
838 		error = udf_update_trackinfo(ump, &second_track);
839 	}
840 	if (error) {
841 		printf("UDF mount: reading disc geometry failed\n");
842 		return 0;
843 	}
844 
845 	track_start = first_track.track_start;
846 
847 	/* `end' is not as straitforward as start. */
848 	track_end =   last_track.track_start
849 		    + last_track.track_size - last_track.free_blocks - 1;
850 
851 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
852 		/* end of track is not straitforward here */
853 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
854 			track_end = last_track.last_recorded;
855 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
856 			track_end = last_track.next_writable
857 				    - ump->discinfo.link_block_penalty;
858 	}
859 
860 	/* its no use reading a blank track */
861 	first_anchor = 0;
862 	if (first_track.flags & MMC_TRACKINFO_BLANK)
863 		first_anchor = 1;
864 
865 	/* get our packet size */
866 	ump->packet_size = first_track.packet_size;
867 	if (first_track.flags & MMC_TRACKINFO_BLANK)
868 		ump->packet_size = second_track.packet_size;
869 
870 	if (ump->packet_size <= 1) {
871 		/* take max, but not bigger than 64 */
872 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
873 		ump->packet_size = MIN(ump->packet_size, 64);
874 	}
875 	KASSERT(ump->packet_size >= 1);
876 
877 	/* read anchors start+256, start+512, end-256, end */
878 	positions[0] = track_start+256;
879 	positions[1] =   track_end-256;
880 	positions[2] =   track_end;
881 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
882 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
883 
884 	ok = 0;
885 	anchorsp = ump->anchors;
886 	for (anch = first_anchor; anch < 4; anch++) {
887 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
888 		    positions[anch]));
889 		error = udf_read_anchor(ump, positions[anch], anchorsp);
890 		if (!error) {
891 			anchorsp++;
892 			ok++;
893 		}
894 	}
895 
896 	/* VATs are only recorded on sequential media, but initialise */
897 	ump->first_possible_vat_location = track_start + 2;
898 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
899 
900 	return ok;
901 }
902 
903 /* --------------------------------------------------------------------- */
904 
905 /* we dont try to be smart; we just record the parts */
906 #define UDF_UPDATE_DSCR(name, dscr) \
907 	if (name) \
908 		free(name, M_UDFVOLD); \
909 	name = dscr;
910 
911 static int
912 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
913 {
914 	struct part_desc *part;
915 	uint16_t phys_part, raw_phys_part;
916 
917 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
918 	    udf_rw16(dscr->tag.id)));
919 	switch (udf_rw16(dscr->tag.id)) {
920 	case TAGID_PRI_VOL :		/* primary partition		*/
921 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
922 		break;
923 	case TAGID_LOGVOL :		/* logical volume		*/
924 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
925 		break;
926 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
927 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
928 		break;
929 	case TAGID_IMP_VOL :		/* implementation		*/
930 		/* XXX do we care about multiple impl. descr ? */
931 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
932 		break;
933 	case TAGID_PARTITION :		/* physical partition		*/
934 		/* not much use if its not allocated */
935 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
936 			free(dscr, M_UDFVOLD);
937 			break;
938 		}
939 
940 		/*
941 		 * BUGALERT: some rogue implementations use random physical
942 		 * partion numbers to break other implementations so lookup
943 		 * the number.
944 		 */
945 		raw_phys_part = udf_rw16(dscr->pd.part_num);
946 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
947 			part = ump->partitions[phys_part];
948 			if (part == NULL)
949 				break;
950 			if (udf_rw16(part->part_num) == raw_phys_part)
951 				break;
952 		}
953 		if (phys_part == UDF_PARTITIONS) {
954 			free(dscr, M_UDFVOLD);
955 			return EINVAL;
956 		}
957 
958 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
959 		break;
960 	case TAGID_VOL :		/* volume space extender; rare	*/
961 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
962 		free(dscr, M_UDFVOLD);
963 		break;
964 	default :
965 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
966 		    udf_rw16(dscr->tag.id)));
967 		free(dscr, M_UDFVOLD);
968 	}
969 
970 	return 0;
971 }
972 #undef UDF_UPDATE_DSCR
973 
974 /* --------------------------------------------------------------------- */
975 
976 static int
977 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
978 {
979 	union dscrptr *dscr;
980 	uint32_t sector_size, dscr_size;
981 	int error;
982 
983 	sector_size = ump->discinfo.sector_size;
984 
985 	/* loc is sectornr, len is in bytes */
986 	error = EIO;
987 	while (len) {
988 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
989 		if (error)
990 			return error;
991 
992 		/* blank block is a terminator */
993 		if (dscr == NULL)
994 			return 0;
995 
996 		/* TERM descriptor is a terminator */
997 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
998 			free(dscr, M_UDFVOLD);
999 			return 0;
1000 		}
1001 
1002 		/* process all others */
1003 		dscr_size = udf_tagsize(dscr, sector_size);
1004 		error = udf_process_vds_descriptor(ump, dscr);
1005 		if (error) {
1006 			free(dscr, M_UDFVOLD);
1007 			break;
1008 		}
1009 		assert((dscr_size % sector_size) == 0);
1010 
1011 		len -= dscr_size;
1012 		loc += dscr_size / sector_size;
1013 	}
1014 
1015 	return error;
1016 }
1017 
1018 
1019 int
1020 udf_read_vds_space(struct udf_mount *ump)
1021 {
1022 	/* struct udf_args *args = &ump->mount_args; */
1023 	struct anchor_vdp *anchor, *anchor2;
1024 	size_t size;
1025 	uint32_t main_loc, main_len;
1026 	uint32_t reserve_loc, reserve_len;
1027 	int error;
1028 
1029 	/*
1030 	 * read in VDS space provided by the anchors; if one descriptor read
1031 	 * fails, try the mirror sector.
1032 	 *
1033 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1034 	 * avoids the `compatibility features' of DirectCD that may confuse
1035 	 * stuff completely.
1036 	 */
1037 
1038 	anchor  = ump->anchors[0];
1039 	anchor2 = ump->anchors[1];
1040 	assert(anchor);
1041 
1042 	if (anchor2) {
1043 		size = sizeof(struct extent_ad);
1044 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1045 			anchor = anchor2;
1046 		/* reserve is specified to be a literal copy of main */
1047 	}
1048 
1049 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
1050 	main_len    = udf_rw32(anchor->main_vds_ex.len);
1051 
1052 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1053 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1054 
1055 	error = udf_read_vds_extent(ump, main_loc, main_len);
1056 	if (error) {
1057 		printf("UDF mount: reading in reserve VDS extent\n");
1058 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1059 	}
1060 
1061 	return error;
1062 }
1063 
1064 /* --------------------------------------------------------------------- */
1065 
1066 /*
1067  * Read in the logical volume integrity sequence pointed to by our logical
1068  * volume descriptor. Its a sequence that can be extended using fields in the
1069  * integrity descriptor itself. On sequential media only one is found, on
1070  * rewritable media a sequence of descriptors can be found as a form of
1071  * history keeping and on non sequential write-once media the chain is vital
1072  * to allow more and more descriptors to be written. The last descriptor
1073  * written in an extent needs to claim space for a new extent.
1074  */
1075 
1076 static int
1077 udf_retrieve_lvint(struct udf_mount *ump)
1078 {
1079 	union dscrptr *dscr;
1080 	struct logvol_int_desc *lvint;
1081 	struct udf_lvintq *trace;
1082 	uint32_t lb_size, lbnum, len;
1083 	int dscr_type, error, trace_len;
1084 
1085 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1086 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1087 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1088 
1089 	/* clean trace */
1090 	memset(ump->lvint_trace, 0,
1091 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1092 
1093 	trace_len    = 0;
1094 	trace        = ump->lvint_trace;
1095 	trace->start = lbnum;
1096 	trace->end   = lbnum + len/lb_size;
1097 	trace->pos   = 0;
1098 	trace->wpos  = 0;
1099 
1100 	lvint = NULL;
1101 	dscr  = NULL;
1102 	error = 0;
1103 	while (len) {
1104 		trace->pos  = lbnum - trace->start;
1105 		trace->wpos = trace->pos + 1;
1106 
1107 		/* read in our integrity descriptor */
1108 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1109 		if (!error) {
1110 			if (dscr == NULL) {
1111 				trace->wpos = trace->pos;
1112 				break;		/* empty terminates */
1113 			}
1114 			dscr_type = udf_rw16(dscr->tag.id);
1115 			if (dscr_type == TAGID_TERM) {
1116 				trace->wpos = trace->pos;
1117 				break;		/* clean terminator */
1118 			}
1119 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1120 				/* fatal... corrupt disc */
1121 				error = ENOENT;
1122 				break;
1123 			}
1124 			if (lvint)
1125 				free(lvint, M_UDFVOLD);
1126 			lvint = &dscr->lvid;
1127 			dscr = NULL;
1128 		} /* else hope for the best... maybe the next is ok */
1129 
1130 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1131 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1132 
1133 		/* proceed sequential */
1134 		lbnum += 1;
1135 		len    -= lb_size;
1136 
1137 		/* are we linking to a new piece? */
1138 		if (dscr && lvint->next_extent.len) {
1139 			len    = udf_rw32(lvint->next_extent.len);
1140 			lbnum = udf_rw32(lvint->next_extent.loc);
1141 
1142 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1143 				/* IEK! segment link full... */
1144 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
1145 				error = EINVAL;
1146 			} else {
1147 				trace++;
1148 				trace_len++;
1149 
1150 				trace->start = lbnum;
1151 				trace->end   = lbnum + len/lb_size;
1152 				trace->pos   = 0;
1153 				trace->wpos  = 0;
1154 			}
1155 		}
1156 	}
1157 
1158 	/* clean up the mess, esp. when there is an error */
1159 	if (dscr)
1160 		free(dscr, M_UDFVOLD);
1161 
1162 	if (error && lvint) {
1163 		free(lvint, M_UDFVOLD);
1164 		lvint = NULL;
1165 	}
1166 
1167 	if (!lvint)
1168 		error = ENOENT;
1169 
1170 	ump->logvol_integrity = lvint;
1171 	return error;
1172 }
1173 
1174 
1175 static int
1176 udf_loose_lvint_history(struct udf_mount *ump)
1177 {
1178 	union dscrptr **bufs, *dscr, *last_dscr;
1179 	struct udf_lvintq *trace, *in_trace, *out_trace;
1180 	struct logvol_int_desc *lvint;
1181 	uint32_t in_ext, in_pos, in_len;
1182 	uint32_t out_ext, out_wpos, out_len;
1183 	uint32_t lb_size, packet_size, lb_num;
1184 	uint32_t len, start;
1185 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
1186 	int losing;
1187 	int error;
1188 
1189 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1190 
1191 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1192 	packet_size = ump->data_track.packet_size;	/* XXX data track */
1193 
1194 	/* search smallest extent */
1195 	trace = &ump->lvint_trace[0];
1196 	minext = trace->end - trace->start;
1197 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1198 		trace = &ump->lvint_trace[ext];
1199 		extlen = trace->end - trace->start;
1200 		if (extlen == 0)
1201 			break;
1202 		minext = MIN(minext, extlen);
1203 	}
1204 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
1205 	/* no sense wiping all */
1206 	if (losing == minext)
1207 		losing--;
1208 
1209 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1210 
1211 	/* get buffer for pieces */
1212 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1213 
1214 	in_ext    = 0;
1215 	in_pos    = losing;
1216 	in_trace  = &ump->lvint_trace[in_ext];
1217 	in_len    = in_trace->end - in_trace->start;
1218 	out_ext   = 0;
1219 	out_wpos  = 0;
1220 	out_trace = &ump->lvint_trace[out_ext];
1221 	out_len   = out_trace->end - out_trace->start;
1222 
1223 	last_dscr = NULL;
1224 	for(;;) {
1225 		out_trace->pos  = out_wpos;
1226 		out_trace->wpos = out_trace->pos;
1227 		if (in_pos >= in_len) {
1228 			in_ext++;
1229 			in_pos = 0;
1230 			in_trace = &ump->lvint_trace[in_ext];
1231 			in_len   = in_trace->end - in_trace->start;
1232 		}
1233 		if (out_wpos >= out_len) {
1234 			out_ext++;
1235 			out_wpos = 0;
1236 			out_trace = &ump->lvint_trace[out_ext];
1237 			out_len   = out_trace->end - out_trace->start;
1238 		}
1239 		/* copy overlap contents */
1240 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1241 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1242 		if (cpy_len == 0)
1243 			break;
1244 
1245 		/* copy */
1246 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1247 		for (cnt = 0; cnt < cpy_len; cnt++) {
1248 			/* read in our integrity descriptor */
1249 			lb_num = in_trace->start + in_pos + cnt;
1250 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1251 				&dscr);
1252 			if (error) {
1253 				/* copy last one */
1254 				dscr = last_dscr;
1255 			}
1256 			bufs[cnt] = dscr;
1257 			if (!error) {
1258 				if (dscr == NULL) {
1259 					out_trace->pos  = out_wpos + cnt;
1260 					out_trace->wpos = out_trace->pos;
1261 					break;		/* empty terminates */
1262 				}
1263 				dscr_type = udf_rw16(dscr->tag.id);
1264 				if (dscr_type == TAGID_TERM) {
1265 					out_trace->pos  = out_wpos + cnt;
1266 					out_trace->wpos = out_trace->pos;
1267 					break;		/* clean terminator */
1268 				}
1269 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1270 					panic(  "UDF integrity sequence "
1271 						"corrupted while mounted!\n");
1272 				}
1273 				last_dscr = dscr;
1274 			}
1275 		}
1276 
1277 		/* patch up if first entry was on error */
1278 		if (bufs[0] == NULL) {
1279 			for (cnt = 0; cnt < cpy_len; cnt++)
1280 				if (bufs[cnt] != NULL)
1281 					break;
1282 			last_dscr = bufs[cnt];
1283 			for (; cnt > 0; cnt--) {
1284 				bufs[cnt] = last_dscr;
1285 			}
1286 		}
1287 
1288 		/* glue + write out */
1289 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1290 		for (cnt = 0; cnt < cpy_len; cnt++) {
1291 			lb_num = out_trace->start + out_wpos + cnt;
1292 			lvint  = &bufs[cnt]->lvid;
1293 
1294 			/* set continuation */
1295 			len = 0;
1296 			start = 0;
1297 			if (out_wpos + cnt == out_len) {
1298 				/* get continuation */
1299 				trace = &ump->lvint_trace[out_ext+1];
1300 				len   = trace->end - trace->start;
1301 				start = trace->start;
1302 			}
1303 			lvint->next_extent.len = udf_rw32(len);
1304 			lvint->next_extent.loc = udf_rw32(start);
1305 
1306 			lb_num = trace->start + trace->wpos;
1307 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1308 				bufs[cnt], lb_num, lb_num);
1309 			DPRINTFIF(VOLUMES, error,
1310 				("error writing lvint lb_num\n"));
1311 		}
1312 
1313 		/* free non repeating descriptors */
1314 		last_dscr = NULL;
1315 		for (cnt = 0; cnt < cpy_len; cnt++) {
1316 			if (bufs[cnt] != last_dscr)
1317 				free(bufs[cnt], M_UDFVOLD);
1318 			last_dscr = bufs[cnt];
1319 		}
1320 
1321 		/* advance */
1322 		in_pos   += cpy_len;
1323 		out_wpos += cpy_len;
1324 	}
1325 
1326 	free(bufs, M_TEMP);
1327 
1328 	return 0;
1329 }
1330 
1331 
1332 static int
1333 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1334 {
1335 	struct udf_lvintq *trace;
1336 	struct timeval  now_v;
1337 	struct timespec now_s;
1338 	uint32_t sector;
1339 	int logvol_integrity;
1340 	int space, error;
1341 
1342 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1343 
1344 again:
1345 	/* get free space in last chunk */
1346 	trace = ump->lvint_trace;
1347 	while (trace->wpos > (trace->end - trace->start)) {
1348 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1349 				  "wpos = %d\n", trace->start, trace->end,
1350 				  trace->pos, trace->wpos));
1351 		trace++;
1352 	}
1353 
1354 	/* check if there is space to append */
1355 	space = (trace->end - trace->start) - trace->wpos;
1356 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1357 			  "space = %d\n", trace->start, trace->end, trace->pos,
1358 			  trace->wpos, space));
1359 
1360 	/* get state */
1361 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1362 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1363 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1364 			/* don't allow this logvol to be opened */
1365 			/* TODO extent LVINT space if possible */
1366 			return EROFS;
1367 		}
1368 	}
1369 
1370 	if (space < 1) {
1371 		if (lvflag & UDF_APPENDONLY_LVINT)
1372 			return EROFS;
1373 		/* loose history by re-writing extents */
1374 		error = udf_loose_lvint_history(ump);
1375 		if (error)
1376 			return error;
1377 		goto again;
1378 	}
1379 
1380 	/* update our integrity descriptor to identify us and timestamp it */
1381 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1382 	microtime(&now_v);
1383 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1384 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1385 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1386 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1387 
1388 	/* writeout integrity descriptor */
1389 	sector = trace->start + trace->wpos;
1390 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1391 			(union dscrptr *) ump->logvol_integrity,
1392 			sector, sector);
1393 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1394 	if (error)
1395 		return error;
1396 
1397 	/* advance write position */
1398 	trace->wpos++; space--;
1399 	if (space >= 1) {
1400 		/* append terminator */
1401 		sector = trace->start + trace->wpos;
1402 		error = udf_write_terminator(ump, sector);
1403 
1404 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1405 	}
1406 
1407 	space = (trace->end - trace->start) - trace->wpos;
1408 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1409 		"space = %d\n", trace->start, trace->end, trace->pos,
1410 		trace->wpos, space));
1411 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1412 		"successfull\n"));
1413 
1414 	return error;
1415 }
1416 
1417 /* --------------------------------------------------------------------- */
1418 
1419 static int
1420 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1421 {
1422 	union dscrptr        *dscr;
1423 	/* struct udf_args *args = &ump->mount_args; */
1424 	struct part_desc     *partd;
1425 	struct part_hdr_desc *parthdr;
1426 	struct udf_bitmap    *bitmap;
1427 	uint32_t phys_part;
1428 	uint32_t lb_num, len;
1429 	int error, dscr_type;
1430 
1431 	/* unallocated space map */
1432 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1433 		partd = ump->partitions[phys_part];
1434 		if (partd == NULL)
1435 			continue;
1436 		parthdr = &partd->_impl_use.part_hdr;
1437 
1438 		lb_num  = udf_rw32(partd->start_loc);
1439 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1440 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
1441 		if (len == 0)
1442 			continue;
1443 
1444 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1445 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1446 		if (!error && dscr) {
1447 			/* analyse */
1448 			dscr_type = udf_rw16(dscr->tag.id);
1449 			if (dscr_type == TAGID_SPACE_BITMAP) {
1450 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1451 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1452 
1453 				/* fill in ump->part_unalloc_bits */
1454 				bitmap = &ump->part_unalloc_bits[phys_part];
1455 				bitmap->blob  = (uint8_t *) dscr;
1456 				bitmap->bits  = dscr->sbd.data;
1457 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1458 				bitmap->pages = NULL;	/* TODO */
1459 				bitmap->data_pos     = 0;
1460 				bitmap->metadata_pos = 0;
1461 			} else {
1462 				free(dscr, M_UDFVOLD);
1463 
1464 				printf( "UDF mount: error reading unallocated "
1465 					"space bitmap\n");
1466 				return EROFS;
1467 			}
1468 		} else {
1469 			/* blank not allowed */
1470 			printf("UDF mount: blank unallocated space bitmap\n");
1471 			return EROFS;
1472 		}
1473 	}
1474 
1475 	/* unallocated space table (not supported) */
1476 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1477 		partd = ump->partitions[phys_part];
1478 		if (partd == NULL)
1479 			continue;
1480 		parthdr = &partd->_impl_use.part_hdr;
1481 
1482 		len     = udf_rw32(parthdr->unalloc_space_table.len);
1483 		if (len) {
1484 			printf("UDF mount: space tables not supported\n");
1485 			return EROFS;
1486 		}
1487 	}
1488 
1489 	/* freed space map */
1490 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1491 		partd = ump->partitions[phys_part];
1492 		if (partd == NULL)
1493 			continue;
1494 		parthdr = &partd->_impl_use.part_hdr;
1495 
1496 		/* freed space map */
1497 		lb_num  = udf_rw32(partd->start_loc);
1498 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1499 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
1500 		if (len == 0)
1501 			continue;
1502 
1503 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1504 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1505 		if (!error && dscr) {
1506 			/* analyse */
1507 			dscr_type = udf_rw16(dscr->tag.id);
1508 			if (dscr_type == TAGID_SPACE_BITMAP) {
1509 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1510 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
1511 
1512 				/* fill in ump->part_freed_bits */
1513 				bitmap = &ump->part_unalloc_bits[phys_part];
1514 				bitmap->blob  = (uint8_t *) dscr;
1515 				bitmap->bits  = dscr->sbd.data;
1516 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1517 				bitmap->pages = NULL;	/* TODO */
1518 				bitmap->data_pos     = 0;
1519 				bitmap->metadata_pos = 0;
1520 			} else {
1521 				free(dscr, M_UDFVOLD);
1522 
1523 				printf( "UDF mount: error reading freed  "
1524 					"space bitmap\n");
1525 				return EROFS;
1526 			}
1527 		} else {
1528 			/* blank not allowed */
1529 			printf("UDF mount: blank freed space bitmap\n");
1530 			return EROFS;
1531 		}
1532 	}
1533 
1534 	/* freed space table (not supported) */
1535 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1536 		partd = ump->partitions[phys_part];
1537 		if (partd == NULL)
1538 			continue;
1539 		parthdr = &partd->_impl_use.part_hdr;
1540 
1541 		len     = udf_rw32(parthdr->freed_space_table.len);
1542 		if (len) {
1543 			printf("UDF mount: space tables not supported\n");
1544 			return EROFS;
1545 		}
1546 	}
1547 
1548 	return 0;
1549 }
1550 
1551 
1552 /* TODO implement async writeout */
1553 int
1554 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1555 {
1556 	union dscrptr        *dscr;
1557 	/* struct udf_args *args = &ump->mount_args; */
1558 	struct part_desc     *partd;
1559 	struct part_hdr_desc *parthdr;
1560 	uint32_t phys_part;
1561 	uint32_t lb_num, len, ptov;
1562 	int error_all, error;
1563 
1564 	error_all = 0;
1565 	/* unallocated space map */
1566 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1567 		partd = ump->partitions[phys_part];
1568 		if (partd == NULL)
1569 			continue;
1570 		parthdr = &partd->_impl_use.part_hdr;
1571 
1572 		ptov   = udf_rw32(partd->start_loc);
1573 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1574 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
1575 		if (len == 0)
1576 			continue;
1577 
1578 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1579 			lb_num + ptov));
1580 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1581 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1582 				(union dscrptr *) dscr,
1583 				ptov + lb_num, lb_num);
1584 		if (error) {
1585 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1586 			error_all = error;
1587 		}
1588 	}
1589 
1590 	/* freed space map */
1591 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1592 		partd = ump->partitions[phys_part];
1593 		if (partd == NULL)
1594 			continue;
1595 		parthdr = &partd->_impl_use.part_hdr;
1596 
1597 		/* freed space map */
1598 		ptov   = udf_rw32(partd->start_loc);
1599 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1600 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
1601 		if (len == 0)
1602 			continue;
1603 
1604 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1605 			lb_num + ptov));
1606 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1607 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1608 				(union dscrptr *) dscr,
1609 				ptov + lb_num, lb_num);
1610 		if (error) {
1611 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1612 			error_all = error;
1613 		}
1614 	}
1615 
1616 	return error_all;
1617 }
1618 
1619 
1620 static int
1621 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1622 {
1623 	struct udf_node	     *bitmap_node;
1624 	union dscrptr        *dscr;
1625 	struct udf_bitmap    *bitmap;
1626 	uint64_t inflen;
1627 	int error, dscr_type;
1628 
1629 	bitmap_node = ump->metadatabitmap_node;
1630 
1631 	/* only read in when metadata bitmap node is read in */
1632 	if (bitmap_node == NULL)
1633 		return 0;
1634 
1635 	if (bitmap_node->fe) {
1636 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1637 	} else {
1638 		KASSERT(bitmap_node->efe);
1639 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1640 	}
1641 
1642 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1643 		"%"PRIu64" bytes\n", inflen));
1644 
1645 	/* allocate space for bitmap */
1646 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1647 	if (!dscr)
1648 		return ENOMEM;
1649 
1650 	/* set vnode type to regular file or we can't read from it! */
1651 	bitmap_node->vnode->v_type = VREG;
1652 
1653 	/* read in complete metadata bitmap file */
1654 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1655 			dscr,
1656 			inflen, 0,
1657 			UIO_SYSSPACE,
1658 			IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1659 			NULL, NULL);
1660 	if (error) {
1661 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1662 		goto errorout;
1663 	}
1664 
1665 	/* analyse */
1666 	dscr_type = udf_rw16(dscr->tag.id);
1667 	if (dscr_type == TAGID_SPACE_BITMAP) {
1668 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1669 		ump->metadata_unalloc_dscr = &dscr->sbd;
1670 
1671 		/* fill in bitmap bits */
1672 		bitmap = &ump->metadata_unalloc_bits;
1673 		bitmap->blob  = (uint8_t *) dscr;
1674 		bitmap->bits  = dscr->sbd.data;
1675 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1676 		bitmap->pages = NULL;	/* TODO */
1677 		bitmap->data_pos     = 0;
1678 		bitmap->metadata_pos = 0;
1679 	} else {
1680 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1681 		goto errorout;
1682 	}
1683 
1684 	return 0;
1685 
1686 errorout:
1687 	free(dscr, M_UDFVOLD);
1688 	printf( "UDF mount: error reading unallocated "
1689 		"space bitmap for metadata partition\n");
1690 	return EROFS;
1691 }
1692 
1693 
1694 int
1695 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1696 {
1697 	struct udf_node	     *bitmap_node;
1698 	union dscrptr        *dscr;
1699 	uint64_t inflen, new_inflen;
1700 	int dummy, error;
1701 
1702 	bitmap_node = ump->metadatabitmap_node;
1703 
1704 	/* only write out when metadata bitmap node is known */
1705 	if (bitmap_node == NULL)
1706 		return 0;
1707 
1708 	if (bitmap_node->fe) {
1709 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1710 	} else {
1711 		KASSERT(bitmap_node->efe);
1712 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1713 	}
1714 
1715 	/* reduce length to zero */
1716 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1717 	new_inflen = udf_tagsize(dscr, 1);
1718 
1719 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1720 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1721 
1722 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1723 	if (error)
1724 		printf("Error resizing metadata space bitmap\n");
1725 
1726 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1727 			dscr,
1728 			new_inflen, 0,
1729 			UIO_SYSSPACE,
1730 			IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1731 			NULL, NULL);
1732 
1733 	bitmap_node->i_flags |= IN_MODIFIED;
1734 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
1735 
1736 	error = VOP_FSYNC(bitmap_node->vnode,
1737 			FSCRED, FSYNC_WAIT, 0, 0);
1738 
1739 	if (error)
1740 		printf( "Error writing out metadata partition unalloced "
1741 			"space bitmap!\n");
1742 
1743 	return error;
1744 }
1745 
1746 
1747 /* --------------------------------------------------------------------- */
1748 
1749 /*
1750  * Checks if ump's vds information is correct and complete
1751  */
1752 
1753 int
1754 udf_process_vds(struct udf_mount *ump) {
1755 	union udf_pmap *mapping;
1756 	/* struct udf_args *args = &ump->mount_args; */
1757 	struct logvol_int_desc *lvint;
1758 	struct udf_logvol_info *lvinfo;
1759 	struct part_desc *part;
1760 	uint32_t n_pm, mt_l;
1761 	uint8_t *pmap_pos;
1762 	char *domain_name, *map_name;
1763 	const char *check_name;
1764 	char bits[128];
1765 	int pmap_stype, pmap_size;
1766 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1767 	int n_phys, n_virt, n_spar, n_meta;
1768 	int len, error;
1769 
1770 	if (ump == NULL)
1771 		return ENOENT;
1772 
1773 	/* we need at least an anchor (trivial, but for safety) */
1774 	if (ump->anchors[0] == NULL)
1775 		return EINVAL;
1776 
1777 	/* we need at least one primary and one logical volume descriptor */
1778 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1779 		return EINVAL;
1780 
1781 	/* we need at least one partition descriptor */
1782 	if (ump->partitions[0] == NULL)
1783 		return EINVAL;
1784 
1785 	/* check logical volume sector size verses device sector size */
1786 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1787 		printf("UDF mount: format violation, lb_size != sector size\n");
1788 		return EINVAL;
1789 	}
1790 
1791 	/* check domain name */
1792 	domain_name = ump->logical_vol->domain_id.id;
1793 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1794 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1795 		return EINVAL;
1796 	}
1797 
1798 	/* retrieve logical volume integrity sequence */
1799 	error = udf_retrieve_lvint(ump);
1800 
1801 	/*
1802 	 * We need at least one logvol integrity descriptor recorded.  Note
1803 	 * that its OK to have an open logical volume integrity here. The VAT
1804 	 * will close/update the integrity.
1805 	 */
1806 	if (ump->logvol_integrity == NULL)
1807 		return EINVAL;
1808 
1809 	/* process derived structures */
1810 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1811 	lvint  = ump->logvol_integrity;
1812 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1813 	ump->logvol_info = lvinfo;
1814 
1815 	/* TODO check udf versions? */
1816 
1817 	/*
1818 	 * check logvol mappings: effective virt->log partmap translation
1819 	 * check and recording of the mapping results. Saves expensive
1820 	 * strncmp() in tight places.
1821 	 */
1822 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1823 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1824 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1825 	pmap_pos =  ump->logical_vol->maps;
1826 
1827 	if (n_pm > UDF_PMAPS) {
1828 		printf("UDF mount: too many mappings\n");
1829 		return EINVAL;
1830 	}
1831 
1832 	/* count types and set partition numbers */
1833 	ump->data_part = ump->node_part = ump->fids_part = 0;
1834 	n_phys = n_virt = n_spar = n_meta = 0;
1835 	for (log_part = 0; log_part < n_pm; log_part++) {
1836 		mapping = (union udf_pmap *) pmap_pos;
1837 		pmap_stype = pmap_pos[0];
1838 		pmap_size  = pmap_pos[1];
1839 		switch (pmap_stype) {
1840 		case 1:	/* physical mapping */
1841 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1842 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1843 			pmap_type = UDF_VTOP_TYPE_PHYS;
1844 			n_phys++;
1845 			ump->data_part = log_part;
1846 			ump->node_part = log_part;
1847 			ump->fids_part = log_part;
1848 			break;
1849 		case 2: /* virtual/sparable/meta mapping */
1850 			map_name  = mapping->pm2.part_id.id;
1851 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1852 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1853 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1854 			len = UDF_REGID_ID_SIZE;
1855 
1856 			check_name = "*UDF Virtual Partition";
1857 			if (strncmp(map_name, check_name, len) == 0) {
1858 				pmap_type = UDF_VTOP_TYPE_VIRT;
1859 				n_virt++;
1860 				ump->node_part = log_part;
1861 				break;
1862 			}
1863 			check_name = "*UDF Sparable Partition";
1864 			if (strncmp(map_name, check_name, len) == 0) {
1865 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1866 				n_spar++;
1867 				ump->data_part = log_part;
1868 				ump->node_part = log_part;
1869 				ump->fids_part = log_part;
1870 				break;
1871 			}
1872 			check_name = "*UDF Metadata Partition";
1873 			if (strncmp(map_name, check_name, len) == 0) {
1874 				pmap_type = UDF_VTOP_TYPE_META;
1875 				n_meta++;
1876 				ump->node_part = log_part;
1877 				ump->fids_part = log_part;
1878 				break;
1879 			}
1880 			break;
1881 		default:
1882 			return EINVAL;
1883 		}
1884 
1885 		/*
1886 		 * BUGALERT: some rogue implementations use random physical
1887 		 * partion numbers to break other implementations so lookup
1888 		 * the number.
1889 		 */
1890 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1891 			part = ump->partitions[phys_part];
1892 			if (part == NULL)
1893 				continue;
1894 			if (udf_rw16(part->part_num) == raw_phys_part)
1895 				break;
1896 		}
1897 
1898 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1899 		    raw_phys_part, phys_part, pmap_type));
1900 
1901 		if (phys_part == UDF_PARTITIONS)
1902 			return EINVAL;
1903 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1904 			return EINVAL;
1905 
1906 		ump->vtop   [log_part] = phys_part;
1907 		ump->vtop_tp[log_part] = pmap_type;
1908 
1909 		pmap_pos += pmap_size;
1910 	}
1911 	/* not winning the beauty contest */
1912 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1913 
1914 	/* test some basic UDF assertions/requirements */
1915 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1916 		return EINVAL;
1917 
1918 	if (n_virt) {
1919 		if ((n_phys == 0) || n_spar || n_meta)
1920 			return EINVAL;
1921 	}
1922 	if (n_spar + n_phys == 0)
1923 		return EINVAL;
1924 
1925 	/* select allocation type for each logical partition */
1926 	for (log_part = 0; log_part < n_pm; log_part++) {
1927 		maps_on = ump->vtop[log_part];
1928 		switch (ump->vtop_tp[log_part]) {
1929 		case UDF_VTOP_TYPE_PHYS :
1930 			assert(maps_on == log_part);
1931 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1932 			break;
1933 		case UDF_VTOP_TYPE_VIRT :
1934 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
1935 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
1936 			break;
1937 		case UDF_VTOP_TYPE_SPARABLE :
1938 			assert(maps_on == log_part);
1939 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1940 			break;
1941 		case UDF_VTOP_TYPE_META :
1942 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
1943 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1944 				/* special case for UDF 2.60 */
1945 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
1946 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
1947 			}
1948 			break;
1949 		default:
1950 			panic("bad alloction type in udf's ump->vtop\n");
1951 		}
1952 	}
1953 
1954 	/* determine logical volume open/closure actions */
1955 	if (n_virt) {
1956 		ump->lvopen  = 0;
1957 		if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
1958 			ump->lvopen |= UDF_OPEN_SESSION ;
1959 		ump->lvclose = UDF_WRITE_VAT;
1960 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
1961 			ump->lvclose |= UDF_CLOSE_SESSION;
1962 	} else {
1963 		/* `normal' rewritable or non sequential media */
1964 		ump->lvopen  = UDF_WRITE_LVINT;
1965 		ump->lvclose = UDF_WRITE_LVINT;
1966 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
1967 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
1968 	}
1969 
1970 	/*
1971 	 * Determine sheduler error behaviour. For virtual partions, update
1972 	 * the trackinfo; for sparable partitions replace a whole block on the
1973 	 * sparable table. Allways requeue.
1974 	 */
1975 	ump->lvreadwrite = 0;
1976 	if (n_virt)
1977 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
1978 	if (n_spar)
1979 		ump->lvreadwrite = UDF_REMAP_BLOCK;
1980 
1981 	/*
1982 	 * Select our sheduler
1983 	 */
1984 	ump->strategy = &udf_strat_rmw;
1985 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
1986 		ump->strategy = &udf_strat_sequential;
1987 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
1988 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
1989 			ump->strategy = &udf_strat_direct;
1990 	if (n_spar)
1991 		ump->strategy = &udf_strat_rmw;
1992 
1993 	/* print results */
1994 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
1995 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
1996 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
1997 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
1998 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
1999 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2000 
2001 	bitmask_snprintf(ump->lvopen,  UDFLOGVOL_BITS, bits, sizeof(bits));
2002 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
2003 	bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
2004 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2005 	bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
2006 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2007 
2008 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2009 		(ump->strategy == &udf_strat_direct) ? "Direct" :
2010 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
2011 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2012 
2013 	/* signal its OK for now */
2014 	return 0;
2015 }
2016 
2017 /* --------------------------------------------------------------------- */
2018 
2019 /*
2020  * Update logical volume name in all structures that keep a record of it. We
2021  * use memmove since each of them might be specified as a source.
2022  *
2023  * Note that it doesn't update the VAT structure!
2024  */
2025 
2026 static void
2027 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2028 {
2029 	struct logvol_desc     *lvd = NULL;
2030 	struct fileset_desc    *fsd = NULL;
2031 	struct udf_lv_info     *lvi = NULL;
2032 
2033 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2034 	lvd = ump->logical_vol;
2035 	fsd = ump->fileset_desc;
2036 	if (ump->implementation)
2037 		lvi = &ump->implementation->_impl_use.lv_info;
2038 
2039 	/* logvol's id might be specified as origional so use memmove here */
2040 	memmove(lvd->logvol_id, logvol_id, 128);
2041 	if (fsd)
2042 		memmove(fsd->logvol_id, logvol_id, 128);
2043 	if (lvi)
2044 		memmove(lvi->logvol_id, logvol_id, 128);
2045 }
2046 
2047 /* --------------------------------------------------------------------- */
2048 
2049 void
2050 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2051 	uint32_t sector)
2052 {
2053 	assert(ump->logical_vol);
2054 
2055 	tag->id 		= udf_rw16(tagid);
2056 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
2057 	tag->cksum		= 0;
2058 	tag->reserved		= 0;
2059 	tag->serial_num		= ump->logical_vol->tag.serial_num;
2060 	tag->tag_loc            = udf_rw32(sector);
2061 }
2062 
2063 
2064 uint64_t
2065 udf_advance_uniqueid(struct udf_mount *ump)
2066 {
2067 	uint64_t unique_id;
2068 
2069 	mutex_enter(&ump->logvol_mutex);
2070 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2071 	if (unique_id < 0x10)
2072 		unique_id = 0x10;
2073 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2074 	mutex_exit(&ump->logvol_mutex);
2075 
2076 	return unique_id;
2077 }
2078 
2079 
2080 static void
2081 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2082 {
2083 	struct udf_mount *ump = udf_node->ump;
2084 	uint32_t num_dirs, num_files;
2085 	int udf_file_type;
2086 
2087 	/* get file type */
2088 	if (udf_node->fe) {
2089 		udf_file_type = udf_node->fe->icbtag.file_type;
2090 	} else {
2091 		udf_file_type = udf_node->efe->icbtag.file_type;
2092 	}
2093 
2094 	/* adjust file count */
2095 	mutex_enter(&ump->allocate_mutex);
2096 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2097 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
2098 		ump->logvol_info->num_directories =
2099 			udf_rw32((num_dirs + sign));
2100 	} else {
2101 		num_files = udf_rw32(ump->logvol_info->num_files);
2102 		ump->logvol_info->num_files =
2103 			udf_rw32((num_files + sign));
2104 	}
2105 	mutex_exit(&ump->allocate_mutex);
2106 }
2107 
2108 
2109 void
2110 udf_osta_charset(struct charspec *charspec)
2111 {
2112 	bzero(charspec, sizeof(struct charspec));
2113 	charspec->type = 0;
2114 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2115 }
2116 
2117 
2118 /* first call udf_set_regid and then the suffix */
2119 void
2120 udf_set_regid(struct regid *regid, char const *name)
2121 {
2122 	bzero(regid, sizeof(struct regid));
2123 	regid->flags    = 0;		/* not dirty and not protected */
2124 	strcpy((char *) regid->id, name);
2125 }
2126 
2127 
2128 void
2129 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2130 {
2131 	uint16_t *ver;
2132 
2133 	ver  = (uint16_t *) regid->id_suffix;
2134 	*ver = ump->logvol_info->min_udf_readver;
2135 }
2136 
2137 
2138 void
2139 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2140 {
2141 	uint16_t *ver;
2142 
2143 	ver  = (uint16_t *) regid->id_suffix;
2144 	*ver = ump->logvol_info->min_udf_readver;
2145 
2146 	regid->id_suffix[2] = 4;	/* unix */
2147 	regid->id_suffix[3] = 8;	/* NetBSD */
2148 }
2149 
2150 
2151 void
2152 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2153 {
2154 	regid->id_suffix[0] = 4;	/* unix */
2155 	regid->id_suffix[1] = 8;	/* NetBSD */
2156 }
2157 
2158 
2159 void
2160 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2161 {
2162 	regid->id_suffix[0] = APP_VERSION_MAIN;
2163 	regid->id_suffix[1] = APP_VERSION_SUB;
2164 }
2165 
2166 static int
2167 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2168 	struct long_ad *parent, uint64_t unique_id)
2169 {
2170 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
2171 	int fidsize = 40;
2172 
2173 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2174 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
2175 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2176 	fid->icb = *parent;
2177 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2178 	fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
2179 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2180 
2181 	return fidsize;
2182 }
2183 
2184 /* --------------------------------------------------------------------- */
2185 
2186 /*
2187  * Extended attribute support. UDF knows of 3 places for extended attributes:
2188  *
2189  * (a) inside the file's (e)fe in the length of the extended attribute area
2190  * before the allocation descriptors/filedata
2191  *
2192  * (b) in a file referenced by (e)fe->ext_attr_icb and
2193  *
2194  * (c) in the e(fe)'s associated stream directory that can hold various
2195  * sub-files. In the stream directory a few fixed named subfiles are reserved
2196  * for NT/Unix ACL's and OS/2 attributes.
2197  *
2198  * NOTE: Extended attributes are read randomly but allways written
2199  * *atomicaly*. For ACL's this interface is propably different but not known
2200  * to me yet.
2201  *
2202  * Order of extended attributes in a space :
2203  *   ECMA 167 EAs
2204  *   Non block aligned Implementation Use EAs
2205  *   Block aligned Implementation Use EAs
2206  *   Application Use EAs
2207  */
2208 
2209 static int
2210 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2211 {
2212 	uint16_t   *spos;
2213 
2214 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2215 		/* checksum valid? */
2216 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2217 		spos = (uint16_t *) implext->data;
2218 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2219 			return EINVAL;
2220 	}
2221 	return 0;
2222 }
2223 
2224 static void
2225 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2226 {
2227 	uint16_t   *spos;
2228 
2229 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2230 		/* set checksum */
2231 		spos = (uint16_t *) implext->data;
2232 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2233 	}
2234 }
2235 
2236 
2237 int
2238 udf_extattr_search_intern(struct udf_node *node,
2239 	uint32_t sattr, char const *sattrname,
2240 	uint32_t *offsetp, uint32_t *lengthp)
2241 {
2242 	struct extattrhdr_desc    *eahdr;
2243 	struct extattr_entry      *attrhdr;
2244 	struct impl_extattr_entry *implext;
2245 	uint32_t    offset, a_l, sector_size;
2246 	 int32_t    l_ea;
2247 	uint8_t    *pos;
2248 	int         error;
2249 
2250 	/* get mountpoint */
2251 	sector_size = node->ump->discinfo.sector_size;
2252 
2253 	/* get information from fe/efe */
2254 	if (node->fe) {
2255 		l_ea  = udf_rw32(node->fe->l_ea);
2256 		eahdr = (struct extattrhdr_desc *) node->fe->data;
2257 	} else {
2258 		assert(node->efe);
2259 		l_ea  = udf_rw32(node->efe->l_ea);
2260 		eahdr = (struct extattrhdr_desc *) node->efe->data;
2261 	}
2262 
2263 	/* something recorded here? */
2264 	if (l_ea == 0)
2265 		return ENOENT;
2266 
2267 	/* check extended attribute tag; what to do if it fails? */
2268 	error = udf_check_tag(eahdr);
2269 	if (error)
2270 		return EINVAL;
2271 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2272 		return EINVAL;
2273 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2274 	if (error)
2275 		return EINVAL;
2276 
2277 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2278 
2279 	/* looking for Ecma-167 attributes? */
2280 	offset = sizeof(struct extattrhdr_desc);
2281 
2282 	/* looking for either implemenation use or application use */
2283 	if (sattr == 2048) {				/* [4/48.10.8] */
2284 		offset = udf_rw32(eahdr->impl_attr_loc);
2285 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2286 			return ENOENT;
2287 	}
2288 	if (sattr == 65536) {				/* [4/48.10.9] */
2289 		offset = udf_rw32(eahdr->appl_attr_loc);
2290 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2291 			return ENOENT;
2292 	}
2293 
2294 	/* paranoia check offset and l_ea */
2295 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2296 		return EINVAL;
2297 
2298 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2299 
2300 	/* find our extended attribute  */
2301 	l_ea -= offset;
2302 	pos = (uint8_t *) eahdr + offset;
2303 
2304 	while (l_ea >= sizeof(struct extattr_entry)) {
2305 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2306 		attrhdr = (struct extattr_entry *) pos;
2307 		implext = (struct impl_extattr_entry *) pos;
2308 
2309 		/* get complete attribute length and check for roque values */
2310 		a_l = udf_rw32(attrhdr->a_l);
2311 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2312 				udf_rw32(attrhdr->type),
2313 				attrhdr->subtype, a_l, l_ea));
2314 		if ((a_l == 0) || (a_l > l_ea))
2315 			return EINVAL;
2316 
2317 		if (attrhdr->type != sattr)
2318 			goto next_attribute;
2319 
2320 		/* we might have found it! */
2321 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
2322 			*offsetp = offset;
2323 			*lengthp = a_l;
2324 			return 0;		/* success */
2325 		}
2326 
2327 		/*
2328 		 * Implementation use and application use extended attributes
2329 		 * have a name to identify. They share the same structure only
2330 		 * UDF implementation use extended attributes have a checksum
2331 		 * we need to check
2332 		 */
2333 
2334 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2335 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
2336 			/* we have found our appl/implementation attribute */
2337 			*offsetp = offset;
2338 			*lengthp = a_l;
2339 			return 0;		/* success */
2340 		}
2341 
2342 next_attribute:
2343 		/* next attribute */
2344 		pos    += a_l;
2345 		l_ea   -= a_l;
2346 		offset += a_l;
2347 	}
2348 	/* not found */
2349 	return ENOENT;
2350 }
2351 
2352 
2353 static void
2354 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2355 	struct extattr_entry *extattr)
2356 {
2357 	struct file_entry      *fe;
2358 	struct extfile_entry   *efe;
2359 	struct extattrhdr_desc *extattrhdr;
2360 	struct impl_extattr_entry *implext;
2361 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2362 	uint32_t *l_eap, l_ad;
2363 	uint16_t *spos;
2364 	uint8_t *bpos, *data;
2365 
2366 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2367 		fe    = &dscr->fe;
2368 		data  = fe->data;
2369 		l_eap = &fe->l_ea;
2370 		l_ad  = udf_rw32(fe->l_ad);
2371 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2372 		efe   = &dscr->efe;
2373 		data  = efe->data;
2374 		l_eap = &efe->l_ea;
2375 		l_ad  = udf_rw32(efe->l_ad);
2376 	} else {
2377 		panic("Bad tag passed to udf_extattr_insert_internal");
2378 	}
2379 
2380 	/* can't append already written to file descriptors yet */
2381 	assert(l_ad == 0);
2382 
2383 	/* should have a header! */
2384 	extattrhdr = (struct extattrhdr_desc *) data;
2385 	l_ea = udf_rw32(*l_eap);
2386 	if (l_ea == 0) {
2387 		/* create empty extended attribute header */
2388 		exthdr_len = sizeof(struct extattrhdr_desc);
2389 
2390 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2391 			/* loc */ 0);
2392 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2393 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2394 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
2395 
2396 		/* record extended attribute header length */
2397 		l_ea = exthdr_len;
2398 		*l_eap = udf_rw32(l_ea);
2399 	}
2400 
2401 	/* extract locations */
2402 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2403 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2404 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2405 		impl_attr_loc = l_ea;
2406 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2407 		appl_attr_loc = l_ea;
2408 
2409 	/* Ecma 167 EAs */
2410 	if (udf_rw32(extattr->type) < 2048) {
2411 		assert(impl_attr_loc == l_ea);
2412 		assert(appl_attr_loc == l_ea);
2413 	}
2414 
2415 	/* implementation use extended attributes */
2416 	if (udf_rw32(extattr->type) == 2048) {
2417 		assert(appl_attr_loc == l_ea);
2418 
2419 		/* calculate and write extended attribute header checksum */
2420 		implext = (struct impl_extattr_entry *) extattr;
2421 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
2422 		spos = (uint16_t *) implext->data;
2423 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2424 	}
2425 
2426 	/* application use extended attributes */
2427 	assert(udf_rw32(extattr->type) != 65536);
2428 	assert(appl_attr_loc == l_ea);
2429 
2430 	/* append the attribute at the end of the current space */
2431 	bpos = data + udf_rw32(*l_eap);
2432 	a_l  = udf_rw32(extattr->a_l);
2433 
2434 	/* update impl. attribute locations */
2435 	if (udf_rw32(extattr->type) < 2048) {
2436 		impl_attr_loc = l_ea + a_l;
2437 		appl_attr_loc = l_ea + a_l;
2438 	}
2439 	if (udf_rw32(extattr->type) == 2048) {
2440 		appl_attr_loc = l_ea + a_l;
2441 	}
2442 
2443 	/* copy and advance */
2444 	memcpy(bpos, extattr, a_l);
2445 	l_ea += a_l;
2446 	*l_eap = udf_rw32(l_ea);
2447 
2448 	/* do the `dance` again backwards */
2449 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2450 		if (impl_attr_loc == l_ea)
2451 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2452 		if (appl_attr_loc == l_ea)
2453 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2454 	}
2455 
2456 	/* store offsets */
2457 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2458 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2459 }
2460 
2461 
2462 /* --------------------------------------------------------------------- */
2463 
2464 static int
2465 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2466 {
2467 	struct udf_mount       *ump;
2468 	struct udf_logvol_info *lvinfo;
2469 	struct impl_extattr_entry     *implext;
2470 	struct vatlvext_extattr_entry  lvext;
2471 	const char *extstr = "*UDF VAT LVExtension";
2472 	uint64_t    vat_uniqueid;
2473 	uint32_t    offset, a_l;
2474 	uint8_t    *ea_start, *lvextpos;
2475 	int         error;
2476 
2477 	/* get mountpoint and lvinfo */
2478 	ump    = vat_node->ump;
2479 	lvinfo = ump->logvol_info;
2480 
2481 	/* get information from fe/efe */
2482 	if (vat_node->fe) {
2483 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2484 		ea_start     = vat_node->fe->data;
2485 	} else {
2486 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2487 		ea_start     = vat_node->efe->data;
2488 	}
2489 
2490 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2491 	if (error)
2492 		return error;
2493 
2494 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2495 	error = udf_impl_extattr_check(implext);
2496 	if (error)
2497 		return error;
2498 
2499 	/* paranoia */
2500 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2501 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2502 		return EINVAL;
2503 	}
2504 
2505 	/*
2506 	 * we have found our "VAT LVExtension attribute. BUT due to a
2507 	 * bug in the specification it might not be word aligned so
2508 	 * copy first to avoid panics on some machines (!!)
2509 	 */
2510 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2511 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2512 	memcpy(&lvext, lvextpos, sizeof(lvext));
2513 
2514 	/* check if it was updated the last time */
2515 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2516 		lvinfo->num_files       = lvext.num_files;
2517 		lvinfo->num_directories = lvext.num_directories;
2518 		udf_update_logvolname(ump, lvext.logvol_id);
2519 	} else {
2520 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2521 		/* replace VAT LVExt by free space EA */
2522 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2523 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2524 		udf_calc_impl_extattr_checksum(implext);
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 
2531 static int
2532 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2533 {
2534 	struct udf_mount       *ump;
2535 	struct udf_logvol_info *lvinfo;
2536 	struct impl_extattr_entry     *implext;
2537 	struct vatlvext_extattr_entry  lvext;
2538 	const char *extstr = "*UDF VAT LVExtension";
2539 	uint64_t    vat_uniqueid;
2540 	uint32_t    offset, a_l;
2541 	uint8_t    *ea_start, *lvextpos;
2542 	int         error;
2543 
2544 	/* get mountpoint and lvinfo */
2545 	ump    = vat_node->ump;
2546 	lvinfo = ump->logvol_info;
2547 
2548 	/* get information from fe/efe */
2549 	if (vat_node->fe) {
2550 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2551 		ea_start     = vat_node->fe->data;
2552 	} else {
2553 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2554 		ea_start     = vat_node->efe->data;
2555 	}
2556 
2557 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2558 	if (error)
2559 		return error;
2560 	/* found, it existed */
2561 
2562 	/* paranoia */
2563 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2564 	error = udf_impl_extattr_check(implext);
2565 	if (error) {
2566 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2567 		return error;
2568 	}
2569 	/* it is correct */
2570 
2571 	/*
2572 	 * we have found our "VAT LVExtension attribute. BUT due to a
2573 	 * bug in the specification it might not be word aligned so
2574 	 * copy first to avoid panics on some machines (!!)
2575 	 */
2576 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2577 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2578 
2579 	lvext.unique_id_chk   = vat_uniqueid;
2580 	lvext.num_files       = lvinfo->num_files;
2581 	lvext.num_directories = lvinfo->num_directories;
2582 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2583 
2584 	memcpy(lvextpos, &lvext, sizeof(lvext));
2585 
2586 	return 0;
2587 }
2588 
2589 /* --------------------------------------------------------------------- */
2590 
2591 int
2592 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2593 {
2594 	struct udf_mount *ump = vat_node->ump;
2595 
2596 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2597 		return EINVAL;
2598 
2599 	memcpy(blob, ump->vat_table + offset, size);
2600 	return 0;
2601 }
2602 
2603 int
2604 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2605 {
2606 	struct udf_mount *ump = vat_node->ump;
2607 	uint32_t offset_high;
2608 	uint8_t *new_vat_table;
2609 
2610 	/* extent VAT allocation if needed */
2611 	offset_high = offset + size;
2612 	if (offset_high >= ump->vat_table_alloc_len) {
2613 		/* realloc */
2614 		new_vat_table = realloc(ump->vat_table,
2615 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2616 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
2617 		if (!new_vat_table) {
2618 			printf("udf_vat_write: can't extent VAT, out of mem\n");
2619 			return ENOMEM;
2620 		}
2621 		ump->vat_table = new_vat_table;
2622 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2623 	}
2624 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2625 
2626 	memcpy(ump->vat_table + offset, blob, size);
2627 	return 0;
2628 }
2629 
2630 /* --------------------------------------------------------------------- */
2631 
2632 /* TODO support previous VAT location writeout */
2633 static int
2634 udf_update_vat_descriptor(struct udf_mount *ump)
2635 {
2636 	struct udf_node *vat_node = ump->vat_node;
2637 	struct udf_logvol_info *lvinfo = ump->logvol_info;
2638 	struct icb_tag *icbtag;
2639 	struct udf_oldvat_tail *oldvat_tl;
2640 	struct udf_vat *vat;
2641 	uint64_t unique_id;
2642 	uint32_t lb_size;
2643 	uint8_t *raw_vat;
2644 	int filetype, error;
2645 
2646 	KASSERT(vat_node);
2647 	KASSERT(lvinfo);
2648 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2649 
2650 	/* get our new unique_id */
2651 	unique_id = udf_advance_uniqueid(ump);
2652 
2653 	/* get information from fe/efe */
2654 	if (vat_node->fe) {
2655 		icbtag    = &vat_node->fe->icbtag;
2656 		vat_node->fe->unique_id = udf_rw64(unique_id);
2657 	} else {
2658 		icbtag = &vat_node->efe->icbtag;
2659 		vat_node->efe->unique_id = udf_rw64(unique_id);
2660 	}
2661 
2662 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2663 	filetype = icbtag->file_type;
2664 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2665 
2666 	/* allocate piece to process head or tail of VAT file */
2667 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2668 
2669 	if (filetype == 0) {
2670 		/*
2671 		 * Update "*UDF VAT LVExtension" extended attribute from the
2672 		 * lvint if present.
2673 		 */
2674 		udf_update_vat_extattr_from_lvid(vat_node);
2675 
2676 		/* setup identifying regid */
2677 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2678 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2679 
2680 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2681 		udf_add_udf_regid(ump, &oldvat_tl->id);
2682 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2683 
2684 		/* write out new tail of virtual allocation table file */
2685 		error = udf_vat_write(vat_node, raw_vat,
2686 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2687 	} else {
2688 		/* compose the VAT2 header */
2689 		vat = (struct udf_vat *) raw_vat;
2690 		memset(vat, 0, sizeof(struct udf_vat));
2691 
2692 		vat->header_len       = udf_rw16(152);	/* as per spec */
2693 		vat->impl_use_len     = udf_rw16(0);
2694 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2695 		vat->prev_vat         = udf_rw32(0xffffffff);
2696 		vat->num_files        = lvinfo->num_files;
2697 		vat->num_directories  = lvinfo->num_directories;
2698 		vat->min_udf_readver  = lvinfo->min_udf_readver;
2699 		vat->min_udf_writever = lvinfo->min_udf_writever;
2700 		vat->max_udf_writever = lvinfo->max_udf_writever;
2701 
2702 		error = udf_vat_write(vat_node, raw_vat,
2703 			sizeof(struct udf_vat), 0);
2704 	}
2705 	free(raw_vat, M_TEMP);
2706 
2707 	return error;	/* success! */
2708 }
2709 
2710 
2711 int
2712 udf_writeout_vat(struct udf_mount *ump)
2713 {
2714 	struct udf_node *vat_node = ump->vat_node;
2715 	uint32_t vat_length;
2716 	int error;
2717 
2718 	KASSERT(vat_node);
2719 
2720 	DPRINTF(CALL, ("udf_writeout_vat\n"));
2721 
2722 	mutex_enter(&ump->allocate_mutex);
2723 	udf_update_vat_descriptor(ump);
2724 
2725 	/* write out the VAT contents ; TODO intelligent writing */
2726 	vat_length = ump->vat_table_len;
2727 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2728 		ump->vat_table, ump->vat_table_len, 0,
2729 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2730 	if (error) {
2731 		printf("udf_writeout_vat: failed to write out VAT contents\n");
2732 		goto out;
2733 	}
2734 
2735 	mutex_exit(&ump->allocate_mutex);
2736 
2737 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2738 	error = VOP_FSYNC(ump->vat_node->vnode,
2739 			FSCRED, FSYNC_WAIT, 0, 0);
2740 	if (error)
2741 		printf("udf_writeout_vat: error writing VAT node!\n");
2742 out:
2743 
2744 	return error;
2745 }
2746 
2747 /* --------------------------------------------------------------------- */
2748 
2749 /*
2750  * Read in relevant pieces of VAT file and check if its indeed a VAT file
2751  * descriptor. If OK, read in complete VAT file.
2752  */
2753 
2754 static int
2755 udf_check_for_vat(struct udf_node *vat_node)
2756 {
2757 	struct udf_mount *ump;
2758 	struct icb_tag   *icbtag;
2759 	struct timestamp *mtime;
2760 	struct udf_vat   *vat;
2761 	struct udf_oldvat_tail *oldvat_tl;
2762 	struct udf_logvol_info *lvinfo;
2763 	uint64_t  unique_id;
2764 	uint32_t  vat_length;
2765 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
2766 	uint32_t  sector_size;
2767 	uint32_t *raw_vat;
2768 	uint8_t  *vat_table;
2769 	char     *regid_name;
2770 	int filetype;
2771 	int error;
2772 
2773 	/* vat_length is really 64 bits though impossible */
2774 
2775 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
2776 	if (!vat_node)
2777 		return ENOENT;
2778 
2779 	/* get mount info */
2780 	ump = vat_node->ump;
2781 	sector_size = udf_rw32(ump->logical_vol->lb_size);
2782 
2783 	/* check assertions */
2784 	assert(vat_node->fe || vat_node->efe);
2785 	assert(ump->logvol_integrity);
2786 
2787 	/* set vnode type to regular file or we can't read from it! */
2788 	vat_node->vnode->v_type = VREG;
2789 
2790 	/* get information from fe/efe */
2791 	if (vat_node->fe) {
2792 		vat_length = udf_rw64(vat_node->fe->inf_len);
2793 		icbtag    = &vat_node->fe->icbtag;
2794 		mtime     = &vat_node->fe->mtime;
2795 		unique_id = udf_rw64(vat_node->fe->unique_id);
2796 	} else {
2797 		vat_length = udf_rw64(vat_node->efe->inf_len);
2798 		icbtag = &vat_node->efe->icbtag;
2799 		mtime  = &vat_node->efe->mtime;
2800 		unique_id = udf_rw64(vat_node->efe->unique_id);
2801 	}
2802 
2803 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2804 	filetype = icbtag->file_type;
2805 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2806 		return ENOENT;
2807 
2808 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2809 
2810 	vat_table_alloc_len =
2811 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2812 			* UDF_VAT_CHUNKSIZE;
2813 
2814 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2815 		M_CANFAIL | M_WAITOK);
2816 	if (vat_table == NULL) {
2817 		printf("allocation of %d bytes failed for VAT\n",
2818 			vat_table_alloc_len);
2819 		return ENOMEM;
2820 	}
2821 
2822 	/* allocate piece to read in head or tail of VAT file */
2823 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2824 
2825 	/*
2826 	 * check contents of the file if its the old 1.50 VAT table format.
2827 	 * Its notoriously broken and allthough some implementations support an
2828 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
2829 	 * to be useable since a lot of implementations don't maintain it.
2830 	 */
2831 	lvinfo = ump->logvol_info;
2832 
2833 	if (filetype == 0) {
2834 		/* definition */
2835 		vat_offset  = 0;
2836 		vat_entries = (vat_length-36)/4;
2837 
2838 		/* read in tail of virtual allocation table file */
2839 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2840 				(uint8_t *) raw_vat,
2841 				sizeof(struct udf_oldvat_tail),
2842 				vat_entries * 4,
2843 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2844 				NULL, NULL);
2845 		if (error)
2846 			goto out;
2847 
2848 		/* check 1.50 VAT */
2849 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2850 		regid_name = (char *) oldvat_tl->id.id;
2851 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2852 		if (error) {
2853 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2854 			error = ENOENT;
2855 			goto out;
2856 		}
2857 
2858 		/*
2859 		 * update LVID from "*UDF VAT LVExtension" extended attribute
2860 		 * if present.
2861 		 */
2862 		udf_update_lvid_from_vat_extattr(vat_node);
2863 	} else {
2864 		/* read in head of virtual allocation table file */
2865 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2866 				(uint8_t *) raw_vat,
2867 				sizeof(struct udf_vat), 0,
2868 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2869 				NULL, NULL);
2870 		if (error)
2871 			goto out;
2872 
2873 		/* definition */
2874 		vat = (struct udf_vat *) raw_vat;
2875 		vat_offset  = vat->header_len;
2876 		vat_entries = (vat_length - vat_offset)/4;
2877 
2878 		assert(lvinfo);
2879 		lvinfo->num_files        = vat->num_files;
2880 		lvinfo->num_directories  = vat->num_directories;
2881 		lvinfo->min_udf_readver  = vat->min_udf_readver;
2882 		lvinfo->min_udf_writever = vat->min_udf_writever;
2883 		lvinfo->max_udf_writever = vat->max_udf_writever;
2884 
2885 		udf_update_logvolname(ump, vat->logvol_id);
2886 	}
2887 
2888 	/* read in complete VAT file */
2889 	error = vn_rdwr(UIO_READ, vat_node->vnode,
2890 			vat_table,
2891 			vat_length, 0,
2892 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2893 			NULL, NULL);
2894 	if (error)
2895 		printf("read in of complete VAT file failed (error %d)\n",
2896 			error);
2897 	if (error)
2898 		goto out;
2899 
2900 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2901 	ump->logvol_integrity->lvint_next_unique_id = unique_id;
2902 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2903 	ump->logvol_integrity->time           = *mtime;
2904 
2905 	ump->vat_table_len = vat_length;
2906 	ump->vat_table_alloc_len = vat_table_alloc_len;
2907 	ump->vat_table   = vat_table;
2908 	ump->vat_offset  = vat_offset;
2909 	ump->vat_entries = vat_entries;
2910 	ump->vat_last_free_lb = 0;		/* start at beginning */
2911 
2912 out:
2913 	if (error) {
2914 		if (vat_table)
2915 			free(vat_table, M_UDFVOLD);
2916 	}
2917 	free(raw_vat, M_TEMP);
2918 
2919 	return error;
2920 }
2921 
2922 /* --------------------------------------------------------------------- */
2923 
2924 static int
2925 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
2926 {
2927 	struct udf_node *vat_node;
2928 	struct long_ad	 icb_loc;
2929 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
2930 	int error;
2931 
2932 	/* mapping info not needed */
2933 	mapping = mapping;
2934 
2935 	vat_loc = ump->last_possible_vat_location;
2936 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
2937 
2938 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
2939 		vat_loc, early_vat_loc));
2940 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
2941 	late_vat_loc  = vat_loc + 1024;
2942 
2943 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
2944 		vat_loc, early_vat_loc));
2945 
2946 	/* start looking from the end of the range */
2947 	do {
2948 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
2949 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
2950 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
2951 
2952 		error = udf_get_node(ump, &icb_loc, &vat_node);
2953 		if (!error) {
2954 			error = udf_check_for_vat(vat_node);
2955 			DPRINTFIF(VOLUMES, !error,
2956 				("VAT accepted at %d\n", vat_loc));
2957 			if (!error)
2958 				break;
2959 		}
2960 		if (vat_node) {
2961 			vput(vat_node->vnode);
2962 			vat_node = NULL;
2963 		}
2964 		vat_loc--;	/* walk backwards */
2965 	} while (vat_loc >= early_vat_loc);
2966 
2967 	/* keep our VAT node around */
2968 	if (vat_node) {
2969 		UDF_SET_SYSTEMFILE(vat_node->vnode);
2970 		ump->vat_node = vat_node;
2971 	}
2972 
2973 	return error;
2974 }
2975 
2976 /* --------------------------------------------------------------------- */
2977 
2978 static int
2979 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
2980 {
2981 	union dscrptr *dscr;
2982 	struct part_map_spare *pms = &mapping->pms;
2983 	uint32_t lb_num;
2984 	int spar, error;
2985 
2986 	/*
2987 	 * The partition mapping passed on to us specifies the information we
2988 	 * need to locate and initialise the sparable partition mapping
2989 	 * information we need.
2990 	 */
2991 
2992 	DPRINTF(VOLUMES, ("Read sparable table\n"));
2993 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
2994 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
2995 
2996 	for (spar = 0; spar < pms->n_st; spar++) {
2997 		lb_num = pms->st_loc[spar];
2998 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
2999 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3000 		if (!error && dscr) {
3001 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3002 				if (ump->sparing_table)
3003 					free(ump->sparing_table, M_UDFVOLD);
3004 				ump->sparing_table = &dscr->spt;
3005 				dscr = NULL;
3006 				DPRINTF(VOLUMES,
3007 				    ("Sparing table accepted (%d entries)\n",
3008 				     udf_rw16(ump->sparing_table->rt_l)));
3009 				break;	/* we're done */
3010 			}
3011 		}
3012 		if (dscr)
3013 			free(dscr, M_UDFVOLD);
3014 	}
3015 
3016 	if (ump->sparing_table)
3017 		return 0;
3018 
3019 	return ENOENT;
3020 }
3021 
3022 /* --------------------------------------------------------------------- */
3023 
3024 static int
3025 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3026 {
3027 	struct part_map_meta *pmm = &mapping->pmm;
3028 	struct long_ad	 icb_loc;
3029 	struct vnode *vp;
3030 	int error;
3031 
3032 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3033 	icb_loc.loc.part_num = pmm->part_num;
3034 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
3035 	DPRINTF(VOLUMES, ("Metadata file\n"));
3036 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3037 	if (ump->metadata_node) {
3038 		vp = ump->metadata_node->vnode;
3039 		UDF_SET_SYSTEMFILE(vp);
3040 	}
3041 
3042 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
3043 	if (icb_loc.loc.lb_num != -1) {
3044 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
3045 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3046 		if (ump->metadatamirror_node) {
3047 			vp = ump->metadatamirror_node->vnode;
3048 			UDF_SET_SYSTEMFILE(vp);
3049 		}
3050 	}
3051 
3052 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
3053 	if (icb_loc.loc.lb_num != -1) {
3054 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3055 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3056 		if (ump->metadatabitmap_node) {
3057 			vp = ump->metadatabitmap_node->vnode;
3058 			UDF_SET_SYSTEMFILE(vp);
3059 		}
3060 	}
3061 
3062 	/* if we're mounting read-only we relax the requirements */
3063 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3064 		error = EFAULT;
3065 		if (ump->metadata_node)
3066 			error = 0;
3067 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3068 			printf( "udf mount: Metadata file not readable, "
3069 				"substituting Metadata copy file\n");
3070 			ump->metadata_node = ump->metadatamirror_node;
3071 			ump->metadatamirror_node = NULL;
3072 			error = 0;
3073 		}
3074 	} else {
3075 		/* mounting read/write */
3076 		/* XXX DISABLED! metadata writing is not working yet XXX */
3077 		if (error)
3078 			error = EROFS;
3079 	}
3080 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3081 				   "metadata files\n"));
3082 	return error;
3083 }
3084 
3085 /* --------------------------------------------------------------------- */
3086 
3087 int
3088 udf_read_vds_tables(struct udf_mount *ump)
3089 {
3090 	union udf_pmap *mapping;
3091 	/* struct udf_args *args = &ump->mount_args; */
3092 	uint32_t n_pm, mt_l;
3093 	uint32_t log_part;
3094 	uint8_t *pmap_pos;
3095 	int pmap_size;
3096 	int error;
3097 
3098 	/* Iterate (again) over the part mappings for locations   */
3099 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
3100 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
3101 	pmap_pos =  ump->logical_vol->maps;
3102 
3103 	for (log_part = 0; log_part < n_pm; log_part++) {
3104 		mapping = (union udf_pmap *) pmap_pos;
3105 		switch (ump->vtop_tp[log_part]) {
3106 		case UDF_VTOP_TYPE_PHYS :
3107 			/* nothing */
3108 			break;
3109 		case UDF_VTOP_TYPE_VIRT :
3110 			/* search and load VAT */
3111 			error = udf_search_vat(ump, mapping);
3112 			if (error)
3113 				return ENOENT;
3114 			break;
3115 		case UDF_VTOP_TYPE_SPARABLE :
3116 			/* load one of the sparable tables */
3117 			error = udf_read_sparables(ump, mapping);
3118 			if (error)
3119 				return ENOENT;
3120 			break;
3121 		case UDF_VTOP_TYPE_META :
3122 			/* load the associated file descriptors */
3123 			error = udf_read_metadata_nodes(ump, mapping);
3124 			if (error)
3125 				return ENOENT;
3126 			break;
3127 		default:
3128 			break;
3129 		}
3130 		pmap_size  = pmap_pos[1];
3131 		pmap_pos  += pmap_size;
3132 	}
3133 
3134 	/* read in and check unallocated and free space info if writing */
3135 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3136 		error = udf_read_physical_partition_spacetables(ump);
3137 		if (error)
3138 			return error;
3139 
3140 		/* also read in metadata partion spacebitmap if defined */
3141 		error = udf_read_metadata_partition_spacetable(ump);
3142 			return error;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 /* --------------------------------------------------------------------- */
3149 
3150 int
3151 udf_read_rootdirs(struct udf_mount *ump)
3152 {
3153 	union dscrptr *dscr;
3154 	/* struct udf_args *args = &ump->mount_args; */
3155 	struct udf_node *rootdir_node, *streamdir_node;
3156 	struct long_ad  fsd_loc, *dir_loc;
3157 	uint32_t lb_num, dummy;
3158 	uint32_t fsd_len;
3159 	int dscr_type;
3160 	int error;
3161 
3162 	/* TODO implement FSD reading in separate function like integrity? */
3163 	/* get fileset descriptor sequence */
3164 	fsd_loc = ump->logical_vol->lv_fsd_loc;
3165 	fsd_len = udf_rw32(fsd_loc.len);
3166 
3167 	dscr  = NULL;
3168 	error = 0;
3169 	while (fsd_len || error) {
3170 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3171 		/* translate fsd_loc to lb_num */
3172 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3173 		if (error)
3174 			break;
3175 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3176 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3177 		/* end markers */
3178 		if (error || (dscr == NULL))
3179 			break;
3180 
3181 		/* analyse */
3182 		dscr_type = udf_rw16(dscr->tag.id);
3183 		if (dscr_type == TAGID_TERM)
3184 			break;
3185 		if (dscr_type != TAGID_FSD) {
3186 			free(dscr, M_UDFVOLD);
3187 			return ENOENT;
3188 		}
3189 
3190 		/*
3191 		 * TODO check for multiple fileset descriptors; its only
3192 		 * picking the last now. Also check for FSD
3193 		 * correctness/interpretability
3194 		 */
3195 
3196 		/* update */
3197 		if (ump->fileset_desc) {
3198 			free(ump->fileset_desc, M_UDFVOLD);
3199 		}
3200 		ump->fileset_desc = &dscr->fsd;
3201 		dscr = NULL;
3202 
3203 		/* continue to the next fsd */
3204 		fsd_len -= ump->discinfo.sector_size;
3205 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3206 
3207 		/* follow up to fsd->next_ex (long_ad) if its not null */
3208 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3209 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3210 			fsd_loc = ump->fileset_desc->next_ex;
3211 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3212 		}
3213 	}
3214 	if (dscr)
3215 		free(dscr, M_UDFVOLD);
3216 
3217 	/* there has to be one */
3218 	if (ump->fileset_desc == NULL)
3219 		return ENOENT;
3220 
3221 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
3222 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3223 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3224 
3225 	/*
3226 	 * Now the FSD is known, read in the rootdirectory and if one exists,
3227 	 * the system stream dir. Some files in the system streamdir are not
3228 	 * wanted in this implementation since they are not maintained. If
3229 	 * writing is enabled we'll delete these files if they exist.
3230 	 */
3231 
3232 	rootdir_node = streamdir_node = NULL;
3233 	dir_loc = NULL;
3234 
3235 	/* try to read in the rootdir */
3236 	dir_loc = &ump->fileset_desc->rootdir_icb;
3237 	error = udf_get_node(ump, dir_loc, &rootdir_node);
3238 	if (error)
3239 		return ENOENT;
3240 
3241 	/* aparently it read in fine */
3242 
3243 	/*
3244 	 * Try the system stream directory; not very likely in the ones we
3245 	 * test, but for completeness.
3246 	 */
3247 	dir_loc = &ump->fileset_desc->streamdir_icb;
3248 	if (udf_rw32(dir_loc->len)) {
3249 		printf("udf_read_rootdirs: streamdir defined ");
3250 		error = udf_get_node(ump, dir_loc, &streamdir_node);
3251 		if (error) {
3252 			printf("but error in streamdir reading\n");
3253 		} else {
3254 			printf("but ignored\n");
3255 			/*
3256 			 * TODO process streamdir `baddies' i.e. files we dont
3257 			 * want if R/W
3258 			 */
3259 		}
3260 	}
3261 
3262 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3263 
3264 	/* release the vnodes again; they'll be auto-recycled later */
3265 	if (streamdir_node) {
3266 		vput(streamdir_node->vnode);
3267 	}
3268 	if (rootdir_node) {
3269 		vput(rootdir_node->vnode);
3270 	}
3271 
3272 	return 0;
3273 }
3274 
3275 /* --------------------------------------------------------------------- */
3276 
3277 /* To make absolutely sure we are NOT returning zero, add one :) */
3278 
3279 long
3280 udf_calchash(struct long_ad *icbptr)
3281 {
3282 	/* ought to be enough since each mountpoint has its own chain */
3283 	return udf_rw32(icbptr->loc.lb_num) + 1;
3284 }
3285 
3286 
3287 static struct udf_node *
3288 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3289 {
3290 	struct udf_node *node;
3291 	struct vnode *vp;
3292 	uint32_t hashline;
3293 
3294 loop:
3295 	mutex_enter(&ump->ihash_lock);
3296 
3297 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
3298 	LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
3299 		assert(node);
3300 		if (node->loc.loc.lb_num   == icbptr->loc.lb_num &&
3301 		    node->loc.loc.part_num == icbptr->loc.part_num) {
3302 			vp = node->vnode;
3303 			assert(vp);
3304 			mutex_enter(&vp->v_interlock);
3305 			mutex_exit(&ump->ihash_lock);
3306 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
3307 				goto loop;
3308 			return node;
3309 		}
3310 	}
3311 	mutex_exit(&ump->ihash_lock);
3312 
3313 	return NULL;
3314 }
3315 
3316 
3317 static void
3318 udf_sorted_list_insert(struct udf_node *node)
3319 {
3320 	struct udf_mount *ump;
3321 	struct udf_node  *s_node, *last_node;
3322 	uint32_t loc, s_loc;
3323 
3324 	ump = node->ump;
3325 	last_node = NULL;	/* XXX gcc */
3326 
3327 	if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
3328 		LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
3329 		return;
3330 	}
3331 
3332 	/*
3333 	 * We sort on logical block number here and not on physical block
3334 	 * number here. Ideally we should go for the physical block nr to get
3335 	 * better sync performance though this sort will ensure that packets
3336 	 * won't get spit up unnessisarily.
3337 	 */
3338 
3339 	loc = udf_rw32(node->loc.loc.lb_num);
3340 	LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
3341 		s_loc = udf_rw32(s_node->loc.loc.lb_num);
3342 		if (s_loc > loc) {
3343 			LIST_INSERT_BEFORE(s_node, node, sortchain);
3344 			return;
3345 		}
3346 		last_node = s_node;
3347 	}
3348 	LIST_INSERT_AFTER(last_node, node, sortchain);
3349 }
3350 
3351 
3352 static void
3353 udf_register_node(struct udf_node *node)
3354 {
3355 	struct udf_mount *ump;
3356 	struct udf_node *chk;
3357 	uint32_t hashline;
3358 
3359 	ump = node->ump;
3360 	mutex_enter(&ump->ihash_lock);
3361 
3362 	/* add to our hash table */
3363 	hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
3364 #ifdef DEBUG
3365 	LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
3366 		assert(chk);
3367 		if (chk->loc.loc.lb_num   == node->loc.loc.lb_num &&
3368 		    chk->loc.loc.part_num == node->loc.loc.part_num)
3369 			panic("Double node entered\n");
3370 	}
3371 #else
3372 	chk = NULL;
3373 #endif
3374 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
3375 
3376 	/* add to our sorted list */
3377 	udf_sorted_list_insert(node);
3378 
3379 	mutex_exit(&ump->ihash_lock);
3380 }
3381 
3382 
3383 static void
3384 udf_deregister_node(struct udf_node *node)
3385 {
3386 	struct udf_mount *ump;
3387 
3388 	ump = node->ump;
3389 	mutex_enter(&ump->ihash_lock);
3390 
3391 	/* from hash and sorted list */
3392 	LIST_REMOVE(node, hashchain);
3393 	LIST_REMOVE(node, sortchain);
3394 
3395 	mutex_exit(&ump->ihash_lock);
3396 }
3397 
3398 /* --------------------------------------------------------------------- */
3399 
3400 int
3401 udf_open_logvol(struct udf_mount *ump)
3402 {
3403 	int logvol_integrity;
3404 	int error;
3405 
3406 	/* already/still open? */
3407 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3408 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
3409 		return 0;
3410 
3411 	/* can we open it ? */
3412 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3413 		return EROFS;
3414 
3415 	/* setup write parameters */
3416 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3417 	if ((error = udf_setup_writeparams(ump)) != 0)
3418 		return error;
3419 
3420 	/* determine data and metadata tracks (most likely same) */
3421 	error = udf_search_writing_tracks(ump);
3422 	if (error) {
3423 		/* most likely lack of space */
3424 		printf("udf_open_logvol: error searching writing tracks\n");
3425 		return EROFS;
3426 	}
3427 
3428 	/* writeout/update lvint on disc or only in memory */
3429 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
3430 	if (ump->lvopen & UDF_OPEN_SESSION) {
3431 		/* TODO implement writeout of VRS + VDS */
3432 		printf( "udf_open_logvol:Opening a closed session not yet "
3433 			"implemented\n");
3434 		return EROFS;
3435 
3436 		/* determine data and metadata tracks again */
3437 		error = udf_search_writing_tracks(ump);
3438 	}
3439 
3440 	/* mark it open */
3441 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3442 
3443 	/* do we need to write it out? */
3444 	if (ump->lvopen & UDF_WRITE_LVINT) {
3445 		error = udf_writeout_lvint(ump, ump->lvopen);
3446 		/* if we couldn't write it mark it closed again */
3447 		if (error) {
3448 			ump->logvol_integrity->integrity_type =
3449 						udf_rw32(UDF_INTEGRITY_CLOSED);
3450 			return error;
3451 		}
3452 	}
3453 
3454 	return 0;
3455 }
3456 
3457 
3458 int
3459 udf_close_logvol(struct udf_mount *ump, int mntflags)
3460 {
3461 	int logvol_integrity;
3462 	int error = 0, error1 = 0, error2 = 0;
3463 	int n;
3464 
3465 	/* already/still closed? */
3466 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3467 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3468 		return 0;
3469 
3470 	/* writeout/update lvint or write out VAT */
3471 	DPRINTF(VOLUMES, ("Closing logical volume\n"));
3472 	if (ump->lvclose & UDF_WRITE_VAT) {
3473 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3474 
3475 		/* write out the VAT node */
3476 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
3477 		udf_writeout_vat(ump);
3478 
3479 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3480 		for (n = 0; n < 16; n++) {
3481 			ump->vat_node->i_flags |= IN_MODIFIED;
3482 			error = VOP_FSYNC(ump->vat_node->vnode,
3483 					FSCRED, FSYNC_WAIT, 0, 0);
3484 		}
3485 		if (error) {
3486 			printf("udf_close_logvol: writeout of VAT failed\n");
3487 			return error;
3488 		}
3489 	}
3490 
3491 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3492 		/* sync writeout metadata spacetable if existing */
3493 		error1 = udf_write_metadata_partition_spacetable(ump, true);
3494 		if (error1)
3495 			printf( "udf_close_logvol: writeout of metadata space "
3496 				"bitmap failed\n");
3497 
3498 		/* sync writeout partition spacetables */
3499 		error2 = udf_write_physical_partition_spacetables(ump, true);
3500 		if (error2)
3501 			printf( "udf_close_logvol: writeout of space tables "
3502 				"failed\n");
3503 
3504 		if (error1 || error2)
3505 			return (error1 | error2);
3506 
3507 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3508 	}
3509 
3510 	if (ump->lvclose & UDF_CLOSE_SESSION) {
3511 		printf("TODO: Closing a session is not yet implemented\n");
3512 		return EROFS;
3513 		ump->lvopen |= UDF_OPEN_SESSION;
3514 	}
3515 
3516 	/* mark it closed */
3517 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3518 
3519 	/* do we need to write out the logical volume integrity */
3520 	if (ump->lvclose & UDF_WRITE_LVINT)
3521 		error = udf_writeout_lvint(ump, ump->lvopen);
3522 	if (error) {
3523 		/* HELP now what? mark it open again for now */
3524 		ump->logvol_integrity->integrity_type =
3525 			udf_rw32(UDF_INTEGRITY_OPEN);
3526 		return error;
3527 	}
3528 
3529 	(void) udf_synchronise_caches(ump);
3530 
3531 	return 0;
3532 }
3533 
3534 /* --------------------------------------------------------------------- */
3535 
3536 /*
3537  * Genfs interfacing
3538  *
3539  * static const struct genfs_ops udf_genfsops = {
3540  * 	.gop_size = genfs_size,
3541  * 		size of transfers
3542  * 	.gop_alloc = udf_gop_alloc,
3543  * 		allocate len bytes at offset
3544  * 	.gop_write = genfs_gop_write,
3545  * 		putpages interface code
3546  * 	.gop_markupdate = udf_gop_markupdate,
3547  * 		set update/modify flags etc.
3548  * }
3549  */
3550 
3551 /*
3552  * Genfs interface. These four functions are the only ones defined though not
3553  * documented... great....
3554  */
3555 
3556 /*
3557  * Callback from genfs to allocate len bytes at offset off; only called when
3558  * filling up gaps in the allocation.
3559  */
3560 /* XXX should we check if there is space enough in udf_gop_alloc? */
3561 static int
3562 udf_gop_alloc(struct vnode *vp, off_t off,
3563     off_t len, int flags, kauth_cred_t cred)
3564 {
3565 #if 0
3566 	struct udf_node *udf_node = VTOI(vp);
3567 	struct udf_mount *ump = udf_node->ump;
3568 	uint32_t lb_size, num_lb;
3569 #endif
3570 
3571 	DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
3572 	DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
3573 
3574 	return 0;
3575 }
3576 
3577 
3578 /*
3579  * callback from genfs to update our flags
3580  */
3581 static void
3582 udf_gop_markupdate(struct vnode *vp, int flags)
3583 {
3584 	struct udf_node *udf_node = VTOI(vp);
3585 	u_long mask = 0;
3586 
3587 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3588 		mask = IN_ACCESS;
3589 	}
3590 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3591 		if (vp->v_type == VREG) {
3592 			mask |= IN_CHANGE | IN_UPDATE;
3593 		} else {
3594 			mask |= IN_MODIFY;
3595 		}
3596 	}
3597 	if (mask) {
3598 		udf_node->i_flags |= mask;
3599 	}
3600 }
3601 
3602 
3603 static const struct genfs_ops udf_genfsops = {
3604 	.gop_size = genfs_size,
3605 	.gop_alloc = udf_gop_alloc,
3606 	.gop_write = genfs_gop_write_rwmap,
3607 	.gop_markupdate = udf_gop_markupdate,
3608 };
3609 
3610 
3611 /* --------------------------------------------------------------------- */
3612 
3613 int
3614 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
3615 {
3616 	union dscrptr *dscr;
3617 	int error;
3618 
3619 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
3620 	bzero(dscr, ump->discinfo.sector_size);
3621 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
3622 
3623 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
3624 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
3625 	(void) udf_validate_tag_and_crc_sums(dscr);
3626 
3627 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
3628 			dscr, sector, sector);
3629 
3630 	free(dscr, M_TEMP);
3631 
3632 	return error;
3633 }
3634 
3635 
3636 /* --------------------------------------------------------------------- */
3637 
3638 /* UDF<->unix converters */
3639 
3640 /* --------------------------------------------------------------------- */
3641 
3642 static mode_t
3643 udf_perm_to_unix_mode(uint32_t perm)
3644 {
3645 	mode_t mode;
3646 
3647 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
3648 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
3649 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
3650 
3651 	return mode;
3652 }
3653 
3654 /* --------------------------------------------------------------------- */
3655 
3656 static uint32_t
3657 unix_mode_to_udf_perm(mode_t mode)
3658 {
3659 	uint32_t perm;
3660 
3661 	perm  = ((mode & S_IRWXO)     );
3662 	perm |= ((mode & S_IRWXG) << 2);
3663 	perm |= ((mode & S_IRWXU) << 4);
3664 	perm |= ((mode & S_IWOTH) << 3);
3665 	perm |= ((mode & S_IWGRP) << 5);
3666 	perm |= ((mode & S_IWUSR) << 7);
3667 
3668 	return perm;
3669 }
3670 
3671 /* --------------------------------------------------------------------- */
3672 
3673 static uint32_t
3674 udf_icb_to_unix_filetype(uint32_t icbftype)
3675 {
3676 	switch (icbftype) {
3677 	case UDF_ICB_FILETYPE_DIRECTORY :
3678 	case UDF_ICB_FILETYPE_STREAMDIR :
3679 		return S_IFDIR;
3680 	case UDF_ICB_FILETYPE_FIFO :
3681 		return S_IFIFO;
3682 	case UDF_ICB_FILETYPE_CHARDEVICE :
3683 		return S_IFCHR;
3684 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
3685 		return S_IFBLK;
3686 	case UDF_ICB_FILETYPE_RANDOMACCESS :
3687 	case UDF_ICB_FILETYPE_REALTIME :
3688 		return S_IFREG;
3689 	case UDF_ICB_FILETYPE_SYMLINK :
3690 		return S_IFLNK;
3691 	case UDF_ICB_FILETYPE_SOCKET :
3692 		return S_IFSOCK;
3693 	}
3694 	/* no idea what this is */
3695 	return 0;
3696 }
3697 
3698 /* --------------------------------------------------------------------- */
3699 
3700 void
3701 udf_to_unix_name(char *result, int result_len, char *id, int len,
3702 	struct charspec *chsp)
3703 {
3704 	uint16_t   *raw_name, *unix_name;
3705 	uint16_t   *inchp, ch;
3706 	uint8_t	   *outchp;
3707 	const char *osta_id = "OSTA Compressed Unicode";
3708 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
3709 
3710 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
3711 	unix_name = raw_name + 1024;			/* split space in half */
3712 	assert(sizeof(char) == sizeof(uint8_t));
3713 	outchp = (uint8_t *) result;
3714 
3715 	is_osta_typ0  = (chsp->type == 0);
3716 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
3717 	if (is_osta_typ0) {
3718 		/* TODO clean up */
3719 		*raw_name = *unix_name = 0;
3720 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
3721 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
3722 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
3723 		/* output UTF8 */
3724 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
3725 			ch = *inchp;
3726 			nout = wput_utf8(outchp, result_len, ch);
3727 			outchp += nout; result_len -= nout;
3728 			if (!ch) break;
3729 		}
3730 		*outchp++ = 0;
3731 	} else {
3732 		/* assume 8bit char length byte latin-1 */
3733 		assert(*id == 8);
3734 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
3735 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
3736 	}
3737 	free(raw_name, M_UDFTEMP);
3738 }
3739 
3740 /* --------------------------------------------------------------------- */
3741 
3742 void
3743 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
3744 	struct charspec *chsp)
3745 {
3746 	uint16_t   *raw_name;
3747 	uint16_t   *outchp;
3748 	const char *inchp;
3749 	const char *osta_id = "OSTA Compressed Unicode";
3750 	int         udf_chars, is_osta_typ0, bits;
3751 	size_t      cnt;
3752 
3753 	/* allocate temporary unicode-16 buffer */
3754 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
3755 
3756 	/* convert utf8 to unicode-16 */
3757 	*raw_name = 0;
3758 	inchp  = name;
3759 	outchp = raw_name;
3760 	bits = 8;
3761 	for (cnt = name_len, udf_chars = 0; cnt;) {
3762 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
3763 		*outchp = wget_utf8(&inchp, &cnt);
3764 		if (*outchp > 0xff)
3765 			bits=16;
3766 		outchp++;
3767 		udf_chars++;
3768 	}
3769 	/* null terminate just in case */
3770 	*outchp++ = 0;
3771 
3772 	is_osta_typ0  = (chsp->type == 0);
3773 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
3774 	if (is_osta_typ0) {
3775 		udf_chars = udf_CompressUnicode(udf_chars, bits,
3776 				(unicode_t *) raw_name,
3777 				(byte *) result);
3778 	} else {
3779 		printf("unix to udf name: no CHSP0 ?\n");
3780 		/* XXX assume 8bit char length byte latin-1 */
3781 		*result++ = 8; udf_chars = 1;
3782 		strncpy(result, name + 1, name_len);
3783 		udf_chars += name_len;
3784 	}
3785 	*result_len = udf_chars;
3786 	free(raw_name, M_UDFTEMP);
3787 }
3788 
3789 /* --------------------------------------------------------------------- */
3790 
3791 void
3792 udf_timestamp_to_timespec(struct udf_mount *ump,
3793 			  struct timestamp *timestamp,
3794 			  struct timespec  *timespec)
3795 {
3796 	struct clock_ymdhms ymdhms;
3797 	uint32_t usecs, secs, nsecs;
3798 	uint16_t tz;
3799 
3800 	/* fill in ymdhms structure from timestamp */
3801 	memset(&ymdhms, 0, sizeof(ymdhms));
3802 	ymdhms.dt_year = udf_rw16(timestamp->year);
3803 	ymdhms.dt_mon  = timestamp->month;
3804 	ymdhms.dt_day  = timestamp->day;
3805 	ymdhms.dt_wday = 0; /* ? */
3806 	ymdhms.dt_hour = timestamp->hour;
3807 	ymdhms.dt_min  = timestamp->minute;
3808 	ymdhms.dt_sec  = timestamp->second;
3809 
3810 	secs = clock_ymdhms_to_secs(&ymdhms);
3811 	usecs = timestamp->usec +
3812 		100*timestamp->hund_usec + 10000*timestamp->centisec;
3813 	nsecs = usecs * 1000;
3814 
3815 	/*
3816 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
3817 	 * compliment, so we gotta do some extra magic to handle it right.
3818 	 */
3819 	tz  = udf_rw16(timestamp->type_tz);
3820 	tz &= 0x0fff;			/* only lower 12 bits are significant */
3821 	if (tz & 0x0800)		/* sign extention */
3822 		tz |= 0xf000;
3823 
3824 	/* TODO check timezone conversion */
3825 	/* check if we are specified a timezone to convert */
3826 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
3827 		if ((int16_t) tz != -2047)
3828 			secs -= (int16_t) tz * 60;
3829 	} else {
3830 		secs -= ump->mount_args.gmtoff;
3831 	}
3832 
3833 	timespec->tv_sec  = secs;
3834 	timespec->tv_nsec = nsecs;
3835 }
3836 
3837 
3838 void
3839 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
3840 {
3841 	struct clock_ymdhms ymdhms;
3842 	uint32_t husec, usec, csec;
3843 
3844 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
3845 
3846 	usec   = timespec->tv_nsec / 1000;
3847 	husec  =  usec / 100;
3848 	usec  -= husec * 100;				/* only 0-99 in usec  */
3849 	csec   = husec / 100;				/* only 0-99 in csec  */
3850 	husec -=  csec * 100;				/* only 0-99 in husec */
3851 
3852 	/* set method 1 for CUT/GMT */
3853 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
3854 	timestamp->year		= udf_rw16(ymdhms.dt_year);
3855 	timestamp->month	= ymdhms.dt_mon;
3856 	timestamp->day		= ymdhms.dt_day;
3857 	timestamp->hour		= ymdhms.dt_hour;
3858 	timestamp->minute	= ymdhms.dt_min;
3859 	timestamp->second	= ymdhms.dt_sec;
3860 	timestamp->centisec	= csec;
3861 	timestamp->hund_usec	= husec;
3862 	timestamp->usec		= usec;
3863 }
3864 
3865 /* --------------------------------------------------------------------- */
3866 
3867 /*
3868  * Attribute and filetypes converters with get/set pairs
3869  */
3870 
3871 uint32_t
3872 udf_getaccessmode(struct udf_node *udf_node)
3873 {
3874 	struct file_entry     *fe = udf_node->fe;;
3875 	struct extfile_entry *efe = udf_node->efe;
3876 	uint32_t udf_perm, icbftype;
3877 	uint32_t mode, ftype;
3878 	uint16_t icbflags;
3879 
3880 	UDF_LOCK_NODE(udf_node, 0);
3881 	if (fe) {
3882 		udf_perm = udf_rw32(fe->perm);
3883 		icbftype = fe->icbtag.file_type;
3884 		icbflags = udf_rw16(fe->icbtag.flags);
3885 	} else {
3886 		assert(udf_node->efe);
3887 		udf_perm = udf_rw32(efe->perm);
3888 		icbftype = efe->icbtag.file_type;
3889 		icbflags = udf_rw16(efe->icbtag.flags);
3890 	}
3891 
3892 	mode  = udf_perm_to_unix_mode(udf_perm);
3893 	ftype = udf_icb_to_unix_filetype(icbftype);
3894 
3895 	/* set suid, sgid, sticky from flags in fe/efe */
3896 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
3897 		mode |= S_ISUID;
3898 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
3899 		mode |= S_ISGID;
3900 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
3901 		mode |= S_ISVTX;
3902 
3903 	UDF_UNLOCK_NODE(udf_node, 0);
3904 
3905 	return mode | ftype;
3906 }
3907 
3908 
3909 void
3910 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
3911 {
3912 	struct file_entry    *fe  = udf_node->fe;
3913 	struct extfile_entry *efe = udf_node->efe;
3914 	uint32_t udf_perm;
3915 	uint16_t icbflags;
3916 
3917 	UDF_LOCK_NODE(udf_node, 0);
3918 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
3919 	if (fe) {
3920 		icbflags = udf_rw16(fe->icbtag.flags);
3921 	} else {
3922 		icbflags = udf_rw16(efe->icbtag.flags);
3923 	}
3924 
3925 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
3926 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
3927 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
3928 	if (mode & S_ISUID)
3929 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
3930 	if (mode & S_ISGID)
3931 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
3932 	if (mode & S_ISVTX)
3933 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
3934 
3935 	if (fe) {
3936 		fe->perm  = udf_rw32(udf_perm);
3937 		fe->icbtag.flags  = udf_rw16(icbflags);
3938 	} else {
3939 		efe->perm = udf_rw32(udf_perm);
3940 		efe->icbtag.flags = udf_rw16(icbflags);
3941 	}
3942 
3943 	UDF_UNLOCK_NODE(udf_node, 0);
3944 }
3945 
3946 
3947 void
3948 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
3949 {
3950 	struct udf_mount     *ump = udf_node->ump;
3951 	struct file_entry    *fe  = udf_node->fe;
3952 	struct extfile_entry *efe = udf_node->efe;
3953 	uid_t uid;
3954 	gid_t gid;
3955 
3956 	UDF_LOCK_NODE(udf_node, 0);
3957 	if (fe) {
3958 		uid = (uid_t)udf_rw32(fe->uid);
3959 		gid = (gid_t)udf_rw32(fe->gid);
3960 	} else {
3961 		assert(udf_node->efe);
3962 		uid = (uid_t)udf_rw32(efe->uid);
3963 		gid = (gid_t)udf_rw32(efe->gid);
3964 	}
3965 
3966 	/* do the uid/gid translation game */
3967 	if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
3968 		uid = ump->mount_args.anon_uid;
3969 		gid = ump->mount_args.anon_gid;
3970 	}
3971 	*uidp = uid;
3972 	*gidp = gid;
3973 
3974 	UDF_UNLOCK_NODE(udf_node, 0);
3975 }
3976 
3977 
3978 void
3979 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
3980 {
3981 	struct udf_mount     *ump = udf_node->ump;
3982 	struct file_entry    *fe  = udf_node->fe;
3983 	struct extfile_entry *efe = udf_node->efe;
3984 	uid_t nobody_uid;
3985 	gid_t nobody_gid;
3986 
3987 	UDF_LOCK_NODE(udf_node, 0);
3988 
3989 	/* do the uid/gid translation game */
3990 	nobody_uid = ump->mount_args.nobody_uid;
3991 	nobody_gid = ump->mount_args.nobody_gid;
3992 	if ((uid == nobody_uid) && (gid == nobody_gid)) {
3993 		uid = (uid_t) -1;
3994 		gid = (gid_t) -1;
3995 	}
3996 
3997 	if (fe) {
3998 		fe->uid  = udf_rw32((uint32_t) uid);
3999 		fe->gid  = udf_rw32((uint32_t) gid);
4000 	} else {
4001 		efe->uid = udf_rw32((uint32_t) uid);
4002 		efe->gid = udf_rw32((uint32_t) gid);
4003 	}
4004 
4005 	UDF_UNLOCK_NODE(udf_node, 0);
4006 }
4007 
4008 
4009 /* --------------------------------------------------------------------- */
4010 
4011 /*
4012  * UDF dirhash implementation
4013  */
4014 
4015 static uint32_t
4016 udf_dirhash_hash(const char *str, int namelen)
4017 {
4018 	uint32_t hash = 5381;
4019         int i, c;
4020 
4021 	for (i = 0; i < namelen; i++) {
4022 		c = *str++;
4023 		hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
4024 	}
4025         return hash;
4026 }
4027 
4028 
4029 static void
4030 udf_dirhash_purge(struct udf_dirhash *dirh)
4031 {
4032 	struct udf_dirhash_entry *dirh_e;
4033 	uint32_t hashline;
4034 
4035 	if (dirh == NULL)
4036 		return;
4037 
4038 	if (dirh->size == 0)
4039 		return;
4040 
4041 	for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) {
4042 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4043 		while (dirh_e) {
4044 			LIST_REMOVE(dirh_e, next);
4045 			pool_put(&udf_dirhash_entry_pool, dirh_e);
4046 			dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4047 		}
4048 	}
4049 	dirh_e = LIST_FIRST(&dirh->free_entries);
4050 
4051 	while (dirh_e) {
4052 		LIST_REMOVE(dirh_e, next);
4053 		pool_put(&udf_dirhash_entry_pool, dirh_e);
4054 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4055 	}
4056 
4057 	dirh->flags &= ~UDF_DIRH_COMPLETE;
4058 	dirh->flags |=  UDF_DIRH_PURGED;
4059 
4060 	udf_dirhashsize -= dirh->size;
4061 	dirh->size = 0;
4062 }
4063 
4064 
4065 static void
4066 udf_dirhash_destroy(struct udf_dirhash **dirhp)
4067 {
4068 	struct udf_dirhash *dirh = *dirhp;
4069 
4070 	if (dirh == NULL)
4071 		return;
4072 
4073 	mutex_enter(&udf_dirhashmutex);
4074 
4075 	udf_dirhash_purge(dirh);
4076 	TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
4077 	pool_put(&udf_dirhash_pool, dirh);
4078 
4079 	*dirhp = NULL;
4080 
4081 	mutex_exit(&udf_dirhashmutex);
4082 }
4083 
4084 
4085 static void
4086 udf_dirhash_get(struct udf_dirhash **dirhp)
4087 {
4088 	struct udf_dirhash *dirh;
4089 	uint32_t hashline;
4090 
4091 	mutex_enter(&udf_dirhashmutex);
4092 
4093 	dirh = *dirhp;
4094 	if (*dirhp == NULL) {
4095 		dirh = pool_get(&udf_dirhash_pool, PR_WAITOK);
4096 		*dirhp = dirh;
4097 		memset(dirh, 0, sizeof(struct udf_dirhash));
4098 		for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++)
4099 			LIST_INIT(&dirh->entries[hashline]);
4100 		dirh->size   = 0;
4101 		dirh->refcnt = 0;
4102 		dirh->flags  = 0;
4103 	} else {
4104 		TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
4105 	}
4106 
4107 	dirh->refcnt++;
4108 	TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next);
4109 
4110 	mutex_exit(&udf_dirhashmutex);
4111 }
4112 
4113 
4114 static void
4115 udf_dirhash_put(struct udf_dirhash *dirh)
4116 {
4117 	mutex_enter(&udf_dirhashmutex);
4118 	dirh->refcnt--;
4119 	mutex_exit(&udf_dirhashmutex);
4120 }
4121 
4122 
4123 static void
4124 udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid,
4125 	struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new)
4126 {
4127 	struct udf_dirhash *dirh, *del_dirh, *prev_dirh;
4128 	struct udf_dirhash_entry *dirh_e;
4129 	uint32_t hashvalue, hashline;
4130 	int entrysize;
4131 
4132 	/* make sure we have a dirhash to work on */
4133 	dirh = dir_node->dir_hash;
4134 	KASSERT(dirh);
4135 	KASSERT(dirh->refcnt > 0);
4136 
4137 	/* are we trying to re-enter an entry? */
4138 	if (!new && (dirh->flags & UDF_DIRH_COMPLETE))
4139 		return;
4140 
4141 	/* calculate our hash */
4142 	hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
4143 	hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
4144 
4145 	/* lookup and insert entry if not there yet */
4146 	LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
4147 		/* check for hash collision */
4148 		if (dirh_e->hashvalue != hashvalue)
4149 			continue;
4150 		if (dirh_e->offset != offset)
4151 			continue;
4152 		/* got it already */
4153 		KASSERT(dirh_e->d_namlen == dirent->d_namlen);
4154 		KASSERT(dirh_e->fid_size == fid_size);
4155 		return;
4156 	}
4157 
4158 	DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n",
4159 		offset, fid_size, dirent->d_namlen,
4160 		dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4161 
4162 	/* check if entry is in free space list */
4163 	LIST_FOREACH(dirh_e, &dirh->free_entries, next) {
4164 		if (dirh_e->offset == offset) {
4165 			DPRINTF(DIRHASH, ("\tremoving free entry\n"));
4166 			LIST_REMOVE(dirh_e, next);
4167 			break;
4168 		}
4169 	}
4170 
4171 	/* ensure we are not passing the dirhash limit */
4172 	entrysize = sizeof(struct udf_dirhash_entry);
4173 	if (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
4174 		del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash);
4175 		KASSERT(del_dirh);
4176 		while (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
4177 			/* no use trying to delete myself */
4178 			if (del_dirh == dirh)
4179 				break;
4180 			prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next);
4181 			if (del_dirh->refcnt == 0)
4182 				udf_dirhash_purge(del_dirh);
4183 			del_dirh = prev_dirh;
4184 		}
4185 	}
4186 
4187 	/* add to the hashline */
4188 	dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
4189 	memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
4190 
4191 	dirh_e->hashvalue = hashvalue;
4192 	dirh_e->offset    = offset;
4193 	dirh_e->d_namlen  = dirent->d_namlen;
4194 	dirh_e->fid_size  = fid_size;
4195 
4196 	dirh->size      += sizeof(struct udf_dirhash_entry);
4197 	udf_dirhashsize += sizeof(struct udf_dirhash_entry);
4198 	LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next);
4199 }
4200 
4201 
4202 static void
4203 udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset,
4204 	uint32_t fid_size)
4205 {
4206 	struct udf_dirhash *dirh;
4207 	struct udf_dirhash_entry *dirh_e;
4208 
4209 	/* make sure we have a dirhash to work on */
4210 	dirh = dir_node->dir_hash;
4211 	KASSERT(dirh);
4212 	KASSERT(dirh->refcnt > 0);
4213 
4214 #ifdef DEBUG
4215 	/* check for double entry of free space */
4216 	LIST_FOREACH(dirh_e, &dirh->free_entries, next)
4217 		KASSERT(dirh_e->offset != offset);
4218 #endif
4219 
4220 	DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n",
4221 		offset, fid_size));
4222 	dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
4223 	memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
4224 
4225 	dirh_e->hashvalue = 0;		/* not relevant */
4226 	dirh_e->offset    = offset;
4227 	dirh_e->d_namlen  = 0;		/* not relevant */
4228 	dirh_e->fid_size  = fid_size;
4229 
4230 	/* XXX it might be preferable to append them at the tail */
4231 	LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next);
4232 	dirh->size      += sizeof(struct udf_dirhash_entry);
4233 	udf_dirhashsize += sizeof(struct udf_dirhash_entry);
4234 }
4235 
4236 
4237 static void
4238 udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent,
4239 	uint64_t offset, uint32_t fid_size)
4240 {
4241 	struct udf_dirhash *dirh;
4242 	struct udf_dirhash_entry *dirh_e;
4243 	uint32_t hashvalue, hashline;
4244 
4245 	DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n",
4246 		offset, fid_size,
4247 		dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4248 
4249 	/* make sure we have a dirhash to work on */
4250 	dirh = dir_node->dir_hash;
4251 	KASSERT(dirh);
4252 	KASSERT(dirh->refcnt > 0);
4253 
4254 	/* calculate our hash */
4255 	hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
4256 	hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
4257 
4258 	/* lookup entry */
4259 	LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
4260 		/* check for hash collision */
4261 		if (dirh_e->hashvalue != hashvalue)
4262 			continue;
4263 		if (dirh_e->offset != offset)
4264 			continue;
4265 
4266 		/* got it! */
4267 		KASSERT(dirh_e->d_namlen == dirent->d_namlen);
4268 		KASSERT(dirh_e->fid_size == fid_size);
4269 		LIST_REMOVE(dirh_e, next);
4270 		dirh->size      -= sizeof(struct udf_dirhash_entry);
4271 		udf_dirhashsize -= sizeof(struct udf_dirhash_entry);
4272 
4273 		udf_dirhash_enter_freed(dir_node, offset, fid_size);
4274 		return;
4275 	}
4276 
4277 	/* not found! */
4278 	panic("dirhash_remove couldn't find entry in hash table\n");
4279 }
4280 
4281 
4282 /* BUGALERT: don't use result longer than needed, never past the node lock */
4283 /* call with NULL *result initially and it will return nonzero if again */
4284 static int
4285 udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen,
4286 	struct udf_dirhash_entry **result)
4287 {
4288 	struct udf_dirhash *dirh;
4289 	struct udf_dirhash_entry *dirh_e;
4290 	uint32_t hashvalue, hashline;
4291 
4292 	KASSERT(VOP_ISLOCKED(dir_node->vnode));
4293 
4294 	/* make sure we have a dirhash to work on */
4295 	dirh = dir_node->dir_hash;
4296 	KASSERT(dirh);
4297 	KASSERT(dirh->refcnt > 0);
4298 
4299 	/* start where we were */
4300 	if (*result) {
4301 		KASSERT(dir_node->dir_hash);
4302 		dirh_e = *result;
4303 
4304 		/* retrieve information to avoid recalculation and advance */
4305 		hashvalue = dirh_e->hashvalue;
4306 		dirh_e = LIST_NEXT(*result, next);
4307 	} else {
4308 		/* calculate our hash and lookup all entries in hashline */
4309 		hashvalue = udf_dirhash_hash(d_name, d_namlen);
4310 		hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
4311 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4312 	}
4313 
4314 	for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
4315 		/* check for hash collision */
4316 		if (dirh_e->hashvalue != hashvalue)
4317 			continue;
4318 		if (dirh_e->d_namlen != d_namlen)
4319 			continue;
4320 		/* might have an entry in the cache */
4321 		*result = dirh_e;
4322 		return 1;
4323 	}
4324 
4325 	*result = NULL;
4326 	return 0;
4327 }
4328 
4329 
4330 /* BUGALERT: don't use result longer than needed, never past the node lock */
4331 /* call with NULL *result initially and it will return nonzero if again */
4332 static int
4333 udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize,
4334 	struct udf_dirhash_entry **result)
4335 {
4336 	struct udf_dirhash *dirh;
4337 	struct udf_dirhash_entry *dirh_e;
4338 
4339 	KASSERT(VOP_ISLOCKED(dir_node->vnode));
4340 
4341 	/* make sure we have a dirhash to work on */
4342 	dirh = dir_node->dir_hash;
4343 	KASSERT(dirh);
4344 	KASSERT(dirh->refcnt > 0);
4345 
4346 	/* start where we were */
4347 	if (*result) {
4348 		KASSERT(dir_node->dir_hash);
4349 		dirh_e = LIST_NEXT(*result, next);
4350 	} else {
4351 		/* lookup all entries that match */
4352 		dirh_e = LIST_FIRST(&dirh->free_entries);
4353 	}
4354 
4355 	for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
4356 		/* check for minimum size */
4357 		if (dirh_e->fid_size < min_fidsize)
4358 			continue;
4359 		/* might be a candidate */
4360 		*result = dirh_e;
4361 		return 1;
4362 	}
4363 
4364 	*result = NULL;
4365 	return 0;
4366 }
4367 
4368 
4369 static int
4370 udf_dirhash_fill(struct udf_node *dir_node)
4371 {
4372 	struct vnode *dvp = dir_node->vnode;
4373 	struct udf_dirhash *dirh;
4374 	struct file_entry    *fe  = dir_node->fe;
4375 	struct extfile_entry *efe = dir_node->efe;
4376 	struct fileid_desc *fid;
4377 	struct dirent *dirent;
4378 	uint64_t file_size, pre_diroffset, diroffset;
4379 	uint32_t lb_size;
4380 	int error;
4381 
4382 	/* make sure we have a dirhash to work on */
4383 	dirh = dir_node->dir_hash;
4384 	KASSERT(dirh);
4385 	KASSERT(dirh->refcnt > 0);
4386 
4387 	if (dirh->flags & UDF_DIRH_BROKEN)
4388 		return EIO;
4389 	if (dirh->flags & UDF_DIRH_COMPLETE)
4390 		return 0;
4391 
4392 	/* make sure we have a clean dirhash to add to */
4393 	udf_dirhash_purge(dirh);
4394 
4395 	/* get directory filesize */
4396 	if (fe) {
4397 		file_size = udf_rw64(fe->inf_len);
4398 	} else {
4399 		assert(efe);
4400 		file_size = udf_rw64(efe->inf_len);
4401 	}
4402 
4403 	/* allocate temporary space for fid */
4404 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4405 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4406 
4407 	/* allocate temporary space for dirent */
4408 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4409 
4410 	error = 0;
4411 	diroffset = 0;
4412 	while (diroffset < file_size) {
4413 		/* transfer a new fid/dirent */
4414 		pre_diroffset = diroffset;
4415 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4416 		if (error) {
4417 			/* TODO what to do? continue but not add? */
4418 			dirh->flags |= UDF_DIRH_BROKEN;
4419 			udf_dirhash_purge(dirh);
4420 			break;
4421 		}
4422 
4423 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4424 			/* register deleted extent for reuse */
4425 			udf_dirhash_enter_freed(dir_node, pre_diroffset,
4426 				udf_fidsize(fid));
4427 		} else {
4428 			/* append to the dirhash */
4429 			udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset,
4430 				udf_fidsize(fid), 0);
4431 		}
4432 	}
4433 	dirh->flags |= UDF_DIRH_COMPLETE;
4434 
4435 	free(fid, M_UDFTEMP);
4436 	free(dirent, M_UDFTEMP);
4437 
4438 	return error;
4439 }
4440 
4441 
4442 /* --------------------------------------------------------------------- */
4443 
4444 /*
4445  * Directory read and manipulation functions.
4446  *
4447  * Note that if the file is found, the cached diroffset position *before* the
4448  * advance is remembered. Thus if the same filename is lookup again just after
4449  * this lookup its immediately found.
4450  */
4451 
4452 int
4453 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4454        struct long_ad *icb_loc, int *found)
4455 {
4456 	struct udf_node  *dir_node = VTOI(vp);
4457 	struct udf_dirhash_entry *dirh_ep;
4458 	struct fileid_desc *fid;
4459 	struct dirent *dirent;
4460 	uint64_t diroffset;
4461 	uint32_t lb_size;
4462 	int hit, error;
4463 
4464 	/* set default return */
4465 	*found = 0;
4466 
4467 	/* get our dirhash and make sure its read in */
4468 	udf_dirhash_get(&dir_node->dir_hash);
4469 	error = udf_dirhash_fill(dir_node);
4470 	if (error) {
4471 		udf_dirhash_put(dir_node->dir_hash);
4472 		return error;
4473 	}
4474 
4475 	/* allocate temporary space for fid */
4476 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4477 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4478 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4479 
4480 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4481 		namelen, namelen, name));
4482 
4483 	/* search our dirhash hits */
4484 	memset(icb_loc, 0, sizeof(*icb_loc));
4485 	dirh_ep = NULL;
4486 	for (;;) {
4487 		hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
4488 		/* if no hit, abort the search */
4489 		if (!hit)
4490 			break;
4491 
4492 		/* check this hit */
4493 		diroffset = dirh_ep->offset;
4494 
4495 		/* transfer a new fid/dirent */
4496 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4497 		if (error)
4498 			break;
4499 
4500 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4501 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4502 
4503 		/* see if its our entry */
4504 		KASSERT(dirent->d_namlen == namelen);
4505 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4506 			*found = 1;
4507 			*icb_loc = fid->icb;
4508 			break;
4509 		}
4510 	}
4511 	free(fid, M_UDFTEMP);
4512 	free(dirent, M_UDFTEMP);
4513 
4514 	udf_dirhash_put(dir_node->dir_hash);
4515 
4516 	return error;
4517 }
4518 
4519 /* --------------------------------------------------------------------- */
4520 
4521 static int
4522 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4523 	struct long_ad *node_icb, struct long_ad *parent_icb,
4524 	uint64_t parent_unique_id)
4525 {
4526 	struct timespec now;
4527 	struct icb_tag *icb;
4528 	struct filetimes_extattr_entry *ft_extattr;
4529 	uint64_t unique_id;
4530 	uint32_t fidsize, lb_num;
4531 	uint8_t *bpos;
4532 	int crclen, attrlen;
4533 
4534 	lb_num = udf_rw32(node_icb->loc.lb_num);
4535 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4536 	icb = &fe->icbtag;
4537 
4538 	/*
4539 	 * Always use strategy type 4 unless on WORM wich we don't support
4540 	 * (yet). Fill in defaults and set for internal allocation of data.
4541 	 */
4542 	icb->strat_type      = udf_rw16(4);
4543 	icb->max_num_entries = udf_rw16(1);
4544 	icb->file_type       = file_type;	/* 8 bit */
4545 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4546 
4547 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4548 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
4549 
4550 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4551 
4552 	vfs_timestamp(&now);
4553 	udf_timespec_to_timestamp(&now, &fe->atime);
4554 	udf_timespec_to_timestamp(&now, &fe->attrtime);
4555 	udf_timespec_to_timestamp(&now, &fe->mtime);
4556 
4557 	udf_set_regid(&fe->imp_id, IMPL_NAME);
4558 	udf_add_impl_regid(ump, &fe->imp_id);
4559 
4560 	unique_id = udf_advance_uniqueid(ump);
4561 	fe->unique_id = udf_rw64(unique_id);
4562 	fe->l_ea = udf_rw32(0);
4563 
4564 	/* create extended attribute to record our creation time */
4565 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4566 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4567 	memset(ft_extattr, 0, attrlen);
4568 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4569 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
4570 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4571 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4572 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4573 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4574 
4575 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4576 		(struct extattr_entry *) ft_extattr);
4577 	free(ft_extattr, M_UDFTEMP);
4578 
4579 	/* if its a directory, create '..' */
4580 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4581 	fidsize = 0;
4582 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4583 		fidsize = udf_create_parentfid(ump,
4584 			(struct fileid_desc *) bpos, parent_icb,
4585 			parent_unique_id);
4586 	}
4587 
4588 	/* record fidlength information */
4589 	fe->inf_len = udf_rw64(fidsize);
4590 	fe->l_ad    = udf_rw32(fidsize);
4591 	fe->logblks_rec = udf_rw64(0);		/* intern */
4592 
4593 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4594 	crclen += udf_rw32(fe->l_ea) + fidsize;
4595 	fe->tag.desc_crc_len = udf_rw16(crclen);
4596 
4597 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4598 
4599 	return fidsize;
4600 }
4601 
4602 /* --------------------------------------------------------------------- */
4603 
4604 static int
4605 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4606 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4607 	uint64_t parent_unique_id)
4608 {
4609 	struct timespec now;
4610 	struct icb_tag *icb;
4611 	uint64_t unique_id;
4612 	uint32_t fidsize, lb_num;
4613 	uint8_t *bpos;
4614 	int crclen;
4615 
4616 	lb_num = udf_rw32(node_icb->loc.lb_num);
4617 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4618 	icb = &efe->icbtag;
4619 
4620 	/*
4621 	 * Always use strategy type 4 unless on WORM wich we don't support
4622 	 * (yet). Fill in defaults and set for internal allocation of data.
4623 	 */
4624 	icb->strat_type      = udf_rw16(4);
4625 	icb->max_num_entries = udf_rw16(1);
4626 	icb->file_type       = file_type;	/* 8 bit */
4627 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4628 
4629 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4630 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
4631 
4632 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4633 
4634 	vfs_timestamp(&now);
4635 	udf_timespec_to_timestamp(&now, &efe->ctime);
4636 	udf_timespec_to_timestamp(&now, &efe->atime);
4637 	udf_timespec_to_timestamp(&now, &efe->attrtime);
4638 	udf_timespec_to_timestamp(&now, &efe->mtime);
4639 
4640 	udf_set_regid(&efe->imp_id, IMPL_NAME);
4641 	udf_add_impl_regid(ump, &efe->imp_id);
4642 
4643 	unique_id = udf_advance_uniqueid(ump);
4644 	efe->unique_id = udf_rw64(unique_id);
4645 	efe->l_ea = udf_rw32(0);
4646 
4647 	/* if its a directory, create '..' */
4648 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4649 	fidsize = 0;
4650 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4651 		fidsize = udf_create_parentfid(ump,
4652 			(struct fileid_desc *) bpos, parent_icb,
4653 			parent_unique_id);
4654 	}
4655 
4656 	/* record fidlength information */
4657 	efe->obj_size = udf_rw64(fidsize);
4658 	efe->inf_len  = udf_rw64(fidsize);
4659 	efe->l_ad     = udf_rw32(fidsize);
4660 	efe->logblks_rec = udf_rw64(0);		/* intern */
4661 
4662 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4663 	crclen += udf_rw32(efe->l_ea) + fidsize;
4664 	efe->tag.desc_crc_len = udf_rw16(crclen);
4665 
4666 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4667 
4668 	return fidsize;
4669 }
4670 
4671 /* --------------------------------------------------------------------- */
4672 
4673 int
4674 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4675 	struct udf_node *udf_node, struct componentname *cnp)
4676 {
4677 	struct vnode *dvp = dir_node->vnode;
4678 	struct udf_dirhash_entry *dirh_ep;
4679 	struct file_entry    *fe  = dir_node->fe;
4680 	struct extfile_entry *efe = dir_node->efe;
4681 	struct fileid_desc *fid;
4682 	struct dirent *dirent;
4683 	uint64_t file_size, diroffset;
4684 	uint32_t lb_size, fidsize;
4685 	int found, error;
4686 	char const *name  = cnp->cn_nameptr;
4687 	int namelen = cnp->cn_namelen;
4688 	int hit, refcnt;
4689 
4690 	/* get our dirhash and make sure its read in */
4691 	udf_dirhash_get(&dir_node->dir_hash);
4692 	error = udf_dirhash_fill(dir_node);
4693 	if (error) {
4694 		udf_dirhash_put(dir_node->dir_hash);
4695 		return error;
4696 	}
4697 
4698 	/* get directory filesize */
4699 	if (fe) {
4700 		file_size = udf_rw64(fe->inf_len);
4701 	} else {
4702 		assert(efe);
4703 		file_size = udf_rw64(efe->inf_len);
4704 	}
4705 
4706 	/* allocate temporary space for fid */
4707 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4708 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4709 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4710 
4711 	/* search our dirhash hits */
4712 	found = 0;
4713 	dirh_ep = NULL;
4714 	for (;;) {
4715 		hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
4716 		/* if no hit, abort the search */
4717 		if (!hit)
4718 			break;
4719 
4720 		/* check this hit */
4721 		diroffset = dirh_ep->offset;
4722 
4723 		/* transfer a new fid/dirent */
4724 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4725 		if (error)
4726 			break;
4727 
4728 		/* see if its our entry */
4729 		KASSERT(dirent->d_namlen == namelen);
4730 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4731 			found = 1;
4732 			break;
4733 		}
4734 	}
4735 
4736 	if (!found)
4737 		error = ENOENT;
4738 	if (error)
4739 		goto error_out;
4740 
4741 	/* mark deleted */
4742 	fid->file_char |= UDF_FILE_CHAR_DEL;
4743 #ifdef UDF_COMPLETE_DELETE
4744 	memset(&fid->icb, 0, sizeof(fid->icb));
4745 #endif
4746 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4747 
4748 	/* get size of fid and compensate for the read_fid_stream advance */
4749 	fidsize = udf_fidsize(fid);
4750 	diroffset -= fidsize;
4751 
4752 	/* write out */
4753 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4754 			fid, fidsize, diroffset,
4755 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4756 			FSCRED, NULL, NULL);
4757 	if (error)
4758 		goto error_out;
4759 
4760 	/* get reference count of attached node */
4761 	if (udf_node->fe) {
4762 		refcnt = udf_rw16(udf_node->fe->link_cnt);
4763 	} else {
4764 		KASSERT(udf_node->efe);
4765 		refcnt = udf_rw16(udf_node->efe->link_cnt);
4766 	}
4767 #ifdef UDF_COMPLETE_DELETE
4768 	/* substract reference counter in attached node */
4769 	refcnt -= 1;
4770 	if (udf_node->fe) {
4771 		udf_node->fe->link_cnt = udf_rw16(refcnt);
4772 	} else {
4773 		udf_node->efe->link_cnt = udf_rw16(refcnt);
4774 	}
4775 
4776 	/* prevent writeout when refcnt == 0 */
4777 	if (refcnt == 0)
4778 		udf_node->i_flags |= IN_DELETED;
4779 
4780 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
4781 		int drefcnt;
4782 
4783 		/* substract reference counter in directory node */
4784 		/* note subtract 2 (?) for its was also backreferenced */
4785 		if (dir_node->fe) {
4786 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
4787 			drefcnt -= 1;
4788 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
4789 		} else {
4790 			KASSERT(dir_node->efe);
4791 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
4792 			drefcnt -= 1;
4793 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
4794 		}
4795 	}
4796 
4797 	udf_node->i_flags |= IN_MODIFIED;
4798 	dir_node->i_flags |= IN_MODIFIED;
4799 #endif
4800 	/* if it is/was a hardlink adjust the file count */
4801 	if (refcnt > 0)
4802 		udf_adjust_filecount(udf_node, -1);
4803 
4804 	/* remove from the dirhash */
4805 	udf_dirhash_remove(dir_node, dirent, diroffset,
4806 		udf_fidsize(fid));
4807 
4808 error_out:
4809 	free(fid, M_UDFTEMP);
4810 	free(dirent, M_UDFTEMP);
4811 
4812 	udf_dirhash_put(dir_node->dir_hash);
4813 
4814 	return error;
4815 }
4816 
4817 /* --------------------------------------------------------------------- */
4818 
4819 /*
4820  * We are not allowed to split the fid tag itself over an logical block so
4821  * check the space remaining in the logical block.
4822  *
4823  * We try to select the smallest candidate for recycling or when none is
4824  * found, append a new one at the end of the directory.
4825  */
4826 
4827 int
4828 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4829 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4830 {
4831 	struct vnode *dvp = dir_node->vnode;
4832 	struct udf_dirhash_entry *dirh_ep;
4833 	struct fileid_desc   *fid;
4834 	struct icb_tag       *icbtag;
4835 	struct charspec osta_charspec;
4836 	struct dirent   dirent;
4837 	uint64_t unique_id, dir_size, diroffset;
4838 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
4839 	uint32_t chosen_size, chosen_size_diff;
4840 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
4841 	int file_char, refcnt, icbflags, addr_type, hit, error;
4842 
4843 	/* get our dirhash and make sure its read in */
4844 	udf_dirhash_get(&dir_node->dir_hash);
4845 	error = udf_dirhash_fill(dir_node);
4846 	if (error) {
4847 		udf_dirhash_put(dir_node->dir_hash);
4848 		return error;
4849 	}
4850 
4851 	/* get info */
4852 	lb_size = udf_rw32(ump->logical_vol->lb_size);
4853 	udf_osta_charset(&osta_charspec);
4854 
4855 	if (dir_node->fe) {
4856 		dir_size = udf_rw64(dir_node->fe->inf_len);
4857 		icbtag   = &dir_node->fe->icbtag;
4858 	} else {
4859 		dir_size = udf_rw64(dir_node->efe->inf_len);
4860 		icbtag   = &dir_node->efe->icbtag;
4861 	}
4862 
4863 	icbflags   = udf_rw16(icbtag->flags);
4864 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4865 
4866 	if (udf_node->fe) {
4867 		unique_id = udf_rw64(udf_node->fe->unique_id);
4868 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
4869 	} else {
4870 		unique_id = udf_rw64(udf_node->efe->unique_id);
4871 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
4872 	}
4873 
4874 	if (refcnt > 0) {
4875 		unique_id = udf_advance_uniqueid(ump);
4876 		udf_adjust_filecount(udf_node, 1);
4877 	}
4878 
4879 	/* determine file characteristics */
4880 	file_char = 0;	/* visible non deleted file and not stream metadata */
4881 	if (vap->va_type == VDIR)
4882 		file_char = UDF_FILE_CHAR_DIR;
4883 
4884 	/* malloc scrap buffer */
4885 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
4886 	bzero(fid, lb_size);
4887 
4888 	/* calculate _minimum_ fid size */
4889 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
4890 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4891 	fidsize = UDF_FID_SIZE + fid->l_fi;
4892 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
4893 
4894 	/* find position that will fit the FID */
4895 	chosen_fid_pos   = dir_size;
4896 	chosen_size      = 0;
4897 	chosen_size_diff = UINT_MAX;
4898 
4899 	/* shut up gcc */
4900 	dirent.d_namlen = 0;
4901 
4902 	/* search our dirhash hits */
4903 	error = 0;
4904 	dirh_ep = NULL;
4905 	for (;;) {
4906 		hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep);
4907 		/* if no hit, abort the search */
4908 		if (!hit)
4909 			break;
4910 
4911 		/* check this hit for size */
4912 		this_fidsize = dirh_ep->fid_size;
4913 
4914 		/* check this hit */
4915 		fid_pos     = dirh_ep->offset;
4916 		end_fid_pos = fid_pos + this_fidsize;
4917 		size_diff   = this_fidsize - fidsize;
4918 		lb_rest = lb_size - (end_fid_pos % lb_size);
4919 
4920 #ifndef UDF_COMPLETE_DELETE
4921 		/* transfer a new fid/dirent */
4922 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
4923 		if (error)
4924 			goto error_out;
4925 
4926 		/* only reuse entries that are wiped */
4927 		/* check if the len + loc are marked zero */
4928 		if (udf_rw32(fid->icb.len != 0))
4929 			continue;
4930 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
4931 			continue;
4932 		if (udf_rw16(fid->icb.loc.part_num != 0))
4933 			continue;
4934 #endif	/* UDF_COMPLETE_DELETE */
4935 
4936 		/* select if not splitting the tag and its smaller */
4937 		if ((size_diff >= 0)  &&
4938 			(size_diff < chosen_size_diff) &&
4939 			(lb_rest >= sizeof(struct desc_tag)))
4940 		{
4941 			/* UDF 2.3.4.2+3 specifies rules for iu size */
4942 			if ((size_diff == 0) || (size_diff >= 32)) {
4943 				chosen_fid_pos   = fid_pos;
4944 				chosen_size      = this_fidsize;
4945 				chosen_size_diff = size_diff;
4946 			}
4947 		}
4948 	}
4949 
4950 
4951 	/* extend directory if no other candidate found */
4952 	if (chosen_size == 0) {
4953 		chosen_fid_pos   = dir_size;
4954 		chosen_size      = fidsize;
4955 		chosen_size_diff = 0;
4956 
4957 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
4958 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
4959 			/* pre-grow directory to see if we're to switch */
4960 			udf_grow_node(dir_node, dir_size + chosen_size);
4961 
4962 			icbflags   = udf_rw16(icbtag->flags);
4963 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4964 		}
4965 
4966 		/* make sure the next fid desc_tag won't be splitted */
4967 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
4968 			end_fid_pos = chosen_fid_pos + chosen_size;
4969 			lb_rest = lb_size - (end_fid_pos % lb_size);
4970 
4971 			/* pad with implementation use regid if needed */
4972 			if (lb_rest < sizeof(struct desc_tag))
4973 				chosen_size += 32;
4974 		}
4975 	}
4976 	chosen_size_diff = chosen_size - fidsize;
4977 	diroffset = chosen_fid_pos + chosen_size;
4978 
4979 	/* populate the FID */
4980 	memset(fid, 0, lb_size);
4981 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
4982 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
4983 	fid->file_char           = file_char;
4984 	fid->icb                 = udf_node->loc;
4985 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
4986 	fid->l_iu                = udf_rw16(0);
4987 
4988 	if (chosen_size > fidsize) {
4989 		/* insert implementation-use regid to space it correctly */
4990 		fid->l_iu = udf_rw16(chosen_size_diff);
4991 
4992 		/* set implementation use */
4993 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
4994 		udf_add_impl_regid(ump, (struct regid *) fid->data);
4995 	}
4996 
4997 	/* fill in name */
4998 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
4999 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5000 
5001 	fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
5002 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5003 
5004 	/* writeout FID/update parent directory */
5005 	error = vn_rdwr(UIO_WRITE, dvp,
5006 			fid, chosen_size, chosen_fid_pos,
5007 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5008 			FSCRED, NULL, NULL);
5009 
5010 	if (error)
5011 		goto error_out;
5012 
5013 	/* add reference counter in attached node */
5014 	if (udf_node->fe) {
5015 		refcnt = udf_rw16(udf_node->fe->link_cnt);
5016 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5017 	} else {
5018 		KASSERT(udf_node->efe);
5019 		refcnt = udf_rw16(udf_node->efe->link_cnt);
5020 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5021 	}
5022 
5023 	/* mark not deleted if it was... just in case, but do warn */
5024 	if (udf_node->i_flags & IN_DELETED) {
5025 		printf("udf: warning, marking a file undeleted\n");
5026 		udf_node->i_flags &= ~IN_DELETED;
5027 	}
5028 
5029 	if (file_char & UDF_FILE_CHAR_DIR) {
5030 		/* add reference counter in directory node for '..' */
5031 		if (dir_node->fe) {
5032 			refcnt = udf_rw16(dir_node->fe->link_cnt);
5033 			refcnt++;
5034 			dir_node->fe->link_cnt = udf_rw16(refcnt);
5035 		} else {
5036 			KASSERT(dir_node->efe);
5037 			refcnt = udf_rw16(dir_node->efe->link_cnt);
5038 			refcnt++;
5039 			dir_node->efe->link_cnt = udf_rw16(refcnt);
5040 		}
5041 	}
5042 
5043 	/* append to the dirhash */
5044 	dirent.d_namlen = cnp->cn_namelen;
5045 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5046 	udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos,
5047 		udf_fidsize(fid), 1);
5048 
5049 	/* note updates */
5050 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5051 	/* VN_KNOTE(udf_node,  ...) */
5052 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5053 
5054 error_out:
5055 	free(fid, M_TEMP);
5056 
5057 	udf_dirhash_put(dir_node->dir_hash);
5058 
5059 	return error;
5060 }
5061 
5062 /* --------------------------------------------------------------------- */
5063 
5064 /*
5065  * Each node can have an attached streamdir node though not recursively. These
5066  * are otherwise known as named substreams/named extended attributes that have
5067  * no size limitations.
5068  *
5069  * `Normal' extended attributes are indicated with a number and are recorded
5070  * in either the fe/efe descriptor itself for small descriptors or recorded in
5071  * the attached extended attribute file. Since these spaces can get
5072  * fragmented, care ought to be taken.
5073  *
5074  * Since the size of the space reserved for allocation descriptors is limited,
5075  * there is a mechanim provided for extending this space; this is done by a
5076  * special extent to allow schrinking of the allocations without breaking the
5077  * linkage to the allocation extent descriptor.
5078  */
5079 
5080 int
5081 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5082 	     struct udf_node **udf_noderes)
5083 {
5084 	union dscrptr   *dscr;
5085 	struct udf_node *udf_node;
5086 	struct vnode    *nvp;
5087 	struct long_ad   icb_loc, last_fe_icb_loc;
5088 	uint64_t file_size;
5089 	uint32_t lb_size, sector, dummy;
5090 	uint8_t  *file_data;
5091 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5092 	int slot, eof, error;
5093 
5094 	DPRINTF(NODE, ("udf_get_node called\n"));
5095 	*udf_noderes = udf_node = NULL;
5096 
5097 	/* lock to disallow simultanious creation of same udf_node */
5098 	mutex_enter(&ump->get_node_lock);
5099 
5100 	DPRINTF(NODE, ("\tlookup in hash table\n"));
5101 	/* lookup in hash table */
5102 	assert(ump);
5103 	assert(node_icb_loc);
5104 	udf_node = udf_hash_lookup(ump, node_icb_loc);
5105 	if (udf_node) {
5106 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
5107 		/* vnode is returned locked */
5108 		*udf_noderes = udf_node;
5109 		mutex_exit(&ump->get_node_lock);
5110 		return 0;
5111 	}
5112 
5113 	/* garbage check: translate udf_node_icb_loc to sectornr */
5114 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
5115 	if (error) {
5116 		/* no use, this will fail anyway */
5117 		mutex_exit(&ump->get_node_lock);
5118 		return EINVAL;
5119 	}
5120 
5121 	/* build udf_node (do initialise!) */
5122 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5123 	memset(udf_node, 0, sizeof(struct udf_node));
5124 
5125 	DPRINTF(NODE, ("\tget new vnode\n"));
5126 	/* give it a vnode */
5127 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5128         if (error) {
5129 		pool_put(&udf_node_pool, udf_node);
5130 		mutex_exit(&ump->get_node_lock);
5131 		return error;
5132 	}
5133 
5134 	/* always return locked vnode */
5135 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5136 		/* recycle vnode and unlock; simultanious will fail too */
5137 		ungetnewvnode(nvp);
5138 		mutex_exit(&ump->get_node_lock);
5139 		return error;
5140 	}
5141 
5142 	/* initialise crosslinks, note location of fe/efe for hashing */
5143 	udf_node->ump    =  ump;
5144 	udf_node->vnode  =  nvp;
5145 	nvp->v_data      =  udf_node;
5146 	udf_node->loc    = *node_icb_loc;
5147 	udf_node->lockf  =  0;
5148 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5149 	cv_init(&udf_node->node_lock, "udf_nlk");
5150 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
5151 	udf_node->outstanding_bufs = 0;
5152 	udf_node->outstanding_nodedscr = 0;
5153 
5154 	/* insert into the hash lookup */
5155 	udf_register_node(udf_node);
5156 
5157 	/* safe to unlock, the entry is in the hash table, vnode is locked */
5158 	mutex_exit(&ump->get_node_lock);
5159 
5160 	icb_loc = *node_icb_loc;
5161 	needs_indirect = 0;
5162 	strat4096 = 0;
5163 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5164 	file_size = 0;
5165 	file_data = NULL;
5166 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5167 
5168 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
5169 	do {
5170 		/* try to read in fe/efe */
5171 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5172 
5173 		/* blank sector marks end of sequence, check this */
5174 		if ((dscr == NULL) &&  (!strat4096))
5175 			error = ENOENT;
5176 
5177 		/* break if read error or blank sector */
5178 		if (error || (dscr == NULL))
5179 			break;
5180 
5181 		/* process descriptor based on the descriptor type */
5182 		dscr_type = udf_rw16(dscr->tag.id);
5183 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5184 
5185 		/* if dealing with an indirect entry, follow the link */
5186 		if (dscr_type == TAGID_INDIRECTENTRY) {
5187 			needs_indirect = 0;
5188 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5189 			icb_loc = dscr->inde.indirect_icb;
5190 			continue;
5191 		}
5192 
5193 		/* only file entries and extended file entries allowed here */
5194 		if ((dscr_type != TAGID_FENTRY) &&
5195 		    (dscr_type != TAGID_EXTFENTRY)) {
5196 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5197 			error = ENOENT;
5198 			break;
5199 		}
5200 
5201 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5202 
5203 		/* choose this one */
5204 		last_fe_icb_loc = icb_loc;
5205 
5206 		/* record and process/update (ext)fentry */
5207 		file_data = NULL;
5208 		if (dscr_type == TAGID_FENTRY) {
5209 			if (udf_node->fe)
5210 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5211 					udf_node->fe);
5212 			udf_node->fe  = &dscr->fe;
5213 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5214 			udf_file_type = udf_node->fe->icbtag.file_type;
5215 			file_size = udf_rw64(udf_node->fe->inf_len);
5216 			file_data = udf_node->fe->data;
5217 		} else {
5218 			if (udf_node->efe)
5219 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5220 					udf_node->efe);
5221 			udf_node->efe = &dscr->efe;
5222 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5223 			udf_file_type = udf_node->efe->icbtag.file_type;
5224 			file_size = udf_rw64(udf_node->efe->inf_len);
5225 			file_data = udf_node->efe->data;
5226 		}
5227 
5228 		/* check recording strategy (structure) */
5229 
5230 		/*
5231 		 * Strategy 4096 is a daisy linked chain terminating with an
5232 		 * unrecorded sector or a TERM descriptor. The next
5233 		 * descriptor is to be found in the sector that follows the
5234 		 * current sector.
5235 		 */
5236 		if (strat == 4096) {
5237 			strat4096 = 1;
5238 			needs_indirect = 1;
5239 
5240 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5241 		}
5242 
5243 		/*
5244 		 * Strategy 4 is the normal strategy and terminates, but if
5245 		 * we're in strategy 4096, we can't have strategy 4 mixed in
5246 		 */
5247 
5248 		if (strat == 4) {
5249 			if (strat4096) {
5250 				error = EINVAL;
5251 				break;
5252 			}
5253 			break;		/* done */
5254 		}
5255 	} while (!error);
5256 
5257 	/* first round of cleanup code */
5258 	if (error) {
5259 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5260 		/* recycle udf_node */
5261 		udf_dispose_node(udf_node);
5262 
5263 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5264 		nvp->v_data = NULL;
5265 		ungetnewvnode(nvp);
5266 
5267 		return EINVAL;		/* error code ok? */
5268 	}
5269 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5270 
5271 	/* assert no references to dscr anymore beyong this point */
5272 	assert((udf_node->fe) || (udf_node->efe));
5273 	dscr = NULL;
5274 
5275 	/*
5276 	 * Remember where to record an updated version of the descriptor. If
5277 	 * there is a sequence of indirect entries, icb_loc will have been
5278 	 * updated. Its the write disipline to allocate new space and to make
5279 	 * sure the chain is maintained.
5280 	 *
5281 	 * `needs_indirect' flags if the next location is to be filled with
5282 	 * with an indirect entry.
5283 	 */
5284 	udf_node->write_loc = icb_loc;
5285 	udf_node->needs_indirect = needs_indirect;
5286 
5287 	/*
5288 	 * Go trough all allocations extents of this descriptor and when
5289 	 * encountering a redirect read in the allocation extension. These are
5290 	 * daisy-chained.
5291 	 */
5292 	UDF_LOCK_NODE(udf_node, 0);
5293 	udf_node->num_extensions = 0;
5294 
5295 	error   = 0;
5296 	slot    = 0;
5297 	for (;;) {
5298 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5299 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5300 			"lb_num = %d, part = %d\n", slot, eof,
5301 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5302 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5303 			udf_rw32(icb_loc.loc.lb_num),
5304 			udf_rw16(icb_loc.loc.part_num)));
5305 		if (eof)
5306 			break;
5307 		slot++;
5308 
5309 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5310 			continue;
5311 
5312 		DPRINTF(NODE, ("\tgot redirect extent\n"));
5313 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5314 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5315 					"too many allocation extensions on "
5316 					"udf_node\n"));
5317 			error = EINVAL;
5318 			break;
5319 		}
5320 
5321 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5322 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5323 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5324 					"extension size in udf_node\n"));
5325 			error = EINVAL;
5326 			break;
5327 		}
5328 
5329 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5330 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5331 		/* load in allocation extent */
5332 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5333 		if (error || (dscr == NULL))
5334 			break;
5335 
5336 		/* process read-in descriptor */
5337 		dscr_type = udf_rw16(dscr->tag.id);
5338 
5339 		if (dscr_type != TAGID_ALLOCEXTENT) {
5340 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5341 			error = ENOENT;
5342 			break;
5343 		}
5344 
5345 		DPRINTF(NODE, ("\trecording redirect extent\n"));
5346 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5347 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5348 
5349 		udf_node->num_extensions++;
5350 
5351 	} /* while */
5352 	UDF_UNLOCK_NODE(udf_node, 0);
5353 
5354 	/* second round of cleanup code */
5355 	if (error) {
5356 		/* recycle udf_node */
5357 		udf_dispose_node(udf_node);
5358 
5359 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5360 		nvp->v_data = NULL;
5361 		ungetnewvnode(nvp);
5362 
5363 		return EINVAL;		/* error code ok? */
5364 	}
5365 
5366 	DPRINTF(NODE, ("\tnode read in fine\n"));
5367 
5368 	/*
5369 	 * Translate UDF filetypes into vnode types.
5370 	 *
5371 	 * Systemfiles like the meta main and mirror files are not treated as
5372 	 * normal files, so we type them as having no type. UDF dictates that
5373 	 * they are not allowed to be visible.
5374 	 */
5375 
5376 	switch (udf_file_type) {
5377 	case UDF_ICB_FILETYPE_DIRECTORY :
5378 	case UDF_ICB_FILETYPE_STREAMDIR :
5379 		nvp->v_type = VDIR;
5380 		break;
5381 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
5382 		nvp->v_type = VBLK;
5383 		break;
5384 	case UDF_ICB_FILETYPE_CHARDEVICE :
5385 		nvp->v_type = VCHR;
5386 		break;
5387 	case UDF_ICB_FILETYPE_SOCKET :
5388 		nvp->v_type = VSOCK;
5389 		break;
5390 	case UDF_ICB_FILETYPE_FIFO :
5391 		nvp->v_type = VFIFO;
5392 		break;
5393 	case UDF_ICB_FILETYPE_SYMLINK :
5394 		nvp->v_type = VLNK;
5395 		break;
5396 	case UDF_ICB_FILETYPE_VAT :
5397 	case UDF_ICB_FILETYPE_META_MAIN :
5398 	case UDF_ICB_FILETYPE_META_MIRROR :
5399 		nvp->v_type = VNON;
5400 		break;
5401 	case UDF_ICB_FILETYPE_RANDOMACCESS :
5402 	case UDF_ICB_FILETYPE_REALTIME :
5403 		nvp->v_type = VREG;
5404 		break;
5405 	default:
5406 		/* YIKES, something else */
5407 		nvp->v_type = VNON;
5408 	}
5409 
5410 	/* TODO specfs, fifofs etc etc. vnops setting */
5411 
5412 	/* don't forget to set vnode's v_size */
5413 	uvm_vnp_setsize(nvp, file_size);
5414 
5415 	/* TODO ext attr and streamdir udf_nodes */
5416 
5417 	*udf_noderes = udf_node;
5418 
5419 	return 0;
5420 }
5421 
5422 /* --------------------------------------------------------------------- */
5423 
5424 int
5425 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5426 {
5427 	union dscrptr *dscr;
5428 	struct long_ad *loc;
5429 	int extnr, flags, error;
5430 
5431 	DPRINTF(NODE, ("udf_writeout_node called\n"));
5432 
5433 	KASSERT(udf_node->outstanding_bufs == 0);
5434 	KASSERT(udf_node->outstanding_nodedscr == 0);
5435 
5436 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5437 
5438 	if (udf_node->i_flags & IN_DELETED) {
5439 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5440 		return 0;
5441 	}
5442 
5443 	/* lock node */
5444 	flags = waitfor ? 0 : IN_CALLBACK_ULK;
5445 	UDF_LOCK_NODE(udf_node, flags);
5446 
5447 	/* at least one descriptor writeout */
5448 	udf_node->outstanding_nodedscr = 1;
5449 
5450 	/* we're going to write out the descriptor so clear the flags */
5451 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5452 
5453 	/* if we were rebuild, write out the allocation extents */
5454 	if (udf_node->i_flags & IN_NODE_REBUILD) {
5455 		/* mark outstanding node descriptors and issue them */
5456 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
5457 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5458 			loc = &udf_node->ext_loc[extnr];
5459 			dscr = (union dscrptr *) udf_node->ext[extnr];
5460 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5461 			if (error)
5462 				return error;
5463 		}
5464 		/* mark allocation extents written out */
5465 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
5466 	}
5467 
5468 	if (udf_node->fe) {
5469 		KASSERT(udf_node->efe == NULL);
5470 		dscr = (union dscrptr *) udf_node->fe;
5471 	} else {
5472 		KASSERT(udf_node->efe);
5473 		KASSERT(udf_node->fe == NULL);
5474 		dscr = (union dscrptr *) udf_node->efe;
5475 	}
5476 	KASSERT(dscr);
5477 
5478 	loc = &udf_node->write_loc;
5479 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5480 	return error;
5481 }
5482 
5483 /* --------------------------------------------------------------------- */
5484 
5485 int
5486 udf_dispose_node(struct udf_node *udf_node)
5487 {
5488 	struct vnode *vp;
5489 	int extnr;
5490 
5491 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5492 	if (!udf_node) {
5493 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5494 		return 0;
5495 	}
5496 
5497 	vp  = udf_node->vnode;
5498 #ifdef DIAGNOSTIC
5499 	if (vp->v_numoutput)
5500 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
5501 				"v_numoutput = %d", udf_node, vp->v_numoutput);
5502 #endif
5503 
5504 	/* wait until out of sync (just in case we happen to stumble over one */
5505 	KASSERT(!mutex_owned(&mntvnode_lock));
5506 	mutex_enter(&mntvnode_lock);
5507 	while (udf_node->i_flags & IN_SYNCED) {
5508 		cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
5509 			hz/16);
5510 	}
5511 	mutex_exit(&mntvnode_lock);
5512 
5513 	/* TODO extended attributes and streamdir */
5514 
5515 	/* remove dirhash if present */
5516 	udf_dirhash_destroy(&udf_node->dir_hash);
5517 
5518 	/* remove from our hash lookup table */
5519 	udf_deregister_node(udf_node);
5520 
5521 	/* destroy our lock */
5522 	mutex_destroy(&udf_node->node_mutex);
5523 	cv_destroy(&udf_node->node_lock);
5524 
5525 	/* dissociate our udf_node from the vnode */
5526 	genfs_node_destroy(udf_node->vnode);
5527 	vp->v_data = NULL;
5528 
5529 	/* free associated memory and the node itself */
5530 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5531 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5532 			udf_node->ext[extnr]);
5533 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
5534 	}
5535 
5536 	if (udf_node->fe)
5537 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5538 			udf_node->fe);
5539 	if (udf_node->efe)
5540 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5541 			udf_node->efe);
5542 
5543 	udf_node->fe  = (void *) 0xdeadaaaa;
5544 	udf_node->efe = (void *) 0xdeadbbbb;
5545 	udf_node->ump = (void *) 0xdeadbeef;
5546 	pool_put(&udf_node_pool, udf_node);
5547 
5548 	return 0;
5549 }
5550 
5551 
5552 
5553 /*
5554  * create a new node using the specified vnodeops, vap and cnp but with the
5555  * udf_file_type. This allows special files to be created. Use with care.
5556  */
5557 
5558 static int
5559 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5560 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5561 {
5562 	union dscrptr *dscr;
5563 	struct udf_node *dir_node = VTOI(dvp);;
5564 	struct udf_node *udf_node;
5565 	struct udf_mount *ump = dir_node->ump;
5566 	struct vnode *nvp;
5567 	struct long_ad node_icb_loc;
5568 	uint64_t parent_unique_id;
5569 	uint64_t lmapping;
5570 	uint32_t lb_size, lb_num;
5571 	uint16_t vpart_num;
5572 	uid_t uid;
5573 	gid_t gid, parent_gid;
5574 	int fid_size, error;
5575 
5576 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5577 	*vpp = NULL;
5578 
5579 	/* allocate vnode */
5580 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5581         if (error)
5582 		return error;
5583 
5584 	/* lock node */
5585 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5586 	if (error) {
5587 		nvp->v_data = NULL;
5588 		ungetnewvnode(nvp);
5589 		return error;
5590 	}
5591 
5592 	/* get disc allocation for one logical block */
5593 	vpart_num = ump->node_part;
5594 	error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
5595 			vpart_num, &lmapping);
5596 	lb_num = lmapping;
5597 	if (error) {
5598 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5599 		ungetnewvnode(nvp);
5600 		return error;
5601 	}
5602 
5603 	/* initialise pointer to location */
5604 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
5605 	node_icb_loc.len = lb_size;
5606 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
5607 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5608 
5609 	/* build udf_node (do initialise!) */
5610 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5611 	memset(udf_node, 0, sizeof(struct udf_node));
5612 
5613 	/* initialise crosslinks, note location of fe/efe for hashing */
5614 	/* bugalert: synchronise with udf_get_node() */
5615 	udf_node->ump       = ump;
5616 	udf_node->vnode     = nvp;
5617 	nvp->v_data         = udf_node;
5618 	udf_node->loc       = node_icb_loc;
5619 	udf_node->write_loc = node_icb_loc;
5620 	udf_node->lockf     = 0;
5621 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5622 	cv_init(&udf_node->node_lock, "udf_nlk");
5623 	udf_node->outstanding_bufs = 0;
5624 	udf_node->outstanding_nodedscr = 0;
5625 
5626 	/* initialise genfs */
5627 	genfs_node_init(nvp, &udf_genfsops);
5628 
5629 	/* insert into the hash lookup */
5630 	udf_register_node(udf_node);
5631 
5632 	/* get parent's unique ID for refering '..' if its a directory */
5633 	if (dir_node->fe) {
5634 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5635 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
5636 	} else {
5637 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5638 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
5639 	}
5640 
5641 	/* get descriptor */
5642 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5643 
5644 	/* choose a fe or an efe for it */
5645 	if (ump->logical_vol->tag.descriptor_ver == 2) {
5646 		udf_node->fe = &dscr->fe;
5647 		fid_size = udf_create_new_fe(ump, udf_node->fe,
5648 			udf_file_type, &udf_node->loc,
5649 			&dir_node->loc, parent_unique_id);
5650 		/* TODO add extended attribute for creation time */
5651 	} else {
5652 		udf_node->efe = &dscr->efe;
5653 		fid_size = udf_create_new_efe(ump, udf_node->efe,
5654 			udf_file_type, &udf_node->loc,
5655 			&dir_node->loc, parent_unique_id);
5656 	}
5657 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5658 
5659 	/* update vnode's size and type */
5660 	nvp->v_type = vap->va_type;
5661 	uvm_vnp_setsize(nvp, fid_size);
5662 
5663 	/* set access mode */
5664 	udf_setaccessmode(udf_node, vap->va_mode);
5665 
5666 	/* set ownership */
5667 	uid = kauth_cred_geteuid(cnp->cn_cred);
5668 	gid = parent_gid;
5669 	udf_setownership(udf_node, uid, gid);
5670 
5671 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5672 	if (error) {
5673 		/* free disc allocation for node */
5674 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5675 
5676 		/* recycle udf_node */
5677 		udf_dispose_node(udf_node);
5678 		vput(nvp);
5679 
5680 		*vpp = NULL;
5681 		return error;
5682 	}
5683 
5684 	/* adjust file count */
5685 	udf_adjust_filecount(udf_node, 1);
5686 
5687 	/* return result */
5688 	*vpp = nvp;
5689 
5690 	return 0;
5691 }
5692 
5693 
5694 int
5695 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5696 	struct componentname *cnp)
5697 {
5698 	int (**vnodeops)(void *);
5699 	int udf_file_type;
5700 
5701 	DPRINTF(NODE, ("udf_create_node called\n"));
5702 
5703 	/* what type are we creating ? */
5704 	vnodeops = udf_vnodeop_p;
5705 	/* start with a default */
5706 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5707 
5708 	*vpp = NULL;
5709 
5710 	switch (vap->va_type) {
5711 	case VREG :
5712 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5713 		break;
5714 	case VDIR :
5715 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5716 		break;
5717 	case VLNK :
5718 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5719 		break;
5720 	case VBLK :
5721 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5722 		/* specfs */
5723 		return ENOTSUP;
5724 		break;
5725 	case VCHR :
5726 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5727 		/* specfs */
5728 		return ENOTSUP;
5729 		break;
5730 	case VFIFO :
5731 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
5732 		/* specfs */
5733 		return ENOTSUP;
5734 		break;
5735 	case VSOCK :
5736 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5737 		/* specfs */
5738 		return ENOTSUP;
5739 		break;
5740 	case VNON :
5741 	case VBAD :
5742 	default :
5743 		/* nothing; can we even create these? */
5744 		return EINVAL;
5745 	}
5746 
5747 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5748 }
5749 
5750 /* --------------------------------------------------------------------- */
5751 
5752 static void
5753 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5754 {
5755 	struct udf_mount *ump = udf_node->ump;
5756 	uint32_t lb_size, lb_num, len, num_lb;
5757 	uint16_t vpart_num;
5758 
5759 	/* is there really one? */
5760 	if (mem == NULL)
5761 		return;
5762 
5763 	/* got a descriptor here */
5764 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
5765 	lb_num    = udf_rw32(loc->loc.lb_num);
5766 	vpart_num = udf_rw16(loc->loc.part_num);
5767 
5768 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5769 	num_lb = (len + lb_size -1) / lb_size;
5770 
5771 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5772 }
5773 
5774 void
5775 udf_delete_node(struct udf_node *udf_node)
5776 {
5777 	void *dscr;
5778 	struct udf_mount *ump;
5779 	struct long_ad *loc;
5780 	int extnr, lvint, dummy;
5781 
5782 	ump = udf_node->ump;
5783 
5784 	/* paranoia check on integrity; should be open!; we could panic */
5785 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5786 	if (lvint == UDF_INTEGRITY_CLOSED)
5787 		printf("\tIntegrity was CLOSED!\n");
5788 
5789 	/* whatever the node type, change its size to zero */
5790 	(void) udf_resize_node(udf_node, 0, &dummy);
5791 
5792 	/* force it to be `clean'; no use writing it out */
5793 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5794 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
5795 
5796 	/* adjust file count */
5797 	udf_adjust_filecount(udf_node, -1);
5798 
5799 	/*
5800 	 * Free its allocated descriptors; memory will be released when
5801 	 * vop_reclaim() is called.
5802 	 */
5803 	loc = &udf_node->loc;
5804 
5805 	dscr = udf_node->fe;
5806 	udf_free_descriptor_space(udf_node, loc, dscr);
5807 	dscr = udf_node->efe;
5808 	udf_free_descriptor_space(udf_node, loc, dscr);
5809 
5810 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5811 		dscr =  udf_node->ext[extnr];
5812 		loc  = &udf_node->ext_loc[extnr];
5813 		udf_free_descriptor_space(udf_node, loc, dscr);
5814 	}
5815 }
5816 
5817 /* --------------------------------------------------------------------- */
5818 
5819 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5820 int
5821 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5822 {
5823 	struct file_entry    *fe  = udf_node->fe;
5824 	struct extfile_entry *efe = udf_node->efe;
5825 	uint64_t file_size;
5826 	int error;
5827 
5828 	if (fe) {
5829 		file_size  = udf_rw64(fe->inf_len);
5830 	} else {
5831 		assert(udf_node->efe);
5832 		file_size  = udf_rw64(efe->inf_len);
5833 	}
5834 
5835 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5836 			file_size, new_size));
5837 
5838 	/* if not changing, we're done */
5839 	if (file_size == new_size)
5840 		return 0;
5841 
5842 	*extended = (new_size > file_size);
5843 	if (*extended) {
5844 		error = udf_grow_node(udf_node, new_size);
5845 	} else {
5846 		error = udf_shrink_node(udf_node, new_size);
5847 	}
5848 
5849 	return error;
5850 }
5851 
5852 
5853 /* --------------------------------------------------------------------- */
5854 
5855 void
5856 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
5857 	struct timespec *mod, struct timespec *birth)
5858 {
5859 	struct timespec now;
5860 	struct file_entry    *fe;
5861 	struct extfile_entry *efe;
5862 	struct filetimes_extattr_entry *ft_extattr;
5863 	struct timestamp *atime, *mtime, *attrtime, *ctime;
5864 	struct timestamp  fe_ctime;
5865 	struct timespec   cur_birth;
5866 	uint32_t offset, a_l;
5867 	uint8_t *filedata;
5868 	int error;
5869 
5870 	/* protect against rogue values */
5871 	if (!udf_node)
5872 		return;
5873 
5874 	fe  = udf_node->fe;
5875 	efe = udf_node->efe;
5876 
5877 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
5878 		return;
5879 
5880 	/* get descriptor information */
5881 	if (fe) {
5882 		atime    = &fe->atime;
5883 		mtime    = &fe->mtime;
5884 		attrtime = &fe->attrtime;
5885 		filedata = fe->data;
5886 
5887 		/* initial save dummy setting */
5888 		ctime    = &fe_ctime;
5889 
5890 		/* check our extended attribute if present */
5891 		error = udf_extattr_search_intern(udf_node,
5892 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
5893 		if (!error) {
5894 			ft_extattr = (struct filetimes_extattr_entry *)
5895 				(filedata + offset);
5896 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
5897 				ctime = &ft_extattr->times[0];
5898 		}
5899 		/* TODO create the extended attribute if not found ? */
5900 	} else {
5901 		assert(udf_node->efe);
5902 		atime    = &efe->atime;
5903 		mtime    = &efe->mtime;
5904 		attrtime = &efe->attrtime;
5905 		ctime    = &efe->ctime;
5906 	}
5907 
5908 	vfs_timestamp(&now);
5909 
5910 	/* set access time */
5911 	if (udf_node->i_flags & IN_ACCESS) {
5912 		if (acc == NULL)
5913 			acc = &now;
5914 		udf_timespec_to_timestamp(acc, atime);
5915 	}
5916 
5917 	/* set modification time */
5918 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
5919 		if (mod == NULL)
5920 			mod = &now;
5921 		udf_timespec_to_timestamp(mod, mtime);
5922 
5923 		/* ensure birthtime is older than set modification! */
5924 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
5925 		if ((cur_birth.tv_sec > mod->tv_sec) ||
5926 			  ((cur_birth.tv_sec == mod->tv_sec) &&
5927 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
5928 			udf_timespec_to_timestamp(mod, ctime);
5929 		}
5930 	}
5931 
5932 	/* update birthtime if specified */
5933 	/* XXX we asume here that given birthtime is older than mod */
5934 	if (birth && (birth->tv_sec != VNOVAL)) {
5935 		udf_timespec_to_timestamp(birth, ctime);
5936 	}
5937 
5938 	/* set change time */
5939 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
5940 		udf_timespec_to_timestamp(&now, attrtime);
5941 
5942 	/* notify updates to the node itself */
5943 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
5944 		udf_node->i_flags |= IN_ACCESSED;
5945 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
5946 		udf_node->i_flags |= IN_MODIFIED;
5947 
5948 	/* clear modification flags */
5949 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
5950 }
5951 
5952 /* --------------------------------------------------------------------- */
5953 
5954 int
5955 udf_update(struct vnode *vp, struct timespec *acc,
5956 	struct timespec *mod, struct timespec *birth, int updflags)
5957 {
5958 	union dscrptr *dscrptr;
5959 	struct udf_node  *udf_node = VTOI(vp);
5960 	struct udf_mount *ump = udf_node->ump;
5961 	struct regid     *impl_id;
5962 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
5963 	int waitfor, flags;
5964 
5965 #ifdef DEBUG
5966 	char bits[128];
5967 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
5968 		updflags));
5969 	bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
5970 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
5971 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
5972 #endif
5973 
5974 	/* set our times */
5975 	udf_itimes(udf_node, acc, mod, birth);
5976 
5977 	/* set our implementation id */
5978 	if (udf_node->fe) {
5979 		dscrptr = (union dscrptr *) udf_node->fe;
5980 		impl_id = &udf_node->fe->imp_id;
5981 	} else {
5982 		dscrptr = (union dscrptr *) udf_node->efe;
5983 		impl_id = &udf_node->efe->imp_id;
5984 	}
5985 
5986 	/* set our ID */
5987 	udf_set_regid(impl_id, IMPL_NAME);
5988 	udf_add_impl_regid(ump, impl_id);
5989 
5990 	/* update our crc! on RMW we are not allowed to change a thing */
5991 	udf_validate_tag_and_crc_sums(dscrptr);
5992 
5993 	/* if called when mounted readonly, never write back */
5994 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
5995 		return 0;
5996 
5997 	/* check if the node is dirty 'enough'*/
5998 	if (updflags & UPDATE_CLOSE) {
5999 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6000 	} else {
6001 		flags = udf_node->i_flags & IN_MODIFIED;
6002 	}
6003 	if (flags == 0)
6004 		return 0;
6005 
6006 	/* determine if we need to write sync or async */
6007 	waitfor = 0;
6008 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6009 		/* sync mounted */
6010 		waitfor = updflags & UPDATE_WAIT;
6011 		if (updflags & UPDATE_DIROP)
6012 			waitfor |= UPDATE_WAIT;
6013 	}
6014 	if (waitfor)
6015 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6016 
6017 	return 0;
6018 }
6019 
6020 
6021 /* --------------------------------------------------------------------- */
6022 
6023 
6024 /*
6025  * Read one fid and process it into a dirent and advance to the next (*fid)
6026  * has to be allocated a logical block in size, (*dirent) struct dirent length
6027  */
6028 
6029 int
6030 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6031 		    struct fileid_desc *fid, struct dirent *dirent)
6032 {
6033 	struct udf_node  *dir_node = VTOI(vp);
6034 	struct udf_mount *ump = dir_node->ump;
6035 	struct file_entry    *fe  = dir_node->fe;
6036 	struct extfile_entry *efe = dir_node->efe;
6037 	uint32_t      fid_size, lb_size;
6038 	uint64_t      file_size;
6039 	char         *fid_name;
6040 	int           enough, error;
6041 
6042 	assert(fid);
6043 	assert(dirent);
6044 	assert(dir_node);
6045 	assert(offset);
6046 	assert(*offset != 1);
6047 
6048 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6049 	/* check if we're past the end of the directory */
6050 	if (fe) {
6051 		file_size = udf_rw64(fe->inf_len);
6052 	} else {
6053 		assert(dir_node->efe);
6054 		file_size = udf_rw64(efe->inf_len);
6055 	}
6056 	if (*offset >= file_size)
6057 		return EINVAL;
6058 
6059 	/* get maximum length of FID descriptor */
6060 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6061 
6062 	/* initialise return values */
6063 	fid_size = 0;
6064 	memset(dirent, 0, sizeof(struct dirent));
6065 	memset(fid, 0, lb_size);
6066 
6067 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
6068 	if (!enough) {
6069 		/* short dir ... */
6070 		return EIO;
6071 	}
6072 
6073 	error = vn_rdwr(UIO_READ, vp,
6074 			fid, MIN(file_size - (*offset), lb_size), *offset,
6075 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6076 			NULL, NULL);
6077 	if (error)
6078 		return error;
6079 
6080 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6081 	/*
6082 	 * Check if we got a whole descriptor.
6083 	 * TODO Try to `resync' directory stream when something is very wrong.
6084 	 */
6085 
6086 	/* check if our FID header is OK */
6087 	error = udf_check_tag(fid);
6088 	if (error) {
6089 		goto brokendir;
6090 	}
6091 	DPRINTF(FIDS, ("\ttag check ok\n"));
6092 
6093 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
6094 		error = EIO;
6095 		goto brokendir;
6096 	}
6097 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6098 
6099 	/* check for length */
6100 	fid_size = udf_fidsize(fid);
6101 	enough = (file_size - (*offset) >= fid_size);
6102 	if (!enough) {
6103 		error = EIO;
6104 		goto brokendir;
6105 	}
6106 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6107 
6108 	/* check FID contents */
6109 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6110 brokendir:
6111 	if (error) {
6112 		/* note that is sometimes a bit quick to report */
6113 		printf("BROKEN DIRECTORY ENTRY\n");
6114 		/* RESYNC? */
6115 		/* TODO: use udf_resync_fid_stream */
6116 		return EIO;
6117 	}
6118 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
6119 
6120 	/* we got a whole and valid descriptor! */
6121 	DPRINTF(FIDS, ("\tinterpret FID\n"));
6122 
6123 	/* create resulting dirent structure */
6124 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6125 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6126 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6127 
6128 	/* '..' has no name, so provide one */
6129 	if (fid->file_char & UDF_FILE_CHAR_PAR)
6130 		strcpy(dirent->d_name, "..");
6131 
6132 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
6133 	dirent->d_namlen = strlen(dirent->d_name);
6134 	dirent->d_reclen = _DIRENT_SIZE(dirent);
6135 
6136 	/*
6137 	 * Note that its not worth trying to go for the filetypes now... its
6138 	 * too expensive too
6139 	 */
6140 	dirent->d_type = DT_UNKNOWN;
6141 
6142 	/* initial guess for filetype we can make */
6143 	if (fid->file_char & UDF_FILE_CHAR_DIR)
6144 		dirent->d_type = DT_DIR;
6145 
6146 	/* advance */
6147 	*offset += fid_size;
6148 
6149 	return error;
6150 }
6151 
6152 
6153 /* --------------------------------------------------------------------- */
6154 
6155 static void
6156 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6157 	int pass, int *ndirty)
6158 {
6159 	struct udf_node *udf_node, *n_udf_node;
6160 	struct vnode *vp;
6161 	int vdirty, error;
6162 	int on_type, on_flags, on_vnode;
6163 
6164 derailed:
6165 	KASSERT(mutex_owned(&mntvnode_lock));
6166 
6167 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
6168 	udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
6169 	for (;udf_node; udf_node = n_udf_node) {
6170 		DPRINTF(SYNC, ("."));
6171 
6172 		udf_node->i_flags &= ~IN_SYNCED;
6173 		vp = udf_node->vnode;
6174 
6175 		mutex_enter(&vp->v_interlock);
6176 		n_udf_node = LIST_NEXT(udf_node, sortchain);
6177 		if (n_udf_node)
6178 			n_udf_node->i_flags |= IN_SYNCED;
6179 
6180 		/* system nodes are not synced this way */
6181 		if (vp->v_vflag & VV_SYSTEM) {
6182 			mutex_exit(&vp->v_interlock);
6183 			continue;
6184 		}
6185 
6186 		/* check if its dirty enough to even try */
6187 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
6188 		on_flags = ((udf_node->i_flags &
6189 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6190 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6191 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6192 		if (on_type || (on_flags || on_vnode)) { /* XXX */
6193 			/* not dirty (enough?) */
6194 			mutex_exit(&vp->v_interlock);
6195 			continue;
6196 		}
6197 
6198 		mutex_exit(&mntvnode_lock);
6199 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
6200 		if (error) {
6201 			mutex_enter(&mntvnode_lock);
6202 			if (error == ENOENT)
6203 				goto derailed;
6204 			*ndirty += 1;
6205 			continue;
6206 		}
6207 
6208 		switch (pass) {
6209 		case 1:
6210 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6211 			break;
6212 		case 2:
6213 			vdirty = vp->v_numoutput;
6214 			if (vp->v_tag == VT_UDF)
6215 				vdirty += udf_node->outstanding_bufs +
6216 					udf_node->outstanding_nodedscr;
6217 			if (vdirty == 0)
6218 				VOP_FSYNC(vp, cred, 0,0,0);
6219 			*ndirty += vdirty;
6220 			break;
6221 		case 3:
6222 			vdirty = vp->v_numoutput;
6223 			if (vp->v_tag == VT_UDF)
6224 				vdirty += udf_node->outstanding_bufs +
6225 					udf_node->outstanding_nodedscr;
6226 			*ndirty += vdirty;
6227 			break;
6228 		}
6229 
6230 		vput(vp);
6231 		mutex_enter(&mntvnode_lock);
6232 	}
6233 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6234 }
6235 
6236 
6237 void
6238 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6239 {
6240 	int dummy, ndirty;
6241 
6242 	mutex_enter(&mntvnode_lock);
6243 recount:
6244 	dummy = 0;
6245 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6246 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6247 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6248 
6249 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6250 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6251 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6252 
6253 	if (waitfor == MNT_WAIT) {
6254 		ndirty = ump->devvp->v_numoutput;
6255 		DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
6256 			ndirty));
6257 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6258 		DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
6259 			ndirty));
6260 
6261 		if (ndirty) {
6262 			/* 1/4 second wait */
6263 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6264 				hz/4);
6265 			goto recount;
6266 		}
6267 	}
6268 
6269 	mutex_exit(&mntvnode_lock);
6270 }
6271 
6272 /* --------------------------------------------------------------------- */
6273 
6274 /*
6275  * Read and write file extent in/from the buffer.
6276  *
6277  * The splitup of the extent into seperate request-buffers is to minimise
6278  * copying around as much as possible.
6279  *
6280  * block based file reading and writing
6281  */
6282 
6283 static int
6284 udf_read_internal(struct udf_node *node, uint8_t *blob)
6285 {
6286 	struct udf_mount *ump;
6287 	struct file_entry     *fe = node->fe;
6288 	struct extfile_entry *efe = node->efe;
6289 	uint64_t inflen;
6290 	uint32_t sector_size;
6291 	uint8_t  *pos;
6292 	int icbflags, addr_type;
6293 
6294 	/* get extent and do some paranoia checks */
6295 	ump = node->ump;
6296 	sector_size = ump->discinfo.sector_size;
6297 
6298 	if (fe) {
6299 		inflen   = udf_rw64(fe->inf_len);
6300 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6301 		icbflags = udf_rw16(fe->icbtag.flags);
6302 	} else {
6303 		assert(node->efe);
6304 		inflen   = udf_rw64(efe->inf_len);
6305 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6306 		icbflags = udf_rw16(efe->icbtag.flags);
6307 	}
6308 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6309 
6310 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6311 	assert(inflen < sector_size);
6312 
6313 	/* copy out info */
6314 	memset(blob, 0, sector_size);
6315 	memcpy(blob, pos, inflen);
6316 
6317 	return 0;
6318 }
6319 
6320 
6321 static int
6322 udf_write_internal(struct udf_node *node, uint8_t *blob)
6323 {
6324 	struct udf_mount *ump;
6325 	struct file_entry     *fe = node->fe;
6326 	struct extfile_entry *efe = node->efe;
6327 	uint64_t inflen;
6328 	uint32_t sector_size;
6329 	uint8_t  *pos;
6330 	int icbflags, addr_type;
6331 
6332 	/* get extent and do some paranoia checks */
6333 	ump = node->ump;
6334 	sector_size = ump->discinfo.sector_size;
6335 
6336 	if (fe) {
6337 		inflen   = udf_rw64(fe->inf_len);
6338 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6339 		icbflags = udf_rw16(fe->icbtag.flags);
6340 	} else {
6341 		assert(node->efe);
6342 		inflen   = udf_rw64(efe->inf_len);
6343 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6344 		icbflags = udf_rw16(efe->icbtag.flags);
6345 	}
6346 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6347 
6348 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6349 	assert(inflen < sector_size);
6350 
6351 	/* copy in blob */
6352 	/* memset(pos, 0, inflen); */
6353 	memcpy(pos, blob, inflen);
6354 
6355 	return 0;
6356 }
6357 
6358 
6359 void
6360 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6361 {
6362 	struct buf *nestbuf;
6363 	struct udf_mount *ump = udf_node->ump;
6364 	uint64_t   *mapping;
6365 	uint64_t    run_start;
6366 	uint32_t    sector_size;
6367 	uint32_t    buf_offset, sector, rbuflen, rblk;
6368 	uint32_t    from, lblkno;
6369 	uint32_t    sectors;
6370 	uint8_t    *buf_pos;
6371 	int error, run_length, isdir, what;
6372 
6373 	sector_size = udf_node->ump->discinfo.sector_size;
6374 
6375 	from    = buf->b_blkno;
6376 	sectors = buf->b_bcount / sector_size;
6377 
6378 	isdir   = (udf_node->vnode->v_type == VDIR);
6379 	what    = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6380 
6381 	/* assure we have enough translation slots */
6382 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6383 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6384 
6385 	if (sectors > UDF_MAX_MAPPINGS) {
6386 		printf("udf_read_filebuf: implementation limit on bufsize\n");
6387 		buf->b_error  = EIO;
6388 		biodone(buf);
6389 		return;
6390 	}
6391 
6392 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6393 
6394 	error = 0;
6395 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6396 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6397 	if (error) {
6398 		buf->b_error  = error;
6399 		biodone(buf);
6400 		goto out;
6401 	}
6402 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
6403 
6404 	/* pre-check if its an internal */
6405 	if (*mapping == UDF_TRANS_INTERN) {
6406 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6407 		if (error)
6408 			buf->b_error  = error;
6409 		biodone(buf);
6410 		goto out;
6411 	}
6412 	DPRINTF(READ, ("\tnot intern\n"));
6413 
6414 #ifdef DEBUG
6415 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6416 		printf("Returned translation table:\n");
6417 		for (sector = 0; sector < sectors; sector++) {
6418 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6419 		}
6420 	}
6421 #endif
6422 
6423 	/* request read-in of data from disc sheduler */
6424 	buf->b_resid = buf->b_bcount;
6425 	for (sector = 0; sector < sectors; sector++) {
6426 		buf_offset = sector * sector_size;
6427 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6428 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6429 
6430 		/* check if its zero or unmapped to stop reading */
6431 		switch (mapping[sector]) {
6432 		case UDF_TRANS_UNMAPPED:
6433 		case UDF_TRANS_ZERO:
6434 			/* copy zero sector TODO runlength like below */
6435 			memset(buf_pos, 0, sector_size);
6436 			DPRINTF(READ, ("\treturning zero sector\n"));
6437 			nestiobuf_done(buf, sector_size, 0);
6438 			break;
6439 		default :
6440 			DPRINTF(READ, ("\tread sector "
6441 			    "%"PRIu64"\n", mapping[sector]));
6442 
6443 			lblkno = from + sector;
6444 			run_start  = mapping[sector];
6445 			run_length = 1;
6446 			while (sector < sectors-1) {
6447 				if (mapping[sector+1] != mapping[sector]+1)
6448 					break;
6449 				run_length++;
6450 				sector++;
6451 			}
6452 
6453 			/*
6454 			 * nest an iobuf and mark it for async reading. Since
6455 			 * we're using nested buffers, they can't be cached by
6456 			 * design.
6457 			 */
6458 			rbuflen = run_length * sector_size;
6459 			rblk    = run_start  * (sector_size/DEV_BSIZE);
6460 
6461 			nestbuf = getiobuf(NULL, true);
6462 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6463 			/* nestbuf is B_ASYNC */
6464 
6465 			/* identify this nestbuf */
6466 			nestbuf->b_lblkno   = lblkno;
6467 			assert(nestbuf->b_vp == udf_node->vnode);
6468 
6469 			/* CD shedules on raw blkno */
6470 			nestbuf->b_blkno      = rblk;
6471 			nestbuf->b_proc       = NULL;
6472 			nestbuf->b_rawblkno   = rblk;
6473 			nestbuf->b_udf_c_type = what;
6474 
6475 			udf_discstrat_queuebuf(ump, nestbuf);
6476 		}
6477 	}
6478 out:
6479 	/* if we're synchronously reading, wait for the completion */
6480 	if ((buf->b_flags & B_ASYNC) == 0)
6481 		biowait(buf);
6482 
6483 	DPRINTF(READ, ("\tend of read_filebuf\n"));
6484 	free(mapping, M_TEMP);
6485 	return;
6486 }
6487 
6488 
6489 void
6490 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6491 {
6492 	struct buf *nestbuf;
6493 	struct udf_mount *ump = udf_node->ump;
6494 	uint64_t   *mapping;
6495 	uint64_t    run_start;
6496 	uint32_t    lb_size;
6497 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
6498 	uint32_t    from, lblkno;
6499 	uint32_t    num_lb;
6500 	uint8_t    *buf_pos;
6501 	int error, run_length, isdir, what, s;
6502 
6503 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6504 
6505 	from   = buf->b_blkno;
6506 	num_lb = buf->b_bcount / lb_size;
6507 
6508 	isdir  = (udf_node->vnode->v_type == VDIR);
6509 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6510 
6511 	if (udf_node == ump->metadatabitmap_node)
6512 		what = UDF_C_METADATA_SBM;
6513 
6514 	/* assure we have enough translation slots */
6515 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6516 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6517 
6518 	if (num_lb > UDF_MAX_MAPPINGS) {
6519 		printf("udf_write_filebuf: implementation limit on bufsize\n");
6520 		buf->b_error  = EIO;
6521 		biodone(buf);
6522 		return;
6523 	}
6524 
6525 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6526 
6527 	error = 0;
6528 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6529 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6530 	if (error) {
6531 		buf->b_error  = error;
6532 		biodone(buf);
6533 		goto out;
6534 	}
6535 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6536 
6537 	/* if its internally mapped, we can write it in the descriptor itself */
6538 	if (*mapping == UDF_TRANS_INTERN) {
6539 		/* TODO paranoia check if we ARE going to have enough space */
6540 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6541 		if (error)
6542 			buf->b_error  = error;
6543 		biodone(buf);
6544 		goto out;
6545 	}
6546 	DPRINTF(WRITE, ("\tnot intern\n"));
6547 
6548 	/* request write out of data to disc sheduler */
6549 	buf->b_resid = buf->b_bcount;
6550 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
6551 		buf_offset = lb_num * lb_size;
6552 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6553 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6554 
6555 		/*
6556 		 * Mappings are not that important here. Just before we write
6557 		 * the lb_num we late-allocate them when needed and update the
6558 		 * mapping in the udf_node.
6559 		 */
6560 
6561 		/* XXX why not ignore the mapping altogether ? */
6562 		/* TODO estimate here how much will be late-allocated */
6563 		DPRINTF(WRITE, ("\twrite lb_num "
6564 		    "%"PRIu64, mapping[lb_num]));
6565 
6566 		lblkno = from + lb_num;
6567 		run_start  = mapping[lb_num];
6568 		run_length = 1;
6569 		while (lb_num < num_lb-1) {
6570 			if (mapping[lb_num+1] != mapping[lb_num]+1)
6571 				if (mapping[lb_num+1] != mapping[lb_num])
6572 					break;
6573 			run_length++;
6574 			lb_num++;
6575 		}
6576 		DPRINTF(WRITE, ("+ %d\n", run_length));
6577 
6578 		/* nest an iobuf on the master buffer for the extent */
6579 		rbuflen = run_length * lb_size;
6580 		rblk = run_start * (lb_size/DEV_BSIZE);
6581 
6582 #if 0
6583 		/* if its zero or unmapped, our blknr gets -1 for unmapped */
6584 		switch (mapping[lb_num]) {
6585 		case UDF_TRANS_UNMAPPED:
6586 		case UDF_TRANS_ZERO:
6587 			rblk = -1;
6588 			break;
6589 		default:
6590 			rblk = run_start * (lb_size/DEV_BSIZE);
6591 			break;
6592 		}
6593 #endif
6594 
6595 		nestbuf = getiobuf(NULL, true);
6596 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6597 		/* nestbuf is B_ASYNC */
6598 
6599 		/* identify this nestbuf */
6600 		nestbuf->b_lblkno   = lblkno;
6601 		KASSERT(nestbuf->b_vp == udf_node->vnode);
6602 
6603 		/* CD shedules on raw blkno */
6604 		nestbuf->b_blkno      = rblk;
6605 		nestbuf->b_proc       = NULL;
6606 		nestbuf->b_rawblkno   = rblk;
6607 		nestbuf->b_udf_c_type = what;
6608 
6609 		/* increment our outstanding bufs counter */
6610 		s = splbio();
6611 			udf_node->outstanding_bufs++;
6612 		splx(s);
6613 
6614 		udf_discstrat_queuebuf(ump, nestbuf);
6615 	}
6616 out:
6617 	/* if we're synchronously writing, wait for the completion */
6618 	if ((buf->b_flags & B_ASYNC) == 0)
6619 		biowait(buf);
6620 
6621 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6622 	free(mapping, M_TEMP);
6623 	return;
6624 }
6625 
6626 /* --------------------------------------------------------------------- */
6627 
6628 
6629