xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision 6dffe8d42bd46273f674d7ab834e7be9b1af990e)
1 /* $NetBSD: udf_subr.c,v 1.98 2009/07/07 10:23:36 reinoud Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.98 2009/07/07 10:23:36 reinoud Exp $");
33 #endif /* not lint */
34 
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61 
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65 
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69 
70 
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72 
73 #define UDF_SET_SYSTEMFILE(vp) \
74 	/* XXXAD Is the vnode locked? */	\
75 	(vp)->v_vflag |= VV_SYSTEM;		\
76 	vref(vp);			\
77 	vput(vp);			\
78 
79 extern int syncer_maxdelay;     /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81 
82 /* --------------------------------------------------------------------- */
83 
84 //#ifdef DEBUG
85 #if 1
86 
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 	int i, j;
92 
93 	printf("blob = %p\n", blob);
94 	printf("dump of %d bytes\n", dlen);
95 
96 	for (i = 0; i < dlen; i+ = 16) {
97 		printf("%04x ", i);
98 		for (j = 0; j < 16; j++) {
99 			if (i+j < dlen) {
100 				printf("%02x ", blob[i+j]);
101 			} else {
102 				printf("   ");
103 			}
104 		}
105 		for (j = 0; j < 16; j++) {
106 			if (i+j < dlen) {
107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
108 					printf("%c", blob[i+j]);
109 				} else {
110 					printf(".");
111 				}
112 			}
113 		}
114 		printf("\n");
115 	}
116 	printf("\n");
117 	Debugger();
118 }
119 #endif
120 
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 	char   bits[128];
125 	struct mmc_discinfo *di = &ump->discinfo;
126 
127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 		return;
129 
130 	printf("Device/media info  :\n");
131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
132 	printf("\tderived class      %d\n", di->mmc_class);
133 	printf("\tsector size        %d\n", di->sector_size);
134 	printf("\tdisc state         %d\n", di->disc_state);
135 	printf("\tlast ses state     %d\n", di->last_session_state);
136 	printf("\tbg format state    %d\n", di->bg_format_state);
137 	printf("\tfrst track         %d\n", di->first_track);
138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 	printf("\tdisc flags         %s\n", bits);
143 	printf("\tdisc id            %x\n", di->disc_id);
144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
145 
146 	printf("\tnum sessions       %d\n", di->num_sessions);
147 	printf("\tnum tracks         %d\n", di->num_tracks);
148 
149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 	printf("\tcapabilities cur   %s\n", bits);
151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 	printf("\tcapabilities cap   %s\n", bits);
153 }
154 
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 	char   bits[128];
159 
160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 		return;
162 
163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 	printf("\tflags               %s\n", bits);
169 
170 	printf("\ttrack start         %d\n", trackinfo->track_start);
171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
174 	printf("\ttrack size          %d\n", trackinfo->track_size);
175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177 
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182 
183 
184 /* --------------------------------------------------------------------- */
185 
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 	struct vnode *devvp = ump->devvp;
191 	struct partinfo dpart;
192 	struct mmc_discinfo *di;
193 	int error;
194 
195 	DPRINTF(VOLUMES, ("read/update disc info\n"));
196 	di = &ump->discinfo;
197 	memset(di, 0, sizeof(struct mmc_discinfo));
198 
199 	/* check if we're on a MMC capable device, i.e. CD/DVD */
200 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
201 	if (error == 0) {
202 		udf_dump_discinfo(ump);
203 		return 0;
204 	}
205 
206 	/* disc partition support */
207 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
208 	if (error)
209 		return ENODEV;
210 
211 	/* set up a disc info profile for partitions */
212 	di->mmc_profile		= 0x01;	/* disc type */
213 	di->mmc_class		= MMC_CLASS_DISC;
214 	di->disc_state		= MMC_STATE_CLOSED;
215 	di->last_session_state	= MMC_STATE_CLOSED;
216 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
217 	di->link_block_penalty	= 0;
218 
219 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
220 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
221 	di->mmc_cap    = di->mmc_cur;
222 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
223 
224 	/* TODO problem with last_possible_lba on resizable VND; request */
225 	di->last_possible_lba = dpart.part->p_size;
226 	di->sector_size       = dpart.disklab->d_secsize;
227 
228 	di->num_sessions = 1;
229 	di->num_tracks   = 1;
230 
231 	di->first_track  = 1;
232 	di->first_track_last_session = di->last_track_last_session = 1;
233 
234 	udf_dump_discinfo(ump);
235 	return 0;
236 }
237 
238 
239 int
240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
241 {
242 	struct vnode *devvp = ump->devvp;
243 	struct mmc_discinfo *di = &ump->discinfo;
244 	int error, class;
245 
246 	DPRINTF(VOLUMES, ("read track info\n"));
247 
248 	class = di->mmc_class;
249 	if (class != MMC_CLASS_DISC) {
250 		/* tracknr specified in struct ti */
251 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
252 		return error;
253 	}
254 
255 	/* disc partition support */
256 	if (ti->tracknr != 1)
257 		return EIO;
258 
259 	/* create fake ti (TODO check for resized vnds) */
260 	ti->sessionnr  = 1;
261 
262 	ti->track_mode = 0;	/* XXX */
263 	ti->data_mode  = 0;	/* XXX */
264 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
265 
266 	ti->track_start    = 0;
267 	ti->packet_size    = 1;
268 
269 	/* TODO support for resizable vnd */
270 	ti->track_size    = di->last_possible_lba;
271 	ti->next_writable = di->last_possible_lba;
272 	ti->last_recorded = ti->next_writable;
273 	ti->free_blocks   = 0;
274 
275 	return 0;
276 }
277 
278 
279 int
280 udf_setup_writeparams(struct udf_mount *ump)
281 {
282 	struct mmc_writeparams mmc_writeparams;
283 	int error;
284 
285 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
286 		return 0;
287 
288 	/*
289 	 * only CD burning normally needs setting up, but other disc types
290 	 * might need other settings to be made. The MMC framework will set up
291 	 * the nessisary recording parameters according to the disc
292 	 * characteristics read in. Modifications can be made in the discinfo
293 	 * structure passed to change the nature of the disc.
294 	 */
295 
296 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
297 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
298 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
299 
300 	/*
301 	 * UDF dictates first track to determine track mode for the whole
302 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
303 	 * To prevent problems with a `reserved' track in front we start with
304 	 * the 2nd track and if that is not valid, go for the 1st.
305 	 */
306 	mmc_writeparams.tracknr = 2;
307 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
308 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
309 
310 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
311 			FKIOCTL, NOCRED);
312 	if (error) {
313 		mmc_writeparams.tracknr = 1;
314 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
315 				&mmc_writeparams, FKIOCTL, NOCRED);
316 	}
317 	return error;
318 }
319 
320 
321 int
322 udf_synchronise_caches(struct udf_mount *ump)
323 {
324 	struct mmc_op mmc_op;
325 
326 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
327 
328 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
329 		return 0;
330 
331 	/* discs are done now */
332 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
333 		return 0;
334 
335 	memset(&mmc_op, 0, sizeof(struct mmc_op));
336 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
337 
338 	/* ignore return code */
339 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
340 
341 	return 0;
342 }
343 
344 /* --------------------------------------------------------------------- */
345 
346 /* track/session searching for mounting */
347 int
348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
349 		  int *first_tracknr, int *last_tracknr)
350 {
351 	struct mmc_trackinfo trackinfo;
352 	uint32_t tracknr, start_track, num_tracks;
353 	int error;
354 
355 	/* if negative, sessionnr is relative to last session */
356 	if (args->sessionnr < 0) {
357 		args->sessionnr += ump->discinfo.num_sessions;
358 	}
359 
360 	/* sanity */
361 	if (args->sessionnr < 0)
362 		args->sessionnr = 0;
363 	if (args->sessionnr > ump->discinfo.num_sessions)
364 		args->sessionnr = ump->discinfo.num_sessions;
365 
366 	/* search the tracks for this session, zero session nr indicates last */
367 	if (args->sessionnr == 0)
368 		args->sessionnr = ump->discinfo.num_sessions;
369 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
370 		args->sessionnr--;
371 
372 	/* sanity again */
373 	if (args->sessionnr < 0)
374 		args->sessionnr = 0;
375 
376 	/* search the first and last track of the specified session */
377 	num_tracks  = ump->discinfo.num_tracks;
378 	start_track = ump->discinfo.first_track;
379 
380 	/* search for first track of this session */
381 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
382 		/* get track info */
383 		trackinfo.tracknr = tracknr;
384 		error = udf_update_trackinfo(ump, &trackinfo);
385 		if (error)
386 			return error;
387 
388 		if (trackinfo.sessionnr == args->sessionnr)
389 			break;
390 	}
391 	*first_tracknr = tracknr;
392 
393 	/* search for last track of this session */
394 	for (;tracknr <= num_tracks; tracknr++) {
395 		/* get track info */
396 		trackinfo.tracknr = tracknr;
397 		error = udf_update_trackinfo(ump, &trackinfo);
398 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
399 			tracknr--;
400 			break;
401 		}
402 	}
403 	if (tracknr > num_tracks)
404 		tracknr--;
405 
406 	*last_tracknr = tracknr;
407 
408 	if (*last_tracknr < *first_tracknr) {
409 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
410 			"drive returned garbage\n");
411 		return EINVAL;
412 	}
413 
414 	assert(*last_tracknr >= *first_tracknr);
415 	return 0;
416 }
417 
418 
419 /*
420  * NOTE: this is the only routine in this file that directly peeks into the
421  * metadata file but since its at a larval state of the mount it can't hurt.
422  *
423  * XXX candidate for udf_allocation.c
424  * XXX clean me up!, change to new node reading code.
425  */
426 
427 static void
428 udf_check_track_metadata_overlap(struct udf_mount *ump,
429 	struct mmc_trackinfo *trackinfo)
430 {
431 	struct part_desc *part;
432 	struct file_entry      *fe;
433 	struct extfile_entry   *efe;
434 	struct short_ad        *s_ad;
435 	struct long_ad         *l_ad;
436 	uint32_t track_start, track_end;
437 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
438 	uint32_t sector_size, len, alloclen, plb_num;
439 	uint8_t *pos;
440 	int addr_type, icblen, icbflags, flags;
441 
442 	/* get our track extents */
443 	track_start = trackinfo->track_start;
444 	track_end   = track_start + trackinfo->track_size;
445 
446 	/* get our base partition extent */
447 	KASSERT(ump->node_part == ump->fids_part);
448 	part = ump->partitions[ump->node_part];
449 	phys_part_start = udf_rw32(part->start_loc);
450 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
451 
452 	/* no use if its outside the physical partition */
453 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
454 		return;
455 
456 	/*
457 	 * now follow all extents in the fe/efe to see if they refer to this
458 	 * track
459 	 */
460 
461 	sector_size = ump->discinfo.sector_size;
462 
463 	/* XXX should we claim exclusive access to the metafile ? */
464 	/* TODO: move to new node read code */
465 	fe  = ump->metadata_node->fe;
466 	efe = ump->metadata_node->efe;
467 	if (fe) {
468 		alloclen = udf_rw32(fe->l_ad);
469 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
470 		icbflags = udf_rw16(fe->icbtag.flags);
471 	} else {
472 		assert(efe);
473 		alloclen = udf_rw32(efe->l_ad);
474 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
475 		icbflags = udf_rw16(efe->icbtag.flags);
476 	}
477 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
478 
479 	while (alloclen) {
480 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
481 			icblen = sizeof(struct short_ad);
482 			s_ad   = (struct short_ad *) pos;
483 			len        = udf_rw32(s_ad->len);
484 			plb_num    = udf_rw32(s_ad->lb_num);
485 		} else {
486 			/* should not be present, but why not */
487 			icblen = sizeof(struct long_ad);
488 			l_ad   = (struct long_ad *) pos;
489 			len        = udf_rw32(l_ad->len);
490 			plb_num    = udf_rw32(l_ad->loc.lb_num);
491 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
492 		}
493 		/* process extent */
494 		flags   = UDF_EXT_FLAGS(len);
495 		len     = UDF_EXT_LEN(len);
496 
497 		part_start = phys_part_start + plb_num;
498 		part_end   = part_start + (len / sector_size);
499 
500 		if ((part_start >= track_start) && (part_end <= track_end)) {
501 			/* extent is enclosed within this track */
502 			ump->metadata_track = *trackinfo;
503 			return;
504 		}
505 
506 		pos        += icblen;
507 		alloclen   -= icblen;
508 	}
509 }
510 
511 
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 	struct vnode *devvp = ump->devvp;
516 	struct mmc_trackinfo trackinfo;
517 	struct mmc_op        mmc_op;
518 	struct part_desc *part;
519 	uint32_t tracknr, start_track, num_tracks;
520 	uint32_t track_start, track_end, part_start, part_end;
521 	int node_alloc, error;
522 
523 	/*
524 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 	 * the last session might be open but in the UDF device model at most
526 	 * three tracks can be open: a reserved track for delayed ISO VRS
527 	 * writing, a data track and a metadata track. We search here for the
528 	 * data track and the metadata track. Note that the reserved track is
529 	 * troublesome but can be detected by its small size of < 512 sectors.
530 	 */
531 
532 	/* update discinfo since it might have changed */
533 	error = udf_update_discinfo(ump);
534 	if (error)
535 		return error;
536 
537 	num_tracks  = ump->discinfo.num_tracks;
538 	start_track = ump->discinfo.first_track;
539 
540 	/* fetch info on first and possibly only track */
541 	trackinfo.tracknr = start_track;
542 	error = udf_update_trackinfo(ump, &trackinfo);
543 	if (error)
544 		return error;
545 
546 	/* copy results to our mount point */
547 	ump->data_track     = trackinfo;
548 	ump->metadata_track = trackinfo;
549 
550 	/* if not sequential, we're done */
551 	if (num_tracks == 1)
552 		return 0;
553 
554 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 		/* get track info */
556 		trackinfo.tracknr = tracknr;
557 		error = udf_update_trackinfo(ump, &trackinfo);
558 		if (error)
559 			return error;
560 
561 		/*
562 		 * If this track is marked damaged, ask for repair. This is an
563 		 * optional command, so ignore its error but report warning.
564 		 */
565 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 			memset(&mmc_op, 0, sizeof(mmc_op));
567 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
568 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 			mmc_op.tracknr     = tracknr;
570 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 			if (error)
572 				(void)printf("Drive can't explicitly repair "
573 					"damaged track %d, but it might "
574 					"autorepair\n", tracknr);
575 
576 			/* reget track info */
577 			error = udf_update_trackinfo(ump, &trackinfo);
578 			if (error)
579 				return error;
580 		}
581 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 			continue;
583 
584 		track_start = trackinfo.track_start;
585 		track_end   = track_start + trackinfo.track_size;
586 
587 		/* check for overlap on data partition */
588 		part = ump->partitions[ump->data_part];
589 		part_start = udf_rw32(part->start_loc);
590 		part_end   = part_start + udf_rw32(part->part_len);
591 		if ((part_start < track_end) && (part_end > track_start)) {
592 			ump->data_track = trackinfo;
593 			/* TODO check if UDF partition data_part is writable */
594 		}
595 
596 		/* check for overlap on metadata partition */
597 		node_alloc = ump->vtop_alloc[ump->node_part];
598 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
600 			udf_check_track_metadata_overlap(ump, &trackinfo);
601 		} else {
602 			ump->metadata_track = trackinfo;
603 		}
604 	}
605 
606 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 		return EROFS;
608 
609 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 		return EROFS;
611 
612 	return 0;
613 }
614 
615 /* --------------------------------------------------------------------- */
616 
617 /*
618  * Check if the blob starts with a good UDF tag. Tags are protected by a
619  * checksum over the reader except one byte at position 4 that is the checksum
620  * itself.
621  */
622 
623 int
624 udf_check_tag(void *blob)
625 {
626 	struct desc_tag *tag = blob;
627 	uint8_t *pos, sum, cnt;
628 
629 	/* check TAG header checksum */
630 	pos = (uint8_t *) tag;
631 	sum = 0;
632 
633 	for(cnt = 0; cnt < 16; cnt++) {
634 		if (cnt != 4)
635 			sum += *pos;
636 		pos++;
637 	}
638 	if (sum != tag->cksum) {
639 		/* bad tag header checksum; this is not a valid tag */
640 		return EINVAL;
641 	}
642 
643 	return 0;
644 }
645 
646 
647 /*
648  * check tag payload will check descriptor CRC as specified.
649  * If the descriptor is too long, it will return EIO otherwise EINVAL.
650  */
651 
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 	struct desc_tag *tag = blob;
656 	uint16_t crc, crc_len;
657 
658 	crc_len = udf_rw16(tag->desc_crc_len);
659 
660 	/* check payload CRC if applicable */
661 	if (crc_len == 0)
662 		return 0;
663 
664 	if (crc_len > max_length)
665 		return EIO;
666 
667 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 	if (crc != udf_rw16(tag->desc_crc)) {
669 		/* bad payload CRC; this is a broken tag */
670 		return EINVAL;
671 	}
672 
673 	return 0;
674 }
675 
676 
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 	struct desc_tag *tag = blob;
681 	uint8_t *pos, sum, cnt;
682 
683 	/* calculate TAG header checksum */
684 	pos = (uint8_t *) tag;
685 	sum = 0;
686 
687 	for(cnt = 0; cnt < 16; cnt++) {
688 		if (cnt != 4) sum += *pos;
689 		pos++;
690 	}
691 	tag->cksum = sum;	/* 8 bit */
692 }
693 
694 
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 	struct desc_tag *tag  = blob;
700 	uint8_t         *btag = (uint8_t *) tag;
701 	uint16_t crc, crc_len;
702 
703 	crc_len = udf_rw16(tag->desc_crc_len);
704 
705 	/* check payload CRC if applicable */
706 	if (crc_len > 0) {
707 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 		tag->desc_crc = udf_rw16(crc);
709 	}
710 
711 	/* calculate TAG header checksum */
712 	udf_validate_tag_sum(blob);
713 }
714 
715 /* --------------------------------------------------------------------- */
716 
717 /*
718  * XXX note the different semantics from udfclient: for FIDs it still rounds
719  * up to sectors. Use udf_fidsize() for a correct length.
720  */
721 
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 	uint32_t size, tag_id, num_lb, elmsz;
726 
727 	tag_id = udf_rw16(dscr->tag.id);
728 
729 	switch (tag_id) {
730 	case TAGID_LOGVOL :
731 		size  = sizeof(struct logvol_desc) - 1;
732 		size += udf_rw32(dscr->lvd.mt_l);
733 		break;
734 	case TAGID_UNALLOC_SPACE :
735 		elmsz = sizeof(struct extent_ad);
736 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
737 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 		break;
739 	case TAGID_FID :
740 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 		size = (size + 3) & ~3;
742 		break;
743 	case TAGID_LOGVOL_INTEGRITY :
744 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 		size += udf_rw32(dscr->lvid.l_iu);
746 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 		break;
748 	case TAGID_SPACE_BITMAP :
749 		size  = sizeof(struct space_bitmap_desc) - 1;
750 		size += udf_rw32(dscr->sbd.num_bytes);
751 		break;
752 	case TAGID_SPARING_TABLE :
753 		elmsz = sizeof(struct spare_map_entry);
754 		size  = sizeof(struct udf_sparing_table) - elmsz;
755 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 		break;
757 	case TAGID_FENTRY :
758 		size  = sizeof(struct file_entry);
759 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 		break;
761 	case TAGID_EXTFENTRY :
762 		size  = sizeof(struct extfile_entry);
763 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 		break;
765 	case TAGID_FSD :
766 		size  = sizeof(struct fileset_desc);
767 		break;
768 	default :
769 		size = sizeof(union dscrptr);
770 		break;
771 	}
772 
773 	if ((size == 0) || (lb_size == 0))
774 		return 0;
775 
776 	if (lb_size == 1)
777 		return size;
778 
779 	/* round up in sectors */
780 	num_lb = (size + lb_size -1) / lb_size;
781 	return num_lb * lb_size;
782 }
783 
784 
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 	uint32_t size;
789 
790 	if (udf_rw16(fid->tag.id) != TAGID_FID)
791 		panic("got udf_fidsize on non FID\n");
792 
793 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 	size = (size + 3) & ~3;
795 
796 	return size;
797 }
798 
799 /* --------------------------------------------------------------------- */
800 
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 	int ret;
805 
806 	mutex_enter(&udf_node->node_mutex);
807 	/* wait until free */
808 	while (udf_node->i_flags & IN_LOCKED) {
809 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 		/* TODO check if we should return error; abort */
811 		if (ret == EWOULDBLOCK) {
812 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 				"wanted at %s:%d, previously locked at %s:%d\n",
814 				udf_node, fname, lineno,
815 				udf_node->lock_fname, udf_node->lock_lineno));
816 		}
817 	}
818 	/* grab */
819 	udf_node->i_flags |= IN_LOCKED | flag;
820 	/* debug */
821 	udf_node->lock_fname  = fname;
822 	udf_node->lock_lineno = lineno;
823 
824 	mutex_exit(&udf_node->node_mutex);
825 }
826 
827 
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 	mutex_enter(&udf_node->node_mutex);
832 	udf_node->i_flags &= ~(IN_LOCKED | flag);
833 	cv_broadcast(&udf_node->node_lock);
834 	mutex_exit(&udf_node->node_mutex);
835 }
836 
837 
838 /* --------------------------------------------------------------------- */
839 
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 	int error;
844 
845 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 			(union dscrptr **) dst);
847 	if (!error) {
848 		/* blank terminator blocks are not allowed here */
849 		if (*dst == NULL)
850 			return ENOENT;
851 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 			error = ENOENT;
853 			free(*dst, M_UDFVOLD);
854 			*dst = NULL;
855 			DPRINTF(VOLUMES, ("Not an anchor\n"));
856 		}
857 	}
858 
859 	return error;
860 }
861 
862 
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 	struct udf_args *args = &ump->mount_args;
867 	struct mmc_trackinfo first_track;
868 	struct mmc_trackinfo second_track;
869 	struct mmc_trackinfo last_track;
870 	struct anchor_vdp **anchorsp;
871 	uint32_t track_start;
872 	uint32_t track_end;
873 	uint32_t positions[4];
874 	int first_tracknr, last_tracknr;
875 	int error, anch, ok, first_anchor;
876 
877 	/* search the first and last track of the specified session */
878 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 	if (!error) {
880 		first_track.tracknr = first_tracknr;
881 		error = udf_update_trackinfo(ump, &first_track);
882 	}
883 	if (!error) {
884 		last_track.tracknr = last_tracknr;
885 		error = udf_update_trackinfo(ump, &last_track);
886 	}
887 	if ((!error) && (first_tracknr != last_tracknr)) {
888 		second_track.tracknr = first_tracknr+1;
889 		error = udf_update_trackinfo(ump, &second_track);
890 	}
891 	if (error) {
892 		printf("UDF mount: reading disc geometry failed\n");
893 		return 0;
894 	}
895 
896 	track_start = first_track.track_start;
897 
898 	/* `end' is not as straitforward as start. */
899 	track_end =   last_track.track_start
900 		    + last_track.track_size - last_track.free_blocks - 1;
901 
902 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 		/* end of track is not straitforward here */
904 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 			track_end = last_track.last_recorded;
906 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 			track_end = last_track.next_writable
908 				    - ump->discinfo.link_block_penalty;
909 	}
910 
911 	/* its no use reading a blank track */
912 	first_anchor = 0;
913 	if (first_track.flags & MMC_TRACKINFO_BLANK)
914 		first_anchor = 1;
915 
916 	/* get our packet size */
917 	ump->packet_size = first_track.packet_size;
918 	if (first_track.flags & MMC_TRACKINFO_BLANK)
919 		ump->packet_size = second_track.packet_size;
920 
921 	if (ump->packet_size <= 1) {
922 		/* take max, but not bigger than 64 */
923 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 		ump->packet_size = MIN(ump->packet_size, 64);
925 	}
926 	KASSERT(ump->packet_size >= 1);
927 
928 	/* read anchors start+256, start+512, end-256, end */
929 	positions[0] = track_start+256;
930 	positions[1] =   track_end-256;
931 	positions[2] =   track_end;
932 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
933 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934 
935 	ok = 0;
936 	anchorsp = ump->anchors;
937 	for (anch = first_anchor; anch < 4; anch++) {
938 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 		    positions[anch]));
940 		error = udf_read_anchor(ump, positions[anch], anchorsp);
941 		if (!error) {
942 			anchorsp++;
943 			ok++;
944 		}
945 	}
946 
947 	/* VATs are only recorded on sequential media, but initialise */
948 	ump->first_possible_vat_location = track_start + 2;
949 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
950 
951 	return ok;
952 }
953 
954 /* --------------------------------------------------------------------- */
955 
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 	int isdir, what;
960 
961 	isdir  = (udf_node->vnode->v_type == VDIR);
962 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963 
964 	if (udf_node->ump)
965 		if (udf_node == udf_node->ump->metadatabitmap_node)
966 			what = UDF_C_METADATA_SBM;
967 
968 	return what;
969 }
970 
971 
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 	int vpart_num;
976 
977 	vpart_num = ump->data_part;
978 	if (udf_c_type == UDF_C_NODE)
979 		vpart_num = ump->node_part;
980 	if (udf_c_type == UDF_C_FIDS)
981 		vpart_num = ump->fids_part;
982 
983 	return vpart_num;
984 }
985 
986 /* --------------------------------------------------------------------- */
987 
988 /* we dont try to be smart; we just record the parts */
989 #define UDF_UPDATE_DSCR(name, dscr) \
990 	if (name) \
991 		free(name, M_UDFVOLD); \
992 	name = dscr;
993 
994 static int
995 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
996 {
997 	struct part_desc *part;
998 	uint16_t phys_part, raw_phys_part;
999 
1000 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1001 	    udf_rw16(dscr->tag.id)));
1002 	switch (udf_rw16(dscr->tag.id)) {
1003 	case TAGID_PRI_VOL :		/* primary partition		*/
1004 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1005 		break;
1006 	case TAGID_LOGVOL :		/* logical volume		*/
1007 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1008 		break;
1009 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
1010 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1011 		break;
1012 	case TAGID_IMP_VOL :		/* implementation		*/
1013 		/* XXX do we care about multiple impl. descr ? */
1014 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1015 		break;
1016 	case TAGID_PARTITION :		/* physical partition		*/
1017 		/* not much use if its not allocated */
1018 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1019 			free(dscr, M_UDFVOLD);
1020 			break;
1021 		}
1022 
1023 		/*
1024 		 * BUGALERT: some rogue implementations use random physical
1025 		 * partion numbers to break other implementations so lookup
1026 		 * the number.
1027 		 */
1028 		raw_phys_part = udf_rw16(dscr->pd.part_num);
1029 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1030 			part = ump->partitions[phys_part];
1031 			if (part == NULL)
1032 				break;
1033 			if (udf_rw16(part->part_num) == raw_phys_part)
1034 				break;
1035 		}
1036 		if (phys_part == UDF_PARTITIONS) {
1037 			free(dscr, M_UDFVOLD);
1038 			return EINVAL;
1039 		}
1040 
1041 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1042 		break;
1043 	case TAGID_VOL :		/* volume space extender; rare	*/
1044 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1045 		free(dscr, M_UDFVOLD);
1046 		break;
1047 	default :
1048 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1049 		    udf_rw16(dscr->tag.id)));
1050 		free(dscr, M_UDFVOLD);
1051 	}
1052 
1053 	return 0;
1054 }
1055 #undef UDF_UPDATE_DSCR
1056 
1057 /* --------------------------------------------------------------------- */
1058 
1059 static int
1060 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1061 {
1062 	union dscrptr *dscr;
1063 	uint32_t sector_size, dscr_size;
1064 	int error;
1065 
1066 	sector_size = ump->discinfo.sector_size;
1067 
1068 	/* loc is sectornr, len is in bytes */
1069 	error = EIO;
1070 	while (len) {
1071 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1072 		if (error)
1073 			return error;
1074 
1075 		/* blank block is a terminator */
1076 		if (dscr == NULL)
1077 			return 0;
1078 
1079 		/* TERM descriptor is a terminator */
1080 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1081 			free(dscr, M_UDFVOLD);
1082 			return 0;
1083 		}
1084 
1085 		/* process all others */
1086 		dscr_size = udf_tagsize(dscr, sector_size);
1087 		error = udf_process_vds_descriptor(ump, dscr);
1088 		if (error) {
1089 			free(dscr, M_UDFVOLD);
1090 			break;
1091 		}
1092 		assert((dscr_size % sector_size) == 0);
1093 
1094 		len -= dscr_size;
1095 		loc += dscr_size / sector_size;
1096 	}
1097 
1098 	return error;
1099 }
1100 
1101 
1102 int
1103 udf_read_vds_space(struct udf_mount *ump)
1104 {
1105 	/* struct udf_args *args = &ump->mount_args; */
1106 	struct anchor_vdp *anchor, *anchor2;
1107 	size_t size;
1108 	uint32_t main_loc, main_len;
1109 	uint32_t reserve_loc, reserve_len;
1110 	int error;
1111 
1112 	/*
1113 	 * read in VDS space provided by the anchors; if one descriptor read
1114 	 * fails, try the mirror sector.
1115 	 *
1116 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1117 	 * avoids the `compatibility features' of DirectCD that may confuse
1118 	 * stuff completely.
1119 	 */
1120 
1121 	anchor  = ump->anchors[0];
1122 	anchor2 = ump->anchors[1];
1123 	assert(anchor);
1124 
1125 	if (anchor2) {
1126 		size = sizeof(struct extent_ad);
1127 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1128 			anchor = anchor2;
1129 		/* reserve is specified to be a literal copy of main */
1130 	}
1131 
1132 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
1133 	main_len    = udf_rw32(anchor->main_vds_ex.len);
1134 
1135 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1136 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1137 
1138 	error = udf_read_vds_extent(ump, main_loc, main_len);
1139 	if (error) {
1140 		printf("UDF mount: reading in reserve VDS extent\n");
1141 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1142 	}
1143 
1144 	return error;
1145 }
1146 
1147 /* --------------------------------------------------------------------- */
1148 
1149 /*
1150  * Read in the logical volume integrity sequence pointed to by our logical
1151  * volume descriptor. Its a sequence that can be extended using fields in the
1152  * integrity descriptor itself. On sequential media only one is found, on
1153  * rewritable media a sequence of descriptors can be found as a form of
1154  * history keeping and on non sequential write-once media the chain is vital
1155  * to allow more and more descriptors to be written. The last descriptor
1156  * written in an extent needs to claim space for a new extent.
1157  */
1158 
1159 static int
1160 udf_retrieve_lvint(struct udf_mount *ump)
1161 {
1162 	union dscrptr *dscr;
1163 	struct logvol_int_desc *lvint;
1164 	struct udf_lvintq *trace;
1165 	uint32_t lb_size, lbnum, len;
1166 	int dscr_type, error, trace_len;
1167 
1168 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1169 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1170 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1171 
1172 	/* clean trace */
1173 	memset(ump->lvint_trace, 0,
1174 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1175 
1176 	trace_len    = 0;
1177 	trace        = ump->lvint_trace;
1178 	trace->start = lbnum;
1179 	trace->end   = lbnum + len/lb_size;
1180 	trace->pos   = 0;
1181 	trace->wpos  = 0;
1182 
1183 	lvint = NULL;
1184 	dscr  = NULL;
1185 	error = 0;
1186 	while (len) {
1187 		trace->pos  = lbnum - trace->start;
1188 		trace->wpos = trace->pos + 1;
1189 
1190 		/* read in our integrity descriptor */
1191 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1192 		if (!error) {
1193 			if (dscr == NULL) {
1194 				trace->wpos = trace->pos;
1195 				break;		/* empty terminates */
1196 			}
1197 			dscr_type = udf_rw16(dscr->tag.id);
1198 			if (dscr_type == TAGID_TERM) {
1199 				trace->wpos = trace->pos;
1200 				break;		/* clean terminator */
1201 			}
1202 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1203 				/* fatal... corrupt disc */
1204 				error = ENOENT;
1205 				break;
1206 			}
1207 			if (lvint)
1208 				free(lvint, M_UDFVOLD);
1209 			lvint = &dscr->lvid;
1210 			dscr = NULL;
1211 		} /* else hope for the best... maybe the next is ok */
1212 
1213 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1214 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1215 
1216 		/* proceed sequential */
1217 		lbnum += 1;
1218 		len    -= lb_size;
1219 
1220 		/* are we linking to a new piece? */
1221 		if (dscr && lvint->next_extent.len) {
1222 			len    = udf_rw32(lvint->next_extent.len);
1223 			lbnum = udf_rw32(lvint->next_extent.loc);
1224 
1225 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1226 				/* IEK! segment link full... */
1227 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
1228 				error = EINVAL;
1229 			} else {
1230 				trace++;
1231 				trace_len++;
1232 
1233 				trace->start = lbnum;
1234 				trace->end   = lbnum + len/lb_size;
1235 				trace->pos   = 0;
1236 				trace->wpos  = 0;
1237 			}
1238 		}
1239 	}
1240 
1241 	/* clean up the mess, esp. when there is an error */
1242 	if (dscr)
1243 		free(dscr, M_UDFVOLD);
1244 
1245 	if (error && lvint) {
1246 		free(lvint, M_UDFVOLD);
1247 		lvint = NULL;
1248 	}
1249 
1250 	if (!lvint)
1251 		error = ENOENT;
1252 
1253 	ump->logvol_integrity = lvint;
1254 	return error;
1255 }
1256 
1257 
1258 static int
1259 udf_loose_lvint_history(struct udf_mount *ump)
1260 {
1261 	union dscrptr **bufs, *dscr, *last_dscr;
1262 	struct udf_lvintq *trace, *in_trace, *out_trace;
1263 	struct logvol_int_desc *lvint;
1264 	uint32_t in_ext, in_pos, in_len;
1265 	uint32_t out_ext, out_wpos, out_len;
1266 	uint32_t lb_size, packet_size, lb_num;
1267 	uint32_t len, start;
1268 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
1269 	int losing;
1270 	int error;
1271 
1272 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1273 
1274 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1275 	packet_size = ump->data_track.packet_size;	/* XXX data track */
1276 
1277 	/* search smallest extent */
1278 	trace = &ump->lvint_trace[0];
1279 	minext = trace->end - trace->start;
1280 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1281 		trace = &ump->lvint_trace[ext];
1282 		extlen = trace->end - trace->start;
1283 		if (extlen == 0)
1284 			break;
1285 		minext = MIN(minext, extlen);
1286 	}
1287 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
1288 	/* no sense wiping all */
1289 	if (losing == minext)
1290 		losing--;
1291 
1292 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1293 
1294 	/* get buffer for pieces */
1295 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1296 
1297 	in_ext    = 0;
1298 	in_pos    = losing;
1299 	in_trace  = &ump->lvint_trace[in_ext];
1300 	in_len    = in_trace->end - in_trace->start;
1301 	out_ext   = 0;
1302 	out_wpos  = 0;
1303 	out_trace = &ump->lvint_trace[out_ext];
1304 	out_len   = out_trace->end - out_trace->start;
1305 
1306 	last_dscr = NULL;
1307 	for(;;) {
1308 		out_trace->pos  = out_wpos;
1309 		out_trace->wpos = out_trace->pos;
1310 		if (in_pos >= in_len) {
1311 			in_ext++;
1312 			in_pos = 0;
1313 			in_trace = &ump->lvint_trace[in_ext];
1314 			in_len   = in_trace->end - in_trace->start;
1315 		}
1316 		if (out_wpos >= out_len) {
1317 			out_ext++;
1318 			out_wpos = 0;
1319 			out_trace = &ump->lvint_trace[out_ext];
1320 			out_len   = out_trace->end - out_trace->start;
1321 		}
1322 		/* copy overlap contents */
1323 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1324 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1325 		if (cpy_len == 0)
1326 			break;
1327 
1328 		/* copy */
1329 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1330 		for (cnt = 0; cnt < cpy_len; cnt++) {
1331 			/* read in our integrity descriptor */
1332 			lb_num = in_trace->start + in_pos + cnt;
1333 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1334 				&dscr);
1335 			if (error) {
1336 				/* copy last one */
1337 				dscr = last_dscr;
1338 			}
1339 			bufs[cnt] = dscr;
1340 			if (!error) {
1341 				if (dscr == NULL) {
1342 					out_trace->pos  = out_wpos + cnt;
1343 					out_trace->wpos = out_trace->pos;
1344 					break;		/* empty terminates */
1345 				}
1346 				dscr_type = udf_rw16(dscr->tag.id);
1347 				if (dscr_type == TAGID_TERM) {
1348 					out_trace->pos  = out_wpos + cnt;
1349 					out_trace->wpos = out_trace->pos;
1350 					break;		/* clean terminator */
1351 				}
1352 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1353 					panic(  "UDF integrity sequence "
1354 						"corrupted while mounted!\n");
1355 				}
1356 				last_dscr = dscr;
1357 			}
1358 		}
1359 
1360 		/* patch up if first entry was on error */
1361 		if (bufs[0] == NULL) {
1362 			for (cnt = 0; cnt < cpy_len; cnt++)
1363 				if (bufs[cnt] != NULL)
1364 					break;
1365 			last_dscr = bufs[cnt];
1366 			for (; cnt > 0; cnt--) {
1367 				bufs[cnt] = last_dscr;
1368 			}
1369 		}
1370 
1371 		/* glue + write out */
1372 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1373 		for (cnt = 0; cnt < cpy_len; cnt++) {
1374 			lb_num = out_trace->start + out_wpos + cnt;
1375 			lvint  = &bufs[cnt]->lvid;
1376 
1377 			/* set continuation */
1378 			len = 0;
1379 			start = 0;
1380 			if (out_wpos + cnt == out_len) {
1381 				/* get continuation */
1382 				trace = &ump->lvint_trace[out_ext+1];
1383 				len   = trace->end - trace->start;
1384 				start = trace->start;
1385 			}
1386 			lvint->next_extent.len = udf_rw32(len);
1387 			lvint->next_extent.loc = udf_rw32(start);
1388 
1389 			lb_num = trace->start + trace->wpos;
1390 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1391 				bufs[cnt], lb_num, lb_num);
1392 			DPRINTFIF(VOLUMES, error,
1393 				("error writing lvint lb_num\n"));
1394 		}
1395 
1396 		/* free non repeating descriptors */
1397 		last_dscr = NULL;
1398 		for (cnt = 0; cnt < cpy_len; cnt++) {
1399 			if (bufs[cnt] != last_dscr)
1400 				free(bufs[cnt], M_UDFVOLD);
1401 			last_dscr = bufs[cnt];
1402 		}
1403 
1404 		/* advance */
1405 		in_pos   += cpy_len;
1406 		out_wpos += cpy_len;
1407 	}
1408 
1409 	free(bufs, M_TEMP);
1410 
1411 	return 0;
1412 }
1413 
1414 
1415 static int
1416 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1417 {
1418 	struct udf_lvintq *trace;
1419 	struct timeval  now_v;
1420 	struct timespec now_s;
1421 	uint32_t sector;
1422 	int logvol_integrity;
1423 	int space, error;
1424 
1425 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1426 
1427 again:
1428 	/* get free space in last chunk */
1429 	trace = ump->lvint_trace;
1430 	while (trace->wpos > (trace->end - trace->start)) {
1431 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1432 				  "wpos = %d\n", trace->start, trace->end,
1433 				  trace->pos, trace->wpos));
1434 		trace++;
1435 	}
1436 
1437 	/* check if there is space to append */
1438 	space = (trace->end - trace->start) - trace->wpos;
1439 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1440 			  "space = %d\n", trace->start, trace->end, trace->pos,
1441 			  trace->wpos, space));
1442 
1443 	/* get state */
1444 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1445 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1446 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1447 			/* don't allow this logvol to be opened */
1448 			/* TODO extent LVINT space if possible */
1449 			return EROFS;
1450 		}
1451 	}
1452 
1453 	if (space < 1) {
1454 		if (lvflag & UDF_APPENDONLY_LVINT)
1455 			return EROFS;
1456 		/* loose history by re-writing extents */
1457 		error = udf_loose_lvint_history(ump);
1458 		if (error)
1459 			return error;
1460 		goto again;
1461 	}
1462 
1463 	/* update our integrity descriptor to identify us and timestamp it */
1464 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1465 	microtime(&now_v);
1466 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1467 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1468 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1469 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1470 
1471 	/* writeout integrity descriptor */
1472 	sector = trace->start + trace->wpos;
1473 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1474 			(union dscrptr *) ump->logvol_integrity,
1475 			sector, sector);
1476 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1477 	if (error)
1478 		return error;
1479 
1480 	/* advance write position */
1481 	trace->wpos++; space--;
1482 	if (space >= 1) {
1483 		/* append terminator */
1484 		sector = trace->start + trace->wpos;
1485 		error = udf_write_terminator(ump, sector);
1486 
1487 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1488 	}
1489 
1490 	space = (trace->end - trace->start) - trace->wpos;
1491 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1492 		"space = %d\n", trace->start, trace->end, trace->pos,
1493 		trace->wpos, space));
1494 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1495 		"successfull\n"));
1496 
1497 	return error;
1498 }
1499 
1500 /* --------------------------------------------------------------------- */
1501 
1502 static int
1503 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1504 {
1505 	union dscrptr        *dscr;
1506 	/* struct udf_args *args = &ump->mount_args; */
1507 	struct part_desc     *partd;
1508 	struct part_hdr_desc *parthdr;
1509 	struct udf_bitmap    *bitmap;
1510 	uint32_t phys_part;
1511 	uint32_t lb_num, len;
1512 	int error, dscr_type;
1513 
1514 	/* unallocated space map */
1515 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1516 		partd = ump->partitions[phys_part];
1517 		if (partd == NULL)
1518 			continue;
1519 		parthdr = &partd->_impl_use.part_hdr;
1520 
1521 		lb_num  = udf_rw32(partd->start_loc);
1522 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1523 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
1524 		if (len == 0)
1525 			continue;
1526 
1527 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1528 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1529 		if (!error && dscr) {
1530 			/* analyse */
1531 			dscr_type = udf_rw16(dscr->tag.id);
1532 			if (dscr_type == TAGID_SPACE_BITMAP) {
1533 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1534 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1535 
1536 				/* fill in ump->part_unalloc_bits */
1537 				bitmap = &ump->part_unalloc_bits[phys_part];
1538 				bitmap->blob  = (uint8_t *) dscr;
1539 				bitmap->bits  = dscr->sbd.data;
1540 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1541 				bitmap->pages = NULL;	/* TODO */
1542 				bitmap->data_pos     = 0;
1543 				bitmap->metadata_pos = 0;
1544 			} else {
1545 				free(dscr, M_UDFVOLD);
1546 
1547 				printf( "UDF mount: error reading unallocated "
1548 					"space bitmap\n");
1549 				return EROFS;
1550 			}
1551 		} else {
1552 			/* blank not allowed */
1553 			printf("UDF mount: blank unallocated space bitmap\n");
1554 			return EROFS;
1555 		}
1556 	}
1557 
1558 	/* unallocated space table (not supported) */
1559 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1560 		partd = ump->partitions[phys_part];
1561 		if (partd == NULL)
1562 			continue;
1563 		parthdr = &partd->_impl_use.part_hdr;
1564 
1565 		len     = udf_rw32(parthdr->unalloc_space_table.len);
1566 		if (len) {
1567 			printf("UDF mount: space tables not supported\n");
1568 			return EROFS;
1569 		}
1570 	}
1571 
1572 	/* freed space map */
1573 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1574 		partd = ump->partitions[phys_part];
1575 		if (partd == NULL)
1576 			continue;
1577 		parthdr = &partd->_impl_use.part_hdr;
1578 
1579 		/* freed space map */
1580 		lb_num  = udf_rw32(partd->start_loc);
1581 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1582 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
1583 		if (len == 0)
1584 			continue;
1585 
1586 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1587 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1588 		if (!error && dscr) {
1589 			/* analyse */
1590 			dscr_type = udf_rw16(dscr->tag.id);
1591 			if (dscr_type == TAGID_SPACE_BITMAP) {
1592 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1593 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
1594 
1595 				/* fill in ump->part_freed_bits */
1596 				bitmap = &ump->part_unalloc_bits[phys_part];
1597 				bitmap->blob  = (uint8_t *) dscr;
1598 				bitmap->bits  = dscr->sbd.data;
1599 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1600 				bitmap->pages = NULL;	/* TODO */
1601 				bitmap->data_pos     = 0;
1602 				bitmap->metadata_pos = 0;
1603 			} else {
1604 				free(dscr, M_UDFVOLD);
1605 
1606 				printf( "UDF mount: error reading freed  "
1607 					"space bitmap\n");
1608 				return EROFS;
1609 			}
1610 		} else {
1611 			/* blank not allowed */
1612 			printf("UDF mount: blank freed space bitmap\n");
1613 			return EROFS;
1614 		}
1615 	}
1616 
1617 	/* freed space table (not supported) */
1618 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1619 		partd = ump->partitions[phys_part];
1620 		if (partd == NULL)
1621 			continue;
1622 		parthdr = &partd->_impl_use.part_hdr;
1623 
1624 		len     = udf_rw32(parthdr->freed_space_table.len);
1625 		if (len) {
1626 			printf("UDF mount: space tables not supported\n");
1627 			return EROFS;
1628 		}
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 
1635 /* TODO implement async writeout */
1636 int
1637 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1638 {
1639 	union dscrptr        *dscr;
1640 	/* struct udf_args *args = &ump->mount_args; */
1641 	struct part_desc     *partd;
1642 	struct part_hdr_desc *parthdr;
1643 	uint32_t phys_part;
1644 	uint32_t lb_num, len, ptov;
1645 	int error_all, error;
1646 
1647 	error_all = 0;
1648 	/* unallocated space map */
1649 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1650 		partd = ump->partitions[phys_part];
1651 		if (partd == NULL)
1652 			continue;
1653 		parthdr = &partd->_impl_use.part_hdr;
1654 
1655 		ptov   = udf_rw32(partd->start_loc);
1656 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1657 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
1658 		if (len == 0)
1659 			continue;
1660 
1661 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1662 			lb_num + ptov));
1663 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1664 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1665 				(union dscrptr *) dscr,
1666 				ptov + lb_num, lb_num);
1667 		if (error) {
1668 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1669 			error_all = error;
1670 		}
1671 	}
1672 
1673 	/* freed space map */
1674 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1675 		partd = ump->partitions[phys_part];
1676 		if (partd == NULL)
1677 			continue;
1678 		parthdr = &partd->_impl_use.part_hdr;
1679 
1680 		/* freed space map */
1681 		ptov   = udf_rw32(partd->start_loc);
1682 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1683 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
1684 		if (len == 0)
1685 			continue;
1686 
1687 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1688 			lb_num + ptov));
1689 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1690 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1691 				(union dscrptr *) dscr,
1692 				ptov + lb_num, lb_num);
1693 		if (error) {
1694 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1695 			error_all = error;
1696 		}
1697 	}
1698 
1699 	return error_all;
1700 }
1701 
1702 
1703 static int
1704 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1705 {
1706 	struct udf_node	     *bitmap_node;
1707 	union dscrptr        *dscr;
1708 	struct udf_bitmap    *bitmap;
1709 	uint64_t inflen;
1710 	int error, dscr_type;
1711 
1712 	bitmap_node = ump->metadatabitmap_node;
1713 
1714 	/* only read in when metadata bitmap node is read in */
1715 	if (bitmap_node == NULL)
1716 		return 0;
1717 
1718 	if (bitmap_node->fe) {
1719 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1720 	} else {
1721 		KASSERT(bitmap_node->efe);
1722 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1723 	}
1724 
1725 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1726 		"%"PRIu64" bytes\n", inflen));
1727 
1728 	/* allocate space for bitmap */
1729 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1730 	if (!dscr)
1731 		return ENOMEM;
1732 
1733 	/* set vnode type to regular file or we can't read from it! */
1734 	bitmap_node->vnode->v_type = VREG;
1735 
1736 	/* read in complete metadata bitmap file */
1737 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1738 			dscr,
1739 			inflen, 0,
1740 			UIO_SYSSPACE,
1741 			IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1742 			NULL, NULL);
1743 	if (error) {
1744 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1745 		goto errorout;
1746 	}
1747 
1748 	/* analyse */
1749 	dscr_type = udf_rw16(dscr->tag.id);
1750 	if (dscr_type == TAGID_SPACE_BITMAP) {
1751 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1752 		ump->metadata_unalloc_dscr = &dscr->sbd;
1753 
1754 		/* fill in bitmap bits */
1755 		bitmap = &ump->metadata_unalloc_bits;
1756 		bitmap->blob  = (uint8_t *) dscr;
1757 		bitmap->bits  = dscr->sbd.data;
1758 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1759 		bitmap->pages = NULL;	/* TODO */
1760 		bitmap->data_pos     = 0;
1761 		bitmap->metadata_pos = 0;
1762 	} else {
1763 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1764 		goto errorout;
1765 	}
1766 
1767 	return 0;
1768 
1769 errorout:
1770 	free(dscr, M_UDFVOLD);
1771 	printf( "UDF mount: error reading unallocated "
1772 		"space bitmap for metadata partition\n");
1773 	return EROFS;
1774 }
1775 
1776 
1777 int
1778 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1779 {
1780 	struct udf_node	     *bitmap_node;
1781 	union dscrptr        *dscr;
1782 	uint64_t inflen, new_inflen;
1783 	int dummy, error;
1784 
1785 	bitmap_node = ump->metadatabitmap_node;
1786 
1787 	/* only write out when metadata bitmap node is known */
1788 	if (bitmap_node == NULL)
1789 		return 0;
1790 
1791 	if (bitmap_node->fe) {
1792 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1793 	} else {
1794 		KASSERT(bitmap_node->efe);
1795 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1796 	}
1797 
1798 	/* reduce length to zero */
1799 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1800 	new_inflen = udf_tagsize(dscr, 1);
1801 
1802 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1803 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1804 
1805 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1806 	if (error)
1807 		printf("Error resizing metadata space bitmap\n");
1808 
1809 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1810 			dscr,
1811 			new_inflen, 0,
1812 			UIO_SYSSPACE,
1813 			IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1814 			NULL, NULL);
1815 
1816 	bitmap_node->i_flags |= IN_MODIFIED;
1817 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
1818 
1819 	error = VOP_FSYNC(bitmap_node->vnode,
1820 			FSCRED, FSYNC_WAIT, 0, 0);
1821 
1822 	if (error)
1823 		printf( "Error writing out metadata partition unalloced "
1824 			"space bitmap!\n");
1825 
1826 	return error;
1827 }
1828 
1829 
1830 /* --------------------------------------------------------------------- */
1831 
1832 /*
1833  * Checks if ump's vds information is correct and complete
1834  */
1835 
1836 int
1837 udf_process_vds(struct udf_mount *ump) {
1838 	union udf_pmap *mapping;
1839 	/* struct udf_args *args = &ump->mount_args; */
1840 	struct logvol_int_desc *lvint;
1841 	struct udf_logvol_info *lvinfo;
1842 	struct part_desc *part;
1843 	uint32_t n_pm, mt_l;
1844 	uint8_t *pmap_pos;
1845 	char *domain_name, *map_name;
1846 	const char *check_name;
1847 	char bits[128];
1848 	int pmap_stype, pmap_size;
1849 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1850 	int n_phys, n_virt, n_spar, n_meta;
1851 	int len, error;
1852 
1853 	if (ump == NULL)
1854 		return ENOENT;
1855 
1856 	/* we need at least an anchor (trivial, but for safety) */
1857 	if (ump->anchors[0] == NULL)
1858 		return EINVAL;
1859 
1860 	/* we need at least one primary and one logical volume descriptor */
1861 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1862 		return EINVAL;
1863 
1864 	/* we need at least one partition descriptor */
1865 	if (ump->partitions[0] == NULL)
1866 		return EINVAL;
1867 
1868 	/* check logical volume sector size verses device sector size */
1869 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1870 		printf("UDF mount: format violation, lb_size != sector size\n");
1871 		return EINVAL;
1872 	}
1873 
1874 	/* check domain name */
1875 	domain_name = ump->logical_vol->domain_id.id;
1876 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1877 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1878 		return EINVAL;
1879 	}
1880 
1881 	/* retrieve logical volume integrity sequence */
1882 	error = udf_retrieve_lvint(ump);
1883 
1884 	/*
1885 	 * We need at least one logvol integrity descriptor recorded.  Note
1886 	 * that its OK to have an open logical volume integrity here. The VAT
1887 	 * will close/update the integrity.
1888 	 */
1889 	if (ump->logvol_integrity == NULL)
1890 		return EINVAL;
1891 
1892 	/* process derived structures */
1893 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1894 	lvint  = ump->logvol_integrity;
1895 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1896 	ump->logvol_info = lvinfo;
1897 
1898 	/* TODO check udf versions? */
1899 
1900 	/*
1901 	 * check logvol mappings: effective virt->log partmap translation
1902 	 * check and recording of the mapping results. Saves expensive
1903 	 * strncmp() in tight places.
1904 	 */
1905 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1906 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1907 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1908 	pmap_pos =  ump->logical_vol->maps;
1909 
1910 	if (n_pm > UDF_PMAPS) {
1911 		printf("UDF mount: too many mappings\n");
1912 		return EINVAL;
1913 	}
1914 
1915 	/* count types and set partition numbers */
1916 	ump->data_part = ump->node_part = ump->fids_part = 0;
1917 	n_phys = n_virt = n_spar = n_meta = 0;
1918 	for (log_part = 0; log_part < n_pm; log_part++) {
1919 		mapping = (union udf_pmap *) pmap_pos;
1920 		pmap_stype = pmap_pos[0];
1921 		pmap_size  = pmap_pos[1];
1922 		switch (pmap_stype) {
1923 		case 1:	/* physical mapping */
1924 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1925 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1926 			pmap_type = UDF_VTOP_TYPE_PHYS;
1927 			n_phys++;
1928 			ump->data_part = log_part;
1929 			ump->node_part = log_part;
1930 			ump->fids_part = log_part;
1931 			break;
1932 		case 2: /* virtual/sparable/meta mapping */
1933 			map_name  = mapping->pm2.part_id.id;
1934 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1935 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1936 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1937 			len = UDF_REGID_ID_SIZE;
1938 
1939 			check_name = "*UDF Virtual Partition";
1940 			if (strncmp(map_name, check_name, len) == 0) {
1941 				pmap_type = UDF_VTOP_TYPE_VIRT;
1942 				n_virt++;
1943 				ump->node_part = log_part;
1944 				break;
1945 			}
1946 			check_name = "*UDF Sparable Partition";
1947 			if (strncmp(map_name, check_name, len) == 0) {
1948 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1949 				n_spar++;
1950 				ump->data_part = log_part;
1951 				ump->node_part = log_part;
1952 				ump->fids_part = log_part;
1953 				break;
1954 			}
1955 			check_name = "*UDF Metadata Partition";
1956 			if (strncmp(map_name, check_name, len) == 0) {
1957 				pmap_type = UDF_VTOP_TYPE_META;
1958 				n_meta++;
1959 				ump->node_part = log_part;
1960 				ump->fids_part = log_part;
1961 				break;
1962 			}
1963 			break;
1964 		default:
1965 			return EINVAL;
1966 		}
1967 
1968 		/*
1969 		 * BUGALERT: some rogue implementations use random physical
1970 		 * partion numbers to break other implementations so lookup
1971 		 * the number.
1972 		 */
1973 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1974 			part = ump->partitions[phys_part];
1975 			if (part == NULL)
1976 				continue;
1977 			if (udf_rw16(part->part_num) == raw_phys_part)
1978 				break;
1979 		}
1980 
1981 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1982 		    raw_phys_part, phys_part, pmap_type));
1983 
1984 		if (phys_part == UDF_PARTITIONS)
1985 			return EINVAL;
1986 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1987 			return EINVAL;
1988 
1989 		ump->vtop   [log_part] = phys_part;
1990 		ump->vtop_tp[log_part] = pmap_type;
1991 
1992 		pmap_pos += pmap_size;
1993 	}
1994 	/* not winning the beauty contest */
1995 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1996 
1997 	/* test some basic UDF assertions/requirements */
1998 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1999 		return EINVAL;
2000 
2001 	if (n_virt) {
2002 		if ((n_phys == 0) || n_spar || n_meta)
2003 			return EINVAL;
2004 	}
2005 	if (n_spar + n_phys == 0)
2006 		return EINVAL;
2007 
2008 	/* select allocation type for each logical partition */
2009 	for (log_part = 0; log_part < n_pm; log_part++) {
2010 		maps_on = ump->vtop[log_part];
2011 		switch (ump->vtop_tp[log_part]) {
2012 		case UDF_VTOP_TYPE_PHYS :
2013 			assert(maps_on == log_part);
2014 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2015 			break;
2016 		case UDF_VTOP_TYPE_VIRT :
2017 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2018 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2019 			break;
2020 		case UDF_VTOP_TYPE_SPARABLE :
2021 			assert(maps_on == log_part);
2022 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2023 			break;
2024 		case UDF_VTOP_TYPE_META :
2025 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2026 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2027 				/* special case for UDF 2.60 */
2028 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2029 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2030 			}
2031 			break;
2032 		default:
2033 			panic("bad alloction type in udf's ump->vtop\n");
2034 		}
2035 	}
2036 
2037 	/* determine logical volume open/closure actions */
2038 	if (n_virt) {
2039 		ump->lvopen  = 0;
2040 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2041 			ump->lvopen |= UDF_OPEN_SESSION ;
2042 		ump->lvclose = UDF_WRITE_VAT;
2043 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2044 			ump->lvclose |= UDF_CLOSE_SESSION;
2045 	} else {
2046 		/* `normal' rewritable or non sequential media */
2047 		ump->lvopen  = UDF_WRITE_LVINT;
2048 		ump->lvclose = UDF_WRITE_LVINT;
2049 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2050 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
2051 	}
2052 
2053 	/*
2054 	 * Determine sheduler error behaviour. For virtual partions, update
2055 	 * the trackinfo; for sparable partitions replace a whole block on the
2056 	 * sparable table. Allways requeue.
2057 	 */
2058 	ump->lvreadwrite = 0;
2059 	if (n_virt)
2060 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2061 	if (n_spar)
2062 		ump->lvreadwrite = UDF_REMAP_BLOCK;
2063 
2064 	/*
2065 	 * Select our sheduler
2066 	 */
2067 	ump->strategy = &udf_strat_rmw;
2068 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2069 		ump->strategy = &udf_strat_sequential;
2070 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2071 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2072 			ump->strategy = &udf_strat_direct;
2073 	if (n_spar)
2074 		ump->strategy = &udf_strat_rmw;
2075 
2076 #if 0
2077 	/* read-only access won't benefit from the other shedulers */
2078 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2079 		ump->strategy = &udf_strat_direct;
2080 #endif
2081 
2082 	/* print results */
2083 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
2084 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2085 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
2086 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2087 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
2088 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2089 
2090 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2091 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
2092 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2093 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2094 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2095 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2096 
2097 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2098 		(ump->strategy == &udf_strat_direct) ? "Direct" :
2099 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
2100 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2101 
2102 	/* signal its OK for now */
2103 	return 0;
2104 }
2105 
2106 /* --------------------------------------------------------------------- */
2107 
2108 /*
2109  * Update logical volume name in all structures that keep a record of it. We
2110  * use memmove since each of them might be specified as a source.
2111  *
2112  * Note that it doesn't update the VAT structure!
2113  */
2114 
2115 static void
2116 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2117 {
2118 	struct logvol_desc     *lvd = NULL;
2119 	struct fileset_desc    *fsd = NULL;
2120 	struct udf_lv_info     *lvi = NULL;
2121 
2122 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2123 	lvd = ump->logical_vol;
2124 	fsd = ump->fileset_desc;
2125 	if (ump->implementation)
2126 		lvi = &ump->implementation->_impl_use.lv_info;
2127 
2128 	/* logvol's id might be specified as origional so use memmove here */
2129 	memmove(lvd->logvol_id, logvol_id, 128);
2130 	if (fsd)
2131 		memmove(fsd->logvol_id, logvol_id, 128);
2132 	if (lvi)
2133 		memmove(lvi->logvol_id, logvol_id, 128);
2134 }
2135 
2136 /* --------------------------------------------------------------------- */
2137 
2138 void
2139 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2140 	uint32_t sector)
2141 {
2142 	assert(ump->logical_vol);
2143 
2144 	tag->id 		= udf_rw16(tagid);
2145 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
2146 	tag->cksum		= 0;
2147 	tag->reserved		= 0;
2148 	tag->serial_num		= ump->logical_vol->tag.serial_num;
2149 	tag->tag_loc            = udf_rw32(sector);
2150 }
2151 
2152 
2153 uint64_t
2154 udf_advance_uniqueid(struct udf_mount *ump)
2155 {
2156 	uint64_t unique_id;
2157 
2158 	mutex_enter(&ump->logvol_mutex);
2159 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2160 	if (unique_id < 0x10)
2161 		unique_id = 0x10;
2162 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2163 	mutex_exit(&ump->logvol_mutex);
2164 
2165 	return unique_id;
2166 }
2167 
2168 
2169 static void
2170 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2171 {
2172 	struct udf_mount *ump = udf_node->ump;
2173 	uint32_t num_dirs, num_files;
2174 	int udf_file_type;
2175 
2176 	/* get file type */
2177 	if (udf_node->fe) {
2178 		udf_file_type = udf_node->fe->icbtag.file_type;
2179 	} else {
2180 		udf_file_type = udf_node->efe->icbtag.file_type;
2181 	}
2182 
2183 	/* adjust file count */
2184 	mutex_enter(&ump->allocate_mutex);
2185 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2186 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
2187 		ump->logvol_info->num_directories =
2188 			udf_rw32((num_dirs + sign));
2189 	} else {
2190 		num_files = udf_rw32(ump->logvol_info->num_files);
2191 		ump->logvol_info->num_files =
2192 			udf_rw32((num_files + sign));
2193 	}
2194 	mutex_exit(&ump->allocate_mutex);
2195 }
2196 
2197 
2198 void
2199 udf_osta_charset(struct charspec *charspec)
2200 {
2201 	memset(charspec, 0, sizeof(struct charspec));
2202 	charspec->type = 0;
2203 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2204 }
2205 
2206 
2207 /* first call udf_set_regid and then the suffix */
2208 void
2209 udf_set_regid(struct regid *regid, char const *name)
2210 {
2211 	memset(regid, 0, sizeof(struct regid));
2212 	regid->flags    = 0;		/* not dirty and not protected */
2213 	strcpy((char *) regid->id, name);
2214 }
2215 
2216 
2217 void
2218 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2219 {
2220 	uint16_t *ver;
2221 
2222 	ver  = (uint16_t *) regid->id_suffix;
2223 	*ver = ump->logvol_info->min_udf_readver;
2224 }
2225 
2226 
2227 void
2228 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2229 {
2230 	uint16_t *ver;
2231 
2232 	ver  = (uint16_t *) regid->id_suffix;
2233 	*ver = ump->logvol_info->min_udf_readver;
2234 
2235 	regid->id_suffix[2] = 4;	/* unix */
2236 	regid->id_suffix[3] = 8;	/* NetBSD */
2237 }
2238 
2239 
2240 void
2241 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2242 {
2243 	regid->id_suffix[0] = 4;	/* unix */
2244 	regid->id_suffix[1] = 8;	/* NetBSD */
2245 }
2246 
2247 
2248 void
2249 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2250 {
2251 	regid->id_suffix[0] = APP_VERSION_MAIN;
2252 	regid->id_suffix[1] = APP_VERSION_SUB;
2253 }
2254 
2255 static int
2256 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2257 	struct long_ad *parent, uint64_t unique_id)
2258 {
2259 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
2260 	int fidsize = 40;
2261 
2262 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2263 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
2264 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2265 	fid->icb = *parent;
2266 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2267 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2268 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2269 
2270 	return fidsize;
2271 }
2272 
2273 /* --------------------------------------------------------------------- */
2274 
2275 /*
2276  * Extended attribute support. UDF knows of 3 places for extended attributes:
2277  *
2278  * (a) inside the file's (e)fe in the length of the extended attribute area
2279  * before the allocation descriptors/filedata
2280  *
2281  * (b) in a file referenced by (e)fe->ext_attr_icb and
2282  *
2283  * (c) in the e(fe)'s associated stream directory that can hold various
2284  * sub-files. In the stream directory a few fixed named subfiles are reserved
2285  * for NT/Unix ACL's and OS/2 attributes.
2286  *
2287  * NOTE: Extended attributes are read randomly but allways written
2288  * *atomicaly*. For ACL's this interface is propably different but not known
2289  * to me yet.
2290  *
2291  * Order of extended attributes in a space :
2292  *   ECMA 167 EAs
2293  *   Non block aligned Implementation Use EAs
2294  *   Block aligned Implementation Use EAs
2295  *   Application Use EAs
2296  */
2297 
2298 static int
2299 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2300 {
2301 	uint16_t   *spos;
2302 
2303 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2304 		/* checksum valid? */
2305 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2306 		spos = (uint16_t *) implext->data;
2307 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2308 			return EINVAL;
2309 	}
2310 	return 0;
2311 }
2312 
2313 static void
2314 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2315 {
2316 	uint16_t   *spos;
2317 
2318 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2319 		/* set checksum */
2320 		spos = (uint16_t *) implext->data;
2321 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2322 	}
2323 }
2324 
2325 
2326 int
2327 udf_extattr_search_intern(struct udf_node *node,
2328 	uint32_t sattr, char const *sattrname,
2329 	uint32_t *offsetp, uint32_t *lengthp)
2330 {
2331 	struct extattrhdr_desc    *eahdr;
2332 	struct extattr_entry      *attrhdr;
2333 	struct impl_extattr_entry *implext;
2334 	uint32_t    offset, a_l, sector_size;
2335 	 int32_t    l_ea;
2336 	uint8_t    *pos;
2337 	int         error;
2338 
2339 	/* get mountpoint */
2340 	sector_size = node->ump->discinfo.sector_size;
2341 
2342 	/* get information from fe/efe */
2343 	if (node->fe) {
2344 		l_ea  = udf_rw32(node->fe->l_ea);
2345 		eahdr = (struct extattrhdr_desc *) node->fe->data;
2346 	} else {
2347 		assert(node->efe);
2348 		l_ea  = udf_rw32(node->efe->l_ea);
2349 		eahdr = (struct extattrhdr_desc *) node->efe->data;
2350 	}
2351 
2352 	/* something recorded here? */
2353 	if (l_ea == 0)
2354 		return ENOENT;
2355 
2356 	/* check extended attribute tag; what to do if it fails? */
2357 	error = udf_check_tag(eahdr);
2358 	if (error)
2359 		return EINVAL;
2360 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2361 		return EINVAL;
2362 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2363 	if (error)
2364 		return EINVAL;
2365 
2366 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2367 
2368 	/* looking for Ecma-167 attributes? */
2369 	offset = sizeof(struct extattrhdr_desc);
2370 
2371 	/* looking for either implemenation use or application use */
2372 	if (sattr == 2048) {				/* [4/48.10.8] */
2373 		offset = udf_rw32(eahdr->impl_attr_loc);
2374 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2375 			return ENOENT;
2376 	}
2377 	if (sattr == 65536) {				/* [4/48.10.9] */
2378 		offset = udf_rw32(eahdr->appl_attr_loc);
2379 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2380 			return ENOENT;
2381 	}
2382 
2383 	/* paranoia check offset and l_ea */
2384 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2385 		return EINVAL;
2386 
2387 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2388 
2389 	/* find our extended attribute  */
2390 	l_ea -= offset;
2391 	pos = (uint8_t *) eahdr + offset;
2392 
2393 	while (l_ea >= sizeof(struct extattr_entry)) {
2394 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2395 		attrhdr = (struct extattr_entry *) pos;
2396 		implext = (struct impl_extattr_entry *) pos;
2397 
2398 		/* get complete attribute length and check for roque values */
2399 		a_l = udf_rw32(attrhdr->a_l);
2400 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2401 				udf_rw32(attrhdr->type),
2402 				attrhdr->subtype, a_l, l_ea));
2403 		if ((a_l == 0) || (a_l > l_ea))
2404 			return EINVAL;
2405 
2406 		if (attrhdr->type != sattr)
2407 			goto next_attribute;
2408 
2409 		/* we might have found it! */
2410 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
2411 			*offsetp = offset;
2412 			*lengthp = a_l;
2413 			return 0;		/* success */
2414 		}
2415 
2416 		/*
2417 		 * Implementation use and application use extended attributes
2418 		 * have a name to identify. They share the same structure only
2419 		 * UDF implementation use extended attributes have a checksum
2420 		 * we need to check
2421 		 */
2422 
2423 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2424 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
2425 			/* we have found our appl/implementation attribute */
2426 			*offsetp = offset;
2427 			*lengthp = a_l;
2428 			return 0;		/* success */
2429 		}
2430 
2431 next_attribute:
2432 		/* next attribute */
2433 		pos    += a_l;
2434 		l_ea   -= a_l;
2435 		offset += a_l;
2436 	}
2437 	/* not found */
2438 	return ENOENT;
2439 }
2440 
2441 
2442 static void
2443 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2444 	struct extattr_entry *extattr)
2445 {
2446 	struct file_entry      *fe;
2447 	struct extfile_entry   *efe;
2448 	struct extattrhdr_desc *extattrhdr;
2449 	struct impl_extattr_entry *implext;
2450 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2451 	uint32_t *l_eap, l_ad;
2452 	uint16_t *spos;
2453 	uint8_t *bpos, *data;
2454 
2455 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2456 		fe    = &dscr->fe;
2457 		data  = fe->data;
2458 		l_eap = &fe->l_ea;
2459 		l_ad  = udf_rw32(fe->l_ad);
2460 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2461 		efe   = &dscr->efe;
2462 		data  = efe->data;
2463 		l_eap = &efe->l_ea;
2464 		l_ad  = udf_rw32(efe->l_ad);
2465 	} else {
2466 		panic("Bad tag passed to udf_extattr_insert_internal");
2467 	}
2468 
2469 	/* can't append already written to file descriptors yet */
2470 	assert(l_ad == 0);
2471 
2472 	/* should have a header! */
2473 	extattrhdr = (struct extattrhdr_desc *) data;
2474 	l_ea = udf_rw32(*l_eap);
2475 	if (l_ea == 0) {
2476 		/* create empty extended attribute header */
2477 		exthdr_len = sizeof(struct extattrhdr_desc);
2478 
2479 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2480 			/* loc */ 0);
2481 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2482 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2483 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
2484 
2485 		/* record extended attribute header length */
2486 		l_ea = exthdr_len;
2487 		*l_eap = udf_rw32(l_ea);
2488 	}
2489 
2490 	/* extract locations */
2491 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2492 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2493 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2494 		impl_attr_loc = l_ea;
2495 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2496 		appl_attr_loc = l_ea;
2497 
2498 	/* Ecma 167 EAs */
2499 	if (udf_rw32(extattr->type) < 2048) {
2500 		assert(impl_attr_loc == l_ea);
2501 		assert(appl_attr_loc == l_ea);
2502 	}
2503 
2504 	/* implementation use extended attributes */
2505 	if (udf_rw32(extattr->type) == 2048) {
2506 		assert(appl_attr_loc == l_ea);
2507 
2508 		/* calculate and write extended attribute header checksum */
2509 		implext = (struct impl_extattr_entry *) extattr;
2510 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
2511 		spos = (uint16_t *) implext->data;
2512 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2513 	}
2514 
2515 	/* application use extended attributes */
2516 	assert(udf_rw32(extattr->type) != 65536);
2517 	assert(appl_attr_loc == l_ea);
2518 
2519 	/* append the attribute at the end of the current space */
2520 	bpos = data + udf_rw32(*l_eap);
2521 	a_l  = udf_rw32(extattr->a_l);
2522 
2523 	/* update impl. attribute locations */
2524 	if (udf_rw32(extattr->type) < 2048) {
2525 		impl_attr_loc = l_ea + a_l;
2526 		appl_attr_loc = l_ea + a_l;
2527 	}
2528 	if (udf_rw32(extattr->type) == 2048) {
2529 		appl_attr_loc = l_ea + a_l;
2530 	}
2531 
2532 	/* copy and advance */
2533 	memcpy(bpos, extattr, a_l);
2534 	l_ea += a_l;
2535 	*l_eap = udf_rw32(l_ea);
2536 
2537 	/* do the `dance` again backwards */
2538 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2539 		if (impl_attr_loc == l_ea)
2540 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2541 		if (appl_attr_loc == l_ea)
2542 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2543 	}
2544 
2545 	/* store offsets */
2546 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2547 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2548 }
2549 
2550 
2551 /* --------------------------------------------------------------------- */
2552 
2553 static int
2554 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2555 {
2556 	struct udf_mount       *ump;
2557 	struct udf_logvol_info *lvinfo;
2558 	struct impl_extattr_entry     *implext;
2559 	struct vatlvext_extattr_entry  lvext;
2560 	const char *extstr = "*UDF VAT LVExtension";
2561 	uint64_t    vat_uniqueid;
2562 	uint32_t    offset, a_l;
2563 	uint8_t    *ea_start, *lvextpos;
2564 	int         error;
2565 
2566 	/* get mountpoint and lvinfo */
2567 	ump    = vat_node->ump;
2568 	lvinfo = ump->logvol_info;
2569 
2570 	/* get information from fe/efe */
2571 	if (vat_node->fe) {
2572 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2573 		ea_start     = vat_node->fe->data;
2574 	} else {
2575 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2576 		ea_start     = vat_node->efe->data;
2577 	}
2578 
2579 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2580 	if (error)
2581 		return error;
2582 
2583 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2584 	error = udf_impl_extattr_check(implext);
2585 	if (error)
2586 		return error;
2587 
2588 	/* paranoia */
2589 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2590 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2591 		return EINVAL;
2592 	}
2593 
2594 	/*
2595 	 * we have found our "VAT LVExtension attribute. BUT due to a
2596 	 * bug in the specification it might not be word aligned so
2597 	 * copy first to avoid panics on some machines (!!)
2598 	 */
2599 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2600 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2601 	memcpy(&lvext, lvextpos, sizeof(lvext));
2602 
2603 	/* check if it was updated the last time */
2604 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2605 		lvinfo->num_files       = lvext.num_files;
2606 		lvinfo->num_directories = lvext.num_directories;
2607 		udf_update_logvolname(ump, lvext.logvol_id);
2608 	} else {
2609 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2610 		/* replace VAT LVExt by free space EA */
2611 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2612 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2613 		udf_calc_impl_extattr_checksum(implext);
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 
2620 static int
2621 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2622 {
2623 	struct udf_mount       *ump;
2624 	struct udf_logvol_info *lvinfo;
2625 	struct impl_extattr_entry     *implext;
2626 	struct vatlvext_extattr_entry  lvext;
2627 	const char *extstr = "*UDF VAT LVExtension";
2628 	uint64_t    vat_uniqueid;
2629 	uint32_t    offset, a_l;
2630 	uint8_t    *ea_start, *lvextpos;
2631 	int         error;
2632 
2633 	/* get mountpoint and lvinfo */
2634 	ump    = vat_node->ump;
2635 	lvinfo = ump->logvol_info;
2636 
2637 	/* get information from fe/efe */
2638 	if (vat_node->fe) {
2639 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2640 		ea_start     = vat_node->fe->data;
2641 	} else {
2642 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2643 		ea_start     = vat_node->efe->data;
2644 	}
2645 
2646 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2647 	if (error)
2648 		return error;
2649 	/* found, it existed */
2650 
2651 	/* paranoia */
2652 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2653 	error = udf_impl_extattr_check(implext);
2654 	if (error) {
2655 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2656 		return error;
2657 	}
2658 	/* it is correct */
2659 
2660 	/*
2661 	 * we have found our "VAT LVExtension attribute. BUT due to a
2662 	 * bug in the specification it might not be word aligned so
2663 	 * copy first to avoid panics on some machines (!!)
2664 	 */
2665 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2666 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2667 
2668 	lvext.unique_id_chk   = vat_uniqueid;
2669 	lvext.num_files       = lvinfo->num_files;
2670 	lvext.num_directories = lvinfo->num_directories;
2671 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2672 
2673 	memcpy(lvextpos, &lvext, sizeof(lvext));
2674 
2675 	return 0;
2676 }
2677 
2678 /* --------------------------------------------------------------------- */
2679 
2680 int
2681 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2682 {
2683 	struct udf_mount *ump = vat_node->ump;
2684 
2685 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2686 		return EINVAL;
2687 
2688 	memcpy(blob, ump->vat_table + offset, size);
2689 	return 0;
2690 }
2691 
2692 int
2693 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2694 {
2695 	struct udf_mount *ump = vat_node->ump;
2696 	uint32_t offset_high;
2697 	uint8_t *new_vat_table;
2698 
2699 	/* extent VAT allocation if needed */
2700 	offset_high = offset + size;
2701 	if (offset_high >= ump->vat_table_alloc_len) {
2702 		/* realloc */
2703 		new_vat_table = realloc(ump->vat_table,
2704 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2705 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
2706 		if (!new_vat_table) {
2707 			printf("udf_vat_write: can't extent VAT, out of mem\n");
2708 			return ENOMEM;
2709 		}
2710 		ump->vat_table = new_vat_table;
2711 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2712 	}
2713 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2714 
2715 	memcpy(ump->vat_table + offset, blob, size);
2716 	return 0;
2717 }
2718 
2719 /* --------------------------------------------------------------------- */
2720 
2721 /* TODO support previous VAT location writeout */
2722 static int
2723 udf_update_vat_descriptor(struct udf_mount *ump)
2724 {
2725 	struct udf_node *vat_node = ump->vat_node;
2726 	struct udf_logvol_info *lvinfo = ump->logvol_info;
2727 	struct icb_tag *icbtag;
2728 	struct udf_oldvat_tail *oldvat_tl;
2729 	struct udf_vat *vat;
2730 	uint64_t unique_id;
2731 	uint32_t lb_size;
2732 	uint8_t *raw_vat;
2733 	int filetype, error;
2734 
2735 	KASSERT(vat_node);
2736 	KASSERT(lvinfo);
2737 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2738 
2739 	/* get our new unique_id */
2740 	unique_id = udf_advance_uniqueid(ump);
2741 
2742 	/* get information from fe/efe */
2743 	if (vat_node->fe) {
2744 		icbtag    = &vat_node->fe->icbtag;
2745 		vat_node->fe->unique_id = udf_rw64(unique_id);
2746 	} else {
2747 		icbtag = &vat_node->efe->icbtag;
2748 		vat_node->efe->unique_id = udf_rw64(unique_id);
2749 	}
2750 
2751 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2752 	filetype = icbtag->file_type;
2753 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2754 
2755 	/* allocate piece to process head or tail of VAT file */
2756 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2757 
2758 	if (filetype == 0) {
2759 		/*
2760 		 * Update "*UDF VAT LVExtension" extended attribute from the
2761 		 * lvint if present.
2762 		 */
2763 		udf_update_vat_extattr_from_lvid(vat_node);
2764 
2765 		/* setup identifying regid */
2766 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2767 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2768 
2769 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2770 		udf_add_udf_regid(ump, &oldvat_tl->id);
2771 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2772 
2773 		/* write out new tail of virtual allocation table file */
2774 		error = udf_vat_write(vat_node, raw_vat,
2775 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2776 	} else {
2777 		/* compose the VAT2 header */
2778 		vat = (struct udf_vat *) raw_vat;
2779 		memset(vat, 0, sizeof(struct udf_vat));
2780 
2781 		vat->header_len       = udf_rw16(152);	/* as per spec */
2782 		vat->impl_use_len     = udf_rw16(0);
2783 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2784 		vat->prev_vat         = udf_rw32(0xffffffff);
2785 		vat->num_files        = lvinfo->num_files;
2786 		vat->num_directories  = lvinfo->num_directories;
2787 		vat->min_udf_readver  = lvinfo->min_udf_readver;
2788 		vat->min_udf_writever = lvinfo->min_udf_writever;
2789 		vat->max_udf_writever = lvinfo->max_udf_writever;
2790 
2791 		error = udf_vat_write(vat_node, raw_vat,
2792 			sizeof(struct udf_vat), 0);
2793 	}
2794 	free(raw_vat, M_TEMP);
2795 
2796 	return error;	/* success! */
2797 }
2798 
2799 
2800 int
2801 udf_writeout_vat(struct udf_mount *ump)
2802 {
2803 	struct udf_node *vat_node = ump->vat_node;
2804 	uint32_t vat_length;
2805 	int error;
2806 
2807 	KASSERT(vat_node);
2808 
2809 	DPRINTF(CALL, ("udf_writeout_vat\n"));
2810 
2811 //	mutex_enter(&ump->allocate_mutex);
2812 	udf_update_vat_descriptor(ump);
2813 
2814 	/* write out the VAT contents ; TODO intelligent writing */
2815 	vat_length = ump->vat_table_len;
2816 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2817 		ump->vat_table, ump->vat_table_len, 0,
2818 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2819 	if (error) {
2820 		printf("udf_writeout_vat: failed to write out VAT contents\n");
2821 		goto out;
2822 	}
2823 
2824 //	mutex_exit(&ump->allocate_mutex);
2825 
2826 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2827 	error = VOP_FSYNC(ump->vat_node->vnode,
2828 			FSCRED, FSYNC_WAIT, 0, 0);
2829 	if (error)
2830 		printf("udf_writeout_vat: error writing VAT node!\n");
2831 out:
2832 
2833 	return error;
2834 }
2835 
2836 /* --------------------------------------------------------------------- */
2837 
2838 /*
2839  * Read in relevant pieces of VAT file and check if its indeed a VAT file
2840  * descriptor. If OK, read in complete VAT file.
2841  */
2842 
2843 static int
2844 udf_check_for_vat(struct udf_node *vat_node)
2845 {
2846 	struct udf_mount *ump;
2847 	struct icb_tag   *icbtag;
2848 	struct timestamp *mtime;
2849 	struct udf_vat   *vat;
2850 	struct udf_oldvat_tail *oldvat_tl;
2851 	struct udf_logvol_info *lvinfo;
2852 	uint64_t  unique_id;
2853 	uint32_t  vat_length;
2854 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
2855 	uint32_t  sector_size;
2856 	uint32_t *raw_vat;
2857 	uint8_t  *vat_table;
2858 	char     *regid_name;
2859 	int filetype;
2860 	int error;
2861 
2862 	/* vat_length is really 64 bits though impossible */
2863 
2864 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
2865 	if (!vat_node)
2866 		return ENOENT;
2867 
2868 	/* get mount info */
2869 	ump = vat_node->ump;
2870 	sector_size = udf_rw32(ump->logical_vol->lb_size);
2871 
2872 	/* check assertions */
2873 	assert(vat_node->fe || vat_node->efe);
2874 	assert(ump->logvol_integrity);
2875 
2876 	/* set vnode type to regular file or we can't read from it! */
2877 	vat_node->vnode->v_type = VREG;
2878 
2879 	/* get information from fe/efe */
2880 	if (vat_node->fe) {
2881 		vat_length = udf_rw64(vat_node->fe->inf_len);
2882 		icbtag    = &vat_node->fe->icbtag;
2883 		mtime     = &vat_node->fe->mtime;
2884 		unique_id = udf_rw64(vat_node->fe->unique_id);
2885 	} else {
2886 		vat_length = udf_rw64(vat_node->efe->inf_len);
2887 		icbtag = &vat_node->efe->icbtag;
2888 		mtime  = &vat_node->efe->mtime;
2889 		unique_id = udf_rw64(vat_node->efe->unique_id);
2890 	}
2891 
2892 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2893 	filetype = icbtag->file_type;
2894 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2895 		return ENOENT;
2896 
2897 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2898 
2899 	vat_table_alloc_len =
2900 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2901 			* UDF_VAT_CHUNKSIZE;
2902 
2903 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2904 		M_CANFAIL | M_WAITOK);
2905 	if (vat_table == NULL) {
2906 		printf("allocation of %d bytes failed for VAT\n",
2907 			vat_table_alloc_len);
2908 		return ENOMEM;
2909 	}
2910 
2911 	/* allocate piece to read in head or tail of VAT file */
2912 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2913 
2914 	/*
2915 	 * check contents of the file if its the old 1.50 VAT table format.
2916 	 * Its notoriously broken and allthough some implementations support an
2917 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
2918 	 * to be useable since a lot of implementations don't maintain it.
2919 	 */
2920 	lvinfo = ump->logvol_info;
2921 
2922 	if (filetype == 0) {
2923 		/* definition */
2924 		vat_offset  = 0;
2925 		vat_entries = (vat_length-36)/4;
2926 
2927 		/* read in tail of virtual allocation table file */
2928 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2929 				(uint8_t *) raw_vat,
2930 				sizeof(struct udf_oldvat_tail),
2931 				vat_entries * 4,
2932 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2933 				NULL, NULL);
2934 		if (error)
2935 			goto out;
2936 
2937 		/* check 1.50 VAT */
2938 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2939 		regid_name = (char *) oldvat_tl->id.id;
2940 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2941 		if (error) {
2942 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2943 			error = ENOENT;
2944 			goto out;
2945 		}
2946 
2947 		/*
2948 		 * update LVID from "*UDF VAT LVExtension" extended attribute
2949 		 * if present.
2950 		 */
2951 		udf_update_lvid_from_vat_extattr(vat_node);
2952 	} else {
2953 		/* read in head of virtual allocation table file */
2954 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2955 				(uint8_t *) raw_vat,
2956 				sizeof(struct udf_vat), 0,
2957 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2958 				NULL, NULL);
2959 		if (error)
2960 			goto out;
2961 
2962 		/* definition */
2963 		vat = (struct udf_vat *) raw_vat;
2964 		vat_offset  = vat->header_len;
2965 		vat_entries = (vat_length - vat_offset)/4;
2966 
2967 		assert(lvinfo);
2968 		lvinfo->num_files        = vat->num_files;
2969 		lvinfo->num_directories  = vat->num_directories;
2970 		lvinfo->min_udf_readver  = vat->min_udf_readver;
2971 		lvinfo->min_udf_writever = vat->min_udf_writever;
2972 		lvinfo->max_udf_writever = vat->max_udf_writever;
2973 
2974 		udf_update_logvolname(ump, vat->logvol_id);
2975 	}
2976 
2977 	/* read in complete VAT file */
2978 	error = vn_rdwr(UIO_READ, vat_node->vnode,
2979 			vat_table,
2980 			vat_length, 0,
2981 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2982 			NULL, NULL);
2983 	if (error)
2984 		printf("read in of complete VAT file failed (error %d)\n",
2985 			error);
2986 	if (error)
2987 		goto out;
2988 
2989 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2990 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2991 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2992 	ump->logvol_integrity->time           = *mtime;
2993 
2994 	ump->vat_table_len = vat_length;
2995 	ump->vat_table_alloc_len = vat_table_alloc_len;
2996 	ump->vat_table   = vat_table;
2997 	ump->vat_offset  = vat_offset;
2998 	ump->vat_entries = vat_entries;
2999 	ump->vat_last_free_lb = 0;		/* start at beginning */
3000 
3001 out:
3002 	if (error) {
3003 		if (vat_table)
3004 			free(vat_table, M_UDFVOLD);
3005 	}
3006 	free(raw_vat, M_TEMP);
3007 
3008 	return error;
3009 }
3010 
3011 /* --------------------------------------------------------------------- */
3012 
3013 static int
3014 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3015 {
3016 	struct udf_node *vat_node;
3017 	struct long_ad	 icb_loc;
3018 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
3019 	int error;
3020 
3021 	/* mapping info not needed */
3022 	mapping = mapping;
3023 
3024 	vat_loc = ump->last_possible_vat_location;
3025 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
3026 
3027 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3028 		vat_loc, early_vat_loc));
3029 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3030 	late_vat_loc  = vat_loc + 1024;
3031 
3032 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3033 		vat_loc, early_vat_loc));
3034 
3035 	/* start looking from the end of the range */
3036 	do {
3037 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3038 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3039 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
3040 
3041 		error = udf_get_node(ump, &icb_loc, &vat_node);
3042 		if (!error) {
3043 			error = udf_check_for_vat(vat_node);
3044 			DPRINTFIF(VOLUMES, !error,
3045 				("VAT accepted at %d\n", vat_loc));
3046 			if (!error)
3047 				break;
3048 		}
3049 		if (vat_node) {
3050 			vput(vat_node->vnode);
3051 			vat_node = NULL;
3052 		}
3053 		vat_loc--;	/* walk backwards */
3054 	} while (vat_loc >= early_vat_loc);
3055 
3056 	/* keep our VAT node around */
3057 	if (vat_node) {
3058 		UDF_SET_SYSTEMFILE(vat_node->vnode);
3059 		ump->vat_node = vat_node;
3060 	}
3061 
3062 	return error;
3063 }
3064 
3065 /* --------------------------------------------------------------------- */
3066 
3067 static int
3068 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3069 {
3070 	union dscrptr *dscr;
3071 	struct part_map_spare *pms = &mapping->pms;
3072 	uint32_t lb_num;
3073 	int spar, error;
3074 
3075 	/*
3076 	 * The partition mapping passed on to us specifies the information we
3077 	 * need to locate and initialise the sparable partition mapping
3078 	 * information we need.
3079 	 */
3080 
3081 	DPRINTF(VOLUMES, ("Read sparable table\n"));
3082 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
3083 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
3084 
3085 	for (spar = 0; spar < pms->n_st; spar++) {
3086 		lb_num = pms->st_loc[spar];
3087 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3088 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3089 		if (!error && dscr) {
3090 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3091 				if (ump->sparing_table)
3092 					free(ump->sparing_table, M_UDFVOLD);
3093 				ump->sparing_table = &dscr->spt;
3094 				dscr = NULL;
3095 				DPRINTF(VOLUMES,
3096 				    ("Sparing table accepted (%d entries)\n",
3097 				     udf_rw16(ump->sparing_table->rt_l)));
3098 				break;	/* we're done */
3099 			}
3100 		}
3101 		if (dscr)
3102 			free(dscr, M_UDFVOLD);
3103 	}
3104 
3105 	if (ump->sparing_table)
3106 		return 0;
3107 
3108 	return ENOENT;
3109 }
3110 
3111 /* --------------------------------------------------------------------- */
3112 
3113 static int
3114 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3115 {
3116 	struct part_map_meta *pmm = &mapping->pmm;
3117 	struct long_ad	 icb_loc;
3118 	struct vnode *vp;
3119 	int error;
3120 
3121 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3122 	icb_loc.loc.part_num = pmm->part_num;
3123 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
3124 	DPRINTF(VOLUMES, ("Metadata file\n"));
3125 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3126 	if (ump->metadata_node) {
3127 		vp = ump->metadata_node->vnode;
3128 		UDF_SET_SYSTEMFILE(vp);
3129 	}
3130 
3131 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
3132 	if (icb_loc.loc.lb_num != -1) {
3133 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
3134 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3135 		if (ump->metadatamirror_node) {
3136 			vp = ump->metadatamirror_node->vnode;
3137 			UDF_SET_SYSTEMFILE(vp);
3138 		}
3139 	}
3140 
3141 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
3142 	if (icb_loc.loc.lb_num != -1) {
3143 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3144 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3145 		if (ump->metadatabitmap_node) {
3146 			vp = ump->metadatabitmap_node->vnode;
3147 			UDF_SET_SYSTEMFILE(vp);
3148 		}
3149 	}
3150 
3151 	/* if we're mounting read-only we relax the requirements */
3152 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3153 		error = EFAULT;
3154 		if (ump->metadata_node)
3155 			error = 0;
3156 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3157 			printf( "udf mount: Metadata file not readable, "
3158 				"substituting Metadata copy file\n");
3159 			ump->metadata_node = ump->metadatamirror_node;
3160 			ump->metadatamirror_node = NULL;
3161 			error = 0;
3162 		}
3163 	} else {
3164 		/* mounting read/write */
3165 		/* XXX DISABLED! metadata writing is not working yet XXX */
3166 		if (error)
3167 			error = EROFS;
3168 	}
3169 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3170 				   "metadata files\n"));
3171 	return error;
3172 }
3173 
3174 /* --------------------------------------------------------------------- */
3175 
3176 int
3177 udf_read_vds_tables(struct udf_mount *ump)
3178 {
3179 	union udf_pmap *mapping;
3180 	/* struct udf_args *args = &ump->mount_args; */
3181 	uint32_t n_pm, mt_l;
3182 	uint32_t log_part;
3183 	uint8_t *pmap_pos;
3184 	int pmap_size;
3185 	int error;
3186 
3187 	/* Iterate (again) over the part mappings for locations   */
3188 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
3189 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
3190 	pmap_pos =  ump->logical_vol->maps;
3191 
3192 	for (log_part = 0; log_part < n_pm; log_part++) {
3193 		mapping = (union udf_pmap *) pmap_pos;
3194 		switch (ump->vtop_tp[log_part]) {
3195 		case UDF_VTOP_TYPE_PHYS :
3196 			/* nothing */
3197 			break;
3198 		case UDF_VTOP_TYPE_VIRT :
3199 			/* search and load VAT */
3200 			error = udf_search_vat(ump, mapping);
3201 			if (error)
3202 				return ENOENT;
3203 			break;
3204 		case UDF_VTOP_TYPE_SPARABLE :
3205 			/* load one of the sparable tables */
3206 			error = udf_read_sparables(ump, mapping);
3207 			if (error)
3208 				return ENOENT;
3209 			break;
3210 		case UDF_VTOP_TYPE_META :
3211 			/* load the associated file descriptors */
3212 			error = udf_read_metadata_nodes(ump, mapping);
3213 			if (error)
3214 				return ENOENT;
3215 			break;
3216 		default:
3217 			break;
3218 		}
3219 		pmap_size  = pmap_pos[1];
3220 		pmap_pos  += pmap_size;
3221 	}
3222 
3223 	/* read in and check unallocated and free space info if writing */
3224 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3225 		error = udf_read_physical_partition_spacetables(ump);
3226 		if (error)
3227 			return error;
3228 
3229 		/* also read in metadata partion spacebitmap if defined */
3230 		error = udf_read_metadata_partition_spacetable(ump);
3231 			return error;
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 /* --------------------------------------------------------------------- */
3238 
3239 int
3240 udf_read_rootdirs(struct udf_mount *ump)
3241 {
3242 	union dscrptr *dscr;
3243 	/* struct udf_args *args = &ump->mount_args; */
3244 	struct udf_node *rootdir_node, *streamdir_node;
3245 	struct long_ad  fsd_loc, *dir_loc;
3246 	uint32_t lb_num, dummy;
3247 	uint32_t fsd_len;
3248 	int dscr_type;
3249 	int error;
3250 
3251 	/* TODO implement FSD reading in separate function like integrity? */
3252 	/* get fileset descriptor sequence */
3253 	fsd_loc = ump->logical_vol->lv_fsd_loc;
3254 	fsd_len = udf_rw32(fsd_loc.len);
3255 
3256 	dscr  = NULL;
3257 	error = 0;
3258 	while (fsd_len || error) {
3259 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3260 		/* translate fsd_loc to lb_num */
3261 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3262 		if (error)
3263 			break;
3264 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3265 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3266 		/* end markers */
3267 		if (error || (dscr == NULL))
3268 			break;
3269 
3270 		/* analyse */
3271 		dscr_type = udf_rw16(dscr->tag.id);
3272 		if (dscr_type == TAGID_TERM)
3273 			break;
3274 		if (dscr_type != TAGID_FSD) {
3275 			free(dscr, M_UDFVOLD);
3276 			return ENOENT;
3277 		}
3278 
3279 		/*
3280 		 * TODO check for multiple fileset descriptors; its only
3281 		 * picking the last now. Also check for FSD
3282 		 * correctness/interpretability
3283 		 */
3284 
3285 		/* update */
3286 		if (ump->fileset_desc) {
3287 			free(ump->fileset_desc, M_UDFVOLD);
3288 		}
3289 		ump->fileset_desc = &dscr->fsd;
3290 		dscr = NULL;
3291 
3292 		/* continue to the next fsd */
3293 		fsd_len -= ump->discinfo.sector_size;
3294 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3295 
3296 		/* follow up to fsd->next_ex (long_ad) if its not null */
3297 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3298 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3299 			fsd_loc = ump->fileset_desc->next_ex;
3300 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3301 		}
3302 	}
3303 	if (dscr)
3304 		free(dscr, M_UDFVOLD);
3305 
3306 	/* there has to be one */
3307 	if (ump->fileset_desc == NULL)
3308 		return ENOENT;
3309 
3310 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
3311 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3312 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3313 
3314 	/*
3315 	 * Now the FSD is known, read in the rootdirectory and if one exists,
3316 	 * the system stream dir. Some files in the system streamdir are not
3317 	 * wanted in this implementation since they are not maintained. If
3318 	 * writing is enabled we'll delete these files if they exist.
3319 	 */
3320 
3321 	rootdir_node = streamdir_node = NULL;
3322 	dir_loc = NULL;
3323 
3324 	/* try to read in the rootdir */
3325 	dir_loc = &ump->fileset_desc->rootdir_icb;
3326 	error = udf_get_node(ump, dir_loc, &rootdir_node);
3327 	if (error)
3328 		return ENOENT;
3329 
3330 	/* aparently it read in fine */
3331 
3332 	/*
3333 	 * Try the system stream directory; not very likely in the ones we
3334 	 * test, but for completeness.
3335 	 */
3336 	dir_loc = &ump->fileset_desc->streamdir_icb;
3337 	if (udf_rw32(dir_loc->len)) {
3338 		printf("udf_read_rootdirs: streamdir defined ");
3339 		error = udf_get_node(ump, dir_loc, &streamdir_node);
3340 		if (error) {
3341 			printf("but error in streamdir reading\n");
3342 		} else {
3343 			printf("but ignored\n");
3344 			/*
3345 			 * TODO process streamdir `baddies' i.e. files we dont
3346 			 * want if R/W
3347 			 */
3348 		}
3349 	}
3350 
3351 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3352 
3353 	/* release the vnodes again; they'll be auto-recycled later */
3354 	if (streamdir_node) {
3355 		vput(streamdir_node->vnode);
3356 	}
3357 	if (rootdir_node) {
3358 		vput(rootdir_node->vnode);
3359 	}
3360 
3361 	return 0;
3362 }
3363 
3364 /* --------------------------------------------------------------------- */
3365 
3366 /* To make absolutely sure we are NOT returning zero, add one :) */
3367 
3368 long
3369 udf_get_node_id(const struct long_ad *icbptr)
3370 {
3371 	/* ought to be enough since each mountpoint has its own chain */
3372 	return udf_rw32(icbptr->loc.lb_num) + 1;
3373 }
3374 
3375 
3376 int
3377 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3378 {
3379 	if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3380 		return -1;
3381 	if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3382 		return 1;
3383 
3384 	if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3385 		return -1;
3386 	if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3387 		return 1;
3388 
3389 	return 0;
3390 }
3391 
3392 
3393 static int
3394 udf_compare_rbnodes(const struct rb_node *a, const struct rb_node *b)
3395 {
3396 	struct udf_node *a_node = RBTOUDFNODE(a);
3397 	struct udf_node *b_node = RBTOUDFNODE(b);
3398 
3399 	return udf_compare_icb(&a_node->loc, &b_node->loc);
3400 }
3401 
3402 
3403 static int
3404 udf_compare_rbnode_icb(const struct rb_node *a, const void *key)
3405 {
3406 	struct udf_node *a_node = RBTOUDFNODE(a);
3407 	const struct long_ad * const icb = key;
3408 
3409 	return udf_compare_icb(&a_node->loc, icb);
3410 }
3411 
3412 
3413 static const struct rb_tree_ops udf_node_rbtree_ops = {
3414 	.rbto_compare_nodes = udf_compare_rbnodes,
3415 	.rbto_compare_key   = udf_compare_rbnode_icb,
3416 };
3417 
3418 
3419 void
3420 udf_init_nodes_tree(struct udf_mount *ump)
3421 {
3422 	rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3423 }
3424 
3425 
3426 static struct udf_node *
3427 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3428 {
3429 	struct rb_node  *rb_node;
3430 	struct udf_node *udf_node;
3431 	struct vnode *vp;
3432 
3433 loop:
3434 	mutex_enter(&ump->ihash_lock);
3435 
3436 	rb_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3437 	if (rb_node) {
3438 		udf_node = RBTOUDFNODE(rb_node);
3439 		vp = udf_node->vnode;
3440 		assert(vp);
3441 		mutex_enter(&vp->v_interlock);
3442 		mutex_exit(&ump->ihash_lock);
3443 		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
3444 			goto loop;
3445 		return udf_node;
3446 	}
3447 	mutex_exit(&ump->ihash_lock);
3448 
3449 	return NULL;
3450 }
3451 
3452 
3453 static void
3454 udf_register_node(struct udf_node *udf_node)
3455 {
3456 	struct udf_mount *ump = udf_node->ump;
3457 
3458 	/* add node to the rb tree */
3459 	mutex_enter(&ump->ihash_lock);
3460 		rb_tree_insert_node(&ump->udf_node_tree, &udf_node->rbnode);
3461 	mutex_exit(&ump->ihash_lock);
3462 }
3463 
3464 
3465 static void
3466 udf_deregister_node(struct udf_node *udf_node)
3467 {
3468 	struct udf_mount *ump = udf_node->ump;
3469 
3470 	/* remove node from the rb tree */
3471 	mutex_enter(&ump->ihash_lock);
3472 		rb_tree_remove_node(&ump->udf_node_tree, &udf_node->rbnode);
3473 	mutex_exit(&ump->ihash_lock);
3474 }
3475 
3476 /* --------------------------------------------------------------------- */
3477 
3478 static int
3479 udf_validate_session_start(struct udf_mount *ump)
3480 {
3481 	struct mmc_trackinfo trackinfo;
3482 	struct vrs_desc *vrs;
3483 	uint32_t tracknr, sessionnr, sector, sector_size;
3484 	uint32_t iso9660_vrs, write_track_start;
3485 	uint8_t *buffer, *blank, *pos;
3486 	int blks, max_sectors, vrs_len;
3487 	int error;
3488 
3489 	/* disc appendable? */
3490 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
3491 		return EROFS;
3492 
3493 	/* already written here? if so, there should be an ISO VDS */
3494 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3495 		return 0;
3496 
3497 	/*
3498 	 * Check if the first track of the session is blank and if so, copy or
3499 	 * create a dummy ISO descriptor so the disc is valid again.
3500 	 */
3501 
3502 	tracknr = ump->discinfo.first_track_last_session;
3503 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3504 	trackinfo.tracknr = tracknr;
3505 	error = udf_update_trackinfo(ump, &trackinfo);
3506 	if (error)
3507 		return error;
3508 
3509 	udf_dump_trackinfo(&trackinfo);
3510 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3511 	KASSERT(trackinfo.sessionnr > 1);
3512 
3513 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3514 	write_track_start = trackinfo.next_writable;
3515 
3516 	/* we have to copy the ISO VRS from a former session */
3517 	DPRINTF(VOLUMES, ("validate_session_start: "
3518 			"blank or reserved track, copying VRS\n"));
3519 
3520 	/* sessionnr should be the session we're mounting */
3521 	sessionnr = ump->mount_args.sessionnr;
3522 
3523 	/* start at the first track */
3524 	tracknr   = ump->discinfo.first_track;
3525 	while (tracknr <= ump->discinfo.num_tracks) {
3526 		trackinfo.tracknr = tracknr;
3527 		error = udf_update_trackinfo(ump, &trackinfo);
3528 		if (error) {
3529 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3530 			return error;
3531 		}
3532 		if (trackinfo.sessionnr == sessionnr)
3533 			break;
3534 		tracknr++;
3535 	}
3536 	if (trackinfo.sessionnr != sessionnr) {
3537 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3538 		return ENOENT;
3539 	}
3540 
3541 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3542 	udf_dump_trackinfo(&trackinfo);
3543 
3544         /*
3545          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3546          * minimum ISO `sector size' 2048
3547          */
3548 	sector_size = ump->discinfo.sector_size;
3549 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3550 		 + trackinfo.track_start;
3551 
3552 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3553 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3554 	blks = MAX(1, 2048 / sector_size);
3555 
3556 	error = 0;
3557 	for (sector = 0; sector < max_sectors; sector += blks) {
3558 		pos = buffer + sector * sector_size;
3559 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3560 			iso9660_vrs + sector, blks);
3561 		if (error)
3562 			break;
3563 		/* check this ISO descriptor */
3564 		vrs = (struct vrs_desc *) pos;
3565 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3566 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3567 			continue;
3568 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3569 			continue;
3570 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3571 			continue;
3572 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3573 			continue;
3574 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3575 			continue;
3576 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3577 			break;
3578 		/* now what? for now, end of sequence */
3579 		break;
3580 	}
3581 	vrs_len = sector + blks;
3582 	if (error) {
3583 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3584 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3585 
3586 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
3587 
3588 		vrs = (struct vrs_desc *) (buffer);
3589 		vrs->struct_type = 0;
3590 		vrs->version     = 1;
3591 		memcpy(vrs->identifier,VRS_BEA01, 5);
3592 
3593 		vrs = (struct vrs_desc *) (buffer + 2048);
3594 		vrs->struct_type = 0;
3595 		vrs->version     = 1;
3596 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3597 			memcpy(vrs->identifier,VRS_NSR02, 5);
3598 		} else {
3599 			memcpy(vrs->identifier,VRS_NSR03, 5);
3600 		}
3601 
3602 		vrs = (struct vrs_desc *) (buffer + 4096);
3603 		vrs->struct_type = 0;
3604 		vrs->version     = 1;
3605 		memcpy(vrs->identifier, VRS_TEA01, 5);
3606 
3607 		vrs_len = 3*blks;
3608 	}
3609 
3610 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3611 
3612         /*
3613          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3614          * minimum ISO `sector size' 2048
3615          */
3616 	sector_size = ump->discinfo.sector_size;
3617 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3618 		 + write_track_start;
3619 
3620 	/* write out 32 kb */
3621 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
3622 	memset(blank, 0, sector_size);
3623 	error = 0;
3624 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3625 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3626 			blank, sector, 1);
3627 		if (error)
3628 			break;
3629 	}
3630 	if (!error) {
3631 		/* write out our ISO VRS */
3632 		KASSERT(sector == iso9660_vrs);
3633 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3634 				sector, vrs_len);
3635 		sector += vrs_len;
3636 	}
3637 	if (!error) {
3638 		/* fill upto the first anchor at S+256 */
3639 		for (; sector < write_track_start+256; sector++) {
3640 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3641 				blank, sector, 1);
3642 			if (error)
3643 				break;
3644 		}
3645 	}
3646 	if (!error) {
3647 		/* write out anchor; write at ABSOLUTE place! */
3648 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3649 			(union dscrptr *) ump->anchors[0], sector, sector);
3650 		if (error)
3651 			printf("writeout of anchor failed!\n");
3652 	}
3653 
3654 	free(blank, M_TEMP);
3655 	free(buffer, M_TEMP);
3656 
3657 	if (error)
3658 		printf("udf_open_session: error writing iso vrs! : "
3659 				"leaving disc in compromised state!\n");
3660 
3661 	/* synchronise device caches */
3662 	(void) udf_synchronise_caches(ump);
3663 
3664 	return error;
3665 }
3666 
3667 
3668 int
3669 udf_open_logvol(struct udf_mount *ump)
3670 {
3671 	int logvol_integrity;
3672 	int error;
3673 
3674 	/* already/still open? */
3675 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3676 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
3677 		return 0;
3678 
3679 	/* can we open it ? */
3680 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3681 		return EROFS;
3682 
3683 	/* setup write parameters */
3684 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3685 	if ((error = udf_setup_writeparams(ump)) != 0)
3686 		return error;
3687 
3688 	/* determine data and metadata tracks (most likely same) */
3689 	error = udf_search_writing_tracks(ump);
3690 	if (error) {
3691 		/* most likely lack of space */
3692 		printf("udf_open_logvol: error searching writing tracks\n");
3693 		return EROFS;
3694 	}
3695 
3696 	/* writeout/update lvint on disc or only in memory */
3697 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
3698 	if (ump->lvopen & UDF_OPEN_SESSION) {
3699 		/* TODO optional track reservation opening */
3700 		error = udf_validate_session_start(ump);
3701 		if (error)
3702 			return error;
3703 
3704 		/* determine data and metadata tracks again */
3705 		error = udf_search_writing_tracks(ump);
3706 	}
3707 
3708 	/* mark it open */
3709 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3710 
3711 	/* do we need to write it out? */
3712 	if (ump->lvopen & UDF_WRITE_LVINT) {
3713 		error = udf_writeout_lvint(ump, ump->lvopen);
3714 		/* if we couldn't write it mark it closed again */
3715 		if (error) {
3716 			ump->logvol_integrity->integrity_type =
3717 						udf_rw32(UDF_INTEGRITY_CLOSED);
3718 			return error;
3719 		}
3720 	}
3721 
3722 	return 0;
3723 }
3724 
3725 
3726 int
3727 udf_close_logvol(struct udf_mount *ump, int mntflags)
3728 {
3729 	struct vnode *devvp = ump->devvp;
3730 	struct mmc_op mmc_op;
3731 	int logvol_integrity;
3732 	int error = 0, error1 = 0, error2 = 0;
3733 	int tracknr;
3734 	int nvats, n, nok;
3735 
3736 	/* already/still closed? */
3737 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3738 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3739 		return 0;
3740 
3741 	/* writeout/update lvint or write out VAT */
3742 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3743 #ifdef DIAGNOSTIC
3744 	if (ump->lvclose & UDF_CLOSE_SESSION)
3745 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
3746 #endif
3747 
3748 	if (ump->lvclose & UDF_WRITE_VAT) {
3749 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3750 
3751 		/* write out the VAT data and all its descriptors */
3752 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
3753 		udf_writeout_vat(ump);
3754 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3755 
3756 		(void) VOP_FSYNC(ump->vat_node->vnode,
3757 				FSCRED, FSYNC_WAIT, 0, 0);
3758 
3759 		if (ump->lvclose & UDF_CLOSE_SESSION) {
3760 			DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3761 				"as requested\n"));
3762 		}
3763 
3764 		/* at least two DVD packets and 3 CD-R packets */
3765 		nvats = 32;
3766 
3767 #if notyet
3768 		/*
3769 		 * TODO calculate the available space and if the disc is
3770 		 * allmost full, write out till end-256-1 with banks, write
3771 		 * AVDP and fill up with VATs, then close session and close
3772 		 * disc.
3773 		 */
3774 		if (ump->lvclose & UDF_FINALISE_DISC) {
3775 			error = udf_write_phys_dscr_sync(ump, NULL,
3776 					UDF_C_FLOAT_DSCR,
3777 					(union dscrptr *) ump->anchors[0],
3778 					0, 0);
3779 			if (error)
3780 				printf("writeout of anchor failed!\n");
3781 
3782 			/* pad space with VAT ICBs */
3783 			nvats = 256;
3784 		}
3785 #endif
3786 
3787 		/* write out a number of VAT nodes */
3788 		nok = 0;
3789 		for (n = 0; n < nvats; n++) {
3790 			/* will now only write last FE/EFE */
3791 			ump->vat_node->i_flags |= IN_MODIFIED;
3792 			error = VOP_FSYNC(ump->vat_node->vnode,
3793 					FSCRED, FSYNC_WAIT, 0, 0);
3794 			if (!error)
3795 				nok++;
3796 		}
3797 		if (nok < 14) {
3798 			/* arbitrary; but at least one or two CD frames */
3799 			printf("writeout of at least 14 VATs failed\n");
3800 			return error;
3801 		}
3802 	}
3803 
3804 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
3805 
3806 	/* finish closing of session */
3807 	if (ump->lvclose & UDF_CLOSE_SESSION) {
3808 		error = udf_validate_session_start(ump);
3809 		if (error)
3810 			return error;
3811 
3812 		/* close all associated tracks */
3813 		tracknr = ump->discinfo.first_track_last_session;
3814 		error = 0;
3815 		while (tracknr <= ump->discinfo.last_track_last_session) {
3816 			DPRINTF(VOLUMES, ("\tclosing possible open "
3817 				"track %d\n", tracknr));
3818 			memset(&mmc_op, 0, sizeof(mmc_op));
3819 			mmc_op.operation   = MMC_OP_CLOSETRACK;
3820 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3821 			mmc_op.tracknr     = tracknr;
3822 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3823 					FKIOCTL, NOCRED);
3824 			if (error)
3825 				printf("udf_close_logvol: closing of "
3826 					"track %d failed\n", tracknr);
3827 			tracknr ++;
3828 		}
3829 		if (!error) {
3830 			DPRINTF(VOLUMES, ("closing session\n"));
3831 			memset(&mmc_op, 0, sizeof(mmc_op));
3832 			mmc_op.operation   = MMC_OP_CLOSESESSION;
3833 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3834 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
3835 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3836 					FKIOCTL, NOCRED);
3837 			if (error)
3838 				printf("udf_close_logvol: closing of session"
3839 						"failed\n");
3840 		}
3841 		if (!error)
3842 			ump->lvopen |= UDF_OPEN_SESSION;
3843 		if (error) {
3844 			printf("udf_close_logvol: leaving disc as it is\n");
3845 			ump->lvclose &= ~UDF_FINALISE_DISC;
3846 		}
3847 	}
3848 
3849 	if (ump->lvclose & UDF_FINALISE_DISC) {
3850 		memset(&mmc_op, 0, sizeof(mmc_op));
3851 		mmc_op.operation   = MMC_OP_FINALISEDISC;
3852 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3853 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
3854 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3855 				FKIOCTL, NOCRED);
3856 		if (error)
3857 			printf("udf_close_logvol: finalising disc"
3858 					"failed\n");
3859 	}
3860 
3861 	/* write out partition bitmaps if requested */
3862 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3863 		/* sync writeout metadata spacetable if existing */
3864 		error1 = udf_write_metadata_partition_spacetable(ump, true);
3865 		if (error1)
3866 			printf( "udf_close_logvol: writeout of metadata space "
3867 				"bitmap failed\n");
3868 
3869 		/* sync writeout partition spacetables */
3870 		error2 = udf_write_physical_partition_spacetables(ump, true);
3871 		if (error2)
3872 			printf( "udf_close_logvol: writeout of space tables "
3873 				"failed\n");
3874 
3875 		if (error1 || error2)
3876 			return (error1 | error2);
3877 
3878 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3879 	}
3880 
3881 	/* mark it closed */
3882 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3883 
3884 	/* do we need to write out the logical volume integrity? */
3885 	if (ump->lvclose & UDF_WRITE_LVINT)
3886 		error = udf_writeout_lvint(ump, ump->lvopen);
3887 	if (error) {
3888 		/* HELP now what? mark it open again for now */
3889 		ump->logvol_integrity->integrity_type =
3890 			udf_rw32(UDF_INTEGRITY_OPEN);
3891 		return error;
3892 	}
3893 
3894 	(void) udf_synchronise_caches(ump);
3895 
3896 	return 0;
3897 }
3898 
3899 /* --------------------------------------------------------------------- */
3900 
3901 /*
3902  * Genfs interfacing
3903  *
3904  * static const struct genfs_ops udf_genfsops = {
3905  * 	.gop_size = genfs_size,
3906  * 		size of transfers
3907  * 	.gop_alloc = udf_gop_alloc,
3908  * 		allocate len bytes at offset
3909  * 	.gop_write = genfs_gop_write,
3910  * 		putpages interface code
3911  * 	.gop_markupdate = udf_gop_markupdate,
3912  * 		set update/modify flags etc.
3913  * }
3914  */
3915 
3916 /*
3917  * Genfs interface. These four functions are the only ones defined though not
3918  * documented... great....
3919  */
3920 
3921 /*
3922  * Called for allocating an extent of the file either by VOP_WRITE() or by
3923  * genfs filling up gaps.
3924  */
3925 static int
3926 udf_gop_alloc(struct vnode *vp, off_t off,
3927     off_t len, int flags, kauth_cred_t cred)
3928 {
3929 	struct udf_node *udf_node = VTOI(vp);
3930 	struct udf_mount *ump = udf_node->ump;
3931 	uint64_t lb_start, lb_end;
3932 	uint32_t lb_size, num_lb;
3933 	int udf_c_type, vpart_num, can_fail;
3934 	int error;
3935 
3936 	DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3937 		off, len, flags? "SYNC":"NONE"));
3938 
3939 	/*
3940 	 * request the pages of our vnode and see how many pages will need to
3941 	 * be allocated and reserve that space
3942 	 */
3943 	lb_size  = udf_rw32(udf_node->ump->logical_vol->lb_size);
3944 	lb_start = off / lb_size;
3945 	lb_end   = (off + len + lb_size -1) / lb_size;
3946 	num_lb   = lb_end - lb_start;
3947 
3948 	udf_c_type = udf_get_c_type(udf_node);
3949 	vpart_num  = udf_get_record_vpart(ump, udf_c_type);
3950 
3951 	/* all requests can fail */
3952 	can_fail   = true;
3953 
3954 	/* fid's (directories) can't fail */
3955 	if (udf_c_type == UDF_C_FIDS)
3956 		can_fail   = false;
3957 
3958 	/* system files can't fail */
3959 	if (vp->v_vflag & VV_SYSTEM)
3960 		can_fail = false;
3961 
3962 	error = udf_reserve_space(ump, udf_node, udf_c_type,
3963 		vpart_num, num_lb, can_fail);
3964 
3965 	DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
3966 		lb_start, lb_end, num_lb));
3967 
3968 	return error;
3969 }
3970 
3971 
3972 /*
3973  * callback from genfs to update our flags
3974  */
3975 static void
3976 udf_gop_markupdate(struct vnode *vp, int flags)
3977 {
3978 	struct udf_node *udf_node = VTOI(vp);
3979 	u_long mask = 0;
3980 
3981 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3982 		mask = IN_ACCESS;
3983 	}
3984 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3985 		if (vp->v_type == VREG) {
3986 			mask |= IN_CHANGE | IN_UPDATE;
3987 		} else {
3988 			mask |= IN_MODIFY;
3989 		}
3990 	}
3991 	if (mask) {
3992 		udf_node->i_flags |= mask;
3993 	}
3994 }
3995 
3996 
3997 static const struct genfs_ops udf_genfsops = {
3998 	.gop_size = genfs_size,
3999 	.gop_alloc = udf_gop_alloc,
4000 	.gop_write = genfs_gop_write_rwmap,
4001 	.gop_markupdate = udf_gop_markupdate,
4002 };
4003 
4004 
4005 /* --------------------------------------------------------------------- */
4006 
4007 int
4008 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4009 {
4010 	union dscrptr *dscr;
4011 	int error;
4012 
4013 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4014 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4015 
4016 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4017 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4018 	(void) udf_validate_tag_and_crc_sums(dscr);
4019 
4020 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4021 			dscr, sector, sector);
4022 
4023 	free(dscr, M_TEMP);
4024 
4025 	return error;
4026 }
4027 
4028 
4029 /* --------------------------------------------------------------------- */
4030 
4031 /* UDF<->unix converters */
4032 
4033 /* --------------------------------------------------------------------- */
4034 
4035 static mode_t
4036 udf_perm_to_unix_mode(uint32_t perm)
4037 {
4038 	mode_t mode;
4039 
4040 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
4041 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
4042 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4043 
4044 	return mode;
4045 }
4046 
4047 /* --------------------------------------------------------------------- */
4048 
4049 static uint32_t
4050 unix_mode_to_udf_perm(mode_t mode)
4051 {
4052 	uint32_t perm;
4053 
4054 	perm  = ((mode & S_IRWXO)     );
4055 	perm |= ((mode & S_IRWXG) << 2);
4056 	perm |= ((mode & S_IRWXU) << 4);
4057 	perm |= ((mode & S_IWOTH) << 3);
4058 	perm |= ((mode & S_IWGRP) << 5);
4059 	perm |= ((mode & S_IWUSR) << 7);
4060 
4061 	return perm;
4062 }
4063 
4064 /* --------------------------------------------------------------------- */
4065 
4066 static uint32_t
4067 udf_icb_to_unix_filetype(uint32_t icbftype)
4068 {
4069 	switch (icbftype) {
4070 	case UDF_ICB_FILETYPE_DIRECTORY :
4071 	case UDF_ICB_FILETYPE_STREAMDIR :
4072 		return S_IFDIR;
4073 	case UDF_ICB_FILETYPE_FIFO :
4074 		return S_IFIFO;
4075 	case UDF_ICB_FILETYPE_CHARDEVICE :
4076 		return S_IFCHR;
4077 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
4078 		return S_IFBLK;
4079 	case UDF_ICB_FILETYPE_RANDOMACCESS :
4080 	case UDF_ICB_FILETYPE_REALTIME :
4081 		return S_IFREG;
4082 	case UDF_ICB_FILETYPE_SYMLINK :
4083 		return S_IFLNK;
4084 	case UDF_ICB_FILETYPE_SOCKET :
4085 		return S_IFSOCK;
4086 	}
4087 	/* no idea what this is */
4088 	return 0;
4089 }
4090 
4091 /* --------------------------------------------------------------------- */
4092 
4093 void
4094 udf_to_unix_name(char *result, int result_len, char *id, int len,
4095 	struct charspec *chsp)
4096 {
4097 	uint16_t   *raw_name, *unix_name;
4098 	uint16_t   *inchp, ch;
4099 	uint8_t	   *outchp;
4100 	const char *osta_id = "OSTA Compressed Unicode";
4101 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
4102 
4103 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4104 	unix_name = raw_name + 1024;			/* split space in half */
4105 	assert(sizeof(char) == sizeof(uint8_t));
4106 	outchp = (uint8_t *) result;
4107 
4108 	is_osta_typ0  = (chsp->type == 0);
4109 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4110 	if (is_osta_typ0) {
4111 		/* TODO clean up */
4112 		*raw_name = *unix_name = 0;
4113 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4114 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4115 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4116 		/* output UTF8 */
4117 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4118 			ch = *inchp;
4119 			nout = wput_utf8(outchp, result_len, ch);
4120 			outchp += nout; result_len -= nout;
4121 			if (!ch) break;
4122 		}
4123 		*outchp++ = 0;
4124 	} else {
4125 		/* assume 8bit char length byte latin-1 */
4126 		assert(*id == 8);
4127 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4128 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4129 	}
4130 	free(raw_name, M_UDFTEMP);
4131 }
4132 
4133 /* --------------------------------------------------------------------- */
4134 
4135 void
4136 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4137 	struct charspec *chsp)
4138 {
4139 	uint16_t   *raw_name;
4140 	uint16_t   *outchp;
4141 	const char *inchp;
4142 	const char *osta_id = "OSTA Compressed Unicode";
4143 	int         udf_chars, is_osta_typ0, bits;
4144 	size_t      cnt;
4145 
4146 	/* allocate temporary unicode-16 buffer */
4147 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4148 
4149 	/* convert utf8 to unicode-16 */
4150 	*raw_name = 0;
4151 	inchp  = name;
4152 	outchp = raw_name;
4153 	bits = 8;
4154 	for (cnt = name_len, udf_chars = 0; cnt;) {
4155 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4156 		*outchp = wget_utf8(&inchp, &cnt);
4157 		if (*outchp > 0xff)
4158 			bits=16;
4159 		outchp++;
4160 		udf_chars++;
4161 	}
4162 	/* null terminate just in case */
4163 	*outchp++ = 0;
4164 
4165 	is_osta_typ0  = (chsp->type == 0);
4166 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4167 	if (is_osta_typ0) {
4168 		udf_chars = udf_CompressUnicode(udf_chars, bits,
4169 				(unicode_t *) raw_name,
4170 				(byte *) result);
4171 	} else {
4172 		printf("unix to udf name: no CHSP0 ?\n");
4173 		/* XXX assume 8bit char length byte latin-1 */
4174 		*result++ = 8; udf_chars = 1;
4175 		strncpy(result, name + 1, name_len);
4176 		udf_chars += name_len;
4177 	}
4178 	*result_len = udf_chars;
4179 	free(raw_name, M_UDFTEMP);
4180 }
4181 
4182 /* --------------------------------------------------------------------- */
4183 
4184 void
4185 udf_timestamp_to_timespec(struct udf_mount *ump,
4186 			  struct timestamp *timestamp,
4187 			  struct timespec  *timespec)
4188 {
4189 	struct clock_ymdhms ymdhms;
4190 	uint32_t usecs, secs, nsecs;
4191 	uint16_t tz;
4192 
4193 	/* fill in ymdhms structure from timestamp */
4194 	memset(&ymdhms, 0, sizeof(ymdhms));
4195 	ymdhms.dt_year = udf_rw16(timestamp->year);
4196 	ymdhms.dt_mon  = timestamp->month;
4197 	ymdhms.dt_day  = timestamp->day;
4198 	ymdhms.dt_wday = 0; /* ? */
4199 	ymdhms.dt_hour = timestamp->hour;
4200 	ymdhms.dt_min  = timestamp->minute;
4201 	ymdhms.dt_sec  = timestamp->second;
4202 
4203 	secs = clock_ymdhms_to_secs(&ymdhms);
4204 	usecs = timestamp->usec +
4205 		100*timestamp->hund_usec + 10000*timestamp->centisec;
4206 	nsecs = usecs * 1000;
4207 
4208 	/*
4209 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
4210 	 * compliment, so we gotta do some extra magic to handle it right.
4211 	 */
4212 	tz  = udf_rw16(timestamp->type_tz);
4213 	tz &= 0x0fff;			/* only lower 12 bits are significant */
4214 	if (tz & 0x0800)		/* sign extention */
4215 		tz |= 0xf000;
4216 
4217 	/* TODO check timezone conversion */
4218 	/* check if we are specified a timezone to convert */
4219 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
4220 		if ((int16_t) tz != -2047)
4221 			secs -= (int16_t) tz * 60;
4222 	} else {
4223 		secs -= ump->mount_args.gmtoff;
4224 	}
4225 
4226 	timespec->tv_sec  = secs;
4227 	timespec->tv_nsec = nsecs;
4228 }
4229 
4230 
4231 void
4232 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4233 {
4234 	struct clock_ymdhms ymdhms;
4235 	uint32_t husec, usec, csec;
4236 
4237 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4238 
4239 	usec   = timespec->tv_nsec / 1000;
4240 	husec  =  usec / 100;
4241 	usec  -= husec * 100;				/* only 0-99 in usec  */
4242 	csec   = husec / 100;				/* only 0-99 in csec  */
4243 	husec -=  csec * 100;				/* only 0-99 in husec */
4244 
4245 	/* set method 1 for CUT/GMT */
4246 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
4247 	timestamp->year		= udf_rw16(ymdhms.dt_year);
4248 	timestamp->month	= ymdhms.dt_mon;
4249 	timestamp->day		= ymdhms.dt_day;
4250 	timestamp->hour		= ymdhms.dt_hour;
4251 	timestamp->minute	= ymdhms.dt_min;
4252 	timestamp->second	= ymdhms.dt_sec;
4253 	timestamp->centisec	= csec;
4254 	timestamp->hund_usec	= husec;
4255 	timestamp->usec		= usec;
4256 }
4257 
4258 /* --------------------------------------------------------------------- */
4259 
4260 /*
4261  * Attribute and filetypes converters with get/set pairs
4262  */
4263 
4264 uint32_t
4265 udf_getaccessmode(struct udf_node *udf_node)
4266 {
4267 	struct file_entry     *fe = udf_node->fe;;
4268 	struct extfile_entry *efe = udf_node->efe;
4269 	uint32_t udf_perm, icbftype;
4270 	uint32_t mode, ftype;
4271 	uint16_t icbflags;
4272 
4273 	UDF_LOCK_NODE(udf_node, 0);
4274 	if (fe) {
4275 		udf_perm = udf_rw32(fe->perm);
4276 		icbftype = fe->icbtag.file_type;
4277 		icbflags = udf_rw16(fe->icbtag.flags);
4278 	} else {
4279 		assert(udf_node->efe);
4280 		udf_perm = udf_rw32(efe->perm);
4281 		icbftype = efe->icbtag.file_type;
4282 		icbflags = udf_rw16(efe->icbtag.flags);
4283 	}
4284 
4285 	mode  = udf_perm_to_unix_mode(udf_perm);
4286 	ftype = udf_icb_to_unix_filetype(icbftype);
4287 
4288 	/* set suid, sgid, sticky from flags in fe/efe */
4289 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4290 		mode |= S_ISUID;
4291 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4292 		mode |= S_ISGID;
4293 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4294 		mode |= S_ISVTX;
4295 
4296 	UDF_UNLOCK_NODE(udf_node, 0);
4297 
4298 	return mode | ftype;
4299 }
4300 
4301 
4302 void
4303 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4304 {
4305 	struct file_entry    *fe  = udf_node->fe;
4306 	struct extfile_entry *efe = udf_node->efe;
4307 	uint32_t udf_perm;
4308 	uint16_t icbflags;
4309 
4310 	UDF_LOCK_NODE(udf_node, 0);
4311 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4312 	if (fe) {
4313 		icbflags = udf_rw16(fe->icbtag.flags);
4314 	} else {
4315 		icbflags = udf_rw16(efe->icbtag.flags);
4316 	}
4317 
4318 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4319 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4320 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4321 	if (mode & S_ISUID)
4322 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4323 	if (mode & S_ISGID)
4324 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4325 	if (mode & S_ISVTX)
4326 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4327 
4328 	if (fe) {
4329 		fe->perm  = udf_rw32(udf_perm);
4330 		fe->icbtag.flags  = udf_rw16(icbflags);
4331 	} else {
4332 		efe->perm = udf_rw32(udf_perm);
4333 		efe->icbtag.flags = udf_rw16(icbflags);
4334 	}
4335 
4336 	UDF_UNLOCK_NODE(udf_node, 0);
4337 }
4338 
4339 
4340 void
4341 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4342 {
4343 	struct udf_mount     *ump = udf_node->ump;
4344 	struct file_entry    *fe  = udf_node->fe;
4345 	struct extfile_entry *efe = udf_node->efe;
4346 	uid_t uid;
4347 	gid_t gid;
4348 
4349 	UDF_LOCK_NODE(udf_node, 0);
4350 	if (fe) {
4351 		uid = (uid_t)udf_rw32(fe->uid);
4352 		gid = (gid_t)udf_rw32(fe->gid);
4353 	} else {
4354 		assert(udf_node->efe);
4355 		uid = (uid_t)udf_rw32(efe->uid);
4356 		gid = (gid_t)udf_rw32(efe->gid);
4357 	}
4358 
4359 	/* do the uid/gid translation game */
4360 	if (uid == (uid_t) -1)
4361 		uid = ump->mount_args.anon_uid;
4362 	if (gid == (gid_t) -1)
4363 		gid = ump->mount_args.anon_gid;
4364 
4365 	*uidp = uid;
4366 	*gidp = gid;
4367 
4368 	UDF_UNLOCK_NODE(udf_node, 0);
4369 }
4370 
4371 
4372 void
4373 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4374 {
4375 	struct udf_mount     *ump = udf_node->ump;
4376 	struct file_entry    *fe  = udf_node->fe;
4377 	struct extfile_entry *efe = udf_node->efe;
4378 	uid_t nobody_uid;
4379 	gid_t nobody_gid;
4380 
4381 	UDF_LOCK_NODE(udf_node, 0);
4382 
4383 	/* do the uid/gid translation game */
4384 	nobody_uid = ump->mount_args.nobody_uid;
4385 	nobody_gid = ump->mount_args.nobody_gid;
4386 	if (uid == nobody_uid)
4387 		uid = (uid_t) -1;
4388 	if (gid == nobody_gid)
4389 		gid = (gid_t) -1;
4390 
4391 	if (fe) {
4392 		fe->uid  = udf_rw32((uint32_t) uid);
4393 		fe->gid  = udf_rw32((uint32_t) gid);
4394 	} else {
4395 		efe->uid = udf_rw32((uint32_t) uid);
4396 		efe->gid = udf_rw32((uint32_t) gid);
4397 	}
4398 
4399 	UDF_UNLOCK_NODE(udf_node, 0);
4400 }
4401 
4402 
4403 /* --------------------------------------------------------------------- */
4404 
4405 
4406 static int
4407 dirhash_fill(struct udf_node *dir_node)
4408 {
4409 	struct vnode *dvp = dir_node->vnode;
4410 	struct dirhash *dirh;
4411 	struct file_entry    *fe  = dir_node->fe;
4412 	struct extfile_entry *efe = dir_node->efe;
4413 	struct fileid_desc *fid;
4414 	struct dirent *dirent;
4415 	uint64_t file_size, pre_diroffset, diroffset;
4416 	uint32_t lb_size;
4417 	int error;
4418 
4419 	/* make sure we have a dirhash to work on */
4420 	dirh = dir_node->dir_hash;
4421 	KASSERT(dirh);
4422 	KASSERT(dirh->refcnt > 0);
4423 
4424 	if (dirh->flags & DIRH_BROKEN)
4425 		return EIO;
4426 	if (dirh->flags & DIRH_COMPLETE)
4427 		return 0;
4428 
4429 	/* make sure we have a clean dirhash to add to */
4430 	dirhash_purge_entries(dirh);
4431 
4432 	/* get directory filesize */
4433 	if (fe) {
4434 		file_size = udf_rw64(fe->inf_len);
4435 	} else {
4436 		assert(efe);
4437 		file_size = udf_rw64(efe->inf_len);
4438 	}
4439 
4440 	/* allocate temporary space for fid */
4441 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4442 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4443 
4444 	/* allocate temporary space for dirent */
4445 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4446 
4447 	error = 0;
4448 	diroffset = 0;
4449 	while (diroffset < file_size) {
4450 		/* transfer a new fid/dirent */
4451 		pre_diroffset = diroffset;
4452 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4453 		if (error) {
4454 			/* TODO what to do? continue but not add? */
4455 			dirh->flags |= DIRH_BROKEN;
4456 			dirhash_purge_entries(dirh);
4457 			break;
4458 		}
4459 
4460 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4461 			/* register deleted extent for reuse */
4462 			dirhash_enter_freed(dirh, pre_diroffset,
4463 				udf_fidsize(fid));
4464 		} else {
4465 			/* append to the dirhash */
4466 			dirhash_enter(dirh, dirent, pre_diroffset,
4467 				udf_fidsize(fid), 0);
4468 		}
4469 	}
4470 	dirh->flags |= DIRH_COMPLETE;
4471 
4472 	free(fid, M_UDFTEMP);
4473 	free(dirent, M_UDFTEMP);
4474 
4475 	return error;
4476 }
4477 
4478 
4479 /* --------------------------------------------------------------------- */
4480 
4481 /*
4482  * Directory read and manipulation functions.
4483  *
4484  */
4485 
4486 int
4487 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4488        struct long_ad *icb_loc, int *found)
4489 {
4490 	struct udf_node  *dir_node = VTOI(vp);
4491 	struct dirhash       *dirh;
4492 	struct dirhash_entry *dirh_ep;
4493 	struct fileid_desc *fid;
4494 	struct dirent *dirent;
4495 	uint64_t diroffset;
4496 	uint32_t lb_size;
4497 	int hit, error;
4498 
4499 	/* set default return */
4500 	*found = 0;
4501 
4502 	/* get our dirhash and make sure its read in */
4503 	dirhash_get(&dir_node->dir_hash);
4504 	error = dirhash_fill(dir_node);
4505 	if (error) {
4506 		dirhash_put(dir_node->dir_hash);
4507 		return error;
4508 	}
4509 	dirh = dir_node->dir_hash;
4510 
4511 	/* allocate temporary space for fid */
4512 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4513 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4514 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4515 
4516 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4517 		namelen, namelen, name));
4518 
4519 	/* search our dirhash hits */
4520 	memset(icb_loc, 0, sizeof(*icb_loc));
4521 	dirh_ep = NULL;
4522 	for (;;) {
4523 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4524 		/* if no hit, abort the search */
4525 		if (!hit)
4526 			break;
4527 
4528 		/* check this hit */
4529 		diroffset = dirh_ep->offset;
4530 
4531 		/* transfer a new fid/dirent */
4532 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4533 		if (error)
4534 			break;
4535 
4536 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4537 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4538 
4539 		/* see if its our entry */
4540 		KASSERT(dirent->d_namlen == namelen);
4541 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4542 			*found = 1;
4543 			*icb_loc = fid->icb;
4544 			break;
4545 		}
4546 	}
4547 	free(fid, M_UDFTEMP);
4548 	free(dirent, M_UDFTEMP);
4549 
4550 	dirhash_put(dir_node->dir_hash);
4551 
4552 	return error;
4553 }
4554 
4555 /* --------------------------------------------------------------------- */
4556 
4557 static int
4558 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4559 	struct long_ad *node_icb, struct long_ad *parent_icb,
4560 	uint64_t parent_unique_id)
4561 {
4562 	struct timespec now;
4563 	struct icb_tag *icb;
4564 	struct filetimes_extattr_entry *ft_extattr;
4565 	uint64_t unique_id;
4566 	uint32_t fidsize, lb_num;
4567 	uint8_t *bpos;
4568 	int crclen, attrlen;
4569 
4570 	lb_num = udf_rw32(node_icb->loc.lb_num);
4571 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4572 	icb = &fe->icbtag;
4573 
4574 	/*
4575 	 * Always use strategy type 4 unless on WORM wich we don't support
4576 	 * (yet). Fill in defaults and set for internal allocation of data.
4577 	 */
4578 	icb->strat_type      = udf_rw16(4);
4579 	icb->max_num_entries = udf_rw16(1);
4580 	icb->file_type       = file_type;	/* 8 bit */
4581 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4582 
4583 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4584 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
4585 
4586 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4587 
4588 	vfs_timestamp(&now);
4589 	udf_timespec_to_timestamp(&now, &fe->atime);
4590 	udf_timespec_to_timestamp(&now, &fe->attrtime);
4591 	udf_timespec_to_timestamp(&now, &fe->mtime);
4592 
4593 	udf_set_regid(&fe->imp_id, IMPL_NAME);
4594 	udf_add_impl_regid(ump, &fe->imp_id);
4595 
4596 	unique_id = udf_advance_uniqueid(ump);
4597 	fe->unique_id = udf_rw64(unique_id);
4598 	fe->l_ea = udf_rw32(0);
4599 
4600 	/* create extended attribute to record our creation time */
4601 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4602 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4603 	memset(ft_extattr, 0, attrlen);
4604 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4605 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
4606 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4607 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4608 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4609 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4610 
4611 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4612 		(struct extattr_entry *) ft_extattr);
4613 	free(ft_extattr, M_UDFTEMP);
4614 
4615 	/* if its a directory, create '..' */
4616 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4617 	fidsize = 0;
4618 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4619 		fidsize = udf_create_parentfid(ump,
4620 			(struct fileid_desc *) bpos, parent_icb,
4621 			parent_unique_id);
4622 	}
4623 
4624 	/* record fidlength information */
4625 	fe->inf_len = udf_rw64(fidsize);
4626 	fe->l_ad    = udf_rw32(fidsize);
4627 	fe->logblks_rec = udf_rw64(0);		/* intern */
4628 
4629 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4630 	crclen += udf_rw32(fe->l_ea) + fidsize;
4631 	fe->tag.desc_crc_len = udf_rw16(crclen);
4632 
4633 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4634 
4635 	return fidsize;
4636 }
4637 
4638 /* --------------------------------------------------------------------- */
4639 
4640 static int
4641 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4642 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4643 	uint64_t parent_unique_id)
4644 {
4645 	struct timespec now;
4646 	struct icb_tag *icb;
4647 	uint64_t unique_id;
4648 	uint32_t fidsize, lb_num;
4649 	uint8_t *bpos;
4650 	int crclen;
4651 
4652 	lb_num = udf_rw32(node_icb->loc.lb_num);
4653 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4654 	icb = &efe->icbtag;
4655 
4656 	/*
4657 	 * Always use strategy type 4 unless on WORM wich we don't support
4658 	 * (yet). Fill in defaults and set for internal allocation of data.
4659 	 */
4660 	icb->strat_type      = udf_rw16(4);
4661 	icb->max_num_entries = udf_rw16(1);
4662 	icb->file_type       = file_type;	/* 8 bit */
4663 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4664 
4665 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4666 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
4667 
4668 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4669 
4670 	vfs_timestamp(&now);
4671 	udf_timespec_to_timestamp(&now, &efe->ctime);
4672 	udf_timespec_to_timestamp(&now, &efe->atime);
4673 	udf_timespec_to_timestamp(&now, &efe->attrtime);
4674 	udf_timespec_to_timestamp(&now, &efe->mtime);
4675 
4676 	udf_set_regid(&efe->imp_id, IMPL_NAME);
4677 	udf_add_impl_regid(ump, &efe->imp_id);
4678 
4679 	unique_id = udf_advance_uniqueid(ump);
4680 	efe->unique_id = udf_rw64(unique_id);
4681 	efe->l_ea = udf_rw32(0);
4682 
4683 	/* if its a directory, create '..' */
4684 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4685 	fidsize = 0;
4686 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4687 		fidsize = udf_create_parentfid(ump,
4688 			(struct fileid_desc *) bpos, parent_icb,
4689 			parent_unique_id);
4690 	}
4691 
4692 	/* record fidlength information */
4693 	efe->obj_size = udf_rw64(fidsize);
4694 	efe->inf_len  = udf_rw64(fidsize);
4695 	efe->l_ad     = udf_rw32(fidsize);
4696 	efe->logblks_rec = udf_rw64(0);		/* intern */
4697 
4698 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4699 	crclen += udf_rw32(efe->l_ea) + fidsize;
4700 	efe->tag.desc_crc_len = udf_rw16(crclen);
4701 
4702 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4703 
4704 	return fidsize;
4705 }
4706 
4707 /* --------------------------------------------------------------------- */
4708 
4709 int
4710 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4711 	struct udf_node *udf_node, struct componentname *cnp)
4712 {
4713 	struct vnode *dvp = dir_node->vnode;
4714 	struct dirhash       *dirh;
4715 	struct dirhash_entry *dirh_ep;
4716 	struct file_entry    *fe  = dir_node->fe;
4717 	struct extfile_entry *efe = dir_node->efe;
4718 	struct fileid_desc *fid;
4719 	struct dirent *dirent;
4720 	uint64_t file_size, diroffset;
4721 	uint32_t lb_size, fidsize;
4722 	int found, error;
4723 	char const *name  = cnp->cn_nameptr;
4724 	int namelen = cnp->cn_namelen;
4725 	int hit, refcnt;
4726 
4727 	/* get our dirhash and make sure its read in */
4728 	dirhash_get(&dir_node->dir_hash);
4729 	error = dirhash_fill(dir_node);
4730 	if (error) {
4731 		dirhash_put(dir_node->dir_hash);
4732 		return error;
4733 	}
4734 	dirh = dir_node->dir_hash;
4735 
4736 	/* get directory filesize */
4737 	if (fe) {
4738 		file_size = udf_rw64(fe->inf_len);
4739 	} else {
4740 		assert(efe);
4741 		file_size = udf_rw64(efe->inf_len);
4742 	}
4743 
4744 	/* allocate temporary space for fid */
4745 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4746 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4747 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4748 
4749 	/* search our dirhash hits */
4750 	found = 0;
4751 	dirh_ep = NULL;
4752 	for (;;) {
4753 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4754 		/* if no hit, abort the search */
4755 		if (!hit)
4756 			break;
4757 
4758 		/* check this hit */
4759 		diroffset = dirh_ep->offset;
4760 
4761 		/* transfer a new fid/dirent */
4762 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4763 		if (error)
4764 			break;
4765 
4766 		/* see if its our entry */
4767 		KASSERT(dirent->d_namlen == namelen);
4768 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4769 			found = 1;
4770 			break;
4771 		}
4772 	}
4773 
4774 	if (!found)
4775 		error = ENOENT;
4776 	if (error)
4777 		goto error_out;
4778 
4779 	/* mark deleted */
4780 	fid->file_char |= UDF_FILE_CHAR_DEL;
4781 #ifdef UDF_COMPLETE_DELETE
4782 	memset(&fid->icb, 0, sizeof(fid->icb));
4783 #endif
4784 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4785 
4786 	/* get size of fid and compensate for the read_fid_stream advance */
4787 	fidsize = udf_fidsize(fid);
4788 	diroffset -= fidsize;
4789 
4790 	/* write out */
4791 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4792 			fid, fidsize, diroffset,
4793 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4794 			FSCRED, NULL, NULL);
4795 	if (error)
4796 		goto error_out;
4797 
4798 	/* get reference count of attached node */
4799 	if (udf_node->fe) {
4800 		refcnt = udf_rw16(udf_node->fe->link_cnt);
4801 	} else {
4802 		KASSERT(udf_node->efe);
4803 		refcnt = udf_rw16(udf_node->efe->link_cnt);
4804 	}
4805 #ifdef UDF_COMPLETE_DELETE
4806 	/* substract reference counter in attached node */
4807 	refcnt -= 1;
4808 	if (udf_node->fe) {
4809 		udf_node->fe->link_cnt = udf_rw16(refcnt);
4810 	} else {
4811 		udf_node->efe->link_cnt = udf_rw16(refcnt);
4812 	}
4813 
4814 	/* prevent writeout when refcnt == 0 */
4815 	if (refcnt == 0)
4816 		udf_node->i_flags |= IN_DELETED;
4817 
4818 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
4819 		int drefcnt;
4820 
4821 		/* substract reference counter in directory node */
4822 		/* note subtract 2 (?) for its was also backreferenced */
4823 		if (dir_node->fe) {
4824 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
4825 			drefcnt -= 1;
4826 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
4827 		} else {
4828 			KASSERT(dir_node->efe);
4829 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
4830 			drefcnt -= 1;
4831 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
4832 		}
4833 	}
4834 
4835 	udf_node->i_flags |= IN_MODIFIED;
4836 	dir_node->i_flags |= IN_MODIFIED;
4837 #endif
4838 	/* if it is/was a hardlink adjust the file count */
4839 	if (refcnt > 0)
4840 		udf_adjust_filecount(udf_node, -1);
4841 
4842 	/* remove from the dirhash */
4843 	dirhash_remove(dirh, dirent, diroffset,
4844 		udf_fidsize(fid));
4845 
4846 error_out:
4847 	free(fid, M_UDFTEMP);
4848 	free(dirent, M_UDFTEMP);
4849 
4850 	dirhash_put(dir_node->dir_hash);
4851 
4852 	return error;
4853 }
4854 
4855 /* --------------------------------------------------------------------- */
4856 
4857 int
4858 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4859 	struct udf_node *new_parent_node)
4860 {
4861 	struct vnode *dvp = dir_node->vnode;
4862 	struct dirhash       *dirh;
4863 	struct dirhash_entry *dirh_ep;
4864 	struct file_entry    *fe;
4865 	struct extfile_entry *efe;
4866 	struct fileid_desc *fid;
4867 	struct dirent *dirent;
4868 	uint64_t file_size, diroffset;
4869 	uint64_t new_parent_unique_id;
4870 	uint32_t lb_size, fidsize;
4871 	int found, error;
4872 	char const *name  = "..";
4873 	int namelen = 2;
4874 	int hit;
4875 
4876 	/* get our dirhash and make sure its read in */
4877 	dirhash_get(&dir_node->dir_hash);
4878 	error = dirhash_fill(dir_node);
4879 	if (error) {
4880 		dirhash_put(dir_node->dir_hash);
4881 		return error;
4882 	}
4883 	dirh = dir_node->dir_hash;
4884 
4885 	/* get new parent's unique ID */
4886 	fe  = new_parent_node->fe;
4887 	efe = new_parent_node->efe;
4888 	if (fe) {
4889 		new_parent_unique_id = udf_rw64(fe->unique_id);
4890 	} else {
4891 		assert(efe);
4892 		new_parent_unique_id = udf_rw64(efe->unique_id);
4893 	}
4894 
4895 	/* get directory filesize */
4896 	fe  = dir_node->fe;
4897 	efe = dir_node->efe;
4898 	if (fe) {
4899 		file_size = udf_rw64(fe->inf_len);
4900 	} else {
4901 		assert(efe);
4902 		file_size = udf_rw64(efe->inf_len);
4903 	}
4904 
4905 	/* allocate temporary space for fid */
4906 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4907 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4908 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4909 
4910 	/*
4911 	 * NOTE the standard does not dictate the FID entry '..' should be
4912 	 * first, though in practice it will most likely be.
4913 	 */
4914 
4915 	/* search our dirhash hits */
4916 	found = 0;
4917 	dirh_ep = NULL;
4918 	for (;;) {
4919 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4920 		/* if no hit, abort the search */
4921 		if (!hit)
4922 			break;
4923 
4924 		/* check this hit */
4925 		diroffset = dirh_ep->offset;
4926 
4927 		/* transfer a new fid/dirent */
4928 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4929 		if (error)
4930 			break;
4931 
4932 		/* see if its our entry */
4933 		KASSERT(dirent->d_namlen == namelen);
4934 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4935 			found = 1;
4936 			break;
4937 		}
4938 	}
4939 
4940 	if (!found)
4941 		error = ENOENT;
4942 	if (error)
4943 		goto error_out;
4944 
4945 	/* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4946 	fid->icb = new_parent_node->write_loc;
4947 	fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4948 
4949 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4950 
4951 	/* get size of fid and compensate for the read_fid_stream advance */
4952 	fidsize = udf_fidsize(fid);
4953 	diroffset -= fidsize;
4954 
4955 	/* write out */
4956 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4957 			fid, fidsize, diroffset,
4958 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4959 			FSCRED, NULL, NULL);
4960 
4961 	/* nothing to be done in the dirhash */
4962 
4963 error_out:
4964 	free(fid, M_UDFTEMP);
4965 	free(dirent, M_UDFTEMP);
4966 
4967 	dirhash_put(dir_node->dir_hash);
4968 
4969 	return error;
4970 }
4971 
4972 /* --------------------------------------------------------------------- */
4973 
4974 /*
4975  * We are not allowed to split the fid tag itself over an logical block so
4976  * check the space remaining in the logical block.
4977  *
4978  * We try to select the smallest candidate for recycling or when none is
4979  * found, append a new one at the end of the directory.
4980  */
4981 
4982 int
4983 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4984 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4985 {
4986 	struct vnode *dvp = dir_node->vnode;
4987 	struct dirhash       *dirh;
4988 	struct dirhash_entry *dirh_ep;
4989 	struct fileid_desc   *fid;
4990 	struct icb_tag       *icbtag;
4991 	struct charspec osta_charspec;
4992 	struct dirent   dirent;
4993 	uint64_t unique_id, dir_size;
4994 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
4995 	uint32_t chosen_size, chosen_size_diff;
4996 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
4997 	int file_char, refcnt, icbflags, addr_type, hit, error;
4998 
4999 	/* get our dirhash and make sure its read in */
5000 	dirhash_get(&dir_node->dir_hash);
5001 	error = dirhash_fill(dir_node);
5002 	if (error) {
5003 		dirhash_put(dir_node->dir_hash);
5004 		return error;
5005 	}
5006 	dirh = dir_node->dir_hash;
5007 
5008 	/* get info */
5009 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5010 	udf_osta_charset(&osta_charspec);
5011 
5012 	if (dir_node->fe) {
5013 		dir_size = udf_rw64(dir_node->fe->inf_len);
5014 		icbtag   = &dir_node->fe->icbtag;
5015 	} else {
5016 		dir_size = udf_rw64(dir_node->efe->inf_len);
5017 		icbtag   = &dir_node->efe->icbtag;
5018 	}
5019 
5020 	icbflags   = udf_rw16(icbtag->flags);
5021 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5022 
5023 	if (udf_node->fe) {
5024 		unique_id = udf_rw64(udf_node->fe->unique_id);
5025 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
5026 	} else {
5027 		unique_id = udf_rw64(udf_node->efe->unique_id);
5028 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
5029 	}
5030 
5031 	if (refcnt > 0) {
5032 		unique_id = udf_advance_uniqueid(ump);
5033 		udf_adjust_filecount(udf_node, 1);
5034 	}
5035 
5036 	/* determine file characteristics */
5037 	file_char = 0;	/* visible non deleted file and not stream metadata */
5038 	if (vap->va_type == VDIR)
5039 		file_char = UDF_FILE_CHAR_DIR;
5040 
5041 	/* malloc scrap buffer */
5042 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5043 
5044 	/* calculate _minimum_ fid size */
5045 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
5046 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5047 	fidsize = UDF_FID_SIZE + fid->l_fi;
5048 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
5049 
5050 	/* find position that will fit the FID */
5051 	chosen_fid_pos   = dir_size;
5052 	chosen_size      = 0;
5053 	chosen_size_diff = UINT_MAX;
5054 
5055 	/* shut up gcc */
5056 	dirent.d_namlen = 0;
5057 
5058 	/* search our dirhash hits */
5059 	error = 0;
5060 	dirh_ep = NULL;
5061 	for (;;) {
5062 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5063 		/* if no hit, abort the search */
5064 		if (!hit)
5065 			break;
5066 
5067 		/* check this hit for size */
5068 		this_fidsize = dirh_ep->entry_size;
5069 
5070 		/* check this hit */
5071 		fid_pos     = dirh_ep->offset;
5072 		end_fid_pos = fid_pos + this_fidsize;
5073 		size_diff   = this_fidsize - fidsize;
5074 		lb_rest = lb_size - (end_fid_pos % lb_size);
5075 
5076 #ifndef UDF_COMPLETE_DELETE
5077 		/* transfer a new fid/dirent */
5078 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5079 		if (error)
5080 			goto error_out;
5081 
5082 		/* only reuse entries that are wiped */
5083 		/* check if the len + loc are marked zero */
5084 		if (udf_rw32(fid->icb.len) != 0)
5085 			continue;
5086 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
5087 			continue;
5088 		if (udf_rw16(fid->icb.loc.part_num) != 0)
5089 			continue;
5090 #endif	/* UDF_COMPLETE_DELETE */
5091 
5092 		/* select if not splitting the tag and its smaller */
5093 		if ((size_diff >= 0)  &&
5094 			(size_diff < chosen_size_diff) &&
5095 			(lb_rest >= sizeof(struct desc_tag)))
5096 		{
5097 			/* UDF 2.3.4.2+3 specifies rules for iu size */
5098 			if ((size_diff == 0) || (size_diff >= 32)) {
5099 				chosen_fid_pos   = fid_pos;
5100 				chosen_size      = this_fidsize;
5101 				chosen_size_diff = size_diff;
5102 			}
5103 		}
5104 	}
5105 
5106 
5107 	/* extend directory if no other candidate found */
5108 	if (chosen_size == 0) {
5109 		chosen_fid_pos   = dir_size;
5110 		chosen_size      = fidsize;
5111 		chosen_size_diff = 0;
5112 
5113 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5114 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
5115 			/* pre-grow directory to see if we're to switch */
5116 			udf_grow_node(dir_node, dir_size + chosen_size);
5117 
5118 			icbflags   = udf_rw16(icbtag->flags);
5119 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5120 		}
5121 
5122 		/* make sure the next fid desc_tag won't be splitted */
5123 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
5124 			end_fid_pos = chosen_fid_pos + chosen_size;
5125 			lb_rest = lb_size - (end_fid_pos % lb_size);
5126 
5127 			/* pad with implementation use regid if needed */
5128 			if (lb_rest < sizeof(struct desc_tag))
5129 				chosen_size += 32;
5130 		}
5131 	}
5132 	chosen_size_diff = chosen_size - fidsize;
5133 
5134 	/* populate the FID */
5135 	memset(fid, 0, lb_size);
5136 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5137 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
5138 	fid->file_char           = file_char;
5139 	fid->icb                 = udf_node->loc;
5140 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5141 	fid->l_iu                = udf_rw16(0);
5142 
5143 	if (chosen_size > fidsize) {
5144 		/* insert implementation-use regid to space it correctly */
5145 		fid->l_iu = udf_rw16(chosen_size_diff);
5146 
5147 		/* set implementation use */
5148 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5149 		udf_add_impl_regid(ump, (struct regid *) fid->data);
5150 	}
5151 
5152 	/* fill in name */
5153 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5154 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5155 
5156 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5157 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5158 
5159 	/* writeout FID/update parent directory */
5160 	error = vn_rdwr(UIO_WRITE, dvp,
5161 			fid, chosen_size, chosen_fid_pos,
5162 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5163 			FSCRED, NULL, NULL);
5164 
5165 	if (error)
5166 		goto error_out;
5167 
5168 	/* add reference counter in attached node */
5169 	if (udf_node->fe) {
5170 		refcnt = udf_rw16(udf_node->fe->link_cnt);
5171 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5172 	} else {
5173 		KASSERT(udf_node->efe);
5174 		refcnt = udf_rw16(udf_node->efe->link_cnt);
5175 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5176 	}
5177 
5178 	/* mark not deleted if it was... just in case, but do warn */
5179 	if (udf_node->i_flags & IN_DELETED) {
5180 		printf("udf: warning, marking a file undeleted\n");
5181 		udf_node->i_flags &= ~IN_DELETED;
5182 	}
5183 
5184 	if (file_char & UDF_FILE_CHAR_DIR) {
5185 		/* add reference counter in directory node for '..' */
5186 		if (dir_node->fe) {
5187 			refcnt = udf_rw16(dir_node->fe->link_cnt);
5188 			refcnt++;
5189 			dir_node->fe->link_cnt = udf_rw16(refcnt);
5190 		} else {
5191 			KASSERT(dir_node->efe);
5192 			refcnt = udf_rw16(dir_node->efe->link_cnt);
5193 			refcnt++;
5194 			dir_node->efe->link_cnt = udf_rw16(refcnt);
5195 		}
5196 	}
5197 
5198 	/* append to the dirhash */
5199 	dirent.d_namlen = cnp->cn_namelen;
5200 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5201 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
5202 		udf_fidsize(fid), 1);
5203 
5204 	/* note updates */
5205 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5206 	/* VN_KNOTE(udf_node,  ...) */
5207 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5208 
5209 error_out:
5210 	free(fid, M_TEMP);
5211 
5212 	dirhash_put(dir_node->dir_hash);
5213 
5214 	return error;
5215 }
5216 
5217 /* --------------------------------------------------------------------- */
5218 
5219 /*
5220  * Each node can have an attached streamdir node though not recursively. These
5221  * are otherwise known as named substreams/named extended attributes that have
5222  * no size limitations.
5223  *
5224  * `Normal' extended attributes are indicated with a number and are recorded
5225  * in either the fe/efe descriptor itself for small descriptors or recorded in
5226  * the attached extended attribute file. Since these spaces can get
5227  * fragmented, care ought to be taken.
5228  *
5229  * Since the size of the space reserved for allocation descriptors is limited,
5230  * there is a mechanim provided for extending this space; this is done by a
5231  * special extent to allow schrinking of the allocations without breaking the
5232  * linkage to the allocation extent descriptor.
5233  */
5234 
5235 int
5236 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5237 	     struct udf_node **udf_noderes)
5238 {
5239 	union dscrptr   *dscr;
5240 	struct udf_node *udf_node;
5241 	struct vnode    *nvp;
5242 	struct long_ad   icb_loc, last_fe_icb_loc;
5243 	uint64_t file_size;
5244 	uint32_t lb_size, sector, dummy;
5245 	uint8_t  *file_data;
5246 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5247 	int slot, eof, error;
5248 
5249 	DPRINTF(NODE, ("udf_get_node called\n"));
5250 	*udf_noderes = udf_node = NULL;
5251 
5252 	/* lock to disallow simultanious creation of same udf_node */
5253 	mutex_enter(&ump->get_node_lock);
5254 
5255 	DPRINTF(NODE, ("\tlookup in hash table\n"));
5256 	/* lookup in hash table */
5257 	assert(ump);
5258 	assert(node_icb_loc);
5259 	udf_node = udf_node_lookup(ump, node_icb_loc);
5260 	if (udf_node) {
5261 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
5262 		/* vnode is returned locked */
5263 		*udf_noderes = udf_node;
5264 		mutex_exit(&ump->get_node_lock);
5265 		return 0;
5266 	}
5267 
5268 	/* garbage check: translate udf_node_icb_loc to sectornr */
5269 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
5270 	if (error) {
5271 		/* no use, this will fail anyway */
5272 		mutex_exit(&ump->get_node_lock);
5273 		return EINVAL;
5274 	}
5275 
5276 	/* build udf_node (do initialise!) */
5277 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5278 	memset(udf_node, 0, sizeof(struct udf_node));
5279 
5280 	DPRINTF(NODE, ("\tget new vnode\n"));
5281 	/* give it a vnode */
5282 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5283         if (error) {
5284 		pool_put(&udf_node_pool, udf_node);
5285 		mutex_exit(&ump->get_node_lock);
5286 		return error;
5287 	}
5288 
5289 	/* always return locked vnode */
5290 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5291 		/* recycle vnode and unlock; simultanious will fail too */
5292 		ungetnewvnode(nvp);
5293 		mutex_exit(&ump->get_node_lock);
5294 		return error;
5295 	}
5296 
5297 	/* initialise crosslinks, note location of fe/efe for hashing */
5298 	udf_node->ump    =  ump;
5299 	udf_node->vnode  =  nvp;
5300 	nvp->v_data      =  udf_node;
5301 	udf_node->loc    = *node_icb_loc;
5302 	udf_node->lockf  =  0;
5303 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5304 	cv_init(&udf_node->node_lock, "udf_nlk");
5305 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
5306 	udf_node->outstanding_bufs = 0;
5307 	udf_node->outstanding_nodedscr = 0;
5308 	udf_node->uncommitted_lbs = 0;
5309 
5310 	/* check if we're fetching the root */
5311 	if (ump->fileset_desc)
5312 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5313 		    sizeof(struct long_ad)) == 0)
5314 			nvp->v_vflag |= VV_ROOT;
5315 
5316 	/* insert into the hash lookup */
5317 	udf_register_node(udf_node);
5318 
5319 	/* safe to unlock, the entry is in the hash table, vnode is locked */
5320 	mutex_exit(&ump->get_node_lock);
5321 
5322 	icb_loc = *node_icb_loc;
5323 	needs_indirect = 0;
5324 	strat4096 = 0;
5325 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5326 	file_size = 0;
5327 	file_data = NULL;
5328 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5329 
5330 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
5331 	do {
5332 		/* try to read in fe/efe */
5333 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5334 
5335 		/* blank sector marks end of sequence, check this */
5336 		if ((dscr == NULL) &&  (!strat4096))
5337 			error = ENOENT;
5338 
5339 		/* break if read error or blank sector */
5340 		if (error || (dscr == NULL))
5341 			break;
5342 
5343 		/* process descriptor based on the descriptor type */
5344 		dscr_type = udf_rw16(dscr->tag.id);
5345 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5346 
5347 		/* if dealing with an indirect entry, follow the link */
5348 		if (dscr_type == TAGID_INDIRECTENTRY) {
5349 			needs_indirect = 0;
5350 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5351 			icb_loc = dscr->inde.indirect_icb;
5352 			continue;
5353 		}
5354 
5355 		/* only file entries and extended file entries allowed here */
5356 		if ((dscr_type != TAGID_FENTRY) &&
5357 		    (dscr_type != TAGID_EXTFENTRY)) {
5358 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5359 			error = ENOENT;
5360 			break;
5361 		}
5362 
5363 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5364 
5365 		/* choose this one */
5366 		last_fe_icb_loc = icb_loc;
5367 
5368 		/* record and process/update (ext)fentry */
5369 		file_data = NULL;
5370 		if (dscr_type == TAGID_FENTRY) {
5371 			if (udf_node->fe)
5372 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5373 					udf_node->fe);
5374 			udf_node->fe  = &dscr->fe;
5375 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5376 			udf_file_type = udf_node->fe->icbtag.file_type;
5377 			file_size = udf_rw64(udf_node->fe->inf_len);
5378 			file_data = udf_node->fe->data;
5379 		} else {
5380 			if (udf_node->efe)
5381 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5382 					udf_node->efe);
5383 			udf_node->efe = &dscr->efe;
5384 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5385 			udf_file_type = udf_node->efe->icbtag.file_type;
5386 			file_size = udf_rw64(udf_node->efe->inf_len);
5387 			file_data = udf_node->efe->data;
5388 		}
5389 
5390 		/* check recording strategy (structure) */
5391 
5392 		/*
5393 		 * Strategy 4096 is a daisy linked chain terminating with an
5394 		 * unrecorded sector or a TERM descriptor. The next
5395 		 * descriptor is to be found in the sector that follows the
5396 		 * current sector.
5397 		 */
5398 		if (strat == 4096) {
5399 			strat4096 = 1;
5400 			needs_indirect = 1;
5401 
5402 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5403 		}
5404 
5405 		/*
5406 		 * Strategy 4 is the normal strategy and terminates, but if
5407 		 * we're in strategy 4096, we can't have strategy 4 mixed in
5408 		 */
5409 
5410 		if (strat == 4) {
5411 			if (strat4096) {
5412 				error = EINVAL;
5413 				break;
5414 			}
5415 			break;		/* done */
5416 		}
5417 	} while (!error);
5418 
5419 	/* first round of cleanup code */
5420 	if (error) {
5421 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5422 		/* recycle udf_node */
5423 		udf_dispose_node(udf_node);
5424 
5425 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5426 		nvp->v_data = NULL;
5427 		ungetnewvnode(nvp);
5428 
5429 		return EINVAL;		/* error code ok? */
5430 	}
5431 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5432 
5433 	/* assert no references to dscr anymore beyong this point */
5434 	assert((udf_node->fe) || (udf_node->efe));
5435 	dscr = NULL;
5436 
5437 	/*
5438 	 * Remember where to record an updated version of the descriptor. If
5439 	 * there is a sequence of indirect entries, icb_loc will have been
5440 	 * updated. Its the write disipline to allocate new space and to make
5441 	 * sure the chain is maintained.
5442 	 *
5443 	 * `needs_indirect' flags if the next location is to be filled with
5444 	 * with an indirect entry.
5445 	 */
5446 	udf_node->write_loc = icb_loc;
5447 	udf_node->needs_indirect = needs_indirect;
5448 
5449 	/*
5450 	 * Go trough all allocations extents of this descriptor and when
5451 	 * encountering a redirect read in the allocation extension. These are
5452 	 * daisy-chained.
5453 	 */
5454 	UDF_LOCK_NODE(udf_node, 0);
5455 	udf_node->num_extensions = 0;
5456 
5457 	error   = 0;
5458 	slot    = 0;
5459 	for (;;) {
5460 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5461 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5462 			"lb_num = %d, part = %d\n", slot, eof,
5463 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5464 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5465 			udf_rw32(icb_loc.loc.lb_num),
5466 			udf_rw16(icb_loc.loc.part_num)));
5467 		if (eof)
5468 			break;
5469 		slot++;
5470 
5471 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5472 			continue;
5473 
5474 		DPRINTF(NODE, ("\tgot redirect extent\n"));
5475 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5476 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5477 					"too many allocation extensions on "
5478 					"udf_node\n"));
5479 			error = EINVAL;
5480 			break;
5481 		}
5482 
5483 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5484 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5485 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5486 					"extension size in udf_node\n"));
5487 			error = EINVAL;
5488 			break;
5489 		}
5490 
5491 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5492 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5493 		/* load in allocation extent */
5494 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5495 		if (error || (dscr == NULL))
5496 			break;
5497 
5498 		/* process read-in descriptor */
5499 		dscr_type = udf_rw16(dscr->tag.id);
5500 
5501 		if (dscr_type != TAGID_ALLOCEXTENT) {
5502 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5503 			error = ENOENT;
5504 			break;
5505 		}
5506 
5507 		DPRINTF(NODE, ("\trecording redirect extent\n"));
5508 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5509 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5510 
5511 		udf_node->num_extensions++;
5512 
5513 	} /* while */
5514 	UDF_UNLOCK_NODE(udf_node, 0);
5515 
5516 	/* second round of cleanup code */
5517 	if (error) {
5518 		/* recycle udf_node */
5519 		udf_dispose_node(udf_node);
5520 
5521 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5522 		nvp->v_data = NULL;
5523 		ungetnewvnode(nvp);
5524 
5525 		return EINVAL;		/* error code ok? */
5526 	}
5527 
5528 	DPRINTF(NODE, ("\tnode read in fine\n"));
5529 
5530 	/*
5531 	 * Translate UDF filetypes into vnode types.
5532 	 *
5533 	 * Systemfiles like the meta main and mirror files are not treated as
5534 	 * normal files, so we type them as having no type. UDF dictates that
5535 	 * they are not allowed to be visible.
5536 	 */
5537 
5538 	switch (udf_file_type) {
5539 	case UDF_ICB_FILETYPE_DIRECTORY :
5540 	case UDF_ICB_FILETYPE_STREAMDIR :
5541 		nvp->v_type = VDIR;
5542 		break;
5543 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
5544 		nvp->v_type = VBLK;
5545 		break;
5546 	case UDF_ICB_FILETYPE_CHARDEVICE :
5547 		nvp->v_type = VCHR;
5548 		break;
5549 	case UDF_ICB_FILETYPE_SOCKET :
5550 		nvp->v_type = VSOCK;
5551 		break;
5552 	case UDF_ICB_FILETYPE_FIFO :
5553 		nvp->v_type = VFIFO;
5554 		break;
5555 	case UDF_ICB_FILETYPE_SYMLINK :
5556 		nvp->v_type = VLNK;
5557 		break;
5558 	case UDF_ICB_FILETYPE_VAT :
5559 	case UDF_ICB_FILETYPE_META_MAIN :
5560 	case UDF_ICB_FILETYPE_META_MIRROR :
5561 		nvp->v_type = VNON;
5562 		break;
5563 	case UDF_ICB_FILETYPE_RANDOMACCESS :
5564 	case UDF_ICB_FILETYPE_REALTIME :
5565 		nvp->v_type = VREG;
5566 		break;
5567 	default:
5568 		/* YIKES, something else */
5569 		nvp->v_type = VNON;
5570 	}
5571 
5572 	/* TODO specfs, fifofs etc etc. vnops setting */
5573 
5574 	/* don't forget to set vnode's v_size */
5575 	uvm_vnp_setsize(nvp, file_size);
5576 
5577 	/* TODO ext attr and streamdir udf_nodes */
5578 
5579 	*udf_noderes = udf_node;
5580 
5581 	return 0;
5582 }
5583 
5584 /* --------------------------------------------------------------------- */
5585 
5586 int
5587 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5588 {
5589 	union dscrptr *dscr;
5590 	struct long_ad *loc;
5591 	int extnr, error;
5592 
5593 	DPRINTF(NODE, ("udf_writeout_node called\n"));
5594 
5595 	KASSERT(udf_node->outstanding_bufs == 0);
5596 	KASSERT(udf_node->outstanding_nodedscr == 0);
5597 
5598 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5599 
5600 	if (udf_node->i_flags & IN_DELETED) {
5601 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5602 		udf_cleanup_reservation(udf_node);
5603 		return 0;
5604 	}
5605 
5606 	/* lock node; unlocked in callback */
5607 	UDF_LOCK_NODE(udf_node, 0);
5608 
5609 	/* remove pending reservations, we're written out */
5610 	udf_cleanup_reservation(udf_node);
5611 
5612 	/* at least one descriptor writeout */
5613 	udf_node->outstanding_nodedscr = 1;
5614 
5615 	/* we're going to write out the descriptor so clear the flags */
5616 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5617 
5618 	/* if we were rebuild, write out the allocation extents */
5619 	if (udf_node->i_flags & IN_NODE_REBUILD) {
5620 		/* mark outstanding node descriptors and issue them */
5621 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
5622 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5623 			loc = &udf_node->ext_loc[extnr];
5624 			dscr = (union dscrptr *) udf_node->ext[extnr];
5625 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5626 			if (error)
5627 				return error;
5628 		}
5629 		/* mark allocation extents written out */
5630 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
5631 	}
5632 
5633 	if (udf_node->fe) {
5634 		KASSERT(udf_node->efe == NULL);
5635 		dscr = (union dscrptr *) udf_node->fe;
5636 	} else {
5637 		KASSERT(udf_node->efe);
5638 		KASSERT(udf_node->fe == NULL);
5639 		dscr = (union dscrptr *) udf_node->efe;
5640 	}
5641 	KASSERT(dscr);
5642 
5643 	loc = &udf_node->write_loc;
5644 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5645 
5646 	return error;
5647 }
5648 
5649 /* --------------------------------------------------------------------- */
5650 
5651 int
5652 udf_dispose_node(struct udf_node *udf_node)
5653 {
5654 	struct vnode *vp;
5655 	int extnr;
5656 
5657 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5658 	if (!udf_node) {
5659 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5660 		return 0;
5661 	}
5662 
5663 	vp  = udf_node->vnode;
5664 #ifdef DIAGNOSTIC
5665 	if (vp->v_numoutput)
5666 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
5667 				"v_numoutput = %d", udf_node, vp->v_numoutput);
5668 #endif
5669 
5670 	udf_cleanup_reservation(udf_node);
5671 
5672 	/* TODO extended attributes and streamdir */
5673 
5674 	/* remove dirhash if present */
5675 	dirhash_purge(&udf_node->dir_hash);
5676 
5677 	/* remove from our hash lookup table */
5678 	udf_deregister_node(udf_node);
5679 
5680 	/* destroy our lock */
5681 	mutex_destroy(&udf_node->node_mutex);
5682 	cv_destroy(&udf_node->node_lock);
5683 
5684 	/* dissociate our udf_node from the vnode */
5685 	genfs_node_destroy(udf_node->vnode);
5686 	vp->v_data = NULL;
5687 
5688 	/* free associated memory and the node itself */
5689 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5690 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5691 			udf_node->ext[extnr]);
5692 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
5693 	}
5694 
5695 	if (udf_node->fe)
5696 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5697 			udf_node->fe);
5698 	if (udf_node->efe)
5699 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5700 			udf_node->efe);
5701 
5702 	udf_node->fe  = (void *) 0xdeadaaaa;
5703 	udf_node->efe = (void *) 0xdeadbbbb;
5704 	udf_node->ump = (void *) 0xdeadbeef;
5705 	pool_put(&udf_node_pool, udf_node);
5706 
5707 	return 0;
5708 }
5709 
5710 
5711 
5712 /*
5713  * create a new node using the specified vnodeops, vap and cnp but with the
5714  * udf_file_type. This allows special files to be created. Use with care.
5715  */
5716 
5717 static int
5718 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5719 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5720 {
5721 	union dscrptr *dscr;
5722 	struct udf_node *dir_node = VTOI(dvp);;
5723 	struct udf_node *udf_node;
5724 	struct udf_mount *ump = dir_node->ump;
5725 	struct vnode *nvp;
5726 	struct long_ad node_icb_loc;
5727 	uint64_t parent_unique_id;
5728 	uint64_t lmapping;
5729 	uint32_t lb_size, lb_num;
5730 	uint16_t vpart_num;
5731 	uid_t uid;
5732 	gid_t gid, parent_gid;
5733 	int fid_size, error;
5734 
5735 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5736 	*vpp = NULL;
5737 
5738 	/* allocate vnode */
5739 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5740         if (error)
5741 		return error;
5742 
5743 	/* lock node */
5744 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5745 	if (error)
5746 		goto error_out_unget;
5747 
5748 	/* reserve space for one logical block */
5749 	vpart_num = ump->node_part;
5750 	error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5751 		vpart_num, 1, /* can_fail */ true);
5752 	if (error)
5753 		goto error_out_unlock;
5754 
5755 	/* allocate node */
5756 	error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5757 			vpart_num, 1, &lmapping);
5758 	if (error)
5759 		goto error_out_unreserve;
5760 	lb_num = lmapping;
5761 
5762 	/* initialise pointer to location */
5763 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
5764 	node_icb_loc.len = udf_rw32(lb_size);
5765 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
5766 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5767 
5768 	/* build udf_node (do initialise!) */
5769 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5770 	memset(udf_node, 0, sizeof(struct udf_node));
5771 
5772 	/* initialise crosslinks, note location of fe/efe for hashing */
5773 	/* bugalert: synchronise with udf_get_node() */
5774 	udf_node->ump       = ump;
5775 	udf_node->vnode     = nvp;
5776 	nvp->v_data         = udf_node;
5777 	udf_node->loc       = node_icb_loc;
5778 	udf_node->write_loc = node_icb_loc;
5779 	udf_node->lockf     = 0;
5780 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5781 	cv_init(&udf_node->node_lock, "udf_nlk");
5782 	udf_node->outstanding_bufs = 0;
5783 	udf_node->outstanding_nodedscr = 0;
5784 	udf_node->uncommitted_lbs = 0;
5785 
5786 	/* initialise genfs */
5787 	genfs_node_init(nvp, &udf_genfsops);
5788 
5789 	/* insert into the hash lookup */
5790 	udf_register_node(udf_node);
5791 
5792 	/* get parent's unique ID for refering '..' if its a directory */
5793 	if (dir_node->fe) {
5794 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5795 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
5796 	} else {
5797 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5798 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
5799 	}
5800 
5801 	/* get descriptor */
5802 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5803 
5804 	/* choose a fe or an efe for it */
5805 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5806 		udf_node->fe = &dscr->fe;
5807 		fid_size = udf_create_new_fe(ump, udf_node->fe,
5808 			udf_file_type, &udf_node->loc,
5809 			&dir_node->loc, parent_unique_id);
5810 		/* TODO add extended attribute for creation time */
5811 	} else {
5812 		udf_node->efe = &dscr->efe;
5813 		fid_size = udf_create_new_efe(ump, udf_node->efe,
5814 			udf_file_type, &udf_node->loc,
5815 			&dir_node->loc, parent_unique_id);
5816 	}
5817 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5818 
5819 	/* update vnode's size and type */
5820 	nvp->v_type = vap->va_type;
5821 	uvm_vnp_setsize(nvp, fid_size);
5822 
5823 	/* set access mode */
5824 	udf_setaccessmode(udf_node, vap->va_mode);
5825 
5826 	/* set ownership */
5827 	uid = kauth_cred_geteuid(cnp->cn_cred);
5828 	gid = parent_gid;
5829 	udf_setownership(udf_node, uid, gid);
5830 
5831 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5832 	if (error) {
5833 		/* free disc allocation for node */
5834 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5835 
5836 		/* recycle udf_node */
5837 		udf_dispose_node(udf_node);
5838 		vput(nvp);
5839 
5840 		*vpp = NULL;
5841 		return error;
5842 	}
5843 
5844 	/* adjust file count */
5845 	udf_adjust_filecount(udf_node, 1);
5846 
5847 	/* return result */
5848 	*vpp = nvp;
5849 
5850 	return 0;
5851 
5852 error_out_unreserve:
5853 	udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5854 
5855 error_out_unlock:
5856 	vlockmgr(nvp->v_vnlock, LK_RELEASE);
5857 
5858 error_out_unget:
5859 	nvp->v_data = NULL;
5860 	ungetnewvnode(nvp);
5861 
5862 	return error;
5863 }
5864 
5865 
5866 int
5867 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5868 	struct componentname *cnp)
5869 {
5870 	int (**vnodeops)(void *);
5871 	int udf_file_type;
5872 
5873 	DPRINTF(NODE, ("udf_create_node called\n"));
5874 
5875 	/* what type are we creating ? */
5876 	vnodeops = udf_vnodeop_p;
5877 	/* start with a default */
5878 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5879 
5880 	*vpp = NULL;
5881 
5882 	switch (vap->va_type) {
5883 	case VREG :
5884 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5885 		break;
5886 	case VDIR :
5887 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5888 		break;
5889 	case VLNK :
5890 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5891 		break;
5892 	case VBLK :
5893 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5894 		/* specfs */
5895 		return ENOTSUP;
5896 		break;
5897 	case VCHR :
5898 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5899 		/* specfs */
5900 		return ENOTSUP;
5901 		break;
5902 	case VFIFO :
5903 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
5904 		/* specfs */
5905 		return ENOTSUP;
5906 		break;
5907 	case VSOCK :
5908 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5909 		/* specfs */
5910 		return ENOTSUP;
5911 		break;
5912 	case VNON :
5913 	case VBAD :
5914 	default :
5915 		/* nothing; can we even create these? */
5916 		return EINVAL;
5917 	}
5918 
5919 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5920 }
5921 
5922 /* --------------------------------------------------------------------- */
5923 
5924 static void
5925 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5926 {
5927 	struct udf_mount *ump = udf_node->ump;
5928 	uint32_t lb_size, lb_num, len, num_lb;
5929 	uint16_t vpart_num;
5930 
5931 	/* is there really one? */
5932 	if (mem == NULL)
5933 		return;
5934 
5935 	/* got a descriptor here */
5936 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
5937 	lb_num    = udf_rw32(loc->loc.lb_num);
5938 	vpart_num = udf_rw16(loc->loc.part_num);
5939 
5940 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5941 	num_lb = (len + lb_size -1) / lb_size;
5942 
5943 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5944 }
5945 
5946 void
5947 udf_delete_node(struct udf_node *udf_node)
5948 {
5949 	void *dscr;
5950 	struct udf_mount *ump;
5951 	struct long_ad *loc;
5952 	int extnr, lvint, dummy;
5953 
5954 	ump = udf_node->ump;
5955 
5956 	/* paranoia check on integrity; should be open!; we could panic */
5957 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5958 	if (lvint == UDF_INTEGRITY_CLOSED)
5959 		printf("\tIntegrity was CLOSED!\n");
5960 
5961 	/* whatever the node type, change its size to zero */
5962 	(void) udf_resize_node(udf_node, 0, &dummy);
5963 
5964 	/* force it to be `clean'; no use writing it out */
5965 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5966 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
5967 
5968 	/* adjust file count */
5969 	udf_adjust_filecount(udf_node, -1);
5970 
5971 	/*
5972 	 * Free its allocated descriptors; memory will be released when
5973 	 * vop_reclaim() is called.
5974 	 */
5975 	loc = &udf_node->loc;
5976 
5977 	dscr = udf_node->fe;
5978 	udf_free_descriptor_space(udf_node, loc, dscr);
5979 	dscr = udf_node->efe;
5980 	udf_free_descriptor_space(udf_node, loc, dscr);
5981 
5982 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5983 		dscr =  udf_node->ext[extnr];
5984 		loc  = &udf_node->ext_loc[extnr];
5985 		udf_free_descriptor_space(udf_node, loc, dscr);
5986 	}
5987 }
5988 
5989 /* --------------------------------------------------------------------- */
5990 
5991 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5992 int
5993 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5994 {
5995 	struct file_entry    *fe  = udf_node->fe;
5996 	struct extfile_entry *efe = udf_node->efe;
5997 	uint64_t file_size;
5998 	int error;
5999 
6000 	if (fe) {
6001 		file_size  = udf_rw64(fe->inf_len);
6002 	} else {
6003 		assert(udf_node->efe);
6004 		file_size  = udf_rw64(efe->inf_len);
6005 	}
6006 
6007 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6008 			file_size, new_size));
6009 
6010 	/* if not changing, we're done */
6011 	if (file_size == new_size)
6012 		return 0;
6013 
6014 	*extended = (new_size > file_size);
6015 	if (*extended) {
6016 		error = udf_grow_node(udf_node, new_size);
6017 	} else {
6018 		error = udf_shrink_node(udf_node, new_size);
6019 	}
6020 
6021 	return error;
6022 }
6023 
6024 
6025 /* --------------------------------------------------------------------- */
6026 
6027 void
6028 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6029 	struct timespec *mod, struct timespec *birth)
6030 {
6031 	struct timespec now;
6032 	struct file_entry    *fe;
6033 	struct extfile_entry *efe;
6034 	struct filetimes_extattr_entry *ft_extattr;
6035 	struct timestamp *atime, *mtime, *attrtime, *ctime;
6036 	struct timestamp  fe_ctime;
6037 	struct timespec   cur_birth;
6038 	uint32_t offset, a_l;
6039 	uint8_t *filedata;
6040 	int error;
6041 
6042 	/* protect against rogue values */
6043 	if (!udf_node)
6044 		return;
6045 
6046 	fe  = udf_node->fe;
6047 	efe = udf_node->efe;
6048 
6049 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6050 		return;
6051 
6052 	/* get descriptor information */
6053 	if (fe) {
6054 		atime    = &fe->atime;
6055 		mtime    = &fe->mtime;
6056 		attrtime = &fe->attrtime;
6057 		filedata = fe->data;
6058 
6059 		/* initial save dummy setting */
6060 		ctime    = &fe_ctime;
6061 
6062 		/* check our extended attribute if present */
6063 		error = udf_extattr_search_intern(udf_node,
6064 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6065 		if (!error) {
6066 			ft_extattr = (struct filetimes_extattr_entry *)
6067 				(filedata + offset);
6068 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6069 				ctime = &ft_extattr->times[0];
6070 		}
6071 		/* TODO create the extended attribute if not found ? */
6072 	} else {
6073 		assert(udf_node->efe);
6074 		atime    = &efe->atime;
6075 		mtime    = &efe->mtime;
6076 		attrtime = &efe->attrtime;
6077 		ctime    = &efe->ctime;
6078 	}
6079 
6080 	vfs_timestamp(&now);
6081 
6082 	/* set access time */
6083 	if (udf_node->i_flags & IN_ACCESS) {
6084 		if (acc == NULL)
6085 			acc = &now;
6086 		udf_timespec_to_timestamp(acc, atime);
6087 	}
6088 
6089 	/* set modification time */
6090 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6091 		if (mod == NULL)
6092 			mod = &now;
6093 		udf_timespec_to_timestamp(mod, mtime);
6094 
6095 		/* ensure birthtime is older than set modification! */
6096 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6097 		if ((cur_birth.tv_sec > mod->tv_sec) ||
6098 			  ((cur_birth.tv_sec == mod->tv_sec) &&
6099 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
6100 			udf_timespec_to_timestamp(mod, ctime);
6101 		}
6102 	}
6103 
6104 	/* update birthtime if specified */
6105 	/* XXX we asume here that given birthtime is older than mod */
6106 	if (birth && (birth->tv_sec != VNOVAL)) {
6107 		udf_timespec_to_timestamp(birth, ctime);
6108 	}
6109 
6110 	/* set change time */
6111 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6112 		udf_timespec_to_timestamp(&now, attrtime);
6113 
6114 	/* notify updates to the node itself */
6115 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6116 		udf_node->i_flags |= IN_ACCESSED;
6117 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6118 		udf_node->i_flags |= IN_MODIFIED;
6119 
6120 	/* clear modification flags */
6121 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6122 }
6123 
6124 /* --------------------------------------------------------------------- */
6125 
6126 int
6127 udf_update(struct vnode *vp, struct timespec *acc,
6128 	struct timespec *mod, struct timespec *birth, int updflags)
6129 {
6130 	union dscrptr *dscrptr;
6131 	struct udf_node  *udf_node = VTOI(vp);
6132 	struct udf_mount *ump = udf_node->ump;
6133 	struct regid     *impl_id;
6134 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6135 	int waitfor, flags;
6136 
6137 #ifdef DEBUG
6138 	char bits[128];
6139 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6140 		updflags));
6141 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6142 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
6143 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6144 #endif
6145 
6146 	/* set our times */
6147 	udf_itimes(udf_node, acc, mod, birth);
6148 
6149 	/* set our implementation id */
6150 	if (udf_node->fe) {
6151 		dscrptr = (union dscrptr *) udf_node->fe;
6152 		impl_id = &udf_node->fe->imp_id;
6153 	} else {
6154 		dscrptr = (union dscrptr *) udf_node->efe;
6155 		impl_id = &udf_node->efe->imp_id;
6156 	}
6157 
6158 	/* set our ID */
6159 	udf_set_regid(impl_id, IMPL_NAME);
6160 	udf_add_impl_regid(ump, impl_id);
6161 
6162 	/* update our crc! on RMW we are not allowed to change a thing */
6163 	udf_validate_tag_and_crc_sums(dscrptr);
6164 
6165 	/* if called when mounted readonly, never write back */
6166 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
6167 		return 0;
6168 
6169 	/* check if the node is dirty 'enough'*/
6170 	if (updflags & UPDATE_CLOSE) {
6171 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6172 	} else {
6173 		flags = udf_node->i_flags & IN_MODIFIED;
6174 	}
6175 	if (flags == 0)
6176 		return 0;
6177 
6178 	/* determine if we need to write sync or async */
6179 	waitfor = 0;
6180 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6181 		/* sync mounted */
6182 		waitfor = updflags & UPDATE_WAIT;
6183 		if (updflags & UPDATE_DIROP)
6184 			waitfor |= UPDATE_WAIT;
6185 	}
6186 	if (waitfor)
6187 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6188 
6189 	return 0;
6190 }
6191 
6192 
6193 /* --------------------------------------------------------------------- */
6194 
6195 
6196 /*
6197  * Read one fid and process it into a dirent and advance to the next (*fid)
6198  * has to be allocated a logical block in size, (*dirent) struct dirent length
6199  */
6200 
6201 int
6202 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6203 		struct fileid_desc *fid, struct dirent *dirent)
6204 {
6205 	struct udf_node  *dir_node = VTOI(vp);
6206 	struct udf_mount *ump = dir_node->ump;
6207 	struct file_entry    *fe  = dir_node->fe;
6208 	struct extfile_entry *efe = dir_node->efe;
6209 	uint32_t      fid_size, lb_size;
6210 	uint64_t      file_size;
6211 	char         *fid_name;
6212 	int           enough, error;
6213 
6214 	assert(fid);
6215 	assert(dirent);
6216 	assert(dir_node);
6217 	assert(offset);
6218 	assert(*offset != 1);
6219 
6220 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6221 	/* check if we're past the end of the directory */
6222 	if (fe) {
6223 		file_size = udf_rw64(fe->inf_len);
6224 	} else {
6225 		assert(dir_node->efe);
6226 		file_size = udf_rw64(efe->inf_len);
6227 	}
6228 	if (*offset >= file_size)
6229 		return EINVAL;
6230 
6231 	/* get maximum length of FID descriptor */
6232 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6233 
6234 	/* initialise return values */
6235 	fid_size = 0;
6236 	memset(dirent, 0, sizeof(struct dirent));
6237 	memset(fid, 0, lb_size);
6238 
6239 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
6240 	if (!enough) {
6241 		/* short dir ... */
6242 		return EIO;
6243 	}
6244 
6245 	error = vn_rdwr(UIO_READ, vp,
6246 			fid, MIN(file_size - (*offset), lb_size), *offset,
6247 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6248 			NULL, NULL);
6249 	if (error)
6250 		return error;
6251 
6252 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6253 	/*
6254 	 * Check if we got a whole descriptor.
6255 	 * TODO Try to `resync' directory stream when something is very wrong.
6256 	 */
6257 
6258 	/* check if our FID header is OK */
6259 	error = udf_check_tag(fid);
6260 	if (error) {
6261 		goto brokendir;
6262 	}
6263 	DPRINTF(FIDS, ("\ttag check ok\n"));
6264 
6265 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
6266 		error = EIO;
6267 		goto brokendir;
6268 	}
6269 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6270 
6271 	/* check for length */
6272 	fid_size = udf_fidsize(fid);
6273 	enough = (file_size - (*offset) >= fid_size);
6274 	if (!enough) {
6275 		error = EIO;
6276 		goto brokendir;
6277 	}
6278 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6279 
6280 	/* check FID contents */
6281 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6282 brokendir:
6283 	if (error) {
6284 		/* note that is sometimes a bit quick to report */
6285 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
6286 		/* RESYNC? */
6287 		/* TODO: use udf_resync_fid_stream */
6288 		return EIO;
6289 	}
6290 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
6291 
6292 	/* we got a whole and valid descriptor! */
6293 	DPRINTF(FIDS, ("\tinterpret FID\n"));
6294 
6295 	/* create resulting dirent structure */
6296 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6297 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6298 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6299 
6300 	/* '..' has no name, so provide one */
6301 	if (fid->file_char & UDF_FILE_CHAR_PAR)
6302 		strcpy(dirent->d_name, "..");
6303 
6304 	dirent->d_fileno = udf_get_node_id(&fid->icb);	/* inode hash XXX */
6305 	dirent->d_namlen = strlen(dirent->d_name);
6306 	dirent->d_reclen = _DIRENT_SIZE(dirent);
6307 
6308 	/*
6309 	 * Note that its not worth trying to go for the filetypes now... its
6310 	 * too expensive too
6311 	 */
6312 	dirent->d_type = DT_UNKNOWN;
6313 
6314 	/* initial guess for filetype we can make */
6315 	if (fid->file_char & UDF_FILE_CHAR_DIR)
6316 		dirent->d_type = DT_DIR;
6317 
6318 	/* advance */
6319 	*offset += fid_size;
6320 
6321 	return error;
6322 }
6323 
6324 
6325 /* --------------------------------------------------------------------- */
6326 
6327 static void
6328 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6329 	int pass, int *ndirty)
6330 {
6331 	struct udf_node *udf_node, *n_udf_node;
6332 	struct vnode *vp;
6333 	int vdirty, error;
6334 	int on_type, on_flags, on_vnode;
6335 
6336 derailed:
6337 	KASSERT(mutex_owned(&mntvnode_lock));
6338 
6339 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
6340 	udf_node = RBTOUDFNODE(RB_TREE_MIN(&ump->udf_node_tree));
6341 	for (;udf_node; udf_node = n_udf_node) {
6342 		DPRINTF(SYNC, ("."));
6343 
6344 		udf_node->i_flags &= ~IN_SYNCED;
6345 		vp = udf_node->vnode;
6346 
6347 		mutex_enter(&vp->v_interlock);
6348 		n_udf_node = RBTOUDFNODE(rb_tree_iterate(
6349 			&ump->udf_node_tree, &udf_node->rbnode,
6350 			RB_DIR_RIGHT));
6351 
6352 		if (n_udf_node)
6353 			n_udf_node->i_flags |= IN_SYNCED;
6354 
6355 		/* system nodes are not synced this way */
6356 		if (vp->v_vflag & VV_SYSTEM) {
6357 			mutex_exit(&vp->v_interlock);
6358 			continue;
6359 		}
6360 
6361 		/* check if its dirty enough to even try */
6362 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
6363 		on_flags = ((udf_node->i_flags &
6364 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6365 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6366 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6367 		if (on_type || (on_flags || on_vnode)) { /* XXX */
6368 			/* not dirty (enough?) */
6369 			mutex_exit(&vp->v_interlock);
6370 			continue;
6371 		}
6372 
6373 		mutex_exit(&mntvnode_lock);
6374 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
6375 		if (error) {
6376 			mutex_enter(&mntvnode_lock);
6377 			if (error == ENOENT)
6378 				goto derailed;
6379 			*ndirty += 1;
6380 			continue;
6381 		}
6382 
6383 		switch (pass) {
6384 		case 1:
6385 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6386 			break;
6387 		case 2:
6388 			vdirty = vp->v_numoutput;
6389 			if (vp->v_tag == VT_UDF)
6390 				vdirty += udf_node->outstanding_bufs +
6391 					udf_node->outstanding_nodedscr;
6392 			if (vdirty == 0)
6393 				VOP_FSYNC(vp, cred, 0,0,0);
6394 			*ndirty += vdirty;
6395 			break;
6396 		case 3:
6397 			vdirty = vp->v_numoutput;
6398 			if (vp->v_tag == VT_UDF)
6399 				vdirty += udf_node->outstanding_bufs +
6400 					udf_node->outstanding_nodedscr;
6401 			*ndirty += vdirty;
6402 			break;
6403 		}
6404 
6405 		vput(vp);
6406 		mutex_enter(&mntvnode_lock);
6407 	}
6408 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6409 }
6410 
6411 
6412 void
6413 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6414 {
6415 	int dummy, ndirty;
6416 
6417 	mutex_enter(&mntvnode_lock);
6418 recount:
6419 	dummy = 0;
6420 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6421 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6422 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6423 
6424 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6425 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6426 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6427 
6428 	if (waitfor == MNT_WAIT) {
6429 		ndirty = ump->devvp->v_numoutput;
6430 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6431 			ndirty));
6432 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6433 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6434 			ndirty));
6435 
6436 		if (ndirty) {
6437 			/* 1/4 second wait */
6438 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6439 				hz/4);
6440 			goto recount;
6441 		}
6442 	}
6443 
6444 	mutex_exit(&mntvnode_lock);
6445 }
6446 
6447 /* --------------------------------------------------------------------- */
6448 
6449 /*
6450  * Read and write file extent in/from the buffer.
6451  *
6452  * The splitup of the extent into seperate request-buffers is to minimise
6453  * copying around as much as possible.
6454  *
6455  * block based file reading and writing
6456  */
6457 
6458 static int
6459 udf_read_internal(struct udf_node *node, uint8_t *blob)
6460 {
6461 	struct udf_mount *ump;
6462 	struct file_entry     *fe = node->fe;
6463 	struct extfile_entry *efe = node->efe;
6464 	uint64_t inflen;
6465 	uint32_t sector_size;
6466 	uint8_t  *pos;
6467 	int icbflags, addr_type;
6468 
6469 	/* get extent and do some paranoia checks */
6470 	ump = node->ump;
6471 	sector_size = ump->discinfo.sector_size;
6472 
6473 	if (fe) {
6474 		inflen   = udf_rw64(fe->inf_len);
6475 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6476 		icbflags = udf_rw16(fe->icbtag.flags);
6477 	} else {
6478 		assert(node->efe);
6479 		inflen   = udf_rw64(efe->inf_len);
6480 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6481 		icbflags = udf_rw16(efe->icbtag.flags);
6482 	}
6483 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6484 
6485 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6486 	assert(inflen < sector_size);
6487 
6488 	/* copy out info */
6489 	memset(blob, 0, sector_size);
6490 	memcpy(blob, pos, inflen);
6491 
6492 	return 0;
6493 }
6494 
6495 
6496 static int
6497 udf_write_internal(struct udf_node *node, uint8_t *blob)
6498 {
6499 	struct udf_mount *ump;
6500 	struct file_entry     *fe = node->fe;
6501 	struct extfile_entry *efe = node->efe;
6502 	uint64_t inflen;
6503 	uint32_t sector_size;
6504 	uint8_t  *pos;
6505 	int icbflags, addr_type;
6506 
6507 	/* get extent and do some paranoia checks */
6508 	ump = node->ump;
6509 	sector_size = ump->discinfo.sector_size;
6510 
6511 	if (fe) {
6512 		inflen   = udf_rw64(fe->inf_len);
6513 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6514 		icbflags = udf_rw16(fe->icbtag.flags);
6515 	} else {
6516 		assert(node->efe);
6517 		inflen   = udf_rw64(efe->inf_len);
6518 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6519 		icbflags = udf_rw16(efe->icbtag.flags);
6520 	}
6521 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6522 
6523 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6524 	assert(inflen < sector_size);
6525 
6526 	/* copy in blob */
6527 	/* memset(pos, 0, inflen); */
6528 	memcpy(pos, blob, inflen);
6529 
6530 	return 0;
6531 }
6532 
6533 
6534 void
6535 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6536 {
6537 	struct buf *nestbuf;
6538 	struct udf_mount *ump = udf_node->ump;
6539 	uint64_t   *mapping;
6540 	uint64_t    run_start;
6541 	uint32_t    sector_size;
6542 	uint32_t    buf_offset, sector, rbuflen, rblk;
6543 	uint32_t    from, lblkno;
6544 	uint32_t    sectors;
6545 	uint8_t    *buf_pos;
6546 	int error, run_length, what;
6547 
6548 	sector_size = udf_node->ump->discinfo.sector_size;
6549 
6550 	from    = buf->b_blkno;
6551 	sectors = buf->b_bcount / sector_size;
6552 
6553 	what = udf_get_c_type(udf_node);
6554 
6555 	/* assure we have enough translation slots */
6556 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6557 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6558 
6559 	if (sectors > UDF_MAX_MAPPINGS) {
6560 		printf("udf_read_filebuf: implementation limit on bufsize\n");
6561 		buf->b_error  = EIO;
6562 		biodone(buf);
6563 		return;
6564 	}
6565 
6566 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6567 
6568 	error = 0;
6569 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6570 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6571 	if (error) {
6572 		buf->b_error  = error;
6573 		biodone(buf);
6574 		goto out;
6575 	}
6576 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
6577 
6578 	/* pre-check if its an internal */
6579 	if (*mapping == UDF_TRANS_INTERN) {
6580 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6581 		if (error)
6582 			buf->b_error  = error;
6583 		biodone(buf);
6584 		goto out;
6585 	}
6586 	DPRINTF(READ, ("\tnot intern\n"));
6587 
6588 #ifdef DEBUG
6589 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6590 		printf("Returned translation table:\n");
6591 		for (sector = 0; sector < sectors; sector++) {
6592 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6593 		}
6594 	}
6595 #endif
6596 
6597 	/* request read-in of data from disc sheduler */
6598 	buf->b_resid = buf->b_bcount;
6599 	for (sector = 0; sector < sectors; sector++) {
6600 		buf_offset = sector * sector_size;
6601 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6602 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6603 
6604 		/* check if its zero or unmapped to stop reading */
6605 		switch (mapping[sector]) {
6606 		case UDF_TRANS_UNMAPPED:
6607 		case UDF_TRANS_ZERO:
6608 			/* copy zero sector TODO runlength like below */
6609 			memset(buf_pos, 0, sector_size);
6610 			DPRINTF(READ, ("\treturning zero sector\n"));
6611 			nestiobuf_done(buf, sector_size, 0);
6612 			break;
6613 		default :
6614 			DPRINTF(READ, ("\tread sector "
6615 			    "%"PRIu64"\n", mapping[sector]));
6616 
6617 			lblkno = from + sector;
6618 			run_start  = mapping[sector];
6619 			run_length = 1;
6620 			while (sector < sectors-1) {
6621 				if (mapping[sector+1] != mapping[sector]+1)
6622 					break;
6623 				run_length++;
6624 				sector++;
6625 			}
6626 
6627 			/*
6628 			 * nest an iobuf and mark it for async reading. Since
6629 			 * we're using nested buffers, they can't be cached by
6630 			 * design.
6631 			 */
6632 			rbuflen = run_length * sector_size;
6633 			rblk    = run_start  * (sector_size/DEV_BSIZE);
6634 
6635 			nestbuf = getiobuf(NULL, true);
6636 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6637 			/* nestbuf is B_ASYNC */
6638 
6639 			/* identify this nestbuf */
6640 			nestbuf->b_lblkno   = lblkno;
6641 			assert(nestbuf->b_vp == udf_node->vnode);
6642 
6643 			/* CD shedules on raw blkno */
6644 			nestbuf->b_blkno      = rblk;
6645 			nestbuf->b_proc       = NULL;
6646 			nestbuf->b_rawblkno   = rblk;
6647 			nestbuf->b_udf_c_type = what;
6648 
6649 			udf_discstrat_queuebuf(ump, nestbuf);
6650 		}
6651 	}
6652 out:
6653 	/* if we're synchronously reading, wait for the completion */
6654 	if ((buf->b_flags & B_ASYNC) == 0)
6655 		biowait(buf);
6656 
6657 	DPRINTF(READ, ("\tend of read_filebuf\n"));
6658 	free(mapping, M_TEMP);
6659 	return;
6660 }
6661 
6662 
6663 void
6664 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6665 {
6666 	struct buf *nestbuf;
6667 	struct udf_mount *ump = udf_node->ump;
6668 	uint64_t   *mapping;
6669 	uint64_t    run_start;
6670 	uint32_t    lb_size;
6671 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
6672 	uint32_t    from, lblkno;
6673 	uint32_t    num_lb;
6674 	int error, run_length, what, s;
6675 
6676 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6677 
6678 	from   = buf->b_blkno;
6679 	num_lb = buf->b_bcount / lb_size;
6680 
6681 	what = udf_get_c_type(udf_node);
6682 
6683 	/* assure we have enough translation slots */
6684 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6685 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6686 
6687 	if (num_lb > UDF_MAX_MAPPINGS) {
6688 		printf("udf_write_filebuf: implementation limit on bufsize\n");
6689 		buf->b_error  = EIO;
6690 		biodone(buf);
6691 		return;
6692 	}
6693 
6694 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6695 
6696 	error = 0;
6697 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6698 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6699 	if (error) {
6700 		buf->b_error  = error;
6701 		biodone(buf);
6702 		goto out;
6703 	}
6704 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6705 
6706 	/* if its internally mapped, we can write it in the descriptor itself */
6707 	if (*mapping == UDF_TRANS_INTERN) {
6708 		/* TODO paranoia check if we ARE going to have enough space */
6709 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6710 		if (error)
6711 			buf->b_error  = error;
6712 		biodone(buf);
6713 		goto out;
6714 	}
6715 	DPRINTF(WRITE, ("\tnot intern\n"));
6716 
6717 	/* request write out of data to disc sheduler */
6718 	buf->b_resid = buf->b_bcount;
6719 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
6720 		buf_offset = lb_num * lb_size;
6721 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6722 
6723 		/*
6724 		 * Mappings are not that important here. Just before we write
6725 		 * the lb_num we late-allocate them when needed and update the
6726 		 * mapping in the udf_node.
6727 		 */
6728 
6729 		/* XXX why not ignore the mapping altogether ? */
6730 		DPRINTF(WRITE, ("\twrite lb_num "
6731 		    "%"PRIu64, mapping[lb_num]));
6732 
6733 		lblkno = from + lb_num;
6734 		run_start  = mapping[lb_num];
6735 		run_length = 1;
6736 		while (lb_num < num_lb-1) {
6737 			if (mapping[lb_num+1] != mapping[lb_num]+1)
6738 				if (mapping[lb_num+1] != mapping[lb_num])
6739 					break;
6740 			run_length++;
6741 			lb_num++;
6742 		}
6743 		DPRINTF(WRITE, ("+ %d\n", run_length));
6744 
6745 		/* nest an iobuf on the master buffer for the extent */
6746 		rbuflen = run_length * lb_size;
6747 		rblk = run_start * (lb_size/DEV_BSIZE);
6748 
6749 		nestbuf = getiobuf(NULL, true);
6750 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6751 		/* nestbuf is B_ASYNC */
6752 
6753 		/* identify this nestbuf */
6754 		nestbuf->b_lblkno   = lblkno;
6755 		KASSERT(nestbuf->b_vp == udf_node->vnode);
6756 
6757 		/* CD shedules on raw blkno */
6758 		nestbuf->b_blkno      = rblk;
6759 		nestbuf->b_proc       = NULL;
6760 		nestbuf->b_rawblkno   = rblk;
6761 		nestbuf->b_udf_c_type = what;
6762 
6763 		/* increment our outstanding bufs counter */
6764 		s = splbio();
6765 			udf_node->outstanding_bufs++;
6766 		splx(s);
6767 
6768 		udf_discstrat_queuebuf(ump, nestbuf);
6769 	}
6770 out:
6771 	/* if we're synchronously writing, wait for the completion */
6772 	if ((buf->b_flags & B_ASYNC) == 0)
6773 		biowait(buf);
6774 
6775 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6776 	free(mapping, M_TEMP);
6777 	return;
6778 }
6779 
6780 /* --------------------------------------------------------------------- */
6781 
6782 
6783