xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /* $NetBSD: udf_subr.c,v 1.119 2012/04/29 22:53:59 chs Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.119 2012/04/29 22:53:59 chs Exp $");
33 #endif /* not lint */
34 
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61 
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65 
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69 
70 
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72 
73 #define UDF_SET_SYSTEMFILE(vp) \
74 	/* XXXAD Is the vnode locked? */	\
75 	(vp)->v_vflag |= VV_SYSTEM;		\
76 	vref((vp));			\
77 	vput((vp));			\
78 
79 extern int syncer_maxdelay;     /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81 
82 /* --------------------------------------------------------------------- */
83 
84 //#ifdef DEBUG
85 #if 1
86 
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 	int i, j;
92 
93 	printf("blob = %p\n", blob);
94 	printf("dump of %d bytes\n", dlen);
95 
96 	for (i = 0; i < dlen; i+ = 16) {
97 		printf("%04x ", i);
98 		for (j = 0; j < 16; j++) {
99 			if (i+j < dlen) {
100 				printf("%02x ", blob[i+j]);
101 			} else {
102 				printf("   ");
103 			}
104 		}
105 		for (j = 0; j < 16; j++) {
106 			if (i+j < dlen) {
107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
108 					printf("%c", blob[i+j]);
109 				} else {
110 					printf(".");
111 				}
112 			}
113 		}
114 		printf("\n");
115 	}
116 	printf("\n");
117 	Debugger();
118 }
119 #endif
120 
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 	char   bits[128];
125 	struct mmc_discinfo *di = &ump->discinfo;
126 
127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 		return;
129 
130 	printf("Device/media info  :\n");
131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
132 	printf("\tderived class      %d\n", di->mmc_class);
133 	printf("\tsector size        %d\n", di->sector_size);
134 	printf("\tdisc state         %d\n", di->disc_state);
135 	printf("\tlast ses state     %d\n", di->last_session_state);
136 	printf("\tbg format state    %d\n", di->bg_format_state);
137 	printf("\tfrst track         %d\n", di->first_track);
138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 	printf("\tdisc flags         %s\n", bits);
143 	printf("\tdisc id            %x\n", di->disc_id);
144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
145 
146 	printf("\tnum sessions       %d\n", di->num_sessions);
147 	printf("\tnum tracks         %d\n", di->num_tracks);
148 
149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 	printf("\tcapabilities cur   %s\n", bits);
151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 	printf("\tcapabilities cap   %s\n", bits);
153 }
154 
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 	char   bits[128];
159 
160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 		return;
162 
163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 	printf("\tflags               %s\n", bits);
169 
170 	printf("\ttrack start         %d\n", trackinfo->track_start);
171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
174 	printf("\ttrack size          %d\n", trackinfo->track_size);
175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177 
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182 
183 
184 /* --------------------------------------------------------------------- */
185 
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 	struct vnode *devvp = ump->devvp;
191 	uint64_t psize;
192 	unsigned secsize;
193 	struct mmc_discinfo *di;
194 	int error;
195 
196 	DPRINTF(VOLUMES, ("read/update disc info\n"));
197 	di = &ump->discinfo;
198 	memset(di, 0, sizeof(struct mmc_discinfo));
199 
200 	/* check if we're on a MMC capable device, i.e. CD/DVD */
201 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 	if (error == 0) {
203 		udf_dump_discinfo(ump);
204 		return 0;
205 	}
206 
207 	/* disc partition support */
208 	error = getdisksize(devvp, &psize, &secsize);
209 	if (error)
210 		return error;
211 
212 	/* set up a disc info profile for partitions */
213 	di->mmc_profile		= 0x01;	/* disc type */
214 	di->mmc_class		= MMC_CLASS_DISC;
215 	di->disc_state		= MMC_STATE_CLOSED;
216 	di->last_session_state	= MMC_STATE_CLOSED;
217 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
218 	di->link_block_penalty	= 0;
219 
220 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 	di->mmc_cap    = di->mmc_cur;
223 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224 
225 	/* TODO problem with last_possible_lba on resizable VND; request */
226 	di->last_possible_lba = psize;
227 	di->sector_size       = secsize;
228 
229 	di->num_sessions = 1;
230 	di->num_tracks   = 1;
231 
232 	di->first_track  = 1;
233 	di->first_track_last_session = di->last_track_last_session = 1;
234 
235 	udf_dump_discinfo(ump);
236 	return 0;
237 }
238 
239 
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 	struct vnode *devvp = ump->devvp;
244 	struct mmc_discinfo *di = &ump->discinfo;
245 	int error, class;
246 
247 	DPRINTF(VOLUMES, ("read track info\n"));
248 
249 	class = di->mmc_class;
250 	if (class != MMC_CLASS_DISC) {
251 		/* tracknr specified in struct ti */
252 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 		return error;
254 	}
255 
256 	/* disc partition support */
257 	if (ti->tracknr != 1)
258 		return EIO;
259 
260 	/* create fake ti (TODO check for resized vnds) */
261 	ti->sessionnr  = 1;
262 
263 	ti->track_mode = 0;	/* XXX */
264 	ti->data_mode  = 0;	/* XXX */
265 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266 
267 	ti->track_start    = 0;
268 	ti->packet_size    = 1;
269 
270 	/* TODO support for resizable vnd */
271 	ti->track_size    = di->last_possible_lba;
272 	ti->next_writable = di->last_possible_lba;
273 	ti->last_recorded = ti->next_writable;
274 	ti->free_blocks   = 0;
275 
276 	return 0;
277 }
278 
279 
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 	struct mmc_writeparams mmc_writeparams;
284 	int error;
285 
286 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 		return 0;
288 
289 	/*
290 	 * only CD burning normally needs setting up, but other disc types
291 	 * might need other settings to be made. The MMC framework will set up
292 	 * the nessisary recording parameters according to the disc
293 	 * characteristics read in. Modifications can be made in the discinfo
294 	 * structure passed to change the nature of the disc.
295 	 */
296 
297 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
299 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
300 
301 	/*
302 	 * UDF dictates first track to determine track mode for the whole
303 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 	 * To prevent problems with a `reserved' track in front we start with
305 	 * the 2nd track and if that is not valid, go for the 1st.
306 	 */
307 	mmc_writeparams.tracknr = 2;
308 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
309 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
310 
311 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 			FKIOCTL, NOCRED);
313 	if (error) {
314 		mmc_writeparams.tracknr = 1;
315 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 				&mmc_writeparams, FKIOCTL, NOCRED);
317 	}
318 	return error;
319 }
320 
321 
322 int
323 udf_synchronise_caches(struct udf_mount *ump)
324 {
325 	struct mmc_op mmc_op;
326 
327 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
328 
329 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 		return 0;
331 
332 	/* discs are done now */
333 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 		return 0;
335 
336 	memset(&mmc_op, 0, sizeof(struct mmc_op));
337 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338 
339 	/* ignore return code */
340 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341 
342 	return 0;
343 }
344 
345 /* --------------------------------------------------------------------- */
346 
347 /* track/session searching for mounting */
348 int
349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
350 		  int *first_tracknr, int *last_tracknr)
351 {
352 	struct mmc_trackinfo trackinfo;
353 	uint32_t tracknr, start_track, num_tracks;
354 	int error;
355 
356 	/* if negative, sessionnr is relative to last session */
357 	if (args->sessionnr < 0) {
358 		args->sessionnr += ump->discinfo.num_sessions;
359 	}
360 
361 	/* sanity */
362 	if (args->sessionnr < 0)
363 		args->sessionnr = 0;
364 	if (args->sessionnr > ump->discinfo.num_sessions)
365 		args->sessionnr = ump->discinfo.num_sessions;
366 
367 	/* search the tracks for this session, zero session nr indicates last */
368 	if (args->sessionnr == 0)
369 		args->sessionnr = ump->discinfo.num_sessions;
370 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
371 		args->sessionnr--;
372 
373 	/* sanity again */
374 	if (args->sessionnr < 0)
375 		args->sessionnr = 0;
376 
377 	/* search the first and last track of the specified session */
378 	num_tracks  = ump->discinfo.num_tracks;
379 	start_track = ump->discinfo.first_track;
380 
381 	/* search for first track of this session */
382 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
383 		/* get track info */
384 		trackinfo.tracknr = tracknr;
385 		error = udf_update_trackinfo(ump, &trackinfo);
386 		if (error)
387 			return error;
388 
389 		if (trackinfo.sessionnr == args->sessionnr)
390 			break;
391 	}
392 	*first_tracknr = tracknr;
393 
394 	/* search for last track of this session */
395 	for (;tracknr <= num_tracks; tracknr++) {
396 		/* get track info */
397 		trackinfo.tracknr = tracknr;
398 		error = udf_update_trackinfo(ump, &trackinfo);
399 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
400 			tracknr--;
401 			break;
402 		}
403 	}
404 	if (tracknr > num_tracks)
405 		tracknr--;
406 
407 	*last_tracknr = tracknr;
408 
409 	if (*last_tracknr < *first_tracknr) {
410 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
411 			"drive returned garbage\n");
412 		return EINVAL;
413 	}
414 
415 	assert(*last_tracknr >= *first_tracknr);
416 	return 0;
417 }
418 
419 
420 /*
421  * NOTE: this is the only routine in this file that directly peeks into the
422  * metadata file but since its at a larval state of the mount it can't hurt.
423  *
424  * XXX candidate for udf_allocation.c
425  * XXX clean me up!, change to new node reading code.
426  */
427 
428 static void
429 udf_check_track_metadata_overlap(struct udf_mount *ump,
430 	struct mmc_trackinfo *trackinfo)
431 {
432 	struct part_desc *part;
433 	struct file_entry      *fe;
434 	struct extfile_entry   *efe;
435 	struct short_ad        *s_ad;
436 	struct long_ad         *l_ad;
437 	uint32_t track_start, track_end;
438 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
439 	uint32_t sector_size, len, alloclen, plb_num;
440 	uint8_t *pos;
441 	int addr_type, icblen, icbflags, flags;
442 
443 	/* get our track extents */
444 	track_start = trackinfo->track_start;
445 	track_end   = track_start + trackinfo->track_size;
446 
447 	/* get our base partition extent */
448 	KASSERT(ump->node_part == ump->fids_part);
449 	part = ump->partitions[ump->vtop[ump->node_part]];
450 	phys_part_start = udf_rw32(part->start_loc);
451 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
452 
453 	/* no use if its outside the physical partition */
454 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
455 		return;
456 
457 	/*
458 	 * now follow all extents in the fe/efe to see if they refer to this
459 	 * track
460 	 */
461 
462 	sector_size = ump->discinfo.sector_size;
463 
464 	/* XXX should we claim exclusive access to the metafile ? */
465 	/* TODO: move to new node read code */
466 	fe  = ump->metadata_node->fe;
467 	efe = ump->metadata_node->efe;
468 	if (fe) {
469 		alloclen = udf_rw32(fe->l_ad);
470 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
471 		icbflags = udf_rw16(fe->icbtag.flags);
472 	} else {
473 		assert(efe);
474 		alloclen = udf_rw32(efe->l_ad);
475 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
476 		icbflags = udf_rw16(efe->icbtag.flags);
477 	}
478 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
479 
480 	while (alloclen) {
481 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
482 			icblen = sizeof(struct short_ad);
483 			s_ad   = (struct short_ad *) pos;
484 			len        = udf_rw32(s_ad->len);
485 			plb_num    = udf_rw32(s_ad->lb_num);
486 		} else {
487 			/* should not be present, but why not */
488 			icblen = sizeof(struct long_ad);
489 			l_ad   = (struct long_ad *) pos;
490 			len        = udf_rw32(l_ad->len);
491 			plb_num    = udf_rw32(l_ad->loc.lb_num);
492 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
493 		}
494 		/* process extent */
495 		flags   = UDF_EXT_FLAGS(len);
496 		len     = UDF_EXT_LEN(len);
497 
498 		part_start = phys_part_start + plb_num;
499 		part_end   = part_start + (len / sector_size);
500 
501 		if ((part_start >= track_start) && (part_end <= track_end)) {
502 			/* extent is enclosed within this track */
503 			ump->metadata_track = *trackinfo;
504 			return;
505 		}
506 
507 		pos        += icblen;
508 		alloclen   -= icblen;
509 	}
510 }
511 
512 
513 int
514 udf_search_writing_tracks(struct udf_mount *ump)
515 {
516 	struct vnode *devvp = ump->devvp;
517 	struct mmc_trackinfo trackinfo;
518 	struct mmc_op        mmc_op;
519 	struct part_desc *part;
520 	uint32_t tracknr, start_track, num_tracks;
521 	uint32_t track_start, track_end, part_start, part_end;
522 	int node_alloc, error;
523 
524 	/*
525 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
526 	 * the last session might be open but in the UDF device model at most
527 	 * three tracks can be open: a reserved track for delayed ISO VRS
528 	 * writing, a data track and a metadata track. We search here for the
529 	 * data track and the metadata track. Note that the reserved track is
530 	 * troublesome but can be detected by its small size of < 512 sectors.
531 	 */
532 
533 	/* update discinfo since it might have changed */
534 	error = udf_update_discinfo(ump);
535 	if (error)
536 		return error;
537 
538 	num_tracks  = ump->discinfo.num_tracks;
539 	start_track = ump->discinfo.first_track;
540 
541 	/* fetch info on first and possibly only track */
542 	trackinfo.tracknr = start_track;
543 	error = udf_update_trackinfo(ump, &trackinfo);
544 	if (error)
545 		return error;
546 
547 	/* copy results to our mount point */
548 	ump->data_track     = trackinfo;
549 	ump->metadata_track = trackinfo;
550 
551 	/* if not sequential, we're done */
552 	if (num_tracks == 1)
553 		return 0;
554 
555 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
556 		/* get track info */
557 		trackinfo.tracknr = tracknr;
558 		error = udf_update_trackinfo(ump, &trackinfo);
559 		if (error)
560 			return error;
561 
562 		/*
563 		 * If this track is marked damaged, ask for repair. This is an
564 		 * optional command, so ignore its error but report warning.
565 		 */
566 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
567 			memset(&mmc_op, 0, sizeof(mmc_op));
568 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
569 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
570 			mmc_op.tracknr     = tracknr;
571 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
572 			if (error)
573 				(void)printf("Drive can't explicitly repair "
574 					"damaged track %d, but it might "
575 					"autorepair\n", tracknr);
576 
577 			/* reget track info */
578 			error = udf_update_trackinfo(ump, &trackinfo);
579 			if (error)
580 				return error;
581 		}
582 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
583 			continue;
584 
585 		track_start = trackinfo.track_start;
586 		track_end   = track_start + trackinfo.track_size;
587 
588 		/* check for overlap on data partition */
589 		part = ump->partitions[ump->data_part];
590 		part_start = udf_rw32(part->start_loc);
591 		part_end   = part_start + udf_rw32(part->part_len);
592 		if ((part_start < track_end) && (part_end > track_start)) {
593 			ump->data_track = trackinfo;
594 			/* TODO check if UDF partition data_part is writable */
595 		}
596 
597 		/* check for overlap on metadata partition */
598 		node_alloc = ump->vtop_alloc[ump->node_part];
599 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
600 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
601 			udf_check_track_metadata_overlap(ump, &trackinfo);
602 		} else {
603 			ump->metadata_track = trackinfo;
604 		}
605 	}
606 
607 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
608 		return EROFS;
609 
610 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
611 		return EROFS;
612 
613 	return 0;
614 }
615 
616 /* --------------------------------------------------------------------- */
617 
618 /*
619  * Check if the blob starts with a good UDF tag. Tags are protected by a
620  * checksum over the reader except one byte at position 4 that is the checksum
621  * itself.
622  */
623 
624 int
625 udf_check_tag(void *blob)
626 {
627 	struct desc_tag *tag = blob;
628 	uint8_t *pos, sum, cnt;
629 
630 	/* check TAG header checksum */
631 	pos = (uint8_t *) tag;
632 	sum = 0;
633 
634 	for(cnt = 0; cnt < 16; cnt++) {
635 		if (cnt != 4)
636 			sum += *pos;
637 		pos++;
638 	}
639 	if (sum != tag->cksum) {
640 		/* bad tag header checksum; this is not a valid tag */
641 		return EINVAL;
642 	}
643 
644 	return 0;
645 }
646 
647 
648 /*
649  * check tag payload will check descriptor CRC as specified.
650  * If the descriptor is too long, it will return EIO otherwise EINVAL.
651  */
652 
653 int
654 udf_check_tag_payload(void *blob, uint32_t max_length)
655 {
656 	struct desc_tag *tag = blob;
657 	uint16_t crc, crc_len;
658 
659 	crc_len = udf_rw16(tag->desc_crc_len);
660 
661 	/* check payload CRC if applicable */
662 	if (crc_len == 0)
663 		return 0;
664 
665 	if (crc_len > max_length)
666 		return EIO;
667 
668 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
669 	if (crc != udf_rw16(tag->desc_crc)) {
670 		/* bad payload CRC; this is a broken tag */
671 		return EINVAL;
672 	}
673 
674 	return 0;
675 }
676 
677 
678 void
679 udf_validate_tag_sum(void *blob)
680 {
681 	struct desc_tag *tag = blob;
682 	uint8_t *pos, sum, cnt;
683 
684 	/* calculate TAG header checksum */
685 	pos = (uint8_t *) tag;
686 	sum = 0;
687 
688 	for(cnt = 0; cnt < 16; cnt++) {
689 		if (cnt != 4) sum += *pos;
690 		pos++;
691 	}
692 	tag->cksum = sum;	/* 8 bit */
693 }
694 
695 
696 /* assumes sector number of descriptor to be saved already present */
697 void
698 udf_validate_tag_and_crc_sums(void *blob)
699 {
700 	struct desc_tag *tag  = blob;
701 	uint8_t         *btag = (uint8_t *) tag;
702 	uint16_t crc, crc_len;
703 
704 	crc_len = udf_rw16(tag->desc_crc_len);
705 
706 	/* check payload CRC if applicable */
707 	if (crc_len > 0) {
708 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
709 		tag->desc_crc = udf_rw16(crc);
710 	}
711 
712 	/* calculate TAG header checksum */
713 	udf_validate_tag_sum(blob);
714 }
715 
716 /* --------------------------------------------------------------------- */
717 
718 /*
719  * XXX note the different semantics from udfclient: for FIDs it still rounds
720  * up to sectors. Use udf_fidsize() for a correct length.
721  */
722 
723 int
724 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
725 {
726 	uint32_t size, tag_id, num_lb, elmsz;
727 
728 	tag_id = udf_rw16(dscr->tag.id);
729 
730 	switch (tag_id) {
731 	case TAGID_LOGVOL :
732 		size  = sizeof(struct logvol_desc) - 1;
733 		size += udf_rw32(dscr->lvd.mt_l);
734 		break;
735 	case TAGID_UNALLOC_SPACE :
736 		elmsz = sizeof(struct extent_ad);
737 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
738 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
739 		break;
740 	case TAGID_FID :
741 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
742 		size = (size + 3) & ~3;
743 		break;
744 	case TAGID_LOGVOL_INTEGRITY :
745 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
746 		size += udf_rw32(dscr->lvid.l_iu);
747 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
748 		break;
749 	case TAGID_SPACE_BITMAP :
750 		size  = sizeof(struct space_bitmap_desc) - 1;
751 		size += udf_rw32(dscr->sbd.num_bytes);
752 		break;
753 	case TAGID_SPARING_TABLE :
754 		elmsz = sizeof(struct spare_map_entry);
755 		size  = sizeof(struct udf_sparing_table) - elmsz;
756 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
757 		break;
758 	case TAGID_FENTRY :
759 		size  = sizeof(struct file_entry);
760 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
761 		break;
762 	case TAGID_EXTFENTRY :
763 		size  = sizeof(struct extfile_entry);
764 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
765 		break;
766 	case TAGID_FSD :
767 		size  = sizeof(struct fileset_desc);
768 		break;
769 	default :
770 		size = sizeof(union dscrptr);
771 		break;
772 	}
773 
774 	if ((size == 0) || (lb_size == 0))
775 		return 0;
776 
777 	if (lb_size == 1)
778 		return size;
779 
780 	/* round up in sectors */
781 	num_lb = (size + lb_size -1) / lb_size;
782 	return num_lb * lb_size;
783 }
784 
785 
786 int
787 udf_fidsize(struct fileid_desc *fid)
788 {
789 	uint32_t size;
790 
791 	if (udf_rw16(fid->tag.id) != TAGID_FID)
792 		panic("got udf_fidsize on non FID\n");
793 
794 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
795 	size = (size + 3) & ~3;
796 
797 	return size;
798 }
799 
800 /* --------------------------------------------------------------------- */
801 
802 void
803 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
804 {
805 	int ret;
806 
807 	mutex_enter(&udf_node->node_mutex);
808 	/* wait until free */
809 	while (udf_node->i_flags & IN_LOCKED) {
810 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
811 		/* TODO check if we should return error; abort */
812 		if (ret == EWOULDBLOCK) {
813 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
814 				"wanted at %s:%d, previously locked at %s:%d\n",
815 				udf_node, fname, lineno,
816 				udf_node->lock_fname, udf_node->lock_lineno));
817 		}
818 	}
819 	/* grab */
820 	udf_node->i_flags |= IN_LOCKED | flag;
821 	/* debug */
822 	udf_node->lock_fname  = fname;
823 	udf_node->lock_lineno = lineno;
824 
825 	mutex_exit(&udf_node->node_mutex);
826 }
827 
828 
829 void
830 udf_unlock_node(struct udf_node *udf_node, int flag)
831 {
832 	mutex_enter(&udf_node->node_mutex);
833 	udf_node->i_flags &= ~(IN_LOCKED | flag);
834 	cv_broadcast(&udf_node->node_lock);
835 	mutex_exit(&udf_node->node_mutex);
836 }
837 
838 
839 /* --------------------------------------------------------------------- */
840 
841 static int
842 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
843 {
844 	int error;
845 
846 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
847 			(union dscrptr **) dst);
848 	if (!error) {
849 		/* blank terminator blocks are not allowed here */
850 		if (*dst == NULL)
851 			return ENOENT;
852 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
853 			error = ENOENT;
854 			free(*dst, M_UDFVOLD);
855 			*dst = NULL;
856 			DPRINTF(VOLUMES, ("Not an anchor\n"));
857 		}
858 	}
859 
860 	return error;
861 }
862 
863 
864 int
865 udf_read_anchors(struct udf_mount *ump)
866 {
867 	struct udf_args *args = &ump->mount_args;
868 	struct mmc_trackinfo first_track;
869 	struct mmc_trackinfo second_track;
870 	struct mmc_trackinfo last_track;
871 	struct anchor_vdp **anchorsp;
872 	uint32_t track_start;
873 	uint32_t track_end;
874 	uint32_t positions[4];
875 	int first_tracknr, last_tracknr;
876 	int error, anch, ok, first_anchor;
877 
878 	/* search the first and last track of the specified session */
879 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
880 	if (!error) {
881 		first_track.tracknr = first_tracknr;
882 		error = udf_update_trackinfo(ump, &first_track);
883 	}
884 	if (!error) {
885 		last_track.tracknr = last_tracknr;
886 		error = udf_update_trackinfo(ump, &last_track);
887 	}
888 	if ((!error) && (first_tracknr != last_tracknr)) {
889 		second_track.tracknr = first_tracknr+1;
890 		error = udf_update_trackinfo(ump, &second_track);
891 	}
892 	if (error) {
893 		printf("UDF mount: reading disc geometry failed\n");
894 		return 0;
895 	}
896 
897 	track_start = first_track.track_start;
898 
899 	/* `end' is not as straitforward as start. */
900 	track_end =   last_track.track_start
901 		    + last_track.track_size - last_track.free_blocks - 1;
902 
903 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
904 		/* end of track is not straitforward here */
905 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
906 			track_end = last_track.last_recorded;
907 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
908 			track_end = last_track.next_writable
909 				    - ump->discinfo.link_block_penalty;
910 	}
911 
912 	/* its no use reading a blank track */
913 	first_anchor = 0;
914 	if (first_track.flags & MMC_TRACKINFO_BLANK)
915 		first_anchor = 1;
916 
917 	/* get our packet size */
918 	ump->packet_size = first_track.packet_size;
919 	if (first_track.flags & MMC_TRACKINFO_BLANK)
920 		ump->packet_size = second_track.packet_size;
921 
922 	if (ump->packet_size <= 1) {
923 		/* take max, but not bigger than 64 */
924 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
925 		ump->packet_size = MIN(ump->packet_size, 64);
926 	}
927 	KASSERT(ump->packet_size >= 1);
928 
929 	/* read anchors start+256, start+512, end-256, end */
930 	positions[0] = track_start+256;
931 	positions[1] =   track_end-256;
932 	positions[2] =   track_end;
933 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
934 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
935 
936 	ok = 0;
937 	anchorsp = ump->anchors;
938 	for (anch = first_anchor; anch < 4; anch++) {
939 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
940 		    positions[anch]));
941 		error = udf_read_anchor(ump, positions[anch], anchorsp);
942 		if (!error) {
943 			anchorsp++;
944 			ok++;
945 		}
946 	}
947 
948 	/* VATs are only recorded on sequential media, but initialise */
949 	ump->first_possible_vat_location = track_start + 2;
950 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
951 
952 	return ok;
953 }
954 
955 /* --------------------------------------------------------------------- */
956 
957 int
958 udf_get_c_type(struct udf_node *udf_node)
959 {
960 	int isdir, what;
961 
962 	isdir  = (udf_node->vnode->v_type == VDIR);
963 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
964 
965 	if (udf_node->ump)
966 		if (udf_node == udf_node->ump->metadatabitmap_node)
967 			what = UDF_C_METADATA_SBM;
968 
969 	return what;
970 }
971 
972 
973 int
974 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
975 {
976 	int vpart_num;
977 
978 	vpart_num = ump->data_part;
979 	if (udf_c_type == UDF_C_NODE)
980 		vpart_num = ump->node_part;
981 	if (udf_c_type == UDF_C_FIDS)
982 		vpart_num = ump->fids_part;
983 
984 	return vpart_num;
985 }
986 
987 
988 /*
989  * BUGALERT: some rogue implementations use random physical partition
990  * numbers to break other implementations so lookup the number.
991  */
992 
993 static uint16_t
994 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
995 {
996 	struct part_desc *part;
997 	uint16_t phys_part;
998 
999 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1000 		part = ump->partitions[phys_part];
1001 		if (part == NULL)
1002 			break;
1003 		if (udf_rw16(part->part_num) == raw_phys_part)
1004 			break;
1005 	}
1006 	return phys_part;
1007 }
1008 
1009 /* --------------------------------------------------------------------- */
1010 
1011 /* we dont try to be smart; we just record the parts */
1012 #define UDF_UPDATE_DSCR(name, dscr) \
1013 	if (name) \
1014 		free(name, M_UDFVOLD); \
1015 	name = dscr;
1016 
1017 static int
1018 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1019 {
1020 	uint16_t phys_part, raw_phys_part;
1021 
1022 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1023 	    udf_rw16(dscr->tag.id)));
1024 	switch (udf_rw16(dscr->tag.id)) {
1025 	case TAGID_PRI_VOL :		/* primary partition		*/
1026 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1027 		break;
1028 	case TAGID_LOGVOL :		/* logical volume		*/
1029 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1030 		break;
1031 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
1032 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1033 		break;
1034 	case TAGID_IMP_VOL :		/* implementation		*/
1035 		/* XXX do we care about multiple impl. descr ? */
1036 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1037 		break;
1038 	case TAGID_PARTITION :		/* physical partition		*/
1039 		/* not much use if its not allocated */
1040 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1041 			free(dscr, M_UDFVOLD);
1042 			break;
1043 		}
1044 
1045 		/*
1046 		 * BUGALERT: some rogue implementations use random physical
1047 		 * partition numbers to break other implementations so lookup
1048 		 * the number.
1049 		 */
1050 		raw_phys_part = udf_rw16(dscr->pd.part_num);
1051 		phys_part = udf_find_raw_phys(ump, raw_phys_part);
1052 
1053 		if (phys_part == UDF_PARTITIONS) {
1054 			free(dscr, M_UDFVOLD);
1055 			return EINVAL;
1056 		}
1057 
1058 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1059 		break;
1060 	case TAGID_VOL :		/* volume space extender; rare	*/
1061 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1062 		free(dscr, M_UDFVOLD);
1063 		break;
1064 	default :
1065 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1066 		    udf_rw16(dscr->tag.id)));
1067 		free(dscr, M_UDFVOLD);
1068 	}
1069 
1070 	return 0;
1071 }
1072 #undef UDF_UPDATE_DSCR
1073 
1074 /* --------------------------------------------------------------------- */
1075 
1076 static int
1077 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1078 {
1079 	union dscrptr *dscr;
1080 	uint32_t sector_size, dscr_size;
1081 	int error;
1082 
1083 	sector_size = ump->discinfo.sector_size;
1084 
1085 	/* loc is sectornr, len is in bytes */
1086 	error = EIO;
1087 	while (len) {
1088 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1089 		if (error)
1090 			return error;
1091 
1092 		/* blank block is a terminator */
1093 		if (dscr == NULL)
1094 			return 0;
1095 
1096 		/* TERM descriptor is a terminator */
1097 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1098 			free(dscr, M_UDFVOLD);
1099 			return 0;
1100 		}
1101 
1102 		/* process all others */
1103 		dscr_size = udf_tagsize(dscr, sector_size);
1104 		error = udf_process_vds_descriptor(ump, dscr);
1105 		if (error) {
1106 			free(dscr, M_UDFVOLD);
1107 			break;
1108 		}
1109 		assert((dscr_size % sector_size) == 0);
1110 
1111 		len -= dscr_size;
1112 		loc += dscr_size / sector_size;
1113 	}
1114 
1115 	return error;
1116 }
1117 
1118 
1119 int
1120 udf_read_vds_space(struct udf_mount *ump)
1121 {
1122 	/* struct udf_args *args = &ump->mount_args; */
1123 	struct anchor_vdp *anchor, *anchor2;
1124 	size_t size;
1125 	uint32_t main_loc, main_len;
1126 	uint32_t reserve_loc, reserve_len;
1127 	int error;
1128 
1129 	/*
1130 	 * read in VDS space provided by the anchors; if one descriptor read
1131 	 * fails, try the mirror sector.
1132 	 *
1133 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1134 	 * avoids the `compatibility features' of DirectCD that may confuse
1135 	 * stuff completely.
1136 	 */
1137 
1138 	anchor  = ump->anchors[0];
1139 	anchor2 = ump->anchors[1];
1140 	assert(anchor);
1141 
1142 	if (anchor2) {
1143 		size = sizeof(struct extent_ad);
1144 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1145 			anchor = anchor2;
1146 		/* reserve is specified to be a literal copy of main */
1147 	}
1148 
1149 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
1150 	main_len    = udf_rw32(anchor->main_vds_ex.len);
1151 
1152 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1153 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1154 
1155 	error = udf_read_vds_extent(ump, main_loc, main_len);
1156 	if (error) {
1157 		printf("UDF mount: reading in reserve VDS extent\n");
1158 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1159 	}
1160 
1161 	return error;
1162 }
1163 
1164 /* --------------------------------------------------------------------- */
1165 
1166 /*
1167  * Read in the logical volume integrity sequence pointed to by our logical
1168  * volume descriptor. Its a sequence that can be extended using fields in the
1169  * integrity descriptor itself. On sequential media only one is found, on
1170  * rewritable media a sequence of descriptors can be found as a form of
1171  * history keeping and on non sequential write-once media the chain is vital
1172  * to allow more and more descriptors to be written. The last descriptor
1173  * written in an extent needs to claim space for a new extent.
1174  */
1175 
1176 static int
1177 udf_retrieve_lvint(struct udf_mount *ump)
1178 {
1179 	union dscrptr *dscr;
1180 	struct logvol_int_desc *lvint;
1181 	struct udf_lvintq *trace;
1182 	uint32_t lb_size, lbnum, len;
1183 	int dscr_type, error, trace_len;
1184 
1185 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1186 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1187 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1188 
1189 	/* clean trace */
1190 	memset(ump->lvint_trace, 0,
1191 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1192 
1193 	trace_len    = 0;
1194 	trace        = ump->lvint_trace;
1195 	trace->start = lbnum;
1196 	trace->end   = lbnum + len/lb_size;
1197 	trace->pos   = 0;
1198 	trace->wpos  = 0;
1199 
1200 	lvint = NULL;
1201 	dscr  = NULL;
1202 	error = 0;
1203 	while (len) {
1204 		trace->pos  = lbnum - trace->start;
1205 		trace->wpos = trace->pos + 1;
1206 
1207 		/* read in our integrity descriptor */
1208 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1209 		if (!error) {
1210 			if (dscr == NULL) {
1211 				trace->wpos = trace->pos;
1212 				break;		/* empty terminates */
1213 			}
1214 			dscr_type = udf_rw16(dscr->tag.id);
1215 			if (dscr_type == TAGID_TERM) {
1216 				trace->wpos = trace->pos;
1217 				break;		/* clean terminator */
1218 			}
1219 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1220 				/* fatal... corrupt disc */
1221 				error = ENOENT;
1222 				break;
1223 			}
1224 			if (lvint)
1225 				free(lvint, M_UDFVOLD);
1226 			lvint = &dscr->lvid;
1227 			dscr = NULL;
1228 		} /* else hope for the best... maybe the next is ok */
1229 
1230 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1231 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1232 
1233 		/* proceed sequential */
1234 		lbnum += 1;
1235 		len    -= lb_size;
1236 
1237 		/* are we linking to a new piece? */
1238 		if (dscr && lvint->next_extent.len) {
1239 			len    = udf_rw32(lvint->next_extent.len);
1240 			lbnum = udf_rw32(lvint->next_extent.loc);
1241 
1242 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1243 				/* IEK! segment link full... */
1244 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
1245 				error = EINVAL;
1246 			} else {
1247 				trace++;
1248 				trace_len++;
1249 
1250 				trace->start = lbnum;
1251 				trace->end   = lbnum + len/lb_size;
1252 				trace->pos   = 0;
1253 				trace->wpos  = 0;
1254 			}
1255 		}
1256 	}
1257 
1258 	/* clean up the mess, esp. when there is an error */
1259 	if (dscr)
1260 		free(dscr, M_UDFVOLD);
1261 
1262 	if (error && lvint) {
1263 		free(lvint, M_UDFVOLD);
1264 		lvint = NULL;
1265 	}
1266 
1267 	if (!lvint)
1268 		error = ENOENT;
1269 
1270 	ump->logvol_integrity = lvint;
1271 	return error;
1272 }
1273 
1274 
1275 static int
1276 udf_loose_lvint_history(struct udf_mount *ump)
1277 {
1278 	union dscrptr **bufs, *dscr, *last_dscr;
1279 	struct udf_lvintq *trace, *in_trace, *out_trace;
1280 	struct logvol_int_desc *lvint;
1281 	uint32_t in_ext, in_pos, in_len;
1282 	uint32_t out_ext, out_wpos, out_len;
1283 	uint32_t lb_size, packet_size, lb_num;
1284 	uint32_t len, start;
1285 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
1286 	int losing;
1287 	int error;
1288 
1289 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1290 
1291 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1292 	packet_size = ump->data_track.packet_size;	/* XXX data track */
1293 
1294 	/* search smallest extent */
1295 	trace = &ump->lvint_trace[0];
1296 	minext = trace->end - trace->start;
1297 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1298 		trace = &ump->lvint_trace[ext];
1299 		extlen = trace->end - trace->start;
1300 		if (extlen == 0)
1301 			break;
1302 		minext = MIN(minext, extlen);
1303 	}
1304 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
1305 	/* no sense wiping all */
1306 	if (losing == minext)
1307 		losing--;
1308 
1309 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1310 
1311 	/* get buffer for pieces */
1312 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1313 
1314 	in_ext    = 0;
1315 	in_pos    = losing;
1316 	in_trace  = &ump->lvint_trace[in_ext];
1317 	in_len    = in_trace->end - in_trace->start;
1318 	out_ext   = 0;
1319 	out_wpos  = 0;
1320 	out_trace = &ump->lvint_trace[out_ext];
1321 	out_len   = out_trace->end - out_trace->start;
1322 
1323 	last_dscr = NULL;
1324 	for(;;) {
1325 		out_trace->pos  = out_wpos;
1326 		out_trace->wpos = out_trace->pos;
1327 		if (in_pos >= in_len) {
1328 			in_ext++;
1329 			in_pos = 0;
1330 			in_trace = &ump->lvint_trace[in_ext];
1331 			in_len   = in_trace->end - in_trace->start;
1332 		}
1333 		if (out_wpos >= out_len) {
1334 			out_ext++;
1335 			out_wpos = 0;
1336 			out_trace = &ump->lvint_trace[out_ext];
1337 			out_len   = out_trace->end - out_trace->start;
1338 		}
1339 		/* copy overlap contents */
1340 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1341 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1342 		if (cpy_len == 0)
1343 			break;
1344 
1345 		/* copy */
1346 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1347 		for (cnt = 0; cnt < cpy_len; cnt++) {
1348 			/* read in our integrity descriptor */
1349 			lb_num = in_trace->start + in_pos + cnt;
1350 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1351 				&dscr);
1352 			if (error) {
1353 				/* copy last one */
1354 				dscr = last_dscr;
1355 			}
1356 			bufs[cnt] = dscr;
1357 			if (!error) {
1358 				if (dscr == NULL) {
1359 					out_trace->pos  = out_wpos + cnt;
1360 					out_trace->wpos = out_trace->pos;
1361 					break;		/* empty terminates */
1362 				}
1363 				dscr_type = udf_rw16(dscr->tag.id);
1364 				if (dscr_type == TAGID_TERM) {
1365 					out_trace->pos  = out_wpos + cnt;
1366 					out_trace->wpos = out_trace->pos;
1367 					break;		/* clean terminator */
1368 				}
1369 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1370 					panic(  "UDF integrity sequence "
1371 						"corrupted while mounted!\n");
1372 				}
1373 				last_dscr = dscr;
1374 			}
1375 		}
1376 
1377 		/* patch up if first entry was on error */
1378 		if (bufs[0] == NULL) {
1379 			for (cnt = 0; cnt < cpy_len; cnt++)
1380 				if (bufs[cnt] != NULL)
1381 					break;
1382 			last_dscr = bufs[cnt];
1383 			for (; cnt > 0; cnt--) {
1384 				bufs[cnt] = last_dscr;
1385 			}
1386 		}
1387 
1388 		/* glue + write out */
1389 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1390 		for (cnt = 0; cnt < cpy_len; cnt++) {
1391 			lb_num = out_trace->start + out_wpos + cnt;
1392 			lvint  = &bufs[cnt]->lvid;
1393 
1394 			/* set continuation */
1395 			len = 0;
1396 			start = 0;
1397 			if (out_wpos + cnt == out_len) {
1398 				/* get continuation */
1399 				trace = &ump->lvint_trace[out_ext+1];
1400 				len   = trace->end - trace->start;
1401 				start = trace->start;
1402 			}
1403 			lvint->next_extent.len = udf_rw32(len);
1404 			lvint->next_extent.loc = udf_rw32(start);
1405 
1406 			lb_num = trace->start + trace->wpos;
1407 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1408 				bufs[cnt], lb_num, lb_num);
1409 			DPRINTFIF(VOLUMES, error,
1410 				("error writing lvint lb_num\n"));
1411 		}
1412 
1413 		/* free non repeating descriptors */
1414 		last_dscr = NULL;
1415 		for (cnt = 0; cnt < cpy_len; cnt++) {
1416 			if (bufs[cnt] != last_dscr)
1417 				free(bufs[cnt], M_UDFVOLD);
1418 			last_dscr = bufs[cnt];
1419 		}
1420 
1421 		/* advance */
1422 		in_pos   += cpy_len;
1423 		out_wpos += cpy_len;
1424 	}
1425 
1426 	free(bufs, M_TEMP);
1427 
1428 	return 0;
1429 }
1430 
1431 
1432 static int
1433 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1434 {
1435 	struct udf_lvintq *trace;
1436 	struct timeval  now_v;
1437 	struct timespec now_s;
1438 	uint32_t sector;
1439 	int logvol_integrity;
1440 	int space, error;
1441 
1442 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1443 
1444 again:
1445 	/* get free space in last chunk */
1446 	trace = ump->lvint_trace;
1447 	while (trace->wpos > (trace->end - trace->start)) {
1448 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1449 				  "wpos = %d\n", trace->start, trace->end,
1450 				  trace->pos, trace->wpos));
1451 		trace++;
1452 	}
1453 
1454 	/* check if there is space to append */
1455 	space = (trace->end - trace->start) - trace->wpos;
1456 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1457 			  "space = %d\n", trace->start, trace->end, trace->pos,
1458 			  trace->wpos, space));
1459 
1460 	/* get state */
1461 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1462 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1463 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1464 			/* TODO extent LVINT space if possible */
1465 			return EROFS;
1466 		}
1467 	}
1468 
1469 	if (space < 1) {
1470 		if (lvflag & UDF_APPENDONLY_LVINT)
1471 			return EROFS;
1472 		/* loose history by re-writing extents */
1473 		error = udf_loose_lvint_history(ump);
1474 		if (error)
1475 			return error;
1476 		goto again;
1477 	}
1478 
1479 	/* update our integrity descriptor to identify us and timestamp it */
1480 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1481 	microtime(&now_v);
1482 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1483 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1484 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1485 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1486 
1487 	/* writeout integrity descriptor */
1488 	sector = trace->start + trace->wpos;
1489 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1490 			(union dscrptr *) ump->logvol_integrity,
1491 			sector, sector);
1492 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1493 	if (error)
1494 		return error;
1495 
1496 	/* advance write position */
1497 	trace->wpos++; space--;
1498 	if (space >= 1) {
1499 		/* append terminator */
1500 		sector = trace->start + trace->wpos;
1501 		error = udf_write_terminator(ump, sector);
1502 
1503 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1504 	}
1505 
1506 	space = (trace->end - trace->start) - trace->wpos;
1507 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1508 		"space = %d\n", trace->start, trace->end, trace->pos,
1509 		trace->wpos, space));
1510 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1511 		"successfull\n"));
1512 
1513 	return error;
1514 }
1515 
1516 /* --------------------------------------------------------------------- */
1517 
1518 static int
1519 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1520 {
1521 	union dscrptr        *dscr;
1522 	/* struct udf_args *args = &ump->mount_args; */
1523 	struct part_desc     *partd;
1524 	struct part_hdr_desc *parthdr;
1525 	struct udf_bitmap    *bitmap;
1526 	uint32_t phys_part;
1527 	uint32_t lb_num, len;
1528 	int error, dscr_type;
1529 
1530 	/* unallocated space map */
1531 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1532 		partd = ump->partitions[phys_part];
1533 		if (partd == NULL)
1534 			continue;
1535 		parthdr = &partd->_impl_use.part_hdr;
1536 
1537 		lb_num  = udf_rw32(partd->start_loc);
1538 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1539 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
1540 		if (len == 0)
1541 			continue;
1542 
1543 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1544 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1545 		if (!error && dscr) {
1546 			/* analyse */
1547 			dscr_type = udf_rw16(dscr->tag.id);
1548 			if (dscr_type == TAGID_SPACE_BITMAP) {
1549 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1550 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1551 
1552 				/* fill in ump->part_unalloc_bits */
1553 				bitmap = &ump->part_unalloc_bits[phys_part];
1554 				bitmap->blob  = (uint8_t *) dscr;
1555 				bitmap->bits  = dscr->sbd.data;
1556 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1557 				bitmap->pages = NULL;	/* TODO */
1558 				bitmap->data_pos     = 0;
1559 				bitmap->metadata_pos = 0;
1560 			} else {
1561 				free(dscr, M_UDFVOLD);
1562 
1563 				printf( "UDF mount: error reading unallocated "
1564 					"space bitmap\n");
1565 				return EROFS;
1566 			}
1567 		} else {
1568 			/* blank not allowed */
1569 			printf("UDF mount: blank unallocated space bitmap\n");
1570 			return EROFS;
1571 		}
1572 	}
1573 
1574 	/* unallocated space table (not supported) */
1575 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1576 		partd = ump->partitions[phys_part];
1577 		if (partd == NULL)
1578 			continue;
1579 		parthdr = &partd->_impl_use.part_hdr;
1580 
1581 		len     = udf_rw32(parthdr->unalloc_space_table.len);
1582 		if (len) {
1583 			printf("UDF mount: space tables not supported\n");
1584 			return EROFS;
1585 		}
1586 	}
1587 
1588 	/* freed space map */
1589 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1590 		partd = ump->partitions[phys_part];
1591 		if (partd == NULL)
1592 			continue;
1593 		parthdr = &partd->_impl_use.part_hdr;
1594 
1595 		/* freed space map */
1596 		lb_num  = udf_rw32(partd->start_loc);
1597 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1598 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
1599 		if (len == 0)
1600 			continue;
1601 
1602 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1603 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1604 		if (!error && dscr) {
1605 			/* analyse */
1606 			dscr_type = udf_rw16(dscr->tag.id);
1607 			if (dscr_type == TAGID_SPACE_BITMAP) {
1608 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1609 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
1610 
1611 				/* fill in ump->part_freed_bits */
1612 				bitmap = &ump->part_unalloc_bits[phys_part];
1613 				bitmap->blob  = (uint8_t *) dscr;
1614 				bitmap->bits  = dscr->sbd.data;
1615 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1616 				bitmap->pages = NULL;	/* TODO */
1617 				bitmap->data_pos     = 0;
1618 				bitmap->metadata_pos = 0;
1619 			} else {
1620 				free(dscr, M_UDFVOLD);
1621 
1622 				printf( "UDF mount: error reading freed  "
1623 					"space bitmap\n");
1624 				return EROFS;
1625 			}
1626 		} else {
1627 			/* blank not allowed */
1628 			printf("UDF mount: blank freed space bitmap\n");
1629 			return EROFS;
1630 		}
1631 	}
1632 
1633 	/* freed space table (not supported) */
1634 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1635 		partd = ump->partitions[phys_part];
1636 		if (partd == NULL)
1637 			continue;
1638 		parthdr = &partd->_impl_use.part_hdr;
1639 
1640 		len     = udf_rw32(parthdr->freed_space_table.len);
1641 		if (len) {
1642 			printf("UDF mount: space tables not supported\n");
1643 			return EROFS;
1644 		}
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 
1651 /* TODO implement async writeout */
1652 int
1653 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1654 {
1655 	union dscrptr        *dscr;
1656 	/* struct udf_args *args = &ump->mount_args; */
1657 	struct part_desc     *partd;
1658 	struct part_hdr_desc *parthdr;
1659 	uint32_t phys_part;
1660 	uint32_t lb_num, len, ptov;
1661 	int error_all, error;
1662 
1663 	error_all = 0;
1664 	/* unallocated space map */
1665 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1666 		partd = ump->partitions[phys_part];
1667 		if (partd == NULL)
1668 			continue;
1669 		parthdr = &partd->_impl_use.part_hdr;
1670 
1671 		ptov   = udf_rw32(partd->start_loc);
1672 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1673 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
1674 		if (len == 0)
1675 			continue;
1676 
1677 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1678 			lb_num + ptov));
1679 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1680 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1681 				(union dscrptr *) dscr,
1682 				ptov + lb_num, lb_num);
1683 		if (error) {
1684 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1685 			error_all = error;
1686 		}
1687 	}
1688 
1689 	/* freed space map */
1690 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1691 		partd = ump->partitions[phys_part];
1692 		if (partd == NULL)
1693 			continue;
1694 		parthdr = &partd->_impl_use.part_hdr;
1695 
1696 		/* freed space map */
1697 		ptov   = udf_rw32(partd->start_loc);
1698 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1699 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
1700 		if (len == 0)
1701 			continue;
1702 
1703 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1704 			lb_num + ptov));
1705 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1706 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1707 				(union dscrptr *) dscr,
1708 				ptov + lb_num, lb_num);
1709 		if (error) {
1710 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1711 			error_all = error;
1712 		}
1713 	}
1714 
1715 	return error_all;
1716 }
1717 
1718 
1719 static int
1720 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1721 {
1722 	struct udf_node	     *bitmap_node;
1723 	union dscrptr        *dscr;
1724 	struct udf_bitmap    *bitmap;
1725 	uint64_t inflen;
1726 	int error, dscr_type;
1727 
1728 	bitmap_node = ump->metadatabitmap_node;
1729 
1730 	/* only read in when metadata bitmap node is read in */
1731 	if (bitmap_node == NULL)
1732 		return 0;
1733 
1734 	if (bitmap_node->fe) {
1735 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1736 	} else {
1737 		KASSERT(bitmap_node->efe);
1738 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1739 	}
1740 
1741 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1742 		"%"PRIu64" bytes\n", inflen));
1743 
1744 	/* allocate space for bitmap */
1745 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1746 	if (!dscr)
1747 		return ENOMEM;
1748 
1749 	/* set vnode type to regular file or we can't read from it! */
1750 	bitmap_node->vnode->v_type = VREG;
1751 
1752 	/* read in complete metadata bitmap file */
1753 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1754 			dscr,
1755 			inflen, 0,
1756 			UIO_SYSSPACE,
1757 			IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1758 			NULL, NULL);
1759 	if (error) {
1760 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1761 		goto errorout;
1762 	}
1763 
1764 	/* analyse */
1765 	dscr_type = udf_rw16(dscr->tag.id);
1766 	if (dscr_type == TAGID_SPACE_BITMAP) {
1767 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1768 		ump->metadata_unalloc_dscr = &dscr->sbd;
1769 
1770 		/* fill in bitmap bits */
1771 		bitmap = &ump->metadata_unalloc_bits;
1772 		bitmap->blob  = (uint8_t *) dscr;
1773 		bitmap->bits  = dscr->sbd.data;
1774 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1775 		bitmap->pages = NULL;	/* TODO */
1776 		bitmap->data_pos     = 0;
1777 		bitmap->metadata_pos = 0;
1778 	} else {
1779 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1780 		goto errorout;
1781 	}
1782 
1783 	return 0;
1784 
1785 errorout:
1786 	free(dscr, M_UDFVOLD);
1787 	printf( "UDF mount: error reading unallocated "
1788 		"space bitmap for metadata partition\n");
1789 	return EROFS;
1790 }
1791 
1792 
1793 int
1794 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1795 {
1796 	struct udf_node	     *bitmap_node;
1797 	union dscrptr        *dscr;
1798 	uint64_t inflen, new_inflen;
1799 	int dummy, error;
1800 
1801 	bitmap_node = ump->metadatabitmap_node;
1802 
1803 	/* only write out when metadata bitmap node is known */
1804 	if (bitmap_node == NULL)
1805 		return 0;
1806 
1807 	if (bitmap_node->fe) {
1808 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1809 	} else {
1810 		KASSERT(bitmap_node->efe);
1811 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1812 	}
1813 
1814 	/* reduce length to zero */
1815 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1816 	new_inflen = udf_tagsize(dscr, 1);
1817 
1818 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1819 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1820 
1821 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1822 	if (error)
1823 		printf("Error resizing metadata space bitmap\n");
1824 
1825 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1826 			dscr,
1827 			new_inflen, 0,
1828 			UIO_SYSSPACE,
1829 			IO_ALTSEMANTICS, FSCRED,
1830 			NULL, NULL);
1831 
1832 	bitmap_node->i_flags |= IN_MODIFIED;
1833 	error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1834 	if (error == 0)
1835 		error = VOP_FSYNC(bitmap_node->vnode,
1836 				FSCRED, FSYNC_WAIT, 0, 0);
1837 
1838 	if (error)
1839 		printf( "Error writing out metadata partition unalloced "
1840 			"space bitmap!\n");
1841 
1842 	return error;
1843 }
1844 
1845 
1846 /* --------------------------------------------------------------------- */
1847 
1848 /*
1849  * Checks if ump's vds information is correct and complete
1850  */
1851 
1852 int
1853 udf_process_vds(struct udf_mount *ump) {
1854 	union udf_pmap *mapping;
1855 	/* struct udf_args *args = &ump->mount_args; */
1856 	struct logvol_int_desc *lvint;
1857 	struct udf_logvol_info *lvinfo;
1858 	uint32_t n_pm, mt_l;
1859 	uint8_t *pmap_pos;
1860 	char *domain_name, *map_name;
1861 	const char *check_name;
1862 	char bits[128];
1863 	int pmap_stype, pmap_size;
1864 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1865 	int n_phys, n_virt, n_spar, n_meta;
1866 	int len, error;
1867 
1868 	if (ump == NULL)
1869 		return ENOENT;
1870 
1871 	/* we need at least an anchor (trivial, but for safety) */
1872 	if (ump->anchors[0] == NULL)
1873 		return EINVAL;
1874 
1875 	/* we need at least one primary and one logical volume descriptor */
1876 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1877 		return EINVAL;
1878 
1879 	/* we need at least one partition descriptor */
1880 	if (ump->partitions[0] == NULL)
1881 		return EINVAL;
1882 
1883 	/* check logical volume sector size verses device sector size */
1884 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1885 		printf("UDF mount: format violation, lb_size != sector size\n");
1886 		return EINVAL;
1887 	}
1888 
1889 	/* check domain name */
1890 	domain_name = ump->logical_vol->domain_id.id;
1891 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1892 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1893 		return EINVAL;
1894 	}
1895 
1896 	/* retrieve logical volume integrity sequence */
1897 	error = udf_retrieve_lvint(ump);
1898 
1899 	/*
1900 	 * We need at least one logvol integrity descriptor recorded.  Note
1901 	 * that its OK to have an open logical volume integrity here. The VAT
1902 	 * will close/update the integrity.
1903 	 */
1904 	if (ump->logvol_integrity == NULL)
1905 		return EINVAL;
1906 
1907 	/* process derived structures */
1908 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1909 	lvint  = ump->logvol_integrity;
1910 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1911 	ump->logvol_info = lvinfo;
1912 
1913 	/* TODO check udf versions? */
1914 
1915 	/*
1916 	 * check logvol mappings: effective virt->log partmap translation
1917 	 * check and recording of the mapping results. Saves expensive
1918 	 * strncmp() in tight places.
1919 	 */
1920 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1921 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1922 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1923 	pmap_pos =  ump->logical_vol->maps;
1924 
1925 	if (n_pm > UDF_PMAPS) {
1926 		printf("UDF mount: too many mappings\n");
1927 		return EINVAL;
1928 	}
1929 
1930 	/* count types and set partition numbers */
1931 	ump->data_part = ump->node_part = ump->fids_part = 0;
1932 	n_phys = n_virt = n_spar = n_meta = 0;
1933 	for (log_part = 0; log_part < n_pm; log_part++) {
1934 		mapping = (union udf_pmap *) pmap_pos;
1935 		pmap_stype = pmap_pos[0];
1936 		pmap_size  = pmap_pos[1];
1937 		switch (pmap_stype) {
1938 		case 1:	/* physical mapping */
1939 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1940 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1941 			pmap_type = UDF_VTOP_TYPE_PHYS;
1942 			n_phys++;
1943 			ump->data_part = log_part;
1944 			ump->node_part = log_part;
1945 			ump->fids_part = log_part;
1946 			break;
1947 		case 2: /* virtual/sparable/meta mapping */
1948 			map_name  = mapping->pm2.part_id.id;
1949 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1950 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1951 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1952 			len = UDF_REGID_ID_SIZE;
1953 
1954 			check_name = "*UDF Virtual Partition";
1955 			if (strncmp(map_name, check_name, len) == 0) {
1956 				pmap_type = UDF_VTOP_TYPE_VIRT;
1957 				n_virt++;
1958 				ump->node_part = log_part;
1959 				break;
1960 			}
1961 			check_name = "*UDF Sparable Partition";
1962 			if (strncmp(map_name, check_name, len) == 0) {
1963 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1964 				n_spar++;
1965 				ump->data_part = log_part;
1966 				ump->node_part = log_part;
1967 				ump->fids_part = log_part;
1968 				break;
1969 			}
1970 			check_name = "*UDF Metadata Partition";
1971 			if (strncmp(map_name, check_name, len) == 0) {
1972 				pmap_type = UDF_VTOP_TYPE_META;
1973 				n_meta++;
1974 				ump->node_part = log_part;
1975 				ump->fids_part = log_part;
1976 				break;
1977 			}
1978 			break;
1979 		default:
1980 			return EINVAL;
1981 		}
1982 
1983 		/*
1984 		 * BUGALERT: some rogue implementations use random physical
1985 		 * partition numbers to break other implementations so lookup
1986 		 * the number.
1987 		 */
1988 		phys_part = udf_find_raw_phys(ump, raw_phys_part);
1989 
1990 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1991 		    raw_phys_part, phys_part, pmap_type));
1992 
1993 		if (phys_part == UDF_PARTITIONS)
1994 			return EINVAL;
1995 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1996 			return EINVAL;
1997 
1998 		ump->vtop   [log_part] = phys_part;
1999 		ump->vtop_tp[log_part] = pmap_type;
2000 
2001 		pmap_pos += pmap_size;
2002 	}
2003 	/* not winning the beauty contest */
2004 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
2005 
2006 	/* test some basic UDF assertions/requirements */
2007 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2008 		return EINVAL;
2009 
2010 	if (n_virt) {
2011 		if ((n_phys == 0) || n_spar || n_meta)
2012 			return EINVAL;
2013 	}
2014 	if (n_spar + n_phys == 0)
2015 		return EINVAL;
2016 
2017 	/* select allocation type for each logical partition */
2018 	for (log_part = 0; log_part < n_pm; log_part++) {
2019 		maps_on = ump->vtop[log_part];
2020 		switch (ump->vtop_tp[log_part]) {
2021 		case UDF_VTOP_TYPE_PHYS :
2022 			assert(maps_on == log_part);
2023 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2024 			break;
2025 		case UDF_VTOP_TYPE_VIRT :
2026 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2027 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2028 			break;
2029 		case UDF_VTOP_TYPE_SPARABLE :
2030 			assert(maps_on == log_part);
2031 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2032 			break;
2033 		case UDF_VTOP_TYPE_META :
2034 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2035 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2036 				/* special case for UDF 2.60 */
2037 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2038 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2039 			}
2040 			break;
2041 		default:
2042 			panic("bad alloction type in udf's ump->vtop\n");
2043 		}
2044 	}
2045 
2046 	/* determine logical volume open/closure actions */
2047 	if (n_virt) {
2048 		ump->lvopen  = 0;
2049 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2050 			ump->lvopen |= UDF_OPEN_SESSION ;
2051 		ump->lvclose = UDF_WRITE_VAT;
2052 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2053 			ump->lvclose |= UDF_CLOSE_SESSION;
2054 	} else {
2055 		/* `normal' rewritable or non sequential media */
2056 		ump->lvopen  = UDF_WRITE_LVINT;
2057 		ump->lvclose = UDF_WRITE_LVINT;
2058 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2059 			ump->lvopen  |=  UDF_APPENDONLY_LVINT;
2060 		if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2061 			ump->lvopen  &= ~UDF_APPENDONLY_LVINT;
2062 	}
2063 
2064 	/*
2065 	 * Determine sheduler error behaviour. For virtual partitions, update
2066 	 * the trackinfo; for sparable partitions replace a whole block on the
2067 	 * sparable table. Allways requeue.
2068 	 */
2069 	ump->lvreadwrite = 0;
2070 	if (n_virt)
2071 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2072 	if (n_spar)
2073 		ump->lvreadwrite = UDF_REMAP_BLOCK;
2074 
2075 	/*
2076 	 * Select our sheduler
2077 	 */
2078 	ump->strategy = &udf_strat_rmw;
2079 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2080 		ump->strategy = &udf_strat_sequential;
2081 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2082 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2083 			ump->strategy = &udf_strat_direct;
2084 	if (n_spar)
2085 		ump->strategy = &udf_strat_rmw;
2086 
2087 #if 0
2088 	/* read-only access won't benefit from the other shedulers */
2089 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2090 		ump->strategy = &udf_strat_direct;
2091 #endif
2092 
2093 	/* print results */
2094 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
2095 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2096 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
2097 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2098 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
2099 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2100 
2101 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2102 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
2103 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2104 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2105 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2106 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2107 
2108 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2109 		(ump->strategy == &udf_strat_direct) ? "Direct" :
2110 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
2111 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2112 
2113 	/* signal its OK for now */
2114 	return 0;
2115 }
2116 
2117 /* --------------------------------------------------------------------- */
2118 
2119 /*
2120  * Update logical volume name in all structures that keep a record of it. We
2121  * use memmove since each of them might be specified as a source.
2122  *
2123  * Note that it doesn't update the VAT structure!
2124  */
2125 
2126 static void
2127 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2128 {
2129 	struct logvol_desc     *lvd = NULL;
2130 	struct fileset_desc    *fsd = NULL;
2131 	struct udf_lv_info     *lvi = NULL;
2132 
2133 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2134 	lvd = ump->logical_vol;
2135 	fsd = ump->fileset_desc;
2136 	if (ump->implementation)
2137 		lvi = &ump->implementation->_impl_use.lv_info;
2138 
2139 	/* logvol's id might be specified as origional so use memmove here */
2140 	memmove(lvd->logvol_id, logvol_id, 128);
2141 	if (fsd)
2142 		memmove(fsd->logvol_id, logvol_id, 128);
2143 	if (lvi)
2144 		memmove(lvi->logvol_id, logvol_id, 128);
2145 }
2146 
2147 /* --------------------------------------------------------------------- */
2148 
2149 void
2150 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2151 	uint32_t sector)
2152 {
2153 	assert(ump->logical_vol);
2154 
2155 	tag->id 		= udf_rw16(tagid);
2156 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
2157 	tag->cksum		= 0;
2158 	tag->reserved		= 0;
2159 	tag->serial_num		= ump->logical_vol->tag.serial_num;
2160 	tag->tag_loc            = udf_rw32(sector);
2161 }
2162 
2163 
2164 uint64_t
2165 udf_advance_uniqueid(struct udf_mount *ump)
2166 {
2167 	uint64_t unique_id;
2168 
2169 	mutex_enter(&ump->logvol_mutex);
2170 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2171 	if (unique_id < 0x10)
2172 		unique_id = 0x10;
2173 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2174 	mutex_exit(&ump->logvol_mutex);
2175 
2176 	return unique_id;
2177 }
2178 
2179 
2180 static void
2181 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2182 {
2183 	struct udf_mount *ump = udf_node->ump;
2184 	uint32_t num_dirs, num_files;
2185 	int udf_file_type;
2186 
2187 	/* get file type */
2188 	if (udf_node->fe) {
2189 		udf_file_type = udf_node->fe->icbtag.file_type;
2190 	} else {
2191 		udf_file_type = udf_node->efe->icbtag.file_type;
2192 	}
2193 
2194 	/* adjust file count */
2195 	mutex_enter(&ump->allocate_mutex);
2196 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2197 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
2198 		ump->logvol_info->num_directories =
2199 			udf_rw32((num_dirs + sign));
2200 	} else {
2201 		num_files = udf_rw32(ump->logvol_info->num_files);
2202 		ump->logvol_info->num_files =
2203 			udf_rw32((num_files + sign));
2204 	}
2205 	mutex_exit(&ump->allocate_mutex);
2206 }
2207 
2208 
2209 void
2210 udf_osta_charset(struct charspec *charspec)
2211 {
2212 	memset(charspec, 0, sizeof(struct charspec));
2213 	charspec->type = 0;
2214 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2215 }
2216 
2217 
2218 /* first call udf_set_regid and then the suffix */
2219 void
2220 udf_set_regid(struct regid *regid, char const *name)
2221 {
2222 	memset(regid, 0, sizeof(struct regid));
2223 	regid->flags    = 0;		/* not dirty and not protected */
2224 	strcpy((char *) regid->id, name);
2225 }
2226 
2227 
2228 void
2229 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2230 {
2231 	uint16_t *ver;
2232 
2233 	ver  = (uint16_t *) regid->id_suffix;
2234 	*ver = ump->logvol_info->min_udf_readver;
2235 }
2236 
2237 
2238 void
2239 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2240 {
2241 	uint16_t *ver;
2242 
2243 	ver  = (uint16_t *) regid->id_suffix;
2244 	*ver = ump->logvol_info->min_udf_readver;
2245 
2246 	regid->id_suffix[2] = 4;	/* unix */
2247 	regid->id_suffix[3] = 8;	/* NetBSD */
2248 }
2249 
2250 
2251 void
2252 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2253 {
2254 	regid->id_suffix[0] = 4;	/* unix */
2255 	regid->id_suffix[1] = 8;	/* NetBSD */
2256 }
2257 
2258 
2259 void
2260 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2261 {
2262 	regid->id_suffix[0] = APP_VERSION_MAIN;
2263 	regid->id_suffix[1] = APP_VERSION_SUB;
2264 }
2265 
2266 static int
2267 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2268 	struct long_ad *parent, uint64_t unique_id)
2269 {
2270 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
2271 	int fidsize = 40;
2272 
2273 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2274 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
2275 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2276 	fid->icb = *parent;
2277 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2278 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2279 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2280 
2281 	return fidsize;
2282 }
2283 
2284 /* --------------------------------------------------------------------- */
2285 
2286 /*
2287  * Extended attribute support. UDF knows of 3 places for extended attributes:
2288  *
2289  * (a) inside the file's (e)fe in the length of the extended attribute area
2290  * before the allocation descriptors/filedata
2291  *
2292  * (b) in a file referenced by (e)fe->ext_attr_icb and
2293  *
2294  * (c) in the e(fe)'s associated stream directory that can hold various
2295  * sub-files. In the stream directory a few fixed named subfiles are reserved
2296  * for NT/Unix ACL's and OS/2 attributes.
2297  *
2298  * NOTE: Extended attributes are read randomly but allways written
2299  * *atomicaly*. For ACL's this interface is propably different but not known
2300  * to me yet.
2301  *
2302  * Order of extended attributes in a space :
2303  *   ECMA 167 EAs
2304  *   Non block aligned Implementation Use EAs
2305  *   Block aligned Implementation Use EAs
2306  *   Application Use EAs
2307  */
2308 
2309 static int
2310 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2311 {
2312 	uint16_t   *spos;
2313 
2314 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2315 		/* checksum valid? */
2316 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2317 		spos = (uint16_t *) implext->data;
2318 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2319 			return EINVAL;
2320 	}
2321 	return 0;
2322 }
2323 
2324 static void
2325 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2326 {
2327 	uint16_t   *spos;
2328 
2329 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2330 		/* set checksum */
2331 		spos = (uint16_t *) implext->data;
2332 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2333 	}
2334 }
2335 
2336 
2337 int
2338 udf_extattr_search_intern(struct udf_node *node,
2339 	uint32_t sattr, char const *sattrname,
2340 	uint32_t *offsetp, uint32_t *lengthp)
2341 {
2342 	struct extattrhdr_desc    *eahdr;
2343 	struct extattr_entry      *attrhdr;
2344 	struct impl_extattr_entry *implext;
2345 	uint32_t    offset, a_l, sector_size;
2346 	 int32_t    l_ea;
2347 	uint8_t    *pos;
2348 	int         error;
2349 
2350 	/* get mountpoint */
2351 	sector_size = node->ump->discinfo.sector_size;
2352 
2353 	/* get information from fe/efe */
2354 	if (node->fe) {
2355 		l_ea  = udf_rw32(node->fe->l_ea);
2356 		eahdr = (struct extattrhdr_desc *) node->fe->data;
2357 	} else {
2358 		assert(node->efe);
2359 		l_ea  = udf_rw32(node->efe->l_ea);
2360 		eahdr = (struct extattrhdr_desc *) node->efe->data;
2361 	}
2362 
2363 	/* something recorded here? */
2364 	if (l_ea == 0)
2365 		return ENOENT;
2366 
2367 	/* check extended attribute tag; what to do if it fails? */
2368 	error = udf_check_tag(eahdr);
2369 	if (error)
2370 		return EINVAL;
2371 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2372 		return EINVAL;
2373 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2374 	if (error)
2375 		return EINVAL;
2376 
2377 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2378 
2379 	/* looking for Ecma-167 attributes? */
2380 	offset = sizeof(struct extattrhdr_desc);
2381 
2382 	/* looking for either implemenation use or application use */
2383 	if (sattr == 2048) {				/* [4/48.10.8] */
2384 		offset = udf_rw32(eahdr->impl_attr_loc);
2385 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2386 			return ENOENT;
2387 	}
2388 	if (sattr == 65536) {				/* [4/48.10.9] */
2389 		offset = udf_rw32(eahdr->appl_attr_loc);
2390 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2391 			return ENOENT;
2392 	}
2393 
2394 	/* paranoia check offset and l_ea */
2395 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2396 		return EINVAL;
2397 
2398 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2399 
2400 	/* find our extended attribute  */
2401 	l_ea -= offset;
2402 	pos = (uint8_t *) eahdr + offset;
2403 
2404 	while (l_ea >= sizeof(struct extattr_entry)) {
2405 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2406 		attrhdr = (struct extattr_entry *) pos;
2407 		implext = (struct impl_extattr_entry *) pos;
2408 
2409 		/* get complete attribute length and check for roque values */
2410 		a_l = udf_rw32(attrhdr->a_l);
2411 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2412 				udf_rw32(attrhdr->type),
2413 				attrhdr->subtype, a_l, l_ea));
2414 		if ((a_l == 0) || (a_l > l_ea))
2415 			return EINVAL;
2416 
2417 		if (attrhdr->type != sattr)
2418 			goto next_attribute;
2419 
2420 		/* we might have found it! */
2421 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
2422 			*offsetp = offset;
2423 			*lengthp = a_l;
2424 			return 0;		/* success */
2425 		}
2426 
2427 		/*
2428 		 * Implementation use and application use extended attributes
2429 		 * have a name to identify. They share the same structure only
2430 		 * UDF implementation use extended attributes have a checksum
2431 		 * we need to check
2432 		 */
2433 
2434 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2435 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
2436 			/* we have found our appl/implementation attribute */
2437 			*offsetp = offset;
2438 			*lengthp = a_l;
2439 			return 0;		/* success */
2440 		}
2441 
2442 next_attribute:
2443 		/* next attribute */
2444 		pos    += a_l;
2445 		l_ea   -= a_l;
2446 		offset += a_l;
2447 	}
2448 	/* not found */
2449 	return ENOENT;
2450 }
2451 
2452 
2453 static void
2454 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2455 	struct extattr_entry *extattr)
2456 {
2457 	struct file_entry      *fe;
2458 	struct extfile_entry   *efe;
2459 	struct extattrhdr_desc *extattrhdr;
2460 	struct impl_extattr_entry *implext;
2461 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2462 	uint32_t *l_eap, l_ad;
2463 	uint16_t *spos;
2464 	uint8_t *bpos, *data;
2465 
2466 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2467 		fe    = &dscr->fe;
2468 		data  = fe->data;
2469 		l_eap = &fe->l_ea;
2470 		l_ad  = udf_rw32(fe->l_ad);
2471 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2472 		efe   = &dscr->efe;
2473 		data  = efe->data;
2474 		l_eap = &efe->l_ea;
2475 		l_ad  = udf_rw32(efe->l_ad);
2476 	} else {
2477 		panic("Bad tag passed to udf_extattr_insert_internal");
2478 	}
2479 
2480 	/* can't append already written to file descriptors yet */
2481 	assert(l_ad == 0);
2482 
2483 	/* should have a header! */
2484 	extattrhdr = (struct extattrhdr_desc *) data;
2485 	l_ea = udf_rw32(*l_eap);
2486 	if (l_ea == 0) {
2487 		/* create empty extended attribute header */
2488 		exthdr_len = sizeof(struct extattrhdr_desc);
2489 
2490 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2491 			/* loc */ 0);
2492 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2493 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2494 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
2495 
2496 		/* record extended attribute header length */
2497 		l_ea = exthdr_len;
2498 		*l_eap = udf_rw32(l_ea);
2499 	}
2500 
2501 	/* extract locations */
2502 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2503 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2504 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2505 		impl_attr_loc = l_ea;
2506 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2507 		appl_attr_loc = l_ea;
2508 
2509 	/* Ecma 167 EAs */
2510 	if (udf_rw32(extattr->type) < 2048) {
2511 		assert(impl_attr_loc == l_ea);
2512 		assert(appl_attr_loc == l_ea);
2513 	}
2514 
2515 	/* implementation use extended attributes */
2516 	if (udf_rw32(extattr->type) == 2048) {
2517 		assert(appl_attr_loc == l_ea);
2518 
2519 		/* calculate and write extended attribute header checksum */
2520 		implext = (struct impl_extattr_entry *) extattr;
2521 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
2522 		spos = (uint16_t *) implext->data;
2523 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2524 	}
2525 
2526 	/* application use extended attributes */
2527 	assert(udf_rw32(extattr->type) != 65536);
2528 	assert(appl_attr_loc == l_ea);
2529 
2530 	/* append the attribute at the end of the current space */
2531 	bpos = data + udf_rw32(*l_eap);
2532 	a_l  = udf_rw32(extattr->a_l);
2533 
2534 	/* update impl. attribute locations */
2535 	if (udf_rw32(extattr->type) < 2048) {
2536 		impl_attr_loc = l_ea + a_l;
2537 		appl_attr_loc = l_ea + a_l;
2538 	}
2539 	if (udf_rw32(extattr->type) == 2048) {
2540 		appl_attr_loc = l_ea + a_l;
2541 	}
2542 
2543 	/* copy and advance */
2544 	memcpy(bpos, extattr, a_l);
2545 	l_ea += a_l;
2546 	*l_eap = udf_rw32(l_ea);
2547 
2548 	/* do the `dance` again backwards */
2549 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2550 		if (impl_attr_loc == l_ea)
2551 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2552 		if (appl_attr_loc == l_ea)
2553 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2554 	}
2555 
2556 	/* store offsets */
2557 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2558 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2559 }
2560 
2561 
2562 /* --------------------------------------------------------------------- */
2563 
2564 static int
2565 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2566 {
2567 	struct udf_mount       *ump;
2568 	struct udf_logvol_info *lvinfo;
2569 	struct impl_extattr_entry     *implext;
2570 	struct vatlvext_extattr_entry  lvext;
2571 	const char *extstr = "*UDF VAT LVExtension";
2572 	uint64_t    vat_uniqueid;
2573 	uint32_t    offset, a_l;
2574 	uint8_t    *ea_start, *lvextpos;
2575 	int         error;
2576 
2577 	/* get mountpoint and lvinfo */
2578 	ump    = vat_node->ump;
2579 	lvinfo = ump->logvol_info;
2580 
2581 	/* get information from fe/efe */
2582 	if (vat_node->fe) {
2583 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2584 		ea_start     = vat_node->fe->data;
2585 	} else {
2586 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2587 		ea_start     = vat_node->efe->data;
2588 	}
2589 
2590 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2591 	if (error)
2592 		return error;
2593 
2594 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2595 	error = udf_impl_extattr_check(implext);
2596 	if (error)
2597 		return error;
2598 
2599 	/* paranoia */
2600 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2601 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2602 		return EINVAL;
2603 	}
2604 
2605 	/*
2606 	 * we have found our "VAT LVExtension attribute. BUT due to a
2607 	 * bug in the specification it might not be word aligned so
2608 	 * copy first to avoid panics on some machines (!!)
2609 	 */
2610 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2611 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2612 	memcpy(&lvext, lvextpos, sizeof(lvext));
2613 
2614 	/* check if it was updated the last time */
2615 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2616 		lvinfo->num_files       = lvext.num_files;
2617 		lvinfo->num_directories = lvext.num_directories;
2618 		udf_update_logvolname(ump, lvext.logvol_id);
2619 	} else {
2620 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2621 		/* replace VAT LVExt by free space EA */
2622 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2623 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2624 		udf_calc_impl_extattr_checksum(implext);
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 
2631 static int
2632 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2633 {
2634 	struct udf_mount       *ump;
2635 	struct udf_logvol_info *lvinfo;
2636 	struct impl_extattr_entry     *implext;
2637 	struct vatlvext_extattr_entry  lvext;
2638 	const char *extstr = "*UDF VAT LVExtension";
2639 	uint64_t    vat_uniqueid;
2640 	uint32_t    offset, a_l;
2641 	uint8_t    *ea_start, *lvextpos;
2642 	int         error;
2643 
2644 	/* get mountpoint and lvinfo */
2645 	ump    = vat_node->ump;
2646 	lvinfo = ump->logvol_info;
2647 
2648 	/* get information from fe/efe */
2649 	if (vat_node->fe) {
2650 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2651 		ea_start     = vat_node->fe->data;
2652 	} else {
2653 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2654 		ea_start     = vat_node->efe->data;
2655 	}
2656 
2657 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2658 	if (error)
2659 		return error;
2660 	/* found, it existed */
2661 
2662 	/* paranoia */
2663 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2664 	error = udf_impl_extattr_check(implext);
2665 	if (error) {
2666 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2667 		return error;
2668 	}
2669 	/* it is correct */
2670 
2671 	/*
2672 	 * we have found our "VAT LVExtension attribute. BUT due to a
2673 	 * bug in the specification it might not be word aligned so
2674 	 * copy first to avoid panics on some machines (!!)
2675 	 */
2676 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2677 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2678 
2679 	lvext.unique_id_chk   = vat_uniqueid;
2680 	lvext.num_files       = lvinfo->num_files;
2681 	lvext.num_directories = lvinfo->num_directories;
2682 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2683 
2684 	memcpy(lvextpos, &lvext, sizeof(lvext));
2685 
2686 	return 0;
2687 }
2688 
2689 /* --------------------------------------------------------------------- */
2690 
2691 int
2692 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2693 {
2694 	struct udf_mount *ump = vat_node->ump;
2695 
2696 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2697 		return EINVAL;
2698 
2699 	memcpy(blob, ump->vat_table + offset, size);
2700 	return 0;
2701 }
2702 
2703 int
2704 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2705 {
2706 	struct udf_mount *ump = vat_node->ump;
2707 	uint32_t offset_high;
2708 	uint8_t *new_vat_table;
2709 
2710 	/* extent VAT allocation if needed */
2711 	offset_high = offset + size;
2712 	if (offset_high >= ump->vat_table_alloc_len) {
2713 		/* realloc */
2714 		new_vat_table = realloc(ump->vat_table,
2715 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2716 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
2717 		if (!new_vat_table) {
2718 			printf("udf_vat_write: can't extent VAT, out of mem\n");
2719 			return ENOMEM;
2720 		}
2721 		ump->vat_table = new_vat_table;
2722 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2723 	}
2724 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2725 
2726 	memcpy(ump->vat_table + offset, blob, size);
2727 	return 0;
2728 }
2729 
2730 /* --------------------------------------------------------------------- */
2731 
2732 /* TODO support previous VAT location writeout */
2733 static int
2734 udf_update_vat_descriptor(struct udf_mount *ump)
2735 {
2736 	struct udf_node *vat_node = ump->vat_node;
2737 	struct udf_logvol_info *lvinfo = ump->logvol_info;
2738 	struct icb_tag *icbtag;
2739 	struct udf_oldvat_tail *oldvat_tl;
2740 	struct udf_vat *vat;
2741 	uint64_t unique_id;
2742 	uint32_t lb_size;
2743 	uint8_t *raw_vat;
2744 	int filetype, error;
2745 
2746 	KASSERT(vat_node);
2747 	KASSERT(lvinfo);
2748 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2749 
2750 	/* get our new unique_id */
2751 	unique_id = udf_advance_uniqueid(ump);
2752 
2753 	/* get information from fe/efe */
2754 	if (vat_node->fe) {
2755 		icbtag    = &vat_node->fe->icbtag;
2756 		vat_node->fe->unique_id = udf_rw64(unique_id);
2757 	} else {
2758 		icbtag = &vat_node->efe->icbtag;
2759 		vat_node->efe->unique_id = udf_rw64(unique_id);
2760 	}
2761 
2762 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2763 	filetype = icbtag->file_type;
2764 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2765 
2766 	/* allocate piece to process head or tail of VAT file */
2767 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2768 
2769 	if (filetype == 0) {
2770 		/*
2771 		 * Update "*UDF VAT LVExtension" extended attribute from the
2772 		 * lvint if present.
2773 		 */
2774 		udf_update_vat_extattr_from_lvid(vat_node);
2775 
2776 		/* setup identifying regid */
2777 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2778 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2779 
2780 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2781 		udf_add_udf_regid(ump, &oldvat_tl->id);
2782 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2783 
2784 		/* write out new tail of virtual allocation table file */
2785 		error = udf_vat_write(vat_node, raw_vat,
2786 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2787 	} else {
2788 		/* compose the VAT2 header */
2789 		vat = (struct udf_vat *) raw_vat;
2790 		memset(vat, 0, sizeof(struct udf_vat));
2791 
2792 		vat->header_len       = udf_rw16(152);	/* as per spec */
2793 		vat->impl_use_len     = udf_rw16(0);
2794 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2795 		vat->prev_vat         = udf_rw32(0xffffffff);
2796 		vat->num_files        = lvinfo->num_files;
2797 		vat->num_directories  = lvinfo->num_directories;
2798 		vat->min_udf_readver  = lvinfo->min_udf_readver;
2799 		vat->min_udf_writever = lvinfo->min_udf_writever;
2800 		vat->max_udf_writever = lvinfo->max_udf_writever;
2801 
2802 		error = udf_vat_write(vat_node, raw_vat,
2803 			sizeof(struct udf_vat), 0);
2804 	}
2805 	free(raw_vat, M_TEMP);
2806 
2807 	return error;	/* success! */
2808 }
2809 
2810 
2811 int
2812 udf_writeout_vat(struct udf_mount *ump)
2813 {
2814 	struct udf_node *vat_node = ump->vat_node;
2815 	uint32_t vat_length;
2816 	int error;
2817 
2818 	KASSERT(vat_node);
2819 
2820 	DPRINTF(CALL, ("udf_writeout_vat\n"));
2821 
2822 //	mutex_enter(&ump->allocate_mutex);
2823 	udf_update_vat_descriptor(ump);
2824 
2825 	/* write out the VAT contents ; TODO intelligent writing */
2826 	vat_length = ump->vat_table_len;
2827 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2828 		ump->vat_table, ump->vat_table_len, 0,
2829 		UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2830 	if (error) {
2831 		printf("udf_writeout_vat: failed to write out VAT contents\n");
2832 		goto out;
2833 	}
2834 
2835 //	mutex_exit(&ump->allocate_mutex);
2836 
2837 	error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2838 	if (error)
2839 		goto out;
2840 	error = VOP_FSYNC(ump->vat_node->vnode,
2841 			FSCRED, FSYNC_WAIT, 0, 0);
2842 	if (error)
2843 		printf("udf_writeout_vat: error writing VAT node!\n");
2844 out:
2845 
2846 	return error;
2847 }
2848 
2849 /* --------------------------------------------------------------------- */
2850 
2851 /*
2852  * Read in relevant pieces of VAT file and check if its indeed a VAT file
2853  * descriptor. If OK, read in complete VAT file.
2854  */
2855 
2856 static int
2857 udf_check_for_vat(struct udf_node *vat_node)
2858 {
2859 	struct udf_mount *ump;
2860 	struct icb_tag   *icbtag;
2861 	struct timestamp *mtime;
2862 	struct udf_vat   *vat;
2863 	struct udf_oldvat_tail *oldvat_tl;
2864 	struct udf_logvol_info *lvinfo;
2865 	uint64_t  unique_id;
2866 	uint32_t  vat_length;
2867 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
2868 	uint32_t  sector_size;
2869 	uint32_t *raw_vat;
2870 	uint8_t  *vat_table;
2871 	char     *regid_name;
2872 	int filetype;
2873 	int error;
2874 
2875 	/* vat_length is really 64 bits though impossible */
2876 
2877 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
2878 	if (!vat_node)
2879 		return ENOENT;
2880 
2881 	/* get mount info */
2882 	ump = vat_node->ump;
2883 	sector_size = udf_rw32(ump->logical_vol->lb_size);
2884 
2885 	/* check assertions */
2886 	assert(vat_node->fe || vat_node->efe);
2887 	assert(ump->logvol_integrity);
2888 
2889 	/* set vnode type to regular file or we can't read from it! */
2890 	vat_node->vnode->v_type = VREG;
2891 
2892 	/* get information from fe/efe */
2893 	if (vat_node->fe) {
2894 		vat_length = udf_rw64(vat_node->fe->inf_len);
2895 		icbtag    = &vat_node->fe->icbtag;
2896 		mtime     = &vat_node->fe->mtime;
2897 		unique_id = udf_rw64(vat_node->fe->unique_id);
2898 	} else {
2899 		vat_length = udf_rw64(vat_node->efe->inf_len);
2900 		icbtag = &vat_node->efe->icbtag;
2901 		mtime  = &vat_node->efe->mtime;
2902 		unique_id = udf_rw64(vat_node->efe->unique_id);
2903 	}
2904 
2905 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2906 	filetype = icbtag->file_type;
2907 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2908 		return ENOENT;
2909 
2910 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2911 
2912 	vat_table_alloc_len =
2913 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2914 			* UDF_VAT_CHUNKSIZE;
2915 
2916 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2917 		M_CANFAIL | M_WAITOK);
2918 	if (vat_table == NULL) {
2919 		printf("allocation of %d bytes failed for VAT\n",
2920 			vat_table_alloc_len);
2921 		return ENOMEM;
2922 	}
2923 
2924 	/* allocate piece to read in head or tail of VAT file */
2925 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2926 
2927 	/*
2928 	 * check contents of the file if its the old 1.50 VAT table format.
2929 	 * Its notoriously broken and allthough some implementations support an
2930 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
2931 	 * to be useable since a lot of implementations don't maintain it.
2932 	 */
2933 	lvinfo = ump->logvol_info;
2934 
2935 	if (filetype == 0) {
2936 		/* definition */
2937 		vat_offset  = 0;
2938 		vat_entries = (vat_length-36)/4;
2939 
2940 		/* read in tail of virtual allocation table file */
2941 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2942 				(uint8_t *) raw_vat,
2943 				sizeof(struct udf_oldvat_tail),
2944 				vat_entries * 4,
2945 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2946 				NULL, NULL);
2947 		if (error)
2948 			goto out;
2949 
2950 		/* check 1.50 VAT */
2951 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2952 		regid_name = (char *) oldvat_tl->id.id;
2953 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2954 		if (error) {
2955 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2956 			error = ENOENT;
2957 			goto out;
2958 		}
2959 
2960 		/*
2961 		 * update LVID from "*UDF VAT LVExtension" extended attribute
2962 		 * if present.
2963 		 */
2964 		udf_update_lvid_from_vat_extattr(vat_node);
2965 	} else {
2966 		/* read in head of virtual allocation table file */
2967 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2968 				(uint8_t *) raw_vat,
2969 				sizeof(struct udf_vat), 0,
2970 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2971 				NULL, NULL);
2972 		if (error)
2973 			goto out;
2974 
2975 		/* definition */
2976 		vat = (struct udf_vat *) raw_vat;
2977 		vat_offset  = vat->header_len;
2978 		vat_entries = (vat_length - vat_offset)/4;
2979 
2980 		assert(lvinfo);
2981 		lvinfo->num_files        = vat->num_files;
2982 		lvinfo->num_directories  = vat->num_directories;
2983 		lvinfo->min_udf_readver  = vat->min_udf_readver;
2984 		lvinfo->min_udf_writever = vat->min_udf_writever;
2985 		lvinfo->max_udf_writever = vat->max_udf_writever;
2986 
2987 		udf_update_logvolname(ump, vat->logvol_id);
2988 	}
2989 
2990 	/* read in complete VAT file */
2991 	error = vn_rdwr(UIO_READ, vat_node->vnode,
2992 			vat_table,
2993 			vat_length, 0,
2994 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2995 			NULL, NULL);
2996 	if (error)
2997 		printf("read in of complete VAT file failed (error %d)\n",
2998 			error);
2999 	if (error)
3000 		goto out;
3001 
3002 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
3003 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
3004 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3005 	ump->logvol_integrity->time           = *mtime;
3006 
3007 	ump->vat_table_len = vat_length;
3008 	ump->vat_table_alloc_len = vat_table_alloc_len;
3009 	ump->vat_table   = vat_table;
3010 	ump->vat_offset  = vat_offset;
3011 	ump->vat_entries = vat_entries;
3012 	ump->vat_last_free_lb = 0;		/* start at beginning */
3013 
3014 out:
3015 	if (error) {
3016 		if (vat_table)
3017 			free(vat_table, M_UDFVOLD);
3018 	}
3019 	free(raw_vat, M_TEMP);
3020 
3021 	return error;
3022 }
3023 
3024 /* --------------------------------------------------------------------- */
3025 
3026 static int
3027 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3028 {
3029 	struct udf_node *vat_node;
3030 	struct long_ad	 icb_loc;
3031 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
3032 	int error;
3033 
3034 	/* mapping info not needed */
3035 	mapping = mapping;
3036 
3037 	vat_loc = ump->last_possible_vat_location;
3038 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
3039 
3040 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3041 		vat_loc, early_vat_loc));
3042 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3043 	late_vat_loc  = vat_loc + 1024;
3044 
3045 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3046 		vat_loc, early_vat_loc));
3047 
3048 	/* start looking from the end of the range */
3049 	do {
3050 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3051 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3052 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
3053 
3054 		error = udf_get_node(ump, &icb_loc, &vat_node);
3055 		if (!error) {
3056 			error = udf_check_for_vat(vat_node);
3057 			DPRINTFIF(VOLUMES, !error,
3058 				("VAT accepted at %d\n", vat_loc));
3059 			if (!error)
3060 				break;
3061 		}
3062 		if (vat_node) {
3063 			vput(vat_node->vnode);
3064 			vat_node = NULL;
3065 		}
3066 		vat_loc--;	/* walk backwards */
3067 	} while (vat_loc >= early_vat_loc);
3068 
3069 	/* keep our VAT node around */
3070 	if (vat_node) {
3071 		UDF_SET_SYSTEMFILE(vat_node->vnode);
3072 		ump->vat_node = vat_node;
3073 	}
3074 
3075 	return error;
3076 }
3077 
3078 /* --------------------------------------------------------------------- */
3079 
3080 static int
3081 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3082 {
3083 	union dscrptr *dscr;
3084 	struct part_map_spare *pms = &mapping->pms;
3085 	uint32_t lb_num;
3086 	int spar, error;
3087 
3088 	/*
3089 	 * The partition mapping passed on to us specifies the information we
3090 	 * need to locate and initialise the sparable partition mapping
3091 	 * information we need.
3092 	 */
3093 
3094 	DPRINTF(VOLUMES, ("Read sparable table\n"));
3095 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
3096 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
3097 
3098 	for (spar = 0; spar < pms->n_st; spar++) {
3099 		lb_num = pms->st_loc[spar];
3100 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3101 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3102 		if (!error && dscr) {
3103 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3104 				if (ump->sparing_table)
3105 					free(ump->sparing_table, M_UDFVOLD);
3106 				ump->sparing_table = &dscr->spt;
3107 				dscr = NULL;
3108 				DPRINTF(VOLUMES,
3109 				    ("Sparing table accepted (%d entries)\n",
3110 				     udf_rw16(ump->sparing_table->rt_l)));
3111 				break;	/* we're done */
3112 			}
3113 		}
3114 		if (dscr)
3115 			free(dscr, M_UDFVOLD);
3116 	}
3117 
3118 	if (ump->sparing_table)
3119 		return 0;
3120 
3121 	return ENOENT;
3122 }
3123 
3124 /* --------------------------------------------------------------------- */
3125 
3126 static int
3127 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3128 {
3129 	struct part_map_meta *pmm = &mapping->pmm;
3130 	struct long_ad	 icb_loc;
3131 	struct vnode *vp;
3132 	uint16_t raw_phys_part, phys_part;
3133 	int error;
3134 
3135 	/*
3136 	 * BUGALERT: some rogue implementations use random physical
3137 	 * partition numbers to break other implementations so lookup
3138 	 * the number.
3139 	 */
3140 
3141 	/* extract our allocation parameters set up on format */
3142 	ump->metadata_alloc_unit_size     = udf_rw32(mapping->pmm.alloc_unit_size);
3143 	ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3144 	ump->metadata_flags = mapping->pmm.flags;
3145 
3146 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3147 	raw_phys_part = udf_rw16(pmm->part_num);
3148 	phys_part = udf_find_raw_phys(ump, raw_phys_part);
3149 
3150 	icb_loc.loc.part_num = udf_rw16(phys_part);
3151 
3152 	DPRINTF(VOLUMES, ("Metadata file\n"));
3153 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
3154 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3155 	if (ump->metadata_node) {
3156 		vp = ump->metadata_node->vnode;
3157 		UDF_SET_SYSTEMFILE(vp);
3158 	}
3159 
3160 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
3161 	if (icb_loc.loc.lb_num != -1) {
3162 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
3163 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3164 		if (ump->metadatamirror_node) {
3165 			vp = ump->metadatamirror_node->vnode;
3166 			UDF_SET_SYSTEMFILE(vp);
3167 		}
3168 	}
3169 
3170 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
3171 	if (icb_loc.loc.lb_num != -1) {
3172 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3173 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3174 		if (ump->metadatabitmap_node) {
3175 			vp = ump->metadatabitmap_node->vnode;
3176 			UDF_SET_SYSTEMFILE(vp);
3177 		}
3178 	}
3179 
3180 	/* if we're mounting read-only we relax the requirements */
3181 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3182 		error = EFAULT;
3183 		if (ump->metadata_node)
3184 			error = 0;
3185 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3186 			printf( "udf mount: Metadata file not readable, "
3187 				"substituting Metadata copy file\n");
3188 			ump->metadata_node = ump->metadatamirror_node;
3189 			ump->metadatamirror_node = NULL;
3190 			error = 0;
3191 		}
3192 	} else {
3193 		/* mounting read/write */
3194 		/* XXX DISABLED! metadata writing is not working yet XXX */
3195 		if (error)
3196 			error = EROFS;
3197 	}
3198 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3199 				   "metadata files\n"));
3200 	return error;
3201 }
3202 
3203 /* --------------------------------------------------------------------- */
3204 
3205 int
3206 udf_read_vds_tables(struct udf_mount *ump)
3207 {
3208 	union udf_pmap *mapping;
3209 	/* struct udf_args *args = &ump->mount_args; */
3210 	uint32_t n_pm, mt_l;
3211 	uint32_t log_part;
3212 	uint8_t *pmap_pos;
3213 	int pmap_size;
3214 	int error;
3215 
3216 	/* Iterate (again) over the part mappings for locations   */
3217 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
3218 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
3219 	pmap_pos =  ump->logical_vol->maps;
3220 
3221 	for (log_part = 0; log_part < n_pm; log_part++) {
3222 		mapping = (union udf_pmap *) pmap_pos;
3223 		switch (ump->vtop_tp[log_part]) {
3224 		case UDF_VTOP_TYPE_PHYS :
3225 			/* nothing */
3226 			break;
3227 		case UDF_VTOP_TYPE_VIRT :
3228 			/* search and load VAT */
3229 			error = udf_search_vat(ump, mapping);
3230 			if (error)
3231 				return ENOENT;
3232 			break;
3233 		case UDF_VTOP_TYPE_SPARABLE :
3234 			/* load one of the sparable tables */
3235 			error = udf_read_sparables(ump, mapping);
3236 			if (error)
3237 				return ENOENT;
3238 			break;
3239 		case UDF_VTOP_TYPE_META :
3240 			/* load the associated file descriptors */
3241 			error = udf_read_metadata_nodes(ump, mapping);
3242 			if (error)
3243 				return ENOENT;
3244 			break;
3245 		default:
3246 			break;
3247 		}
3248 		pmap_size  = pmap_pos[1];
3249 		pmap_pos  += pmap_size;
3250 	}
3251 
3252 	/* read in and check unallocated and free space info if writing */
3253 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3254 		error = udf_read_physical_partition_spacetables(ump);
3255 		if (error)
3256 			return error;
3257 
3258 		/* also read in metadata partition spacebitmap if defined */
3259 		error = udf_read_metadata_partition_spacetable(ump);
3260 			return error;
3261 	}
3262 
3263 	return 0;
3264 }
3265 
3266 /* --------------------------------------------------------------------- */
3267 
3268 int
3269 udf_read_rootdirs(struct udf_mount *ump)
3270 {
3271 	union dscrptr *dscr;
3272 	/* struct udf_args *args = &ump->mount_args; */
3273 	struct udf_node *rootdir_node, *streamdir_node;
3274 	struct long_ad  fsd_loc, *dir_loc;
3275 	uint32_t lb_num, dummy;
3276 	uint32_t fsd_len;
3277 	int dscr_type;
3278 	int error;
3279 
3280 	/* TODO implement FSD reading in separate function like integrity? */
3281 	/* get fileset descriptor sequence */
3282 	fsd_loc = ump->logical_vol->lv_fsd_loc;
3283 	fsd_len = udf_rw32(fsd_loc.len);
3284 
3285 	dscr  = NULL;
3286 	error = 0;
3287 	while (fsd_len || error) {
3288 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3289 		/* translate fsd_loc to lb_num */
3290 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3291 		if (error)
3292 			break;
3293 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3294 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3295 		/* end markers */
3296 		if (error || (dscr == NULL))
3297 			break;
3298 
3299 		/* analyse */
3300 		dscr_type = udf_rw16(dscr->tag.id);
3301 		if (dscr_type == TAGID_TERM)
3302 			break;
3303 		if (dscr_type != TAGID_FSD) {
3304 			free(dscr, M_UDFVOLD);
3305 			return ENOENT;
3306 		}
3307 
3308 		/*
3309 		 * TODO check for multiple fileset descriptors; its only
3310 		 * picking the last now. Also check for FSD
3311 		 * correctness/interpretability
3312 		 */
3313 
3314 		/* update */
3315 		if (ump->fileset_desc) {
3316 			free(ump->fileset_desc, M_UDFVOLD);
3317 		}
3318 		ump->fileset_desc = &dscr->fsd;
3319 		dscr = NULL;
3320 
3321 		/* continue to the next fsd */
3322 		fsd_len -= ump->discinfo.sector_size;
3323 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3324 
3325 		/* follow up to fsd->next_ex (long_ad) if its not null */
3326 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3327 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3328 			fsd_loc = ump->fileset_desc->next_ex;
3329 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3330 		}
3331 	}
3332 	if (dscr)
3333 		free(dscr, M_UDFVOLD);
3334 
3335 	/* there has to be one */
3336 	if (ump->fileset_desc == NULL)
3337 		return ENOENT;
3338 
3339 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
3340 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3341 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3342 
3343 	/*
3344 	 * Now the FSD is known, read in the rootdirectory and if one exists,
3345 	 * the system stream dir. Some files in the system streamdir are not
3346 	 * wanted in this implementation since they are not maintained. If
3347 	 * writing is enabled we'll delete these files if they exist.
3348 	 */
3349 
3350 	rootdir_node = streamdir_node = NULL;
3351 	dir_loc = NULL;
3352 
3353 	/* try to read in the rootdir */
3354 	dir_loc = &ump->fileset_desc->rootdir_icb;
3355 	error = udf_get_node(ump, dir_loc, &rootdir_node);
3356 	if (error)
3357 		return ENOENT;
3358 
3359 	/* aparently it read in fine */
3360 
3361 	/*
3362 	 * Try the system stream directory; not very likely in the ones we
3363 	 * test, but for completeness.
3364 	 */
3365 	dir_loc = &ump->fileset_desc->streamdir_icb;
3366 	if (udf_rw32(dir_loc->len)) {
3367 		printf("udf_read_rootdirs: streamdir defined ");
3368 		error = udf_get_node(ump, dir_loc, &streamdir_node);
3369 		if (error) {
3370 			printf("but error in streamdir reading\n");
3371 		} else {
3372 			printf("but ignored\n");
3373 			/*
3374 			 * TODO process streamdir `baddies' i.e. files we dont
3375 			 * want if R/W
3376 			 */
3377 		}
3378 	}
3379 
3380 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3381 
3382 	/* release the vnodes again; they'll be auto-recycled later */
3383 	if (streamdir_node) {
3384 		vput(streamdir_node->vnode);
3385 	}
3386 	if (rootdir_node) {
3387 		vput(rootdir_node->vnode);
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 /* --------------------------------------------------------------------- */
3394 
3395 /* To make absolutely sure we are NOT returning zero, add one :) */
3396 
3397 long
3398 udf_get_node_id(const struct long_ad *icbptr)
3399 {
3400 	/* ought to be enough since each mountpoint has its own chain */
3401 	return udf_rw32(icbptr->loc.lb_num) + 1;
3402 }
3403 
3404 
3405 int
3406 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3407 {
3408 	if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3409 		return -1;
3410 	if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3411 		return 1;
3412 
3413 	if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3414 		return -1;
3415 	if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3416 		return 1;
3417 
3418 	return 0;
3419 }
3420 
3421 
3422 static int
3423 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3424 {
3425 	const struct udf_node *a_node = a;
3426 	const struct udf_node *b_node = b;
3427 
3428 	return udf_compare_icb(&a_node->loc, &b_node->loc);
3429 }
3430 
3431 
3432 static int
3433 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3434 {
3435 	const struct udf_node *a_node = a;
3436 	const struct long_ad * const icb = key;
3437 
3438 	return udf_compare_icb(&a_node->loc, icb);
3439 }
3440 
3441 
3442 static const rb_tree_ops_t udf_node_rbtree_ops = {
3443 	.rbto_compare_nodes = udf_compare_rbnodes,
3444 	.rbto_compare_key = udf_compare_rbnode_icb,
3445 	.rbto_node_offset = offsetof(struct udf_node, rbnode),
3446 	.rbto_context = NULL
3447 };
3448 
3449 
3450 void
3451 udf_init_nodes_tree(struct udf_mount *ump)
3452 {
3453 
3454 	rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3455 }
3456 
3457 
3458 static struct udf_node *
3459 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3460 {
3461 	struct udf_node *udf_node;
3462 	struct vnode *vp;
3463 
3464 loop:
3465 	mutex_enter(&ump->ihash_lock);
3466 
3467 	udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3468 	if (udf_node) {
3469 		vp = udf_node->vnode;
3470 		assert(vp);
3471 		mutex_enter(vp->v_interlock);
3472 		mutex_exit(&ump->ihash_lock);
3473 		if (vget(vp, LK_EXCLUSIVE))
3474 			goto loop;
3475 		return udf_node;
3476 	}
3477 	mutex_exit(&ump->ihash_lock);
3478 
3479 	return NULL;
3480 }
3481 
3482 
3483 static void
3484 udf_register_node(struct udf_node *udf_node)
3485 {
3486 	struct udf_mount *ump = udf_node->ump;
3487 
3488 	/* add node to the rb tree */
3489 	mutex_enter(&ump->ihash_lock);
3490 	rb_tree_insert_node(&ump->udf_node_tree, udf_node);
3491 	mutex_exit(&ump->ihash_lock);
3492 }
3493 
3494 
3495 static void
3496 udf_deregister_node(struct udf_node *udf_node)
3497 {
3498 	struct udf_mount *ump = udf_node->ump;
3499 
3500 	/* remove node from the rb tree */
3501 	mutex_enter(&ump->ihash_lock);
3502 	rb_tree_remove_node(&ump->udf_node_tree, udf_node);
3503 	mutex_exit(&ump->ihash_lock);
3504 }
3505 
3506 /* --------------------------------------------------------------------- */
3507 
3508 static int
3509 udf_validate_session_start(struct udf_mount *ump)
3510 {
3511 	struct mmc_trackinfo trackinfo;
3512 	struct vrs_desc *vrs;
3513 	uint32_t tracknr, sessionnr, sector, sector_size;
3514 	uint32_t iso9660_vrs, write_track_start;
3515 	uint8_t *buffer, *blank, *pos;
3516 	int blks, max_sectors, vrs_len;
3517 	int error;
3518 
3519 	/* disc appendable? */
3520 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
3521 		return EROFS;
3522 
3523 	/* already written here? if so, there should be an ISO VDS */
3524 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3525 		return 0;
3526 
3527 	/*
3528 	 * Check if the first track of the session is blank and if so, copy or
3529 	 * create a dummy ISO descriptor so the disc is valid again.
3530 	 */
3531 
3532 	tracknr = ump->discinfo.first_track_last_session;
3533 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3534 	trackinfo.tracknr = tracknr;
3535 	error = udf_update_trackinfo(ump, &trackinfo);
3536 	if (error)
3537 		return error;
3538 
3539 	udf_dump_trackinfo(&trackinfo);
3540 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3541 	KASSERT(trackinfo.sessionnr > 1);
3542 
3543 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3544 	write_track_start = trackinfo.next_writable;
3545 
3546 	/* we have to copy the ISO VRS from a former session */
3547 	DPRINTF(VOLUMES, ("validate_session_start: "
3548 			"blank or reserved track, copying VRS\n"));
3549 
3550 	/* sessionnr should be the session we're mounting */
3551 	sessionnr = ump->mount_args.sessionnr;
3552 
3553 	/* start at the first track */
3554 	tracknr   = ump->discinfo.first_track;
3555 	while (tracknr <= ump->discinfo.num_tracks) {
3556 		trackinfo.tracknr = tracknr;
3557 		error = udf_update_trackinfo(ump, &trackinfo);
3558 		if (error) {
3559 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3560 			return error;
3561 		}
3562 		if (trackinfo.sessionnr == sessionnr)
3563 			break;
3564 		tracknr++;
3565 	}
3566 	if (trackinfo.sessionnr != sessionnr) {
3567 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3568 		return ENOENT;
3569 	}
3570 
3571 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3572 	udf_dump_trackinfo(&trackinfo);
3573 
3574         /*
3575          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3576          * minimum ISO `sector size' 2048
3577          */
3578 	sector_size = ump->discinfo.sector_size;
3579 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3580 		 + trackinfo.track_start;
3581 
3582 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3583 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3584 	blks = MAX(1, 2048 / sector_size);
3585 
3586 	error = 0;
3587 	for (sector = 0; sector < max_sectors; sector += blks) {
3588 		pos = buffer + sector * sector_size;
3589 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3590 			iso9660_vrs + sector, blks);
3591 		if (error)
3592 			break;
3593 		/* check this ISO descriptor */
3594 		vrs = (struct vrs_desc *) pos;
3595 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3596 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3597 			continue;
3598 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3599 			continue;
3600 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3601 			continue;
3602 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3603 			continue;
3604 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3605 			continue;
3606 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3607 			break;
3608 		/* now what? for now, end of sequence */
3609 		break;
3610 	}
3611 	vrs_len = sector + blks;
3612 	if (error) {
3613 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3614 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3615 
3616 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
3617 
3618 		vrs = (struct vrs_desc *) (buffer);
3619 		vrs->struct_type = 0;
3620 		vrs->version     = 1;
3621 		memcpy(vrs->identifier,VRS_BEA01, 5);
3622 
3623 		vrs = (struct vrs_desc *) (buffer + 2048);
3624 		vrs->struct_type = 0;
3625 		vrs->version     = 1;
3626 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3627 			memcpy(vrs->identifier,VRS_NSR02, 5);
3628 		} else {
3629 			memcpy(vrs->identifier,VRS_NSR03, 5);
3630 		}
3631 
3632 		vrs = (struct vrs_desc *) (buffer + 4096);
3633 		vrs->struct_type = 0;
3634 		vrs->version     = 1;
3635 		memcpy(vrs->identifier, VRS_TEA01, 5);
3636 
3637 		vrs_len = 3*blks;
3638 	}
3639 
3640 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3641 
3642         /*
3643          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3644          * minimum ISO `sector size' 2048
3645          */
3646 	sector_size = ump->discinfo.sector_size;
3647 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3648 		 + write_track_start;
3649 
3650 	/* write out 32 kb */
3651 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
3652 	memset(blank, 0, sector_size);
3653 	error = 0;
3654 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3655 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3656 			blank, sector, 1);
3657 		if (error)
3658 			break;
3659 	}
3660 	if (!error) {
3661 		/* write out our ISO VRS */
3662 		KASSERT(sector == iso9660_vrs);
3663 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3664 				sector, vrs_len);
3665 		sector += vrs_len;
3666 	}
3667 	if (!error) {
3668 		/* fill upto the first anchor at S+256 */
3669 		for (; sector < write_track_start+256; sector++) {
3670 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3671 				blank, sector, 1);
3672 			if (error)
3673 				break;
3674 		}
3675 	}
3676 	if (!error) {
3677 		/* write out anchor; write at ABSOLUTE place! */
3678 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3679 			(union dscrptr *) ump->anchors[0], sector, sector);
3680 		if (error)
3681 			printf("writeout of anchor failed!\n");
3682 	}
3683 
3684 	free(blank, M_TEMP);
3685 	free(buffer, M_TEMP);
3686 
3687 	if (error)
3688 		printf("udf_open_session: error writing iso vrs! : "
3689 				"leaving disc in compromised state!\n");
3690 
3691 	/* synchronise device caches */
3692 	(void) udf_synchronise_caches(ump);
3693 
3694 	return error;
3695 }
3696 
3697 
3698 int
3699 udf_open_logvol(struct udf_mount *ump)
3700 {
3701 	int logvol_integrity;
3702 	int error;
3703 
3704 	/* already/still open? */
3705 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3706 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
3707 		return 0;
3708 
3709 	/* can we open it ? */
3710 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3711 		return EROFS;
3712 
3713 	/* setup write parameters */
3714 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3715 	if ((error = udf_setup_writeparams(ump)) != 0)
3716 		return error;
3717 
3718 	/* determine data and metadata tracks (most likely same) */
3719 	error = udf_search_writing_tracks(ump);
3720 	if (error) {
3721 		/* most likely lack of space */
3722 		printf("udf_open_logvol: error searching writing tracks\n");
3723 		return EROFS;
3724 	}
3725 
3726 	/* writeout/update lvint on disc or only in memory */
3727 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
3728 	if (ump->lvopen & UDF_OPEN_SESSION) {
3729 		/* TODO optional track reservation opening */
3730 		error = udf_validate_session_start(ump);
3731 		if (error)
3732 			return error;
3733 
3734 		/* determine data and metadata tracks again */
3735 		error = udf_search_writing_tracks(ump);
3736 	}
3737 
3738 	/* mark it open */
3739 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3740 
3741 	/* do we need to write it out? */
3742 	if (ump->lvopen & UDF_WRITE_LVINT) {
3743 		error = udf_writeout_lvint(ump, ump->lvopen);
3744 		/* if we couldn't write it mark it closed again */
3745 		if (error) {
3746 			ump->logvol_integrity->integrity_type =
3747 						udf_rw32(UDF_INTEGRITY_CLOSED);
3748 			return error;
3749 		}
3750 	}
3751 
3752 	return 0;
3753 }
3754 
3755 
3756 int
3757 udf_close_logvol(struct udf_mount *ump, int mntflags)
3758 {
3759 	struct vnode *devvp = ump->devvp;
3760 	struct mmc_op mmc_op;
3761 	int logvol_integrity;
3762 	int error = 0, error1 = 0, error2 = 0;
3763 	int tracknr;
3764 	int nvats, n, nok;
3765 
3766 	/* already/still closed? */
3767 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3768 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3769 		return 0;
3770 
3771 	/* writeout/update lvint or write out VAT */
3772 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3773 #ifdef DIAGNOSTIC
3774 	if (ump->lvclose & UDF_CLOSE_SESSION)
3775 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
3776 #endif
3777 
3778 	if (ump->lvclose & UDF_WRITE_VAT) {
3779 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3780 
3781 		/* write out the VAT data and all its descriptors */
3782 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
3783 		udf_writeout_vat(ump);
3784 		(void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
3785 
3786 		(void) VOP_FSYNC(ump->vat_node->vnode,
3787 				FSCRED, FSYNC_WAIT, 0, 0);
3788 
3789 		if (ump->lvclose & UDF_CLOSE_SESSION) {
3790 			DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3791 				"as requested\n"));
3792 		}
3793 
3794 		/* at least two DVD packets and 3 CD-R packets */
3795 		nvats = 32;
3796 
3797 #if notyet
3798 		/*
3799 		 * TODO calculate the available space and if the disc is
3800 		 * allmost full, write out till end-256-1 with banks, write
3801 		 * AVDP and fill up with VATs, then close session and close
3802 		 * disc.
3803 		 */
3804 		if (ump->lvclose & UDF_FINALISE_DISC) {
3805 			error = udf_write_phys_dscr_sync(ump, NULL,
3806 					UDF_C_FLOAT_DSCR,
3807 					(union dscrptr *) ump->anchors[0],
3808 					0, 0);
3809 			if (error)
3810 				printf("writeout of anchor failed!\n");
3811 
3812 			/* pad space with VAT ICBs */
3813 			nvats = 256;
3814 		}
3815 #endif
3816 
3817 		/* write out a number of VAT nodes */
3818 		nok = 0;
3819 		for (n = 0; n < nvats; n++) {
3820 			/* will now only write last FE/EFE */
3821 			ump->vat_node->i_flags |= IN_MODIFIED;
3822 			error = VOP_FSYNC(ump->vat_node->vnode,
3823 					FSCRED, FSYNC_WAIT, 0, 0);
3824 			if (!error)
3825 				nok++;
3826 		}
3827 		if (nok < 14) {
3828 			/* arbitrary; but at least one or two CD frames */
3829 			printf("writeout of at least 14 VATs failed\n");
3830 			return error;
3831 		}
3832 	}
3833 
3834 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
3835 
3836 	/* finish closing of session */
3837 	if (ump->lvclose & UDF_CLOSE_SESSION) {
3838 		error = udf_validate_session_start(ump);
3839 		if (error)
3840 			return error;
3841 
3842 		(void) udf_synchronise_caches(ump);
3843 
3844 		/* close all associated tracks */
3845 		tracknr = ump->discinfo.first_track_last_session;
3846 		error = 0;
3847 		while (tracknr <= ump->discinfo.last_track_last_session) {
3848 			DPRINTF(VOLUMES, ("\tclosing possible open "
3849 				"track %d\n", tracknr));
3850 			memset(&mmc_op, 0, sizeof(mmc_op));
3851 			mmc_op.operation   = MMC_OP_CLOSETRACK;
3852 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3853 			mmc_op.tracknr     = tracknr;
3854 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3855 					FKIOCTL, NOCRED);
3856 			if (error)
3857 				printf("udf_close_logvol: closing of "
3858 					"track %d failed\n", tracknr);
3859 			tracknr ++;
3860 		}
3861 		if (!error) {
3862 			DPRINTF(VOLUMES, ("closing session\n"));
3863 			memset(&mmc_op, 0, sizeof(mmc_op));
3864 			mmc_op.operation   = MMC_OP_CLOSESESSION;
3865 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3866 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
3867 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3868 					FKIOCTL, NOCRED);
3869 			if (error)
3870 				printf("udf_close_logvol: closing of session"
3871 						"failed\n");
3872 		}
3873 		if (!error)
3874 			ump->lvopen |= UDF_OPEN_SESSION;
3875 		if (error) {
3876 			printf("udf_close_logvol: leaving disc as it is\n");
3877 			ump->lvclose &= ~UDF_FINALISE_DISC;
3878 		}
3879 	}
3880 
3881 	if (ump->lvclose & UDF_FINALISE_DISC) {
3882 		memset(&mmc_op, 0, sizeof(mmc_op));
3883 		mmc_op.operation   = MMC_OP_FINALISEDISC;
3884 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3885 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
3886 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3887 				FKIOCTL, NOCRED);
3888 		if (error)
3889 			printf("udf_close_logvol: finalising disc"
3890 					"failed\n");
3891 	}
3892 
3893 	/* write out partition bitmaps if requested */
3894 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3895 		/* sync writeout metadata spacetable if existing */
3896 		error1 = udf_write_metadata_partition_spacetable(ump, true);
3897 		if (error1)
3898 			printf( "udf_close_logvol: writeout of metadata space "
3899 				"bitmap failed\n");
3900 
3901 		/* sync writeout partition spacetables */
3902 		error2 = udf_write_physical_partition_spacetables(ump, true);
3903 		if (error2)
3904 			printf( "udf_close_logvol: writeout of space tables "
3905 				"failed\n");
3906 
3907 		if (error1 || error2)
3908 			return (error1 | error2);
3909 
3910 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3911 	}
3912 
3913 	/* write out metadata partition nodes if requested */
3914 	if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3915 		/* sync writeout metadata descriptor node */
3916 		error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3917 		if (error1)
3918 			printf( "udf_close_logvol: writeout of metadata partition "
3919 				"node failed\n");
3920 
3921 		/* duplicate metadata partition descriptor if needed */
3922 		udf_synchronise_metadatamirror_node(ump);
3923 
3924 		/* sync writeout metadatamirror descriptor node */
3925 		error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3926 		if (error2)
3927 			printf( "udf_close_logvol: writeout of metadata partition "
3928 				"mirror node failed\n");
3929 
3930 		if (error1 || error2)
3931 			return (error1 | error2);
3932 
3933 		ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3934 	}
3935 
3936 	/* mark it closed */
3937 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3938 
3939 	/* do we need to write out the logical volume integrity? */
3940 	if (ump->lvclose & UDF_WRITE_LVINT)
3941 		error = udf_writeout_lvint(ump, ump->lvopen);
3942 	if (error) {
3943 		/* HELP now what? mark it open again for now */
3944 		ump->logvol_integrity->integrity_type =
3945 			udf_rw32(UDF_INTEGRITY_OPEN);
3946 		return error;
3947 	}
3948 
3949 	(void) udf_synchronise_caches(ump);
3950 
3951 	return 0;
3952 }
3953 
3954 /* --------------------------------------------------------------------- */
3955 
3956 /*
3957  * Genfs interfacing
3958  *
3959  * static const struct genfs_ops udf_genfsops = {
3960  * 	.gop_size = genfs_size,
3961  * 		size of transfers
3962  * 	.gop_alloc = udf_gop_alloc,
3963  * 		allocate len bytes at offset
3964  * 	.gop_write = genfs_gop_write,
3965  * 		putpages interface code
3966  * 	.gop_markupdate = udf_gop_markupdate,
3967  * 		set update/modify flags etc.
3968  * }
3969  */
3970 
3971 /*
3972  * Genfs interface. These four functions are the only ones defined though not
3973  * documented... great....
3974  */
3975 
3976 /*
3977  * Called for allocating an extent of the file either by VOP_WRITE() or by
3978  * genfs filling up gaps.
3979  */
3980 static int
3981 udf_gop_alloc(struct vnode *vp, off_t off,
3982     off_t len, int flags, kauth_cred_t cred)
3983 {
3984 	struct udf_node *udf_node = VTOI(vp);
3985 	struct udf_mount *ump = udf_node->ump;
3986 	uint64_t lb_start, lb_end;
3987 	uint32_t lb_size, num_lb;
3988 	int udf_c_type, vpart_num, can_fail;
3989 	int error;
3990 
3991 	DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3992 		off, len, flags? "SYNC":"NONE"));
3993 
3994 	/*
3995 	 * request the pages of our vnode and see how many pages will need to
3996 	 * be allocated and reserve that space
3997 	 */
3998 	lb_size  = udf_rw32(udf_node->ump->logical_vol->lb_size);
3999 	lb_start = off / lb_size;
4000 	lb_end   = (off + len + lb_size -1) / lb_size;
4001 	num_lb   = lb_end - lb_start;
4002 
4003 	udf_c_type = udf_get_c_type(udf_node);
4004 	vpart_num  = udf_get_record_vpart(ump, udf_c_type);
4005 
4006 	/* all requests can fail */
4007 	can_fail   = true;
4008 
4009 	/* fid's (directories) can't fail */
4010 	if (udf_c_type == UDF_C_FIDS)
4011 		can_fail   = false;
4012 
4013 	/* system files can't fail */
4014 	if (vp->v_vflag & VV_SYSTEM)
4015 		can_fail = false;
4016 
4017 	error = udf_reserve_space(ump, udf_node, udf_c_type,
4018 		vpart_num, num_lb, can_fail);
4019 
4020 	DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4021 		lb_start, lb_end, num_lb));
4022 
4023 	return error;
4024 }
4025 
4026 
4027 /*
4028  * callback from genfs to update our flags
4029  */
4030 static void
4031 udf_gop_markupdate(struct vnode *vp, int flags)
4032 {
4033 	struct udf_node *udf_node = VTOI(vp);
4034 	u_long mask = 0;
4035 
4036 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4037 		mask = IN_ACCESS;
4038 	}
4039 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4040 		if (vp->v_type == VREG) {
4041 			mask |= IN_CHANGE | IN_UPDATE;
4042 		} else {
4043 			mask |= IN_MODIFY;
4044 		}
4045 	}
4046 	if (mask) {
4047 		udf_node->i_flags |= mask;
4048 	}
4049 }
4050 
4051 
4052 static const struct genfs_ops udf_genfsops = {
4053 	.gop_size = genfs_size,
4054 	.gop_alloc = udf_gop_alloc,
4055 	.gop_write = genfs_gop_write_rwmap,
4056 	.gop_markupdate = udf_gop_markupdate,
4057 };
4058 
4059 
4060 /* --------------------------------------------------------------------- */
4061 
4062 int
4063 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4064 {
4065 	union dscrptr *dscr;
4066 	int error;
4067 
4068 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4069 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4070 
4071 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4072 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4073 	(void) udf_validate_tag_and_crc_sums(dscr);
4074 
4075 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4076 			dscr, sector, sector);
4077 
4078 	free(dscr, M_TEMP);
4079 
4080 	return error;
4081 }
4082 
4083 
4084 /* --------------------------------------------------------------------- */
4085 
4086 /* UDF<->unix converters */
4087 
4088 /* --------------------------------------------------------------------- */
4089 
4090 static mode_t
4091 udf_perm_to_unix_mode(uint32_t perm)
4092 {
4093 	mode_t mode;
4094 
4095 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
4096 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
4097 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4098 
4099 	return mode;
4100 }
4101 
4102 /* --------------------------------------------------------------------- */
4103 
4104 static uint32_t
4105 unix_mode_to_udf_perm(mode_t mode)
4106 {
4107 	uint32_t perm;
4108 
4109 	perm  = ((mode & S_IRWXO)     );
4110 	perm |= ((mode & S_IRWXG) << 2);
4111 	perm |= ((mode & S_IRWXU) << 4);
4112 	perm |= ((mode & S_IWOTH) << 3);
4113 	perm |= ((mode & S_IWGRP) << 5);
4114 	perm |= ((mode & S_IWUSR) << 7);
4115 
4116 	return perm;
4117 }
4118 
4119 /* --------------------------------------------------------------------- */
4120 
4121 static uint32_t
4122 udf_icb_to_unix_filetype(uint32_t icbftype)
4123 {
4124 	switch (icbftype) {
4125 	case UDF_ICB_FILETYPE_DIRECTORY :
4126 	case UDF_ICB_FILETYPE_STREAMDIR :
4127 		return S_IFDIR;
4128 	case UDF_ICB_FILETYPE_FIFO :
4129 		return S_IFIFO;
4130 	case UDF_ICB_FILETYPE_CHARDEVICE :
4131 		return S_IFCHR;
4132 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
4133 		return S_IFBLK;
4134 	case UDF_ICB_FILETYPE_RANDOMACCESS :
4135 	case UDF_ICB_FILETYPE_REALTIME :
4136 		return S_IFREG;
4137 	case UDF_ICB_FILETYPE_SYMLINK :
4138 		return S_IFLNK;
4139 	case UDF_ICB_FILETYPE_SOCKET :
4140 		return S_IFSOCK;
4141 	}
4142 	/* no idea what this is */
4143 	return 0;
4144 }
4145 
4146 /* --------------------------------------------------------------------- */
4147 
4148 void
4149 udf_to_unix_name(char *result, int result_len, char *id, int len,
4150 	struct charspec *chsp)
4151 {
4152 	uint16_t   *raw_name, *unix_name;
4153 	uint16_t   *inchp, ch;
4154 	uint8_t	   *outchp;
4155 	const char *osta_id = "OSTA Compressed Unicode";
4156 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
4157 
4158 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4159 	unix_name = raw_name + 1024;			/* split space in half */
4160 	assert(sizeof(char) == sizeof(uint8_t));
4161 	outchp = (uint8_t *) result;
4162 
4163 	is_osta_typ0  = (chsp->type == 0);
4164 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4165 	if (is_osta_typ0) {
4166 		/* TODO clean up */
4167 		*raw_name = *unix_name = 0;
4168 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4169 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4170 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4171 		/* output UTF8 */
4172 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4173 			ch = *inchp;
4174 			nout = wput_utf8(outchp, result_len, ch);
4175 			outchp += nout; result_len -= nout;
4176 			if (!ch) break;
4177 		}
4178 		*outchp++ = 0;
4179 	} else {
4180 		/* assume 8bit char length byte latin-1 */
4181 		assert(*id == 8);
4182 		assert(strlen((char *) (id+1)) <= NAME_MAX);
4183 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4184 	}
4185 	free(raw_name, M_UDFTEMP);
4186 }
4187 
4188 /* --------------------------------------------------------------------- */
4189 
4190 void
4191 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4192 	struct charspec *chsp)
4193 {
4194 	uint16_t   *raw_name;
4195 	uint16_t   *outchp;
4196 	const char *inchp;
4197 	const char *osta_id = "OSTA Compressed Unicode";
4198 	int         udf_chars, is_osta_typ0, bits;
4199 	size_t      cnt;
4200 
4201 	/* allocate temporary unicode-16 buffer */
4202 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4203 
4204 	/* convert utf8 to unicode-16 */
4205 	*raw_name = 0;
4206 	inchp  = name;
4207 	outchp = raw_name;
4208 	bits = 8;
4209 	for (cnt = name_len, udf_chars = 0; cnt;) {
4210 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4211 		*outchp = wget_utf8(&inchp, &cnt);
4212 		if (*outchp > 0xff)
4213 			bits=16;
4214 		outchp++;
4215 		udf_chars++;
4216 	}
4217 	/* null terminate just in case */
4218 	*outchp++ = 0;
4219 
4220 	is_osta_typ0  = (chsp->type == 0);
4221 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4222 	if (is_osta_typ0) {
4223 		udf_chars = udf_CompressUnicode(udf_chars, bits,
4224 				(unicode_t *) raw_name,
4225 				(byte *) result);
4226 	} else {
4227 		printf("unix to udf name: no CHSP0 ?\n");
4228 		/* XXX assume 8bit char length byte latin-1 */
4229 		*result++ = 8; udf_chars = 1;
4230 		strncpy(result, name + 1, name_len);
4231 		udf_chars += name_len;
4232 	}
4233 	*result_len = udf_chars;
4234 	free(raw_name, M_UDFTEMP);
4235 }
4236 
4237 /* --------------------------------------------------------------------- */
4238 
4239 void
4240 udf_timestamp_to_timespec(struct udf_mount *ump,
4241 			  struct timestamp *timestamp,
4242 			  struct timespec  *timespec)
4243 {
4244 	struct clock_ymdhms ymdhms;
4245 	uint32_t usecs, secs, nsecs;
4246 	uint16_t tz;
4247 
4248 	/* fill in ymdhms structure from timestamp */
4249 	memset(&ymdhms, 0, sizeof(ymdhms));
4250 	ymdhms.dt_year = udf_rw16(timestamp->year);
4251 	ymdhms.dt_mon  = timestamp->month;
4252 	ymdhms.dt_day  = timestamp->day;
4253 	ymdhms.dt_wday = 0; /* ? */
4254 	ymdhms.dt_hour = timestamp->hour;
4255 	ymdhms.dt_min  = timestamp->minute;
4256 	ymdhms.dt_sec  = timestamp->second;
4257 
4258 	secs = clock_ymdhms_to_secs(&ymdhms);
4259 	usecs = timestamp->usec +
4260 		100*timestamp->hund_usec + 10000*timestamp->centisec;
4261 	nsecs = usecs * 1000;
4262 
4263 	/*
4264 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
4265 	 * compliment, so we gotta do some extra magic to handle it right.
4266 	 */
4267 	tz  = udf_rw16(timestamp->type_tz);
4268 	tz &= 0x0fff;			/* only lower 12 bits are significant */
4269 	if (tz & 0x0800)		/* sign extention */
4270 		tz |= 0xf000;
4271 
4272 	/* TODO check timezone conversion */
4273 	/* check if we are specified a timezone to convert */
4274 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
4275 		if ((int16_t) tz != -2047)
4276 			secs -= (int16_t) tz * 60;
4277 	} else {
4278 		secs -= ump->mount_args.gmtoff;
4279 	}
4280 
4281 	timespec->tv_sec  = secs;
4282 	timespec->tv_nsec = nsecs;
4283 }
4284 
4285 
4286 void
4287 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4288 {
4289 	struct clock_ymdhms ymdhms;
4290 	uint32_t husec, usec, csec;
4291 
4292 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4293 
4294 	usec   = timespec->tv_nsec / 1000;
4295 	husec  =  usec / 100;
4296 	usec  -= husec * 100;				/* only 0-99 in usec  */
4297 	csec   = husec / 100;				/* only 0-99 in csec  */
4298 	husec -=  csec * 100;				/* only 0-99 in husec */
4299 
4300 	/* set method 1 for CUT/GMT */
4301 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
4302 	timestamp->year		= udf_rw16(ymdhms.dt_year);
4303 	timestamp->month	= ymdhms.dt_mon;
4304 	timestamp->day		= ymdhms.dt_day;
4305 	timestamp->hour		= ymdhms.dt_hour;
4306 	timestamp->minute	= ymdhms.dt_min;
4307 	timestamp->second	= ymdhms.dt_sec;
4308 	timestamp->centisec	= csec;
4309 	timestamp->hund_usec	= husec;
4310 	timestamp->usec		= usec;
4311 }
4312 
4313 /* --------------------------------------------------------------------- */
4314 
4315 /*
4316  * Attribute and filetypes converters with get/set pairs
4317  */
4318 
4319 uint32_t
4320 udf_getaccessmode(struct udf_node *udf_node)
4321 {
4322 	struct file_entry     *fe = udf_node->fe;
4323 	struct extfile_entry *efe = udf_node->efe;
4324 	uint32_t udf_perm, icbftype;
4325 	uint32_t mode, ftype;
4326 	uint16_t icbflags;
4327 
4328 	UDF_LOCK_NODE(udf_node, 0);
4329 	if (fe) {
4330 		udf_perm = udf_rw32(fe->perm);
4331 		icbftype = fe->icbtag.file_type;
4332 		icbflags = udf_rw16(fe->icbtag.flags);
4333 	} else {
4334 		assert(udf_node->efe);
4335 		udf_perm = udf_rw32(efe->perm);
4336 		icbftype = efe->icbtag.file_type;
4337 		icbflags = udf_rw16(efe->icbtag.flags);
4338 	}
4339 
4340 	mode  = udf_perm_to_unix_mode(udf_perm);
4341 	ftype = udf_icb_to_unix_filetype(icbftype);
4342 
4343 	/* set suid, sgid, sticky from flags in fe/efe */
4344 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4345 		mode |= S_ISUID;
4346 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4347 		mode |= S_ISGID;
4348 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4349 		mode |= S_ISVTX;
4350 
4351 	UDF_UNLOCK_NODE(udf_node, 0);
4352 
4353 	return mode | ftype;
4354 }
4355 
4356 
4357 void
4358 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4359 {
4360 	struct file_entry    *fe  = udf_node->fe;
4361 	struct extfile_entry *efe = udf_node->efe;
4362 	uint32_t udf_perm;
4363 	uint16_t icbflags;
4364 
4365 	UDF_LOCK_NODE(udf_node, 0);
4366 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4367 	if (fe) {
4368 		icbflags = udf_rw16(fe->icbtag.flags);
4369 	} else {
4370 		icbflags = udf_rw16(efe->icbtag.flags);
4371 	}
4372 
4373 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4374 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4375 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4376 	if (mode & S_ISUID)
4377 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4378 	if (mode & S_ISGID)
4379 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4380 	if (mode & S_ISVTX)
4381 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4382 
4383 	if (fe) {
4384 		fe->perm  = udf_rw32(udf_perm);
4385 		fe->icbtag.flags  = udf_rw16(icbflags);
4386 	} else {
4387 		efe->perm = udf_rw32(udf_perm);
4388 		efe->icbtag.flags = udf_rw16(icbflags);
4389 	}
4390 
4391 	UDF_UNLOCK_NODE(udf_node, 0);
4392 }
4393 
4394 
4395 void
4396 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4397 {
4398 	struct udf_mount     *ump = udf_node->ump;
4399 	struct file_entry    *fe  = udf_node->fe;
4400 	struct extfile_entry *efe = udf_node->efe;
4401 	uid_t uid;
4402 	gid_t gid;
4403 
4404 	UDF_LOCK_NODE(udf_node, 0);
4405 	if (fe) {
4406 		uid = (uid_t)udf_rw32(fe->uid);
4407 		gid = (gid_t)udf_rw32(fe->gid);
4408 	} else {
4409 		assert(udf_node->efe);
4410 		uid = (uid_t)udf_rw32(efe->uid);
4411 		gid = (gid_t)udf_rw32(efe->gid);
4412 	}
4413 
4414 	/* do the uid/gid translation game */
4415 	if (uid == (uid_t) -1)
4416 		uid = ump->mount_args.anon_uid;
4417 	if (gid == (gid_t) -1)
4418 		gid = ump->mount_args.anon_gid;
4419 
4420 	*uidp = uid;
4421 	*gidp = gid;
4422 
4423 	UDF_UNLOCK_NODE(udf_node, 0);
4424 }
4425 
4426 
4427 void
4428 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4429 {
4430 	struct udf_mount     *ump = udf_node->ump;
4431 	struct file_entry    *fe  = udf_node->fe;
4432 	struct extfile_entry *efe = udf_node->efe;
4433 	uid_t nobody_uid;
4434 	gid_t nobody_gid;
4435 
4436 	UDF_LOCK_NODE(udf_node, 0);
4437 
4438 	/* do the uid/gid translation game */
4439 	nobody_uid = ump->mount_args.nobody_uid;
4440 	nobody_gid = ump->mount_args.nobody_gid;
4441 	if (uid == nobody_uid)
4442 		uid = (uid_t) -1;
4443 	if (gid == nobody_gid)
4444 		gid = (gid_t) -1;
4445 
4446 	if (fe) {
4447 		fe->uid  = udf_rw32((uint32_t) uid);
4448 		fe->gid  = udf_rw32((uint32_t) gid);
4449 	} else {
4450 		efe->uid = udf_rw32((uint32_t) uid);
4451 		efe->gid = udf_rw32((uint32_t) gid);
4452 	}
4453 
4454 	UDF_UNLOCK_NODE(udf_node, 0);
4455 }
4456 
4457 
4458 /* --------------------------------------------------------------------- */
4459 
4460 
4461 static int
4462 dirhash_fill(struct udf_node *dir_node)
4463 {
4464 	struct vnode *dvp = dir_node->vnode;
4465 	struct dirhash *dirh;
4466 	struct file_entry    *fe  = dir_node->fe;
4467 	struct extfile_entry *efe = dir_node->efe;
4468 	struct fileid_desc *fid;
4469 	struct dirent *dirent;
4470 	uint64_t file_size, pre_diroffset, diroffset;
4471 	uint32_t lb_size;
4472 	int error;
4473 
4474 	/* make sure we have a dirhash to work on */
4475 	dirh = dir_node->dir_hash;
4476 	KASSERT(dirh);
4477 	KASSERT(dirh->refcnt > 0);
4478 
4479 	if (dirh->flags & DIRH_BROKEN)
4480 		return EIO;
4481 	if (dirh->flags & DIRH_COMPLETE)
4482 		return 0;
4483 
4484 	/* make sure we have a clean dirhash to add to */
4485 	dirhash_purge_entries(dirh);
4486 
4487 	/* get directory filesize */
4488 	if (fe) {
4489 		file_size = udf_rw64(fe->inf_len);
4490 	} else {
4491 		assert(efe);
4492 		file_size = udf_rw64(efe->inf_len);
4493 	}
4494 
4495 	/* allocate temporary space for fid */
4496 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4497 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4498 
4499 	/* allocate temporary space for dirent */
4500 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4501 
4502 	error = 0;
4503 	diroffset = 0;
4504 	while (diroffset < file_size) {
4505 		/* transfer a new fid/dirent */
4506 		pre_diroffset = diroffset;
4507 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4508 		if (error) {
4509 			/* TODO what to do? continue but not add? */
4510 			dirh->flags |= DIRH_BROKEN;
4511 			dirhash_purge_entries(dirh);
4512 			break;
4513 		}
4514 
4515 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4516 			/* register deleted extent for reuse */
4517 			dirhash_enter_freed(dirh, pre_diroffset,
4518 				udf_fidsize(fid));
4519 		} else {
4520 			/* append to the dirhash */
4521 			dirhash_enter(dirh, dirent, pre_diroffset,
4522 				udf_fidsize(fid), 0);
4523 		}
4524 	}
4525 	dirh->flags |= DIRH_COMPLETE;
4526 
4527 	free(fid, M_UDFTEMP);
4528 	free(dirent, M_UDFTEMP);
4529 
4530 	return error;
4531 }
4532 
4533 
4534 /* --------------------------------------------------------------------- */
4535 
4536 /*
4537  * Directory read and manipulation functions.
4538  *
4539  */
4540 
4541 int
4542 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4543        struct long_ad *icb_loc, int *found)
4544 {
4545 	struct udf_node  *dir_node = VTOI(vp);
4546 	struct dirhash       *dirh;
4547 	struct dirhash_entry *dirh_ep;
4548 	struct fileid_desc *fid;
4549 	struct dirent *dirent;
4550 	uint64_t diroffset;
4551 	uint32_t lb_size;
4552 	int hit, error;
4553 
4554 	/* set default return */
4555 	*found = 0;
4556 
4557 	/* get our dirhash and make sure its read in */
4558 	dirhash_get(&dir_node->dir_hash);
4559 	error = dirhash_fill(dir_node);
4560 	if (error) {
4561 		dirhash_put(dir_node->dir_hash);
4562 		return error;
4563 	}
4564 	dirh = dir_node->dir_hash;
4565 
4566 	/* allocate temporary space for fid */
4567 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4568 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4569 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4570 
4571 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4572 		namelen, namelen, name));
4573 
4574 	/* search our dirhash hits */
4575 	memset(icb_loc, 0, sizeof(*icb_loc));
4576 	dirh_ep = NULL;
4577 	for (;;) {
4578 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4579 		/* if no hit, abort the search */
4580 		if (!hit)
4581 			break;
4582 
4583 		/* check this hit */
4584 		diroffset = dirh_ep->offset;
4585 
4586 		/* transfer a new fid/dirent */
4587 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4588 		if (error)
4589 			break;
4590 
4591 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4592 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4593 
4594 		/* see if its our entry */
4595 #ifdef DIAGNOSTIC
4596 		if (dirent->d_namlen != namelen) {
4597 			printf("WARNING: dirhash_lookup() returned wrong "
4598 				"d_namelen: %d and ought to be %d\n",
4599 				dirent->d_namlen, namelen);
4600 			printf("\tlooked for `%s' and got `%s'\n",
4601 				name, dirent->d_name);
4602 		}
4603 #endif
4604 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4605 			*found = 1;
4606 			*icb_loc = fid->icb;
4607 			break;
4608 		}
4609 	}
4610 	free(fid, M_UDFTEMP);
4611 	free(dirent, M_UDFTEMP);
4612 
4613 	dirhash_put(dir_node->dir_hash);
4614 
4615 	return error;
4616 }
4617 
4618 /* --------------------------------------------------------------------- */
4619 
4620 static int
4621 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4622 	struct long_ad *node_icb, struct long_ad *parent_icb,
4623 	uint64_t parent_unique_id)
4624 {
4625 	struct timespec now;
4626 	struct icb_tag *icb;
4627 	struct filetimes_extattr_entry *ft_extattr;
4628 	uint64_t unique_id;
4629 	uint32_t fidsize, lb_num;
4630 	uint8_t *bpos;
4631 	int crclen, attrlen;
4632 
4633 	lb_num = udf_rw32(node_icb->loc.lb_num);
4634 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4635 	icb = &fe->icbtag;
4636 
4637 	/*
4638 	 * Always use strategy type 4 unless on WORM wich we don't support
4639 	 * (yet). Fill in defaults and set for internal allocation of data.
4640 	 */
4641 	icb->strat_type      = udf_rw16(4);
4642 	icb->max_num_entries = udf_rw16(1);
4643 	icb->file_type       = file_type;	/* 8 bit */
4644 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4645 
4646 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4647 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
4648 
4649 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4650 
4651 	vfs_timestamp(&now);
4652 	udf_timespec_to_timestamp(&now, &fe->atime);
4653 	udf_timespec_to_timestamp(&now, &fe->attrtime);
4654 	udf_timespec_to_timestamp(&now, &fe->mtime);
4655 
4656 	udf_set_regid(&fe->imp_id, IMPL_NAME);
4657 	udf_add_impl_regid(ump, &fe->imp_id);
4658 
4659 	unique_id = udf_advance_uniqueid(ump);
4660 	fe->unique_id = udf_rw64(unique_id);
4661 	fe->l_ea = udf_rw32(0);
4662 
4663 	/* create extended attribute to record our creation time */
4664 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4665 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4666 	memset(ft_extattr, 0, attrlen);
4667 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4668 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
4669 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4670 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4671 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4672 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4673 
4674 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4675 		(struct extattr_entry *) ft_extattr);
4676 	free(ft_extattr, M_UDFTEMP);
4677 
4678 	/* if its a directory, create '..' */
4679 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4680 	fidsize = 0;
4681 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4682 		fidsize = udf_create_parentfid(ump,
4683 			(struct fileid_desc *) bpos, parent_icb,
4684 			parent_unique_id);
4685 	}
4686 
4687 	/* record fidlength information */
4688 	fe->inf_len = udf_rw64(fidsize);
4689 	fe->l_ad    = udf_rw32(fidsize);
4690 	fe->logblks_rec = udf_rw64(0);		/* intern */
4691 
4692 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4693 	crclen += udf_rw32(fe->l_ea) + fidsize;
4694 	fe->tag.desc_crc_len = udf_rw16(crclen);
4695 
4696 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4697 
4698 	return fidsize;
4699 }
4700 
4701 /* --------------------------------------------------------------------- */
4702 
4703 static int
4704 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4705 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4706 	uint64_t parent_unique_id)
4707 {
4708 	struct timespec now;
4709 	struct icb_tag *icb;
4710 	uint64_t unique_id;
4711 	uint32_t fidsize, lb_num;
4712 	uint8_t *bpos;
4713 	int crclen;
4714 
4715 	lb_num = udf_rw32(node_icb->loc.lb_num);
4716 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4717 	icb = &efe->icbtag;
4718 
4719 	/*
4720 	 * Always use strategy type 4 unless on WORM wich we don't support
4721 	 * (yet). Fill in defaults and set for internal allocation of data.
4722 	 */
4723 	icb->strat_type      = udf_rw16(4);
4724 	icb->max_num_entries = udf_rw16(1);
4725 	icb->file_type       = file_type;	/* 8 bit */
4726 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4727 
4728 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4729 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
4730 
4731 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4732 
4733 	vfs_timestamp(&now);
4734 	udf_timespec_to_timestamp(&now, &efe->ctime);
4735 	udf_timespec_to_timestamp(&now, &efe->atime);
4736 	udf_timespec_to_timestamp(&now, &efe->attrtime);
4737 	udf_timespec_to_timestamp(&now, &efe->mtime);
4738 
4739 	udf_set_regid(&efe->imp_id, IMPL_NAME);
4740 	udf_add_impl_regid(ump, &efe->imp_id);
4741 
4742 	unique_id = udf_advance_uniqueid(ump);
4743 	efe->unique_id = udf_rw64(unique_id);
4744 	efe->l_ea = udf_rw32(0);
4745 
4746 	/* if its a directory, create '..' */
4747 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4748 	fidsize = 0;
4749 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4750 		fidsize = udf_create_parentfid(ump,
4751 			(struct fileid_desc *) bpos, parent_icb,
4752 			parent_unique_id);
4753 	}
4754 
4755 	/* record fidlength information */
4756 	efe->obj_size = udf_rw64(fidsize);
4757 	efe->inf_len  = udf_rw64(fidsize);
4758 	efe->l_ad     = udf_rw32(fidsize);
4759 	efe->logblks_rec = udf_rw64(0);		/* intern */
4760 
4761 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4762 	crclen += udf_rw32(efe->l_ea) + fidsize;
4763 	efe->tag.desc_crc_len = udf_rw16(crclen);
4764 
4765 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4766 
4767 	return fidsize;
4768 }
4769 
4770 /* --------------------------------------------------------------------- */
4771 
4772 int
4773 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4774 	struct udf_node *udf_node, struct componentname *cnp)
4775 {
4776 	struct vnode *dvp = dir_node->vnode;
4777 	struct dirhash       *dirh;
4778 	struct dirhash_entry *dirh_ep;
4779 	struct file_entry    *fe  = dir_node->fe;
4780 	struct extfile_entry *efe = dir_node->efe;
4781 	struct fileid_desc *fid;
4782 	struct dirent *dirent;
4783 	uint64_t file_size, diroffset;
4784 	uint32_t lb_size, fidsize;
4785 	int found, error;
4786 	char const *name  = cnp->cn_nameptr;
4787 	int namelen = cnp->cn_namelen;
4788 	int hit, refcnt;
4789 
4790 	/* get our dirhash and make sure its read in */
4791 	dirhash_get(&dir_node->dir_hash);
4792 	error = dirhash_fill(dir_node);
4793 	if (error) {
4794 		dirhash_put(dir_node->dir_hash);
4795 		return error;
4796 	}
4797 	dirh = dir_node->dir_hash;
4798 
4799 	/* get directory filesize */
4800 	if (fe) {
4801 		file_size = udf_rw64(fe->inf_len);
4802 	} else {
4803 		assert(efe);
4804 		file_size = udf_rw64(efe->inf_len);
4805 	}
4806 
4807 	/* allocate temporary space for fid */
4808 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4809 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4810 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4811 
4812 	/* search our dirhash hits */
4813 	found = 0;
4814 	dirh_ep = NULL;
4815 	for (;;) {
4816 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4817 		/* if no hit, abort the search */
4818 		if (!hit)
4819 			break;
4820 
4821 		/* check this hit */
4822 		diroffset = dirh_ep->offset;
4823 
4824 		/* transfer a new fid/dirent */
4825 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4826 		if (error)
4827 			break;
4828 
4829 		/* see if its our entry */
4830 		KASSERT(dirent->d_namlen == namelen);
4831 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4832 			found = 1;
4833 			break;
4834 		}
4835 	}
4836 
4837 	if (!found)
4838 		error = ENOENT;
4839 	if (error)
4840 		goto error_out;
4841 
4842 	/* mark deleted */
4843 	fid->file_char |= UDF_FILE_CHAR_DEL;
4844 #ifdef UDF_COMPLETE_DELETE
4845 	memset(&fid->icb, 0, sizeof(fid->icb));
4846 #endif
4847 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4848 
4849 	/* get size of fid and compensate for the read_fid_stream advance */
4850 	fidsize = udf_fidsize(fid);
4851 	diroffset -= fidsize;
4852 
4853 	/* write out */
4854 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4855 			fid, fidsize, diroffset,
4856 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4857 			FSCRED, NULL, NULL);
4858 	if (error)
4859 		goto error_out;
4860 
4861 	/* get reference count of attached node */
4862 	if (udf_node->fe) {
4863 		refcnt = udf_rw16(udf_node->fe->link_cnt);
4864 	} else {
4865 		KASSERT(udf_node->efe);
4866 		refcnt = udf_rw16(udf_node->efe->link_cnt);
4867 	}
4868 #ifdef UDF_COMPLETE_DELETE
4869 	/* substract reference counter in attached node */
4870 	refcnt -= 1;
4871 	if (udf_node->fe) {
4872 		udf_node->fe->link_cnt = udf_rw16(refcnt);
4873 	} else {
4874 		udf_node->efe->link_cnt = udf_rw16(refcnt);
4875 	}
4876 
4877 	/* prevent writeout when refcnt == 0 */
4878 	if (refcnt == 0)
4879 		udf_node->i_flags |= IN_DELETED;
4880 
4881 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
4882 		int drefcnt;
4883 
4884 		/* substract reference counter in directory node */
4885 		/* note subtract 2 (?) for its was also backreferenced */
4886 		if (dir_node->fe) {
4887 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
4888 			drefcnt -= 1;
4889 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
4890 		} else {
4891 			KASSERT(dir_node->efe);
4892 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
4893 			drefcnt -= 1;
4894 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
4895 		}
4896 	}
4897 
4898 	udf_node->i_flags |= IN_MODIFIED;
4899 	dir_node->i_flags |= IN_MODIFIED;
4900 #endif
4901 	/* if it is/was a hardlink adjust the file count */
4902 	if (refcnt > 0)
4903 		udf_adjust_filecount(udf_node, -1);
4904 
4905 	/* remove from the dirhash */
4906 	dirhash_remove(dirh, dirent, diroffset,
4907 		udf_fidsize(fid));
4908 
4909 error_out:
4910 	free(fid, M_UDFTEMP);
4911 	free(dirent, M_UDFTEMP);
4912 
4913 	dirhash_put(dir_node->dir_hash);
4914 
4915 	return error;
4916 }
4917 
4918 /* --------------------------------------------------------------------- */
4919 
4920 int
4921 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4922 	struct udf_node *new_parent_node)
4923 {
4924 	struct vnode *dvp = dir_node->vnode;
4925 	struct dirhash       *dirh;
4926 	struct dirhash_entry *dirh_ep;
4927 	struct file_entry    *fe;
4928 	struct extfile_entry *efe;
4929 	struct fileid_desc *fid;
4930 	struct dirent *dirent;
4931 	uint64_t file_size, diroffset;
4932 	uint64_t new_parent_unique_id;
4933 	uint32_t lb_size, fidsize;
4934 	int found, error;
4935 	char const *name  = "..";
4936 	int namelen = 2;
4937 	int hit;
4938 
4939 	/* get our dirhash and make sure its read in */
4940 	dirhash_get(&dir_node->dir_hash);
4941 	error = dirhash_fill(dir_node);
4942 	if (error) {
4943 		dirhash_put(dir_node->dir_hash);
4944 		return error;
4945 	}
4946 	dirh = dir_node->dir_hash;
4947 
4948 	/* get new parent's unique ID */
4949 	fe  = new_parent_node->fe;
4950 	efe = new_parent_node->efe;
4951 	if (fe) {
4952 		new_parent_unique_id = udf_rw64(fe->unique_id);
4953 	} else {
4954 		assert(efe);
4955 		new_parent_unique_id = udf_rw64(efe->unique_id);
4956 	}
4957 
4958 	/* get directory filesize */
4959 	fe  = dir_node->fe;
4960 	efe = dir_node->efe;
4961 	if (fe) {
4962 		file_size = udf_rw64(fe->inf_len);
4963 	} else {
4964 		assert(efe);
4965 		file_size = udf_rw64(efe->inf_len);
4966 	}
4967 
4968 	/* allocate temporary space for fid */
4969 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4970 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4971 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4972 
4973 	/*
4974 	 * NOTE the standard does not dictate the FID entry '..' should be
4975 	 * first, though in practice it will most likely be.
4976 	 */
4977 
4978 	/* search our dirhash hits */
4979 	found = 0;
4980 	dirh_ep = NULL;
4981 	for (;;) {
4982 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4983 		/* if no hit, abort the search */
4984 		if (!hit)
4985 			break;
4986 
4987 		/* check this hit */
4988 		diroffset = dirh_ep->offset;
4989 
4990 		/* transfer a new fid/dirent */
4991 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4992 		if (error)
4993 			break;
4994 
4995 		/* see if its our entry */
4996 		KASSERT(dirent->d_namlen == namelen);
4997 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4998 			found = 1;
4999 			break;
5000 		}
5001 	}
5002 
5003 	if (!found)
5004 		error = ENOENT;
5005 	if (error)
5006 		goto error_out;
5007 
5008 	/* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
5009 	fid->icb = new_parent_node->write_loc;
5010 	fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
5011 
5012 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5013 
5014 	/* get size of fid and compensate for the read_fid_stream advance */
5015 	fidsize = udf_fidsize(fid);
5016 	diroffset -= fidsize;
5017 
5018 	/* write out */
5019 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5020 			fid, fidsize, diroffset,
5021 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5022 			FSCRED, NULL, NULL);
5023 
5024 	/* nothing to be done in the dirhash */
5025 
5026 error_out:
5027 	free(fid, M_UDFTEMP);
5028 	free(dirent, M_UDFTEMP);
5029 
5030 	dirhash_put(dir_node->dir_hash);
5031 
5032 	return error;
5033 }
5034 
5035 /* --------------------------------------------------------------------- */
5036 
5037 /*
5038  * We are not allowed to split the fid tag itself over an logical block so
5039  * check the space remaining in the logical block.
5040  *
5041  * We try to select the smallest candidate for recycling or when none is
5042  * found, append a new one at the end of the directory.
5043  */
5044 
5045 int
5046 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5047 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5048 {
5049 	struct vnode *dvp = dir_node->vnode;
5050 	struct dirhash       *dirh;
5051 	struct dirhash_entry *dirh_ep;
5052 	struct fileid_desc   *fid;
5053 	struct icb_tag       *icbtag;
5054 	struct charspec osta_charspec;
5055 	struct dirent   dirent;
5056 	uint64_t unique_id, dir_size;
5057 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5058 	uint32_t chosen_size, chosen_size_diff;
5059 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5060 	int file_char, refcnt, icbflags, addr_type, hit, error;
5061 
5062 	/* get our dirhash and make sure its read in */
5063 	dirhash_get(&dir_node->dir_hash);
5064 	error = dirhash_fill(dir_node);
5065 	if (error) {
5066 		dirhash_put(dir_node->dir_hash);
5067 		return error;
5068 	}
5069 	dirh = dir_node->dir_hash;
5070 
5071 	/* get info */
5072 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5073 	udf_osta_charset(&osta_charspec);
5074 
5075 	if (dir_node->fe) {
5076 		dir_size = udf_rw64(dir_node->fe->inf_len);
5077 		icbtag   = &dir_node->fe->icbtag;
5078 	} else {
5079 		dir_size = udf_rw64(dir_node->efe->inf_len);
5080 		icbtag   = &dir_node->efe->icbtag;
5081 	}
5082 
5083 	icbflags   = udf_rw16(icbtag->flags);
5084 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5085 
5086 	if (udf_node->fe) {
5087 		unique_id = udf_rw64(udf_node->fe->unique_id);
5088 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
5089 	} else {
5090 		unique_id = udf_rw64(udf_node->efe->unique_id);
5091 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
5092 	}
5093 
5094 	if (refcnt > 0) {
5095 		unique_id = udf_advance_uniqueid(ump);
5096 		udf_adjust_filecount(udf_node, 1);
5097 	}
5098 
5099 	/* determine file characteristics */
5100 	file_char = 0;	/* visible non deleted file and not stream metadata */
5101 	if (vap->va_type == VDIR)
5102 		file_char = UDF_FILE_CHAR_DIR;
5103 
5104 	/* malloc scrap buffer */
5105 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5106 
5107 	/* calculate _minimum_ fid size */
5108 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
5109 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5110 	fidsize = UDF_FID_SIZE + fid->l_fi;
5111 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
5112 
5113 	/* find position that will fit the FID */
5114 	chosen_fid_pos   = dir_size;
5115 	chosen_size      = 0;
5116 	chosen_size_diff = UINT_MAX;
5117 
5118 	/* shut up gcc */
5119 	dirent.d_namlen = 0;
5120 
5121 	/* search our dirhash hits */
5122 	error = 0;
5123 	dirh_ep = NULL;
5124 	for (;;) {
5125 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5126 		/* if no hit, abort the search */
5127 		if (!hit)
5128 			break;
5129 
5130 		/* check this hit for size */
5131 		this_fidsize = dirh_ep->entry_size;
5132 
5133 		/* check this hit */
5134 		fid_pos     = dirh_ep->offset;
5135 		end_fid_pos = fid_pos + this_fidsize;
5136 		size_diff   = this_fidsize - fidsize;
5137 		lb_rest = lb_size - (end_fid_pos % lb_size);
5138 
5139 #ifndef UDF_COMPLETE_DELETE
5140 		/* transfer a new fid/dirent */
5141 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5142 		if (error)
5143 			goto error_out;
5144 
5145 		/* only reuse entries that are wiped */
5146 		/* check if the len + loc are marked zero */
5147 		if (udf_rw32(fid->icb.len) != 0)
5148 			continue;
5149 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
5150 			continue;
5151 		if (udf_rw16(fid->icb.loc.part_num) != 0)
5152 			continue;
5153 #endif	/* UDF_COMPLETE_DELETE */
5154 
5155 		/* select if not splitting the tag and its smaller */
5156 		if ((size_diff >= 0)  &&
5157 			(size_diff < chosen_size_diff) &&
5158 			(lb_rest >= sizeof(struct desc_tag)))
5159 		{
5160 			/* UDF 2.3.4.2+3 specifies rules for iu size */
5161 			if ((size_diff == 0) || (size_diff >= 32)) {
5162 				chosen_fid_pos   = fid_pos;
5163 				chosen_size      = this_fidsize;
5164 				chosen_size_diff = size_diff;
5165 			}
5166 		}
5167 	}
5168 
5169 
5170 	/* extend directory if no other candidate found */
5171 	if (chosen_size == 0) {
5172 		chosen_fid_pos   = dir_size;
5173 		chosen_size      = fidsize;
5174 		chosen_size_diff = 0;
5175 
5176 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5177 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
5178 			/* pre-grow directory to see if we're to switch */
5179 			udf_grow_node(dir_node, dir_size + chosen_size);
5180 
5181 			icbflags   = udf_rw16(icbtag->flags);
5182 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5183 		}
5184 
5185 		/* make sure the next fid desc_tag won't be splitted */
5186 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
5187 			end_fid_pos = chosen_fid_pos + chosen_size;
5188 			lb_rest = lb_size - (end_fid_pos % lb_size);
5189 
5190 			/* pad with implementation use regid if needed */
5191 			if (lb_rest < sizeof(struct desc_tag))
5192 				chosen_size += 32;
5193 		}
5194 	}
5195 	chosen_size_diff = chosen_size - fidsize;
5196 
5197 	/* populate the FID */
5198 	memset(fid, 0, lb_size);
5199 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5200 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
5201 	fid->file_char           = file_char;
5202 	fid->icb                 = udf_node->loc;
5203 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5204 	fid->l_iu                = udf_rw16(0);
5205 
5206 	if (chosen_size > fidsize) {
5207 		/* insert implementation-use regid to space it correctly */
5208 		fid->l_iu = udf_rw16(chosen_size_diff);
5209 
5210 		/* set implementation use */
5211 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5212 		udf_add_impl_regid(ump, (struct regid *) fid->data);
5213 	}
5214 
5215 	/* fill in name */
5216 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5217 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5218 
5219 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5220 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5221 
5222 	/* writeout FID/update parent directory */
5223 	error = vn_rdwr(UIO_WRITE, dvp,
5224 			fid, chosen_size, chosen_fid_pos,
5225 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5226 			FSCRED, NULL, NULL);
5227 
5228 	if (error)
5229 		goto error_out;
5230 
5231 	/* add reference counter in attached node */
5232 	if (udf_node->fe) {
5233 		refcnt = udf_rw16(udf_node->fe->link_cnt);
5234 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5235 	} else {
5236 		KASSERT(udf_node->efe);
5237 		refcnt = udf_rw16(udf_node->efe->link_cnt);
5238 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5239 	}
5240 
5241 	/* mark not deleted if it was... just in case, but do warn */
5242 	if (udf_node->i_flags & IN_DELETED) {
5243 		printf("udf: warning, marking a file undeleted\n");
5244 		udf_node->i_flags &= ~IN_DELETED;
5245 	}
5246 
5247 	if (file_char & UDF_FILE_CHAR_DIR) {
5248 		/* add reference counter in directory node for '..' */
5249 		if (dir_node->fe) {
5250 			refcnt = udf_rw16(dir_node->fe->link_cnt);
5251 			refcnt++;
5252 			dir_node->fe->link_cnt = udf_rw16(refcnt);
5253 		} else {
5254 			KASSERT(dir_node->efe);
5255 			refcnt = udf_rw16(dir_node->efe->link_cnt);
5256 			refcnt++;
5257 			dir_node->efe->link_cnt = udf_rw16(refcnt);
5258 		}
5259 	}
5260 
5261 	/* append to the dirhash */
5262 	/* NOTE do not use dirent anymore or it won't match later! */
5263 	udf_to_unix_name(dirent.d_name, NAME_MAX,
5264 		(char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5265 	dirent.d_namlen = strlen(dirent.d_name);
5266 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
5267 		udf_fidsize(fid), 1);
5268 
5269 	/* note updates */
5270 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5271 	/* VN_KNOTE(udf_node,  ...) */
5272 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5273 
5274 error_out:
5275 	free(fid, M_TEMP);
5276 
5277 	dirhash_put(dir_node->dir_hash);
5278 
5279 	return error;
5280 }
5281 
5282 /* --------------------------------------------------------------------- */
5283 
5284 /*
5285  * Each node can have an attached streamdir node though not recursively. These
5286  * are otherwise known as named substreams/named extended attributes that have
5287  * no size limitations.
5288  *
5289  * `Normal' extended attributes are indicated with a number and are recorded
5290  * in either the fe/efe descriptor itself for small descriptors or recorded in
5291  * the attached extended attribute file. Since these spaces can get
5292  * fragmented, care ought to be taken.
5293  *
5294  * Since the size of the space reserved for allocation descriptors is limited,
5295  * there is a mechanim provided for extending this space; this is done by a
5296  * special extent to allow schrinking of the allocations without breaking the
5297  * linkage to the allocation extent descriptor.
5298  */
5299 
5300 int
5301 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5302 	     struct udf_node **udf_noderes)
5303 {
5304 	union dscrptr   *dscr;
5305 	struct udf_node *udf_node;
5306 	struct vnode    *nvp;
5307 	struct long_ad   icb_loc, last_fe_icb_loc;
5308 	uint64_t file_size;
5309 	uint32_t lb_size, sector, dummy;
5310 	uint8_t  *file_data;
5311 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5312 	int slot, eof, error;
5313 
5314 	DPRINTF(NODE, ("udf_get_node called\n"));
5315 	*udf_noderes = udf_node = NULL;
5316 
5317 	/* lock to disallow simultanious creation of same udf_node */
5318 	mutex_enter(&ump->get_node_lock);
5319 
5320 	DPRINTF(NODE, ("\tlookup in hash table\n"));
5321 	/* lookup in hash table */
5322 	assert(ump);
5323 	assert(node_icb_loc);
5324 	udf_node = udf_node_lookup(ump, node_icb_loc);
5325 	if (udf_node) {
5326 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
5327 		/* vnode is returned locked */
5328 		*udf_noderes = udf_node;
5329 		mutex_exit(&ump->get_node_lock);
5330 		return 0;
5331 	}
5332 
5333 	/* garbage check: translate udf_node_icb_loc to sectornr */
5334 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
5335 	if (error) {
5336 		DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5337 		/* no use, this will fail anyway */
5338 		mutex_exit(&ump->get_node_lock);
5339 		return EINVAL;
5340 	}
5341 
5342 	/* build udf_node (do initialise!) */
5343 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5344 	memset(udf_node, 0, sizeof(struct udf_node));
5345 
5346 	DPRINTF(NODE, ("\tget new vnode\n"));
5347 	/* give it a vnode */
5348 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, NULL, &nvp);
5349 	if (error) {
5350 		pool_put(&udf_node_pool, udf_node);
5351 		mutex_exit(&ump->get_node_lock);
5352 		return error;
5353 	}
5354 
5355 	/* always return locked vnode */
5356 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5357 		/* recycle vnode and unlock; simultanious will fail too */
5358 		ungetnewvnode(nvp);
5359 		mutex_exit(&ump->get_node_lock);
5360 		return error;
5361 	}
5362 
5363 	/* initialise crosslinks, note location of fe/efe for hashing */
5364 	udf_node->ump    =  ump;
5365 	udf_node->vnode  =  nvp;
5366 	nvp->v_data      =  udf_node;
5367 	udf_node->loc    = *node_icb_loc;
5368 	udf_node->lockf  =  0;
5369 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5370 	cv_init(&udf_node->node_lock, "udf_nlk");
5371 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
5372 	udf_node->outstanding_bufs = 0;
5373 	udf_node->outstanding_nodedscr = 0;
5374 	udf_node->uncommitted_lbs = 0;
5375 
5376 	/* check if we're fetching the root */
5377 	if (ump->fileset_desc)
5378 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5379 		    sizeof(struct long_ad)) == 0)
5380 			nvp->v_vflag |= VV_ROOT;
5381 
5382 	/* insert into the hash lookup */
5383 	udf_register_node(udf_node);
5384 
5385 	/* safe to unlock, the entry is in the hash table, vnode is locked */
5386 	mutex_exit(&ump->get_node_lock);
5387 
5388 	icb_loc = *node_icb_loc;
5389 	needs_indirect = 0;
5390 	strat4096 = 0;
5391 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5392 	file_size = 0;
5393 	file_data = NULL;
5394 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5395 
5396 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
5397 	do {
5398 		/* try to read in fe/efe */
5399 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5400 
5401 		/* blank sector marks end of sequence, check this */
5402 		if ((dscr == NULL) &&  (!strat4096))
5403 			error = ENOENT;
5404 
5405 		/* break if read error or blank sector */
5406 		if (error || (dscr == NULL))
5407 			break;
5408 
5409 		/* process descriptor based on the descriptor type */
5410 		dscr_type = udf_rw16(dscr->tag.id);
5411 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5412 
5413 		/* if dealing with an indirect entry, follow the link */
5414 		if (dscr_type == TAGID_INDIRECTENTRY) {
5415 			needs_indirect = 0;
5416 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5417 			icb_loc = dscr->inde.indirect_icb;
5418 			continue;
5419 		}
5420 
5421 		/* only file entries and extended file entries allowed here */
5422 		if ((dscr_type != TAGID_FENTRY) &&
5423 		    (dscr_type != TAGID_EXTFENTRY)) {
5424 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5425 			error = ENOENT;
5426 			break;
5427 		}
5428 
5429 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5430 
5431 		/* choose this one */
5432 		last_fe_icb_loc = icb_loc;
5433 
5434 		/* record and process/update (ext)fentry */
5435 		file_data = NULL;
5436 		if (dscr_type == TAGID_FENTRY) {
5437 			if (udf_node->fe)
5438 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5439 					udf_node->fe);
5440 			udf_node->fe  = &dscr->fe;
5441 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5442 			udf_file_type = udf_node->fe->icbtag.file_type;
5443 			file_size = udf_rw64(udf_node->fe->inf_len);
5444 			file_data = udf_node->fe->data;
5445 		} else {
5446 			if (udf_node->efe)
5447 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5448 					udf_node->efe);
5449 			udf_node->efe = &dscr->efe;
5450 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5451 			udf_file_type = udf_node->efe->icbtag.file_type;
5452 			file_size = udf_rw64(udf_node->efe->inf_len);
5453 			file_data = udf_node->efe->data;
5454 		}
5455 
5456 		/* check recording strategy (structure) */
5457 
5458 		/*
5459 		 * Strategy 4096 is a daisy linked chain terminating with an
5460 		 * unrecorded sector or a TERM descriptor. The next
5461 		 * descriptor is to be found in the sector that follows the
5462 		 * current sector.
5463 		 */
5464 		if (strat == 4096) {
5465 			strat4096 = 1;
5466 			needs_indirect = 1;
5467 
5468 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5469 		}
5470 
5471 		/*
5472 		 * Strategy 4 is the normal strategy and terminates, but if
5473 		 * we're in strategy 4096, we can't have strategy 4 mixed in
5474 		 */
5475 
5476 		if (strat == 4) {
5477 			if (strat4096) {
5478 				error = EINVAL;
5479 				break;
5480 			}
5481 			break;		/* done */
5482 		}
5483 	} while (!error);
5484 
5485 	/* first round of cleanup code */
5486 	if (error) {
5487 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5488 		/* recycle udf_node */
5489 		udf_dispose_node(udf_node);
5490 
5491 		VOP_UNLOCK(nvp);
5492 		nvp->v_data = NULL;
5493 		ungetnewvnode(nvp);
5494 
5495 		return EINVAL;		/* error code ok? */
5496 	}
5497 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5498 
5499 	/* assert no references to dscr anymore beyong this point */
5500 	assert((udf_node->fe) || (udf_node->efe));
5501 	dscr = NULL;
5502 
5503 	/*
5504 	 * Remember where to record an updated version of the descriptor. If
5505 	 * there is a sequence of indirect entries, icb_loc will have been
5506 	 * updated. Its the write disipline to allocate new space and to make
5507 	 * sure the chain is maintained.
5508 	 *
5509 	 * `needs_indirect' flags if the next location is to be filled with
5510 	 * with an indirect entry.
5511 	 */
5512 	udf_node->write_loc = icb_loc;
5513 	udf_node->needs_indirect = needs_indirect;
5514 
5515 	/*
5516 	 * Go trough all allocations extents of this descriptor and when
5517 	 * encountering a redirect read in the allocation extension. These are
5518 	 * daisy-chained.
5519 	 */
5520 	UDF_LOCK_NODE(udf_node, 0);
5521 	udf_node->num_extensions = 0;
5522 
5523 	error   = 0;
5524 	slot    = 0;
5525 	for (;;) {
5526 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5527 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5528 			"lb_num = %d, part = %d\n", slot, eof,
5529 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5530 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5531 			udf_rw32(icb_loc.loc.lb_num),
5532 			udf_rw16(icb_loc.loc.part_num)));
5533 		if (eof)
5534 			break;
5535 		slot++;
5536 
5537 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5538 			continue;
5539 
5540 		DPRINTF(NODE, ("\tgot redirect extent\n"));
5541 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5542 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5543 					"too many allocation extensions on "
5544 					"udf_node\n"));
5545 			error = EINVAL;
5546 			break;
5547 		}
5548 
5549 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5550 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5551 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5552 					"extension size in udf_node\n"));
5553 			error = EINVAL;
5554 			break;
5555 		}
5556 
5557 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5558 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5559 		/* load in allocation extent */
5560 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5561 		if (error || (dscr == NULL))
5562 			break;
5563 
5564 		/* process read-in descriptor */
5565 		dscr_type = udf_rw16(dscr->tag.id);
5566 
5567 		if (dscr_type != TAGID_ALLOCEXTENT) {
5568 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5569 			error = ENOENT;
5570 			break;
5571 		}
5572 
5573 		DPRINTF(NODE, ("\trecording redirect extent\n"));
5574 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5575 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5576 
5577 		udf_node->num_extensions++;
5578 
5579 	} /* while */
5580 	UDF_UNLOCK_NODE(udf_node, 0);
5581 
5582 	/* second round of cleanup code */
5583 	if (error) {
5584 		/* recycle udf_node */
5585 		udf_dispose_node(udf_node);
5586 
5587 		VOP_UNLOCK(nvp);
5588 		nvp->v_data = NULL;
5589 		ungetnewvnode(nvp);
5590 
5591 		return EINVAL;		/* error code ok? */
5592 	}
5593 
5594 	DPRINTF(NODE, ("\tnode read in fine\n"));
5595 
5596 	/*
5597 	 * Translate UDF filetypes into vnode types.
5598 	 *
5599 	 * Systemfiles like the meta main and mirror files are not treated as
5600 	 * normal files, so we type them as having no type. UDF dictates that
5601 	 * they are not allowed to be visible.
5602 	 */
5603 
5604 	switch (udf_file_type) {
5605 	case UDF_ICB_FILETYPE_DIRECTORY :
5606 	case UDF_ICB_FILETYPE_STREAMDIR :
5607 		nvp->v_type = VDIR;
5608 		break;
5609 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
5610 		nvp->v_type = VBLK;
5611 		break;
5612 	case UDF_ICB_FILETYPE_CHARDEVICE :
5613 		nvp->v_type = VCHR;
5614 		break;
5615 	case UDF_ICB_FILETYPE_SOCKET :
5616 		nvp->v_type = VSOCK;
5617 		break;
5618 	case UDF_ICB_FILETYPE_FIFO :
5619 		nvp->v_type = VFIFO;
5620 		break;
5621 	case UDF_ICB_FILETYPE_SYMLINK :
5622 		nvp->v_type = VLNK;
5623 		break;
5624 	case UDF_ICB_FILETYPE_VAT :
5625 	case UDF_ICB_FILETYPE_META_MAIN :
5626 	case UDF_ICB_FILETYPE_META_MIRROR :
5627 		nvp->v_type = VNON;
5628 		break;
5629 	case UDF_ICB_FILETYPE_RANDOMACCESS :
5630 	case UDF_ICB_FILETYPE_REALTIME :
5631 		nvp->v_type = VREG;
5632 		break;
5633 	default:
5634 		/* YIKES, something else */
5635 		nvp->v_type = VNON;
5636 	}
5637 
5638 	/* TODO specfs, fifofs etc etc. vnops setting */
5639 
5640 	/* don't forget to set vnode's v_size */
5641 	uvm_vnp_setsize(nvp, file_size);
5642 
5643 	/* TODO ext attr and streamdir udf_nodes */
5644 
5645 	*udf_noderes = udf_node;
5646 
5647 	return 0;
5648 }
5649 
5650 /* --------------------------------------------------------------------- */
5651 
5652 int
5653 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5654 {
5655 	union dscrptr *dscr;
5656 	struct long_ad *loc;
5657 	int extnr, error;
5658 
5659 	DPRINTF(NODE, ("udf_writeout_node called\n"));
5660 
5661 	KASSERT(udf_node->outstanding_bufs == 0);
5662 	KASSERT(udf_node->outstanding_nodedscr == 0);
5663 
5664 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5665 
5666 	if (udf_node->i_flags & IN_DELETED) {
5667 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5668 		udf_cleanup_reservation(udf_node);
5669 		return 0;
5670 	}
5671 
5672 	/* lock node; unlocked in callback */
5673 	UDF_LOCK_NODE(udf_node, 0);
5674 
5675 	/* remove pending reservations, we're written out */
5676 	udf_cleanup_reservation(udf_node);
5677 
5678 	/* at least one descriptor writeout */
5679 	udf_node->outstanding_nodedscr = 1;
5680 
5681 	/* we're going to write out the descriptor so clear the flags */
5682 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5683 
5684 	/* if we were rebuild, write out the allocation extents */
5685 	if (udf_node->i_flags & IN_NODE_REBUILD) {
5686 		/* mark outstanding node descriptors and issue them */
5687 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
5688 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5689 			loc = &udf_node->ext_loc[extnr];
5690 			dscr = (union dscrptr *) udf_node->ext[extnr];
5691 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5692 			if (error)
5693 				return error;
5694 		}
5695 		/* mark allocation extents written out */
5696 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
5697 	}
5698 
5699 	if (udf_node->fe) {
5700 		KASSERT(udf_node->efe == NULL);
5701 		dscr = (union dscrptr *) udf_node->fe;
5702 	} else {
5703 		KASSERT(udf_node->efe);
5704 		KASSERT(udf_node->fe == NULL);
5705 		dscr = (union dscrptr *) udf_node->efe;
5706 	}
5707 	KASSERT(dscr);
5708 
5709 	loc = &udf_node->write_loc;
5710 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5711 
5712 	return error;
5713 }
5714 
5715 /* --------------------------------------------------------------------- */
5716 
5717 int
5718 udf_dispose_node(struct udf_node *udf_node)
5719 {
5720 	struct vnode *vp;
5721 	int extnr;
5722 
5723 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5724 	if (!udf_node) {
5725 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5726 		return 0;
5727 	}
5728 
5729 	vp  = udf_node->vnode;
5730 #ifdef DIAGNOSTIC
5731 	if (vp->v_numoutput)
5732 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
5733 				"v_numoutput = %d", udf_node, vp->v_numoutput);
5734 #endif
5735 
5736 	udf_cleanup_reservation(udf_node);
5737 
5738 	/* TODO extended attributes and streamdir */
5739 
5740 	/* remove dirhash if present */
5741 	dirhash_purge(&udf_node->dir_hash);
5742 
5743 	/* remove from our hash lookup table */
5744 	udf_deregister_node(udf_node);
5745 
5746 	/* destroy our lock */
5747 	mutex_destroy(&udf_node->node_mutex);
5748 	cv_destroy(&udf_node->node_lock);
5749 
5750 	/* dissociate our udf_node from the vnode */
5751 	genfs_node_destroy(udf_node->vnode);
5752 	vp->v_data = NULL;
5753 
5754 	/* free associated memory and the node itself */
5755 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5756 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5757 			udf_node->ext[extnr]);
5758 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
5759 	}
5760 
5761 	if (udf_node->fe)
5762 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5763 			udf_node->fe);
5764 	if (udf_node->efe)
5765 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5766 			udf_node->efe);
5767 
5768 	udf_node->fe  = (void *) 0xdeadaaaa;
5769 	udf_node->efe = (void *) 0xdeadbbbb;
5770 	udf_node->ump = (void *) 0xdeadbeef;
5771 	pool_put(&udf_node_pool, udf_node);
5772 
5773 	return 0;
5774 }
5775 
5776 
5777 
5778 /*
5779  * create a new node using the specified vnodeops, vap and cnp but with the
5780  * udf_file_type. This allows special files to be created. Use with care.
5781  */
5782 
5783 static int
5784 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5785 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5786 {
5787 	union dscrptr *dscr;
5788 	struct udf_node *dir_node = VTOI(dvp);
5789 	struct udf_node *udf_node;
5790 	struct udf_mount *ump = dir_node->ump;
5791 	struct vnode *nvp;
5792 	struct long_ad node_icb_loc;
5793 	uint64_t parent_unique_id;
5794 	uint64_t lmapping;
5795 	uint32_t lb_size, lb_num;
5796 	uint16_t vpart_num;
5797 	uid_t uid;
5798 	gid_t gid, parent_gid;
5799 	int fid_size, error;
5800 
5801 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5802 	*vpp = NULL;
5803 
5804 	/* allocate vnode */
5805 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, NULL, &nvp);
5806 	if (error)
5807 		return error;
5808 
5809 	/* lock node */
5810 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5811 	if (error)
5812 		goto error_out_unget;
5813 
5814 	/* reserve space for one logical block */
5815 	vpart_num = ump->node_part;
5816 	error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5817 		vpart_num, 1, /* can_fail */ true);
5818 	if (error)
5819 		goto error_out_unlock;
5820 
5821 	/* allocate node */
5822 	error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5823 			vpart_num, 1, &lmapping);
5824 	if (error)
5825 		goto error_out_unreserve;
5826 	lb_num = lmapping;
5827 
5828 	/* initialise pointer to location */
5829 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
5830 	node_icb_loc.len = udf_rw32(lb_size);
5831 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
5832 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5833 
5834 	/* build udf_node (do initialise!) */
5835 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5836 	memset(udf_node, 0, sizeof(struct udf_node));
5837 
5838 	/* initialise crosslinks, note location of fe/efe for hashing */
5839 	/* bugalert: synchronise with udf_get_node() */
5840 	udf_node->ump       = ump;
5841 	udf_node->vnode     = nvp;
5842 	nvp->v_data         = udf_node;
5843 	udf_node->loc       = node_icb_loc;
5844 	udf_node->write_loc = node_icb_loc;
5845 	udf_node->lockf     = 0;
5846 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5847 	cv_init(&udf_node->node_lock, "udf_nlk");
5848 	udf_node->outstanding_bufs = 0;
5849 	udf_node->outstanding_nodedscr = 0;
5850 	udf_node->uncommitted_lbs = 0;
5851 
5852 	/* initialise genfs */
5853 	genfs_node_init(nvp, &udf_genfsops);
5854 
5855 	/* insert into the hash lookup */
5856 	udf_register_node(udf_node);
5857 
5858 	/* get parent's unique ID for refering '..' if its a directory */
5859 	if (dir_node->fe) {
5860 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5861 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
5862 	} else {
5863 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5864 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
5865 	}
5866 
5867 	/* get descriptor */
5868 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5869 
5870 	/* choose a fe or an efe for it */
5871 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5872 		udf_node->fe = &dscr->fe;
5873 		fid_size = udf_create_new_fe(ump, udf_node->fe,
5874 			udf_file_type, &udf_node->loc,
5875 			&dir_node->loc, parent_unique_id);
5876 		/* TODO add extended attribute for creation time */
5877 	} else {
5878 		udf_node->efe = &dscr->efe;
5879 		fid_size = udf_create_new_efe(ump, udf_node->efe,
5880 			udf_file_type, &udf_node->loc,
5881 			&dir_node->loc, parent_unique_id);
5882 	}
5883 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5884 
5885 	/* update vnode's size and type */
5886 	nvp->v_type = vap->va_type;
5887 	uvm_vnp_setsize(nvp, fid_size);
5888 
5889 	/* set access mode */
5890 	udf_setaccessmode(udf_node, vap->va_mode);
5891 
5892 	/* set ownership */
5893 	uid = kauth_cred_geteuid(cnp->cn_cred);
5894 	gid = parent_gid;
5895 	udf_setownership(udf_node, uid, gid);
5896 
5897 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5898 	if (error) {
5899 		/* free disc allocation for node */
5900 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5901 
5902 		/* recycle udf_node */
5903 		udf_dispose_node(udf_node);
5904 		vput(nvp);
5905 
5906 		*vpp = NULL;
5907 		return error;
5908 	}
5909 
5910 	/* adjust file count */
5911 	udf_adjust_filecount(udf_node, 1);
5912 
5913 	/* return result */
5914 	*vpp = nvp;
5915 
5916 	return 0;
5917 
5918 error_out_unreserve:
5919 	udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5920 
5921 error_out_unlock:
5922 	VOP_UNLOCK(nvp);
5923 
5924 error_out_unget:
5925 	nvp->v_data = NULL;
5926 	ungetnewvnode(nvp);
5927 
5928 	return error;
5929 }
5930 
5931 
5932 int
5933 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5934 	struct componentname *cnp)
5935 {
5936 	int (**vnodeops)(void *);
5937 	int udf_file_type;
5938 
5939 	DPRINTF(NODE, ("udf_create_node called\n"));
5940 
5941 	/* what type are we creating ? */
5942 	vnodeops = udf_vnodeop_p;
5943 	/* start with a default */
5944 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5945 
5946 	*vpp = NULL;
5947 
5948 	switch (vap->va_type) {
5949 	case VREG :
5950 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5951 		break;
5952 	case VDIR :
5953 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5954 		break;
5955 	case VLNK :
5956 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5957 		break;
5958 	case VBLK :
5959 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5960 		/* specfs */
5961 		return ENOTSUP;
5962 		break;
5963 	case VCHR :
5964 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5965 		/* specfs */
5966 		return ENOTSUP;
5967 		break;
5968 	case VFIFO :
5969 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
5970 		/* specfs */
5971 		return ENOTSUP;
5972 		break;
5973 	case VSOCK :
5974 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5975 		/* specfs */
5976 		return ENOTSUP;
5977 		break;
5978 	case VNON :
5979 	case VBAD :
5980 	default :
5981 		/* nothing; can we even create these? */
5982 		return EINVAL;
5983 	}
5984 
5985 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5986 }
5987 
5988 /* --------------------------------------------------------------------- */
5989 
5990 static void
5991 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5992 {
5993 	struct udf_mount *ump = udf_node->ump;
5994 	uint32_t lb_size, lb_num, len, num_lb;
5995 	uint16_t vpart_num;
5996 
5997 	/* is there really one? */
5998 	if (mem == NULL)
5999 		return;
6000 
6001 	/* got a descriptor here */
6002 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
6003 	lb_num    = udf_rw32(loc->loc.lb_num);
6004 	vpart_num = udf_rw16(loc->loc.part_num);
6005 
6006 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6007 	num_lb = (len + lb_size -1) / lb_size;
6008 
6009 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
6010 }
6011 
6012 void
6013 udf_delete_node(struct udf_node *udf_node)
6014 {
6015 	void *dscr;
6016 	struct udf_mount *ump;
6017 	struct long_ad *loc;
6018 	int extnr, lvint, dummy;
6019 
6020 	ump = udf_node->ump;
6021 
6022 	/* paranoia check on integrity; should be open!; we could panic */
6023 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
6024 	if (lvint == UDF_INTEGRITY_CLOSED)
6025 		printf("\tIntegrity was CLOSED!\n");
6026 
6027 	/* whatever the node type, change its size to zero */
6028 	(void) udf_resize_node(udf_node, 0, &dummy);
6029 
6030 	/* force it to be `clean'; no use writing it out */
6031 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6032 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
6033 
6034 	/* adjust file count */
6035 	udf_adjust_filecount(udf_node, -1);
6036 
6037 	/*
6038 	 * Free its allocated descriptors; memory will be released when
6039 	 * vop_reclaim() is called.
6040 	 */
6041 	loc = &udf_node->loc;
6042 
6043 	dscr = udf_node->fe;
6044 	udf_free_descriptor_space(udf_node, loc, dscr);
6045 	dscr = udf_node->efe;
6046 	udf_free_descriptor_space(udf_node, loc, dscr);
6047 
6048 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6049 		dscr =  udf_node->ext[extnr];
6050 		loc  = &udf_node->ext_loc[extnr];
6051 		udf_free_descriptor_space(udf_node, loc, dscr);
6052 	}
6053 }
6054 
6055 /* --------------------------------------------------------------------- */
6056 
6057 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6058 int
6059 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6060 {
6061 	struct file_entry    *fe  = udf_node->fe;
6062 	struct extfile_entry *efe = udf_node->efe;
6063 	uint64_t file_size;
6064 	int error;
6065 
6066 	if (fe) {
6067 		file_size  = udf_rw64(fe->inf_len);
6068 	} else {
6069 		assert(udf_node->efe);
6070 		file_size  = udf_rw64(efe->inf_len);
6071 	}
6072 
6073 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6074 			file_size, new_size));
6075 
6076 	/* if not changing, we're done */
6077 	if (file_size == new_size)
6078 		return 0;
6079 
6080 	*extended = (new_size > file_size);
6081 	if (*extended) {
6082 		error = udf_grow_node(udf_node, new_size);
6083 	} else {
6084 		error = udf_shrink_node(udf_node, new_size);
6085 	}
6086 
6087 	return error;
6088 }
6089 
6090 
6091 /* --------------------------------------------------------------------- */
6092 
6093 void
6094 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6095 	struct timespec *mod, struct timespec *birth)
6096 {
6097 	struct timespec now;
6098 	struct file_entry    *fe;
6099 	struct extfile_entry *efe;
6100 	struct filetimes_extattr_entry *ft_extattr;
6101 	struct timestamp *atime, *mtime, *attrtime, *ctime;
6102 	struct timestamp  fe_ctime;
6103 	struct timespec   cur_birth;
6104 	uint32_t offset, a_l;
6105 	uint8_t *filedata;
6106 	int error;
6107 
6108 	/* protect against rogue values */
6109 	if (!udf_node)
6110 		return;
6111 
6112 	fe  = udf_node->fe;
6113 	efe = udf_node->efe;
6114 
6115 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6116 		return;
6117 
6118 	/* get descriptor information */
6119 	if (fe) {
6120 		atime    = &fe->atime;
6121 		mtime    = &fe->mtime;
6122 		attrtime = &fe->attrtime;
6123 		filedata = fe->data;
6124 
6125 		/* initial save dummy setting */
6126 		ctime    = &fe_ctime;
6127 
6128 		/* check our extended attribute if present */
6129 		error = udf_extattr_search_intern(udf_node,
6130 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6131 		if (!error) {
6132 			ft_extattr = (struct filetimes_extattr_entry *)
6133 				(filedata + offset);
6134 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6135 				ctime = &ft_extattr->times[0];
6136 		}
6137 		/* TODO create the extended attribute if not found ? */
6138 	} else {
6139 		assert(udf_node->efe);
6140 		atime    = &efe->atime;
6141 		mtime    = &efe->mtime;
6142 		attrtime = &efe->attrtime;
6143 		ctime    = &efe->ctime;
6144 	}
6145 
6146 	vfs_timestamp(&now);
6147 
6148 	/* set access time */
6149 	if (udf_node->i_flags & IN_ACCESS) {
6150 		if (acc == NULL)
6151 			acc = &now;
6152 		udf_timespec_to_timestamp(acc, atime);
6153 	}
6154 
6155 	/* set modification time */
6156 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6157 		if (mod == NULL)
6158 			mod = &now;
6159 		udf_timespec_to_timestamp(mod, mtime);
6160 
6161 		/* ensure birthtime is older than set modification! */
6162 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6163 		if ((cur_birth.tv_sec > mod->tv_sec) ||
6164 			  ((cur_birth.tv_sec == mod->tv_sec) &&
6165 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
6166 			udf_timespec_to_timestamp(mod, ctime);
6167 		}
6168 	}
6169 
6170 	/* update birthtime if specified */
6171 	/* XXX we assume here that given birthtime is older than mod */
6172 	if (birth && (birth->tv_sec != VNOVAL)) {
6173 		udf_timespec_to_timestamp(birth, ctime);
6174 	}
6175 
6176 	/* set change time */
6177 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6178 		udf_timespec_to_timestamp(&now, attrtime);
6179 
6180 	/* notify updates to the node itself */
6181 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6182 		udf_node->i_flags |= IN_ACCESSED;
6183 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6184 		udf_node->i_flags |= IN_MODIFIED;
6185 
6186 	/* clear modification flags */
6187 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6188 }
6189 
6190 /* --------------------------------------------------------------------- */
6191 
6192 int
6193 udf_update(struct vnode *vp, struct timespec *acc,
6194 	struct timespec *mod, struct timespec *birth, int updflags)
6195 {
6196 	union dscrptr *dscrptr;
6197 	struct udf_node  *udf_node = VTOI(vp);
6198 	struct udf_mount *ump = udf_node->ump;
6199 	struct regid     *impl_id;
6200 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6201 	int waitfor, flags;
6202 
6203 #ifdef DEBUG
6204 	char bits[128];
6205 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6206 		updflags));
6207 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6208 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
6209 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6210 #endif
6211 
6212 	/* set our times */
6213 	udf_itimes(udf_node, acc, mod, birth);
6214 
6215 	/* set our implementation id */
6216 	if (udf_node->fe) {
6217 		dscrptr = (union dscrptr *) udf_node->fe;
6218 		impl_id = &udf_node->fe->imp_id;
6219 	} else {
6220 		dscrptr = (union dscrptr *) udf_node->efe;
6221 		impl_id = &udf_node->efe->imp_id;
6222 	}
6223 
6224 	/* set our ID */
6225 	udf_set_regid(impl_id, IMPL_NAME);
6226 	udf_add_impl_regid(ump, impl_id);
6227 
6228 	/* update our crc! on RMW we are not allowed to change a thing */
6229 	udf_validate_tag_and_crc_sums(dscrptr);
6230 
6231 	/* if called when mounted readonly, never write back */
6232 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
6233 		return 0;
6234 
6235 	/* check if the node is dirty 'enough'*/
6236 	if (updflags & UPDATE_CLOSE) {
6237 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6238 	} else {
6239 		flags = udf_node->i_flags & IN_MODIFIED;
6240 	}
6241 	if (flags == 0)
6242 		return 0;
6243 
6244 	/* determine if we need to write sync or async */
6245 	waitfor = 0;
6246 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6247 		/* sync mounted */
6248 		waitfor = updflags & UPDATE_WAIT;
6249 		if (updflags & UPDATE_DIROP)
6250 			waitfor |= UPDATE_WAIT;
6251 	}
6252 	if (waitfor)
6253 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6254 
6255 	return 0;
6256 }
6257 
6258 
6259 /* --------------------------------------------------------------------- */
6260 
6261 
6262 /*
6263  * Read one fid and process it into a dirent and advance to the next (*fid)
6264  * has to be allocated a logical block in size, (*dirent) struct dirent length
6265  */
6266 
6267 int
6268 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6269 		struct fileid_desc *fid, struct dirent *dirent)
6270 {
6271 	struct udf_node  *dir_node = VTOI(vp);
6272 	struct udf_mount *ump = dir_node->ump;
6273 	struct file_entry    *fe  = dir_node->fe;
6274 	struct extfile_entry *efe = dir_node->efe;
6275 	uint32_t      fid_size, lb_size;
6276 	uint64_t      file_size;
6277 	char         *fid_name;
6278 	int           enough, error;
6279 
6280 	assert(fid);
6281 	assert(dirent);
6282 	assert(dir_node);
6283 	assert(offset);
6284 	assert(*offset != 1);
6285 
6286 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6287 	/* check if we're past the end of the directory */
6288 	if (fe) {
6289 		file_size = udf_rw64(fe->inf_len);
6290 	} else {
6291 		assert(dir_node->efe);
6292 		file_size = udf_rw64(efe->inf_len);
6293 	}
6294 	if (*offset >= file_size)
6295 		return EINVAL;
6296 
6297 	/* get maximum length of FID descriptor */
6298 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6299 
6300 	/* initialise return values */
6301 	fid_size = 0;
6302 	memset(dirent, 0, sizeof(struct dirent));
6303 	memset(fid, 0, lb_size);
6304 
6305 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
6306 	if (!enough) {
6307 		/* short dir ... */
6308 		return EIO;
6309 	}
6310 
6311 	error = vn_rdwr(UIO_READ, vp,
6312 			fid, MIN(file_size - (*offset), lb_size), *offset,
6313 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6314 			NULL, NULL);
6315 	if (error)
6316 		return error;
6317 
6318 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6319 	/*
6320 	 * Check if we got a whole descriptor.
6321 	 * TODO Try to `resync' directory stream when something is very wrong.
6322 	 */
6323 
6324 	/* check if our FID header is OK */
6325 	error = udf_check_tag(fid);
6326 	if (error) {
6327 		goto brokendir;
6328 	}
6329 	DPRINTF(FIDS, ("\ttag check ok\n"));
6330 
6331 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
6332 		error = EIO;
6333 		goto brokendir;
6334 	}
6335 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6336 
6337 	/* check for length */
6338 	fid_size = udf_fidsize(fid);
6339 	enough = (file_size - (*offset) >= fid_size);
6340 	if (!enough) {
6341 		error = EIO;
6342 		goto brokendir;
6343 	}
6344 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6345 
6346 	/* check FID contents */
6347 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6348 brokendir:
6349 	if (error) {
6350 		/* note that is sometimes a bit quick to report */
6351 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
6352 		/* RESYNC? */
6353 		/* TODO: use udf_resync_fid_stream */
6354 		return EIO;
6355 	}
6356 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
6357 
6358 	/* we got a whole and valid descriptor! */
6359 	DPRINTF(FIDS, ("\tinterpret FID\n"));
6360 
6361 	/* create resulting dirent structure */
6362 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6363 	udf_to_unix_name(dirent->d_name, NAME_MAX,
6364 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6365 
6366 	/* '..' has no name, so provide one */
6367 	if (fid->file_char & UDF_FILE_CHAR_PAR)
6368 		strcpy(dirent->d_name, "..");
6369 
6370 	dirent->d_fileno = udf_get_node_id(&fid->icb);	/* inode hash XXX */
6371 	dirent->d_namlen = strlen(dirent->d_name);
6372 	dirent->d_reclen = _DIRENT_SIZE(dirent);
6373 
6374 	/*
6375 	 * Note that its not worth trying to go for the filetypes now... its
6376 	 * too expensive too
6377 	 */
6378 	dirent->d_type = DT_UNKNOWN;
6379 
6380 	/* initial guess for filetype we can make */
6381 	if (fid->file_char & UDF_FILE_CHAR_DIR)
6382 		dirent->d_type = DT_DIR;
6383 
6384 	/* advance */
6385 	*offset += fid_size;
6386 
6387 	return error;
6388 }
6389 
6390 
6391 /* --------------------------------------------------------------------- */
6392 
6393 static void
6394 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6395 	int pass, int *ndirty)
6396 {
6397 	struct udf_node *udf_node, *n_udf_node;
6398 	struct vnode *vp;
6399 	int vdirty, error;
6400 	int on_type, on_flags, on_vnode;
6401 
6402 derailed:
6403 	KASSERT(mutex_owned(&mntvnode_lock));
6404 
6405 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
6406 	udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6407 	for (;udf_node; udf_node = n_udf_node) {
6408 		DPRINTF(SYNC, ("."));
6409 
6410 		udf_node->i_flags &= ~IN_SYNCED;
6411 		vp = udf_node->vnode;
6412 
6413 		mutex_enter(vp->v_interlock);
6414 		n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6415 		    udf_node, RB_DIR_RIGHT);
6416 
6417 		if (n_udf_node)
6418 			n_udf_node->i_flags |= IN_SYNCED;
6419 
6420 		/* system nodes are not synced this way */
6421 		if (vp->v_vflag & VV_SYSTEM) {
6422 			mutex_exit(vp->v_interlock);
6423 			continue;
6424 		}
6425 
6426 		/* check if its dirty enough to even try */
6427 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
6428 		on_flags = ((udf_node->i_flags &
6429 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6430 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6431 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6432 		if (on_type || (on_flags || on_vnode)) { /* XXX */
6433 			/* not dirty (enough?) */
6434 			mutex_exit(vp->v_interlock);
6435 			continue;
6436 		}
6437 
6438 		mutex_exit(&mntvnode_lock);
6439 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6440 		if (error) {
6441 			mutex_enter(&mntvnode_lock);
6442 			if (error == ENOENT)
6443 				goto derailed;
6444 			*ndirty += 1;
6445 			continue;
6446 		}
6447 
6448 		switch (pass) {
6449 		case 1:
6450 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6451 			break;
6452 		case 2:
6453 			vdirty = vp->v_numoutput;
6454 			if (vp->v_tag == VT_UDF)
6455 				vdirty += udf_node->outstanding_bufs +
6456 					udf_node->outstanding_nodedscr;
6457 			if (vdirty == 0)
6458 				VOP_FSYNC(vp, cred, 0,0,0);
6459 			*ndirty += vdirty;
6460 			break;
6461 		case 3:
6462 			vdirty = vp->v_numoutput;
6463 			if (vp->v_tag == VT_UDF)
6464 				vdirty += udf_node->outstanding_bufs +
6465 					udf_node->outstanding_nodedscr;
6466 			*ndirty += vdirty;
6467 			break;
6468 		}
6469 
6470 		vput(vp);
6471 		mutex_enter(&mntvnode_lock);
6472 	}
6473 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6474 }
6475 
6476 
6477 void
6478 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6479 {
6480 	int dummy, ndirty;
6481 
6482 	mutex_enter(&mntvnode_lock);
6483 recount:
6484 	dummy = 0;
6485 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6486 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6487 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6488 
6489 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6490 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6491 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6492 
6493 	if (waitfor == MNT_WAIT) {
6494 		ndirty = ump->devvp->v_numoutput;
6495 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6496 			ndirty));
6497 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6498 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6499 			ndirty));
6500 
6501 		if (ndirty) {
6502 			/* 1/4 second wait */
6503 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6504 				hz/4);
6505 			goto recount;
6506 		}
6507 	}
6508 
6509 	mutex_exit(&mntvnode_lock);
6510 }
6511 
6512 /* --------------------------------------------------------------------- */
6513 
6514 /*
6515  * Read and write file extent in/from the buffer.
6516  *
6517  * The splitup of the extent into seperate request-buffers is to minimise
6518  * copying around as much as possible.
6519  *
6520  * block based file reading and writing
6521  */
6522 
6523 static int
6524 udf_read_internal(struct udf_node *node, uint8_t *blob)
6525 {
6526 	struct udf_mount *ump;
6527 	struct file_entry     *fe = node->fe;
6528 	struct extfile_entry *efe = node->efe;
6529 	uint64_t inflen;
6530 	uint32_t sector_size;
6531 	uint8_t  *pos;
6532 	int icbflags, addr_type;
6533 
6534 	/* get extent and do some paranoia checks */
6535 	ump = node->ump;
6536 	sector_size = ump->discinfo.sector_size;
6537 
6538 	if (fe) {
6539 		inflen   = udf_rw64(fe->inf_len);
6540 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6541 		icbflags = udf_rw16(fe->icbtag.flags);
6542 	} else {
6543 		assert(node->efe);
6544 		inflen   = udf_rw64(efe->inf_len);
6545 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6546 		icbflags = udf_rw16(efe->icbtag.flags);
6547 	}
6548 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6549 
6550 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6551 	assert(inflen < sector_size);
6552 
6553 	/* copy out info */
6554 	memset(blob, 0, sector_size);
6555 	memcpy(blob, pos, inflen);
6556 
6557 	return 0;
6558 }
6559 
6560 
6561 static int
6562 udf_write_internal(struct udf_node *node, uint8_t *blob)
6563 {
6564 	struct udf_mount *ump;
6565 	struct file_entry     *fe = node->fe;
6566 	struct extfile_entry *efe = node->efe;
6567 	uint64_t inflen;
6568 	uint32_t sector_size;
6569 	uint8_t  *pos;
6570 	int icbflags, addr_type;
6571 
6572 	/* get extent and do some paranoia checks */
6573 	ump = node->ump;
6574 	sector_size = ump->discinfo.sector_size;
6575 
6576 	if (fe) {
6577 		inflen   = udf_rw64(fe->inf_len);
6578 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6579 		icbflags = udf_rw16(fe->icbtag.flags);
6580 	} else {
6581 		assert(node->efe);
6582 		inflen   = udf_rw64(efe->inf_len);
6583 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6584 		icbflags = udf_rw16(efe->icbtag.flags);
6585 	}
6586 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6587 
6588 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6589 	assert(inflen < sector_size);
6590 
6591 	/* copy in blob */
6592 	/* memset(pos, 0, inflen); */
6593 	memcpy(pos, blob, inflen);
6594 
6595 	return 0;
6596 }
6597 
6598 
6599 void
6600 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6601 {
6602 	struct buf *nestbuf;
6603 	struct udf_mount *ump = udf_node->ump;
6604 	uint64_t   *mapping;
6605 	uint64_t    run_start;
6606 	uint32_t    sector_size;
6607 	uint32_t    buf_offset, sector, rbuflen, rblk;
6608 	uint32_t    from, lblkno;
6609 	uint32_t    sectors;
6610 	uint8_t    *buf_pos;
6611 	int error, run_length, what;
6612 
6613 	sector_size = udf_node->ump->discinfo.sector_size;
6614 
6615 	from    = buf->b_blkno;
6616 	sectors = buf->b_bcount / sector_size;
6617 
6618 	what = udf_get_c_type(udf_node);
6619 
6620 	/* assure we have enough translation slots */
6621 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6622 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6623 
6624 	if (sectors > UDF_MAX_MAPPINGS) {
6625 		printf("udf_read_filebuf: implementation limit on bufsize\n");
6626 		buf->b_error  = EIO;
6627 		biodone(buf);
6628 		return;
6629 	}
6630 
6631 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6632 
6633 	error = 0;
6634 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6635 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6636 	if (error) {
6637 		buf->b_error  = error;
6638 		biodone(buf);
6639 		goto out;
6640 	}
6641 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
6642 
6643 	/* pre-check if its an internal */
6644 	if (*mapping == UDF_TRANS_INTERN) {
6645 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6646 		if (error)
6647 			buf->b_error  = error;
6648 		biodone(buf);
6649 		goto out;
6650 	}
6651 	DPRINTF(READ, ("\tnot intern\n"));
6652 
6653 #ifdef DEBUG
6654 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6655 		printf("Returned translation table:\n");
6656 		for (sector = 0; sector < sectors; sector++) {
6657 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6658 		}
6659 	}
6660 #endif
6661 
6662 	/* request read-in of data from disc sheduler */
6663 	buf->b_resid = buf->b_bcount;
6664 	for (sector = 0; sector < sectors; sector++) {
6665 		buf_offset = sector * sector_size;
6666 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6667 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6668 
6669 		/* check if its zero or unmapped to stop reading */
6670 		switch (mapping[sector]) {
6671 		case UDF_TRANS_UNMAPPED:
6672 		case UDF_TRANS_ZERO:
6673 			/* copy zero sector TODO runlength like below */
6674 			memset(buf_pos, 0, sector_size);
6675 			DPRINTF(READ, ("\treturning zero sector\n"));
6676 			nestiobuf_done(buf, sector_size, 0);
6677 			break;
6678 		default :
6679 			DPRINTF(READ, ("\tread sector "
6680 			    "%"PRIu64"\n", mapping[sector]));
6681 
6682 			lblkno = from + sector;
6683 			run_start  = mapping[sector];
6684 			run_length = 1;
6685 			while (sector < sectors-1) {
6686 				if (mapping[sector+1] != mapping[sector]+1)
6687 					break;
6688 				run_length++;
6689 				sector++;
6690 			}
6691 
6692 			/*
6693 			 * nest an iobuf and mark it for async reading. Since
6694 			 * we're using nested buffers, they can't be cached by
6695 			 * design.
6696 			 */
6697 			rbuflen = run_length * sector_size;
6698 			rblk    = run_start  * (sector_size/DEV_BSIZE);
6699 
6700 			nestbuf = getiobuf(NULL, true);
6701 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6702 			/* nestbuf is B_ASYNC */
6703 
6704 			/* identify this nestbuf */
6705 			nestbuf->b_lblkno   = lblkno;
6706 			assert(nestbuf->b_vp == udf_node->vnode);
6707 
6708 			/* CD shedules on raw blkno */
6709 			nestbuf->b_blkno      = rblk;
6710 			nestbuf->b_proc       = NULL;
6711 			nestbuf->b_rawblkno   = rblk;
6712 			nestbuf->b_udf_c_type = what;
6713 
6714 			udf_discstrat_queuebuf(ump, nestbuf);
6715 		}
6716 	}
6717 out:
6718 	/* if we're synchronously reading, wait for the completion */
6719 	if ((buf->b_flags & B_ASYNC) == 0)
6720 		biowait(buf);
6721 
6722 	DPRINTF(READ, ("\tend of read_filebuf\n"));
6723 	free(mapping, M_TEMP);
6724 	return;
6725 }
6726 
6727 
6728 void
6729 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6730 {
6731 	struct buf *nestbuf;
6732 	struct udf_mount *ump = udf_node->ump;
6733 	uint64_t   *mapping;
6734 	uint64_t    run_start;
6735 	uint32_t    lb_size;
6736 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
6737 	uint32_t    from, lblkno;
6738 	uint32_t    num_lb;
6739 	int error, run_length, what, s;
6740 
6741 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6742 
6743 	from   = buf->b_blkno;
6744 	num_lb = buf->b_bcount / lb_size;
6745 
6746 	what = udf_get_c_type(udf_node);
6747 
6748 	/* assure we have enough translation slots */
6749 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6750 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6751 
6752 	if (num_lb > UDF_MAX_MAPPINGS) {
6753 		printf("udf_write_filebuf: implementation limit on bufsize\n");
6754 		buf->b_error  = EIO;
6755 		biodone(buf);
6756 		return;
6757 	}
6758 
6759 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6760 
6761 	error = 0;
6762 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6763 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6764 	if (error) {
6765 		buf->b_error  = error;
6766 		biodone(buf);
6767 		goto out;
6768 	}
6769 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6770 
6771 	/* if its internally mapped, we can write it in the descriptor itself */
6772 	if (*mapping == UDF_TRANS_INTERN) {
6773 		/* TODO paranoia check if we ARE going to have enough space */
6774 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6775 		if (error)
6776 			buf->b_error  = error;
6777 		biodone(buf);
6778 		goto out;
6779 	}
6780 	DPRINTF(WRITE, ("\tnot intern\n"));
6781 
6782 	/* request write out of data to disc sheduler */
6783 	buf->b_resid = buf->b_bcount;
6784 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
6785 		buf_offset = lb_num * lb_size;
6786 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6787 
6788 		/*
6789 		 * Mappings are not that important here. Just before we write
6790 		 * the lb_num we late-allocate them when needed and update the
6791 		 * mapping in the udf_node.
6792 		 */
6793 
6794 		/* XXX why not ignore the mapping altogether ? */
6795 		DPRINTF(WRITE, ("\twrite lb_num "
6796 		    "%"PRIu64, mapping[lb_num]));
6797 
6798 		lblkno = from + lb_num;
6799 		run_start  = mapping[lb_num];
6800 		run_length = 1;
6801 		while (lb_num < num_lb-1) {
6802 			if (mapping[lb_num+1] != mapping[lb_num]+1)
6803 				if (mapping[lb_num+1] != mapping[lb_num])
6804 					break;
6805 			run_length++;
6806 			lb_num++;
6807 		}
6808 		DPRINTF(WRITE, ("+ %d\n", run_length));
6809 
6810 		/* nest an iobuf on the master buffer for the extent */
6811 		rbuflen = run_length * lb_size;
6812 		rblk = run_start * (lb_size/DEV_BSIZE);
6813 
6814 		nestbuf = getiobuf(NULL, true);
6815 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6816 		/* nestbuf is B_ASYNC */
6817 
6818 		/* identify this nestbuf */
6819 		nestbuf->b_lblkno   = lblkno;
6820 		KASSERT(nestbuf->b_vp == udf_node->vnode);
6821 
6822 		/* CD shedules on raw blkno */
6823 		nestbuf->b_blkno      = rblk;
6824 		nestbuf->b_proc       = NULL;
6825 		nestbuf->b_rawblkno   = rblk;
6826 		nestbuf->b_udf_c_type = what;
6827 
6828 		/* increment our outstanding bufs counter */
6829 		s = splbio();
6830 			udf_node->outstanding_bufs++;
6831 		splx(s);
6832 
6833 		udf_discstrat_queuebuf(ump, nestbuf);
6834 	}
6835 out:
6836 	/* if we're synchronously writing, wait for the completion */
6837 	if ((buf->b_flags & B_ASYNC) == 0)
6838 		biowait(buf);
6839 
6840 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6841 	free(mapping, M_TEMP);
6842 	return;
6843 }
6844 
6845 /* --------------------------------------------------------------------- */
6846