1 /* $NetBSD: udf_subr.c,v 1.119 2012/04/29 22:53:59 chs Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.119 2012/04/29 22:53:59 chs Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref((vp)); \ 77 vput((vp)); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 uint64_t psize; 192 unsigned secsize; 193 struct mmc_discinfo *di; 194 int error; 195 196 DPRINTF(VOLUMES, ("read/update disc info\n")); 197 di = &ump->discinfo; 198 memset(di, 0, sizeof(struct mmc_discinfo)); 199 200 /* check if we're on a MMC capable device, i.e. CD/DVD */ 201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 202 if (error == 0) { 203 udf_dump_discinfo(ump); 204 return 0; 205 } 206 207 /* disc partition support */ 208 error = getdisksize(devvp, &psize, &secsize); 209 if (error) 210 return error; 211 212 /* set up a disc info profile for partitions */ 213 di->mmc_profile = 0x01; /* disc type */ 214 di->mmc_class = MMC_CLASS_DISC; 215 di->disc_state = MMC_STATE_CLOSED; 216 di->last_session_state = MMC_STATE_CLOSED; 217 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 218 di->link_block_penalty = 0; 219 220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 222 di->mmc_cap = di->mmc_cur; 223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 224 225 /* TODO problem with last_possible_lba on resizable VND; request */ 226 di->last_possible_lba = psize; 227 di->sector_size = secsize; 228 229 di->num_sessions = 1; 230 di->num_tracks = 1; 231 232 di->first_track = 1; 233 di->first_track_last_session = di->last_track_last_session = 1; 234 235 udf_dump_discinfo(ump); 236 return 0; 237 } 238 239 240 int 241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 242 { 243 struct vnode *devvp = ump->devvp; 244 struct mmc_discinfo *di = &ump->discinfo; 245 int error, class; 246 247 DPRINTF(VOLUMES, ("read track info\n")); 248 249 class = di->mmc_class; 250 if (class != MMC_CLASS_DISC) { 251 /* tracknr specified in struct ti */ 252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 253 return error; 254 } 255 256 /* disc partition support */ 257 if (ti->tracknr != 1) 258 return EIO; 259 260 /* create fake ti (TODO check for resized vnds) */ 261 ti->sessionnr = 1; 262 263 ti->track_mode = 0; /* XXX */ 264 ti->data_mode = 0; /* XXX */ 265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 266 267 ti->track_start = 0; 268 ti->packet_size = 1; 269 270 /* TODO support for resizable vnd */ 271 ti->track_size = di->last_possible_lba; 272 ti->next_writable = di->last_possible_lba; 273 ti->last_recorded = ti->next_writable; 274 ti->free_blocks = 0; 275 276 return 0; 277 } 278 279 280 int 281 udf_setup_writeparams(struct udf_mount *ump) 282 { 283 struct mmc_writeparams mmc_writeparams; 284 int error; 285 286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 287 return 0; 288 289 /* 290 * only CD burning normally needs setting up, but other disc types 291 * might need other settings to be made. The MMC framework will set up 292 * the nessisary recording parameters according to the disc 293 * characteristics read in. Modifications can be made in the discinfo 294 * structure passed to change the nature of the disc. 295 */ 296 297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 300 301 /* 302 * UDF dictates first track to determine track mode for the whole 303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 304 * To prevent problems with a `reserved' track in front we start with 305 * the 2nd track and if that is not valid, go for the 1st. 306 */ 307 mmc_writeparams.tracknr = 2; 308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 310 311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 312 FKIOCTL, NOCRED); 313 if (error) { 314 mmc_writeparams.tracknr = 1; 315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 316 &mmc_writeparams, FKIOCTL, NOCRED); 317 } 318 return error; 319 } 320 321 322 int 323 udf_synchronise_caches(struct udf_mount *ump) 324 { 325 struct mmc_op mmc_op; 326 327 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 328 329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 330 return 0; 331 332 /* discs are done now */ 333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 334 return 0; 335 336 memset(&mmc_op, 0, sizeof(struct mmc_op)); 337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 338 339 /* ignore return code */ 340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 341 342 return 0; 343 } 344 345 /* --------------------------------------------------------------------- */ 346 347 /* track/session searching for mounting */ 348 int 349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 350 int *first_tracknr, int *last_tracknr) 351 { 352 struct mmc_trackinfo trackinfo; 353 uint32_t tracknr, start_track, num_tracks; 354 int error; 355 356 /* if negative, sessionnr is relative to last session */ 357 if (args->sessionnr < 0) { 358 args->sessionnr += ump->discinfo.num_sessions; 359 } 360 361 /* sanity */ 362 if (args->sessionnr < 0) 363 args->sessionnr = 0; 364 if (args->sessionnr > ump->discinfo.num_sessions) 365 args->sessionnr = ump->discinfo.num_sessions; 366 367 /* search the tracks for this session, zero session nr indicates last */ 368 if (args->sessionnr == 0) 369 args->sessionnr = ump->discinfo.num_sessions; 370 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 371 args->sessionnr--; 372 373 /* sanity again */ 374 if (args->sessionnr < 0) 375 args->sessionnr = 0; 376 377 /* search the first and last track of the specified session */ 378 num_tracks = ump->discinfo.num_tracks; 379 start_track = ump->discinfo.first_track; 380 381 /* search for first track of this session */ 382 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 383 /* get track info */ 384 trackinfo.tracknr = tracknr; 385 error = udf_update_trackinfo(ump, &trackinfo); 386 if (error) 387 return error; 388 389 if (trackinfo.sessionnr == args->sessionnr) 390 break; 391 } 392 *first_tracknr = tracknr; 393 394 /* search for last track of this session */ 395 for (;tracknr <= num_tracks; tracknr++) { 396 /* get track info */ 397 trackinfo.tracknr = tracknr; 398 error = udf_update_trackinfo(ump, &trackinfo); 399 if (error || (trackinfo.sessionnr != args->sessionnr)) { 400 tracknr--; 401 break; 402 } 403 } 404 if (tracknr > num_tracks) 405 tracknr--; 406 407 *last_tracknr = tracknr; 408 409 if (*last_tracknr < *first_tracknr) { 410 printf( "udf_search_tracks: sanity check on drive+disc failed, " 411 "drive returned garbage\n"); 412 return EINVAL; 413 } 414 415 assert(*last_tracknr >= *first_tracknr); 416 return 0; 417 } 418 419 420 /* 421 * NOTE: this is the only routine in this file that directly peeks into the 422 * metadata file but since its at a larval state of the mount it can't hurt. 423 * 424 * XXX candidate for udf_allocation.c 425 * XXX clean me up!, change to new node reading code. 426 */ 427 428 static void 429 udf_check_track_metadata_overlap(struct udf_mount *ump, 430 struct mmc_trackinfo *trackinfo) 431 { 432 struct part_desc *part; 433 struct file_entry *fe; 434 struct extfile_entry *efe; 435 struct short_ad *s_ad; 436 struct long_ad *l_ad; 437 uint32_t track_start, track_end; 438 uint32_t phys_part_start, phys_part_end, part_start, part_end; 439 uint32_t sector_size, len, alloclen, plb_num; 440 uint8_t *pos; 441 int addr_type, icblen, icbflags, flags; 442 443 /* get our track extents */ 444 track_start = trackinfo->track_start; 445 track_end = track_start + trackinfo->track_size; 446 447 /* get our base partition extent */ 448 KASSERT(ump->node_part == ump->fids_part); 449 part = ump->partitions[ump->vtop[ump->node_part]]; 450 phys_part_start = udf_rw32(part->start_loc); 451 phys_part_end = phys_part_start + udf_rw32(part->part_len); 452 453 /* no use if its outside the physical partition */ 454 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 455 return; 456 457 /* 458 * now follow all extents in the fe/efe to see if they refer to this 459 * track 460 */ 461 462 sector_size = ump->discinfo.sector_size; 463 464 /* XXX should we claim exclusive access to the metafile ? */ 465 /* TODO: move to new node read code */ 466 fe = ump->metadata_node->fe; 467 efe = ump->metadata_node->efe; 468 if (fe) { 469 alloclen = udf_rw32(fe->l_ad); 470 pos = &fe->data[0] + udf_rw32(fe->l_ea); 471 icbflags = udf_rw16(fe->icbtag.flags); 472 } else { 473 assert(efe); 474 alloclen = udf_rw32(efe->l_ad); 475 pos = &efe->data[0] + udf_rw32(efe->l_ea); 476 icbflags = udf_rw16(efe->icbtag.flags); 477 } 478 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 479 480 while (alloclen) { 481 if (addr_type == UDF_ICB_SHORT_ALLOC) { 482 icblen = sizeof(struct short_ad); 483 s_ad = (struct short_ad *) pos; 484 len = udf_rw32(s_ad->len); 485 plb_num = udf_rw32(s_ad->lb_num); 486 } else { 487 /* should not be present, but why not */ 488 icblen = sizeof(struct long_ad); 489 l_ad = (struct long_ad *) pos; 490 len = udf_rw32(l_ad->len); 491 plb_num = udf_rw32(l_ad->loc.lb_num); 492 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 493 } 494 /* process extent */ 495 flags = UDF_EXT_FLAGS(len); 496 len = UDF_EXT_LEN(len); 497 498 part_start = phys_part_start + plb_num; 499 part_end = part_start + (len / sector_size); 500 501 if ((part_start >= track_start) && (part_end <= track_end)) { 502 /* extent is enclosed within this track */ 503 ump->metadata_track = *trackinfo; 504 return; 505 } 506 507 pos += icblen; 508 alloclen -= icblen; 509 } 510 } 511 512 513 int 514 udf_search_writing_tracks(struct udf_mount *ump) 515 { 516 struct vnode *devvp = ump->devvp; 517 struct mmc_trackinfo trackinfo; 518 struct mmc_op mmc_op; 519 struct part_desc *part; 520 uint32_t tracknr, start_track, num_tracks; 521 uint32_t track_start, track_end, part_start, part_end; 522 int node_alloc, error; 523 524 /* 525 * in the CD/(HD)DVD/BD recordable device model a few tracks within 526 * the last session might be open but in the UDF device model at most 527 * three tracks can be open: a reserved track for delayed ISO VRS 528 * writing, a data track and a metadata track. We search here for the 529 * data track and the metadata track. Note that the reserved track is 530 * troublesome but can be detected by its small size of < 512 sectors. 531 */ 532 533 /* update discinfo since it might have changed */ 534 error = udf_update_discinfo(ump); 535 if (error) 536 return error; 537 538 num_tracks = ump->discinfo.num_tracks; 539 start_track = ump->discinfo.first_track; 540 541 /* fetch info on first and possibly only track */ 542 trackinfo.tracknr = start_track; 543 error = udf_update_trackinfo(ump, &trackinfo); 544 if (error) 545 return error; 546 547 /* copy results to our mount point */ 548 ump->data_track = trackinfo; 549 ump->metadata_track = trackinfo; 550 551 /* if not sequential, we're done */ 552 if (num_tracks == 1) 553 return 0; 554 555 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 556 /* get track info */ 557 trackinfo.tracknr = tracknr; 558 error = udf_update_trackinfo(ump, &trackinfo); 559 if (error) 560 return error; 561 562 /* 563 * If this track is marked damaged, ask for repair. This is an 564 * optional command, so ignore its error but report warning. 565 */ 566 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 567 memset(&mmc_op, 0, sizeof(mmc_op)); 568 mmc_op.operation = MMC_OP_REPAIRTRACK; 569 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 570 mmc_op.tracknr = tracknr; 571 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 572 if (error) 573 (void)printf("Drive can't explicitly repair " 574 "damaged track %d, but it might " 575 "autorepair\n", tracknr); 576 577 /* reget track info */ 578 error = udf_update_trackinfo(ump, &trackinfo); 579 if (error) 580 return error; 581 } 582 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 583 continue; 584 585 track_start = trackinfo.track_start; 586 track_end = track_start + trackinfo.track_size; 587 588 /* check for overlap on data partition */ 589 part = ump->partitions[ump->data_part]; 590 part_start = udf_rw32(part->start_loc); 591 part_end = part_start + udf_rw32(part->part_len); 592 if ((part_start < track_end) && (part_end > track_start)) { 593 ump->data_track = trackinfo; 594 /* TODO check if UDF partition data_part is writable */ 595 } 596 597 /* check for overlap on metadata partition */ 598 node_alloc = ump->vtop_alloc[ump->node_part]; 599 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 600 (node_alloc == UDF_ALLOC_METABITMAP)) { 601 udf_check_track_metadata_overlap(ump, &trackinfo); 602 } else { 603 ump->metadata_track = trackinfo; 604 } 605 } 606 607 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 608 return EROFS; 609 610 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 611 return EROFS; 612 613 return 0; 614 } 615 616 /* --------------------------------------------------------------------- */ 617 618 /* 619 * Check if the blob starts with a good UDF tag. Tags are protected by a 620 * checksum over the reader except one byte at position 4 that is the checksum 621 * itself. 622 */ 623 624 int 625 udf_check_tag(void *blob) 626 { 627 struct desc_tag *tag = blob; 628 uint8_t *pos, sum, cnt; 629 630 /* check TAG header checksum */ 631 pos = (uint8_t *) tag; 632 sum = 0; 633 634 for(cnt = 0; cnt < 16; cnt++) { 635 if (cnt != 4) 636 sum += *pos; 637 pos++; 638 } 639 if (sum != tag->cksum) { 640 /* bad tag header checksum; this is not a valid tag */ 641 return EINVAL; 642 } 643 644 return 0; 645 } 646 647 648 /* 649 * check tag payload will check descriptor CRC as specified. 650 * If the descriptor is too long, it will return EIO otherwise EINVAL. 651 */ 652 653 int 654 udf_check_tag_payload(void *blob, uint32_t max_length) 655 { 656 struct desc_tag *tag = blob; 657 uint16_t crc, crc_len; 658 659 crc_len = udf_rw16(tag->desc_crc_len); 660 661 /* check payload CRC if applicable */ 662 if (crc_len == 0) 663 return 0; 664 665 if (crc_len > max_length) 666 return EIO; 667 668 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 669 if (crc != udf_rw16(tag->desc_crc)) { 670 /* bad payload CRC; this is a broken tag */ 671 return EINVAL; 672 } 673 674 return 0; 675 } 676 677 678 void 679 udf_validate_tag_sum(void *blob) 680 { 681 struct desc_tag *tag = blob; 682 uint8_t *pos, sum, cnt; 683 684 /* calculate TAG header checksum */ 685 pos = (uint8_t *) tag; 686 sum = 0; 687 688 for(cnt = 0; cnt < 16; cnt++) { 689 if (cnt != 4) sum += *pos; 690 pos++; 691 } 692 tag->cksum = sum; /* 8 bit */ 693 } 694 695 696 /* assumes sector number of descriptor to be saved already present */ 697 void 698 udf_validate_tag_and_crc_sums(void *blob) 699 { 700 struct desc_tag *tag = blob; 701 uint8_t *btag = (uint8_t *) tag; 702 uint16_t crc, crc_len; 703 704 crc_len = udf_rw16(tag->desc_crc_len); 705 706 /* check payload CRC if applicable */ 707 if (crc_len > 0) { 708 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 709 tag->desc_crc = udf_rw16(crc); 710 } 711 712 /* calculate TAG header checksum */ 713 udf_validate_tag_sum(blob); 714 } 715 716 /* --------------------------------------------------------------------- */ 717 718 /* 719 * XXX note the different semantics from udfclient: for FIDs it still rounds 720 * up to sectors. Use udf_fidsize() for a correct length. 721 */ 722 723 int 724 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 725 { 726 uint32_t size, tag_id, num_lb, elmsz; 727 728 tag_id = udf_rw16(dscr->tag.id); 729 730 switch (tag_id) { 731 case TAGID_LOGVOL : 732 size = sizeof(struct logvol_desc) - 1; 733 size += udf_rw32(dscr->lvd.mt_l); 734 break; 735 case TAGID_UNALLOC_SPACE : 736 elmsz = sizeof(struct extent_ad); 737 size = sizeof(struct unalloc_sp_desc) - elmsz; 738 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 739 break; 740 case TAGID_FID : 741 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 742 size = (size + 3) & ~3; 743 break; 744 case TAGID_LOGVOL_INTEGRITY : 745 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 746 size += udf_rw32(dscr->lvid.l_iu); 747 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 748 break; 749 case TAGID_SPACE_BITMAP : 750 size = sizeof(struct space_bitmap_desc) - 1; 751 size += udf_rw32(dscr->sbd.num_bytes); 752 break; 753 case TAGID_SPARING_TABLE : 754 elmsz = sizeof(struct spare_map_entry); 755 size = sizeof(struct udf_sparing_table) - elmsz; 756 size += udf_rw16(dscr->spt.rt_l) * elmsz; 757 break; 758 case TAGID_FENTRY : 759 size = sizeof(struct file_entry); 760 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 761 break; 762 case TAGID_EXTFENTRY : 763 size = sizeof(struct extfile_entry); 764 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 765 break; 766 case TAGID_FSD : 767 size = sizeof(struct fileset_desc); 768 break; 769 default : 770 size = sizeof(union dscrptr); 771 break; 772 } 773 774 if ((size == 0) || (lb_size == 0)) 775 return 0; 776 777 if (lb_size == 1) 778 return size; 779 780 /* round up in sectors */ 781 num_lb = (size + lb_size -1) / lb_size; 782 return num_lb * lb_size; 783 } 784 785 786 int 787 udf_fidsize(struct fileid_desc *fid) 788 { 789 uint32_t size; 790 791 if (udf_rw16(fid->tag.id) != TAGID_FID) 792 panic("got udf_fidsize on non FID\n"); 793 794 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 795 size = (size + 3) & ~3; 796 797 return size; 798 } 799 800 /* --------------------------------------------------------------------- */ 801 802 void 803 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 804 { 805 int ret; 806 807 mutex_enter(&udf_node->node_mutex); 808 /* wait until free */ 809 while (udf_node->i_flags & IN_LOCKED) { 810 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 811 /* TODO check if we should return error; abort */ 812 if (ret == EWOULDBLOCK) { 813 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 814 "wanted at %s:%d, previously locked at %s:%d\n", 815 udf_node, fname, lineno, 816 udf_node->lock_fname, udf_node->lock_lineno)); 817 } 818 } 819 /* grab */ 820 udf_node->i_flags |= IN_LOCKED | flag; 821 /* debug */ 822 udf_node->lock_fname = fname; 823 udf_node->lock_lineno = lineno; 824 825 mutex_exit(&udf_node->node_mutex); 826 } 827 828 829 void 830 udf_unlock_node(struct udf_node *udf_node, int flag) 831 { 832 mutex_enter(&udf_node->node_mutex); 833 udf_node->i_flags &= ~(IN_LOCKED | flag); 834 cv_broadcast(&udf_node->node_lock); 835 mutex_exit(&udf_node->node_mutex); 836 } 837 838 839 /* --------------------------------------------------------------------- */ 840 841 static int 842 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 843 { 844 int error; 845 846 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 847 (union dscrptr **) dst); 848 if (!error) { 849 /* blank terminator blocks are not allowed here */ 850 if (*dst == NULL) 851 return ENOENT; 852 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 853 error = ENOENT; 854 free(*dst, M_UDFVOLD); 855 *dst = NULL; 856 DPRINTF(VOLUMES, ("Not an anchor\n")); 857 } 858 } 859 860 return error; 861 } 862 863 864 int 865 udf_read_anchors(struct udf_mount *ump) 866 { 867 struct udf_args *args = &ump->mount_args; 868 struct mmc_trackinfo first_track; 869 struct mmc_trackinfo second_track; 870 struct mmc_trackinfo last_track; 871 struct anchor_vdp **anchorsp; 872 uint32_t track_start; 873 uint32_t track_end; 874 uint32_t positions[4]; 875 int first_tracknr, last_tracknr; 876 int error, anch, ok, first_anchor; 877 878 /* search the first and last track of the specified session */ 879 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 880 if (!error) { 881 first_track.tracknr = first_tracknr; 882 error = udf_update_trackinfo(ump, &first_track); 883 } 884 if (!error) { 885 last_track.tracknr = last_tracknr; 886 error = udf_update_trackinfo(ump, &last_track); 887 } 888 if ((!error) && (first_tracknr != last_tracknr)) { 889 second_track.tracknr = first_tracknr+1; 890 error = udf_update_trackinfo(ump, &second_track); 891 } 892 if (error) { 893 printf("UDF mount: reading disc geometry failed\n"); 894 return 0; 895 } 896 897 track_start = first_track.track_start; 898 899 /* `end' is not as straitforward as start. */ 900 track_end = last_track.track_start 901 + last_track.track_size - last_track.free_blocks - 1; 902 903 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 904 /* end of track is not straitforward here */ 905 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 906 track_end = last_track.last_recorded; 907 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 908 track_end = last_track.next_writable 909 - ump->discinfo.link_block_penalty; 910 } 911 912 /* its no use reading a blank track */ 913 first_anchor = 0; 914 if (first_track.flags & MMC_TRACKINFO_BLANK) 915 first_anchor = 1; 916 917 /* get our packet size */ 918 ump->packet_size = first_track.packet_size; 919 if (first_track.flags & MMC_TRACKINFO_BLANK) 920 ump->packet_size = second_track.packet_size; 921 922 if (ump->packet_size <= 1) { 923 /* take max, but not bigger than 64 */ 924 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 925 ump->packet_size = MIN(ump->packet_size, 64); 926 } 927 KASSERT(ump->packet_size >= 1); 928 929 /* read anchors start+256, start+512, end-256, end */ 930 positions[0] = track_start+256; 931 positions[1] = track_end-256; 932 positions[2] = track_end; 933 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 934 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 935 936 ok = 0; 937 anchorsp = ump->anchors; 938 for (anch = first_anchor; anch < 4; anch++) { 939 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 940 positions[anch])); 941 error = udf_read_anchor(ump, positions[anch], anchorsp); 942 if (!error) { 943 anchorsp++; 944 ok++; 945 } 946 } 947 948 /* VATs are only recorded on sequential media, but initialise */ 949 ump->first_possible_vat_location = track_start + 2; 950 ump->last_possible_vat_location = track_end + last_track.packet_size; 951 952 return ok; 953 } 954 955 /* --------------------------------------------------------------------- */ 956 957 int 958 udf_get_c_type(struct udf_node *udf_node) 959 { 960 int isdir, what; 961 962 isdir = (udf_node->vnode->v_type == VDIR); 963 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 964 965 if (udf_node->ump) 966 if (udf_node == udf_node->ump->metadatabitmap_node) 967 what = UDF_C_METADATA_SBM; 968 969 return what; 970 } 971 972 973 int 974 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) 975 { 976 int vpart_num; 977 978 vpart_num = ump->data_part; 979 if (udf_c_type == UDF_C_NODE) 980 vpart_num = ump->node_part; 981 if (udf_c_type == UDF_C_FIDS) 982 vpart_num = ump->fids_part; 983 984 return vpart_num; 985 } 986 987 988 /* 989 * BUGALERT: some rogue implementations use random physical partition 990 * numbers to break other implementations so lookup the number. 991 */ 992 993 static uint16_t 994 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part) 995 { 996 struct part_desc *part; 997 uint16_t phys_part; 998 999 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1000 part = ump->partitions[phys_part]; 1001 if (part == NULL) 1002 break; 1003 if (udf_rw16(part->part_num) == raw_phys_part) 1004 break; 1005 } 1006 return phys_part; 1007 } 1008 1009 /* --------------------------------------------------------------------- */ 1010 1011 /* we dont try to be smart; we just record the parts */ 1012 #define UDF_UPDATE_DSCR(name, dscr) \ 1013 if (name) \ 1014 free(name, M_UDFVOLD); \ 1015 name = dscr; 1016 1017 static int 1018 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 1019 { 1020 uint16_t phys_part, raw_phys_part; 1021 1022 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 1023 udf_rw16(dscr->tag.id))); 1024 switch (udf_rw16(dscr->tag.id)) { 1025 case TAGID_PRI_VOL : /* primary partition */ 1026 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 1027 break; 1028 case TAGID_LOGVOL : /* logical volume */ 1029 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 1030 break; 1031 case TAGID_UNALLOC_SPACE : /* unallocated space */ 1032 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 1033 break; 1034 case TAGID_IMP_VOL : /* implementation */ 1035 /* XXX do we care about multiple impl. descr ? */ 1036 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 1037 break; 1038 case TAGID_PARTITION : /* physical partition */ 1039 /* not much use if its not allocated */ 1040 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 1041 free(dscr, M_UDFVOLD); 1042 break; 1043 } 1044 1045 /* 1046 * BUGALERT: some rogue implementations use random physical 1047 * partition numbers to break other implementations so lookup 1048 * the number. 1049 */ 1050 raw_phys_part = udf_rw16(dscr->pd.part_num); 1051 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1052 1053 if (phys_part == UDF_PARTITIONS) { 1054 free(dscr, M_UDFVOLD); 1055 return EINVAL; 1056 } 1057 1058 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1059 break; 1060 case TAGID_VOL : /* volume space extender; rare */ 1061 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1062 free(dscr, M_UDFVOLD); 1063 break; 1064 default : 1065 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1066 udf_rw16(dscr->tag.id))); 1067 free(dscr, M_UDFVOLD); 1068 } 1069 1070 return 0; 1071 } 1072 #undef UDF_UPDATE_DSCR 1073 1074 /* --------------------------------------------------------------------- */ 1075 1076 static int 1077 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1078 { 1079 union dscrptr *dscr; 1080 uint32_t sector_size, dscr_size; 1081 int error; 1082 1083 sector_size = ump->discinfo.sector_size; 1084 1085 /* loc is sectornr, len is in bytes */ 1086 error = EIO; 1087 while (len) { 1088 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1089 if (error) 1090 return error; 1091 1092 /* blank block is a terminator */ 1093 if (dscr == NULL) 1094 return 0; 1095 1096 /* TERM descriptor is a terminator */ 1097 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1098 free(dscr, M_UDFVOLD); 1099 return 0; 1100 } 1101 1102 /* process all others */ 1103 dscr_size = udf_tagsize(dscr, sector_size); 1104 error = udf_process_vds_descriptor(ump, dscr); 1105 if (error) { 1106 free(dscr, M_UDFVOLD); 1107 break; 1108 } 1109 assert((dscr_size % sector_size) == 0); 1110 1111 len -= dscr_size; 1112 loc += dscr_size / sector_size; 1113 } 1114 1115 return error; 1116 } 1117 1118 1119 int 1120 udf_read_vds_space(struct udf_mount *ump) 1121 { 1122 /* struct udf_args *args = &ump->mount_args; */ 1123 struct anchor_vdp *anchor, *anchor2; 1124 size_t size; 1125 uint32_t main_loc, main_len; 1126 uint32_t reserve_loc, reserve_len; 1127 int error; 1128 1129 /* 1130 * read in VDS space provided by the anchors; if one descriptor read 1131 * fails, try the mirror sector. 1132 * 1133 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1134 * avoids the `compatibility features' of DirectCD that may confuse 1135 * stuff completely. 1136 */ 1137 1138 anchor = ump->anchors[0]; 1139 anchor2 = ump->anchors[1]; 1140 assert(anchor); 1141 1142 if (anchor2) { 1143 size = sizeof(struct extent_ad); 1144 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1145 anchor = anchor2; 1146 /* reserve is specified to be a literal copy of main */ 1147 } 1148 1149 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1150 main_len = udf_rw32(anchor->main_vds_ex.len); 1151 1152 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1153 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1154 1155 error = udf_read_vds_extent(ump, main_loc, main_len); 1156 if (error) { 1157 printf("UDF mount: reading in reserve VDS extent\n"); 1158 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1159 } 1160 1161 return error; 1162 } 1163 1164 /* --------------------------------------------------------------------- */ 1165 1166 /* 1167 * Read in the logical volume integrity sequence pointed to by our logical 1168 * volume descriptor. Its a sequence that can be extended using fields in the 1169 * integrity descriptor itself. On sequential media only one is found, on 1170 * rewritable media a sequence of descriptors can be found as a form of 1171 * history keeping and on non sequential write-once media the chain is vital 1172 * to allow more and more descriptors to be written. The last descriptor 1173 * written in an extent needs to claim space for a new extent. 1174 */ 1175 1176 static int 1177 udf_retrieve_lvint(struct udf_mount *ump) 1178 { 1179 union dscrptr *dscr; 1180 struct logvol_int_desc *lvint; 1181 struct udf_lvintq *trace; 1182 uint32_t lb_size, lbnum, len; 1183 int dscr_type, error, trace_len; 1184 1185 lb_size = udf_rw32(ump->logical_vol->lb_size); 1186 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1187 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1188 1189 /* clean trace */ 1190 memset(ump->lvint_trace, 0, 1191 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1192 1193 trace_len = 0; 1194 trace = ump->lvint_trace; 1195 trace->start = lbnum; 1196 trace->end = lbnum + len/lb_size; 1197 trace->pos = 0; 1198 trace->wpos = 0; 1199 1200 lvint = NULL; 1201 dscr = NULL; 1202 error = 0; 1203 while (len) { 1204 trace->pos = lbnum - trace->start; 1205 trace->wpos = trace->pos + 1; 1206 1207 /* read in our integrity descriptor */ 1208 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1209 if (!error) { 1210 if (dscr == NULL) { 1211 trace->wpos = trace->pos; 1212 break; /* empty terminates */ 1213 } 1214 dscr_type = udf_rw16(dscr->tag.id); 1215 if (dscr_type == TAGID_TERM) { 1216 trace->wpos = trace->pos; 1217 break; /* clean terminator */ 1218 } 1219 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1220 /* fatal... corrupt disc */ 1221 error = ENOENT; 1222 break; 1223 } 1224 if (lvint) 1225 free(lvint, M_UDFVOLD); 1226 lvint = &dscr->lvid; 1227 dscr = NULL; 1228 } /* else hope for the best... maybe the next is ok */ 1229 1230 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1231 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1232 1233 /* proceed sequential */ 1234 lbnum += 1; 1235 len -= lb_size; 1236 1237 /* are we linking to a new piece? */ 1238 if (dscr && lvint->next_extent.len) { 1239 len = udf_rw32(lvint->next_extent.len); 1240 lbnum = udf_rw32(lvint->next_extent.loc); 1241 1242 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1243 /* IEK! segment link full... */ 1244 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1245 error = EINVAL; 1246 } else { 1247 trace++; 1248 trace_len++; 1249 1250 trace->start = lbnum; 1251 trace->end = lbnum + len/lb_size; 1252 trace->pos = 0; 1253 trace->wpos = 0; 1254 } 1255 } 1256 } 1257 1258 /* clean up the mess, esp. when there is an error */ 1259 if (dscr) 1260 free(dscr, M_UDFVOLD); 1261 1262 if (error && lvint) { 1263 free(lvint, M_UDFVOLD); 1264 lvint = NULL; 1265 } 1266 1267 if (!lvint) 1268 error = ENOENT; 1269 1270 ump->logvol_integrity = lvint; 1271 return error; 1272 } 1273 1274 1275 static int 1276 udf_loose_lvint_history(struct udf_mount *ump) 1277 { 1278 union dscrptr **bufs, *dscr, *last_dscr; 1279 struct udf_lvintq *trace, *in_trace, *out_trace; 1280 struct logvol_int_desc *lvint; 1281 uint32_t in_ext, in_pos, in_len; 1282 uint32_t out_ext, out_wpos, out_len; 1283 uint32_t lb_size, packet_size, lb_num; 1284 uint32_t len, start; 1285 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1286 int losing; 1287 int error; 1288 1289 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1290 1291 lb_size = udf_rw32(ump->logical_vol->lb_size); 1292 packet_size = ump->data_track.packet_size; /* XXX data track */ 1293 1294 /* search smallest extent */ 1295 trace = &ump->lvint_trace[0]; 1296 minext = trace->end - trace->start; 1297 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1298 trace = &ump->lvint_trace[ext]; 1299 extlen = trace->end - trace->start; 1300 if (extlen == 0) 1301 break; 1302 minext = MIN(minext, extlen); 1303 } 1304 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1305 /* no sense wiping all */ 1306 if (losing == minext) 1307 losing--; 1308 1309 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1310 1311 /* get buffer for pieces */ 1312 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1313 1314 in_ext = 0; 1315 in_pos = losing; 1316 in_trace = &ump->lvint_trace[in_ext]; 1317 in_len = in_trace->end - in_trace->start; 1318 out_ext = 0; 1319 out_wpos = 0; 1320 out_trace = &ump->lvint_trace[out_ext]; 1321 out_len = out_trace->end - out_trace->start; 1322 1323 last_dscr = NULL; 1324 for(;;) { 1325 out_trace->pos = out_wpos; 1326 out_trace->wpos = out_trace->pos; 1327 if (in_pos >= in_len) { 1328 in_ext++; 1329 in_pos = 0; 1330 in_trace = &ump->lvint_trace[in_ext]; 1331 in_len = in_trace->end - in_trace->start; 1332 } 1333 if (out_wpos >= out_len) { 1334 out_ext++; 1335 out_wpos = 0; 1336 out_trace = &ump->lvint_trace[out_ext]; 1337 out_len = out_trace->end - out_trace->start; 1338 } 1339 /* copy overlap contents */ 1340 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1341 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1342 if (cpy_len == 0) 1343 break; 1344 1345 /* copy */ 1346 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1347 for (cnt = 0; cnt < cpy_len; cnt++) { 1348 /* read in our integrity descriptor */ 1349 lb_num = in_trace->start + in_pos + cnt; 1350 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1351 &dscr); 1352 if (error) { 1353 /* copy last one */ 1354 dscr = last_dscr; 1355 } 1356 bufs[cnt] = dscr; 1357 if (!error) { 1358 if (dscr == NULL) { 1359 out_trace->pos = out_wpos + cnt; 1360 out_trace->wpos = out_trace->pos; 1361 break; /* empty terminates */ 1362 } 1363 dscr_type = udf_rw16(dscr->tag.id); 1364 if (dscr_type == TAGID_TERM) { 1365 out_trace->pos = out_wpos + cnt; 1366 out_trace->wpos = out_trace->pos; 1367 break; /* clean terminator */ 1368 } 1369 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1370 panic( "UDF integrity sequence " 1371 "corrupted while mounted!\n"); 1372 } 1373 last_dscr = dscr; 1374 } 1375 } 1376 1377 /* patch up if first entry was on error */ 1378 if (bufs[0] == NULL) { 1379 for (cnt = 0; cnt < cpy_len; cnt++) 1380 if (bufs[cnt] != NULL) 1381 break; 1382 last_dscr = bufs[cnt]; 1383 for (; cnt > 0; cnt--) { 1384 bufs[cnt] = last_dscr; 1385 } 1386 } 1387 1388 /* glue + write out */ 1389 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1390 for (cnt = 0; cnt < cpy_len; cnt++) { 1391 lb_num = out_trace->start + out_wpos + cnt; 1392 lvint = &bufs[cnt]->lvid; 1393 1394 /* set continuation */ 1395 len = 0; 1396 start = 0; 1397 if (out_wpos + cnt == out_len) { 1398 /* get continuation */ 1399 trace = &ump->lvint_trace[out_ext+1]; 1400 len = trace->end - trace->start; 1401 start = trace->start; 1402 } 1403 lvint->next_extent.len = udf_rw32(len); 1404 lvint->next_extent.loc = udf_rw32(start); 1405 1406 lb_num = trace->start + trace->wpos; 1407 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1408 bufs[cnt], lb_num, lb_num); 1409 DPRINTFIF(VOLUMES, error, 1410 ("error writing lvint lb_num\n")); 1411 } 1412 1413 /* free non repeating descriptors */ 1414 last_dscr = NULL; 1415 for (cnt = 0; cnt < cpy_len; cnt++) { 1416 if (bufs[cnt] != last_dscr) 1417 free(bufs[cnt], M_UDFVOLD); 1418 last_dscr = bufs[cnt]; 1419 } 1420 1421 /* advance */ 1422 in_pos += cpy_len; 1423 out_wpos += cpy_len; 1424 } 1425 1426 free(bufs, M_TEMP); 1427 1428 return 0; 1429 } 1430 1431 1432 static int 1433 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1434 { 1435 struct udf_lvintq *trace; 1436 struct timeval now_v; 1437 struct timespec now_s; 1438 uint32_t sector; 1439 int logvol_integrity; 1440 int space, error; 1441 1442 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1443 1444 again: 1445 /* get free space in last chunk */ 1446 trace = ump->lvint_trace; 1447 while (trace->wpos > (trace->end - trace->start)) { 1448 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1449 "wpos = %d\n", trace->start, trace->end, 1450 trace->pos, trace->wpos)); 1451 trace++; 1452 } 1453 1454 /* check if there is space to append */ 1455 space = (trace->end - trace->start) - trace->wpos; 1456 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1457 "space = %d\n", trace->start, trace->end, trace->pos, 1458 trace->wpos, space)); 1459 1460 /* get state */ 1461 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1462 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1463 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1464 /* TODO extent LVINT space if possible */ 1465 return EROFS; 1466 } 1467 } 1468 1469 if (space < 1) { 1470 if (lvflag & UDF_APPENDONLY_LVINT) 1471 return EROFS; 1472 /* loose history by re-writing extents */ 1473 error = udf_loose_lvint_history(ump); 1474 if (error) 1475 return error; 1476 goto again; 1477 } 1478 1479 /* update our integrity descriptor to identify us and timestamp it */ 1480 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1481 microtime(&now_v); 1482 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1483 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1484 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1485 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1486 1487 /* writeout integrity descriptor */ 1488 sector = trace->start + trace->wpos; 1489 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1490 (union dscrptr *) ump->logvol_integrity, 1491 sector, sector); 1492 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1493 if (error) 1494 return error; 1495 1496 /* advance write position */ 1497 trace->wpos++; space--; 1498 if (space >= 1) { 1499 /* append terminator */ 1500 sector = trace->start + trace->wpos; 1501 error = udf_write_terminator(ump, sector); 1502 1503 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1504 } 1505 1506 space = (trace->end - trace->start) - trace->wpos; 1507 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1508 "space = %d\n", trace->start, trace->end, trace->pos, 1509 trace->wpos, space)); 1510 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1511 "successfull\n")); 1512 1513 return error; 1514 } 1515 1516 /* --------------------------------------------------------------------- */ 1517 1518 static int 1519 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1520 { 1521 union dscrptr *dscr; 1522 /* struct udf_args *args = &ump->mount_args; */ 1523 struct part_desc *partd; 1524 struct part_hdr_desc *parthdr; 1525 struct udf_bitmap *bitmap; 1526 uint32_t phys_part; 1527 uint32_t lb_num, len; 1528 int error, dscr_type; 1529 1530 /* unallocated space map */ 1531 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1532 partd = ump->partitions[phys_part]; 1533 if (partd == NULL) 1534 continue; 1535 parthdr = &partd->_impl_use.part_hdr; 1536 1537 lb_num = udf_rw32(partd->start_loc); 1538 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1539 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1540 if (len == 0) 1541 continue; 1542 1543 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1544 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1545 if (!error && dscr) { 1546 /* analyse */ 1547 dscr_type = udf_rw16(dscr->tag.id); 1548 if (dscr_type == TAGID_SPACE_BITMAP) { 1549 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1550 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1551 1552 /* fill in ump->part_unalloc_bits */ 1553 bitmap = &ump->part_unalloc_bits[phys_part]; 1554 bitmap->blob = (uint8_t *) dscr; 1555 bitmap->bits = dscr->sbd.data; 1556 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1557 bitmap->pages = NULL; /* TODO */ 1558 bitmap->data_pos = 0; 1559 bitmap->metadata_pos = 0; 1560 } else { 1561 free(dscr, M_UDFVOLD); 1562 1563 printf( "UDF mount: error reading unallocated " 1564 "space bitmap\n"); 1565 return EROFS; 1566 } 1567 } else { 1568 /* blank not allowed */ 1569 printf("UDF mount: blank unallocated space bitmap\n"); 1570 return EROFS; 1571 } 1572 } 1573 1574 /* unallocated space table (not supported) */ 1575 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1576 partd = ump->partitions[phys_part]; 1577 if (partd == NULL) 1578 continue; 1579 parthdr = &partd->_impl_use.part_hdr; 1580 1581 len = udf_rw32(parthdr->unalloc_space_table.len); 1582 if (len) { 1583 printf("UDF mount: space tables not supported\n"); 1584 return EROFS; 1585 } 1586 } 1587 1588 /* freed space map */ 1589 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1590 partd = ump->partitions[phys_part]; 1591 if (partd == NULL) 1592 continue; 1593 parthdr = &partd->_impl_use.part_hdr; 1594 1595 /* freed space map */ 1596 lb_num = udf_rw32(partd->start_loc); 1597 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1598 len = udf_rw32(parthdr->freed_space_bitmap.len); 1599 if (len == 0) 1600 continue; 1601 1602 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1603 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1604 if (!error && dscr) { 1605 /* analyse */ 1606 dscr_type = udf_rw16(dscr->tag.id); 1607 if (dscr_type == TAGID_SPACE_BITMAP) { 1608 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1609 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1610 1611 /* fill in ump->part_freed_bits */ 1612 bitmap = &ump->part_unalloc_bits[phys_part]; 1613 bitmap->blob = (uint8_t *) dscr; 1614 bitmap->bits = dscr->sbd.data; 1615 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1616 bitmap->pages = NULL; /* TODO */ 1617 bitmap->data_pos = 0; 1618 bitmap->metadata_pos = 0; 1619 } else { 1620 free(dscr, M_UDFVOLD); 1621 1622 printf( "UDF mount: error reading freed " 1623 "space bitmap\n"); 1624 return EROFS; 1625 } 1626 } else { 1627 /* blank not allowed */ 1628 printf("UDF mount: blank freed space bitmap\n"); 1629 return EROFS; 1630 } 1631 } 1632 1633 /* freed space table (not supported) */ 1634 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1635 partd = ump->partitions[phys_part]; 1636 if (partd == NULL) 1637 continue; 1638 parthdr = &partd->_impl_use.part_hdr; 1639 1640 len = udf_rw32(parthdr->freed_space_table.len); 1641 if (len) { 1642 printf("UDF mount: space tables not supported\n"); 1643 return EROFS; 1644 } 1645 } 1646 1647 return 0; 1648 } 1649 1650 1651 /* TODO implement async writeout */ 1652 int 1653 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1654 { 1655 union dscrptr *dscr; 1656 /* struct udf_args *args = &ump->mount_args; */ 1657 struct part_desc *partd; 1658 struct part_hdr_desc *parthdr; 1659 uint32_t phys_part; 1660 uint32_t lb_num, len, ptov; 1661 int error_all, error; 1662 1663 error_all = 0; 1664 /* unallocated space map */ 1665 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1666 partd = ump->partitions[phys_part]; 1667 if (partd == NULL) 1668 continue; 1669 parthdr = &partd->_impl_use.part_hdr; 1670 1671 ptov = udf_rw32(partd->start_loc); 1672 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1673 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1674 if (len == 0) 1675 continue; 1676 1677 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1678 lb_num + ptov)); 1679 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1680 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1681 (union dscrptr *) dscr, 1682 ptov + lb_num, lb_num); 1683 if (error) { 1684 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1685 error_all = error; 1686 } 1687 } 1688 1689 /* freed space map */ 1690 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1691 partd = ump->partitions[phys_part]; 1692 if (partd == NULL) 1693 continue; 1694 parthdr = &partd->_impl_use.part_hdr; 1695 1696 /* freed space map */ 1697 ptov = udf_rw32(partd->start_loc); 1698 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1699 len = udf_rw32(parthdr->freed_space_bitmap.len); 1700 if (len == 0) 1701 continue; 1702 1703 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1704 lb_num + ptov)); 1705 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1706 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1707 (union dscrptr *) dscr, 1708 ptov + lb_num, lb_num); 1709 if (error) { 1710 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1711 error_all = error; 1712 } 1713 } 1714 1715 return error_all; 1716 } 1717 1718 1719 static int 1720 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1721 { 1722 struct udf_node *bitmap_node; 1723 union dscrptr *dscr; 1724 struct udf_bitmap *bitmap; 1725 uint64_t inflen; 1726 int error, dscr_type; 1727 1728 bitmap_node = ump->metadatabitmap_node; 1729 1730 /* only read in when metadata bitmap node is read in */ 1731 if (bitmap_node == NULL) 1732 return 0; 1733 1734 if (bitmap_node->fe) { 1735 inflen = udf_rw64(bitmap_node->fe->inf_len); 1736 } else { 1737 KASSERT(bitmap_node->efe); 1738 inflen = udf_rw64(bitmap_node->efe->inf_len); 1739 } 1740 1741 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1742 "%"PRIu64" bytes\n", inflen)); 1743 1744 /* allocate space for bitmap */ 1745 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1746 if (!dscr) 1747 return ENOMEM; 1748 1749 /* set vnode type to regular file or we can't read from it! */ 1750 bitmap_node->vnode->v_type = VREG; 1751 1752 /* read in complete metadata bitmap file */ 1753 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1754 dscr, 1755 inflen, 0, 1756 UIO_SYSSPACE, 1757 IO_SYNC | IO_ALTSEMANTICS, FSCRED, 1758 NULL, NULL); 1759 if (error) { 1760 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1761 goto errorout; 1762 } 1763 1764 /* analyse */ 1765 dscr_type = udf_rw16(dscr->tag.id); 1766 if (dscr_type == TAGID_SPACE_BITMAP) { 1767 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1768 ump->metadata_unalloc_dscr = &dscr->sbd; 1769 1770 /* fill in bitmap bits */ 1771 bitmap = &ump->metadata_unalloc_bits; 1772 bitmap->blob = (uint8_t *) dscr; 1773 bitmap->bits = dscr->sbd.data; 1774 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1775 bitmap->pages = NULL; /* TODO */ 1776 bitmap->data_pos = 0; 1777 bitmap->metadata_pos = 0; 1778 } else { 1779 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1780 goto errorout; 1781 } 1782 1783 return 0; 1784 1785 errorout: 1786 free(dscr, M_UDFVOLD); 1787 printf( "UDF mount: error reading unallocated " 1788 "space bitmap for metadata partition\n"); 1789 return EROFS; 1790 } 1791 1792 1793 int 1794 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1795 { 1796 struct udf_node *bitmap_node; 1797 union dscrptr *dscr; 1798 uint64_t inflen, new_inflen; 1799 int dummy, error; 1800 1801 bitmap_node = ump->metadatabitmap_node; 1802 1803 /* only write out when metadata bitmap node is known */ 1804 if (bitmap_node == NULL) 1805 return 0; 1806 1807 if (bitmap_node->fe) { 1808 inflen = udf_rw64(bitmap_node->fe->inf_len); 1809 } else { 1810 KASSERT(bitmap_node->efe); 1811 inflen = udf_rw64(bitmap_node->efe->inf_len); 1812 } 1813 1814 /* reduce length to zero */ 1815 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1816 new_inflen = udf_tagsize(dscr, 1); 1817 1818 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from " 1819 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen)); 1820 1821 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1822 if (error) 1823 printf("Error resizing metadata space bitmap\n"); 1824 1825 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1826 dscr, 1827 new_inflen, 0, 1828 UIO_SYSSPACE, 1829 IO_ALTSEMANTICS, FSCRED, 1830 NULL, NULL); 1831 1832 bitmap_node->i_flags |= IN_MODIFIED; 1833 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT); 1834 if (error == 0) 1835 error = VOP_FSYNC(bitmap_node->vnode, 1836 FSCRED, FSYNC_WAIT, 0, 0); 1837 1838 if (error) 1839 printf( "Error writing out metadata partition unalloced " 1840 "space bitmap!\n"); 1841 1842 return error; 1843 } 1844 1845 1846 /* --------------------------------------------------------------------- */ 1847 1848 /* 1849 * Checks if ump's vds information is correct and complete 1850 */ 1851 1852 int 1853 udf_process_vds(struct udf_mount *ump) { 1854 union udf_pmap *mapping; 1855 /* struct udf_args *args = &ump->mount_args; */ 1856 struct logvol_int_desc *lvint; 1857 struct udf_logvol_info *lvinfo; 1858 uint32_t n_pm, mt_l; 1859 uint8_t *pmap_pos; 1860 char *domain_name, *map_name; 1861 const char *check_name; 1862 char bits[128]; 1863 int pmap_stype, pmap_size; 1864 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1865 int n_phys, n_virt, n_spar, n_meta; 1866 int len, error; 1867 1868 if (ump == NULL) 1869 return ENOENT; 1870 1871 /* we need at least an anchor (trivial, but for safety) */ 1872 if (ump->anchors[0] == NULL) 1873 return EINVAL; 1874 1875 /* we need at least one primary and one logical volume descriptor */ 1876 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1877 return EINVAL; 1878 1879 /* we need at least one partition descriptor */ 1880 if (ump->partitions[0] == NULL) 1881 return EINVAL; 1882 1883 /* check logical volume sector size verses device sector size */ 1884 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1885 printf("UDF mount: format violation, lb_size != sector size\n"); 1886 return EINVAL; 1887 } 1888 1889 /* check domain name */ 1890 domain_name = ump->logical_vol->domain_id.id; 1891 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1892 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1893 return EINVAL; 1894 } 1895 1896 /* retrieve logical volume integrity sequence */ 1897 error = udf_retrieve_lvint(ump); 1898 1899 /* 1900 * We need at least one logvol integrity descriptor recorded. Note 1901 * that its OK to have an open logical volume integrity here. The VAT 1902 * will close/update the integrity. 1903 */ 1904 if (ump->logvol_integrity == NULL) 1905 return EINVAL; 1906 1907 /* process derived structures */ 1908 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1909 lvint = ump->logvol_integrity; 1910 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1911 ump->logvol_info = lvinfo; 1912 1913 /* TODO check udf versions? */ 1914 1915 /* 1916 * check logvol mappings: effective virt->log partmap translation 1917 * check and recording of the mapping results. Saves expensive 1918 * strncmp() in tight places. 1919 */ 1920 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1921 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1922 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 1923 pmap_pos = ump->logical_vol->maps; 1924 1925 if (n_pm > UDF_PMAPS) { 1926 printf("UDF mount: too many mappings\n"); 1927 return EINVAL; 1928 } 1929 1930 /* count types and set partition numbers */ 1931 ump->data_part = ump->node_part = ump->fids_part = 0; 1932 n_phys = n_virt = n_spar = n_meta = 0; 1933 for (log_part = 0; log_part < n_pm; log_part++) { 1934 mapping = (union udf_pmap *) pmap_pos; 1935 pmap_stype = pmap_pos[0]; 1936 pmap_size = pmap_pos[1]; 1937 switch (pmap_stype) { 1938 case 1: /* physical mapping */ 1939 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1940 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1941 pmap_type = UDF_VTOP_TYPE_PHYS; 1942 n_phys++; 1943 ump->data_part = log_part; 1944 ump->node_part = log_part; 1945 ump->fids_part = log_part; 1946 break; 1947 case 2: /* virtual/sparable/meta mapping */ 1948 map_name = mapping->pm2.part_id.id; 1949 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1950 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1951 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1952 len = UDF_REGID_ID_SIZE; 1953 1954 check_name = "*UDF Virtual Partition"; 1955 if (strncmp(map_name, check_name, len) == 0) { 1956 pmap_type = UDF_VTOP_TYPE_VIRT; 1957 n_virt++; 1958 ump->node_part = log_part; 1959 break; 1960 } 1961 check_name = "*UDF Sparable Partition"; 1962 if (strncmp(map_name, check_name, len) == 0) { 1963 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1964 n_spar++; 1965 ump->data_part = log_part; 1966 ump->node_part = log_part; 1967 ump->fids_part = log_part; 1968 break; 1969 } 1970 check_name = "*UDF Metadata Partition"; 1971 if (strncmp(map_name, check_name, len) == 0) { 1972 pmap_type = UDF_VTOP_TYPE_META; 1973 n_meta++; 1974 ump->node_part = log_part; 1975 ump->fids_part = log_part; 1976 break; 1977 } 1978 break; 1979 default: 1980 return EINVAL; 1981 } 1982 1983 /* 1984 * BUGALERT: some rogue implementations use random physical 1985 * partition numbers to break other implementations so lookup 1986 * the number. 1987 */ 1988 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1989 1990 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1991 raw_phys_part, phys_part, pmap_type)); 1992 1993 if (phys_part == UDF_PARTITIONS) 1994 return EINVAL; 1995 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1996 return EINVAL; 1997 1998 ump->vtop [log_part] = phys_part; 1999 ump->vtop_tp[log_part] = pmap_type; 2000 2001 pmap_pos += pmap_size; 2002 } 2003 /* not winning the beauty contest */ 2004 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 2005 2006 /* test some basic UDF assertions/requirements */ 2007 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 2008 return EINVAL; 2009 2010 if (n_virt) { 2011 if ((n_phys == 0) || n_spar || n_meta) 2012 return EINVAL; 2013 } 2014 if (n_spar + n_phys == 0) 2015 return EINVAL; 2016 2017 /* select allocation type for each logical partition */ 2018 for (log_part = 0; log_part < n_pm; log_part++) { 2019 maps_on = ump->vtop[log_part]; 2020 switch (ump->vtop_tp[log_part]) { 2021 case UDF_VTOP_TYPE_PHYS : 2022 assert(maps_on == log_part); 2023 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2024 break; 2025 case UDF_VTOP_TYPE_VIRT : 2026 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 2027 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2028 break; 2029 case UDF_VTOP_TYPE_SPARABLE : 2030 assert(maps_on == log_part); 2031 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2032 break; 2033 case UDF_VTOP_TYPE_META : 2034 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 2035 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 2036 /* special case for UDF 2.60 */ 2037 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 2038 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2039 } 2040 break; 2041 default: 2042 panic("bad alloction type in udf's ump->vtop\n"); 2043 } 2044 } 2045 2046 /* determine logical volume open/closure actions */ 2047 if (n_virt) { 2048 ump->lvopen = 0; 2049 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2050 ump->lvopen |= UDF_OPEN_SESSION ; 2051 ump->lvclose = UDF_WRITE_VAT; 2052 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2053 ump->lvclose |= UDF_CLOSE_SESSION; 2054 } else { 2055 /* `normal' rewritable or non sequential media */ 2056 ump->lvopen = UDF_WRITE_LVINT; 2057 ump->lvclose = UDF_WRITE_LVINT; 2058 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2059 ump->lvopen |= UDF_APPENDONLY_LVINT; 2060 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2061 ump->lvopen &= ~UDF_APPENDONLY_LVINT; 2062 } 2063 2064 /* 2065 * Determine sheduler error behaviour. For virtual partitions, update 2066 * the trackinfo; for sparable partitions replace a whole block on the 2067 * sparable table. Allways requeue. 2068 */ 2069 ump->lvreadwrite = 0; 2070 if (n_virt) 2071 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2072 if (n_spar) 2073 ump->lvreadwrite = UDF_REMAP_BLOCK; 2074 2075 /* 2076 * Select our sheduler 2077 */ 2078 ump->strategy = &udf_strat_rmw; 2079 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2080 ump->strategy = &udf_strat_sequential; 2081 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2082 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2083 ump->strategy = &udf_strat_direct; 2084 if (n_spar) 2085 ump->strategy = &udf_strat_rmw; 2086 2087 #if 0 2088 /* read-only access won't benefit from the other shedulers */ 2089 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2090 ump->strategy = &udf_strat_direct; 2091 #endif 2092 2093 /* print results */ 2094 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2095 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2096 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2097 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2098 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2099 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2100 2101 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2102 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2103 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2104 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2105 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2106 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2107 2108 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2109 (ump->strategy == &udf_strat_direct) ? "Direct" : 2110 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2111 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2112 2113 /* signal its OK for now */ 2114 return 0; 2115 } 2116 2117 /* --------------------------------------------------------------------- */ 2118 2119 /* 2120 * Update logical volume name in all structures that keep a record of it. We 2121 * use memmove since each of them might be specified as a source. 2122 * 2123 * Note that it doesn't update the VAT structure! 2124 */ 2125 2126 static void 2127 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2128 { 2129 struct logvol_desc *lvd = NULL; 2130 struct fileset_desc *fsd = NULL; 2131 struct udf_lv_info *lvi = NULL; 2132 2133 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2134 lvd = ump->logical_vol; 2135 fsd = ump->fileset_desc; 2136 if (ump->implementation) 2137 lvi = &ump->implementation->_impl_use.lv_info; 2138 2139 /* logvol's id might be specified as origional so use memmove here */ 2140 memmove(lvd->logvol_id, logvol_id, 128); 2141 if (fsd) 2142 memmove(fsd->logvol_id, logvol_id, 128); 2143 if (lvi) 2144 memmove(lvi->logvol_id, logvol_id, 128); 2145 } 2146 2147 /* --------------------------------------------------------------------- */ 2148 2149 void 2150 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2151 uint32_t sector) 2152 { 2153 assert(ump->logical_vol); 2154 2155 tag->id = udf_rw16(tagid); 2156 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2157 tag->cksum = 0; 2158 tag->reserved = 0; 2159 tag->serial_num = ump->logical_vol->tag.serial_num; 2160 tag->tag_loc = udf_rw32(sector); 2161 } 2162 2163 2164 uint64_t 2165 udf_advance_uniqueid(struct udf_mount *ump) 2166 { 2167 uint64_t unique_id; 2168 2169 mutex_enter(&ump->logvol_mutex); 2170 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2171 if (unique_id < 0x10) 2172 unique_id = 0x10; 2173 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2174 mutex_exit(&ump->logvol_mutex); 2175 2176 return unique_id; 2177 } 2178 2179 2180 static void 2181 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2182 { 2183 struct udf_mount *ump = udf_node->ump; 2184 uint32_t num_dirs, num_files; 2185 int udf_file_type; 2186 2187 /* get file type */ 2188 if (udf_node->fe) { 2189 udf_file_type = udf_node->fe->icbtag.file_type; 2190 } else { 2191 udf_file_type = udf_node->efe->icbtag.file_type; 2192 } 2193 2194 /* adjust file count */ 2195 mutex_enter(&ump->allocate_mutex); 2196 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2197 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2198 ump->logvol_info->num_directories = 2199 udf_rw32((num_dirs + sign)); 2200 } else { 2201 num_files = udf_rw32(ump->logvol_info->num_files); 2202 ump->logvol_info->num_files = 2203 udf_rw32((num_files + sign)); 2204 } 2205 mutex_exit(&ump->allocate_mutex); 2206 } 2207 2208 2209 void 2210 udf_osta_charset(struct charspec *charspec) 2211 { 2212 memset(charspec, 0, sizeof(struct charspec)); 2213 charspec->type = 0; 2214 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2215 } 2216 2217 2218 /* first call udf_set_regid and then the suffix */ 2219 void 2220 udf_set_regid(struct regid *regid, char const *name) 2221 { 2222 memset(regid, 0, sizeof(struct regid)); 2223 regid->flags = 0; /* not dirty and not protected */ 2224 strcpy((char *) regid->id, name); 2225 } 2226 2227 2228 void 2229 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2230 { 2231 uint16_t *ver; 2232 2233 ver = (uint16_t *) regid->id_suffix; 2234 *ver = ump->logvol_info->min_udf_readver; 2235 } 2236 2237 2238 void 2239 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2240 { 2241 uint16_t *ver; 2242 2243 ver = (uint16_t *) regid->id_suffix; 2244 *ver = ump->logvol_info->min_udf_readver; 2245 2246 regid->id_suffix[2] = 4; /* unix */ 2247 regid->id_suffix[3] = 8; /* NetBSD */ 2248 } 2249 2250 2251 void 2252 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2253 { 2254 regid->id_suffix[0] = 4; /* unix */ 2255 regid->id_suffix[1] = 8; /* NetBSD */ 2256 } 2257 2258 2259 void 2260 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2261 { 2262 regid->id_suffix[0] = APP_VERSION_MAIN; 2263 regid->id_suffix[1] = APP_VERSION_SUB; 2264 } 2265 2266 static int 2267 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2268 struct long_ad *parent, uint64_t unique_id) 2269 { 2270 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2271 int fidsize = 40; 2272 2273 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2274 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2275 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2276 fid->icb = *parent; 2277 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2278 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2279 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2280 2281 return fidsize; 2282 } 2283 2284 /* --------------------------------------------------------------------- */ 2285 2286 /* 2287 * Extended attribute support. UDF knows of 3 places for extended attributes: 2288 * 2289 * (a) inside the file's (e)fe in the length of the extended attribute area 2290 * before the allocation descriptors/filedata 2291 * 2292 * (b) in a file referenced by (e)fe->ext_attr_icb and 2293 * 2294 * (c) in the e(fe)'s associated stream directory that can hold various 2295 * sub-files. In the stream directory a few fixed named subfiles are reserved 2296 * for NT/Unix ACL's and OS/2 attributes. 2297 * 2298 * NOTE: Extended attributes are read randomly but allways written 2299 * *atomicaly*. For ACL's this interface is propably different but not known 2300 * to me yet. 2301 * 2302 * Order of extended attributes in a space : 2303 * ECMA 167 EAs 2304 * Non block aligned Implementation Use EAs 2305 * Block aligned Implementation Use EAs 2306 * Application Use EAs 2307 */ 2308 2309 static int 2310 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2311 { 2312 uint16_t *spos; 2313 2314 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2315 /* checksum valid? */ 2316 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2317 spos = (uint16_t *) implext->data; 2318 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2319 return EINVAL; 2320 } 2321 return 0; 2322 } 2323 2324 static void 2325 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2326 { 2327 uint16_t *spos; 2328 2329 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2330 /* set checksum */ 2331 spos = (uint16_t *) implext->data; 2332 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2333 } 2334 } 2335 2336 2337 int 2338 udf_extattr_search_intern(struct udf_node *node, 2339 uint32_t sattr, char const *sattrname, 2340 uint32_t *offsetp, uint32_t *lengthp) 2341 { 2342 struct extattrhdr_desc *eahdr; 2343 struct extattr_entry *attrhdr; 2344 struct impl_extattr_entry *implext; 2345 uint32_t offset, a_l, sector_size; 2346 int32_t l_ea; 2347 uint8_t *pos; 2348 int error; 2349 2350 /* get mountpoint */ 2351 sector_size = node->ump->discinfo.sector_size; 2352 2353 /* get information from fe/efe */ 2354 if (node->fe) { 2355 l_ea = udf_rw32(node->fe->l_ea); 2356 eahdr = (struct extattrhdr_desc *) node->fe->data; 2357 } else { 2358 assert(node->efe); 2359 l_ea = udf_rw32(node->efe->l_ea); 2360 eahdr = (struct extattrhdr_desc *) node->efe->data; 2361 } 2362 2363 /* something recorded here? */ 2364 if (l_ea == 0) 2365 return ENOENT; 2366 2367 /* check extended attribute tag; what to do if it fails? */ 2368 error = udf_check_tag(eahdr); 2369 if (error) 2370 return EINVAL; 2371 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2372 return EINVAL; 2373 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2374 if (error) 2375 return EINVAL; 2376 2377 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2378 2379 /* looking for Ecma-167 attributes? */ 2380 offset = sizeof(struct extattrhdr_desc); 2381 2382 /* looking for either implemenation use or application use */ 2383 if (sattr == 2048) { /* [4/48.10.8] */ 2384 offset = udf_rw32(eahdr->impl_attr_loc); 2385 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2386 return ENOENT; 2387 } 2388 if (sattr == 65536) { /* [4/48.10.9] */ 2389 offset = udf_rw32(eahdr->appl_attr_loc); 2390 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2391 return ENOENT; 2392 } 2393 2394 /* paranoia check offset and l_ea */ 2395 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2396 return EINVAL; 2397 2398 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2399 2400 /* find our extended attribute */ 2401 l_ea -= offset; 2402 pos = (uint8_t *) eahdr + offset; 2403 2404 while (l_ea >= sizeof(struct extattr_entry)) { 2405 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2406 attrhdr = (struct extattr_entry *) pos; 2407 implext = (struct impl_extattr_entry *) pos; 2408 2409 /* get complete attribute length and check for roque values */ 2410 a_l = udf_rw32(attrhdr->a_l); 2411 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2412 udf_rw32(attrhdr->type), 2413 attrhdr->subtype, a_l, l_ea)); 2414 if ((a_l == 0) || (a_l > l_ea)) 2415 return EINVAL; 2416 2417 if (attrhdr->type != sattr) 2418 goto next_attribute; 2419 2420 /* we might have found it! */ 2421 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2422 *offsetp = offset; 2423 *lengthp = a_l; 2424 return 0; /* success */ 2425 } 2426 2427 /* 2428 * Implementation use and application use extended attributes 2429 * have a name to identify. They share the same structure only 2430 * UDF implementation use extended attributes have a checksum 2431 * we need to check 2432 */ 2433 2434 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2435 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2436 /* we have found our appl/implementation attribute */ 2437 *offsetp = offset; 2438 *lengthp = a_l; 2439 return 0; /* success */ 2440 } 2441 2442 next_attribute: 2443 /* next attribute */ 2444 pos += a_l; 2445 l_ea -= a_l; 2446 offset += a_l; 2447 } 2448 /* not found */ 2449 return ENOENT; 2450 } 2451 2452 2453 static void 2454 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2455 struct extattr_entry *extattr) 2456 { 2457 struct file_entry *fe; 2458 struct extfile_entry *efe; 2459 struct extattrhdr_desc *extattrhdr; 2460 struct impl_extattr_entry *implext; 2461 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2462 uint32_t *l_eap, l_ad; 2463 uint16_t *spos; 2464 uint8_t *bpos, *data; 2465 2466 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2467 fe = &dscr->fe; 2468 data = fe->data; 2469 l_eap = &fe->l_ea; 2470 l_ad = udf_rw32(fe->l_ad); 2471 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2472 efe = &dscr->efe; 2473 data = efe->data; 2474 l_eap = &efe->l_ea; 2475 l_ad = udf_rw32(efe->l_ad); 2476 } else { 2477 panic("Bad tag passed to udf_extattr_insert_internal"); 2478 } 2479 2480 /* can't append already written to file descriptors yet */ 2481 assert(l_ad == 0); 2482 2483 /* should have a header! */ 2484 extattrhdr = (struct extattrhdr_desc *) data; 2485 l_ea = udf_rw32(*l_eap); 2486 if (l_ea == 0) { 2487 /* create empty extended attribute header */ 2488 exthdr_len = sizeof(struct extattrhdr_desc); 2489 2490 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2491 /* loc */ 0); 2492 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2493 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2494 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2495 2496 /* record extended attribute header length */ 2497 l_ea = exthdr_len; 2498 *l_eap = udf_rw32(l_ea); 2499 } 2500 2501 /* extract locations */ 2502 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2503 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2504 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2505 impl_attr_loc = l_ea; 2506 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2507 appl_attr_loc = l_ea; 2508 2509 /* Ecma 167 EAs */ 2510 if (udf_rw32(extattr->type) < 2048) { 2511 assert(impl_attr_loc == l_ea); 2512 assert(appl_attr_loc == l_ea); 2513 } 2514 2515 /* implementation use extended attributes */ 2516 if (udf_rw32(extattr->type) == 2048) { 2517 assert(appl_attr_loc == l_ea); 2518 2519 /* calculate and write extended attribute header checksum */ 2520 implext = (struct impl_extattr_entry *) extattr; 2521 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2522 spos = (uint16_t *) implext->data; 2523 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2524 } 2525 2526 /* application use extended attributes */ 2527 assert(udf_rw32(extattr->type) != 65536); 2528 assert(appl_attr_loc == l_ea); 2529 2530 /* append the attribute at the end of the current space */ 2531 bpos = data + udf_rw32(*l_eap); 2532 a_l = udf_rw32(extattr->a_l); 2533 2534 /* update impl. attribute locations */ 2535 if (udf_rw32(extattr->type) < 2048) { 2536 impl_attr_loc = l_ea + a_l; 2537 appl_attr_loc = l_ea + a_l; 2538 } 2539 if (udf_rw32(extattr->type) == 2048) { 2540 appl_attr_loc = l_ea + a_l; 2541 } 2542 2543 /* copy and advance */ 2544 memcpy(bpos, extattr, a_l); 2545 l_ea += a_l; 2546 *l_eap = udf_rw32(l_ea); 2547 2548 /* do the `dance` again backwards */ 2549 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2550 if (impl_attr_loc == l_ea) 2551 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2552 if (appl_attr_loc == l_ea) 2553 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2554 } 2555 2556 /* store offsets */ 2557 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2558 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2559 } 2560 2561 2562 /* --------------------------------------------------------------------- */ 2563 2564 static int 2565 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2566 { 2567 struct udf_mount *ump; 2568 struct udf_logvol_info *lvinfo; 2569 struct impl_extattr_entry *implext; 2570 struct vatlvext_extattr_entry lvext; 2571 const char *extstr = "*UDF VAT LVExtension"; 2572 uint64_t vat_uniqueid; 2573 uint32_t offset, a_l; 2574 uint8_t *ea_start, *lvextpos; 2575 int error; 2576 2577 /* get mountpoint and lvinfo */ 2578 ump = vat_node->ump; 2579 lvinfo = ump->logvol_info; 2580 2581 /* get information from fe/efe */ 2582 if (vat_node->fe) { 2583 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2584 ea_start = vat_node->fe->data; 2585 } else { 2586 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2587 ea_start = vat_node->efe->data; 2588 } 2589 2590 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2591 if (error) 2592 return error; 2593 2594 implext = (struct impl_extattr_entry *) (ea_start + offset); 2595 error = udf_impl_extattr_check(implext); 2596 if (error) 2597 return error; 2598 2599 /* paranoia */ 2600 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2601 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2602 return EINVAL; 2603 } 2604 2605 /* 2606 * we have found our "VAT LVExtension attribute. BUT due to a 2607 * bug in the specification it might not be word aligned so 2608 * copy first to avoid panics on some machines (!!) 2609 */ 2610 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2611 lvextpos = implext->data + udf_rw32(implext->iu_l); 2612 memcpy(&lvext, lvextpos, sizeof(lvext)); 2613 2614 /* check if it was updated the last time */ 2615 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2616 lvinfo->num_files = lvext.num_files; 2617 lvinfo->num_directories = lvext.num_directories; 2618 udf_update_logvolname(ump, lvext.logvol_id); 2619 } else { 2620 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2621 /* replace VAT LVExt by free space EA */ 2622 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2623 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2624 udf_calc_impl_extattr_checksum(implext); 2625 } 2626 2627 return 0; 2628 } 2629 2630 2631 static int 2632 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2633 { 2634 struct udf_mount *ump; 2635 struct udf_logvol_info *lvinfo; 2636 struct impl_extattr_entry *implext; 2637 struct vatlvext_extattr_entry lvext; 2638 const char *extstr = "*UDF VAT LVExtension"; 2639 uint64_t vat_uniqueid; 2640 uint32_t offset, a_l; 2641 uint8_t *ea_start, *lvextpos; 2642 int error; 2643 2644 /* get mountpoint and lvinfo */ 2645 ump = vat_node->ump; 2646 lvinfo = ump->logvol_info; 2647 2648 /* get information from fe/efe */ 2649 if (vat_node->fe) { 2650 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2651 ea_start = vat_node->fe->data; 2652 } else { 2653 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2654 ea_start = vat_node->efe->data; 2655 } 2656 2657 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2658 if (error) 2659 return error; 2660 /* found, it existed */ 2661 2662 /* paranoia */ 2663 implext = (struct impl_extattr_entry *) (ea_start + offset); 2664 error = udf_impl_extattr_check(implext); 2665 if (error) { 2666 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2667 return error; 2668 } 2669 /* it is correct */ 2670 2671 /* 2672 * we have found our "VAT LVExtension attribute. BUT due to a 2673 * bug in the specification it might not be word aligned so 2674 * copy first to avoid panics on some machines (!!) 2675 */ 2676 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2677 lvextpos = implext->data + udf_rw32(implext->iu_l); 2678 2679 lvext.unique_id_chk = vat_uniqueid; 2680 lvext.num_files = lvinfo->num_files; 2681 lvext.num_directories = lvinfo->num_directories; 2682 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2683 2684 memcpy(lvextpos, &lvext, sizeof(lvext)); 2685 2686 return 0; 2687 } 2688 2689 /* --------------------------------------------------------------------- */ 2690 2691 int 2692 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2693 { 2694 struct udf_mount *ump = vat_node->ump; 2695 2696 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2697 return EINVAL; 2698 2699 memcpy(blob, ump->vat_table + offset, size); 2700 return 0; 2701 } 2702 2703 int 2704 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2705 { 2706 struct udf_mount *ump = vat_node->ump; 2707 uint32_t offset_high; 2708 uint8_t *new_vat_table; 2709 2710 /* extent VAT allocation if needed */ 2711 offset_high = offset + size; 2712 if (offset_high >= ump->vat_table_alloc_len) { 2713 /* realloc */ 2714 new_vat_table = realloc(ump->vat_table, 2715 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2716 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2717 if (!new_vat_table) { 2718 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2719 return ENOMEM; 2720 } 2721 ump->vat_table = new_vat_table; 2722 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2723 } 2724 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2725 2726 memcpy(ump->vat_table + offset, blob, size); 2727 return 0; 2728 } 2729 2730 /* --------------------------------------------------------------------- */ 2731 2732 /* TODO support previous VAT location writeout */ 2733 static int 2734 udf_update_vat_descriptor(struct udf_mount *ump) 2735 { 2736 struct udf_node *vat_node = ump->vat_node; 2737 struct udf_logvol_info *lvinfo = ump->logvol_info; 2738 struct icb_tag *icbtag; 2739 struct udf_oldvat_tail *oldvat_tl; 2740 struct udf_vat *vat; 2741 uint64_t unique_id; 2742 uint32_t lb_size; 2743 uint8_t *raw_vat; 2744 int filetype, error; 2745 2746 KASSERT(vat_node); 2747 KASSERT(lvinfo); 2748 lb_size = udf_rw32(ump->logical_vol->lb_size); 2749 2750 /* get our new unique_id */ 2751 unique_id = udf_advance_uniqueid(ump); 2752 2753 /* get information from fe/efe */ 2754 if (vat_node->fe) { 2755 icbtag = &vat_node->fe->icbtag; 2756 vat_node->fe->unique_id = udf_rw64(unique_id); 2757 } else { 2758 icbtag = &vat_node->efe->icbtag; 2759 vat_node->efe->unique_id = udf_rw64(unique_id); 2760 } 2761 2762 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2763 filetype = icbtag->file_type; 2764 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2765 2766 /* allocate piece to process head or tail of VAT file */ 2767 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2768 2769 if (filetype == 0) { 2770 /* 2771 * Update "*UDF VAT LVExtension" extended attribute from the 2772 * lvint if present. 2773 */ 2774 udf_update_vat_extattr_from_lvid(vat_node); 2775 2776 /* setup identifying regid */ 2777 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2778 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2779 2780 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2781 udf_add_udf_regid(ump, &oldvat_tl->id); 2782 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2783 2784 /* write out new tail of virtual allocation table file */ 2785 error = udf_vat_write(vat_node, raw_vat, 2786 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2787 } else { 2788 /* compose the VAT2 header */ 2789 vat = (struct udf_vat *) raw_vat; 2790 memset(vat, 0, sizeof(struct udf_vat)); 2791 2792 vat->header_len = udf_rw16(152); /* as per spec */ 2793 vat->impl_use_len = udf_rw16(0); 2794 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2795 vat->prev_vat = udf_rw32(0xffffffff); 2796 vat->num_files = lvinfo->num_files; 2797 vat->num_directories = lvinfo->num_directories; 2798 vat->min_udf_readver = lvinfo->min_udf_readver; 2799 vat->min_udf_writever = lvinfo->min_udf_writever; 2800 vat->max_udf_writever = lvinfo->max_udf_writever; 2801 2802 error = udf_vat_write(vat_node, raw_vat, 2803 sizeof(struct udf_vat), 0); 2804 } 2805 free(raw_vat, M_TEMP); 2806 2807 return error; /* success! */ 2808 } 2809 2810 2811 int 2812 udf_writeout_vat(struct udf_mount *ump) 2813 { 2814 struct udf_node *vat_node = ump->vat_node; 2815 uint32_t vat_length; 2816 int error; 2817 2818 KASSERT(vat_node); 2819 2820 DPRINTF(CALL, ("udf_writeout_vat\n")); 2821 2822 // mutex_enter(&ump->allocate_mutex); 2823 udf_update_vat_descriptor(ump); 2824 2825 /* write out the VAT contents ; TODO intelligent writing */ 2826 vat_length = ump->vat_table_len; 2827 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2828 ump->vat_table, ump->vat_table_len, 0, 2829 UIO_SYSSPACE, 0, FSCRED, NULL, NULL); 2830 if (error) { 2831 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2832 goto out; 2833 } 2834 2835 // mutex_exit(&ump->allocate_mutex); 2836 2837 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 2838 if (error) 2839 goto out; 2840 error = VOP_FSYNC(ump->vat_node->vnode, 2841 FSCRED, FSYNC_WAIT, 0, 0); 2842 if (error) 2843 printf("udf_writeout_vat: error writing VAT node!\n"); 2844 out: 2845 2846 return error; 2847 } 2848 2849 /* --------------------------------------------------------------------- */ 2850 2851 /* 2852 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2853 * descriptor. If OK, read in complete VAT file. 2854 */ 2855 2856 static int 2857 udf_check_for_vat(struct udf_node *vat_node) 2858 { 2859 struct udf_mount *ump; 2860 struct icb_tag *icbtag; 2861 struct timestamp *mtime; 2862 struct udf_vat *vat; 2863 struct udf_oldvat_tail *oldvat_tl; 2864 struct udf_logvol_info *lvinfo; 2865 uint64_t unique_id; 2866 uint32_t vat_length; 2867 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2868 uint32_t sector_size; 2869 uint32_t *raw_vat; 2870 uint8_t *vat_table; 2871 char *regid_name; 2872 int filetype; 2873 int error; 2874 2875 /* vat_length is really 64 bits though impossible */ 2876 2877 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2878 if (!vat_node) 2879 return ENOENT; 2880 2881 /* get mount info */ 2882 ump = vat_node->ump; 2883 sector_size = udf_rw32(ump->logical_vol->lb_size); 2884 2885 /* check assertions */ 2886 assert(vat_node->fe || vat_node->efe); 2887 assert(ump->logvol_integrity); 2888 2889 /* set vnode type to regular file or we can't read from it! */ 2890 vat_node->vnode->v_type = VREG; 2891 2892 /* get information from fe/efe */ 2893 if (vat_node->fe) { 2894 vat_length = udf_rw64(vat_node->fe->inf_len); 2895 icbtag = &vat_node->fe->icbtag; 2896 mtime = &vat_node->fe->mtime; 2897 unique_id = udf_rw64(vat_node->fe->unique_id); 2898 } else { 2899 vat_length = udf_rw64(vat_node->efe->inf_len); 2900 icbtag = &vat_node->efe->icbtag; 2901 mtime = &vat_node->efe->mtime; 2902 unique_id = udf_rw64(vat_node->efe->unique_id); 2903 } 2904 2905 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2906 filetype = icbtag->file_type; 2907 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2908 return ENOENT; 2909 2910 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2911 2912 vat_table_alloc_len = 2913 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2914 * UDF_VAT_CHUNKSIZE; 2915 2916 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2917 M_CANFAIL | M_WAITOK); 2918 if (vat_table == NULL) { 2919 printf("allocation of %d bytes failed for VAT\n", 2920 vat_table_alloc_len); 2921 return ENOMEM; 2922 } 2923 2924 /* allocate piece to read in head or tail of VAT file */ 2925 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2926 2927 /* 2928 * check contents of the file if its the old 1.50 VAT table format. 2929 * Its notoriously broken and allthough some implementations support an 2930 * extention as defined in the UDF 1.50 errata document, its doubtfull 2931 * to be useable since a lot of implementations don't maintain it. 2932 */ 2933 lvinfo = ump->logvol_info; 2934 2935 if (filetype == 0) { 2936 /* definition */ 2937 vat_offset = 0; 2938 vat_entries = (vat_length-36)/4; 2939 2940 /* read in tail of virtual allocation table file */ 2941 error = vn_rdwr(UIO_READ, vat_node->vnode, 2942 (uint8_t *) raw_vat, 2943 sizeof(struct udf_oldvat_tail), 2944 vat_entries * 4, 2945 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2946 NULL, NULL); 2947 if (error) 2948 goto out; 2949 2950 /* check 1.50 VAT */ 2951 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2952 regid_name = (char *) oldvat_tl->id.id; 2953 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2954 if (error) { 2955 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2956 error = ENOENT; 2957 goto out; 2958 } 2959 2960 /* 2961 * update LVID from "*UDF VAT LVExtension" extended attribute 2962 * if present. 2963 */ 2964 udf_update_lvid_from_vat_extattr(vat_node); 2965 } else { 2966 /* read in head of virtual allocation table file */ 2967 error = vn_rdwr(UIO_READ, vat_node->vnode, 2968 (uint8_t *) raw_vat, 2969 sizeof(struct udf_vat), 0, 2970 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2971 NULL, NULL); 2972 if (error) 2973 goto out; 2974 2975 /* definition */ 2976 vat = (struct udf_vat *) raw_vat; 2977 vat_offset = vat->header_len; 2978 vat_entries = (vat_length - vat_offset)/4; 2979 2980 assert(lvinfo); 2981 lvinfo->num_files = vat->num_files; 2982 lvinfo->num_directories = vat->num_directories; 2983 lvinfo->min_udf_readver = vat->min_udf_readver; 2984 lvinfo->min_udf_writever = vat->min_udf_writever; 2985 lvinfo->max_udf_writever = vat->max_udf_writever; 2986 2987 udf_update_logvolname(ump, vat->logvol_id); 2988 } 2989 2990 /* read in complete VAT file */ 2991 error = vn_rdwr(UIO_READ, vat_node->vnode, 2992 vat_table, 2993 vat_length, 0, 2994 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2995 NULL, NULL); 2996 if (error) 2997 printf("read in of complete VAT file failed (error %d)\n", 2998 error); 2999 if (error) 3000 goto out; 3001 3002 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 3003 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 3004 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3005 ump->logvol_integrity->time = *mtime; 3006 3007 ump->vat_table_len = vat_length; 3008 ump->vat_table_alloc_len = vat_table_alloc_len; 3009 ump->vat_table = vat_table; 3010 ump->vat_offset = vat_offset; 3011 ump->vat_entries = vat_entries; 3012 ump->vat_last_free_lb = 0; /* start at beginning */ 3013 3014 out: 3015 if (error) { 3016 if (vat_table) 3017 free(vat_table, M_UDFVOLD); 3018 } 3019 free(raw_vat, M_TEMP); 3020 3021 return error; 3022 } 3023 3024 /* --------------------------------------------------------------------- */ 3025 3026 static int 3027 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 3028 { 3029 struct udf_node *vat_node; 3030 struct long_ad icb_loc; 3031 uint32_t early_vat_loc, late_vat_loc, vat_loc; 3032 int error; 3033 3034 /* mapping info not needed */ 3035 mapping = mapping; 3036 3037 vat_loc = ump->last_possible_vat_location; 3038 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 3039 3040 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 3041 vat_loc, early_vat_loc)); 3042 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 3043 late_vat_loc = vat_loc + 1024; 3044 3045 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 3046 vat_loc, early_vat_loc)); 3047 3048 /* start looking from the end of the range */ 3049 do { 3050 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 3051 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3052 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3053 3054 error = udf_get_node(ump, &icb_loc, &vat_node); 3055 if (!error) { 3056 error = udf_check_for_vat(vat_node); 3057 DPRINTFIF(VOLUMES, !error, 3058 ("VAT accepted at %d\n", vat_loc)); 3059 if (!error) 3060 break; 3061 } 3062 if (vat_node) { 3063 vput(vat_node->vnode); 3064 vat_node = NULL; 3065 } 3066 vat_loc--; /* walk backwards */ 3067 } while (vat_loc >= early_vat_loc); 3068 3069 /* keep our VAT node around */ 3070 if (vat_node) { 3071 UDF_SET_SYSTEMFILE(vat_node->vnode); 3072 ump->vat_node = vat_node; 3073 } 3074 3075 return error; 3076 } 3077 3078 /* --------------------------------------------------------------------- */ 3079 3080 static int 3081 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3082 { 3083 union dscrptr *dscr; 3084 struct part_map_spare *pms = &mapping->pms; 3085 uint32_t lb_num; 3086 int spar, error; 3087 3088 /* 3089 * The partition mapping passed on to us specifies the information we 3090 * need to locate and initialise the sparable partition mapping 3091 * information we need. 3092 */ 3093 3094 DPRINTF(VOLUMES, ("Read sparable table\n")); 3095 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3096 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3097 3098 for (spar = 0; spar < pms->n_st; spar++) { 3099 lb_num = pms->st_loc[spar]; 3100 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3101 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3102 if (!error && dscr) { 3103 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3104 if (ump->sparing_table) 3105 free(ump->sparing_table, M_UDFVOLD); 3106 ump->sparing_table = &dscr->spt; 3107 dscr = NULL; 3108 DPRINTF(VOLUMES, 3109 ("Sparing table accepted (%d entries)\n", 3110 udf_rw16(ump->sparing_table->rt_l))); 3111 break; /* we're done */ 3112 } 3113 } 3114 if (dscr) 3115 free(dscr, M_UDFVOLD); 3116 } 3117 3118 if (ump->sparing_table) 3119 return 0; 3120 3121 return ENOENT; 3122 } 3123 3124 /* --------------------------------------------------------------------- */ 3125 3126 static int 3127 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3128 { 3129 struct part_map_meta *pmm = &mapping->pmm; 3130 struct long_ad icb_loc; 3131 struct vnode *vp; 3132 uint16_t raw_phys_part, phys_part; 3133 int error; 3134 3135 /* 3136 * BUGALERT: some rogue implementations use random physical 3137 * partition numbers to break other implementations so lookup 3138 * the number. 3139 */ 3140 3141 /* extract our allocation parameters set up on format */ 3142 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); 3143 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); 3144 ump->metadata_flags = mapping->pmm.flags; 3145 3146 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3147 raw_phys_part = udf_rw16(pmm->part_num); 3148 phys_part = udf_find_raw_phys(ump, raw_phys_part); 3149 3150 icb_loc.loc.part_num = udf_rw16(phys_part); 3151 3152 DPRINTF(VOLUMES, ("Metadata file\n")); 3153 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3154 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3155 if (ump->metadata_node) { 3156 vp = ump->metadata_node->vnode; 3157 UDF_SET_SYSTEMFILE(vp); 3158 } 3159 3160 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3161 if (icb_loc.loc.lb_num != -1) { 3162 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3163 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3164 if (ump->metadatamirror_node) { 3165 vp = ump->metadatamirror_node->vnode; 3166 UDF_SET_SYSTEMFILE(vp); 3167 } 3168 } 3169 3170 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3171 if (icb_loc.loc.lb_num != -1) { 3172 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3173 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3174 if (ump->metadatabitmap_node) { 3175 vp = ump->metadatabitmap_node->vnode; 3176 UDF_SET_SYSTEMFILE(vp); 3177 } 3178 } 3179 3180 /* if we're mounting read-only we relax the requirements */ 3181 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3182 error = EFAULT; 3183 if (ump->metadata_node) 3184 error = 0; 3185 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3186 printf( "udf mount: Metadata file not readable, " 3187 "substituting Metadata copy file\n"); 3188 ump->metadata_node = ump->metadatamirror_node; 3189 ump->metadatamirror_node = NULL; 3190 error = 0; 3191 } 3192 } else { 3193 /* mounting read/write */ 3194 /* XXX DISABLED! metadata writing is not working yet XXX */ 3195 if (error) 3196 error = EROFS; 3197 } 3198 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3199 "metadata files\n")); 3200 return error; 3201 } 3202 3203 /* --------------------------------------------------------------------- */ 3204 3205 int 3206 udf_read_vds_tables(struct udf_mount *ump) 3207 { 3208 union udf_pmap *mapping; 3209 /* struct udf_args *args = &ump->mount_args; */ 3210 uint32_t n_pm, mt_l; 3211 uint32_t log_part; 3212 uint8_t *pmap_pos; 3213 int pmap_size; 3214 int error; 3215 3216 /* Iterate (again) over the part mappings for locations */ 3217 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3218 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 3219 pmap_pos = ump->logical_vol->maps; 3220 3221 for (log_part = 0; log_part < n_pm; log_part++) { 3222 mapping = (union udf_pmap *) pmap_pos; 3223 switch (ump->vtop_tp[log_part]) { 3224 case UDF_VTOP_TYPE_PHYS : 3225 /* nothing */ 3226 break; 3227 case UDF_VTOP_TYPE_VIRT : 3228 /* search and load VAT */ 3229 error = udf_search_vat(ump, mapping); 3230 if (error) 3231 return ENOENT; 3232 break; 3233 case UDF_VTOP_TYPE_SPARABLE : 3234 /* load one of the sparable tables */ 3235 error = udf_read_sparables(ump, mapping); 3236 if (error) 3237 return ENOENT; 3238 break; 3239 case UDF_VTOP_TYPE_META : 3240 /* load the associated file descriptors */ 3241 error = udf_read_metadata_nodes(ump, mapping); 3242 if (error) 3243 return ENOENT; 3244 break; 3245 default: 3246 break; 3247 } 3248 pmap_size = pmap_pos[1]; 3249 pmap_pos += pmap_size; 3250 } 3251 3252 /* read in and check unallocated and free space info if writing */ 3253 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3254 error = udf_read_physical_partition_spacetables(ump); 3255 if (error) 3256 return error; 3257 3258 /* also read in metadata partition spacebitmap if defined */ 3259 error = udf_read_metadata_partition_spacetable(ump); 3260 return error; 3261 } 3262 3263 return 0; 3264 } 3265 3266 /* --------------------------------------------------------------------- */ 3267 3268 int 3269 udf_read_rootdirs(struct udf_mount *ump) 3270 { 3271 union dscrptr *dscr; 3272 /* struct udf_args *args = &ump->mount_args; */ 3273 struct udf_node *rootdir_node, *streamdir_node; 3274 struct long_ad fsd_loc, *dir_loc; 3275 uint32_t lb_num, dummy; 3276 uint32_t fsd_len; 3277 int dscr_type; 3278 int error; 3279 3280 /* TODO implement FSD reading in separate function like integrity? */ 3281 /* get fileset descriptor sequence */ 3282 fsd_loc = ump->logical_vol->lv_fsd_loc; 3283 fsd_len = udf_rw32(fsd_loc.len); 3284 3285 dscr = NULL; 3286 error = 0; 3287 while (fsd_len || error) { 3288 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3289 /* translate fsd_loc to lb_num */ 3290 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3291 if (error) 3292 break; 3293 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3294 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3295 /* end markers */ 3296 if (error || (dscr == NULL)) 3297 break; 3298 3299 /* analyse */ 3300 dscr_type = udf_rw16(dscr->tag.id); 3301 if (dscr_type == TAGID_TERM) 3302 break; 3303 if (dscr_type != TAGID_FSD) { 3304 free(dscr, M_UDFVOLD); 3305 return ENOENT; 3306 } 3307 3308 /* 3309 * TODO check for multiple fileset descriptors; its only 3310 * picking the last now. Also check for FSD 3311 * correctness/interpretability 3312 */ 3313 3314 /* update */ 3315 if (ump->fileset_desc) { 3316 free(ump->fileset_desc, M_UDFVOLD); 3317 } 3318 ump->fileset_desc = &dscr->fsd; 3319 dscr = NULL; 3320 3321 /* continue to the next fsd */ 3322 fsd_len -= ump->discinfo.sector_size; 3323 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3324 3325 /* follow up to fsd->next_ex (long_ad) if its not null */ 3326 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3327 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3328 fsd_loc = ump->fileset_desc->next_ex; 3329 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3330 } 3331 } 3332 if (dscr) 3333 free(dscr, M_UDFVOLD); 3334 3335 /* there has to be one */ 3336 if (ump->fileset_desc == NULL) 3337 return ENOENT; 3338 3339 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3340 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3341 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3342 3343 /* 3344 * Now the FSD is known, read in the rootdirectory and if one exists, 3345 * the system stream dir. Some files in the system streamdir are not 3346 * wanted in this implementation since they are not maintained. If 3347 * writing is enabled we'll delete these files if they exist. 3348 */ 3349 3350 rootdir_node = streamdir_node = NULL; 3351 dir_loc = NULL; 3352 3353 /* try to read in the rootdir */ 3354 dir_loc = &ump->fileset_desc->rootdir_icb; 3355 error = udf_get_node(ump, dir_loc, &rootdir_node); 3356 if (error) 3357 return ENOENT; 3358 3359 /* aparently it read in fine */ 3360 3361 /* 3362 * Try the system stream directory; not very likely in the ones we 3363 * test, but for completeness. 3364 */ 3365 dir_loc = &ump->fileset_desc->streamdir_icb; 3366 if (udf_rw32(dir_loc->len)) { 3367 printf("udf_read_rootdirs: streamdir defined "); 3368 error = udf_get_node(ump, dir_loc, &streamdir_node); 3369 if (error) { 3370 printf("but error in streamdir reading\n"); 3371 } else { 3372 printf("but ignored\n"); 3373 /* 3374 * TODO process streamdir `baddies' i.e. files we dont 3375 * want if R/W 3376 */ 3377 } 3378 } 3379 3380 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3381 3382 /* release the vnodes again; they'll be auto-recycled later */ 3383 if (streamdir_node) { 3384 vput(streamdir_node->vnode); 3385 } 3386 if (rootdir_node) { 3387 vput(rootdir_node->vnode); 3388 } 3389 3390 return 0; 3391 } 3392 3393 /* --------------------------------------------------------------------- */ 3394 3395 /* To make absolutely sure we are NOT returning zero, add one :) */ 3396 3397 long 3398 udf_get_node_id(const struct long_ad *icbptr) 3399 { 3400 /* ought to be enough since each mountpoint has its own chain */ 3401 return udf_rw32(icbptr->loc.lb_num) + 1; 3402 } 3403 3404 3405 int 3406 udf_compare_icb(const struct long_ad *a, const struct long_ad *b) 3407 { 3408 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) 3409 return -1; 3410 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) 3411 return 1; 3412 3413 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) 3414 return -1; 3415 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) 3416 return 1; 3417 3418 return 0; 3419 } 3420 3421 3422 static int 3423 udf_compare_rbnodes(void *ctx, const void *a, const void *b) 3424 { 3425 const struct udf_node *a_node = a; 3426 const struct udf_node *b_node = b; 3427 3428 return udf_compare_icb(&a_node->loc, &b_node->loc); 3429 } 3430 3431 3432 static int 3433 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) 3434 { 3435 const struct udf_node *a_node = a; 3436 const struct long_ad * const icb = key; 3437 3438 return udf_compare_icb(&a_node->loc, icb); 3439 } 3440 3441 3442 static const rb_tree_ops_t udf_node_rbtree_ops = { 3443 .rbto_compare_nodes = udf_compare_rbnodes, 3444 .rbto_compare_key = udf_compare_rbnode_icb, 3445 .rbto_node_offset = offsetof(struct udf_node, rbnode), 3446 .rbto_context = NULL 3447 }; 3448 3449 3450 void 3451 udf_init_nodes_tree(struct udf_mount *ump) 3452 { 3453 3454 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); 3455 } 3456 3457 3458 static struct udf_node * 3459 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr) 3460 { 3461 struct udf_node *udf_node; 3462 struct vnode *vp; 3463 3464 loop: 3465 mutex_enter(&ump->ihash_lock); 3466 3467 udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr); 3468 if (udf_node) { 3469 vp = udf_node->vnode; 3470 assert(vp); 3471 mutex_enter(vp->v_interlock); 3472 mutex_exit(&ump->ihash_lock); 3473 if (vget(vp, LK_EXCLUSIVE)) 3474 goto loop; 3475 return udf_node; 3476 } 3477 mutex_exit(&ump->ihash_lock); 3478 3479 return NULL; 3480 } 3481 3482 3483 static void 3484 udf_register_node(struct udf_node *udf_node) 3485 { 3486 struct udf_mount *ump = udf_node->ump; 3487 3488 /* add node to the rb tree */ 3489 mutex_enter(&ump->ihash_lock); 3490 rb_tree_insert_node(&ump->udf_node_tree, udf_node); 3491 mutex_exit(&ump->ihash_lock); 3492 } 3493 3494 3495 static void 3496 udf_deregister_node(struct udf_node *udf_node) 3497 { 3498 struct udf_mount *ump = udf_node->ump; 3499 3500 /* remove node from the rb tree */ 3501 mutex_enter(&ump->ihash_lock); 3502 rb_tree_remove_node(&ump->udf_node_tree, udf_node); 3503 mutex_exit(&ump->ihash_lock); 3504 } 3505 3506 /* --------------------------------------------------------------------- */ 3507 3508 static int 3509 udf_validate_session_start(struct udf_mount *ump) 3510 { 3511 struct mmc_trackinfo trackinfo; 3512 struct vrs_desc *vrs; 3513 uint32_t tracknr, sessionnr, sector, sector_size; 3514 uint32_t iso9660_vrs, write_track_start; 3515 uint8_t *buffer, *blank, *pos; 3516 int blks, max_sectors, vrs_len; 3517 int error; 3518 3519 /* disc appendable? */ 3520 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3521 return EROFS; 3522 3523 /* already written here? if so, there should be an ISO VDS */ 3524 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3525 return 0; 3526 3527 /* 3528 * Check if the first track of the session is blank and if so, copy or 3529 * create a dummy ISO descriptor so the disc is valid again. 3530 */ 3531 3532 tracknr = ump->discinfo.first_track_last_session; 3533 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3534 trackinfo.tracknr = tracknr; 3535 error = udf_update_trackinfo(ump, &trackinfo); 3536 if (error) 3537 return error; 3538 3539 udf_dump_trackinfo(&trackinfo); 3540 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3541 KASSERT(trackinfo.sessionnr > 1); 3542 3543 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3544 write_track_start = trackinfo.next_writable; 3545 3546 /* we have to copy the ISO VRS from a former session */ 3547 DPRINTF(VOLUMES, ("validate_session_start: " 3548 "blank or reserved track, copying VRS\n")); 3549 3550 /* sessionnr should be the session we're mounting */ 3551 sessionnr = ump->mount_args.sessionnr; 3552 3553 /* start at the first track */ 3554 tracknr = ump->discinfo.first_track; 3555 while (tracknr <= ump->discinfo.num_tracks) { 3556 trackinfo.tracknr = tracknr; 3557 error = udf_update_trackinfo(ump, &trackinfo); 3558 if (error) { 3559 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3560 return error; 3561 } 3562 if (trackinfo.sessionnr == sessionnr) 3563 break; 3564 tracknr++; 3565 } 3566 if (trackinfo.sessionnr != sessionnr) { 3567 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3568 return ENOENT; 3569 } 3570 3571 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3572 udf_dump_trackinfo(&trackinfo); 3573 3574 /* 3575 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3576 * minimum ISO `sector size' 2048 3577 */ 3578 sector_size = ump->discinfo.sector_size; 3579 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3580 + trackinfo.track_start; 3581 3582 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3583 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3584 blks = MAX(1, 2048 / sector_size); 3585 3586 error = 0; 3587 for (sector = 0; sector < max_sectors; sector += blks) { 3588 pos = buffer + sector * sector_size; 3589 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3590 iso9660_vrs + sector, blks); 3591 if (error) 3592 break; 3593 /* check this ISO descriptor */ 3594 vrs = (struct vrs_desc *) pos; 3595 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3596 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3597 continue; 3598 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3599 continue; 3600 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3601 continue; 3602 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3603 continue; 3604 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3605 continue; 3606 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3607 break; 3608 /* now what? for now, end of sequence */ 3609 break; 3610 } 3611 vrs_len = sector + blks; 3612 if (error) { 3613 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3614 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3615 3616 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3617 3618 vrs = (struct vrs_desc *) (buffer); 3619 vrs->struct_type = 0; 3620 vrs->version = 1; 3621 memcpy(vrs->identifier,VRS_BEA01, 5); 3622 3623 vrs = (struct vrs_desc *) (buffer + 2048); 3624 vrs->struct_type = 0; 3625 vrs->version = 1; 3626 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3627 memcpy(vrs->identifier,VRS_NSR02, 5); 3628 } else { 3629 memcpy(vrs->identifier,VRS_NSR03, 5); 3630 } 3631 3632 vrs = (struct vrs_desc *) (buffer + 4096); 3633 vrs->struct_type = 0; 3634 vrs->version = 1; 3635 memcpy(vrs->identifier, VRS_TEA01, 5); 3636 3637 vrs_len = 3*blks; 3638 } 3639 3640 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3641 3642 /* 3643 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3644 * minimum ISO `sector size' 2048 3645 */ 3646 sector_size = ump->discinfo.sector_size; 3647 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3648 + write_track_start; 3649 3650 /* write out 32 kb */ 3651 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3652 memset(blank, 0, sector_size); 3653 error = 0; 3654 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3655 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3656 blank, sector, 1); 3657 if (error) 3658 break; 3659 } 3660 if (!error) { 3661 /* write out our ISO VRS */ 3662 KASSERT(sector == iso9660_vrs); 3663 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3664 sector, vrs_len); 3665 sector += vrs_len; 3666 } 3667 if (!error) { 3668 /* fill upto the first anchor at S+256 */ 3669 for (; sector < write_track_start+256; sector++) { 3670 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3671 blank, sector, 1); 3672 if (error) 3673 break; 3674 } 3675 } 3676 if (!error) { 3677 /* write out anchor; write at ABSOLUTE place! */ 3678 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3679 (union dscrptr *) ump->anchors[0], sector, sector); 3680 if (error) 3681 printf("writeout of anchor failed!\n"); 3682 } 3683 3684 free(blank, M_TEMP); 3685 free(buffer, M_TEMP); 3686 3687 if (error) 3688 printf("udf_open_session: error writing iso vrs! : " 3689 "leaving disc in compromised state!\n"); 3690 3691 /* synchronise device caches */ 3692 (void) udf_synchronise_caches(ump); 3693 3694 return error; 3695 } 3696 3697 3698 int 3699 udf_open_logvol(struct udf_mount *ump) 3700 { 3701 int logvol_integrity; 3702 int error; 3703 3704 /* already/still open? */ 3705 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3706 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3707 return 0; 3708 3709 /* can we open it ? */ 3710 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3711 return EROFS; 3712 3713 /* setup write parameters */ 3714 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3715 if ((error = udf_setup_writeparams(ump)) != 0) 3716 return error; 3717 3718 /* determine data and metadata tracks (most likely same) */ 3719 error = udf_search_writing_tracks(ump); 3720 if (error) { 3721 /* most likely lack of space */ 3722 printf("udf_open_logvol: error searching writing tracks\n"); 3723 return EROFS; 3724 } 3725 3726 /* writeout/update lvint on disc or only in memory */ 3727 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3728 if (ump->lvopen & UDF_OPEN_SESSION) { 3729 /* TODO optional track reservation opening */ 3730 error = udf_validate_session_start(ump); 3731 if (error) 3732 return error; 3733 3734 /* determine data and metadata tracks again */ 3735 error = udf_search_writing_tracks(ump); 3736 } 3737 3738 /* mark it open */ 3739 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3740 3741 /* do we need to write it out? */ 3742 if (ump->lvopen & UDF_WRITE_LVINT) { 3743 error = udf_writeout_lvint(ump, ump->lvopen); 3744 /* if we couldn't write it mark it closed again */ 3745 if (error) { 3746 ump->logvol_integrity->integrity_type = 3747 udf_rw32(UDF_INTEGRITY_CLOSED); 3748 return error; 3749 } 3750 } 3751 3752 return 0; 3753 } 3754 3755 3756 int 3757 udf_close_logvol(struct udf_mount *ump, int mntflags) 3758 { 3759 struct vnode *devvp = ump->devvp; 3760 struct mmc_op mmc_op; 3761 int logvol_integrity; 3762 int error = 0, error1 = 0, error2 = 0; 3763 int tracknr; 3764 int nvats, n, nok; 3765 3766 /* already/still closed? */ 3767 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3768 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3769 return 0; 3770 3771 /* writeout/update lvint or write out VAT */ 3772 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3773 #ifdef DIAGNOSTIC 3774 if (ump->lvclose & UDF_CLOSE_SESSION) 3775 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3776 #endif 3777 3778 if (ump->lvclose & UDF_WRITE_VAT) { 3779 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3780 3781 /* write out the VAT data and all its descriptors */ 3782 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3783 udf_writeout_vat(ump); 3784 (void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 3785 3786 (void) VOP_FSYNC(ump->vat_node->vnode, 3787 FSCRED, FSYNC_WAIT, 0, 0); 3788 3789 if (ump->lvclose & UDF_CLOSE_SESSION) { 3790 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3791 "as requested\n")); 3792 } 3793 3794 /* at least two DVD packets and 3 CD-R packets */ 3795 nvats = 32; 3796 3797 #if notyet 3798 /* 3799 * TODO calculate the available space and if the disc is 3800 * allmost full, write out till end-256-1 with banks, write 3801 * AVDP and fill up with VATs, then close session and close 3802 * disc. 3803 */ 3804 if (ump->lvclose & UDF_FINALISE_DISC) { 3805 error = udf_write_phys_dscr_sync(ump, NULL, 3806 UDF_C_FLOAT_DSCR, 3807 (union dscrptr *) ump->anchors[0], 3808 0, 0); 3809 if (error) 3810 printf("writeout of anchor failed!\n"); 3811 3812 /* pad space with VAT ICBs */ 3813 nvats = 256; 3814 } 3815 #endif 3816 3817 /* write out a number of VAT nodes */ 3818 nok = 0; 3819 for (n = 0; n < nvats; n++) { 3820 /* will now only write last FE/EFE */ 3821 ump->vat_node->i_flags |= IN_MODIFIED; 3822 error = VOP_FSYNC(ump->vat_node->vnode, 3823 FSCRED, FSYNC_WAIT, 0, 0); 3824 if (!error) 3825 nok++; 3826 } 3827 if (nok < 14) { 3828 /* arbitrary; but at least one or two CD frames */ 3829 printf("writeout of at least 14 VATs failed\n"); 3830 return error; 3831 } 3832 } 3833 3834 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3835 3836 /* finish closing of session */ 3837 if (ump->lvclose & UDF_CLOSE_SESSION) { 3838 error = udf_validate_session_start(ump); 3839 if (error) 3840 return error; 3841 3842 (void) udf_synchronise_caches(ump); 3843 3844 /* close all associated tracks */ 3845 tracknr = ump->discinfo.first_track_last_session; 3846 error = 0; 3847 while (tracknr <= ump->discinfo.last_track_last_session) { 3848 DPRINTF(VOLUMES, ("\tclosing possible open " 3849 "track %d\n", tracknr)); 3850 memset(&mmc_op, 0, sizeof(mmc_op)); 3851 mmc_op.operation = MMC_OP_CLOSETRACK; 3852 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3853 mmc_op.tracknr = tracknr; 3854 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3855 FKIOCTL, NOCRED); 3856 if (error) 3857 printf("udf_close_logvol: closing of " 3858 "track %d failed\n", tracknr); 3859 tracknr ++; 3860 } 3861 if (!error) { 3862 DPRINTF(VOLUMES, ("closing session\n")); 3863 memset(&mmc_op, 0, sizeof(mmc_op)); 3864 mmc_op.operation = MMC_OP_CLOSESESSION; 3865 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3866 mmc_op.sessionnr = ump->discinfo.num_sessions; 3867 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3868 FKIOCTL, NOCRED); 3869 if (error) 3870 printf("udf_close_logvol: closing of session" 3871 "failed\n"); 3872 } 3873 if (!error) 3874 ump->lvopen |= UDF_OPEN_SESSION; 3875 if (error) { 3876 printf("udf_close_logvol: leaving disc as it is\n"); 3877 ump->lvclose &= ~UDF_FINALISE_DISC; 3878 } 3879 } 3880 3881 if (ump->lvclose & UDF_FINALISE_DISC) { 3882 memset(&mmc_op, 0, sizeof(mmc_op)); 3883 mmc_op.operation = MMC_OP_FINALISEDISC; 3884 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3885 mmc_op.sessionnr = ump->discinfo.num_sessions; 3886 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3887 FKIOCTL, NOCRED); 3888 if (error) 3889 printf("udf_close_logvol: finalising disc" 3890 "failed\n"); 3891 } 3892 3893 /* write out partition bitmaps if requested */ 3894 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3895 /* sync writeout metadata spacetable if existing */ 3896 error1 = udf_write_metadata_partition_spacetable(ump, true); 3897 if (error1) 3898 printf( "udf_close_logvol: writeout of metadata space " 3899 "bitmap failed\n"); 3900 3901 /* sync writeout partition spacetables */ 3902 error2 = udf_write_physical_partition_spacetables(ump, true); 3903 if (error2) 3904 printf( "udf_close_logvol: writeout of space tables " 3905 "failed\n"); 3906 3907 if (error1 || error2) 3908 return (error1 | error2); 3909 3910 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3911 } 3912 3913 /* write out metadata partition nodes if requested */ 3914 if (ump->lvclose & UDF_WRITE_METAPART_NODES) { 3915 /* sync writeout metadata descriptor node */ 3916 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); 3917 if (error1) 3918 printf( "udf_close_logvol: writeout of metadata partition " 3919 "node failed\n"); 3920 3921 /* duplicate metadata partition descriptor if needed */ 3922 udf_synchronise_metadatamirror_node(ump); 3923 3924 /* sync writeout metadatamirror descriptor node */ 3925 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); 3926 if (error2) 3927 printf( "udf_close_logvol: writeout of metadata partition " 3928 "mirror node failed\n"); 3929 3930 if (error1 || error2) 3931 return (error1 | error2); 3932 3933 ump->lvclose &= ~UDF_WRITE_METAPART_NODES; 3934 } 3935 3936 /* mark it closed */ 3937 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3938 3939 /* do we need to write out the logical volume integrity? */ 3940 if (ump->lvclose & UDF_WRITE_LVINT) 3941 error = udf_writeout_lvint(ump, ump->lvopen); 3942 if (error) { 3943 /* HELP now what? mark it open again for now */ 3944 ump->logvol_integrity->integrity_type = 3945 udf_rw32(UDF_INTEGRITY_OPEN); 3946 return error; 3947 } 3948 3949 (void) udf_synchronise_caches(ump); 3950 3951 return 0; 3952 } 3953 3954 /* --------------------------------------------------------------------- */ 3955 3956 /* 3957 * Genfs interfacing 3958 * 3959 * static const struct genfs_ops udf_genfsops = { 3960 * .gop_size = genfs_size, 3961 * size of transfers 3962 * .gop_alloc = udf_gop_alloc, 3963 * allocate len bytes at offset 3964 * .gop_write = genfs_gop_write, 3965 * putpages interface code 3966 * .gop_markupdate = udf_gop_markupdate, 3967 * set update/modify flags etc. 3968 * } 3969 */ 3970 3971 /* 3972 * Genfs interface. These four functions are the only ones defined though not 3973 * documented... great.... 3974 */ 3975 3976 /* 3977 * Called for allocating an extent of the file either by VOP_WRITE() or by 3978 * genfs filling up gaps. 3979 */ 3980 static int 3981 udf_gop_alloc(struct vnode *vp, off_t off, 3982 off_t len, int flags, kauth_cred_t cred) 3983 { 3984 struct udf_node *udf_node = VTOI(vp); 3985 struct udf_mount *ump = udf_node->ump; 3986 uint64_t lb_start, lb_end; 3987 uint32_t lb_size, num_lb; 3988 int udf_c_type, vpart_num, can_fail; 3989 int error; 3990 3991 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", 3992 off, len, flags? "SYNC":"NONE")); 3993 3994 /* 3995 * request the pages of our vnode and see how many pages will need to 3996 * be allocated and reserve that space 3997 */ 3998 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 3999 lb_start = off / lb_size; 4000 lb_end = (off + len + lb_size -1) / lb_size; 4001 num_lb = lb_end - lb_start; 4002 4003 udf_c_type = udf_get_c_type(udf_node); 4004 vpart_num = udf_get_record_vpart(ump, udf_c_type); 4005 4006 /* all requests can fail */ 4007 can_fail = true; 4008 4009 /* fid's (directories) can't fail */ 4010 if (udf_c_type == UDF_C_FIDS) 4011 can_fail = false; 4012 4013 /* system files can't fail */ 4014 if (vp->v_vflag & VV_SYSTEM) 4015 can_fail = false; 4016 4017 error = udf_reserve_space(ump, udf_node, udf_c_type, 4018 vpart_num, num_lb, can_fail); 4019 4020 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", 4021 lb_start, lb_end, num_lb)); 4022 4023 return error; 4024 } 4025 4026 4027 /* 4028 * callback from genfs to update our flags 4029 */ 4030 static void 4031 udf_gop_markupdate(struct vnode *vp, int flags) 4032 { 4033 struct udf_node *udf_node = VTOI(vp); 4034 u_long mask = 0; 4035 4036 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 4037 mask = IN_ACCESS; 4038 } 4039 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 4040 if (vp->v_type == VREG) { 4041 mask |= IN_CHANGE | IN_UPDATE; 4042 } else { 4043 mask |= IN_MODIFY; 4044 } 4045 } 4046 if (mask) { 4047 udf_node->i_flags |= mask; 4048 } 4049 } 4050 4051 4052 static const struct genfs_ops udf_genfsops = { 4053 .gop_size = genfs_size, 4054 .gop_alloc = udf_gop_alloc, 4055 .gop_write = genfs_gop_write_rwmap, 4056 .gop_markupdate = udf_gop_markupdate, 4057 }; 4058 4059 4060 /* --------------------------------------------------------------------- */ 4061 4062 int 4063 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 4064 { 4065 union dscrptr *dscr; 4066 int error; 4067 4068 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 4069 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 4070 4071 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 4072 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 4073 (void) udf_validate_tag_and_crc_sums(dscr); 4074 4075 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 4076 dscr, sector, sector); 4077 4078 free(dscr, M_TEMP); 4079 4080 return error; 4081 } 4082 4083 4084 /* --------------------------------------------------------------------- */ 4085 4086 /* UDF<->unix converters */ 4087 4088 /* --------------------------------------------------------------------- */ 4089 4090 static mode_t 4091 udf_perm_to_unix_mode(uint32_t perm) 4092 { 4093 mode_t mode; 4094 4095 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 4096 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 4097 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 4098 4099 return mode; 4100 } 4101 4102 /* --------------------------------------------------------------------- */ 4103 4104 static uint32_t 4105 unix_mode_to_udf_perm(mode_t mode) 4106 { 4107 uint32_t perm; 4108 4109 perm = ((mode & S_IRWXO) ); 4110 perm |= ((mode & S_IRWXG) << 2); 4111 perm |= ((mode & S_IRWXU) << 4); 4112 perm |= ((mode & S_IWOTH) << 3); 4113 perm |= ((mode & S_IWGRP) << 5); 4114 perm |= ((mode & S_IWUSR) << 7); 4115 4116 return perm; 4117 } 4118 4119 /* --------------------------------------------------------------------- */ 4120 4121 static uint32_t 4122 udf_icb_to_unix_filetype(uint32_t icbftype) 4123 { 4124 switch (icbftype) { 4125 case UDF_ICB_FILETYPE_DIRECTORY : 4126 case UDF_ICB_FILETYPE_STREAMDIR : 4127 return S_IFDIR; 4128 case UDF_ICB_FILETYPE_FIFO : 4129 return S_IFIFO; 4130 case UDF_ICB_FILETYPE_CHARDEVICE : 4131 return S_IFCHR; 4132 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4133 return S_IFBLK; 4134 case UDF_ICB_FILETYPE_RANDOMACCESS : 4135 case UDF_ICB_FILETYPE_REALTIME : 4136 return S_IFREG; 4137 case UDF_ICB_FILETYPE_SYMLINK : 4138 return S_IFLNK; 4139 case UDF_ICB_FILETYPE_SOCKET : 4140 return S_IFSOCK; 4141 } 4142 /* no idea what this is */ 4143 return 0; 4144 } 4145 4146 /* --------------------------------------------------------------------- */ 4147 4148 void 4149 udf_to_unix_name(char *result, int result_len, char *id, int len, 4150 struct charspec *chsp) 4151 { 4152 uint16_t *raw_name, *unix_name; 4153 uint16_t *inchp, ch; 4154 uint8_t *outchp; 4155 const char *osta_id = "OSTA Compressed Unicode"; 4156 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4157 4158 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4159 unix_name = raw_name + 1024; /* split space in half */ 4160 assert(sizeof(char) == sizeof(uint8_t)); 4161 outchp = (uint8_t *) result; 4162 4163 is_osta_typ0 = (chsp->type == 0); 4164 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4165 if (is_osta_typ0) { 4166 /* TODO clean up */ 4167 *raw_name = *unix_name = 0; 4168 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4169 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4170 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4171 /* output UTF8 */ 4172 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4173 ch = *inchp; 4174 nout = wput_utf8(outchp, result_len, ch); 4175 outchp += nout; result_len -= nout; 4176 if (!ch) break; 4177 } 4178 *outchp++ = 0; 4179 } else { 4180 /* assume 8bit char length byte latin-1 */ 4181 assert(*id == 8); 4182 assert(strlen((char *) (id+1)) <= NAME_MAX); 4183 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4184 } 4185 free(raw_name, M_UDFTEMP); 4186 } 4187 4188 /* --------------------------------------------------------------------- */ 4189 4190 void 4191 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4192 struct charspec *chsp) 4193 { 4194 uint16_t *raw_name; 4195 uint16_t *outchp; 4196 const char *inchp; 4197 const char *osta_id = "OSTA Compressed Unicode"; 4198 int udf_chars, is_osta_typ0, bits; 4199 size_t cnt; 4200 4201 /* allocate temporary unicode-16 buffer */ 4202 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4203 4204 /* convert utf8 to unicode-16 */ 4205 *raw_name = 0; 4206 inchp = name; 4207 outchp = raw_name; 4208 bits = 8; 4209 for (cnt = name_len, udf_chars = 0; cnt;) { 4210 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/ 4211 *outchp = wget_utf8(&inchp, &cnt); 4212 if (*outchp > 0xff) 4213 bits=16; 4214 outchp++; 4215 udf_chars++; 4216 } 4217 /* null terminate just in case */ 4218 *outchp++ = 0; 4219 4220 is_osta_typ0 = (chsp->type == 0); 4221 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4222 if (is_osta_typ0) { 4223 udf_chars = udf_CompressUnicode(udf_chars, bits, 4224 (unicode_t *) raw_name, 4225 (byte *) result); 4226 } else { 4227 printf("unix to udf name: no CHSP0 ?\n"); 4228 /* XXX assume 8bit char length byte latin-1 */ 4229 *result++ = 8; udf_chars = 1; 4230 strncpy(result, name + 1, name_len); 4231 udf_chars += name_len; 4232 } 4233 *result_len = udf_chars; 4234 free(raw_name, M_UDFTEMP); 4235 } 4236 4237 /* --------------------------------------------------------------------- */ 4238 4239 void 4240 udf_timestamp_to_timespec(struct udf_mount *ump, 4241 struct timestamp *timestamp, 4242 struct timespec *timespec) 4243 { 4244 struct clock_ymdhms ymdhms; 4245 uint32_t usecs, secs, nsecs; 4246 uint16_t tz; 4247 4248 /* fill in ymdhms structure from timestamp */ 4249 memset(&ymdhms, 0, sizeof(ymdhms)); 4250 ymdhms.dt_year = udf_rw16(timestamp->year); 4251 ymdhms.dt_mon = timestamp->month; 4252 ymdhms.dt_day = timestamp->day; 4253 ymdhms.dt_wday = 0; /* ? */ 4254 ymdhms.dt_hour = timestamp->hour; 4255 ymdhms.dt_min = timestamp->minute; 4256 ymdhms.dt_sec = timestamp->second; 4257 4258 secs = clock_ymdhms_to_secs(&ymdhms); 4259 usecs = timestamp->usec + 4260 100*timestamp->hund_usec + 10000*timestamp->centisec; 4261 nsecs = usecs * 1000; 4262 4263 /* 4264 * Calculate the time zone. The timezone is 12 bit signed 2's 4265 * compliment, so we gotta do some extra magic to handle it right. 4266 */ 4267 tz = udf_rw16(timestamp->type_tz); 4268 tz &= 0x0fff; /* only lower 12 bits are significant */ 4269 if (tz & 0x0800) /* sign extention */ 4270 tz |= 0xf000; 4271 4272 /* TODO check timezone conversion */ 4273 /* check if we are specified a timezone to convert */ 4274 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4275 if ((int16_t) tz != -2047) 4276 secs -= (int16_t) tz * 60; 4277 } else { 4278 secs -= ump->mount_args.gmtoff; 4279 } 4280 4281 timespec->tv_sec = secs; 4282 timespec->tv_nsec = nsecs; 4283 } 4284 4285 4286 void 4287 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4288 { 4289 struct clock_ymdhms ymdhms; 4290 uint32_t husec, usec, csec; 4291 4292 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4293 4294 usec = timespec->tv_nsec / 1000; 4295 husec = usec / 100; 4296 usec -= husec * 100; /* only 0-99 in usec */ 4297 csec = husec / 100; /* only 0-99 in csec */ 4298 husec -= csec * 100; /* only 0-99 in husec */ 4299 4300 /* set method 1 for CUT/GMT */ 4301 timestamp->type_tz = udf_rw16((1<<12) + 0); 4302 timestamp->year = udf_rw16(ymdhms.dt_year); 4303 timestamp->month = ymdhms.dt_mon; 4304 timestamp->day = ymdhms.dt_day; 4305 timestamp->hour = ymdhms.dt_hour; 4306 timestamp->minute = ymdhms.dt_min; 4307 timestamp->second = ymdhms.dt_sec; 4308 timestamp->centisec = csec; 4309 timestamp->hund_usec = husec; 4310 timestamp->usec = usec; 4311 } 4312 4313 /* --------------------------------------------------------------------- */ 4314 4315 /* 4316 * Attribute and filetypes converters with get/set pairs 4317 */ 4318 4319 uint32_t 4320 udf_getaccessmode(struct udf_node *udf_node) 4321 { 4322 struct file_entry *fe = udf_node->fe; 4323 struct extfile_entry *efe = udf_node->efe; 4324 uint32_t udf_perm, icbftype; 4325 uint32_t mode, ftype; 4326 uint16_t icbflags; 4327 4328 UDF_LOCK_NODE(udf_node, 0); 4329 if (fe) { 4330 udf_perm = udf_rw32(fe->perm); 4331 icbftype = fe->icbtag.file_type; 4332 icbflags = udf_rw16(fe->icbtag.flags); 4333 } else { 4334 assert(udf_node->efe); 4335 udf_perm = udf_rw32(efe->perm); 4336 icbftype = efe->icbtag.file_type; 4337 icbflags = udf_rw16(efe->icbtag.flags); 4338 } 4339 4340 mode = udf_perm_to_unix_mode(udf_perm); 4341 ftype = udf_icb_to_unix_filetype(icbftype); 4342 4343 /* set suid, sgid, sticky from flags in fe/efe */ 4344 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4345 mode |= S_ISUID; 4346 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4347 mode |= S_ISGID; 4348 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4349 mode |= S_ISVTX; 4350 4351 UDF_UNLOCK_NODE(udf_node, 0); 4352 4353 return mode | ftype; 4354 } 4355 4356 4357 void 4358 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4359 { 4360 struct file_entry *fe = udf_node->fe; 4361 struct extfile_entry *efe = udf_node->efe; 4362 uint32_t udf_perm; 4363 uint16_t icbflags; 4364 4365 UDF_LOCK_NODE(udf_node, 0); 4366 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4367 if (fe) { 4368 icbflags = udf_rw16(fe->icbtag.flags); 4369 } else { 4370 icbflags = udf_rw16(efe->icbtag.flags); 4371 } 4372 4373 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4374 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4375 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4376 if (mode & S_ISUID) 4377 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4378 if (mode & S_ISGID) 4379 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4380 if (mode & S_ISVTX) 4381 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4382 4383 if (fe) { 4384 fe->perm = udf_rw32(udf_perm); 4385 fe->icbtag.flags = udf_rw16(icbflags); 4386 } else { 4387 efe->perm = udf_rw32(udf_perm); 4388 efe->icbtag.flags = udf_rw16(icbflags); 4389 } 4390 4391 UDF_UNLOCK_NODE(udf_node, 0); 4392 } 4393 4394 4395 void 4396 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4397 { 4398 struct udf_mount *ump = udf_node->ump; 4399 struct file_entry *fe = udf_node->fe; 4400 struct extfile_entry *efe = udf_node->efe; 4401 uid_t uid; 4402 gid_t gid; 4403 4404 UDF_LOCK_NODE(udf_node, 0); 4405 if (fe) { 4406 uid = (uid_t)udf_rw32(fe->uid); 4407 gid = (gid_t)udf_rw32(fe->gid); 4408 } else { 4409 assert(udf_node->efe); 4410 uid = (uid_t)udf_rw32(efe->uid); 4411 gid = (gid_t)udf_rw32(efe->gid); 4412 } 4413 4414 /* do the uid/gid translation game */ 4415 if (uid == (uid_t) -1) 4416 uid = ump->mount_args.anon_uid; 4417 if (gid == (gid_t) -1) 4418 gid = ump->mount_args.anon_gid; 4419 4420 *uidp = uid; 4421 *gidp = gid; 4422 4423 UDF_UNLOCK_NODE(udf_node, 0); 4424 } 4425 4426 4427 void 4428 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4429 { 4430 struct udf_mount *ump = udf_node->ump; 4431 struct file_entry *fe = udf_node->fe; 4432 struct extfile_entry *efe = udf_node->efe; 4433 uid_t nobody_uid; 4434 gid_t nobody_gid; 4435 4436 UDF_LOCK_NODE(udf_node, 0); 4437 4438 /* do the uid/gid translation game */ 4439 nobody_uid = ump->mount_args.nobody_uid; 4440 nobody_gid = ump->mount_args.nobody_gid; 4441 if (uid == nobody_uid) 4442 uid = (uid_t) -1; 4443 if (gid == nobody_gid) 4444 gid = (gid_t) -1; 4445 4446 if (fe) { 4447 fe->uid = udf_rw32((uint32_t) uid); 4448 fe->gid = udf_rw32((uint32_t) gid); 4449 } else { 4450 efe->uid = udf_rw32((uint32_t) uid); 4451 efe->gid = udf_rw32((uint32_t) gid); 4452 } 4453 4454 UDF_UNLOCK_NODE(udf_node, 0); 4455 } 4456 4457 4458 /* --------------------------------------------------------------------- */ 4459 4460 4461 static int 4462 dirhash_fill(struct udf_node *dir_node) 4463 { 4464 struct vnode *dvp = dir_node->vnode; 4465 struct dirhash *dirh; 4466 struct file_entry *fe = dir_node->fe; 4467 struct extfile_entry *efe = dir_node->efe; 4468 struct fileid_desc *fid; 4469 struct dirent *dirent; 4470 uint64_t file_size, pre_diroffset, diroffset; 4471 uint32_t lb_size; 4472 int error; 4473 4474 /* make sure we have a dirhash to work on */ 4475 dirh = dir_node->dir_hash; 4476 KASSERT(dirh); 4477 KASSERT(dirh->refcnt > 0); 4478 4479 if (dirh->flags & DIRH_BROKEN) 4480 return EIO; 4481 if (dirh->flags & DIRH_COMPLETE) 4482 return 0; 4483 4484 /* make sure we have a clean dirhash to add to */ 4485 dirhash_purge_entries(dirh); 4486 4487 /* get directory filesize */ 4488 if (fe) { 4489 file_size = udf_rw64(fe->inf_len); 4490 } else { 4491 assert(efe); 4492 file_size = udf_rw64(efe->inf_len); 4493 } 4494 4495 /* allocate temporary space for fid */ 4496 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4497 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4498 4499 /* allocate temporary space for dirent */ 4500 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4501 4502 error = 0; 4503 diroffset = 0; 4504 while (diroffset < file_size) { 4505 /* transfer a new fid/dirent */ 4506 pre_diroffset = diroffset; 4507 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4508 if (error) { 4509 /* TODO what to do? continue but not add? */ 4510 dirh->flags |= DIRH_BROKEN; 4511 dirhash_purge_entries(dirh); 4512 break; 4513 } 4514 4515 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4516 /* register deleted extent for reuse */ 4517 dirhash_enter_freed(dirh, pre_diroffset, 4518 udf_fidsize(fid)); 4519 } else { 4520 /* append to the dirhash */ 4521 dirhash_enter(dirh, dirent, pre_diroffset, 4522 udf_fidsize(fid), 0); 4523 } 4524 } 4525 dirh->flags |= DIRH_COMPLETE; 4526 4527 free(fid, M_UDFTEMP); 4528 free(dirent, M_UDFTEMP); 4529 4530 return error; 4531 } 4532 4533 4534 /* --------------------------------------------------------------------- */ 4535 4536 /* 4537 * Directory read and manipulation functions. 4538 * 4539 */ 4540 4541 int 4542 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4543 struct long_ad *icb_loc, int *found) 4544 { 4545 struct udf_node *dir_node = VTOI(vp); 4546 struct dirhash *dirh; 4547 struct dirhash_entry *dirh_ep; 4548 struct fileid_desc *fid; 4549 struct dirent *dirent; 4550 uint64_t diroffset; 4551 uint32_t lb_size; 4552 int hit, error; 4553 4554 /* set default return */ 4555 *found = 0; 4556 4557 /* get our dirhash and make sure its read in */ 4558 dirhash_get(&dir_node->dir_hash); 4559 error = dirhash_fill(dir_node); 4560 if (error) { 4561 dirhash_put(dir_node->dir_hash); 4562 return error; 4563 } 4564 dirh = dir_node->dir_hash; 4565 4566 /* allocate temporary space for fid */ 4567 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4568 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4569 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4570 4571 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4572 namelen, namelen, name)); 4573 4574 /* search our dirhash hits */ 4575 memset(icb_loc, 0, sizeof(*icb_loc)); 4576 dirh_ep = NULL; 4577 for (;;) { 4578 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4579 /* if no hit, abort the search */ 4580 if (!hit) 4581 break; 4582 4583 /* check this hit */ 4584 diroffset = dirh_ep->offset; 4585 4586 /* transfer a new fid/dirent */ 4587 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4588 if (error) 4589 break; 4590 4591 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4592 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4593 4594 /* see if its our entry */ 4595 #ifdef DIAGNOSTIC 4596 if (dirent->d_namlen != namelen) { 4597 printf("WARNING: dirhash_lookup() returned wrong " 4598 "d_namelen: %d and ought to be %d\n", 4599 dirent->d_namlen, namelen); 4600 printf("\tlooked for `%s' and got `%s'\n", 4601 name, dirent->d_name); 4602 } 4603 #endif 4604 if (strncmp(dirent->d_name, name, namelen) == 0) { 4605 *found = 1; 4606 *icb_loc = fid->icb; 4607 break; 4608 } 4609 } 4610 free(fid, M_UDFTEMP); 4611 free(dirent, M_UDFTEMP); 4612 4613 dirhash_put(dir_node->dir_hash); 4614 4615 return error; 4616 } 4617 4618 /* --------------------------------------------------------------------- */ 4619 4620 static int 4621 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4622 struct long_ad *node_icb, struct long_ad *parent_icb, 4623 uint64_t parent_unique_id) 4624 { 4625 struct timespec now; 4626 struct icb_tag *icb; 4627 struct filetimes_extattr_entry *ft_extattr; 4628 uint64_t unique_id; 4629 uint32_t fidsize, lb_num; 4630 uint8_t *bpos; 4631 int crclen, attrlen; 4632 4633 lb_num = udf_rw32(node_icb->loc.lb_num); 4634 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4635 icb = &fe->icbtag; 4636 4637 /* 4638 * Always use strategy type 4 unless on WORM wich we don't support 4639 * (yet). Fill in defaults and set for internal allocation of data. 4640 */ 4641 icb->strat_type = udf_rw16(4); 4642 icb->max_num_entries = udf_rw16(1); 4643 icb->file_type = file_type; /* 8 bit */ 4644 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4645 4646 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4647 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4648 4649 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4650 4651 vfs_timestamp(&now); 4652 udf_timespec_to_timestamp(&now, &fe->atime); 4653 udf_timespec_to_timestamp(&now, &fe->attrtime); 4654 udf_timespec_to_timestamp(&now, &fe->mtime); 4655 4656 udf_set_regid(&fe->imp_id, IMPL_NAME); 4657 udf_add_impl_regid(ump, &fe->imp_id); 4658 4659 unique_id = udf_advance_uniqueid(ump); 4660 fe->unique_id = udf_rw64(unique_id); 4661 fe->l_ea = udf_rw32(0); 4662 4663 /* create extended attribute to record our creation time */ 4664 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4665 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4666 memset(ft_extattr, 0, attrlen); 4667 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4668 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4669 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4670 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4671 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4672 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4673 4674 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4675 (struct extattr_entry *) ft_extattr); 4676 free(ft_extattr, M_UDFTEMP); 4677 4678 /* if its a directory, create '..' */ 4679 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4680 fidsize = 0; 4681 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4682 fidsize = udf_create_parentfid(ump, 4683 (struct fileid_desc *) bpos, parent_icb, 4684 parent_unique_id); 4685 } 4686 4687 /* record fidlength information */ 4688 fe->inf_len = udf_rw64(fidsize); 4689 fe->l_ad = udf_rw32(fidsize); 4690 fe->logblks_rec = udf_rw64(0); /* intern */ 4691 4692 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4693 crclen += udf_rw32(fe->l_ea) + fidsize; 4694 fe->tag.desc_crc_len = udf_rw16(crclen); 4695 4696 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4697 4698 return fidsize; 4699 } 4700 4701 /* --------------------------------------------------------------------- */ 4702 4703 static int 4704 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4705 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4706 uint64_t parent_unique_id) 4707 { 4708 struct timespec now; 4709 struct icb_tag *icb; 4710 uint64_t unique_id; 4711 uint32_t fidsize, lb_num; 4712 uint8_t *bpos; 4713 int crclen; 4714 4715 lb_num = udf_rw32(node_icb->loc.lb_num); 4716 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4717 icb = &efe->icbtag; 4718 4719 /* 4720 * Always use strategy type 4 unless on WORM wich we don't support 4721 * (yet). Fill in defaults and set for internal allocation of data. 4722 */ 4723 icb->strat_type = udf_rw16(4); 4724 icb->max_num_entries = udf_rw16(1); 4725 icb->file_type = file_type; /* 8 bit */ 4726 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4727 4728 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4729 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4730 4731 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4732 4733 vfs_timestamp(&now); 4734 udf_timespec_to_timestamp(&now, &efe->ctime); 4735 udf_timespec_to_timestamp(&now, &efe->atime); 4736 udf_timespec_to_timestamp(&now, &efe->attrtime); 4737 udf_timespec_to_timestamp(&now, &efe->mtime); 4738 4739 udf_set_regid(&efe->imp_id, IMPL_NAME); 4740 udf_add_impl_regid(ump, &efe->imp_id); 4741 4742 unique_id = udf_advance_uniqueid(ump); 4743 efe->unique_id = udf_rw64(unique_id); 4744 efe->l_ea = udf_rw32(0); 4745 4746 /* if its a directory, create '..' */ 4747 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4748 fidsize = 0; 4749 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4750 fidsize = udf_create_parentfid(ump, 4751 (struct fileid_desc *) bpos, parent_icb, 4752 parent_unique_id); 4753 } 4754 4755 /* record fidlength information */ 4756 efe->obj_size = udf_rw64(fidsize); 4757 efe->inf_len = udf_rw64(fidsize); 4758 efe->l_ad = udf_rw32(fidsize); 4759 efe->logblks_rec = udf_rw64(0); /* intern */ 4760 4761 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4762 crclen += udf_rw32(efe->l_ea) + fidsize; 4763 efe->tag.desc_crc_len = udf_rw16(crclen); 4764 4765 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4766 4767 return fidsize; 4768 } 4769 4770 /* --------------------------------------------------------------------- */ 4771 4772 int 4773 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4774 struct udf_node *udf_node, struct componentname *cnp) 4775 { 4776 struct vnode *dvp = dir_node->vnode; 4777 struct dirhash *dirh; 4778 struct dirhash_entry *dirh_ep; 4779 struct file_entry *fe = dir_node->fe; 4780 struct extfile_entry *efe = dir_node->efe; 4781 struct fileid_desc *fid; 4782 struct dirent *dirent; 4783 uint64_t file_size, diroffset; 4784 uint32_t lb_size, fidsize; 4785 int found, error; 4786 char const *name = cnp->cn_nameptr; 4787 int namelen = cnp->cn_namelen; 4788 int hit, refcnt; 4789 4790 /* get our dirhash and make sure its read in */ 4791 dirhash_get(&dir_node->dir_hash); 4792 error = dirhash_fill(dir_node); 4793 if (error) { 4794 dirhash_put(dir_node->dir_hash); 4795 return error; 4796 } 4797 dirh = dir_node->dir_hash; 4798 4799 /* get directory filesize */ 4800 if (fe) { 4801 file_size = udf_rw64(fe->inf_len); 4802 } else { 4803 assert(efe); 4804 file_size = udf_rw64(efe->inf_len); 4805 } 4806 4807 /* allocate temporary space for fid */ 4808 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4809 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4810 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4811 4812 /* search our dirhash hits */ 4813 found = 0; 4814 dirh_ep = NULL; 4815 for (;;) { 4816 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4817 /* if no hit, abort the search */ 4818 if (!hit) 4819 break; 4820 4821 /* check this hit */ 4822 diroffset = dirh_ep->offset; 4823 4824 /* transfer a new fid/dirent */ 4825 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4826 if (error) 4827 break; 4828 4829 /* see if its our entry */ 4830 KASSERT(dirent->d_namlen == namelen); 4831 if (strncmp(dirent->d_name, name, namelen) == 0) { 4832 found = 1; 4833 break; 4834 } 4835 } 4836 4837 if (!found) 4838 error = ENOENT; 4839 if (error) 4840 goto error_out; 4841 4842 /* mark deleted */ 4843 fid->file_char |= UDF_FILE_CHAR_DEL; 4844 #ifdef UDF_COMPLETE_DELETE 4845 memset(&fid->icb, 0, sizeof(fid->icb)); 4846 #endif 4847 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4848 4849 /* get size of fid and compensate for the read_fid_stream advance */ 4850 fidsize = udf_fidsize(fid); 4851 diroffset -= fidsize; 4852 4853 /* write out */ 4854 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4855 fid, fidsize, diroffset, 4856 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4857 FSCRED, NULL, NULL); 4858 if (error) 4859 goto error_out; 4860 4861 /* get reference count of attached node */ 4862 if (udf_node->fe) { 4863 refcnt = udf_rw16(udf_node->fe->link_cnt); 4864 } else { 4865 KASSERT(udf_node->efe); 4866 refcnt = udf_rw16(udf_node->efe->link_cnt); 4867 } 4868 #ifdef UDF_COMPLETE_DELETE 4869 /* substract reference counter in attached node */ 4870 refcnt -= 1; 4871 if (udf_node->fe) { 4872 udf_node->fe->link_cnt = udf_rw16(refcnt); 4873 } else { 4874 udf_node->efe->link_cnt = udf_rw16(refcnt); 4875 } 4876 4877 /* prevent writeout when refcnt == 0 */ 4878 if (refcnt == 0) 4879 udf_node->i_flags |= IN_DELETED; 4880 4881 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4882 int drefcnt; 4883 4884 /* substract reference counter in directory node */ 4885 /* note subtract 2 (?) for its was also backreferenced */ 4886 if (dir_node->fe) { 4887 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4888 drefcnt -= 1; 4889 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4890 } else { 4891 KASSERT(dir_node->efe); 4892 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4893 drefcnt -= 1; 4894 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4895 } 4896 } 4897 4898 udf_node->i_flags |= IN_MODIFIED; 4899 dir_node->i_flags |= IN_MODIFIED; 4900 #endif 4901 /* if it is/was a hardlink adjust the file count */ 4902 if (refcnt > 0) 4903 udf_adjust_filecount(udf_node, -1); 4904 4905 /* remove from the dirhash */ 4906 dirhash_remove(dirh, dirent, diroffset, 4907 udf_fidsize(fid)); 4908 4909 error_out: 4910 free(fid, M_UDFTEMP); 4911 free(dirent, M_UDFTEMP); 4912 4913 dirhash_put(dir_node->dir_hash); 4914 4915 return error; 4916 } 4917 4918 /* --------------------------------------------------------------------- */ 4919 4920 int 4921 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, 4922 struct udf_node *new_parent_node) 4923 { 4924 struct vnode *dvp = dir_node->vnode; 4925 struct dirhash *dirh; 4926 struct dirhash_entry *dirh_ep; 4927 struct file_entry *fe; 4928 struct extfile_entry *efe; 4929 struct fileid_desc *fid; 4930 struct dirent *dirent; 4931 uint64_t file_size, diroffset; 4932 uint64_t new_parent_unique_id; 4933 uint32_t lb_size, fidsize; 4934 int found, error; 4935 char const *name = ".."; 4936 int namelen = 2; 4937 int hit; 4938 4939 /* get our dirhash and make sure its read in */ 4940 dirhash_get(&dir_node->dir_hash); 4941 error = dirhash_fill(dir_node); 4942 if (error) { 4943 dirhash_put(dir_node->dir_hash); 4944 return error; 4945 } 4946 dirh = dir_node->dir_hash; 4947 4948 /* get new parent's unique ID */ 4949 fe = new_parent_node->fe; 4950 efe = new_parent_node->efe; 4951 if (fe) { 4952 new_parent_unique_id = udf_rw64(fe->unique_id); 4953 } else { 4954 assert(efe); 4955 new_parent_unique_id = udf_rw64(efe->unique_id); 4956 } 4957 4958 /* get directory filesize */ 4959 fe = dir_node->fe; 4960 efe = dir_node->efe; 4961 if (fe) { 4962 file_size = udf_rw64(fe->inf_len); 4963 } else { 4964 assert(efe); 4965 file_size = udf_rw64(efe->inf_len); 4966 } 4967 4968 /* allocate temporary space for fid */ 4969 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4970 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4971 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4972 4973 /* 4974 * NOTE the standard does not dictate the FID entry '..' should be 4975 * first, though in practice it will most likely be. 4976 */ 4977 4978 /* search our dirhash hits */ 4979 found = 0; 4980 dirh_ep = NULL; 4981 for (;;) { 4982 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4983 /* if no hit, abort the search */ 4984 if (!hit) 4985 break; 4986 4987 /* check this hit */ 4988 diroffset = dirh_ep->offset; 4989 4990 /* transfer a new fid/dirent */ 4991 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4992 if (error) 4993 break; 4994 4995 /* see if its our entry */ 4996 KASSERT(dirent->d_namlen == namelen); 4997 if (strncmp(dirent->d_name, name, namelen) == 0) { 4998 found = 1; 4999 break; 5000 } 5001 } 5002 5003 if (!found) 5004 error = ENOENT; 5005 if (error) 5006 goto error_out; 5007 5008 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ 5009 fid->icb = new_parent_node->write_loc; 5010 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); 5011 5012 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5013 5014 /* get size of fid and compensate for the read_fid_stream advance */ 5015 fidsize = udf_fidsize(fid); 5016 diroffset -= fidsize; 5017 5018 /* write out */ 5019 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 5020 fid, fidsize, diroffset, 5021 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5022 FSCRED, NULL, NULL); 5023 5024 /* nothing to be done in the dirhash */ 5025 5026 error_out: 5027 free(fid, M_UDFTEMP); 5028 free(dirent, M_UDFTEMP); 5029 5030 dirhash_put(dir_node->dir_hash); 5031 5032 return error; 5033 } 5034 5035 /* --------------------------------------------------------------------- */ 5036 5037 /* 5038 * We are not allowed to split the fid tag itself over an logical block so 5039 * check the space remaining in the logical block. 5040 * 5041 * We try to select the smallest candidate for recycling or when none is 5042 * found, append a new one at the end of the directory. 5043 */ 5044 5045 int 5046 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 5047 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 5048 { 5049 struct vnode *dvp = dir_node->vnode; 5050 struct dirhash *dirh; 5051 struct dirhash_entry *dirh_ep; 5052 struct fileid_desc *fid; 5053 struct icb_tag *icbtag; 5054 struct charspec osta_charspec; 5055 struct dirent dirent; 5056 uint64_t unique_id, dir_size; 5057 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 5058 uint32_t chosen_size, chosen_size_diff; 5059 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 5060 int file_char, refcnt, icbflags, addr_type, hit, error; 5061 5062 /* get our dirhash and make sure its read in */ 5063 dirhash_get(&dir_node->dir_hash); 5064 error = dirhash_fill(dir_node); 5065 if (error) { 5066 dirhash_put(dir_node->dir_hash); 5067 return error; 5068 } 5069 dirh = dir_node->dir_hash; 5070 5071 /* get info */ 5072 lb_size = udf_rw32(ump->logical_vol->lb_size); 5073 udf_osta_charset(&osta_charspec); 5074 5075 if (dir_node->fe) { 5076 dir_size = udf_rw64(dir_node->fe->inf_len); 5077 icbtag = &dir_node->fe->icbtag; 5078 } else { 5079 dir_size = udf_rw64(dir_node->efe->inf_len); 5080 icbtag = &dir_node->efe->icbtag; 5081 } 5082 5083 icbflags = udf_rw16(icbtag->flags); 5084 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5085 5086 if (udf_node->fe) { 5087 unique_id = udf_rw64(udf_node->fe->unique_id); 5088 refcnt = udf_rw16(udf_node->fe->link_cnt); 5089 } else { 5090 unique_id = udf_rw64(udf_node->efe->unique_id); 5091 refcnt = udf_rw16(udf_node->efe->link_cnt); 5092 } 5093 5094 if (refcnt > 0) { 5095 unique_id = udf_advance_uniqueid(ump); 5096 udf_adjust_filecount(udf_node, 1); 5097 } 5098 5099 /* determine file characteristics */ 5100 file_char = 0; /* visible non deleted file and not stream metadata */ 5101 if (vap->va_type == VDIR) 5102 file_char = UDF_FILE_CHAR_DIR; 5103 5104 /* malloc scrap buffer */ 5105 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 5106 5107 /* calculate _minimum_ fid size */ 5108 unix_to_udf_name((char *) fid->data, &fid->l_fi, 5109 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5110 fidsize = UDF_FID_SIZE + fid->l_fi; 5111 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 5112 5113 /* find position that will fit the FID */ 5114 chosen_fid_pos = dir_size; 5115 chosen_size = 0; 5116 chosen_size_diff = UINT_MAX; 5117 5118 /* shut up gcc */ 5119 dirent.d_namlen = 0; 5120 5121 /* search our dirhash hits */ 5122 error = 0; 5123 dirh_ep = NULL; 5124 for (;;) { 5125 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 5126 /* if no hit, abort the search */ 5127 if (!hit) 5128 break; 5129 5130 /* check this hit for size */ 5131 this_fidsize = dirh_ep->entry_size; 5132 5133 /* check this hit */ 5134 fid_pos = dirh_ep->offset; 5135 end_fid_pos = fid_pos + this_fidsize; 5136 size_diff = this_fidsize - fidsize; 5137 lb_rest = lb_size - (end_fid_pos % lb_size); 5138 5139 #ifndef UDF_COMPLETE_DELETE 5140 /* transfer a new fid/dirent */ 5141 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 5142 if (error) 5143 goto error_out; 5144 5145 /* only reuse entries that are wiped */ 5146 /* check if the len + loc are marked zero */ 5147 if (udf_rw32(fid->icb.len) != 0) 5148 continue; 5149 if (udf_rw32(fid->icb.loc.lb_num) != 0) 5150 continue; 5151 if (udf_rw16(fid->icb.loc.part_num) != 0) 5152 continue; 5153 #endif /* UDF_COMPLETE_DELETE */ 5154 5155 /* select if not splitting the tag and its smaller */ 5156 if ((size_diff >= 0) && 5157 (size_diff < chosen_size_diff) && 5158 (lb_rest >= sizeof(struct desc_tag))) 5159 { 5160 /* UDF 2.3.4.2+3 specifies rules for iu size */ 5161 if ((size_diff == 0) || (size_diff >= 32)) { 5162 chosen_fid_pos = fid_pos; 5163 chosen_size = this_fidsize; 5164 chosen_size_diff = size_diff; 5165 } 5166 } 5167 } 5168 5169 5170 /* extend directory if no other candidate found */ 5171 if (chosen_size == 0) { 5172 chosen_fid_pos = dir_size; 5173 chosen_size = fidsize; 5174 chosen_size_diff = 0; 5175 5176 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 5177 if (addr_type == UDF_ICB_INTERN_ALLOC) { 5178 /* pre-grow directory to see if we're to switch */ 5179 udf_grow_node(dir_node, dir_size + chosen_size); 5180 5181 icbflags = udf_rw16(icbtag->flags); 5182 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5183 } 5184 5185 /* make sure the next fid desc_tag won't be splitted */ 5186 if (addr_type != UDF_ICB_INTERN_ALLOC) { 5187 end_fid_pos = chosen_fid_pos + chosen_size; 5188 lb_rest = lb_size - (end_fid_pos % lb_size); 5189 5190 /* pad with implementation use regid if needed */ 5191 if (lb_rest < sizeof(struct desc_tag)) 5192 chosen_size += 32; 5193 } 5194 } 5195 chosen_size_diff = chosen_size - fidsize; 5196 5197 /* populate the FID */ 5198 memset(fid, 0, lb_size); 5199 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 5200 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 5201 fid->file_char = file_char; 5202 fid->icb = udf_node->loc; 5203 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 5204 fid->l_iu = udf_rw16(0); 5205 5206 if (chosen_size > fidsize) { 5207 /* insert implementation-use regid to space it correctly */ 5208 fid->l_iu = udf_rw16(chosen_size_diff); 5209 5210 /* set implementation use */ 5211 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 5212 udf_add_impl_regid(ump, (struct regid *) fid->data); 5213 } 5214 5215 /* fill in name */ 5216 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 5217 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5218 5219 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 5220 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5221 5222 /* writeout FID/update parent directory */ 5223 error = vn_rdwr(UIO_WRITE, dvp, 5224 fid, chosen_size, chosen_fid_pos, 5225 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5226 FSCRED, NULL, NULL); 5227 5228 if (error) 5229 goto error_out; 5230 5231 /* add reference counter in attached node */ 5232 if (udf_node->fe) { 5233 refcnt = udf_rw16(udf_node->fe->link_cnt); 5234 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5235 } else { 5236 KASSERT(udf_node->efe); 5237 refcnt = udf_rw16(udf_node->efe->link_cnt); 5238 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5239 } 5240 5241 /* mark not deleted if it was... just in case, but do warn */ 5242 if (udf_node->i_flags & IN_DELETED) { 5243 printf("udf: warning, marking a file undeleted\n"); 5244 udf_node->i_flags &= ~IN_DELETED; 5245 } 5246 5247 if (file_char & UDF_FILE_CHAR_DIR) { 5248 /* add reference counter in directory node for '..' */ 5249 if (dir_node->fe) { 5250 refcnt = udf_rw16(dir_node->fe->link_cnt); 5251 refcnt++; 5252 dir_node->fe->link_cnt = udf_rw16(refcnt); 5253 } else { 5254 KASSERT(dir_node->efe); 5255 refcnt = udf_rw16(dir_node->efe->link_cnt); 5256 refcnt++; 5257 dir_node->efe->link_cnt = udf_rw16(refcnt); 5258 } 5259 } 5260 5261 /* append to the dirhash */ 5262 /* NOTE do not use dirent anymore or it won't match later! */ 5263 udf_to_unix_name(dirent.d_name, NAME_MAX, 5264 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec); 5265 dirent.d_namlen = strlen(dirent.d_name); 5266 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5267 udf_fidsize(fid), 1); 5268 5269 /* note updates */ 5270 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5271 /* VN_KNOTE(udf_node, ...) */ 5272 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5273 5274 error_out: 5275 free(fid, M_TEMP); 5276 5277 dirhash_put(dir_node->dir_hash); 5278 5279 return error; 5280 } 5281 5282 /* --------------------------------------------------------------------- */ 5283 5284 /* 5285 * Each node can have an attached streamdir node though not recursively. These 5286 * are otherwise known as named substreams/named extended attributes that have 5287 * no size limitations. 5288 * 5289 * `Normal' extended attributes are indicated with a number and are recorded 5290 * in either the fe/efe descriptor itself for small descriptors or recorded in 5291 * the attached extended attribute file. Since these spaces can get 5292 * fragmented, care ought to be taken. 5293 * 5294 * Since the size of the space reserved for allocation descriptors is limited, 5295 * there is a mechanim provided for extending this space; this is done by a 5296 * special extent to allow schrinking of the allocations without breaking the 5297 * linkage to the allocation extent descriptor. 5298 */ 5299 5300 int 5301 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5302 struct udf_node **udf_noderes) 5303 { 5304 union dscrptr *dscr; 5305 struct udf_node *udf_node; 5306 struct vnode *nvp; 5307 struct long_ad icb_loc, last_fe_icb_loc; 5308 uint64_t file_size; 5309 uint32_t lb_size, sector, dummy; 5310 uint8_t *file_data; 5311 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5312 int slot, eof, error; 5313 5314 DPRINTF(NODE, ("udf_get_node called\n")); 5315 *udf_noderes = udf_node = NULL; 5316 5317 /* lock to disallow simultanious creation of same udf_node */ 5318 mutex_enter(&ump->get_node_lock); 5319 5320 DPRINTF(NODE, ("\tlookup in hash table\n")); 5321 /* lookup in hash table */ 5322 assert(ump); 5323 assert(node_icb_loc); 5324 udf_node = udf_node_lookup(ump, node_icb_loc); 5325 if (udf_node) { 5326 DPRINTF(NODE, ("\tgot it from the hash!\n")); 5327 /* vnode is returned locked */ 5328 *udf_noderes = udf_node; 5329 mutex_exit(&ump->get_node_lock); 5330 return 0; 5331 } 5332 5333 /* garbage check: translate udf_node_icb_loc to sectornr */ 5334 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); 5335 if (error) { 5336 DPRINTF(NODE, ("\tcan't translate icb address!\n")); 5337 /* no use, this will fail anyway */ 5338 mutex_exit(&ump->get_node_lock); 5339 return EINVAL; 5340 } 5341 5342 /* build udf_node (do initialise!) */ 5343 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5344 memset(udf_node, 0, sizeof(struct udf_node)); 5345 5346 DPRINTF(NODE, ("\tget new vnode\n")); 5347 /* give it a vnode */ 5348 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, NULL, &nvp); 5349 if (error) { 5350 pool_put(&udf_node_pool, udf_node); 5351 mutex_exit(&ump->get_node_lock); 5352 return error; 5353 } 5354 5355 /* always return locked vnode */ 5356 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { 5357 /* recycle vnode and unlock; simultanious will fail too */ 5358 ungetnewvnode(nvp); 5359 mutex_exit(&ump->get_node_lock); 5360 return error; 5361 } 5362 5363 /* initialise crosslinks, note location of fe/efe for hashing */ 5364 udf_node->ump = ump; 5365 udf_node->vnode = nvp; 5366 nvp->v_data = udf_node; 5367 udf_node->loc = *node_icb_loc; 5368 udf_node->lockf = 0; 5369 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5370 cv_init(&udf_node->node_lock, "udf_nlk"); 5371 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */ 5372 udf_node->outstanding_bufs = 0; 5373 udf_node->outstanding_nodedscr = 0; 5374 udf_node->uncommitted_lbs = 0; 5375 5376 /* check if we're fetching the root */ 5377 if (ump->fileset_desc) 5378 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5379 sizeof(struct long_ad)) == 0) 5380 nvp->v_vflag |= VV_ROOT; 5381 5382 /* insert into the hash lookup */ 5383 udf_register_node(udf_node); 5384 5385 /* safe to unlock, the entry is in the hash table, vnode is locked */ 5386 mutex_exit(&ump->get_node_lock); 5387 5388 icb_loc = *node_icb_loc; 5389 needs_indirect = 0; 5390 strat4096 = 0; 5391 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5392 file_size = 0; 5393 file_data = NULL; 5394 lb_size = udf_rw32(ump->logical_vol->lb_size); 5395 5396 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5397 do { 5398 /* try to read in fe/efe */ 5399 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5400 5401 /* blank sector marks end of sequence, check this */ 5402 if ((dscr == NULL) && (!strat4096)) 5403 error = ENOENT; 5404 5405 /* break if read error or blank sector */ 5406 if (error || (dscr == NULL)) 5407 break; 5408 5409 /* process descriptor based on the descriptor type */ 5410 dscr_type = udf_rw16(dscr->tag.id); 5411 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5412 5413 /* if dealing with an indirect entry, follow the link */ 5414 if (dscr_type == TAGID_INDIRECTENTRY) { 5415 needs_indirect = 0; 5416 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5417 icb_loc = dscr->inde.indirect_icb; 5418 continue; 5419 } 5420 5421 /* only file entries and extended file entries allowed here */ 5422 if ((dscr_type != TAGID_FENTRY) && 5423 (dscr_type != TAGID_EXTFENTRY)) { 5424 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5425 error = ENOENT; 5426 break; 5427 } 5428 5429 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5430 5431 /* choose this one */ 5432 last_fe_icb_loc = icb_loc; 5433 5434 /* record and process/update (ext)fentry */ 5435 file_data = NULL; 5436 if (dscr_type == TAGID_FENTRY) { 5437 if (udf_node->fe) 5438 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5439 udf_node->fe); 5440 udf_node->fe = &dscr->fe; 5441 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5442 udf_file_type = udf_node->fe->icbtag.file_type; 5443 file_size = udf_rw64(udf_node->fe->inf_len); 5444 file_data = udf_node->fe->data; 5445 } else { 5446 if (udf_node->efe) 5447 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5448 udf_node->efe); 5449 udf_node->efe = &dscr->efe; 5450 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5451 udf_file_type = udf_node->efe->icbtag.file_type; 5452 file_size = udf_rw64(udf_node->efe->inf_len); 5453 file_data = udf_node->efe->data; 5454 } 5455 5456 /* check recording strategy (structure) */ 5457 5458 /* 5459 * Strategy 4096 is a daisy linked chain terminating with an 5460 * unrecorded sector or a TERM descriptor. The next 5461 * descriptor is to be found in the sector that follows the 5462 * current sector. 5463 */ 5464 if (strat == 4096) { 5465 strat4096 = 1; 5466 needs_indirect = 1; 5467 5468 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5469 } 5470 5471 /* 5472 * Strategy 4 is the normal strategy and terminates, but if 5473 * we're in strategy 4096, we can't have strategy 4 mixed in 5474 */ 5475 5476 if (strat == 4) { 5477 if (strat4096) { 5478 error = EINVAL; 5479 break; 5480 } 5481 break; /* done */ 5482 } 5483 } while (!error); 5484 5485 /* first round of cleanup code */ 5486 if (error) { 5487 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5488 /* recycle udf_node */ 5489 udf_dispose_node(udf_node); 5490 5491 VOP_UNLOCK(nvp); 5492 nvp->v_data = NULL; 5493 ungetnewvnode(nvp); 5494 5495 return EINVAL; /* error code ok? */ 5496 } 5497 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5498 5499 /* assert no references to dscr anymore beyong this point */ 5500 assert((udf_node->fe) || (udf_node->efe)); 5501 dscr = NULL; 5502 5503 /* 5504 * Remember where to record an updated version of the descriptor. If 5505 * there is a sequence of indirect entries, icb_loc will have been 5506 * updated. Its the write disipline to allocate new space and to make 5507 * sure the chain is maintained. 5508 * 5509 * `needs_indirect' flags if the next location is to be filled with 5510 * with an indirect entry. 5511 */ 5512 udf_node->write_loc = icb_loc; 5513 udf_node->needs_indirect = needs_indirect; 5514 5515 /* 5516 * Go trough all allocations extents of this descriptor and when 5517 * encountering a redirect read in the allocation extension. These are 5518 * daisy-chained. 5519 */ 5520 UDF_LOCK_NODE(udf_node, 0); 5521 udf_node->num_extensions = 0; 5522 5523 error = 0; 5524 slot = 0; 5525 for (;;) { 5526 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5527 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5528 "lb_num = %d, part = %d\n", slot, eof, 5529 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5530 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5531 udf_rw32(icb_loc.loc.lb_num), 5532 udf_rw16(icb_loc.loc.part_num))); 5533 if (eof) 5534 break; 5535 slot++; 5536 5537 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5538 continue; 5539 5540 DPRINTF(NODE, ("\tgot redirect extent\n")); 5541 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5542 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5543 "too many allocation extensions on " 5544 "udf_node\n")); 5545 error = EINVAL; 5546 break; 5547 } 5548 5549 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5550 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5551 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5552 "extension size in udf_node\n")); 5553 error = EINVAL; 5554 break; 5555 } 5556 5557 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5558 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5559 /* load in allocation extent */ 5560 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5561 if (error || (dscr == NULL)) 5562 break; 5563 5564 /* process read-in descriptor */ 5565 dscr_type = udf_rw16(dscr->tag.id); 5566 5567 if (dscr_type != TAGID_ALLOCEXTENT) { 5568 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5569 error = ENOENT; 5570 break; 5571 } 5572 5573 DPRINTF(NODE, ("\trecording redirect extent\n")); 5574 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5575 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5576 5577 udf_node->num_extensions++; 5578 5579 } /* while */ 5580 UDF_UNLOCK_NODE(udf_node, 0); 5581 5582 /* second round of cleanup code */ 5583 if (error) { 5584 /* recycle udf_node */ 5585 udf_dispose_node(udf_node); 5586 5587 VOP_UNLOCK(nvp); 5588 nvp->v_data = NULL; 5589 ungetnewvnode(nvp); 5590 5591 return EINVAL; /* error code ok? */ 5592 } 5593 5594 DPRINTF(NODE, ("\tnode read in fine\n")); 5595 5596 /* 5597 * Translate UDF filetypes into vnode types. 5598 * 5599 * Systemfiles like the meta main and mirror files are not treated as 5600 * normal files, so we type them as having no type. UDF dictates that 5601 * they are not allowed to be visible. 5602 */ 5603 5604 switch (udf_file_type) { 5605 case UDF_ICB_FILETYPE_DIRECTORY : 5606 case UDF_ICB_FILETYPE_STREAMDIR : 5607 nvp->v_type = VDIR; 5608 break; 5609 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5610 nvp->v_type = VBLK; 5611 break; 5612 case UDF_ICB_FILETYPE_CHARDEVICE : 5613 nvp->v_type = VCHR; 5614 break; 5615 case UDF_ICB_FILETYPE_SOCKET : 5616 nvp->v_type = VSOCK; 5617 break; 5618 case UDF_ICB_FILETYPE_FIFO : 5619 nvp->v_type = VFIFO; 5620 break; 5621 case UDF_ICB_FILETYPE_SYMLINK : 5622 nvp->v_type = VLNK; 5623 break; 5624 case UDF_ICB_FILETYPE_VAT : 5625 case UDF_ICB_FILETYPE_META_MAIN : 5626 case UDF_ICB_FILETYPE_META_MIRROR : 5627 nvp->v_type = VNON; 5628 break; 5629 case UDF_ICB_FILETYPE_RANDOMACCESS : 5630 case UDF_ICB_FILETYPE_REALTIME : 5631 nvp->v_type = VREG; 5632 break; 5633 default: 5634 /* YIKES, something else */ 5635 nvp->v_type = VNON; 5636 } 5637 5638 /* TODO specfs, fifofs etc etc. vnops setting */ 5639 5640 /* don't forget to set vnode's v_size */ 5641 uvm_vnp_setsize(nvp, file_size); 5642 5643 /* TODO ext attr and streamdir udf_nodes */ 5644 5645 *udf_noderes = udf_node; 5646 5647 return 0; 5648 } 5649 5650 /* --------------------------------------------------------------------- */ 5651 5652 int 5653 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5654 { 5655 union dscrptr *dscr; 5656 struct long_ad *loc; 5657 int extnr, error; 5658 5659 DPRINTF(NODE, ("udf_writeout_node called\n")); 5660 5661 KASSERT(udf_node->outstanding_bufs == 0); 5662 KASSERT(udf_node->outstanding_nodedscr == 0); 5663 5664 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5665 5666 if (udf_node->i_flags & IN_DELETED) { 5667 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5668 udf_cleanup_reservation(udf_node); 5669 return 0; 5670 } 5671 5672 /* lock node; unlocked in callback */ 5673 UDF_LOCK_NODE(udf_node, 0); 5674 5675 /* remove pending reservations, we're written out */ 5676 udf_cleanup_reservation(udf_node); 5677 5678 /* at least one descriptor writeout */ 5679 udf_node->outstanding_nodedscr = 1; 5680 5681 /* we're going to write out the descriptor so clear the flags */ 5682 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5683 5684 /* if we were rebuild, write out the allocation extents */ 5685 if (udf_node->i_flags & IN_NODE_REBUILD) { 5686 /* mark outstanding node descriptors and issue them */ 5687 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5688 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5689 loc = &udf_node->ext_loc[extnr]; 5690 dscr = (union dscrptr *) udf_node->ext[extnr]; 5691 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5692 if (error) 5693 return error; 5694 } 5695 /* mark allocation extents written out */ 5696 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5697 } 5698 5699 if (udf_node->fe) { 5700 KASSERT(udf_node->efe == NULL); 5701 dscr = (union dscrptr *) udf_node->fe; 5702 } else { 5703 KASSERT(udf_node->efe); 5704 KASSERT(udf_node->fe == NULL); 5705 dscr = (union dscrptr *) udf_node->efe; 5706 } 5707 KASSERT(dscr); 5708 5709 loc = &udf_node->write_loc; 5710 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5711 5712 return error; 5713 } 5714 5715 /* --------------------------------------------------------------------- */ 5716 5717 int 5718 udf_dispose_node(struct udf_node *udf_node) 5719 { 5720 struct vnode *vp; 5721 int extnr; 5722 5723 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5724 if (!udf_node) { 5725 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5726 return 0; 5727 } 5728 5729 vp = udf_node->vnode; 5730 #ifdef DIAGNOSTIC 5731 if (vp->v_numoutput) 5732 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5733 "v_numoutput = %d", udf_node, vp->v_numoutput); 5734 #endif 5735 5736 udf_cleanup_reservation(udf_node); 5737 5738 /* TODO extended attributes and streamdir */ 5739 5740 /* remove dirhash if present */ 5741 dirhash_purge(&udf_node->dir_hash); 5742 5743 /* remove from our hash lookup table */ 5744 udf_deregister_node(udf_node); 5745 5746 /* destroy our lock */ 5747 mutex_destroy(&udf_node->node_mutex); 5748 cv_destroy(&udf_node->node_lock); 5749 5750 /* dissociate our udf_node from the vnode */ 5751 genfs_node_destroy(udf_node->vnode); 5752 vp->v_data = NULL; 5753 5754 /* free associated memory and the node itself */ 5755 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5756 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5757 udf_node->ext[extnr]); 5758 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5759 } 5760 5761 if (udf_node->fe) 5762 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5763 udf_node->fe); 5764 if (udf_node->efe) 5765 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5766 udf_node->efe); 5767 5768 udf_node->fe = (void *) 0xdeadaaaa; 5769 udf_node->efe = (void *) 0xdeadbbbb; 5770 udf_node->ump = (void *) 0xdeadbeef; 5771 pool_put(&udf_node_pool, udf_node); 5772 5773 return 0; 5774 } 5775 5776 5777 5778 /* 5779 * create a new node using the specified vnodeops, vap and cnp but with the 5780 * udf_file_type. This allows special files to be created. Use with care. 5781 */ 5782 5783 static int 5784 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type, 5785 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp) 5786 { 5787 union dscrptr *dscr; 5788 struct udf_node *dir_node = VTOI(dvp); 5789 struct udf_node *udf_node; 5790 struct udf_mount *ump = dir_node->ump; 5791 struct vnode *nvp; 5792 struct long_ad node_icb_loc; 5793 uint64_t parent_unique_id; 5794 uint64_t lmapping; 5795 uint32_t lb_size, lb_num; 5796 uint16_t vpart_num; 5797 uid_t uid; 5798 gid_t gid, parent_gid; 5799 int fid_size, error; 5800 5801 lb_size = udf_rw32(ump->logical_vol->lb_size); 5802 *vpp = NULL; 5803 5804 /* allocate vnode */ 5805 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, NULL, &nvp); 5806 if (error) 5807 return error; 5808 5809 /* lock node */ 5810 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY); 5811 if (error) 5812 goto error_out_unget; 5813 5814 /* reserve space for one logical block */ 5815 vpart_num = ump->node_part; 5816 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 5817 vpart_num, 1, /* can_fail */ true); 5818 if (error) 5819 goto error_out_unlock; 5820 5821 /* allocate node */ 5822 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 5823 vpart_num, 1, &lmapping); 5824 if (error) 5825 goto error_out_unreserve; 5826 lb_num = lmapping; 5827 5828 /* initialise pointer to location */ 5829 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5830 node_icb_loc.len = udf_rw32(lb_size); 5831 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5832 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5833 5834 /* build udf_node (do initialise!) */ 5835 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5836 memset(udf_node, 0, sizeof(struct udf_node)); 5837 5838 /* initialise crosslinks, note location of fe/efe for hashing */ 5839 /* bugalert: synchronise with udf_get_node() */ 5840 udf_node->ump = ump; 5841 udf_node->vnode = nvp; 5842 nvp->v_data = udf_node; 5843 udf_node->loc = node_icb_loc; 5844 udf_node->write_loc = node_icb_loc; 5845 udf_node->lockf = 0; 5846 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5847 cv_init(&udf_node->node_lock, "udf_nlk"); 5848 udf_node->outstanding_bufs = 0; 5849 udf_node->outstanding_nodedscr = 0; 5850 udf_node->uncommitted_lbs = 0; 5851 5852 /* initialise genfs */ 5853 genfs_node_init(nvp, &udf_genfsops); 5854 5855 /* insert into the hash lookup */ 5856 udf_register_node(udf_node); 5857 5858 /* get parent's unique ID for refering '..' if its a directory */ 5859 if (dir_node->fe) { 5860 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5861 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5862 } else { 5863 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5864 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5865 } 5866 5867 /* get descriptor */ 5868 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5869 5870 /* choose a fe or an efe for it */ 5871 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5872 udf_node->fe = &dscr->fe; 5873 fid_size = udf_create_new_fe(ump, udf_node->fe, 5874 udf_file_type, &udf_node->loc, 5875 &dir_node->loc, parent_unique_id); 5876 /* TODO add extended attribute for creation time */ 5877 } else { 5878 udf_node->efe = &dscr->efe; 5879 fid_size = udf_create_new_efe(ump, udf_node->efe, 5880 udf_file_type, &udf_node->loc, 5881 &dir_node->loc, parent_unique_id); 5882 } 5883 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5884 5885 /* update vnode's size and type */ 5886 nvp->v_type = vap->va_type; 5887 uvm_vnp_setsize(nvp, fid_size); 5888 5889 /* set access mode */ 5890 udf_setaccessmode(udf_node, vap->va_mode); 5891 5892 /* set ownership */ 5893 uid = kauth_cred_geteuid(cnp->cn_cred); 5894 gid = parent_gid; 5895 udf_setownership(udf_node, uid, gid); 5896 5897 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5898 if (error) { 5899 /* free disc allocation for node */ 5900 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5901 5902 /* recycle udf_node */ 5903 udf_dispose_node(udf_node); 5904 vput(nvp); 5905 5906 *vpp = NULL; 5907 return error; 5908 } 5909 5910 /* adjust file count */ 5911 udf_adjust_filecount(udf_node, 1); 5912 5913 /* return result */ 5914 *vpp = nvp; 5915 5916 return 0; 5917 5918 error_out_unreserve: 5919 udf_do_unreserve_space(ump, NULL, vpart_num, 1); 5920 5921 error_out_unlock: 5922 VOP_UNLOCK(nvp); 5923 5924 error_out_unget: 5925 nvp->v_data = NULL; 5926 ungetnewvnode(nvp); 5927 5928 return error; 5929 } 5930 5931 5932 int 5933 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5934 struct componentname *cnp) 5935 { 5936 int (**vnodeops)(void *); 5937 int udf_file_type; 5938 5939 DPRINTF(NODE, ("udf_create_node called\n")); 5940 5941 /* what type are we creating ? */ 5942 vnodeops = udf_vnodeop_p; 5943 /* start with a default */ 5944 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5945 5946 *vpp = NULL; 5947 5948 switch (vap->va_type) { 5949 case VREG : 5950 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5951 break; 5952 case VDIR : 5953 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5954 break; 5955 case VLNK : 5956 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5957 break; 5958 case VBLK : 5959 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5960 /* specfs */ 5961 return ENOTSUP; 5962 break; 5963 case VCHR : 5964 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5965 /* specfs */ 5966 return ENOTSUP; 5967 break; 5968 case VFIFO : 5969 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5970 /* specfs */ 5971 return ENOTSUP; 5972 break; 5973 case VSOCK : 5974 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5975 /* specfs */ 5976 return ENOTSUP; 5977 break; 5978 case VNON : 5979 case VBAD : 5980 default : 5981 /* nothing; can we even create these? */ 5982 return EINVAL; 5983 } 5984 5985 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp); 5986 } 5987 5988 /* --------------------------------------------------------------------- */ 5989 5990 static void 5991 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5992 { 5993 struct udf_mount *ump = udf_node->ump; 5994 uint32_t lb_size, lb_num, len, num_lb; 5995 uint16_t vpart_num; 5996 5997 /* is there really one? */ 5998 if (mem == NULL) 5999 return; 6000 6001 /* got a descriptor here */ 6002 len = UDF_EXT_LEN(udf_rw32(loc->len)); 6003 lb_num = udf_rw32(loc->loc.lb_num); 6004 vpart_num = udf_rw16(loc->loc.part_num); 6005 6006 lb_size = udf_rw32(ump->logical_vol->lb_size); 6007 num_lb = (len + lb_size -1) / lb_size; 6008 6009 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 6010 } 6011 6012 void 6013 udf_delete_node(struct udf_node *udf_node) 6014 { 6015 void *dscr; 6016 struct udf_mount *ump; 6017 struct long_ad *loc; 6018 int extnr, lvint, dummy; 6019 6020 ump = udf_node->ump; 6021 6022 /* paranoia check on integrity; should be open!; we could panic */ 6023 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 6024 if (lvint == UDF_INTEGRITY_CLOSED) 6025 printf("\tIntegrity was CLOSED!\n"); 6026 6027 /* whatever the node type, change its size to zero */ 6028 (void) udf_resize_node(udf_node, 0, &dummy); 6029 6030 /* force it to be `clean'; no use writing it out */ 6031 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 6032 IN_CHANGE | IN_UPDATE | IN_MODIFY); 6033 6034 /* adjust file count */ 6035 udf_adjust_filecount(udf_node, -1); 6036 6037 /* 6038 * Free its allocated descriptors; memory will be released when 6039 * vop_reclaim() is called. 6040 */ 6041 loc = &udf_node->loc; 6042 6043 dscr = udf_node->fe; 6044 udf_free_descriptor_space(udf_node, loc, dscr); 6045 dscr = udf_node->efe; 6046 udf_free_descriptor_space(udf_node, loc, dscr); 6047 6048 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 6049 dscr = udf_node->ext[extnr]; 6050 loc = &udf_node->ext_loc[extnr]; 6051 udf_free_descriptor_space(udf_node, loc, dscr); 6052 } 6053 } 6054 6055 /* --------------------------------------------------------------------- */ 6056 6057 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 6058 int 6059 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 6060 { 6061 struct file_entry *fe = udf_node->fe; 6062 struct extfile_entry *efe = udf_node->efe; 6063 uint64_t file_size; 6064 int error; 6065 6066 if (fe) { 6067 file_size = udf_rw64(fe->inf_len); 6068 } else { 6069 assert(udf_node->efe); 6070 file_size = udf_rw64(efe->inf_len); 6071 } 6072 6073 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 6074 file_size, new_size)); 6075 6076 /* if not changing, we're done */ 6077 if (file_size == new_size) 6078 return 0; 6079 6080 *extended = (new_size > file_size); 6081 if (*extended) { 6082 error = udf_grow_node(udf_node, new_size); 6083 } else { 6084 error = udf_shrink_node(udf_node, new_size); 6085 } 6086 6087 return error; 6088 } 6089 6090 6091 /* --------------------------------------------------------------------- */ 6092 6093 void 6094 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 6095 struct timespec *mod, struct timespec *birth) 6096 { 6097 struct timespec now; 6098 struct file_entry *fe; 6099 struct extfile_entry *efe; 6100 struct filetimes_extattr_entry *ft_extattr; 6101 struct timestamp *atime, *mtime, *attrtime, *ctime; 6102 struct timestamp fe_ctime; 6103 struct timespec cur_birth; 6104 uint32_t offset, a_l; 6105 uint8_t *filedata; 6106 int error; 6107 6108 /* protect against rogue values */ 6109 if (!udf_node) 6110 return; 6111 6112 fe = udf_node->fe; 6113 efe = udf_node->efe; 6114 6115 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 6116 return; 6117 6118 /* get descriptor information */ 6119 if (fe) { 6120 atime = &fe->atime; 6121 mtime = &fe->mtime; 6122 attrtime = &fe->attrtime; 6123 filedata = fe->data; 6124 6125 /* initial save dummy setting */ 6126 ctime = &fe_ctime; 6127 6128 /* check our extended attribute if present */ 6129 error = udf_extattr_search_intern(udf_node, 6130 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 6131 if (!error) { 6132 ft_extattr = (struct filetimes_extattr_entry *) 6133 (filedata + offset); 6134 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 6135 ctime = &ft_extattr->times[0]; 6136 } 6137 /* TODO create the extended attribute if not found ? */ 6138 } else { 6139 assert(udf_node->efe); 6140 atime = &efe->atime; 6141 mtime = &efe->mtime; 6142 attrtime = &efe->attrtime; 6143 ctime = &efe->ctime; 6144 } 6145 6146 vfs_timestamp(&now); 6147 6148 /* set access time */ 6149 if (udf_node->i_flags & IN_ACCESS) { 6150 if (acc == NULL) 6151 acc = &now; 6152 udf_timespec_to_timestamp(acc, atime); 6153 } 6154 6155 /* set modification time */ 6156 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 6157 if (mod == NULL) 6158 mod = &now; 6159 udf_timespec_to_timestamp(mod, mtime); 6160 6161 /* ensure birthtime is older than set modification! */ 6162 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 6163 if ((cur_birth.tv_sec > mod->tv_sec) || 6164 ((cur_birth.tv_sec == mod->tv_sec) && 6165 (cur_birth.tv_nsec > mod->tv_nsec))) { 6166 udf_timespec_to_timestamp(mod, ctime); 6167 } 6168 } 6169 6170 /* update birthtime if specified */ 6171 /* XXX we assume here that given birthtime is older than mod */ 6172 if (birth && (birth->tv_sec != VNOVAL)) { 6173 udf_timespec_to_timestamp(birth, ctime); 6174 } 6175 6176 /* set change time */ 6177 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 6178 udf_timespec_to_timestamp(&now, attrtime); 6179 6180 /* notify updates to the node itself */ 6181 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 6182 udf_node->i_flags |= IN_ACCESSED; 6183 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 6184 udf_node->i_flags |= IN_MODIFIED; 6185 6186 /* clear modification flags */ 6187 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 6188 } 6189 6190 /* --------------------------------------------------------------------- */ 6191 6192 int 6193 udf_update(struct vnode *vp, struct timespec *acc, 6194 struct timespec *mod, struct timespec *birth, int updflags) 6195 { 6196 union dscrptr *dscrptr; 6197 struct udf_node *udf_node = VTOI(vp); 6198 struct udf_mount *ump = udf_node->ump; 6199 struct regid *impl_id; 6200 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 6201 int waitfor, flags; 6202 6203 #ifdef DEBUG 6204 char bits[128]; 6205 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 6206 updflags)); 6207 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 6208 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 6209 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 6210 #endif 6211 6212 /* set our times */ 6213 udf_itimes(udf_node, acc, mod, birth); 6214 6215 /* set our implementation id */ 6216 if (udf_node->fe) { 6217 dscrptr = (union dscrptr *) udf_node->fe; 6218 impl_id = &udf_node->fe->imp_id; 6219 } else { 6220 dscrptr = (union dscrptr *) udf_node->efe; 6221 impl_id = &udf_node->efe->imp_id; 6222 } 6223 6224 /* set our ID */ 6225 udf_set_regid(impl_id, IMPL_NAME); 6226 udf_add_impl_regid(ump, impl_id); 6227 6228 /* update our crc! on RMW we are not allowed to change a thing */ 6229 udf_validate_tag_and_crc_sums(dscrptr); 6230 6231 /* if called when mounted readonly, never write back */ 6232 if (vp->v_mount->mnt_flag & MNT_RDONLY) 6233 return 0; 6234 6235 /* check if the node is dirty 'enough'*/ 6236 if (updflags & UPDATE_CLOSE) { 6237 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6238 } else { 6239 flags = udf_node->i_flags & IN_MODIFIED; 6240 } 6241 if (flags == 0) 6242 return 0; 6243 6244 /* determine if we need to write sync or async */ 6245 waitfor = 0; 6246 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6247 /* sync mounted */ 6248 waitfor = updflags & UPDATE_WAIT; 6249 if (updflags & UPDATE_DIROP) 6250 waitfor |= UPDATE_WAIT; 6251 } 6252 if (waitfor) 6253 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6254 6255 return 0; 6256 } 6257 6258 6259 /* --------------------------------------------------------------------- */ 6260 6261 6262 /* 6263 * Read one fid and process it into a dirent and advance to the next (*fid) 6264 * has to be allocated a logical block in size, (*dirent) struct dirent length 6265 */ 6266 6267 int 6268 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6269 struct fileid_desc *fid, struct dirent *dirent) 6270 { 6271 struct udf_node *dir_node = VTOI(vp); 6272 struct udf_mount *ump = dir_node->ump; 6273 struct file_entry *fe = dir_node->fe; 6274 struct extfile_entry *efe = dir_node->efe; 6275 uint32_t fid_size, lb_size; 6276 uint64_t file_size; 6277 char *fid_name; 6278 int enough, error; 6279 6280 assert(fid); 6281 assert(dirent); 6282 assert(dir_node); 6283 assert(offset); 6284 assert(*offset != 1); 6285 6286 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6287 /* check if we're past the end of the directory */ 6288 if (fe) { 6289 file_size = udf_rw64(fe->inf_len); 6290 } else { 6291 assert(dir_node->efe); 6292 file_size = udf_rw64(efe->inf_len); 6293 } 6294 if (*offset >= file_size) 6295 return EINVAL; 6296 6297 /* get maximum length of FID descriptor */ 6298 lb_size = udf_rw32(ump->logical_vol->lb_size); 6299 6300 /* initialise return values */ 6301 fid_size = 0; 6302 memset(dirent, 0, sizeof(struct dirent)); 6303 memset(fid, 0, lb_size); 6304 6305 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6306 if (!enough) { 6307 /* short dir ... */ 6308 return EIO; 6309 } 6310 6311 error = vn_rdwr(UIO_READ, vp, 6312 fid, MIN(file_size - (*offset), lb_size), *offset, 6313 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6314 NULL, NULL); 6315 if (error) 6316 return error; 6317 6318 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6319 /* 6320 * Check if we got a whole descriptor. 6321 * TODO Try to `resync' directory stream when something is very wrong. 6322 */ 6323 6324 /* check if our FID header is OK */ 6325 error = udf_check_tag(fid); 6326 if (error) { 6327 goto brokendir; 6328 } 6329 DPRINTF(FIDS, ("\ttag check ok\n")); 6330 6331 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6332 error = EIO; 6333 goto brokendir; 6334 } 6335 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6336 6337 /* check for length */ 6338 fid_size = udf_fidsize(fid); 6339 enough = (file_size - (*offset) >= fid_size); 6340 if (!enough) { 6341 error = EIO; 6342 goto brokendir; 6343 } 6344 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6345 6346 /* check FID contents */ 6347 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6348 brokendir: 6349 if (error) { 6350 /* note that is sometimes a bit quick to report */ 6351 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6352 /* RESYNC? */ 6353 /* TODO: use udf_resync_fid_stream */ 6354 return EIO; 6355 } 6356 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6357 6358 /* we got a whole and valid descriptor! */ 6359 DPRINTF(FIDS, ("\tinterpret FID\n")); 6360 6361 /* create resulting dirent structure */ 6362 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6363 udf_to_unix_name(dirent->d_name, NAME_MAX, 6364 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6365 6366 /* '..' has no name, so provide one */ 6367 if (fid->file_char & UDF_FILE_CHAR_PAR) 6368 strcpy(dirent->d_name, ".."); 6369 6370 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ 6371 dirent->d_namlen = strlen(dirent->d_name); 6372 dirent->d_reclen = _DIRENT_SIZE(dirent); 6373 6374 /* 6375 * Note that its not worth trying to go for the filetypes now... its 6376 * too expensive too 6377 */ 6378 dirent->d_type = DT_UNKNOWN; 6379 6380 /* initial guess for filetype we can make */ 6381 if (fid->file_char & UDF_FILE_CHAR_DIR) 6382 dirent->d_type = DT_DIR; 6383 6384 /* advance */ 6385 *offset += fid_size; 6386 6387 return error; 6388 } 6389 6390 6391 /* --------------------------------------------------------------------- */ 6392 6393 static void 6394 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor, 6395 int pass, int *ndirty) 6396 { 6397 struct udf_node *udf_node, *n_udf_node; 6398 struct vnode *vp; 6399 int vdirty, error; 6400 int on_type, on_flags, on_vnode; 6401 6402 derailed: 6403 KASSERT(mutex_owned(&mntvnode_lock)); 6404 6405 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6406 udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6407 for (;udf_node; udf_node = n_udf_node) { 6408 DPRINTF(SYNC, (".")); 6409 6410 udf_node->i_flags &= ~IN_SYNCED; 6411 vp = udf_node->vnode; 6412 6413 mutex_enter(vp->v_interlock); 6414 n_udf_node = rb_tree_iterate(&ump->udf_node_tree, 6415 udf_node, RB_DIR_RIGHT); 6416 6417 if (n_udf_node) 6418 n_udf_node->i_flags |= IN_SYNCED; 6419 6420 /* system nodes are not synced this way */ 6421 if (vp->v_vflag & VV_SYSTEM) { 6422 mutex_exit(vp->v_interlock); 6423 continue; 6424 } 6425 6426 /* check if its dirty enough to even try */ 6427 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON); 6428 on_flags = ((udf_node->i_flags & 6429 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0); 6430 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd) 6431 && UVM_OBJ_IS_CLEAN(&vp->v_uobj); 6432 if (on_type || (on_flags || on_vnode)) { /* XXX */ 6433 /* not dirty (enough?) */ 6434 mutex_exit(vp->v_interlock); 6435 continue; 6436 } 6437 6438 mutex_exit(&mntvnode_lock); 6439 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT); 6440 if (error) { 6441 mutex_enter(&mntvnode_lock); 6442 if (error == ENOENT) 6443 goto derailed; 6444 *ndirty += 1; 6445 continue; 6446 } 6447 6448 switch (pass) { 6449 case 1: 6450 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6451 break; 6452 case 2: 6453 vdirty = vp->v_numoutput; 6454 if (vp->v_tag == VT_UDF) 6455 vdirty += udf_node->outstanding_bufs + 6456 udf_node->outstanding_nodedscr; 6457 if (vdirty == 0) 6458 VOP_FSYNC(vp, cred, 0,0,0); 6459 *ndirty += vdirty; 6460 break; 6461 case 3: 6462 vdirty = vp->v_numoutput; 6463 if (vp->v_tag == VT_UDF) 6464 vdirty += udf_node->outstanding_bufs + 6465 udf_node->outstanding_nodedscr; 6466 *ndirty += vdirty; 6467 break; 6468 } 6469 6470 vput(vp); 6471 mutex_enter(&mntvnode_lock); 6472 } 6473 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6474 } 6475 6476 6477 void 6478 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6479 { 6480 int dummy, ndirty; 6481 6482 mutex_enter(&mntvnode_lock); 6483 recount: 6484 dummy = 0; 6485 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6486 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6487 udf_sync_pass(ump, cred, waitfor, 1, &dummy); 6488 6489 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6490 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6491 udf_sync_pass(ump, cred, waitfor, 2, &dummy); 6492 6493 if (waitfor == MNT_WAIT) { 6494 ndirty = ump->devvp->v_numoutput; 6495 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6496 ndirty)); 6497 udf_sync_pass(ump, cred, waitfor, 3, &ndirty); 6498 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6499 ndirty)); 6500 6501 if (ndirty) { 6502 /* 1/4 second wait */ 6503 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 6504 hz/4); 6505 goto recount; 6506 } 6507 } 6508 6509 mutex_exit(&mntvnode_lock); 6510 } 6511 6512 /* --------------------------------------------------------------------- */ 6513 6514 /* 6515 * Read and write file extent in/from the buffer. 6516 * 6517 * The splitup of the extent into seperate request-buffers is to minimise 6518 * copying around as much as possible. 6519 * 6520 * block based file reading and writing 6521 */ 6522 6523 static int 6524 udf_read_internal(struct udf_node *node, uint8_t *blob) 6525 { 6526 struct udf_mount *ump; 6527 struct file_entry *fe = node->fe; 6528 struct extfile_entry *efe = node->efe; 6529 uint64_t inflen; 6530 uint32_t sector_size; 6531 uint8_t *pos; 6532 int icbflags, addr_type; 6533 6534 /* get extent and do some paranoia checks */ 6535 ump = node->ump; 6536 sector_size = ump->discinfo.sector_size; 6537 6538 if (fe) { 6539 inflen = udf_rw64(fe->inf_len); 6540 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6541 icbflags = udf_rw16(fe->icbtag.flags); 6542 } else { 6543 assert(node->efe); 6544 inflen = udf_rw64(efe->inf_len); 6545 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6546 icbflags = udf_rw16(efe->icbtag.flags); 6547 } 6548 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6549 6550 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6551 assert(inflen < sector_size); 6552 6553 /* copy out info */ 6554 memset(blob, 0, sector_size); 6555 memcpy(blob, pos, inflen); 6556 6557 return 0; 6558 } 6559 6560 6561 static int 6562 udf_write_internal(struct udf_node *node, uint8_t *blob) 6563 { 6564 struct udf_mount *ump; 6565 struct file_entry *fe = node->fe; 6566 struct extfile_entry *efe = node->efe; 6567 uint64_t inflen; 6568 uint32_t sector_size; 6569 uint8_t *pos; 6570 int icbflags, addr_type; 6571 6572 /* get extent and do some paranoia checks */ 6573 ump = node->ump; 6574 sector_size = ump->discinfo.sector_size; 6575 6576 if (fe) { 6577 inflen = udf_rw64(fe->inf_len); 6578 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6579 icbflags = udf_rw16(fe->icbtag.flags); 6580 } else { 6581 assert(node->efe); 6582 inflen = udf_rw64(efe->inf_len); 6583 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6584 icbflags = udf_rw16(efe->icbtag.flags); 6585 } 6586 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6587 6588 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6589 assert(inflen < sector_size); 6590 6591 /* copy in blob */ 6592 /* memset(pos, 0, inflen); */ 6593 memcpy(pos, blob, inflen); 6594 6595 return 0; 6596 } 6597 6598 6599 void 6600 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6601 { 6602 struct buf *nestbuf; 6603 struct udf_mount *ump = udf_node->ump; 6604 uint64_t *mapping; 6605 uint64_t run_start; 6606 uint32_t sector_size; 6607 uint32_t buf_offset, sector, rbuflen, rblk; 6608 uint32_t from, lblkno; 6609 uint32_t sectors; 6610 uint8_t *buf_pos; 6611 int error, run_length, what; 6612 6613 sector_size = udf_node->ump->discinfo.sector_size; 6614 6615 from = buf->b_blkno; 6616 sectors = buf->b_bcount / sector_size; 6617 6618 what = udf_get_c_type(udf_node); 6619 6620 /* assure we have enough translation slots */ 6621 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6622 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6623 6624 if (sectors > UDF_MAX_MAPPINGS) { 6625 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6626 buf->b_error = EIO; 6627 biodone(buf); 6628 return; 6629 } 6630 6631 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6632 6633 error = 0; 6634 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6635 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6636 if (error) { 6637 buf->b_error = error; 6638 biodone(buf); 6639 goto out; 6640 } 6641 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6642 6643 /* pre-check if its an internal */ 6644 if (*mapping == UDF_TRANS_INTERN) { 6645 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6646 if (error) 6647 buf->b_error = error; 6648 biodone(buf); 6649 goto out; 6650 } 6651 DPRINTF(READ, ("\tnot intern\n")); 6652 6653 #ifdef DEBUG 6654 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6655 printf("Returned translation table:\n"); 6656 for (sector = 0; sector < sectors; sector++) { 6657 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6658 } 6659 } 6660 #endif 6661 6662 /* request read-in of data from disc sheduler */ 6663 buf->b_resid = buf->b_bcount; 6664 for (sector = 0; sector < sectors; sector++) { 6665 buf_offset = sector * sector_size; 6666 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6667 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6668 6669 /* check if its zero or unmapped to stop reading */ 6670 switch (mapping[sector]) { 6671 case UDF_TRANS_UNMAPPED: 6672 case UDF_TRANS_ZERO: 6673 /* copy zero sector TODO runlength like below */ 6674 memset(buf_pos, 0, sector_size); 6675 DPRINTF(READ, ("\treturning zero sector\n")); 6676 nestiobuf_done(buf, sector_size, 0); 6677 break; 6678 default : 6679 DPRINTF(READ, ("\tread sector " 6680 "%"PRIu64"\n", mapping[sector])); 6681 6682 lblkno = from + sector; 6683 run_start = mapping[sector]; 6684 run_length = 1; 6685 while (sector < sectors-1) { 6686 if (mapping[sector+1] != mapping[sector]+1) 6687 break; 6688 run_length++; 6689 sector++; 6690 } 6691 6692 /* 6693 * nest an iobuf and mark it for async reading. Since 6694 * we're using nested buffers, they can't be cached by 6695 * design. 6696 */ 6697 rbuflen = run_length * sector_size; 6698 rblk = run_start * (sector_size/DEV_BSIZE); 6699 6700 nestbuf = getiobuf(NULL, true); 6701 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6702 /* nestbuf is B_ASYNC */ 6703 6704 /* identify this nestbuf */ 6705 nestbuf->b_lblkno = lblkno; 6706 assert(nestbuf->b_vp == udf_node->vnode); 6707 6708 /* CD shedules on raw blkno */ 6709 nestbuf->b_blkno = rblk; 6710 nestbuf->b_proc = NULL; 6711 nestbuf->b_rawblkno = rblk; 6712 nestbuf->b_udf_c_type = what; 6713 6714 udf_discstrat_queuebuf(ump, nestbuf); 6715 } 6716 } 6717 out: 6718 /* if we're synchronously reading, wait for the completion */ 6719 if ((buf->b_flags & B_ASYNC) == 0) 6720 biowait(buf); 6721 6722 DPRINTF(READ, ("\tend of read_filebuf\n")); 6723 free(mapping, M_TEMP); 6724 return; 6725 } 6726 6727 6728 void 6729 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6730 { 6731 struct buf *nestbuf; 6732 struct udf_mount *ump = udf_node->ump; 6733 uint64_t *mapping; 6734 uint64_t run_start; 6735 uint32_t lb_size; 6736 uint32_t buf_offset, lb_num, rbuflen, rblk; 6737 uint32_t from, lblkno; 6738 uint32_t num_lb; 6739 int error, run_length, what, s; 6740 6741 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6742 6743 from = buf->b_blkno; 6744 num_lb = buf->b_bcount / lb_size; 6745 6746 what = udf_get_c_type(udf_node); 6747 6748 /* assure we have enough translation slots */ 6749 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6750 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6751 6752 if (num_lb > UDF_MAX_MAPPINGS) { 6753 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6754 buf->b_error = EIO; 6755 biodone(buf); 6756 return; 6757 } 6758 6759 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6760 6761 error = 0; 6762 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6763 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6764 if (error) { 6765 buf->b_error = error; 6766 biodone(buf); 6767 goto out; 6768 } 6769 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6770 6771 /* if its internally mapped, we can write it in the descriptor itself */ 6772 if (*mapping == UDF_TRANS_INTERN) { 6773 /* TODO paranoia check if we ARE going to have enough space */ 6774 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6775 if (error) 6776 buf->b_error = error; 6777 biodone(buf); 6778 goto out; 6779 } 6780 DPRINTF(WRITE, ("\tnot intern\n")); 6781 6782 /* request write out of data to disc sheduler */ 6783 buf->b_resid = buf->b_bcount; 6784 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6785 buf_offset = lb_num * lb_size; 6786 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6787 6788 /* 6789 * Mappings are not that important here. Just before we write 6790 * the lb_num we late-allocate them when needed and update the 6791 * mapping in the udf_node. 6792 */ 6793 6794 /* XXX why not ignore the mapping altogether ? */ 6795 DPRINTF(WRITE, ("\twrite lb_num " 6796 "%"PRIu64, mapping[lb_num])); 6797 6798 lblkno = from + lb_num; 6799 run_start = mapping[lb_num]; 6800 run_length = 1; 6801 while (lb_num < num_lb-1) { 6802 if (mapping[lb_num+1] != mapping[lb_num]+1) 6803 if (mapping[lb_num+1] != mapping[lb_num]) 6804 break; 6805 run_length++; 6806 lb_num++; 6807 } 6808 DPRINTF(WRITE, ("+ %d\n", run_length)); 6809 6810 /* nest an iobuf on the master buffer for the extent */ 6811 rbuflen = run_length * lb_size; 6812 rblk = run_start * (lb_size/DEV_BSIZE); 6813 6814 nestbuf = getiobuf(NULL, true); 6815 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6816 /* nestbuf is B_ASYNC */ 6817 6818 /* identify this nestbuf */ 6819 nestbuf->b_lblkno = lblkno; 6820 KASSERT(nestbuf->b_vp == udf_node->vnode); 6821 6822 /* CD shedules on raw blkno */ 6823 nestbuf->b_blkno = rblk; 6824 nestbuf->b_proc = NULL; 6825 nestbuf->b_rawblkno = rblk; 6826 nestbuf->b_udf_c_type = what; 6827 6828 /* increment our outstanding bufs counter */ 6829 s = splbio(); 6830 udf_node->outstanding_bufs++; 6831 splx(s); 6832 6833 udf_discstrat_queuebuf(ump, nestbuf); 6834 } 6835 out: 6836 /* if we're synchronously writing, wait for the completion */ 6837 if ((buf->b_flags & B_ASYNC) == 0) 6838 biowait(buf); 6839 6840 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6841 free(mapping, M_TEMP); 6842 return; 6843 } 6844 6845 /* --------------------------------------------------------------------- */ 6846