1 /* $NetBSD: udf_subr.c,v 1.109 2010/12/22 12:38:42 reinoud Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.109 2010/12/22 12:38:42 reinoud Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref((vp)); \ 77 vput((vp)); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 struct partinfo dpart; 192 struct mmc_discinfo *di; 193 int error; 194 195 DPRINTF(VOLUMES, ("read/update disc info\n")); 196 di = &ump->discinfo; 197 memset(di, 0, sizeof(struct mmc_discinfo)); 198 199 /* check if we're on a MMC capable device, i.e. CD/DVD */ 200 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 201 if (error == 0) { 202 udf_dump_discinfo(ump); 203 return 0; 204 } 205 206 /* disc partition support */ 207 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED); 208 if (error) 209 return ENODEV; 210 211 /* set up a disc info profile for partitions */ 212 di->mmc_profile = 0x01; /* disc type */ 213 di->mmc_class = MMC_CLASS_DISC; 214 di->disc_state = MMC_STATE_CLOSED; 215 di->last_session_state = MMC_STATE_CLOSED; 216 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 217 di->link_block_penalty = 0; 218 219 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 220 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 221 di->mmc_cap = di->mmc_cur; 222 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 223 224 /* TODO problem with last_possible_lba on resizable VND; request */ 225 di->last_possible_lba = dpart.part->p_size; 226 di->sector_size = dpart.disklab->d_secsize; 227 228 di->num_sessions = 1; 229 di->num_tracks = 1; 230 231 di->first_track = 1; 232 di->first_track_last_session = di->last_track_last_session = 1; 233 234 udf_dump_discinfo(ump); 235 return 0; 236 } 237 238 239 int 240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 241 { 242 struct vnode *devvp = ump->devvp; 243 struct mmc_discinfo *di = &ump->discinfo; 244 int error, class; 245 246 DPRINTF(VOLUMES, ("read track info\n")); 247 248 class = di->mmc_class; 249 if (class != MMC_CLASS_DISC) { 250 /* tracknr specified in struct ti */ 251 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 252 return error; 253 } 254 255 /* disc partition support */ 256 if (ti->tracknr != 1) 257 return EIO; 258 259 /* create fake ti (TODO check for resized vnds) */ 260 ti->sessionnr = 1; 261 262 ti->track_mode = 0; /* XXX */ 263 ti->data_mode = 0; /* XXX */ 264 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 265 266 ti->track_start = 0; 267 ti->packet_size = 1; 268 269 /* TODO support for resizable vnd */ 270 ti->track_size = di->last_possible_lba; 271 ti->next_writable = di->last_possible_lba; 272 ti->last_recorded = ti->next_writable; 273 ti->free_blocks = 0; 274 275 return 0; 276 } 277 278 279 int 280 udf_setup_writeparams(struct udf_mount *ump) 281 { 282 struct mmc_writeparams mmc_writeparams; 283 int error; 284 285 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 286 return 0; 287 288 /* 289 * only CD burning normally needs setting up, but other disc types 290 * might need other settings to be made. The MMC framework will set up 291 * the nessisary recording parameters according to the disc 292 * characteristics read in. Modifications can be made in the discinfo 293 * structure passed to change the nature of the disc. 294 */ 295 296 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 297 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 298 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 299 300 /* 301 * UDF dictates first track to determine track mode for the whole 302 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 303 * To prevent problems with a `reserved' track in front we start with 304 * the 2nd track and if that is not valid, go for the 1st. 305 */ 306 mmc_writeparams.tracknr = 2; 307 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 308 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 309 310 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 311 FKIOCTL, NOCRED); 312 if (error) { 313 mmc_writeparams.tracknr = 1; 314 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 315 &mmc_writeparams, FKIOCTL, NOCRED); 316 } 317 return error; 318 } 319 320 321 int 322 udf_synchronise_caches(struct udf_mount *ump) 323 { 324 struct mmc_op mmc_op; 325 326 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 327 328 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 329 return 0; 330 331 /* discs are done now */ 332 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 333 return 0; 334 335 memset(&mmc_op, 0, sizeof(struct mmc_op)); 336 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 337 338 /* ignore return code */ 339 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 340 341 return 0; 342 } 343 344 /* --------------------------------------------------------------------- */ 345 346 /* track/session searching for mounting */ 347 int 348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 349 int *first_tracknr, int *last_tracknr) 350 { 351 struct mmc_trackinfo trackinfo; 352 uint32_t tracknr, start_track, num_tracks; 353 int error; 354 355 /* if negative, sessionnr is relative to last session */ 356 if (args->sessionnr < 0) { 357 args->sessionnr += ump->discinfo.num_sessions; 358 } 359 360 /* sanity */ 361 if (args->sessionnr < 0) 362 args->sessionnr = 0; 363 if (args->sessionnr > ump->discinfo.num_sessions) 364 args->sessionnr = ump->discinfo.num_sessions; 365 366 /* search the tracks for this session, zero session nr indicates last */ 367 if (args->sessionnr == 0) 368 args->sessionnr = ump->discinfo.num_sessions; 369 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 370 args->sessionnr--; 371 372 /* sanity again */ 373 if (args->sessionnr < 0) 374 args->sessionnr = 0; 375 376 /* search the first and last track of the specified session */ 377 num_tracks = ump->discinfo.num_tracks; 378 start_track = ump->discinfo.first_track; 379 380 /* search for first track of this session */ 381 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 382 /* get track info */ 383 trackinfo.tracknr = tracknr; 384 error = udf_update_trackinfo(ump, &trackinfo); 385 if (error) 386 return error; 387 388 if (trackinfo.sessionnr == args->sessionnr) 389 break; 390 } 391 *first_tracknr = tracknr; 392 393 /* search for last track of this session */ 394 for (;tracknr <= num_tracks; tracknr++) { 395 /* get track info */ 396 trackinfo.tracknr = tracknr; 397 error = udf_update_trackinfo(ump, &trackinfo); 398 if (error || (trackinfo.sessionnr != args->sessionnr)) { 399 tracknr--; 400 break; 401 } 402 } 403 if (tracknr > num_tracks) 404 tracknr--; 405 406 *last_tracknr = tracknr; 407 408 if (*last_tracknr < *first_tracknr) { 409 printf( "udf_search_tracks: sanity check on drive+disc failed, " 410 "drive returned garbage\n"); 411 return EINVAL; 412 } 413 414 assert(*last_tracknr >= *first_tracknr); 415 return 0; 416 } 417 418 419 /* 420 * NOTE: this is the only routine in this file that directly peeks into the 421 * metadata file but since its at a larval state of the mount it can't hurt. 422 * 423 * XXX candidate for udf_allocation.c 424 * XXX clean me up!, change to new node reading code. 425 */ 426 427 static void 428 udf_check_track_metadata_overlap(struct udf_mount *ump, 429 struct mmc_trackinfo *trackinfo) 430 { 431 struct part_desc *part; 432 struct file_entry *fe; 433 struct extfile_entry *efe; 434 struct short_ad *s_ad; 435 struct long_ad *l_ad; 436 uint32_t track_start, track_end; 437 uint32_t phys_part_start, phys_part_end, part_start, part_end; 438 uint32_t sector_size, len, alloclen, plb_num; 439 uint8_t *pos; 440 int addr_type, icblen, icbflags, flags; 441 442 /* get our track extents */ 443 track_start = trackinfo->track_start; 444 track_end = track_start + trackinfo->track_size; 445 446 /* get our base partition extent */ 447 KASSERT(ump->node_part == ump->fids_part); 448 part = ump->partitions[ump->node_part]; 449 phys_part_start = udf_rw32(part->start_loc); 450 phys_part_end = phys_part_start + udf_rw32(part->part_len); 451 452 /* no use if its outside the physical partition */ 453 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 454 return; 455 456 /* 457 * now follow all extents in the fe/efe to see if they refer to this 458 * track 459 */ 460 461 sector_size = ump->discinfo.sector_size; 462 463 /* XXX should we claim exclusive access to the metafile ? */ 464 /* TODO: move to new node read code */ 465 fe = ump->metadata_node->fe; 466 efe = ump->metadata_node->efe; 467 if (fe) { 468 alloclen = udf_rw32(fe->l_ad); 469 pos = &fe->data[0] + udf_rw32(fe->l_ea); 470 icbflags = udf_rw16(fe->icbtag.flags); 471 } else { 472 assert(efe); 473 alloclen = udf_rw32(efe->l_ad); 474 pos = &efe->data[0] + udf_rw32(efe->l_ea); 475 icbflags = udf_rw16(efe->icbtag.flags); 476 } 477 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 478 479 while (alloclen) { 480 if (addr_type == UDF_ICB_SHORT_ALLOC) { 481 icblen = sizeof(struct short_ad); 482 s_ad = (struct short_ad *) pos; 483 len = udf_rw32(s_ad->len); 484 plb_num = udf_rw32(s_ad->lb_num); 485 } else { 486 /* should not be present, but why not */ 487 icblen = sizeof(struct long_ad); 488 l_ad = (struct long_ad *) pos; 489 len = udf_rw32(l_ad->len); 490 plb_num = udf_rw32(l_ad->loc.lb_num); 491 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 492 } 493 /* process extent */ 494 flags = UDF_EXT_FLAGS(len); 495 len = UDF_EXT_LEN(len); 496 497 part_start = phys_part_start + plb_num; 498 part_end = part_start + (len / sector_size); 499 500 if ((part_start >= track_start) && (part_end <= track_end)) { 501 /* extent is enclosed within this track */ 502 ump->metadata_track = *trackinfo; 503 return; 504 } 505 506 pos += icblen; 507 alloclen -= icblen; 508 } 509 } 510 511 512 int 513 udf_search_writing_tracks(struct udf_mount *ump) 514 { 515 struct vnode *devvp = ump->devvp; 516 struct mmc_trackinfo trackinfo; 517 struct mmc_op mmc_op; 518 struct part_desc *part; 519 uint32_t tracknr, start_track, num_tracks; 520 uint32_t track_start, track_end, part_start, part_end; 521 int node_alloc, error; 522 523 /* 524 * in the CD/(HD)DVD/BD recordable device model a few tracks within 525 * the last session might be open but in the UDF device model at most 526 * three tracks can be open: a reserved track for delayed ISO VRS 527 * writing, a data track and a metadata track. We search here for the 528 * data track and the metadata track. Note that the reserved track is 529 * troublesome but can be detected by its small size of < 512 sectors. 530 */ 531 532 /* update discinfo since it might have changed */ 533 error = udf_update_discinfo(ump); 534 if (error) 535 return error; 536 537 num_tracks = ump->discinfo.num_tracks; 538 start_track = ump->discinfo.first_track; 539 540 /* fetch info on first and possibly only track */ 541 trackinfo.tracknr = start_track; 542 error = udf_update_trackinfo(ump, &trackinfo); 543 if (error) 544 return error; 545 546 /* copy results to our mount point */ 547 ump->data_track = trackinfo; 548 ump->metadata_track = trackinfo; 549 550 /* if not sequential, we're done */ 551 if (num_tracks == 1) 552 return 0; 553 554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 555 /* get track info */ 556 trackinfo.tracknr = tracknr; 557 error = udf_update_trackinfo(ump, &trackinfo); 558 if (error) 559 return error; 560 561 /* 562 * If this track is marked damaged, ask for repair. This is an 563 * optional command, so ignore its error but report warning. 564 */ 565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 566 memset(&mmc_op, 0, sizeof(mmc_op)); 567 mmc_op.operation = MMC_OP_REPAIRTRACK; 568 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 569 mmc_op.tracknr = tracknr; 570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 571 if (error) 572 (void)printf("Drive can't explicitly repair " 573 "damaged track %d, but it might " 574 "autorepair\n", tracknr); 575 576 /* reget track info */ 577 error = udf_update_trackinfo(ump, &trackinfo); 578 if (error) 579 return error; 580 } 581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 582 continue; 583 584 track_start = trackinfo.track_start; 585 track_end = track_start + trackinfo.track_size; 586 587 /* check for overlap on data partition */ 588 part = ump->partitions[ump->data_part]; 589 part_start = udf_rw32(part->start_loc); 590 part_end = part_start + udf_rw32(part->part_len); 591 if ((part_start < track_end) && (part_end > track_start)) { 592 ump->data_track = trackinfo; 593 /* TODO check if UDF partition data_part is writable */ 594 } 595 596 /* check for overlap on metadata partition */ 597 node_alloc = ump->vtop_alloc[ump->node_part]; 598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 599 (node_alloc == UDF_ALLOC_METABITMAP)) { 600 udf_check_track_metadata_overlap(ump, &trackinfo); 601 } else { 602 ump->metadata_track = trackinfo; 603 } 604 } 605 606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 607 return EROFS; 608 609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 610 return EROFS; 611 612 return 0; 613 } 614 615 /* --------------------------------------------------------------------- */ 616 617 /* 618 * Check if the blob starts with a good UDF tag. Tags are protected by a 619 * checksum over the reader except one byte at position 4 that is the checksum 620 * itself. 621 */ 622 623 int 624 udf_check_tag(void *blob) 625 { 626 struct desc_tag *tag = blob; 627 uint8_t *pos, sum, cnt; 628 629 /* check TAG header checksum */ 630 pos = (uint8_t *) tag; 631 sum = 0; 632 633 for(cnt = 0; cnt < 16; cnt++) { 634 if (cnt != 4) 635 sum += *pos; 636 pos++; 637 } 638 if (sum != tag->cksum) { 639 /* bad tag header checksum; this is not a valid tag */ 640 return EINVAL; 641 } 642 643 return 0; 644 } 645 646 647 /* 648 * check tag payload will check descriptor CRC as specified. 649 * If the descriptor is too long, it will return EIO otherwise EINVAL. 650 */ 651 652 int 653 udf_check_tag_payload(void *blob, uint32_t max_length) 654 { 655 struct desc_tag *tag = blob; 656 uint16_t crc, crc_len; 657 658 crc_len = udf_rw16(tag->desc_crc_len); 659 660 /* check payload CRC if applicable */ 661 if (crc_len == 0) 662 return 0; 663 664 if (crc_len > max_length) 665 return EIO; 666 667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 668 if (crc != udf_rw16(tag->desc_crc)) { 669 /* bad payload CRC; this is a broken tag */ 670 return EINVAL; 671 } 672 673 return 0; 674 } 675 676 677 void 678 udf_validate_tag_sum(void *blob) 679 { 680 struct desc_tag *tag = blob; 681 uint8_t *pos, sum, cnt; 682 683 /* calculate TAG header checksum */ 684 pos = (uint8_t *) tag; 685 sum = 0; 686 687 for(cnt = 0; cnt < 16; cnt++) { 688 if (cnt != 4) sum += *pos; 689 pos++; 690 } 691 tag->cksum = sum; /* 8 bit */ 692 } 693 694 695 /* assumes sector number of descriptor to be saved already present */ 696 void 697 udf_validate_tag_and_crc_sums(void *blob) 698 { 699 struct desc_tag *tag = blob; 700 uint8_t *btag = (uint8_t *) tag; 701 uint16_t crc, crc_len; 702 703 crc_len = udf_rw16(tag->desc_crc_len); 704 705 /* check payload CRC if applicable */ 706 if (crc_len > 0) { 707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 708 tag->desc_crc = udf_rw16(crc); 709 } 710 711 /* calculate TAG header checksum */ 712 udf_validate_tag_sum(blob); 713 } 714 715 /* --------------------------------------------------------------------- */ 716 717 /* 718 * XXX note the different semantics from udfclient: for FIDs it still rounds 719 * up to sectors. Use udf_fidsize() for a correct length. 720 */ 721 722 int 723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 724 { 725 uint32_t size, tag_id, num_lb, elmsz; 726 727 tag_id = udf_rw16(dscr->tag.id); 728 729 switch (tag_id) { 730 case TAGID_LOGVOL : 731 size = sizeof(struct logvol_desc) - 1; 732 size += udf_rw32(dscr->lvd.mt_l); 733 break; 734 case TAGID_UNALLOC_SPACE : 735 elmsz = sizeof(struct extent_ad); 736 size = sizeof(struct unalloc_sp_desc) - elmsz; 737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 738 break; 739 case TAGID_FID : 740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 741 size = (size + 3) & ~3; 742 break; 743 case TAGID_LOGVOL_INTEGRITY : 744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 745 size += udf_rw32(dscr->lvid.l_iu); 746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 747 break; 748 case TAGID_SPACE_BITMAP : 749 size = sizeof(struct space_bitmap_desc) - 1; 750 size += udf_rw32(dscr->sbd.num_bytes); 751 break; 752 case TAGID_SPARING_TABLE : 753 elmsz = sizeof(struct spare_map_entry); 754 size = sizeof(struct udf_sparing_table) - elmsz; 755 size += udf_rw16(dscr->spt.rt_l) * elmsz; 756 break; 757 case TAGID_FENTRY : 758 size = sizeof(struct file_entry); 759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 760 break; 761 case TAGID_EXTFENTRY : 762 size = sizeof(struct extfile_entry); 763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 764 break; 765 case TAGID_FSD : 766 size = sizeof(struct fileset_desc); 767 break; 768 default : 769 size = sizeof(union dscrptr); 770 break; 771 } 772 773 if ((size == 0) || (lb_size == 0)) 774 return 0; 775 776 if (lb_size == 1) 777 return size; 778 779 /* round up in sectors */ 780 num_lb = (size + lb_size -1) / lb_size; 781 return num_lb * lb_size; 782 } 783 784 785 int 786 udf_fidsize(struct fileid_desc *fid) 787 { 788 uint32_t size; 789 790 if (udf_rw16(fid->tag.id) != TAGID_FID) 791 panic("got udf_fidsize on non FID\n"); 792 793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 794 size = (size + 3) & ~3; 795 796 return size; 797 } 798 799 /* --------------------------------------------------------------------- */ 800 801 void 802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 803 { 804 int ret; 805 806 mutex_enter(&udf_node->node_mutex); 807 /* wait until free */ 808 while (udf_node->i_flags & IN_LOCKED) { 809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 810 /* TODO check if we should return error; abort */ 811 if (ret == EWOULDBLOCK) { 812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 813 "wanted at %s:%d, previously locked at %s:%d\n", 814 udf_node, fname, lineno, 815 udf_node->lock_fname, udf_node->lock_lineno)); 816 } 817 } 818 /* grab */ 819 udf_node->i_flags |= IN_LOCKED | flag; 820 /* debug */ 821 udf_node->lock_fname = fname; 822 udf_node->lock_lineno = lineno; 823 824 mutex_exit(&udf_node->node_mutex); 825 } 826 827 828 void 829 udf_unlock_node(struct udf_node *udf_node, int flag) 830 { 831 mutex_enter(&udf_node->node_mutex); 832 udf_node->i_flags &= ~(IN_LOCKED | flag); 833 cv_broadcast(&udf_node->node_lock); 834 mutex_exit(&udf_node->node_mutex); 835 } 836 837 838 /* --------------------------------------------------------------------- */ 839 840 static int 841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 842 { 843 int error; 844 845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 846 (union dscrptr **) dst); 847 if (!error) { 848 /* blank terminator blocks are not allowed here */ 849 if (*dst == NULL) 850 return ENOENT; 851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 852 error = ENOENT; 853 free(*dst, M_UDFVOLD); 854 *dst = NULL; 855 DPRINTF(VOLUMES, ("Not an anchor\n")); 856 } 857 } 858 859 return error; 860 } 861 862 863 int 864 udf_read_anchors(struct udf_mount *ump) 865 { 866 struct udf_args *args = &ump->mount_args; 867 struct mmc_trackinfo first_track; 868 struct mmc_trackinfo second_track; 869 struct mmc_trackinfo last_track; 870 struct anchor_vdp **anchorsp; 871 uint32_t track_start; 872 uint32_t track_end; 873 uint32_t positions[4]; 874 int first_tracknr, last_tracknr; 875 int error, anch, ok, first_anchor; 876 877 /* search the first and last track of the specified session */ 878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 879 if (!error) { 880 first_track.tracknr = first_tracknr; 881 error = udf_update_trackinfo(ump, &first_track); 882 } 883 if (!error) { 884 last_track.tracknr = last_tracknr; 885 error = udf_update_trackinfo(ump, &last_track); 886 } 887 if ((!error) && (first_tracknr != last_tracknr)) { 888 second_track.tracknr = first_tracknr+1; 889 error = udf_update_trackinfo(ump, &second_track); 890 } 891 if (error) { 892 printf("UDF mount: reading disc geometry failed\n"); 893 return 0; 894 } 895 896 track_start = first_track.track_start; 897 898 /* `end' is not as straitforward as start. */ 899 track_end = last_track.track_start 900 + last_track.track_size - last_track.free_blocks - 1; 901 902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 903 /* end of track is not straitforward here */ 904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 905 track_end = last_track.last_recorded; 906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 907 track_end = last_track.next_writable 908 - ump->discinfo.link_block_penalty; 909 } 910 911 /* its no use reading a blank track */ 912 first_anchor = 0; 913 if (first_track.flags & MMC_TRACKINFO_BLANK) 914 first_anchor = 1; 915 916 /* get our packet size */ 917 ump->packet_size = first_track.packet_size; 918 if (first_track.flags & MMC_TRACKINFO_BLANK) 919 ump->packet_size = second_track.packet_size; 920 921 if (ump->packet_size <= 1) { 922 /* take max, but not bigger than 64 */ 923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 924 ump->packet_size = MIN(ump->packet_size, 64); 925 } 926 KASSERT(ump->packet_size >= 1); 927 928 /* read anchors start+256, start+512, end-256, end */ 929 positions[0] = track_start+256; 930 positions[1] = track_end-256; 931 positions[2] = track_end; 932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 934 935 ok = 0; 936 anchorsp = ump->anchors; 937 for (anch = first_anchor; anch < 4; anch++) { 938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 939 positions[anch])); 940 error = udf_read_anchor(ump, positions[anch], anchorsp); 941 if (!error) { 942 anchorsp++; 943 ok++; 944 } 945 } 946 947 /* VATs are only recorded on sequential media, but initialise */ 948 ump->first_possible_vat_location = track_start + 2; 949 ump->last_possible_vat_location = track_end + last_track.packet_size; 950 951 return ok; 952 } 953 954 /* --------------------------------------------------------------------- */ 955 956 int 957 udf_get_c_type(struct udf_node *udf_node) 958 { 959 int isdir, what; 960 961 isdir = (udf_node->vnode->v_type == VDIR); 962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 963 964 if (udf_node->ump) 965 if (udf_node == udf_node->ump->metadatabitmap_node) 966 what = UDF_C_METADATA_SBM; 967 968 return what; 969 } 970 971 972 int 973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) 974 { 975 int vpart_num; 976 977 vpart_num = ump->data_part; 978 if (udf_c_type == UDF_C_NODE) 979 vpart_num = ump->node_part; 980 if (udf_c_type == UDF_C_FIDS) 981 vpart_num = ump->fids_part; 982 983 return vpart_num; 984 } 985 986 /* --------------------------------------------------------------------- */ 987 988 /* we dont try to be smart; we just record the parts */ 989 #define UDF_UPDATE_DSCR(name, dscr) \ 990 if (name) \ 991 free(name, M_UDFVOLD); \ 992 name = dscr; 993 994 static int 995 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 996 { 997 struct part_desc *part; 998 uint16_t phys_part, raw_phys_part; 999 1000 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 1001 udf_rw16(dscr->tag.id))); 1002 switch (udf_rw16(dscr->tag.id)) { 1003 case TAGID_PRI_VOL : /* primary partition */ 1004 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 1005 break; 1006 case TAGID_LOGVOL : /* logical volume */ 1007 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 1008 break; 1009 case TAGID_UNALLOC_SPACE : /* unallocated space */ 1010 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 1011 break; 1012 case TAGID_IMP_VOL : /* implementation */ 1013 /* XXX do we care about multiple impl. descr ? */ 1014 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 1015 break; 1016 case TAGID_PARTITION : /* physical partition */ 1017 /* not much use if its not allocated */ 1018 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 1019 free(dscr, M_UDFVOLD); 1020 break; 1021 } 1022 1023 /* 1024 * BUGALERT: some rogue implementations use random physical 1025 * partition numbers to break other implementations so lookup 1026 * the number. 1027 */ 1028 raw_phys_part = udf_rw16(dscr->pd.part_num); 1029 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1030 part = ump->partitions[phys_part]; 1031 if (part == NULL) 1032 break; 1033 if (udf_rw16(part->part_num) == raw_phys_part) 1034 break; 1035 } 1036 if (phys_part == UDF_PARTITIONS) { 1037 free(dscr, M_UDFVOLD); 1038 return EINVAL; 1039 } 1040 1041 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1042 break; 1043 case TAGID_VOL : /* volume space extender; rare */ 1044 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1045 free(dscr, M_UDFVOLD); 1046 break; 1047 default : 1048 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1049 udf_rw16(dscr->tag.id))); 1050 free(dscr, M_UDFVOLD); 1051 } 1052 1053 return 0; 1054 } 1055 #undef UDF_UPDATE_DSCR 1056 1057 /* --------------------------------------------------------------------- */ 1058 1059 static int 1060 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1061 { 1062 union dscrptr *dscr; 1063 uint32_t sector_size, dscr_size; 1064 int error; 1065 1066 sector_size = ump->discinfo.sector_size; 1067 1068 /* loc is sectornr, len is in bytes */ 1069 error = EIO; 1070 while (len) { 1071 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1072 if (error) 1073 return error; 1074 1075 /* blank block is a terminator */ 1076 if (dscr == NULL) 1077 return 0; 1078 1079 /* TERM descriptor is a terminator */ 1080 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1081 free(dscr, M_UDFVOLD); 1082 return 0; 1083 } 1084 1085 /* process all others */ 1086 dscr_size = udf_tagsize(dscr, sector_size); 1087 error = udf_process_vds_descriptor(ump, dscr); 1088 if (error) { 1089 free(dscr, M_UDFVOLD); 1090 break; 1091 } 1092 assert((dscr_size % sector_size) == 0); 1093 1094 len -= dscr_size; 1095 loc += dscr_size / sector_size; 1096 } 1097 1098 return error; 1099 } 1100 1101 1102 int 1103 udf_read_vds_space(struct udf_mount *ump) 1104 { 1105 /* struct udf_args *args = &ump->mount_args; */ 1106 struct anchor_vdp *anchor, *anchor2; 1107 size_t size; 1108 uint32_t main_loc, main_len; 1109 uint32_t reserve_loc, reserve_len; 1110 int error; 1111 1112 /* 1113 * read in VDS space provided by the anchors; if one descriptor read 1114 * fails, try the mirror sector. 1115 * 1116 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1117 * avoids the `compatibility features' of DirectCD that may confuse 1118 * stuff completely. 1119 */ 1120 1121 anchor = ump->anchors[0]; 1122 anchor2 = ump->anchors[1]; 1123 assert(anchor); 1124 1125 if (anchor2) { 1126 size = sizeof(struct extent_ad); 1127 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1128 anchor = anchor2; 1129 /* reserve is specified to be a literal copy of main */ 1130 } 1131 1132 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1133 main_len = udf_rw32(anchor->main_vds_ex.len); 1134 1135 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1136 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1137 1138 error = udf_read_vds_extent(ump, main_loc, main_len); 1139 if (error) { 1140 printf("UDF mount: reading in reserve VDS extent\n"); 1141 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1142 } 1143 1144 return error; 1145 } 1146 1147 /* --------------------------------------------------------------------- */ 1148 1149 /* 1150 * Read in the logical volume integrity sequence pointed to by our logical 1151 * volume descriptor. Its a sequence that can be extended using fields in the 1152 * integrity descriptor itself. On sequential media only one is found, on 1153 * rewritable media a sequence of descriptors can be found as a form of 1154 * history keeping and on non sequential write-once media the chain is vital 1155 * to allow more and more descriptors to be written. The last descriptor 1156 * written in an extent needs to claim space for a new extent. 1157 */ 1158 1159 static int 1160 udf_retrieve_lvint(struct udf_mount *ump) 1161 { 1162 union dscrptr *dscr; 1163 struct logvol_int_desc *lvint; 1164 struct udf_lvintq *trace; 1165 uint32_t lb_size, lbnum, len; 1166 int dscr_type, error, trace_len; 1167 1168 lb_size = udf_rw32(ump->logical_vol->lb_size); 1169 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1170 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1171 1172 /* clean trace */ 1173 memset(ump->lvint_trace, 0, 1174 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1175 1176 trace_len = 0; 1177 trace = ump->lvint_trace; 1178 trace->start = lbnum; 1179 trace->end = lbnum + len/lb_size; 1180 trace->pos = 0; 1181 trace->wpos = 0; 1182 1183 lvint = NULL; 1184 dscr = NULL; 1185 error = 0; 1186 while (len) { 1187 trace->pos = lbnum - trace->start; 1188 trace->wpos = trace->pos + 1; 1189 1190 /* read in our integrity descriptor */ 1191 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1192 if (!error) { 1193 if (dscr == NULL) { 1194 trace->wpos = trace->pos; 1195 break; /* empty terminates */ 1196 } 1197 dscr_type = udf_rw16(dscr->tag.id); 1198 if (dscr_type == TAGID_TERM) { 1199 trace->wpos = trace->pos; 1200 break; /* clean terminator */ 1201 } 1202 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1203 /* fatal... corrupt disc */ 1204 error = ENOENT; 1205 break; 1206 } 1207 if (lvint) 1208 free(lvint, M_UDFVOLD); 1209 lvint = &dscr->lvid; 1210 dscr = NULL; 1211 } /* else hope for the best... maybe the next is ok */ 1212 1213 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1214 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1215 1216 /* proceed sequential */ 1217 lbnum += 1; 1218 len -= lb_size; 1219 1220 /* are we linking to a new piece? */ 1221 if (dscr && lvint->next_extent.len) { 1222 len = udf_rw32(lvint->next_extent.len); 1223 lbnum = udf_rw32(lvint->next_extent.loc); 1224 1225 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1226 /* IEK! segment link full... */ 1227 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1228 error = EINVAL; 1229 } else { 1230 trace++; 1231 trace_len++; 1232 1233 trace->start = lbnum; 1234 trace->end = lbnum + len/lb_size; 1235 trace->pos = 0; 1236 trace->wpos = 0; 1237 } 1238 } 1239 } 1240 1241 /* clean up the mess, esp. when there is an error */ 1242 if (dscr) 1243 free(dscr, M_UDFVOLD); 1244 1245 if (error && lvint) { 1246 free(lvint, M_UDFVOLD); 1247 lvint = NULL; 1248 } 1249 1250 if (!lvint) 1251 error = ENOENT; 1252 1253 ump->logvol_integrity = lvint; 1254 return error; 1255 } 1256 1257 1258 static int 1259 udf_loose_lvint_history(struct udf_mount *ump) 1260 { 1261 union dscrptr **bufs, *dscr, *last_dscr; 1262 struct udf_lvintq *trace, *in_trace, *out_trace; 1263 struct logvol_int_desc *lvint; 1264 uint32_t in_ext, in_pos, in_len; 1265 uint32_t out_ext, out_wpos, out_len; 1266 uint32_t lb_size, packet_size, lb_num; 1267 uint32_t len, start; 1268 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1269 int losing; 1270 int error; 1271 1272 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1273 1274 lb_size = udf_rw32(ump->logical_vol->lb_size); 1275 packet_size = ump->data_track.packet_size; /* XXX data track */ 1276 1277 /* search smallest extent */ 1278 trace = &ump->lvint_trace[0]; 1279 minext = trace->end - trace->start; 1280 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1281 trace = &ump->lvint_trace[ext]; 1282 extlen = trace->end - trace->start; 1283 if (extlen == 0) 1284 break; 1285 minext = MIN(minext, extlen); 1286 } 1287 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1288 /* no sense wiping all */ 1289 if (losing == minext) 1290 losing--; 1291 1292 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1293 1294 /* get buffer for pieces */ 1295 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1296 1297 in_ext = 0; 1298 in_pos = losing; 1299 in_trace = &ump->lvint_trace[in_ext]; 1300 in_len = in_trace->end - in_trace->start; 1301 out_ext = 0; 1302 out_wpos = 0; 1303 out_trace = &ump->lvint_trace[out_ext]; 1304 out_len = out_trace->end - out_trace->start; 1305 1306 last_dscr = NULL; 1307 for(;;) { 1308 out_trace->pos = out_wpos; 1309 out_trace->wpos = out_trace->pos; 1310 if (in_pos >= in_len) { 1311 in_ext++; 1312 in_pos = 0; 1313 in_trace = &ump->lvint_trace[in_ext]; 1314 in_len = in_trace->end - in_trace->start; 1315 } 1316 if (out_wpos >= out_len) { 1317 out_ext++; 1318 out_wpos = 0; 1319 out_trace = &ump->lvint_trace[out_ext]; 1320 out_len = out_trace->end - out_trace->start; 1321 } 1322 /* copy overlap contents */ 1323 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1324 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1325 if (cpy_len == 0) 1326 break; 1327 1328 /* copy */ 1329 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1330 for (cnt = 0; cnt < cpy_len; cnt++) { 1331 /* read in our integrity descriptor */ 1332 lb_num = in_trace->start + in_pos + cnt; 1333 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1334 &dscr); 1335 if (error) { 1336 /* copy last one */ 1337 dscr = last_dscr; 1338 } 1339 bufs[cnt] = dscr; 1340 if (!error) { 1341 if (dscr == NULL) { 1342 out_trace->pos = out_wpos + cnt; 1343 out_trace->wpos = out_trace->pos; 1344 break; /* empty terminates */ 1345 } 1346 dscr_type = udf_rw16(dscr->tag.id); 1347 if (dscr_type == TAGID_TERM) { 1348 out_trace->pos = out_wpos + cnt; 1349 out_trace->wpos = out_trace->pos; 1350 break; /* clean terminator */ 1351 } 1352 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1353 panic( "UDF integrity sequence " 1354 "corrupted while mounted!\n"); 1355 } 1356 last_dscr = dscr; 1357 } 1358 } 1359 1360 /* patch up if first entry was on error */ 1361 if (bufs[0] == NULL) { 1362 for (cnt = 0; cnt < cpy_len; cnt++) 1363 if (bufs[cnt] != NULL) 1364 break; 1365 last_dscr = bufs[cnt]; 1366 for (; cnt > 0; cnt--) { 1367 bufs[cnt] = last_dscr; 1368 } 1369 } 1370 1371 /* glue + write out */ 1372 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1373 for (cnt = 0; cnt < cpy_len; cnt++) { 1374 lb_num = out_trace->start + out_wpos + cnt; 1375 lvint = &bufs[cnt]->lvid; 1376 1377 /* set continuation */ 1378 len = 0; 1379 start = 0; 1380 if (out_wpos + cnt == out_len) { 1381 /* get continuation */ 1382 trace = &ump->lvint_trace[out_ext+1]; 1383 len = trace->end - trace->start; 1384 start = trace->start; 1385 } 1386 lvint->next_extent.len = udf_rw32(len); 1387 lvint->next_extent.loc = udf_rw32(start); 1388 1389 lb_num = trace->start + trace->wpos; 1390 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1391 bufs[cnt], lb_num, lb_num); 1392 DPRINTFIF(VOLUMES, error, 1393 ("error writing lvint lb_num\n")); 1394 } 1395 1396 /* free non repeating descriptors */ 1397 last_dscr = NULL; 1398 for (cnt = 0; cnt < cpy_len; cnt++) { 1399 if (bufs[cnt] != last_dscr) 1400 free(bufs[cnt], M_UDFVOLD); 1401 last_dscr = bufs[cnt]; 1402 } 1403 1404 /* advance */ 1405 in_pos += cpy_len; 1406 out_wpos += cpy_len; 1407 } 1408 1409 free(bufs, M_TEMP); 1410 1411 return 0; 1412 } 1413 1414 1415 static int 1416 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1417 { 1418 struct udf_lvintq *trace; 1419 struct timeval now_v; 1420 struct timespec now_s; 1421 uint32_t sector; 1422 int logvol_integrity; 1423 int space, error; 1424 1425 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1426 1427 again: 1428 /* get free space in last chunk */ 1429 trace = ump->lvint_trace; 1430 while (trace->wpos > (trace->end - trace->start)) { 1431 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1432 "wpos = %d\n", trace->start, trace->end, 1433 trace->pos, trace->wpos)); 1434 trace++; 1435 } 1436 1437 /* check if there is space to append */ 1438 space = (trace->end - trace->start) - trace->wpos; 1439 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1440 "space = %d\n", trace->start, trace->end, trace->pos, 1441 trace->wpos, space)); 1442 1443 /* get state */ 1444 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1445 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1446 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1447 /* don't allow this logvol to be opened */ 1448 /* TODO extent LVINT space if possible */ 1449 return EROFS; 1450 } 1451 } 1452 1453 if (space < 1) { 1454 if (lvflag & UDF_APPENDONLY_LVINT) 1455 return EROFS; 1456 /* loose history by re-writing extents */ 1457 error = udf_loose_lvint_history(ump); 1458 if (error) 1459 return error; 1460 goto again; 1461 } 1462 1463 /* update our integrity descriptor to identify us and timestamp it */ 1464 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1465 microtime(&now_v); 1466 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1467 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1468 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1469 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1470 1471 /* writeout integrity descriptor */ 1472 sector = trace->start + trace->wpos; 1473 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1474 (union dscrptr *) ump->logvol_integrity, 1475 sector, sector); 1476 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1477 if (error) 1478 return error; 1479 1480 /* advance write position */ 1481 trace->wpos++; space--; 1482 if (space >= 1) { 1483 /* append terminator */ 1484 sector = trace->start + trace->wpos; 1485 error = udf_write_terminator(ump, sector); 1486 1487 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1488 } 1489 1490 space = (trace->end - trace->start) - trace->wpos; 1491 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1492 "space = %d\n", trace->start, trace->end, trace->pos, 1493 trace->wpos, space)); 1494 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1495 "successfull\n")); 1496 1497 return error; 1498 } 1499 1500 /* --------------------------------------------------------------------- */ 1501 1502 static int 1503 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1504 { 1505 union dscrptr *dscr; 1506 /* struct udf_args *args = &ump->mount_args; */ 1507 struct part_desc *partd; 1508 struct part_hdr_desc *parthdr; 1509 struct udf_bitmap *bitmap; 1510 uint32_t phys_part; 1511 uint32_t lb_num, len; 1512 int error, dscr_type; 1513 1514 /* unallocated space map */ 1515 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1516 partd = ump->partitions[phys_part]; 1517 if (partd == NULL) 1518 continue; 1519 parthdr = &partd->_impl_use.part_hdr; 1520 1521 lb_num = udf_rw32(partd->start_loc); 1522 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1523 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1524 if (len == 0) 1525 continue; 1526 1527 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1528 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1529 if (!error && dscr) { 1530 /* analyse */ 1531 dscr_type = udf_rw16(dscr->tag.id); 1532 if (dscr_type == TAGID_SPACE_BITMAP) { 1533 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1534 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1535 1536 /* fill in ump->part_unalloc_bits */ 1537 bitmap = &ump->part_unalloc_bits[phys_part]; 1538 bitmap->blob = (uint8_t *) dscr; 1539 bitmap->bits = dscr->sbd.data; 1540 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1541 bitmap->pages = NULL; /* TODO */ 1542 bitmap->data_pos = 0; 1543 bitmap->metadata_pos = 0; 1544 } else { 1545 free(dscr, M_UDFVOLD); 1546 1547 printf( "UDF mount: error reading unallocated " 1548 "space bitmap\n"); 1549 return EROFS; 1550 } 1551 } else { 1552 /* blank not allowed */ 1553 printf("UDF mount: blank unallocated space bitmap\n"); 1554 return EROFS; 1555 } 1556 } 1557 1558 /* unallocated space table (not supported) */ 1559 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1560 partd = ump->partitions[phys_part]; 1561 if (partd == NULL) 1562 continue; 1563 parthdr = &partd->_impl_use.part_hdr; 1564 1565 len = udf_rw32(parthdr->unalloc_space_table.len); 1566 if (len) { 1567 printf("UDF mount: space tables not supported\n"); 1568 return EROFS; 1569 } 1570 } 1571 1572 /* freed space map */ 1573 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1574 partd = ump->partitions[phys_part]; 1575 if (partd == NULL) 1576 continue; 1577 parthdr = &partd->_impl_use.part_hdr; 1578 1579 /* freed space map */ 1580 lb_num = udf_rw32(partd->start_loc); 1581 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1582 len = udf_rw32(parthdr->freed_space_bitmap.len); 1583 if (len == 0) 1584 continue; 1585 1586 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1587 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1588 if (!error && dscr) { 1589 /* analyse */ 1590 dscr_type = udf_rw16(dscr->tag.id); 1591 if (dscr_type == TAGID_SPACE_BITMAP) { 1592 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1593 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1594 1595 /* fill in ump->part_freed_bits */ 1596 bitmap = &ump->part_unalloc_bits[phys_part]; 1597 bitmap->blob = (uint8_t *) dscr; 1598 bitmap->bits = dscr->sbd.data; 1599 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1600 bitmap->pages = NULL; /* TODO */ 1601 bitmap->data_pos = 0; 1602 bitmap->metadata_pos = 0; 1603 } else { 1604 free(dscr, M_UDFVOLD); 1605 1606 printf( "UDF mount: error reading freed " 1607 "space bitmap\n"); 1608 return EROFS; 1609 } 1610 } else { 1611 /* blank not allowed */ 1612 printf("UDF mount: blank freed space bitmap\n"); 1613 return EROFS; 1614 } 1615 } 1616 1617 /* freed space table (not supported) */ 1618 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1619 partd = ump->partitions[phys_part]; 1620 if (partd == NULL) 1621 continue; 1622 parthdr = &partd->_impl_use.part_hdr; 1623 1624 len = udf_rw32(parthdr->freed_space_table.len); 1625 if (len) { 1626 printf("UDF mount: space tables not supported\n"); 1627 return EROFS; 1628 } 1629 } 1630 1631 return 0; 1632 } 1633 1634 1635 /* TODO implement async writeout */ 1636 int 1637 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1638 { 1639 union dscrptr *dscr; 1640 /* struct udf_args *args = &ump->mount_args; */ 1641 struct part_desc *partd; 1642 struct part_hdr_desc *parthdr; 1643 uint32_t phys_part; 1644 uint32_t lb_num, len, ptov; 1645 int error_all, error; 1646 1647 error_all = 0; 1648 /* unallocated space map */ 1649 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1650 partd = ump->partitions[phys_part]; 1651 if (partd == NULL) 1652 continue; 1653 parthdr = &partd->_impl_use.part_hdr; 1654 1655 ptov = udf_rw32(partd->start_loc); 1656 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1657 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1658 if (len == 0) 1659 continue; 1660 1661 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1662 lb_num + ptov)); 1663 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1664 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1665 (union dscrptr *) dscr, 1666 ptov + lb_num, lb_num); 1667 if (error) { 1668 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1669 error_all = error; 1670 } 1671 } 1672 1673 /* freed space map */ 1674 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1675 partd = ump->partitions[phys_part]; 1676 if (partd == NULL) 1677 continue; 1678 parthdr = &partd->_impl_use.part_hdr; 1679 1680 /* freed space map */ 1681 ptov = udf_rw32(partd->start_loc); 1682 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1683 len = udf_rw32(parthdr->freed_space_bitmap.len); 1684 if (len == 0) 1685 continue; 1686 1687 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1688 lb_num + ptov)); 1689 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1690 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1691 (union dscrptr *) dscr, 1692 ptov + lb_num, lb_num); 1693 if (error) { 1694 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1695 error_all = error; 1696 } 1697 } 1698 1699 return error_all; 1700 } 1701 1702 1703 static int 1704 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1705 { 1706 struct udf_node *bitmap_node; 1707 union dscrptr *dscr; 1708 struct udf_bitmap *bitmap; 1709 uint64_t inflen; 1710 int error, dscr_type; 1711 1712 bitmap_node = ump->metadatabitmap_node; 1713 1714 /* only read in when metadata bitmap node is read in */ 1715 if (bitmap_node == NULL) 1716 return 0; 1717 1718 if (bitmap_node->fe) { 1719 inflen = udf_rw64(bitmap_node->fe->inf_len); 1720 } else { 1721 KASSERT(bitmap_node->efe); 1722 inflen = udf_rw64(bitmap_node->efe->inf_len); 1723 } 1724 1725 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1726 "%"PRIu64" bytes\n", inflen)); 1727 1728 /* allocate space for bitmap */ 1729 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1730 if (!dscr) 1731 return ENOMEM; 1732 1733 /* set vnode type to regular file or we can't read from it! */ 1734 bitmap_node->vnode->v_type = VREG; 1735 1736 /* read in complete metadata bitmap file */ 1737 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1738 dscr, 1739 inflen, 0, 1740 UIO_SYSSPACE, 1741 IO_SYNC | IO_ALTSEMANTICS, FSCRED, 1742 NULL, NULL); 1743 if (error) { 1744 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1745 goto errorout; 1746 } 1747 1748 /* analyse */ 1749 dscr_type = udf_rw16(dscr->tag.id); 1750 if (dscr_type == TAGID_SPACE_BITMAP) { 1751 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1752 ump->metadata_unalloc_dscr = &dscr->sbd; 1753 1754 /* fill in bitmap bits */ 1755 bitmap = &ump->metadata_unalloc_bits; 1756 bitmap->blob = (uint8_t *) dscr; 1757 bitmap->bits = dscr->sbd.data; 1758 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1759 bitmap->pages = NULL; /* TODO */ 1760 bitmap->data_pos = 0; 1761 bitmap->metadata_pos = 0; 1762 } else { 1763 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1764 goto errorout; 1765 } 1766 1767 return 0; 1768 1769 errorout: 1770 free(dscr, M_UDFVOLD); 1771 printf( "UDF mount: error reading unallocated " 1772 "space bitmap for metadata partition\n"); 1773 return EROFS; 1774 } 1775 1776 1777 int 1778 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1779 { 1780 struct udf_node *bitmap_node; 1781 union dscrptr *dscr; 1782 uint64_t inflen, new_inflen; 1783 int dummy, error; 1784 1785 bitmap_node = ump->metadatabitmap_node; 1786 1787 /* only write out when metadata bitmap node is known */ 1788 if (bitmap_node == NULL) 1789 return 0; 1790 1791 if (bitmap_node->fe) { 1792 inflen = udf_rw64(bitmap_node->fe->inf_len); 1793 } else { 1794 KASSERT(bitmap_node->efe); 1795 inflen = udf_rw64(bitmap_node->efe->inf_len); 1796 } 1797 1798 /* reduce length to zero */ 1799 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1800 new_inflen = udf_tagsize(dscr, 1); 1801 1802 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from " 1803 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen)); 1804 1805 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1806 if (error) 1807 printf("Error resizing metadata space bitmap\n"); 1808 1809 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1810 dscr, 1811 new_inflen, 0, 1812 UIO_SYSSPACE, 1813 IO_ALTSEMANTICS, FSCRED, 1814 NULL, NULL); 1815 1816 bitmap_node->i_flags |= IN_MODIFIED; 1817 vflushbuf(bitmap_node->vnode, 1 /* sync */); 1818 1819 error = VOP_FSYNC(bitmap_node->vnode, 1820 FSCRED, FSYNC_WAIT, 0, 0); 1821 1822 if (error) 1823 printf( "Error writing out metadata partition unalloced " 1824 "space bitmap!\n"); 1825 1826 return error; 1827 } 1828 1829 1830 /* --------------------------------------------------------------------- */ 1831 1832 /* 1833 * Checks if ump's vds information is correct and complete 1834 */ 1835 1836 int 1837 udf_process_vds(struct udf_mount *ump) { 1838 union udf_pmap *mapping; 1839 /* struct udf_args *args = &ump->mount_args; */ 1840 struct logvol_int_desc *lvint; 1841 struct udf_logvol_info *lvinfo; 1842 struct part_desc *part; 1843 uint32_t n_pm, mt_l; 1844 uint8_t *pmap_pos; 1845 char *domain_name, *map_name; 1846 const char *check_name; 1847 char bits[128]; 1848 int pmap_stype, pmap_size; 1849 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1850 int n_phys, n_virt, n_spar, n_meta; 1851 int len, error; 1852 1853 if (ump == NULL) 1854 return ENOENT; 1855 1856 /* we need at least an anchor (trivial, but for safety) */ 1857 if (ump->anchors[0] == NULL) 1858 return EINVAL; 1859 1860 /* we need at least one primary and one logical volume descriptor */ 1861 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1862 return EINVAL; 1863 1864 /* we need at least one partition descriptor */ 1865 if (ump->partitions[0] == NULL) 1866 return EINVAL; 1867 1868 /* check logical volume sector size verses device sector size */ 1869 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1870 printf("UDF mount: format violation, lb_size != sector size\n"); 1871 return EINVAL; 1872 } 1873 1874 /* check domain name */ 1875 domain_name = ump->logical_vol->domain_id.id; 1876 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1877 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1878 return EINVAL; 1879 } 1880 1881 /* retrieve logical volume integrity sequence */ 1882 error = udf_retrieve_lvint(ump); 1883 1884 /* 1885 * We need at least one logvol integrity descriptor recorded. Note 1886 * that its OK to have an open logical volume integrity here. The VAT 1887 * will close/update the integrity. 1888 */ 1889 if (ump->logvol_integrity == NULL) 1890 return EINVAL; 1891 1892 /* process derived structures */ 1893 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1894 lvint = ump->logvol_integrity; 1895 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1896 ump->logvol_info = lvinfo; 1897 1898 /* TODO check udf versions? */ 1899 1900 /* 1901 * check logvol mappings: effective virt->log partmap translation 1902 * check and recording of the mapping results. Saves expensive 1903 * strncmp() in tight places. 1904 */ 1905 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1906 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1907 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 1908 pmap_pos = ump->logical_vol->maps; 1909 1910 if (n_pm > UDF_PMAPS) { 1911 printf("UDF mount: too many mappings\n"); 1912 return EINVAL; 1913 } 1914 1915 /* count types and set partition numbers */ 1916 ump->data_part = ump->node_part = ump->fids_part = 0; 1917 n_phys = n_virt = n_spar = n_meta = 0; 1918 for (log_part = 0; log_part < n_pm; log_part++) { 1919 mapping = (union udf_pmap *) pmap_pos; 1920 pmap_stype = pmap_pos[0]; 1921 pmap_size = pmap_pos[1]; 1922 switch (pmap_stype) { 1923 case 1: /* physical mapping */ 1924 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1925 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1926 pmap_type = UDF_VTOP_TYPE_PHYS; 1927 n_phys++; 1928 ump->data_part = log_part; 1929 ump->node_part = log_part; 1930 ump->fids_part = log_part; 1931 break; 1932 case 2: /* virtual/sparable/meta mapping */ 1933 map_name = mapping->pm2.part_id.id; 1934 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1935 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1936 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1937 len = UDF_REGID_ID_SIZE; 1938 1939 check_name = "*UDF Virtual Partition"; 1940 if (strncmp(map_name, check_name, len) == 0) { 1941 pmap_type = UDF_VTOP_TYPE_VIRT; 1942 n_virt++; 1943 ump->node_part = log_part; 1944 break; 1945 } 1946 check_name = "*UDF Sparable Partition"; 1947 if (strncmp(map_name, check_name, len) == 0) { 1948 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1949 n_spar++; 1950 ump->data_part = log_part; 1951 ump->node_part = log_part; 1952 ump->fids_part = log_part; 1953 break; 1954 } 1955 check_name = "*UDF Metadata Partition"; 1956 if (strncmp(map_name, check_name, len) == 0) { 1957 pmap_type = UDF_VTOP_TYPE_META; 1958 n_meta++; 1959 ump->node_part = log_part; 1960 ump->fids_part = log_part; 1961 break; 1962 } 1963 break; 1964 default: 1965 return EINVAL; 1966 } 1967 1968 /* 1969 * BUGALERT: some rogue implementations use random physical 1970 * partition numbers to break other implementations so lookup 1971 * the number. 1972 */ 1973 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1974 part = ump->partitions[phys_part]; 1975 if (part == NULL) 1976 continue; 1977 if (udf_rw16(part->part_num) == raw_phys_part) 1978 break; 1979 } 1980 1981 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1982 raw_phys_part, phys_part, pmap_type)); 1983 1984 if (phys_part == UDF_PARTITIONS) 1985 return EINVAL; 1986 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1987 return EINVAL; 1988 1989 ump->vtop [log_part] = phys_part; 1990 ump->vtop_tp[log_part] = pmap_type; 1991 1992 pmap_pos += pmap_size; 1993 } 1994 /* not winning the beauty contest */ 1995 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1996 1997 /* test some basic UDF assertions/requirements */ 1998 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 1999 return EINVAL; 2000 2001 if (n_virt) { 2002 if ((n_phys == 0) || n_spar || n_meta) 2003 return EINVAL; 2004 } 2005 if (n_spar + n_phys == 0) 2006 return EINVAL; 2007 2008 /* select allocation type for each logical partition */ 2009 for (log_part = 0; log_part < n_pm; log_part++) { 2010 maps_on = ump->vtop[log_part]; 2011 switch (ump->vtop_tp[log_part]) { 2012 case UDF_VTOP_TYPE_PHYS : 2013 assert(maps_on == log_part); 2014 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2015 break; 2016 case UDF_VTOP_TYPE_VIRT : 2017 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 2018 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2019 break; 2020 case UDF_VTOP_TYPE_SPARABLE : 2021 assert(maps_on == log_part); 2022 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2023 break; 2024 case UDF_VTOP_TYPE_META : 2025 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 2026 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 2027 /* special case for UDF 2.60 */ 2028 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 2029 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2030 } 2031 break; 2032 default: 2033 panic("bad alloction type in udf's ump->vtop\n"); 2034 } 2035 } 2036 2037 /* determine logical volume open/closure actions */ 2038 if (n_virt) { 2039 ump->lvopen = 0; 2040 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2041 ump->lvopen |= UDF_OPEN_SESSION ; 2042 ump->lvclose = UDF_WRITE_VAT; 2043 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2044 ump->lvclose |= UDF_CLOSE_SESSION; 2045 } else { 2046 /* `normal' rewritable or non sequential media */ 2047 ump->lvopen = UDF_WRITE_LVINT; 2048 ump->lvclose = UDF_WRITE_LVINT; 2049 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2050 ump->lvopen |= UDF_APPENDONLY_LVINT; 2051 } 2052 2053 /* 2054 * Determine sheduler error behaviour. For virtual partitions, update 2055 * the trackinfo; for sparable partitions replace a whole block on the 2056 * sparable table. Allways requeue. 2057 */ 2058 ump->lvreadwrite = 0; 2059 if (n_virt) 2060 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2061 if (n_spar) 2062 ump->lvreadwrite = UDF_REMAP_BLOCK; 2063 2064 /* 2065 * Select our sheduler 2066 */ 2067 ump->strategy = &udf_strat_rmw; 2068 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2069 ump->strategy = &udf_strat_sequential; 2070 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2071 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2072 ump->strategy = &udf_strat_direct; 2073 if (n_spar) 2074 ump->strategy = &udf_strat_rmw; 2075 2076 #if 0 2077 /* read-only access won't benefit from the other shedulers */ 2078 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2079 ump->strategy = &udf_strat_direct; 2080 #endif 2081 2082 /* print results */ 2083 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2084 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2085 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2086 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2087 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2088 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2089 2090 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2091 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2092 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2093 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2094 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2095 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2096 2097 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2098 (ump->strategy == &udf_strat_direct) ? "Direct" : 2099 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2100 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2101 2102 /* signal its OK for now */ 2103 return 0; 2104 } 2105 2106 /* --------------------------------------------------------------------- */ 2107 2108 /* 2109 * Update logical volume name in all structures that keep a record of it. We 2110 * use memmove since each of them might be specified as a source. 2111 * 2112 * Note that it doesn't update the VAT structure! 2113 */ 2114 2115 static void 2116 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2117 { 2118 struct logvol_desc *lvd = NULL; 2119 struct fileset_desc *fsd = NULL; 2120 struct udf_lv_info *lvi = NULL; 2121 2122 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2123 lvd = ump->logical_vol; 2124 fsd = ump->fileset_desc; 2125 if (ump->implementation) 2126 lvi = &ump->implementation->_impl_use.lv_info; 2127 2128 /* logvol's id might be specified as origional so use memmove here */ 2129 memmove(lvd->logvol_id, logvol_id, 128); 2130 if (fsd) 2131 memmove(fsd->logvol_id, logvol_id, 128); 2132 if (lvi) 2133 memmove(lvi->logvol_id, logvol_id, 128); 2134 } 2135 2136 /* --------------------------------------------------------------------- */ 2137 2138 void 2139 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2140 uint32_t sector) 2141 { 2142 assert(ump->logical_vol); 2143 2144 tag->id = udf_rw16(tagid); 2145 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2146 tag->cksum = 0; 2147 tag->reserved = 0; 2148 tag->serial_num = ump->logical_vol->tag.serial_num; 2149 tag->tag_loc = udf_rw32(sector); 2150 } 2151 2152 2153 uint64_t 2154 udf_advance_uniqueid(struct udf_mount *ump) 2155 { 2156 uint64_t unique_id; 2157 2158 mutex_enter(&ump->logvol_mutex); 2159 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2160 if (unique_id < 0x10) 2161 unique_id = 0x10; 2162 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2163 mutex_exit(&ump->logvol_mutex); 2164 2165 return unique_id; 2166 } 2167 2168 2169 static void 2170 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2171 { 2172 struct udf_mount *ump = udf_node->ump; 2173 uint32_t num_dirs, num_files; 2174 int udf_file_type; 2175 2176 /* get file type */ 2177 if (udf_node->fe) { 2178 udf_file_type = udf_node->fe->icbtag.file_type; 2179 } else { 2180 udf_file_type = udf_node->efe->icbtag.file_type; 2181 } 2182 2183 /* adjust file count */ 2184 mutex_enter(&ump->allocate_mutex); 2185 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2186 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2187 ump->logvol_info->num_directories = 2188 udf_rw32((num_dirs + sign)); 2189 } else { 2190 num_files = udf_rw32(ump->logvol_info->num_files); 2191 ump->logvol_info->num_files = 2192 udf_rw32((num_files + sign)); 2193 } 2194 mutex_exit(&ump->allocate_mutex); 2195 } 2196 2197 2198 void 2199 udf_osta_charset(struct charspec *charspec) 2200 { 2201 memset(charspec, 0, sizeof(struct charspec)); 2202 charspec->type = 0; 2203 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2204 } 2205 2206 2207 /* first call udf_set_regid and then the suffix */ 2208 void 2209 udf_set_regid(struct regid *regid, char const *name) 2210 { 2211 memset(regid, 0, sizeof(struct regid)); 2212 regid->flags = 0; /* not dirty and not protected */ 2213 strcpy((char *) regid->id, name); 2214 } 2215 2216 2217 void 2218 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2219 { 2220 uint16_t *ver; 2221 2222 ver = (uint16_t *) regid->id_suffix; 2223 *ver = ump->logvol_info->min_udf_readver; 2224 } 2225 2226 2227 void 2228 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2229 { 2230 uint16_t *ver; 2231 2232 ver = (uint16_t *) regid->id_suffix; 2233 *ver = ump->logvol_info->min_udf_readver; 2234 2235 regid->id_suffix[2] = 4; /* unix */ 2236 regid->id_suffix[3] = 8; /* NetBSD */ 2237 } 2238 2239 2240 void 2241 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2242 { 2243 regid->id_suffix[0] = 4; /* unix */ 2244 regid->id_suffix[1] = 8; /* NetBSD */ 2245 } 2246 2247 2248 void 2249 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2250 { 2251 regid->id_suffix[0] = APP_VERSION_MAIN; 2252 regid->id_suffix[1] = APP_VERSION_SUB; 2253 } 2254 2255 static int 2256 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2257 struct long_ad *parent, uint64_t unique_id) 2258 { 2259 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2260 int fidsize = 40; 2261 2262 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2263 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2264 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2265 fid->icb = *parent; 2266 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2267 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2268 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2269 2270 return fidsize; 2271 } 2272 2273 /* --------------------------------------------------------------------- */ 2274 2275 /* 2276 * Extended attribute support. UDF knows of 3 places for extended attributes: 2277 * 2278 * (a) inside the file's (e)fe in the length of the extended attribute area 2279 * before the allocation descriptors/filedata 2280 * 2281 * (b) in a file referenced by (e)fe->ext_attr_icb and 2282 * 2283 * (c) in the e(fe)'s associated stream directory that can hold various 2284 * sub-files. In the stream directory a few fixed named subfiles are reserved 2285 * for NT/Unix ACL's and OS/2 attributes. 2286 * 2287 * NOTE: Extended attributes are read randomly but allways written 2288 * *atomicaly*. For ACL's this interface is propably different but not known 2289 * to me yet. 2290 * 2291 * Order of extended attributes in a space : 2292 * ECMA 167 EAs 2293 * Non block aligned Implementation Use EAs 2294 * Block aligned Implementation Use EAs 2295 * Application Use EAs 2296 */ 2297 2298 static int 2299 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2300 { 2301 uint16_t *spos; 2302 2303 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2304 /* checksum valid? */ 2305 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2306 spos = (uint16_t *) implext->data; 2307 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2308 return EINVAL; 2309 } 2310 return 0; 2311 } 2312 2313 static void 2314 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2315 { 2316 uint16_t *spos; 2317 2318 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2319 /* set checksum */ 2320 spos = (uint16_t *) implext->data; 2321 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2322 } 2323 } 2324 2325 2326 int 2327 udf_extattr_search_intern(struct udf_node *node, 2328 uint32_t sattr, char const *sattrname, 2329 uint32_t *offsetp, uint32_t *lengthp) 2330 { 2331 struct extattrhdr_desc *eahdr; 2332 struct extattr_entry *attrhdr; 2333 struct impl_extattr_entry *implext; 2334 uint32_t offset, a_l, sector_size; 2335 int32_t l_ea; 2336 uint8_t *pos; 2337 int error; 2338 2339 /* get mountpoint */ 2340 sector_size = node->ump->discinfo.sector_size; 2341 2342 /* get information from fe/efe */ 2343 if (node->fe) { 2344 l_ea = udf_rw32(node->fe->l_ea); 2345 eahdr = (struct extattrhdr_desc *) node->fe->data; 2346 } else { 2347 assert(node->efe); 2348 l_ea = udf_rw32(node->efe->l_ea); 2349 eahdr = (struct extattrhdr_desc *) node->efe->data; 2350 } 2351 2352 /* something recorded here? */ 2353 if (l_ea == 0) 2354 return ENOENT; 2355 2356 /* check extended attribute tag; what to do if it fails? */ 2357 error = udf_check_tag(eahdr); 2358 if (error) 2359 return EINVAL; 2360 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2361 return EINVAL; 2362 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2363 if (error) 2364 return EINVAL; 2365 2366 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2367 2368 /* looking for Ecma-167 attributes? */ 2369 offset = sizeof(struct extattrhdr_desc); 2370 2371 /* looking for either implemenation use or application use */ 2372 if (sattr == 2048) { /* [4/48.10.8] */ 2373 offset = udf_rw32(eahdr->impl_attr_loc); 2374 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2375 return ENOENT; 2376 } 2377 if (sattr == 65536) { /* [4/48.10.9] */ 2378 offset = udf_rw32(eahdr->appl_attr_loc); 2379 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2380 return ENOENT; 2381 } 2382 2383 /* paranoia check offset and l_ea */ 2384 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2385 return EINVAL; 2386 2387 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2388 2389 /* find our extended attribute */ 2390 l_ea -= offset; 2391 pos = (uint8_t *) eahdr + offset; 2392 2393 while (l_ea >= sizeof(struct extattr_entry)) { 2394 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2395 attrhdr = (struct extattr_entry *) pos; 2396 implext = (struct impl_extattr_entry *) pos; 2397 2398 /* get complete attribute length and check for roque values */ 2399 a_l = udf_rw32(attrhdr->a_l); 2400 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2401 udf_rw32(attrhdr->type), 2402 attrhdr->subtype, a_l, l_ea)); 2403 if ((a_l == 0) || (a_l > l_ea)) 2404 return EINVAL; 2405 2406 if (attrhdr->type != sattr) 2407 goto next_attribute; 2408 2409 /* we might have found it! */ 2410 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2411 *offsetp = offset; 2412 *lengthp = a_l; 2413 return 0; /* success */ 2414 } 2415 2416 /* 2417 * Implementation use and application use extended attributes 2418 * have a name to identify. They share the same structure only 2419 * UDF implementation use extended attributes have a checksum 2420 * we need to check 2421 */ 2422 2423 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2424 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2425 /* we have found our appl/implementation attribute */ 2426 *offsetp = offset; 2427 *lengthp = a_l; 2428 return 0; /* success */ 2429 } 2430 2431 next_attribute: 2432 /* next attribute */ 2433 pos += a_l; 2434 l_ea -= a_l; 2435 offset += a_l; 2436 } 2437 /* not found */ 2438 return ENOENT; 2439 } 2440 2441 2442 static void 2443 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2444 struct extattr_entry *extattr) 2445 { 2446 struct file_entry *fe; 2447 struct extfile_entry *efe; 2448 struct extattrhdr_desc *extattrhdr; 2449 struct impl_extattr_entry *implext; 2450 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2451 uint32_t *l_eap, l_ad; 2452 uint16_t *spos; 2453 uint8_t *bpos, *data; 2454 2455 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2456 fe = &dscr->fe; 2457 data = fe->data; 2458 l_eap = &fe->l_ea; 2459 l_ad = udf_rw32(fe->l_ad); 2460 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2461 efe = &dscr->efe; 2462 data = efe->data; 2463 l_eap = &efe->l_ea; 2464 l_ad = udf_rw32(efe->l_ad); 2465 } else { 2466 panic("Bad tag passed to udf_extattr_insert_internal"); 2467 } 2468 2469 /* can't append already written to file descriptors yet */ 2470 assert(l_ad == 0); 2471 2472 /* should have a header! */ 2473 extattrhdr = (struct extattrhdr_desc *) data; 2474 l_ea = udf_rw32(*l_eap); 2475 if (l_ea == 0) { 2476 /* create empty extended attribute header */ 2477 exthdr_len = sizeof(struct extattrhdr_desc); 2478 2479 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2480 /* loc */ 0); 2481 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2482 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2483 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2484 2485 /* record extended attribute header length */ 2486 l_ea = exthdr_len; 2487 *l_eap = udf_rw32(l_ea); 2488 } 2489 2490 /* extract locations */ 2491 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2492 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2493 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2494 impl_attr_loc = l_ea; 2495 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2496 appl_attr_loc = l_ea; 2497 2498 /* Ecma 167 EAs */ 2499 if (udf_rw32(extattr->type) < 2048) { 2500 assert(impl_attr_loc == l_ea); 2501 assert(appl_attr_loc == l_ea); 2502 } 2503 2504 /* implementation use extended attributes */ 2505 if (udf_rw32(extattr->type) == 2048) { 2506 assert(appl_attr_loc == l_ea); 2507 2508 /* calculate and write extended attribute header checksum */ 2509 implext = (struct impl_extattr_entry *) extattr; 2510 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2511 spos = (uint16_t *) implext->data; 2512 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2513 } 2514 2515 /* application use extended attributes */ 2516 assert(udf_rw32(extattr->type) != 65536); 2517 assert(appl_attr_loc == l_ea); 2518 2519 /* append the attribute at the end of the current space */ 2520 bpos = data + udf_rw32(*l_eap); 2521 a_l = udf_rw32(extattr->a_l); 2522 2523 /* update impl. attribute locations */ 2524 if (udf_rw32(extattr->type) < 2048) { 2525 impl_attr_loc = l_ea + a_l; 2526 appl_attr_loc = l_ea + a_l; 2527 } 2528 if (udf_rw32(extattr->type) == 2048) { 2529 appl_attr_loc = l_ea + a_l; 2530 } 2531 2532 /* copy and advance */ 2533 memcpy(bpos, extattr, a_l); 2534 l_ea += a_l; 2535 *l_eap = udf_rw32(l_ea); 2536 2537 /* do the `dance` again backwards */ 2538 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2539 if (impl_attr_loc == l_ea) 2540 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2541 if (appl_attr_loc == l_ea) 2542 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2543 } 2544 2545 /* store offsets */ 2546 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2547 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2548 } 2549 2550 2551 /* --------------------------------------------------------------------- */ 2552 2553 static int 2554 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2555 { 2556 struct udf_mount *ump; 2557 struct udf_logvol_info *lvinfo; 2558 struct impl_extattr_entry *implext; 2559 struct vatlvext_extattr_entry lvext; 2560 const char *extstr = "*UDF VAT LVExtension"; 2561 uint64_t vat_uniqueid; 2562 uint32_t offset, a_l; 2563 uint8_t *ea_start, *lvextpos; 2564 int error; 2565 2566 /* get mountpoint and lvinfo */ 2567 ump = vat_node->ump; 2568 lvinfo = ump->logvol_info; 2569 2570 /* get information from fe/efe */ 2571 if (vat_node->fe) { 2572 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2573 ea_start = vat_node->fe->data; 2574 } else { 2575 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2576 ea_start = vat_node->efe->data; 2577 } 2578 2579 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2580 if (error) 2581 return error; 2582 2583 implext = (struct impl_extattr_entry *) (ea_start + offset); 2584 error = udf_impl_extattr_check(implext); 2585 if (error) 2586 return error; 2587 2588 /* paranoia */ 2589 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2590 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2591 return EINVAL; 2592 } 2593 2594 /* 2595 * we have found our "VAT LVExtension attribute. BUT due to a 2596 * bug in the specification it might not be word aligned so 2597 * copy first to avoid panics on some machines (!!) 2598 */ 2599 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2600 lvextpos = implext->data + udf_rw32(implext->iu_l); 2601 memcpy(&lvext, lvextpos, sizeof(lvext)); 2602 2603 /* check if it was updated the last time */ 2604 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2605 lvinfo->num_files = lvext.num_files; 2606 lvinfo->num_directories = lvext.num_directories; 2607 udf_update_logvolname(ump, lvext.logvol_id); 2608 } else { 2609 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2610 /* replace VAT LVExt by free space EA */ 2611 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2612 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2613 udf_calc_impl_extattr_checksum(implext); 2614 } 2615 2616 return 0; 2617 } 2618 2619 2620 static int 2621 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2622 { 2623 struct udf_mount *ump; 2624 struct udf_logvol_info *lvinfo; 2625 struct impl_extattr_entry *implext; 2626 struct vatlvext_extattr_entry lvext; 2627 const char *extstr = "*UDF VAT LVExtension"; 2628 uint64_t vat_uniqueid; 2629 uint32_t offset, a_l; 2630 uint8_t *ea_start, *lvextpos; 2631 int error; 2632 2633 /* get mountpoint and lvinfo */ 2634 ump = vat_node->ump; 2635 lvinfo = ump->logvol_info; 2636 2637 /* get information from fe/efe */ 2638 if (vat_node->fe) { 2639 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2640 ea_start = vat_node->fe->data; 2641 } else { 2642 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2643 ea_start = vat_node->efe->data; 2644 } 2645 2646 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2647 if (error) 2648 return error; 2649 /* found, it existed */ 2650 2651 /* paranoia */ 2652 implext = (struct impl_extattr_entry *) (ea_start + offset); 2653 error = udf_impl_extattr_check(implext); 2654 if (error) { 2655 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2656 return error; 2657 } 2658 /* it is correct */ 2659 2660 /* 2661 * we have found our "VAT LVExtension attribute. BUT due to a 2662 * bug in the specification it might not be word aligned so 2663 * copy first to avoid panics on some machines (!!) 2664 */ 2665 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2666 lvextpos = implext->data + udf_rw32(implext->iu_l); 2667 2668 lvext.unique_id_chk = vat_uniqueid; 2669 lvext.num_files = lvinfo->num_files; 2670 lvext.num_directories = lvinfo->num_directories; 2671 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2672 2673 memcpy(lvextpos, &lvext, sizeof(lvext)); 2674 2675 return 0; 2676 } 2677 2678 /* --------------------------------------------------------------------- */ 2679 2680 int 2681 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2682 { 2683 struct udf_mount *ump = vat_node->ump; 2684 2685 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2686 return EINVAL; 2687 2688 memcpy(blob, ump->vat_table + offset, size); 2689 return 0; 2690 } 2691 2692 int 2693 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2694 { 2695 struct udf_mount *ump = vat_node->ump; 2696 uint32_t offset_high; 2697 uint8_t *new_vat_table; 2698 2699 /* extent VAT allocation if needed */ 2700 offset_high = offset + size; 2701 if (offset_high >= ump->vat_table_alloc_len) { 2702 /* realloc */ 2703 new_vat_table = realloc(ump->vat_table, 2704 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2705 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2706 if (!new_vat_table) { 2707 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2708 return ENOMEM; 2709 } 2710 ump->vat_table = new_vat_table; 2711 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2712 } 2713 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2714 2715 memcpy(ump->vat_table + offset, blob, size); 2716 return 0; 2717 } 2718 2719 /* --------------------------------------------------------------------- */ 2720 2721 /* TODO support previous VAT location writeout */ 2722 static int 2723 udf_update_vat_descriptor(struct udf_mount *ump) 2724 { 2725 struct udf_node *vat_node = ump->vat_node; 2726 struct udf_logvol_info *lvinfo = ump->logvol_info; 2727 struct icb_tag *icbtag; 2728 struct udf_oldvat_tail *oldvat_tl; 2729 struct udf_vat *vat; 2730 uint64_t unique_id; 2731 uint32_t lb_size; 2732 uint8_t *raw_vat; 2733 int filetype, error; 2734 2735 KASSERT(vat_node); 2736 KASSERT(lvinfo); 2737 lb_size = udf_rw32(ump->logical_vol->lb_size); 2738 2739 /* get our new unique_id */ 2740 unique_id = udf_advance_uniqueid(ump); 2741 2742 /* get information from fe/efe */ 2743 if (vat_node->fe) { 2744 icbtag = &vat_node->fe->icbtag; 2745 vat_node->fe->unique_id = udf_rw64(unique_id); 2746 } else { 2747 icbtag = &vat_node->efe->icbtag; 2748 vat_node->efe->unique_id = udf_rw64(unique_id); 2749 } 2750 2751 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2752 filetype = icbtag->file_type; 2753 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2754 2755 /* allocate piece to process head or tail of VAT file */ 2756 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2757 2758 if (filetype == 0) { 2759 /* 2760 * Update "*UDF VAT LVExtension" extended attribute from the 2761 * lvint if present. 2762 */ 2763 udf_update_vat_extattr_from_lvid(vat_node); 2764 2765 /* setup identifying regid */ 2766 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2767 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2768 2769 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2770 udf_add_udf_regid(ump, &oldvat_tl->id); 2771 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2772 2773 /* write out new tail of virtual allocation table file */ 2774 error = udf_vat_write(vat_node, raw_vat, 2775 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2776 } else { 2777 /* compose the VAT2 header */ 2778 vat = (struct udf_vat *) raw_vat; 2779 memset(vat, 0, sizeof(struct udf_vat)); 2780 2781 vat->header_len = udf_rw16(152); /* as per spec */ 2782 vat->impl_use_len = udf_rw16(0); 2783 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2784 vat->prev_vat = udf_rw32(0xffffffff); 2785 vat->num_files = lvinfo->num_files; 2786 vat->num_directories = lvinfo->num_directories; 2787 vat->min_udf_readver = lvinfo->min_udf_readver; 2788 vat->min_udf_writever = lvinfo->min_udf_writever; 2789 vat->max_udf_writever = lvinfo->max_udf_writever; 2790 2791 error = udf_vat_write(vat_node, raw_vat, 2792 sizeof(struct udf_vat), 0); 2793 } 2794 free(raw_vat, M_TEMP); 2795 2796 return error; /* success! */ 2797 } 2798 2799 2800 int 2801 udf_writeout_vat(struct udf_mount *ump) 2802 { 2803 struct udf_node *vat_node = ump->vat_node; 2804 uint32_t vat_length; 2805 int error; 2806 2807 KASSERT(vat_node); 2808 2809 DPRINTF(CALL, ("udf_writeout_vat\n")); 2810 2811 // mutex_enter(&ump->allocate_mutex); 2812 udf_update_vat_descriptor(ump); 2813 2814 /* write out the VAT contents ; TODO intelligent writing */ 2815 vat_length = ump->vat_table_len; 2816 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2817 ump->vat_table, ump->vat_table_len, 0, 2818 UIO_SYSSPACE, 0, FSCRED, NULL, NULL); 2819 if (error) { 2820 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2821 goto out; 2822 } 2823 2824 // mutex_exit(&ump->allocate_mutex); 2825 2826 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 2827 error = VOP_FSYNC(ump->vat_node->vnode, 2828 FSCRED, FSYNC_WAIT, 0, 0); 2829 if (error) 2830 printf("udf_writeout_vat: error writing VAT node!\n"); 2831 out: 2832 2833 return error; 2834 } 2835 2836 /* --------------------------------------------------------------------- */ 2837 2838 /* 2839 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2840 * descriptor. If OK, read in complete VAT file. 2841 */ 2842 2843 static int 2844 udf_check_for_vat(struct udf_node *vat_node) 2845 { 2846 struct udf_mount *ump; 2847 struct icb_tag *icbtag; 2848 struct timestamp *mtime; 2849 struct udf_vat *vat; 2850 struct udf_oldvat_tail *oldvat_tl; 2851 struct udf_logvol_info *lvinfo; 2852 uint64_t unique_id; 2853 uint32_t vat_length; 2854 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2855 uint32_t sector_size; 2856 uint32_t *raw_vat; 2857 uint8_t *vat_table; 2858 char *regid_name; 2859 int filetype; 2860 int error; 2861 2862 /* vat_length is really 64 bits though impossible */ 2863 2864 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2865 if (!vat_node) 2866 return ENOENT; 2867 2868 /* get mount info */ 2869 ump = vat_node->ump; 2870 sector_size = udf_rw32(ump->logical_vol->lb_size); 2871 2872 /* check assertions */ 2873 assert(vat_node->fe || vat_node->efe); 2874 assert(ump->logvol_integrity); 2875 2876 /* set vnode type to regular file or we can't read from it! */ 2877 vat_node->vnode->v_type = VREG; 2878 2879 /* get information from fe/efe */ 2880 if (vat_node->fe) { 2881 vat_length = udf_rw64(vat_node->fe->inf_len); 2882 icbtag = &vat_node->fe->icbtag; 2883 mtime = &vat_node->fe->mtime; 2884 unique_id = udf_rw64(vat_node->fe->unique_id); 2885 } else { 2886 vat_length = udf_rw64(vat_node->efe->inf_len); 2887 icbtag = &vat_node->efe->icbtag; 2888 mtime = &vat_node->efe->mtime; 2889 unique_id = udf_rw64(vat_node->efe->unique_id); 2890 } 2891 2892 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2893 filetype = icbtag->file_type; 2894 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2895 return ENOENT; 2896 2897 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2898 2899 vat_table_alloc_len = 2900 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2901 * UDF_VAT_CHUNKSIZE; 2902 2903 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2904 M_CANFAIL | M_WAITOK); 2905 if (vat_table == NULL) { 2906 printf("allocation of %d bytes failed for VAT\n", 2907 vat_table_alloc_len); 2908 return ENOMEM; 2909 } 2910 2911 /* allocate piece to read in head or tail of VAT file */ 2912 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2913 2914 /* 2915 * check contents of the file if its the old 1.50 VAT table format. 2916 * Its notoriously broken and allthough some implementations support an 2917 * extention as defined in the UDF 1.50 errata document, its doubtfull 2918 * to be useable since a lot of implementations don't maintain it. 2919 */ 2920 lvinfo = ump->logvol_info; 2921 2922 if (filetype == 0) { 2923 /* definition */ 2924 vat_offset = 0; 2925 vat_entries = (vat_length-36)/4; 2926 2927 /* read in tail of virtual allocation table file */ 2928 error = vn_rdwr(UIO_READ, vat_node->vnode, 2929 (uint8_t *) raw_vat, 2930 sizeof(struct udf_oldvat_tail), 2931 vat_entries * 4, 2932 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2933 NULL, NULL); 2934 if (error) 2935 goto out; 2936 2937 /* check 1.50 VAT */ 2938 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2939 regid_name = (char *) oldvat_tl->id.id; 2940 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2941 if (error) { 2942 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2943 error = ENOENT; 2944 goto out; 2945 } 2946 2947 /* 2948 * update LVID from "*UDF VAT LVExtension" extended attribute 2949 * if present. 2950 */ 2951 udf_update_lvid_from_vat_extattr(vat_node); 2952 } else { 2953 /* read in head of virtual allocation table file */ 2954 error = vn_rdwr(UIO_READ, vat_node->vnode, 2955 (uint8_t *) raw_vat, 2956 sizeof(struct udf_vat), 0, 2957 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2958 NULL, NULL); 2959 if (error) 2960 goto out; 2961 2962 /* definition */ 2963 vat = (struct udf_vat *) raw_vat; 2964 vat_offset = vat->header_len; 2965 vat_entries = (vat_length - vat_offset)/4; 2966 2967 assert(lvinfo); 2968 lvinfo->num_files = vat->num_files; 2969 lvinfo->num_directories = vat->num_directories; 2970 lvinfo->min_udf_readver = vat->min_udf_readver; 2971 lvinfo->min_udf_writever = vat->min_udf_writever; 2972 lvinfo->max_udf_writever = vat->max_udf_writever; 2973 2974 udf_update_logvolname(ump, vat->logvol_id); 2975 } 2976 2977 /* read in complete VAT file */ 2978 error = vn_rdwr(UIO_READ, vat_node->vnode, 2979 vat_table, 2980 vat_length, 0, 2981 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2982 NULL, NULL); 2983 if (error) 2984 printf("read in of complete VAT file failed (error %d)\n", 2985 error); 2986 if (error) 2987 goto out; 2988 2989 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2990 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 2991 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2992 ump->logvol_integrity->time = *mtime; 2993 2994 ump->vat_table_len = vat_length; 2995 ump->vat_table_alloc_len = vat_table_alloc_len; 2996 ump->vat_table = vat_table; 2997 ump->vat_offset = vat_offset; 2998 ump->vat_entries = vat_entries; 2999 ump->vat_last_free_lb = 0; /* start at beginning */ 3000 3001 out: 3002 if (error) { 3003 if (vat_table) 3004 free(vat_table, M_UDFVOLD); 3005 } 3006 free(raw_vat, M_TEMP); 3007 3008 return error; 3009 } 3010 3011 /* --------------------------------------------------------------------- */ 3012 3013 static int 3014 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 3015 { 3016 struct udf_node *vat_node; 3017 struct long_ad icb_loc; 3018 uint32_t early_vat_loc, late_vat_loc, vat_loc; 3019 int error; 3020 3021 /* mapping info not needed */ 3022 mapping = mapping; 3023 3024 vat_loc = ump->last_possible_vat_location; 3025 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 3026 3027 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 3028 vat_loc, early_vat_loc)); 3029 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 3030 late_vat_loc = vat_loc + 1024; 3031 3032 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 3033 vat_loc, early_vat_loc)); 3034 3035 /* start looking from the end of the range */ 3036 do { 3037 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 3038 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3039 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3040 3041 error = udf_get_node(ump, &icb_loc, &vat_node); 3042 if (!error) { 3043 error = udf_check_for_vat(vat_node); 3044 DPRINTFIF(VOLUMES, !error, 3045 ("VAT accepted at %d\n", vat_loc)); 3046 if (!error) 3047 break; 3048 } 3049 if (vat_node) { 3050 vput(vat_node->vnode); 3051 vat_node = NULL; 3052 } 3053 vat_loc--; /* walk backwards */ 3054 } while (vat_loc >= early_vat_loc); 3055 3056 /* keep our VAT node around */ 3057 if (vat_node) { 3058 UDF_SET_SYSTEMFILE(vat_node->vnode); 3059 ump->vat_node = vat_node; 3060 } 3061 3062 return error; 3063 } 3064 3065 /* --------------------------------------------------------------------- */ 3066 3067 static int 3068 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3069 { 3070 union dscrptr *dscr; 3071 struct part_map_spare *pms = &mapping->pms; 3072 uint32_t lb_num; 3073 int spar, error; 3074 3075 /* 3076 * The partition mapping passed on to us specifies the information we 3077 * need to locate and initialise the sparable partition mapping 3078 * information we need. 3079 */ 3080 3081 DPRINTF(VOLUMES, ("Read sparable table\n")); 3082 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3083 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3084 3085 for (spar = 0; spar < pms->n_st; spar++) { 3086 lb_num = pms->st_loc[spar]; 3087 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3088 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3089 if (!error && dscr) { 3090 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3091 if (ump->sparing_table) 3092 free(ump->sparing_table, M_UDFVOLD); 3093 ump->sparing_table = &dscr->spt; 3094 dscr = NULL; 3095 DPRINTF(VOLUMES, 3096 ("Sparing table accepted (%d entries)\n", 3097 udf_rw16(ump->sparing_table->rt_l))); 3098 break; /* we're done */ 3099 } 3100 } 3101 if (dscr) 3102 free(dscr, M_UDFVOLD); 3103 } 3104 3105 if (ump->sparing_table) 3106 return 0; 3107 3108 return ENOENT; 3109 } 3110 3111 /* --------------------------------------------------------------------- */ 3112 3113 static int 3114 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3115 { 3116 struct part_map_meta *pmm = &mapping->pmm; 3117 struct long_ad icb_loc; 3118 struct vnode *vp; 3119 int error; 3120 3121 /* extract our allocation parameters set up on format */ 3122 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); 3123 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); 3124 ump->metadata_flags = mapping->pmm.flags; 3125 3126 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3127 icb_loc.loc.part_num = pmm->part_num; 3128 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3129 DPRINTF(VOLUMES, ("Metadata file\n")); 3130 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3131 if (ump->metadata_node) { 3132 vp = ump->metadata_node->vnode; 3133 UDF_SET_SYSTEMFILE(vp); 3134 } 3135 3136 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3137 if (icb_loc.loc.lb_num != -1) { 3138 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3139 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3140 if (ump->metadatamirror_node) { 3141 vp = ump->metadatamirror_node->vnode; 3142 UDF_SET_SYSTEMFILE(vp); 3143 } 3144 } 3145 3146 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3147 if (icb_loc.loc.lb_num != -1) { 3148 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3149 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3150 if (ump->metadatabitmap_node) { 3151 vp = ump->metadatabitmap_node->vnode; 3152 UDF_SET_SYSTEMFILE(vp); 3153 } 3154 } 3155 3156 /* if we're mounting read-only we relax the requirements */ 3157 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3158 error = EFAULT; 3159 if (ump->metadata_node) 3160 error = 0; 3161 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3162 printf( "udf mount: Metadata file not readable, " 3163 "substituting Metadata copy file\n"); 3164 ump->metadata_node = ump->metadatamirror_node; 3165 ump->metadatamirror_node = NULL; 3166 error = 0; 3167 } 3168 } else { 3169 /* mounting read/write */ 3170 /* XXX DISABLED! metadata writing is not working yet XXX */ 3171 if (error) 3172 error = EROFS; 3173 } 3174 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3175 "metadata files\n")); 3176 return error; 3177 } 3178 3179 /* --------------------------------------------------------------------- */ 3180 3181 int 3182 udf_read_vds_tables(struct udf_mount *ump) 3183 { 3184 union udf_pmap *mapping; 3185 /* struct udf_args *args = &ump->mount_args; */ 3186 uint32_t n_pm, mt_l; 3187 uint32_t log_part; 3188 uint8_t *pmap_pos; 3189 int pmap_size; 3190 int error; 3191 3192 /* Iterate (again) over the part mappings for locations */ 3193 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3194 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 3195 pmap_pos = ump->logical_vol->maps; 3196 3197 for (log_part = 0; log_part < n_pm; log_part++) { 3198 mapping = (union udf_pmap *) pmap_pos; 3199 switch (ump->vtop_tp[log_part]) { 3200 case UDF_VTOP_TYPE_PHYS : 3201 /* nothing */ 3202 break; 3203 case UDF_VTOP_TYPE_VIRT : 3204 /* search and load VAT */ 3205 error = udf_search_vat(ump, mapping); 3206 if (error) 3207 return ENOENT; 3208 break; 3209 case UDF_VTOP_TYPE_SPARABLE : 3210 /* load one of the sparable tables */ 3211 error = udf_read_sparables(ump, mapping); 3212 if (error) 3213 return ENOENT; 3214 break; 3215 case UDF_VTOP_TYPE_META : 3216 /* load the associated file descriptors */ 3217 error = udf_read_metadata_nodes(ump, mapping); 3218 if (error) 3219 return ENOENT; 3220 break; 3221 default: 3222 break; 3223 } 3224 pmap_size = pmap_pos[1]; 3225 pmap_pos += pmap_size; 3226 } 3227 3228 /* read in and check unallocated and free space info if writing */ 3229 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3230 error = udf_read_physical_partition_spacetables(ump); 3231 if (error) 3232 return error; 3233 3234 /* also read in metadata partition spacebitmap if defined */ 3235 error = udf_read_metadata_partition_spacetable(ump); 3236 return error; 3237 } 3238 3239 return 0; 3240 } 3241 3242 /* --------------------------------------------------------------------- */ 3243 3244 int 3245 udf_read_rootdirs(struct udf_mount *ump) 3246 { 3247 union dscrptr *dscr; 3248 /* struct udf_args *args = &ump->mount_args; */ 3249 struct udf_node *rootdir_node, *streamdir_node; 3250 struct long_ad fsd_loc, *dir_loc; 3251 uint32_t lb_num, dummy; 3252 uint32_t fsd_len; 3253 int dscr_type; 3254 int error; 3255 3256 /* TODO implement FSD reading in separate function like integrity? */ 3257 /* get fileset descriptor sequence */ 3258 fsd_loc = ump->logical_vol->lv_fsd_loc; 3259 fsd_len = udf_rw32(fsd_loc.len); 3260 3261 dscr = NULL; 3262 error = 0; 3263 while (fsd_len || error) { 3264 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3265 /* translate fsd_loc to lb_num */ 3266 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3267 if (error) 3268 break; 3269 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3270 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3271 /* end markers */ 3272 if (error || (dscr == NULL)) 3273 break; 3274 3275 /* analyse */ 3276 dscr_type = udf_rw16(dscr->tag.id); 3277 if (dscr_type == TAGID_TERM) 3278 break; 3279 if (dscr_type != TAGID_FSD) { 3280 free(dscr, M_UDFVOLD); 3281 return ENOENT; 3282 } 3283 3284 /* 3285 * TODO check for multiple fileset descriptors; its only 3286 * picking the last now. Also check for FSD 3287 * correctness/interpretability 3288 */ 3289 3290 /* update */ 3291 if (ump->fileset_desc) { 3292 free(ump->fileset_desc, M_UDFVOLD); 3293 } 3294 ump->fileset_desc = &dscr->fsd; 3295 dscr = NULL; 3296 3297 /* continue to the next fsd */ 3298 fsd_len -= ump->discinfo.sector_size; 3299 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3300 3301 /* follow up to fsd->next_ex (long_ad) if its not null */ 3302 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3303 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3304 fsd_loc = ump->fileset_desc->next_ex; 3305 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3306 } 3307 } 3308 if (dscr) 3309 free(dscr, M_UDFVOLD); 3310 3311 /* there has to be one */ 3312 if (ump->fileset_desc == NULL) 3313 return ENOENT; 3314 3315 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3316 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3317 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3318 3319 /* 3320 * Now the FSD is known, read in the rootdirectory and if one exists, 3321 * the system stream dir. Some files in the system streamdir are not 3322 * wanted in this implementation since they are not maintained. If 3323 * writing is enabled we'll delete these files if they exist. 3324 */ 3325 3326 rootdir_node = streamdir_node = NULL; 3327 dir_loc = NULL; 3328 3329 /* try to read in the rootdir */ 3330 dir_loc = &ump->fileset_desc->rootdir_icb; 3331 error = udf_get_node(ump, dir_loc, &rootdir_node); 3332 if (error) 3333 return ENOENT; 3334 3335 /* aparently it read in fine */ 3336 3337 /* 3338 * Try the system stream directory; not very likely in the ones we 3339 * test, but for completeness. 3340 */ 3341 dir_loc = &ump->fileset_desc->streamdir_icb; 3342 if (udf_rw32(dir_loc->len)) { 3343 printf("udf_read_rootdirs: streamdir defined "); 3344 error = udf_get_node(ump, dir_loc, &streamdir_node); 3345 if (error) { 3346 printf("but error in streamdir reading\n"); 3347 } else { 3348 printf("but ignored\n"); 3349 /* 3350 * TODO process streamdir `baddies' i.e. files we dont 3351 * want if R/W 3352 */ 3353 } 3354 } 3355 3356 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3357 3358 /* release the vnodes again; they'll be auto-recycled later */ 3359 if (streamdir_node) { 3360 vput(streamdir_node->vnode); 3361 } 3362 if (rootdir_node) { 3363 vput(rootdir_node->vnode); 3364 } 3365 3366 return 0; 3367 } 3368 3369 /* --------------------------------------------------------------------- */ 3370 3371 /* To make absolutely sure we are NOT returning zero, add one :) */ 3372 3373 long 3374 udf_get_node_id(const struct long_ad *icbptr) 3375 { 3376 /* ought to be enough since each mountpoint has its own chain */ 3377 return udf_rw32(icbptr->loc.lb_num) + 1; 3378 } 3379 3380 3381 int 3382 udf_compare_icb(const struct long_ad *a, const struct long_ad *b) 3383 { 3384 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) 3385 return -1; 3386 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) 3387 return 1; 3388 3389 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) 3390 return -1; 3391 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) 3392 return 1; 3393 3394 return 0; 3395 } 3396 3397 3398 static int 3399 udf_compare_rbnodes(void *ctx, const void *a, const void *b) 3400 { 3401 const struct udf_node *a_node = a; 3402 const struct udf_node *b_node = b; 3403 3404 return udf_compare_icb(&a_node->loc, &b_node->loc); 3405 } 3406 3407 3408 static int 3409 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) 3410 { 3411 const struct udf_node *a_node = a; 3412 const struct long_ad * const icb = key; 3413 3414 return udf_compare_icb(&a_node->loc, icb); 3415 } 3416 3417 3418 static const rb_tree_ops_t udf_node_rbtree_ops = { 3419 .rbto_compare_nodes = udf_compare_rbnodes, 3420 .rbto_compare_key = udf_compare_rbnode_icb, 3421 .rbto_node_offset = offsetof(struct udf_node, rbnode), 3422 .rbto_context = NULL 3423 }; 3424 3425 3426 void 3427 udf_init_nodes_tree(struct udf_mount *ump) 3428 { 3429 3430 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); 3431 } 3432 3433 3434 static struct udf_node * 3435 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr) 3436 { 3437 struct udf_node *udf_node; 3438 struct vnode *vp; 3439 3440 loop: 3441 mutex_enter(&ump->ihash_lock); 3442 3443 udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr); 3444 if (udf_node) { 3445 vp = udf_node->vnode; 3446 assert(vp); 3447 mutex_enter(&vp->v_interlock); 3448 mutex_exit(&ump->ihash_lock); 3449 if (vget(vp, LK_EXCLUSIVE)) 3450 goto loop; 3451 return udf_node; 3452 } 3453 mutex_exit(&ump->ihash_lock); 3454 3455 return NULL; 3456 } 3457 3458 3459 static void 3460 udf_register_node(struct udf_node *udf_node) 3461 { 3462 struct udf_mount *ump = udf_node->ump; 3463 3464 /* add node to the rb tree */ 3465 mutex_enter(&ump->ihash_lock); 3466 rb_tree_insert_node(&ump->udf_node_tree, udf_node); 3467 mutex_exit(&ump->ihash_lock); 3468 } 3469 3470 3471 static void 3472 udf_deregister_node(struct udf_node *udf_node) 3473 { 3474 struct udf_mount *ump = udf_node->ump; 3475 3476 /* remove node from the rb tree */ 3477 mutex_enter(&ump->ihash_lock); 3478 rb_tree_remove_node(&ump->udf_node_tree, udf_node); 3479 mutex_exit(&ump->ihash_lock); 3480 } 3481 3482 /* --------------------------------------------------------------------- */ 3483 3484 static int 3485 udf_validate_session_start(struct udf_mount *ump) 3486 { 3487 struct mmc_trackinfo trackinfo; 3488 struct vrs_desc *vrs; 3489 uint32_t tracknr, sessionnr, sector, sector_size; 3490 uint32_t iso9660_vrs, write_track_start; 3491 uint8_t *buffer, *blank, *pos; 3492 int blks, max_sectors, vrs_len; 3493 int error; 3494 3495 /* disc appendable? */ 3496 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3497 return EROFS; 3498 3499 /* already written here? if so, there should be an ISO VDS */ 3500 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3501 return 0; 3502 3503 /* 3504 * Check if the first track of the session is blank and if so, copy or 3505 * create a dummy ISO descriptor so the disc is valid again. 3506 */ 3507 3508 tracknr = ump->discinfo.first_track_last_session; 3509 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3510 trackinfo.tracknr = tracknr; 3511 error = udf_update_trackinfo(ump, &trackinfo); 3512 if (error) 3513 return error; 3514 3515 udf_dump_trackinfo(&trackinfo); 3516 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3517 KASSERT(trackinfo.sessionnr > 1); 3518 3519 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3520 write_track_start = trackinfo.next_writable; 3521 3522 /* we have to copy the ISO VRS from a former session */ 3523 DPRINTF(VOLUMES, ("validate_session_start: " 3524 "blank or reserved track, copying VRS\n")); 3525 3526 /* sessionnr should be the session we're mounting */ 3527 sessionnr = ump->mount_args.sessionnr; 3528 3529 /* start at the first track */ 3530 tracknr = ump->discinfo.first_track; 3531 while (tracknr <= ump->discinfo.num_tracks) { 3532 trackinfo.tracknr = tracknr; 3533 error = udf_update_trackinfo(ump, &trackinfo); 3534 if (error) { 3535 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3536 return error; 3537 } 3538 if (trackinfo.sessionnr == sessionnr) 3539 break; 3540 tracknr++; 3541 } 3542 if (trackinfo.sessionnr != sessionnr) { 3543 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3544 return ENOENT; 3545 } 3546 3547 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3548 udf_dump_trackinfo(&trackinfo); 3549 3550 /* 3551 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3552 * minimum ISO `sector size' 2048 3553 */ 3554 sector_size = ump->discinfo.sector_size; 3555 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3556 + trackinfo.track_start; 3557 3558 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3559 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3560 blks = MAX(1, 2048 / sector_size); 3561 3562 error = 0; 3563 for (sector = 0; sector < max_sectors; sector += blks) { 3564 pos = buffer + sector * sector_size; 3565 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3566 iso9660_vrs + sector, blks); 3567 if (error) 3568 break; 3569 /* check this ISO descriptor */ 3570 vrs = (struct vrs_desc *) pos; 3571 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3572 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3573 continue; 3574 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3575 continue; 3576 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3577 continue; 3578 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3579 continue; 3580 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3581 continue; 3582 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3583 break; 3584 /* now what? for now, end of sequence */ 3585 break; 3586 } 3587 vrs_len = sector + blks; 3588 if (error) { 3589 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3590 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3591 3592 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3593 3594 vrs = (struct vrs_desc *) (buffer); 3595 vrs->struct_type = 0; 3596 vrs->version = 1; 3597 memcpy(vrs->identifier,VRS_BEA01, 5); 3598 3599 vrs = (struct vrs_desc *) (buffer + 2048); 3600 vrs->struct_type = 0; 3601 vrs->version = 1; 3602 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3603 memcpy(vrs->identifier,VRS_NSR02, 5); 3604 } else { 3605 memcpy(vrs->identifier,VRS_NSR03, 5); 3606 } 3607 3608 vrs = (struct vrs_desc *) (buffer + 4096); 3609 vrs->struct_type = 0; 3610 vrs->version = 1; 3611 memcpy(vrs->identifier, VRS_TEA01, 5); 3612 3613 vrs_len = 3*blks; 3614 } 3615 3616 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3617 3618 /* 3619 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3620 * minimum ISO `sector size' 2048 3621 */ 3622 sector_size = ump->discinfo.sector_size; 3623 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3624 + write_track_start; 3625 3626 /* write out 32 kb */ 3627 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3628 memset(blank, 0, sector_size); 3629 error = 0; 3630 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3631 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3632 blank, sector, 1); 3633 if (error) 3634 break; 3635 } 3636 if (!error) { 3637 /* write out our ISO VRS */ 3638 KASSERT(sector == iso9660_vrs); 3639 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3640 sector, vrs_len); 3641 sector += vrs_len; 3642 } 3643 if (!error) { 3644 /* fill upto the first anchor at S+256 */ 3645 for (; sector < write_track_start+256; sector++) { 3646 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3647 blank, sector, 1); 3648 if (error) 3649 break; 3650 } 3651 } 3652 if (!error) { 3653 /* write out anchor; write at ABSOLUTE place! */ 3654 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3655 (union dscrptr *) ump->anchors[0], sector, sector); 3656 if (error) 3657 printf("writeout of anchor failed!\n"); 3658 } 3659 3660 free(blank, M_TEMP); 3661 free(buffer, M_TEMP); 3662 3663 if (error) 3664 printf("udf_open_session: error writing iso vrs! : " 3665 "leaving disc in compromised state!\n"); 3666 3667 /* synchronise device caches */ 3668 (void) udf_synchronise_caches(ump); 3669 3670 return error; 3671 } 3672 3673 3674 int 3675 udf_open_logvol(struct udf_mount *ump) 3676 { 3677 int logvol_integrity; 3678 int error; 3679 3680 /* already/still open? */ 3681 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3682 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3683 return 0; 3684 3685 /* can we open it ? */ 3686 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3687 return EROFS; 3688 3689 /* setup write parameters */ 3690 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3691 if ((error = udf_setup_writeparams(ump)) != 0) 3692 return error; 3693 3694 /* determine data and metadata tracks (most likely same) */ 3695 error = udf_search_writing_tracks(ump); 3696 if (error) { 3697 /* most likely lack of space */ 3698 printf("udf_open_logvol: error searching writing tracks\n"); 3699 return EROFS; 3700 } 3701 3702 /* writeout/update lvint on disc or only in memory */ 3703 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3704 if (ump->lvopen & UDF_OPEN_SESSION) { 3705 /* TODO optional track reservation opening */ 3706 error = udf_validate_session_start(ump); 3707 if (error) 3708 return error; 3709 3710 /* determine data and metadata tracks again */ 3711 error = udf_search_writing_tracks(ump); 3712 } 3713 3714 /* mark it open */ 3715 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3716 3717 /* do we need to write it out? */ 3718 if (ump->lvopen & UDF_WRITE_LVINT) { 3719 error = udf_writeout_lvint(ump, ump->lvopen); 3720 /* if we couldn't write it mark it closed again */ 3721 if (error) { 3722 ump->logvol_integrity->integrity_type = 3723 udf_rw32(UDF_INTEGRITY_CLOSED); 3724 return error; 3725 } 3726 } 3727 3728 return 0; 3729 } 3730 3731 3732 int 3733 udf_close_logvol(struct udf_mount *ump, int mntflags) 3734 { 3735 struct vnode *devvp = ump->devvp; 3736 struct mmc_op mmc_op; 3737 int logvol_integrity; 3738 int error = 0, error1 = 0, error2 = 0; 3739 int tracknr; 3740 int nvats, n, nok; 3741 3742 /* already/still closed? */ 3743 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3744 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3745 return 0; 3746 3747 /* writeout/update lvint or write out VAT */ 3748 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3749 #ifdef DIAGNOSTIC 3750 if (ump->lvclose & UDF_CLOSE_SESSION) 3751 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3752 #endif 3753 3754 if (ump->lvclose & UDF_WRITE_VAT) { 3755 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3756 3757 /* write out the VAT data and all its descriptors */ 3758 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3759 udf_writeout_vat(ump); 3760 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 3761 3762 (void) VOP_FSYNC(ump->vat_node->vnode, 3763 FSCRED, FSYNC_WAIT, 0, 0); 3764 3765 if (ump->lvclose & UDF_CLOSE_SESSION) { 3766 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3767 "as requested\n")); 3768 } 3769 3770 /* at least two DVD packets and 3 CD-R packets */ 3771 nvats = 32; 3772 3773 #if notyet 3774 /* 3775 * TODO calculate the available space and if the disc is 3776 * allmost full, write out till end-256-1 with banks, write 3777 * AVDP and fill up with VATs, then close session and close 3778 * disc. 3779 */ 3780 if (ump->lvclose & UDF_FINALISE_DISC) { 3781 error = udf_write_phys_dscr_sync(ump, NULL, 3782 UDF_C_FLOAT_DSCR, 3783 (union dscrptr *) ump->anchors[0], 3784 0, 0); 3785 if (error) 3786 printf("writeout of anchor failed!\n"); 3787 3788 /* pad space with VAT ICBs */ 3789 nvats = 256; 3790 } 3791 #endif 3792 3793 /* write out a number of VAT nodes */ 3794 nok = 0; 3795 for (n = 0; n < nvats; n++) { 3796 /* will now only write last FE/EFE */ 3797 ump->vat_node->i_flags |= IN_MODIFIED; 3798 error = VOP_FSYNC(ump->vat_node->vnode, 3799 FSCRED, FSYNC_WAIT, 0, 0); 3800 if (!error) 3801 nok++; 3802 } 3803 if (nok < 14) { 3804 /* arbitrary; but at least one or two CD frames */ 3805 printf("writeout of at least 14 VATs failed\n"); 3806 return error; 3807 } 3808 } 3809 3810 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3811 3812 /* finish closing of session */ 3813 if (ump->lvclose & UDF_CLOSE_SESSION) { 3814 error = udf_validate_session_start(ump); 3815 if (error) 3816 return error; 3817 3818 (void) udf_synchronise_caches(ump); 3819 3820 /* close all associated tracks */ 3821 tracknr = ump->discinfo.first_track_last_session; 3822 error = 0; 3823 while (tracknr <= ump->discinfo.last_track_last_session) { 3824 DPRINTF(VOLUMES, ("\tclosing possible open " 3825 "track %d\n", tracknr)); 3826 memset(&mmc_op, 0, sizeof(mmc_op)); 3827 mmc_op.operation = MMC_OP_CLOSETRACK; 3828 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3829 mmc_op.tracknr = tracknr; 3830 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3831 FKIOCTL, NOCRED); 3832 if (error) 3833 printf("udf_close_logvol: closing of " 3834 "track %d failed\n", tracknr); 3835 tracknr ++; 3836 } 3837 if (!error) { 3838 DPRINTF(VOLUMES, ("closing session\n")); 3839 memset(&mmc_op, 0, sizeof(mmc_op)); 3840 mmc_op.operation = MMC_OP_CLOSESESSION; 3841 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3842 mmc_op.sessionnr = ump->discinfo.num_sessions; 3843 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3844 FKIOCTL, NOCRED); 3845 if (error) 3846 printf("udf_close_logvol: closing of session" 3847 "failed\n"); 3848 } 3849 if (!error) 3850 ump->lvopen |= UDF_OPEN_SESSION; 3851 if (error) { 3852 printf("udf_close_logvol: leaving disc as it is\n"); 3853 ump->lvclose &= ~UDF_FINALISE_DISC; 3854 } 3855 } 3856 3857 if (ump->lvclose & UDF_FINALISE_DISC) { 3858 memset(&mmc_op, 0, sizeof(mmc_op)); 3859 mmc_op.operation = MMC_OP_FINALISEDISC; 3860 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3861 mmc_op.sessionnr = ump->discinfo.num_sessions; 3862 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3863 FKIOCTL, NOCRED); 3864 if (error) 3865 printf("udf_close_logvol: finalising disc" 3866 "failed\n"); 3867 } 3868 3869 /* write out partition bitmaps if requested */ 3870 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3871 /* sync writeout metadata spacetable if existing */ 3872 error1 = udf_write_metadata_partition_spacetable(ump, true); 3873 if (error1) 3874 printf( "udf_close_logvol: writeout of metadata space " 3875 "bitmap failed\n"); 3876 3877 /* sync writeout partition spacetables */ 3878 error2 = udf_write_physical_partition_spacetables(ump, true); 3879 if (error2) 3880 printf( "udf_close_logvol: writeout of space tables " 3881 "failed\n"); 3882 3883 if (error1 || error2) 3884 return (error1 | error2); 3885 3886 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3887 } 3888 3889 /* write out metadata partition nodes if requested */ 3890 if (ump->lvclose & UDF_WRITE_METAPART_NODES) { 3891 /* sync writeout metadata descriptor node */ 3892 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); 3893 if (error1) 3894 printf( "udf_close_logvol: writeout of metadata partition " 3895 "node failed\n"); 3896 3897 /* duplicate metadata partition descriptor if needed */ 3898 udf_synchronise_metadatamirror_node(ump); 3899 3900 /* sync writeout metadatamirror descriptor node */ 3901 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); 3902 if (error2) 3903 printf( "udf_close_logvol: writeout of metadata partition " 3904 "mirror node failed\n"); 3905 3906 if (error1 || error2) 3907 return (error1 | error2); 3908 3909 ump->lvclose &= ~UDF_WRITE_METAPART_NODES; 3910 } 3911 3912 /* mark it closed */ 3913 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3914 3915 /* do we need to write out the logical volume integrity? */ 3916 if (ump->lvclose & UDF_WRITE_LVINT) 3917 error = udf_writeout_lvint(ump, ump->lvopen); 3918 if (error) { 3919 /* HELP now what? mark it open again for now */ 3920 ump->logvol_integrity->integrity_type = 3921 udf_rw32(UDF_INTEGRITY_OPEN); 3922 return error; 3923 } 3924 3925 (void) udf_synchronise_caches(ump); 3926 3927 return 0; 3928 } 3929 3930 /* --------------------------------------------------------------------- */ 3931 3932 /* 3933 * Genfs interfacing 3934 * 3935 * static const struct genfs_ops udf_genfsops = { 3936 * .gop_size = genfs_size, 3937 * size of transfers 3938 * .gop_alloc = udf_gop_alloc, 3939 * allocate len bytes at offset 3940 * .gop_write = genfs_gop_write, 3941 * putpages interface code 3942 * .gop_markupdate = udf_gop_markupdate, 3943 * set update/modify flags etc. 3944 * } 3945 */ 3946 3947 /* 3948 * Genfs interface. These four functions are the only ones defined though not 3949 * documented... great.... 3950 */ 3951 3952 /* 3953 * Called for allocating an extent of the file either by VOP_WRITE() or by 3954 * genfs filling up gaps. 3955 */ 3956 static int 3957 udf_gop_alloc(struct vnode *vp, off_t off, 3958 off_t len, int flags, kauth_cred_t cred) 3959 { 3960 struct udf_node *udf_node = VTOI(vp); 3961 struct udf_mount *ump = udf_node->ump; 3962 uint64_t lb_start, lb_end; 3963 uint32_t lb_size, num_lb; 3964 int udf_c_type, vpart_num, can_fail; 3965 int error; 3966 3967 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", 3968 off, len, flags? "SYNC":"NONE")); 3969 3970 /* 3971 * request the pages of our vnode and see how many pages will need to 3972 * be allocated and reserve that space 3973 */ 3974 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 3975 lb_start = off / lb_size; 3976 lb_end = (off + len + lb_size -1) / lb_size; 3977 num_lb = lb_end - lb_start; 3978 3979 udf_c_type = udf_get_c_type(udf_node); 3980 vpart_num = udf_get_record_vpart(ump, udf_c_type); 3981 3982 /* all requests can fail */ 3983 can_fail = true; 3984 3985 /* fid's (directories) can't fail */ 3986 if (udf_c_type == UDF_C_FIDS) 3987 can_fail = false; 3988 3989 /* system files can't fail */ 3990 if (vp->v_vflag & VV_SYSTEM) 3991 can_fail = false; 3992 3993 error = udf_reserve_space(ump, udf_node, udf_c_type, 3994 vpart_num, num_lb, can_fail); 3995 3996 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", 3997 lb_start, lb_end, num_lb)); 3998 3999 return error; 4000 } 4001 4002 4003 /* 4004 * callback from genfs to update our flags 4005 */ 4006 static void 4007 udf_gop_markupdate(struct vnode *vp, int flags) 4008 { 4009 struct udf_node *udf_node = VTOI(vp); 4010 u_long mask = 0; 4011 4012 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 4013 mask = IN_ACCESS; 4014 } 4015 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 4016 if (vp->v_type == VREG) { 4017 mask |= IN_CHANGE | IN_UPDATE; 4018 } else { 4019 mask |= IN_MODIFY; 4020 } 4021 } 4022 if (mask) { 4023 udf_node->i_flags |= mask; 4024 } 4025 } 4026 4027 4028 static const struct genfs_ops udf_genfsops = { 4029 .gop_size = genfs_size, 4030 .gop_alloc = udf_gop_alloc, 4031 .gop_write = genfs_gop_write_rwmap, 4032 .gop_markupdate = udf_gop_markupdate, 4033 }; 4034 4035 4036 /* --------------------------------------------------------------------- */ 4037 4038 int 4039 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 4040 { 4041 union dscrptr *dscr; 4042 int error; 4043 4044 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 4045 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 4046 4047 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 4048 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 4049 (void) udf_validate_tag_and_crc_sums(dscr); 4050 4051 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 4052 dscr, sector, sector); 4053 4054 free(dscr, M_TEMP); 4055 4056 return error; 4057 } 4058 4059 4060 /* --------------------------------------------------------------------- */ 4061 4062 /* UDF<->unix converters */ 4063 4064 /* --------------------------------------------------------------------- */ 4065 4066 static mode_t 4067 udf_perm_to_unix_mode(uint32_t perm) 4068 { 4069 mode_t mode; 4070 4071 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 4072 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 4073 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 4074 4075 return mode; 4076 } 4077 4078 /* --------------------------------------------------------------------- */ 4079 4080 static uint32_t 4081 unix_mode_to_udf_perm(mode_t mode) 4082 { 4083 uint32_t perm; 4084 4085 perm = ((mode & S_IRWXO) ); 4086 perm |= ((mode & S_IRWXG) << 2); 4087 perm |= ((mode & S_IRWXU) << 4); 4088 perm |= ((mode & S_IWOTH) << 3); 4089 perm |= ((mode & S_IWGRP) << 5); 4090 perm |= ((mode & S_IWUSR) << 7); 4091 4092 return perm; 4093 } 4094 4095 /* --------------------------------------------------------------------- */ 4096 4097 static uint32_t 4098 udf_icb_to_unix_filetype(uint32_t icbftype) 4099 { 4100 switch (icbftype) { 4101 case UDF_ICB_FILETYPE_DIRECTORY : 4102 case UDF_ICB_FILETYPE_STREAMDIR : 4103 return S_IFDIR; 4104 case UDF_ICB_FILETYPE_FIFO : 4105 return S_IFIFO; 4106 case UDF_ICB_FILETYPE_CHARDEVICE : 4107 return S_IFCHR; 4108 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4109 return S_IFBLK; 4110 case UDF_ICB_FILETYPE_RANDOMACCESS : 4111 case UDF_ICB_FILETYPE_REALTIME : 4112 return S_IFREG; 4113 case UDF_ICB_FILETYPE_SYMLINK : 4114 return S_IFLNK; 4115 case UDF_ICB_FILETYPE_SOCKET : 4116 return S_IFSOCK; 4117 } 4118 /* no idea what this is */ 4119 return 0; 4120 } 4121 4122 /* --------------------------------------------------------------------- */ 4123 4124 void 4125 udf_to_unix_name(char *result, int result_len, char *id, int len, 4126 struct charspec *chsp) 4127 { 4128 uint16_t *raw_name, *unix_name; 4129 uint16_t *inchp, ch; 4130 uint8_t *outchp; 4131 const char *osta_id = "OSTA Compressed Unicode"; 4132 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4133 4134 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4135 unix_name = raw_name + 1024; /* split space in half */ 4136 assert(sizeof(char) == sizeof(uint8_t)); 4137 outchp = (uint8_t *) result; 4138 4139 is_osta_typ0 = (chsp->type == 0); 4140 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4141 if (is_osta_typ0) { 4142 /* TODO clean up */ 4143 *raw_name = *unix_name = 0; 4144 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4145 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4146 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4147 /* output UTF8 */ 4148 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4149 ch = *inchp; 4150 nout = wput_utf8(outchp, result_len, ch); 4151 outchp += nout; result_len -= nout; 4152 if (!ch) break; 4153 } 4154 *outchp++ = 0; 4155 } else { 4156 /* assume 8bit char length byte latin-1 */ 4157 assert(*id == 8); 4158 assert(strlen((char *) (id+1)) <= MAXNAMLEN); 4159 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4160 } 4161 free(raw_name, M_UDFTEMP); 4162 } 4163 4164 /* --------------------------------------------------------------------- */ 4165 4166 void 4167 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4168 struct charspec *chsp) 4169 { 4170 uint16_t *raw_name; 4171 uint16_t *outchp; 4172 const char *inchp; 4173 const char *osta_id = "OSTA Compressed Unicode"; 4174 int udf_chars, is_osta_typ0, bits; 4175 size_t cnt; 4176 4177 /* allocate temporary unicode-16 buffer */ 4178 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4179 4180 /* convert utf8 to unicode-16 */ 4181 *raw_name = 0; 4182 inchp = name; 4183 outchp = raw_name; 4184 bits = 8; 4185 for (cnt = name_len, udf_chars = 0; cnt;) { 4186 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/ 4187 *outchp = wget_utf8(&inchp, &cnt); 4188 if (*outchp > 0xff) 4189 bits=16; 4190 outchp++; 4191 udf_chars++; 4192 } 4193 /* null terminate just in case */ 4194 *outchp++ = 0; 4195 4196 is_osta_typ0 = (chsp->type == 0); 4197 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4198 if (is_osta_typ0) { 4199 udf_chars = udf_CompressUnicode(udf_chars, bits, 4200 (unicode_t *) raw_name, 4201 (byte *) result); 4202 } else { 4203 printf("unix to udf name: no CHSP0 ?\n"); 4204 /* XXX assume 8bit char length byte latin-1 */ 4205 *result++ = 8; udf_chars = 1; 4206 strncpy(result, name + 1, name_len); 4207 udf_chars += name_len; 4208 } 4209 *result_len = udf_chars; 4210 free(raw_name, M_UDFTEMP); 4211 } 4212 4213 /* --------------------------------------------------------------------- */ 4214 4215 void 4216 udf_timestamp_to_timespec(struct udf_mount *ump, 4217 struct timestamp *timestamp, 4218 struct timespec *timespec) 4219 { 4220 struct clock_ymdhms ymdhms; 4221 uint32_t usecs, secs, nsecs; 4222 uint16_t tz; 4223 4224 /* fill in ymdhms structure from timestamp */ 4225 memset(&ymdhms, 0, sizeof(ymdhms)); 4226 ymdhms.dt_year = udf_rw16(timestamp->year); 4227 ymdhms.dt_mon = timestamp->month; 4228 ymdhms.dt_day = timestamp->day; 4229 ymdhms.dt_wday = 0; /* ? */ 4230 ymdhms.dt_hour = timestamp->hour; 4231 ymdhms.dt_min = timestamp->minute; 4232 ymdhms.dt_sec = timestamp->second; 4233 4234 secs = clock_ymdhms_to_secs(&ymdhms); 4235 usecs = timestamp->usec + 4236 100*timestamp->hund_usec + 10000*timestamp->centisec; 4237 nsecs = usecs * 1000; 4238 4239 /* 4240 * Calculate the time zone. The timezone is 12 bit signed 2's 4241 * compliment, so we gotta do some extra magic to handle it right. 4242 */ 4243 tz = udf_rw16(timestamp->type_tz); 4244 tz &= 0x0fff; /* only lower 12 bits are significant */ 4245 if (tz & 0x0800) /* sign extention */ 4246 tz |= 0xf000; 4247 4248 /* TODO check timezone conversion */ 4249 /* check if we are specified a timezone to convert */ 4250 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4251 if ((int16_t) tz != -2047) 4252 secs -= (int16_t) tz * 60; 4253 } else { 4254 secs -= ump->mount_args.gmtoff; 4255 } 4256 4257 timespec->tv_sec = secs; 4258 timespec->tv_nsec = nsecs; 4259 } 4260 4261 4262 void 4263 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4264 { 4265 struct clock_ymdhms ymdhms; 4266 uint32_t husec, usec, csec; 4267 4268 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4269 4270 usec = timespec->tv_nsec / 1000; 4271 husec = usec / 100; 4272 usec -= husec * 100; /* only 0-99 in usec */ 4273 csec = husec / 100; /* only 0-99 in csec */ 4274 husec -= csec * 100; /* only 0-99 in husec */ 4275 4276 /* set method 1 for CUT/GMT */ 4277 timestamp->type_tz = udf_rw16((1<<12) + 0); 4278 timestamp->year = udf_rw16(ymdhms.dt_year); 4279 timestamp->month = ymdhms.dt_mon; 4280 timestamp->day = ymdhms.dt_day; 4281 timestamp->hour = ymdhms.dt_hour; 4282 timestamp->minute = ymdhms.dt_min; 4283 timestamp->second = ymdhms.dt_sec; 4284 timestamp->centisec = csec; 4285 timestamp->hund_usec = husec; 4286 timestamp->usec = usec; 4287 } 4288 4289 /* --------------------------------------------------------------------- */ 4290 4291 /* 4292 * Attribute and filetypes converters with get/set pairs 4293 */ 4294 4295 uint32_t 4296 udf_getaccessmode(struct udf_node *udf_node) 4297 { 4298 struct file_entry *fe = udf_node->fe; 4299 struct extfile_entry *efe = udf_node->efe; 4300 uint32_t udf_perm, icbftype; 4301 uint32_t mode, ftype; 4302 uint16_t icbflags; 4303 4304 UDF_LOCK_NODE(udf_node, 0); 4305 if (fe) { 4306 udf_perm = udf_rw32(fe->perm); 4307 icbftype = fe->icbtag.file_type; 4308 icbflags = udf_rw16(fe->icbtag.flags); 4309 } else { 4310 assert(udf_node->efe); 4311 udf_perm = udf_rw32(efe->perm); 4312 icbftype = efe->icbtag.file_type; 4313 icbflags = udf_rw16(efe->icbtag.flags); 4314 } 4315 4316 mode = udf_perm_to_unix_mode(udf_perm); 4317 ftype = udf_icb_to_unix_filetype(icbftype); 4318 4319 /* set suid, sgid, sticky from flags in fe/efe */ 4320 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4321 mode |= S_ISUID; 4322 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4323 mode |= S_ISGID; 4324 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4325 mode |= S_ISVTX; 4326 4327 UDF_UNLOCK_NODE(udf_node, 0); 4328 4329 return mode | ftype; 4330 } 4331 4332 4333 void 4334 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4335 { 4336 struct file_entry *fe = udf_node->fe; 4337 struct extfile_entry *efe = udf_node->efe; 4338 uint32_t udf_perm; 4339 uint16_t icbflags; 4340 4341 UDF_LOCK_NODE(udf_node, 0); 4342 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4343 if (fe) { 4344 icbflags = udf_rw16(fe->icbtag.flags); 4345 } else { 4346 icbflags = udf_rw16(efe->icbtag.flags); 4347 } 4348 4349 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4350 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4351 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4352 if (mode & S_ISUID) 4353 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4354 if (mode & S_ISGID) 4355 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4356 if (mode & S_ISVTX) 4357 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4358 4359 if (fe) { 4360 fe->perm = udf_rw32(udf_perm); 4361 fe->icbtag.flags = udf_rw16(icbflags); 4362 } else { 4363 efe->perm = udf_rw32(udf_perm); 4364 efe->icbtag.flags = udf_rw16(icbflags); 4365 } 4366 4367 UDF_UNLOCK_NODE(udf_node, 0); 4368 } 4369 4370 4371 void 4372 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4373 { 4374 struct udf_mount *ump = udf_node->ump; 4375 struct file_entry *fe = udf_node->fe; 4376 struct extfile_entry *efe = udf_node->efe; 4377 uid_t uid; 4378 gid_t gid; 4379 4380 UDF_LOCK_NODE(udf_node, 0); 4381 if (fe) { 4382 uid = (uid_t)udf_rw32(fe->uid); 4383 gid = (gid_t)udf_rw32(fe->gid); 4384 } else { 4385 assert(udf_node->efe); 4386 uid = (uid_t)udf_rw32(efe->uid); 4387 gid = (gid_t)udf_rw32(efe->gid); 4388 } 4389 4390 /* do the uid/gid translation game */ 4391 if (uid == (uid_t) -1) 4392 uid = ump->mount_args.anon_uid; 4393 if (gid == (gid_t) -1) 4394 gid = ump->mount_args.anon_gid; 4395 4396 *uidp = uid; 4397 *gidp = gid; 4398 4399 UDF_UNLOCK_NODE(udf_node, 0); 4400 } 4401 4402 4403 void 4404 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4405 { 4406 struct udf_mount *ump = udf_node->ump; 4407 struct file_entry *fe = udf_node->fe; 4408 struct extfile_entry *efe = udf_node->efe; 4409 uid_t nobody_uid; 4410 gid_t nobody_gid; 4411 4412 UDF_LOCK_NODE(udf_node, 0); 4413 4414 /* do the uid/gid translation game */ 4415 nobody_uid = ump->mount_args.nobody_uid; 4416 nobody_gid = ump->mount_args.nobody_gid; 4417 if (uid == nobody_uid) 4418 uid = (uid_t) -1; 4419 if (gid == nobody_gid) 4420 gid = (gid_t) -1; 4421 4422 if (fe) { 4423 fe->uid = udf_rw32((uint32_t) uid); 4424 fe->gid = udf_rw32((uint32_t) gid); 4425 } else { 4426 efe->uid = udf_rw32((uint32_t) uid); 4427 efe->gid = udf_rw32((uint32_t) gid); 4428 } 4429 4430 UDF_UNLOCK_NODE(udf_node, 0); 4431 } 4432 4433 4434 /* --------------------------------------------------------------------- */ 4435 4436 4437 static int 4438 dirhash_fill(struct udf_node *dir_node) 4439 { 4440 struct vnode *dvp = dir_node->vnode; 4441 struct dirhash *dirh; 4442 struct file_entry *fe = dir_node->fe; 4443 struct extfile_entry *efe = dir_node->efe; 4444 struct fileid_desc *fid; 4445 struct dirent *dirent; 4446 uint64_t file_size, pre_diroffset, diroffset; 4447 uint32_t lb_size; 4448 int error; 4449 4450 /* make sure we have a dirhash to work on */ 4451 dirh = dir_node->dir_hash; 4452 KASSERT(dirh); 4453 KASSERT(dirh->refcnt > 0); 4454 4455 if (dirh->flags & DIRH_BROKEN) 4456 return EIO; 4457 if (dirh->flags & DIRH_COMPLETE) 4458 return 0; 4459 4460 /* make sure we have a clean dirhash to add to */ 4461 dirhash_purge_entries(dirh); 4462 4463 /* get directory filesize */ 4464 if (fe) { 4465 file_size = udf_rw64(fe->inf_len); 4466 } else { 4467 assert(efe); 4468 file_size = udf_rw64(efe->inf_len); 4469 } 4470 4471 /* allocate temporary space for fid */ 4472 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4473 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4474 4475 /* allocate temporary space for dirent */ 4476 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4477 4478 error = 0; 4479 diroffset = 0; 4480 while (diroffset < file_size) { 4481 /* transfer a new fid/dirent */ 4482 pre_diroffset = diroffset; 4483 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4484 if (error) { 4485 /* TODO what to do? continue but not add? */ 4486 dirh->flags |= DIRH_BROKEN; 4487 dirhash_purge_entries(dirh); 4488 break; 4489 } 4490 4491 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4492 /* register deleted extent for reuse */ 4493 dirhash_enter_freed(dirh, pre_diroffset, 4494 udf_fidsize(fid)); 4495 } else { 4496 /* append to the dirhash */ 4497 dirhash_enter(dirh, dirent, pre_diroffset, 4498 udf_fidsize(fid), 0); 4499 } 4500 } 4501 dirh->flags |= DIRH_COMPLETE; 4502 4503 free(fid, M_UDFTEMP); 4504 free(dirent, M_UDFTEMP); 4505 4506 return error; 4507 } 4508 4509 4510 /* --------------------------------------------------------------------- */ 4511 4512 /* 4513 * Directory read and manipulation functions. 4514 * 4515 */ 4516 4517 int 4518 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4519 struct long_ad *icb_loc, int *found) 4520 { 4521 struct udf_node *dir_node = VTOI(vp); 4522 struct dirhash *dirh; 4523 struct dirhash_entry *dirh_ep; 4524 struct fileid_desc *fid; 4525 struct dirent *dirent; 4526 uint64_t diroffset; 4527 uint32_t lb_size; 4528 int hit, error; 4529 4530 /* set default return */ 4531 *found = 0; 4532 4533 /* get our dirhash and make sure its read in */ 4534 dirhash_get(&dir_node->dir_hash); 4535 error = dirhash_fill(dir_node); 4536 if (error) { 4537 dirhash_put(dir_node->dir_hash); 4538 return error; 4539 } 4540 dirh = dir_node->dir_hash; 4541 4542 /* allocate temporary space for fid */ 4543 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4544 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4545 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4546 4547 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4548 namelen, namelen, name)); 4549 4550 /* search our dirhash hits */ 4551 memset(icb_loc, 0, sizeof(*icb_loc)); 4552 dirh_ep = NULL; 4553 for (;;) { 4554 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4555 /* if no hit, abort the search */ 4556 if (!hit) 4557 break; 4558 4559 /* check this hit */ 4560 diroffset = dirh_ep->offset; 4561 4562 /* transfer a new fid/dirent */ 4563 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4564 if (error) 4565 break; 4566 4567 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4568 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4569 4570 /* see if its our entry */ 4571 KASSERT(dirent->d_namlen == namelen); 4572 if (strncmp(dirent->d_name, name, namelen) == 0) { 4573 *found = 1; 4574 *icb_loc = fid->icb; 4575 break; 4576 } 4577 } 4578 free(fid, M_UDFTEMP); 4579 free(dirent, M_UDFTEMP); 4580 4581 dirhash_put(dir_node->dir_hash); 4582 4583 return error; 4584 } 4585 4586 /* --------------------------------------------------------------------- */ 4587 4588 static int 4589 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4590 struct long_ad *node_icb, struct long_ad *parent_icb, 4591 uint64_t parent_unique_id) 4592 { 4593 struct timespec now; 4594 struct icb_tag *icb; 4595 struct filetimes_extattr_entry *ft_extattr; 4596 uint64_t unique_id; 4597 uint32_t fidsize, lb_num; 4598 uint8_t *bpos; 4599 int crclen, attrlen; 4600 4601 lb_num = udf_rw32(node_icb->loc.lb_num); 4602 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4603 icb = &fe->icbtag; 4604 4605 /* 4606 * Always use strategy type 4 unless on WORM wich we don't support 4607 * (yet). Fill in defaults and set for internal allocation of data. 4608 */ 4609 icb->strat_type = udf_rw16(4); 4610 icb->max_num_entries = udf_rw16(1); 4611 icb->file_type = file_type; /* 8 bit */ 4612 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4613 4614 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4615 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4616 4617 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4618 4619 vfs_timestamp(&now); 4620 udf_timespec_to_timestamp(&now, &fe->atime); 4621 udf_timespec_to_timestamp(&now, &fe->attrtime); 4622 udf_timespec_to_timestamp(&now, &fe->mtime); 4623 4624 udf_set_regid(&fe->imp_id, IMPL_NAME); 4625 udf_add_impl_regid(ump, &fe->imp_id); 4626 4627 unique_id = udf_advance_uniqueid(ump); 4628 fe->unique_id = udf_rw64(unique_id); 4629 fe->l_ea = udf_rw32(0); 4630 4631 /* create extended attribute to record our creation time */ 4632 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4633 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4634 memset(ft_extattr, 0, attrlen); 4635 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4636 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4637 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4638 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4639 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4640 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4641 4642 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4643 (struct extattr_entry *) ft_extattr); 4644 free(ft_extattr, M_UDFTEMP); 4645 4646 /* if its a directory, create '..' */ 4647 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4648 fidsize = 0; 4649 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4650 fidsize = udf_create_parentfid(ump, 4651 (struct fileid_desc *) bpos, parent_icb, 4652 parent_unique_id); 4653 } 4654 4655 /* record fidlength information */ 4656 fe->inf_len = udf_rw64(fidsize); 4657 fe->l_ad = udf_rw32(fidsize); 4658 fe->logblks_rec = udf_rw64(0); /* intern */ 4659 4660 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4661 crclen += udf_rw32(fe->l_ea) + fidsize; 4662 fe->tag.desc_crc_len = udf_rw16(crclen); 4663 4664 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4665 4666 return fidsize; 4667 } 4668 4669 /* --------------------------------------------------------------------- */ 4670 4671 static int 4672 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4673 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4674 uint64_t parent_unique_id) 4675 { 4676 struct timespec now; 4677 struct icb_tag *icb; 4678 uint64_t unique_id; 4679 uint32_t fidsize, lb_num; 4680 uint8_t *bpos; 4681 int crclen; 4682 4683 lb_num = udf_rw32(node_icb->loc.lb_num); 4684 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4685 icb = &efe->icbtag; 4686 4687 /* 4688 * Always use strategy type 4 unless on WORM wich we don't support 4689 * (yet). Fill in defaults and set for internal allocation of data. 4690 */ 4691 icb->strat_type = udf_rw16(4); 4692 icb->max_num_entries = udf_rw16(1); 4693 icb->file_type = file_type; /* 8 bit */ 4694 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4695 4696 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4697 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4698 4699 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4700 4701 vfs_timestamp(&now); 4702 udf_timespec_to_timestamp(&now, &efe->ctime); 4703 udf_timespec_to_timestamp(&now, &efe->atime); 4704 udf_timespec_to_timestamp(&now, &efe->attrtime); 4705 udf_timespec_to_timestamp(&now, &efe->mtime); 4706 4707 udf_set_regid(&efe->imp_id, IMPL_NAME); 4708 udf_add_impl_regid(ump, &efe->imp_id); 4709 4710 unique_id = udf_advance_uniqueid(ump); 4711 efe->unique_id = udf_rw64(unique_id); 4712 efe->l_ea = udf_rw32(0); 4713 4714 /* if its a directory, create '..' */ 4715 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4716 fidsize = 0; 4717 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4718 fidsize = udf_create_parentfid(ump, 4719 (struct fileid_desc *) bpos, parent_icb, 4720 parent_unique_id); 4721 } 4722 4723 /* record fidlength information */ 4724 efe->obj_size = udf_rw64(fidsize); 4725 efe->inf_len = udf_rw64(fidsize); 4726 efe->l_ad = udf_rw32(fidsize); 4727 efe->logblks_rec = udf_rw64(0); /* intern */ 4728 4729 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4730 crclen += udf_rw32(efe->l_ea) + fidsize; 4731 efe->tag.desc_crc_len = udf_rw16(crclen); 4732 4733 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4734 4735 return fidsize; 4736 } 4737 4738 /* --------------------------------------------------------------------- */ 4739 4740 int 4741 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4742 struct udf_node *udf_node, struct componentname *cnp) 4743 { 4744 struct vnode *dvp = dir_node->vnode; 4745 struct dirhash *dirh; 4746 struct dirhash_entry *dirh_ep; 4747 struct file_entry *fe = dir_node->fe; 4748 struct extfile_entry *efe = dir_node->efe; 4749 struct fileid_desc *fid; 4750 struct dirent *dirent; 4751 uint64_t file_size, diroffset; 4752 uint32_t lb_size, fidsize; 4753 int found, error; 4754 char const *name = cnp->cn_nameptr; 4755 int namelen = cnp->cn_namelen; 4756 int hit, refcnt; 4757 4758 /* get our dirhash and make sure its read in */ 4759 dirhash_get(&dir_node->dir_hash); 4760 error = dirhash_fill(dir_node); 4761 if (error) { 4762 dirhash_put(dir_node->dir_hash); 4763 return error; 4764 } 4765 dirh = dir_node->dir_hash; 4766 4767 /* get directory filesize */ 4768 if (fe) { 4769 file_size = udf_rw64(fe->inf_len); 4770 } else { 4771 assert(efe); 4772 file_size = udf_rw64(efe->inf_len); 4773 } 4774 4775 /* allocate temporary space for fid */ 4776 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4777 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4778 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4779 4780 /* search our dirhash hits */ 4781 found = 0; 4782 dirh_ep = NULL; 4783 for (;;) { 4784 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4785 /* if no hit, abort the search */ 4786 if (!hit) 4787 break; 4788 4789 /* check this hit */ 4790 diroffset = dirh_ep->offset; 4791 4792 /* transfer a new fid/dirent */ 4793 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4794 if (error) 4795 break; 4796 4797 /* see if its our entry */ 4798 KASSERT(dirent->d_namlen == namelen); 4799 if (strncmp(dirent->d_name, name, namelen) == 0) { 4800 found = 1; 4801 break; 4802 } 4803 } 4804 4805 if (!found) 4806 error = ENOENT; 4807 if (error) 4808 goto error_out; 4809 4810 /* mark deleted */ 4811 fid->file_char |= UDF_FILE_CHAR_DEL; 4812 #ifdef UDF_COMPLETE_DELETE 4813 memset(&fid->icb, 0, sizeof(fid->icb)); 4814 #endif 4815 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4816 4817 /* get size of fid and compensate for the read_fid_stream advance */ 4818 fidsize = udf_fidsize(fid); 4819 diroffset -= fidsize; 4820 4821 /* write out */ 4822 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4823 fid, fidsize, diroffset, 4824 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4825 FSCRED, NULL, NULL); 4826 if (error) 4827 goto error_out; 4828 4829 /* get reference count of attached node */ 4830 if (udf_node->fe) { 4831 refcnt = udf_rw16(udf_node->fe->link_cnt); 4832 } else { 4833 KASSERT(udf_node->efe); 4834 refcnt = udf_rw16(udf_node->efe->link_cnt); 4835 } 4836 #ifdef UDF_COMPLETE_DELETE 4837 /* substract reference counter in attached node */ 4838 refcnt -= 1; 4839 if (udf_node->fe) { 4840 udf_node->fe->link_cnt = udf_rw16(refcnt); 4841 } else { 4842 udf_node->efe->link_cnt = udf_rw16(refcnt); 4843 } 4844 4845 /* prevent writeout when refcnt == 0 */ 4846 if (refcnt == 0) 4847 udf_node->i_flags |= IN_DELETED; 4848 4849 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4850 int drefcnt; 4851 4852 /* substract reference counter in directory node */ 4853 /* note subtract 2 (?) for its was also backreferenced */ 4854 if (dir_node->fe) { 4855 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4856 drefcnt -= 1; 4857 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4858 } else { 4859 KASSERT(dir_node->efe); 4860 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4861 drefcnt -= 1; 4862 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4863 } 4864 } 4865 4866 udf_node->i_flags |= IN_MODIFIED; 4867 dir_node->i_flags |= IN_MODIFIED; 4868 #endif 4869 /* if it is/was a hardlink adjust the file count */ 4870 if (refcnt > 0) 4871 udf_adjust_filecount(udf_node, -1); 4872 4873 /* remove from the dirhash */ 4874 dirhash_remove(dirh, dirent, diroffset, 4875 udf_fidsize(fid)); 4876 4877 error_out: 4878 free(fid, M_UDFTEMP); 4879 free(dirent, M_UDFTEMP); 4880 4881 dirhash_put(dir_node->dir_hash); 4882 4883 return error; 4884 } 4885 4886 /* --------------------------------------------------------------------- */ 4887 4888 int 4889 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, 4890 struct udf_node *new_parent_node) 4891 { 4892 struct vnode *dvp = dir_node->vnode; 4893 struct dirhash *dirh; 4894 struct dirhash_entry *dirh_ep; 4895 struct file_entry *fe; 4896 struct extfile_entry *efe; 4897 struct fileid_desc *fid; 4898 struct dirent *dirent; 4899 uint64_t file_size, diroffset; 4900 uint64_t new_parent_unique_id; 4901 uint32_t lb_size, fidsize; 4902 int found, error; 4903 char const *name = ".."; 4904 int namelen = 2; 4905 int hit; 4906 4907 /* get our dirhash and make sure its read in */ 4908 dirhash_get(&dir_node->dir_hash); 4909 error = dirhash_fill(dir_node); 4910 if (error) { 4911 dirhash_put(dir_node->dir_hash); 4912 return error; 4913 } 4914 dirh = dir_node->dir_hash; 4915 4916 /* get new parent's unique ID */ 4917 fe = new_parent_node->fe; 4918 efe = new_parent_node->efe; 4919 if (fe) { 4920 new_parent_unique_id = udf_rw64(fe->unique_id); 4921 } else { 4922 assert(efe); 4923 new_parent_unique_id = udf_rw64(efe->unique_id); 4924 } 4925 4926 /* get directory filesize */ 4927 fe = dir_node->fe; 4928 efe = dir_node->efe; 4929 if (fe) { 4930 file_size = udf_rw64(fe->inf_len); 4931 } else { 4932 assert(efe); 4933 file_size = udf_rw64(efe->inf_len); 4934 } 4935 4936 /* allocate temporary space for fid */ 4937 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4938 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4939 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4940 4941 /* 4942 * NOTE the standard does not dictate the FID entry '..' should be 4943 * first, though in practice it will most likely be. 4944 */ 4945 4946 /* search our dirhash hits */ 4947 found = 0; 4948 dirh_ep = NULL; 4949 for (;;) { 4950 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4951 /* if no hit, abort the search */ 4952 if (!hit) 4953 break; 4954 4955 /* check this hit */ 4956 diroffset = dirh_ep->offset; 4957 4958 /* transfer a new fid/dirent */ 4959 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4960 if (error) 4961 break; 4962 4963 /* see if its our entry */ 4964 KASSERT(dirent->d_namlen == namelen); 4965 if (strncmp(dirent->d_name, name, namelen) == 0) { 4966 found = 1; 4967 break; 4968 } 4969 } 4970 4971 if (!found) 4972 error = ENOENT; 4973 if (error) 4974 goto error_out; 4975 4976 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ 4977 fid->icb = new_parent_node->write_loc; 4978 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); 4979 4980 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4981 4982 /* get size of fid and compensate for the read_fid_stream advance */ 4983 fidsize = udf_fidsize(fid); 4984 diroffset -= fidsize; 4985 4986 /* write out */ 4987 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4988 fid, fidsize, diroffset, 4989 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4990 FSCRED, NULL, NULL); 4991 4992 /* nothing to be done in the dirhash */ 4993 4994 error_out: 4995 free(fid, M_UDFTEMP); 4996 free(dirent, M_UDFTEMP); 4997 4998 dirhash_put(dir_node->dir_hash); 4999 5000 return error; 5001 } 5002 5003 /* --------------------------------------------------------------------- */ 5004 5005 /* 5006 * We are not allowed to split the fid tag itself over an logical block so 5007 * check the space remaining in the logical block. 5008 * 5009 * We try to select the smallest candidate for recycling or when none is 5010 * found, append a new one at the end of the directory. 5011 */ 5012 5013 int 5014 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 5015 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 5016 { 5017 struct vnode *dvp = dir_node->vnode; 5018 struct dirhash *dirh; 5019 struct dirhash_entry *dirh_ep; 5020 struct fileid_desc *fid; 5021 struct icb_tag *icbtag; 5022 struct charspec osta_charspec; 5023 struct dirent dirent; 5024 uint64_t unique_id, dir_size; 5025 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 5026 uint32_t chosen_size, chosen_size_diff; 5027 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 5028 int file_char, refcnt, icbflags, addr_type, hit, error; 5029 5030 /* get our dirhash and make sure its read in */ 5031 dirhash_get(&dir_node->dir_hash); 5032 error = dirhash_fill(dir_node); 5033 if (error) { 5034 dirhash_put(dir_node->dir_hash); 5035 return error; 5036 } 5037 dirh = dir_node->dir_hash; 5038 5039 /* get info */ 5040 lb_size = udf_rw32(ump->logical_vol->lb_size); 5041 udf_osta_charset(&osta_charspec); 5042 5043 if (dir_node->fe) { 5044 dir_size = udf_rw64(dir_node->fe->inf_len); 5045 icbtag = &dir_node->fe->icbtag; 5046 } else { 5047 dir_size = udf_rw64(dir_node->efe->inf_len); 5048 icbtag = &dir_node->efe->icbtag; 5049 } 5050 5051 icbflags = udf_rw16(icbtag->flags); 5052 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5053 5054 if (udf_node->fe) { 5055 unique_id = udf_rw64(udf_node->fe->unique_id); 5056 refcnt = udf_rw16(udf_node->fe->link_cnt); 5057 } else { 5058 unique_id = udf_rw64(udf_node->efe->unique_id); 5059 refcnt = udf_rw16(udf_node->efe->link_cnt); 5060 } 5061 5062 if (refcnt > 0) { 5063 unique_id = udf_advance_uniqueid(ump); 5064 udf_adjust_filecount(udf_node, 1); 5065 } 5066 5067 /* determine file characteristics */ 5068 file_char = 0; /* visible non deleted file and not stream metadata */ 5069 if (vap->va_type == VDIR) 5070 file_char = UDF_FILE_CHAR_DIR; 5071 5072 /* malloc scrap buffer */ 5073 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 5074 5075 /* calculate _minimum_ fid size */ 5076 unix_to_udf_name((char *) fid->data, &fid->l_fi, 5077 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5078 fidsize = UDF_FID_SIZE + fid->l_fi; 5079 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 5080 5081 /* find position that will fit the FID */ 5082 chosen_fid_pos = dir_size; 5083 chosen_size = 0; 5084 chosen_size_diff = UINT_MAX; 5085 5086 /* shut up gcc */ 5087 dirent.d_namlen = 0; 5088 5089 /* search our dirhash hits */ 5090 error = 0; 5091 dirh_ep = NULL; 5092 for (;;) { 5093 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 5094 /* if no hit, abort the search */ 5095 if (!hit) 5096 break; 5097 5098 /* check this hit for size */ 5099 this_fidsize = dirh_ep->entry_size; 5100 5101 /* check this hit */ 5102 fid_pos = dirh_ep->offset; 5103 end_fid_pos = fid_pos + this_fidsize; 5104 size_diff = this_fidsize - fidsize; 5105 lb_rest = lb_size - (end_fid_pos % lb_size); 5106 5107 #ifndef UDF_COMPLETE_DELETE 5108 /* transfer a new fid/dirent */ 5109 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 5110 if (error) 5111 goto error_out; 5112 5113 /* only reuse entries that are wiped */ 5114 /* check if the len + loc are marked zero */ 5115 if (udf_rw32(fid->icb.len) != 0) 5116 continue; 5117 if (udf_rw32(fid->icb.loc.lb_num) != 0) 5118 continue; 5119 if (udf_rw16(fid->icb.loc.part_num) != 0) 5120 continue; 5121 #endif /* UDF_COMPLETE_DELETE */ 5122 5123 /* select if not splitting the tag and its smaller */ 5124 if ((size_diff >= 0) && 5125 (size_diff < chosen_size_diff) && 5126 (lb_rest >= sizeof(struct desc_tag))) 5127 { 5128 /* UDF 2.3.4.2+3 specifies rules for iu size */ 5129 if ((size_diff == 0) || (size_diff >= 32)) { 5130 chosen_fid_pos = fid_pos; 5131 chosen_size = this_fidsize; 5132 chosen_size_diff = size_diff; 5133 } 5134 } 5135 } 5136 5137 5138 /* extend directory if no other candidate found */ 5139 if (chosen_size == 0) { 5140 chosen_fid_pos = dir_size; 5141 chosen_size = fidsize; 5142 chosen_size_diff = 0; 5143 5144 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 5145 if (addr_type == UDF_ICB_INTERN_ALLOC) { 5146 /* pre-grow directory to see if we're to switch */ 5147 udf_grow_node(dir_node, dir_size + chosen_size); 5148 5149 icbflags = udf_rw16(icbtag->flags); 5150 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5151 } 5152 5153 /* make sure the next fid desc_tag won't be splitted */ 5154 if (addr_type != UDF_ICB_INTERN_ALLOC) { 5155 end_fid_pos = chosen_fid_pos + chosen_size; 5156 lb_rest = lb_size - (end_fid_pos % lb_size); 5157 5158 /* pad with implementation use regid if needed */ 5159 if (lb_rest < sizeof(struct desc_tag)) 5160 chosen_size += 32; 5161 } 5162 } 5163 chosen_size_diff = chosen_size - fidsize; 5164 5165 /* populate the FID */ 5166 memset(fid, 0, lb_size); 5167 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 5168 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 5169 fid->file_char = file_char; 5170 fid->icb = udf_node->loc; 5171 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 5172 fid->l_iu = udf_rw16(0); 5173 5174 if (chosen_size > fidsize) { 5175 /* insert implementation-use regid to space it correctly */ 5176 fid->l_iu = udf_rw16(chosen_size_diff); 5177 5178 /* set implementation use */ 5179 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 5180 udf_add_impl_regid(ump, (struct regid *) fid->data); 5181 } 5182 5183 /* fill in name */ 5184 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 5185 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5186 5187 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 5188 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5189 5190 /* writeout FID/update parent directory */ 5191 error = vn_rdwr(UIO_WRITE, dvp, 5192 fid, chosen_size, chosen_fid_pos, 5193 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5194 FSCRED, NULL, NULL); 5195 5196 if (error) 5197 goto error_out; 5198 5199 /* add reference counter in attached node */ 5200 if (udf_node->fe) { 5201 refcnt = udf_rw16(udf_node->fe->link_cnt); 5202 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5203 } else { 5204 KASSERT(udf_node->efe); 5205 refcnt = udf_rw16(udf_node->efe->link_cnt); 5206 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5207 } 5208 5209 /* mark not deleted if it was... just in case, but do warn */ 5210 if (udf_node->i_flags & IN_DELETED) { 5211 printf("udf: warning, marking a file undeleted\n"); 5212 udf_node->i_flags &= ~IN_DELETED; 5213 } 5214 5215 if (file_char & UDF_FILE_CHAR_DIR) { 5216 /* add reference counter in directory node for '..' */ 5217 if (dir_node->fe) { 5218 refcnt = udf_rw16(dir_node->fe->link_cnt); 5219 refcnt++; 5220 dir_node->fe->link_cnt = udf_rw16(refcnt); 5221 } else { 5222 KASSERT(dir_node->efe); 5223 refcnt = udf_rw16(dir_node->efe->link_cnt); 5224 refcnt++; 5225 dir_node->efe->link_cnt = udf_rw16(refcnt); 5226 } 5227 } 5228 5229 /* append to the dirhash */ 5230 dirent.d_namlen = cnp->cn_namelen; 5231 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen); 5232 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5233 udf_fidsize(fid), 1); 5234 5235 /* note updates */ 5236 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5237 /* VN_KNOTE(udf_node, ...) */ 5238 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5239 5240 error_out: 5241 free(fid, M_TEMP); 5242 5243 dirhash_put(dir_node->dir_hash); 5244 5245 return error; 5246 } 5247 5248 /* --------------------------------------------------------------------- */ 5249 5250 /* 5251 * Each node can have an attached streamdir node though not recursively. These 5252 * are otherwise known as named substreams/named extended attributes that have 5253 * no size limitations. 5254 * 5255 * `Normal' extended attributes are indicated with a number and are recorded 5256 * in either the fe/efe descriptor itself for small descriptors or recorded in 5257 * the attached extended attribute file. Since these spaces can get 5258 * fragmented, care ought to be taken. 5259 * 5260 * Since the size of the space reserved for allocation descriptors is limited, 5261 * there is a mechanim provided for extending this space; this is done by a 5262 * special extent to allow schrinking of the allocations without breaking the 5263 * linkage to the allocation extent descriptor. 5264 */ 5265 5266 int 5267 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5268 struct udf_node **udf_noderes) 5269 { 5270 union dscrptr *dscr; 5271 struct udf_node *udf_node; 5272 struct vnode *nvp; 5273 struct long_ad icb_loc, last_fe_icb_loc; 5274 uint64_t file_size; 5275 uint32_t lb_size, sector, dummy; 5276 uint8_t *file_data; 5277 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5278 int slot, eof, error; 5279 5280 DPRINTF(NODE, ("udf_get_node called\n")); 5281 *udf_noderes = udf_node = NULL; 5282 5283 /* lock to disallow simultanious creation of same udf_node */ 5284 mutex_enter(&ump->get_node_lock); 5285 5286 DPRINTF(NODE, ("\tlookup in hash table\n")); 5287 /* lookup in hash table */ 5288 assert(ump); 5289 assert(node_icb_loc); 5290 udf_node = udf_node_lookup(ump, node_icb_loc); 5291 if (udf_node) { 5292 DPRINTF(NODE, ("\tgot it from the hash!\n")); 5293 /* vnode is returned locked */ 5294 *udf_noderes = udf_node; 5295 mutex_exit(&ump->get_node_lock); 5296 return 0; 5297 } 5298 5299 /* garbage check: translate udf_node_icb_loc to sectornr */ 5300 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); 5301 if (error) { 5302 /* no use, this will fail anyway */ 5303 mutex_exit(&ump->get_node_lock); 5304 return EINVAL; 5305 } 5306 5307 /* build udf_node (do initialise!) */ 5308 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5309 memset(udf_node, 0, sizeof(struct udf_node)); 5310 5311 DPRINTF(NODE, ("\tget new vnode\n")); 5312 /* give it a vnode */ 5313 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp); 5314 if (error) { 5315 pool_put(&udf_node_pool, udf_node); 5316 mutex_exit(&ump->get_node_lock); 5317 return error; 5318 } 5319 5320 /* always return locked vnode */ 5321 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { 5322 /* recycle vnode and unlock; simultanious will fail too */ 5323 ungetnewvnode(nvp); 5324 mutex_exit(&ump->get_node_lock); 5325 return error; 5326 } 5327 5328 /* initialise crosslinks, note location of fe/efe for hashing */ 5329 udf_node->ump = ump; 5330 udf_node->vnode = nvp; 5331 nvp->v_data = udf_node; 5332 udf_node->loc = *node_icb_loc; 5333 udf_node->lockf = 0; 5334 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5335 cv_init(&udf_node->node_lock, "udf_nlk"); 5336 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */ 5337 udf_node->outstanding_bufs = 0; 5338 udf_node->outstanding_nodedscr = 0; 5339 udf_node->uncommitted_lbs = 0; 5340 5341 /* check if we're fetching the root */ 5342 if (ump->fileset_desc) 5343 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5344 sizeof(struct long_ad)) == 0) 5345 nvp->v_vflag |= VV_ROOT; 5346 5347 /* insert into the hash lookup */ 5348 udf_register_node(udf_node); 5349 5350 /* safe to unlock, the entry is in the hash table, vnode is locked */ 5351 mutex_exit(&ump->get_node_lock); 5352 5353 icb_loc = *node_icb_loc; 5354 needs_indirect = 0; 5355 strat4096 = 0; 5356 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5357 file_size = 0; 5358 file_data = NULL; 5359 lb_size = udf_rw32(ump->logical_vol->lb_size); 5360 5361 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5362 do { 5363 /* try to read in fe/efe */ 5364 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5365 5366 /* blank sector marks end of sequence, check this */ 5367 if ((dscr == NULL) && (!strat4096)) 5368 error = ENOENT; 5369 5370 /* break if read error or blank sector */ 5371 if (error || (dscr == NULL)) 5372 break; 5373 5374 /* process descriptor based on the descriptor type */ 5375 dscr_type = udf_rw16(dscr->tag.id); 5376 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5377 5378 /* if dealing with an indirect entry, follow the link */ 5379 if (dscr_type == TAGID_INDIRECTENTRY) { 5380 needs_indirect = 0; 5381 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5382 icb_loc = dscr->inde.indirect_icb; 5383 continue; 5384 } 5385 5386 /* only file entries and extended file entries allowed here */ 5387 if ((dscr_type != TAGID_FENTRY) && 5388 (dscr_type != TAGID_EXTFENTRY)) { 5389 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5390 error = ENOENT; 5391 break; 5392 } 5393 5394 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5395 5396 /* choose this one */ 5397 last_fe_icb_loc = icb_loc; 5398 5399 /* record and process/update (ext)fentry */ 5400 file_data = NULL; 5401 if (dscr_type == TAGID_FENTRY) { 5402 if (udf_node->fe) 5403 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5404 udf_node->fe); 5405 udf_node->fe = &dscr->fe; 5406 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5407 udf_file_type = udf_node->fe->icbtag.file_type; 5408 file_size = udf_rw64(udf_node->fe->inf_len); 5409 file_data = udf_node->fe->data; 5410 } else { 5411 if (udf_node->efe) 5412 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5413 udf_node->efe); 5414 udf_node->efe = &dscr->efe; 5415 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5416 udf_file_type = udf_node->efe->icbtag.file_type; 5417 file_size = udf_rw64(udf_node->efe->inf_len); 5418 file_data = udf_node->efe->data; 5419 } 5420 5421 /* check recording strategy (structure) */ 5422 5423 /* 5424 * Strategy 4096 is a daisy linked chain terminating with an 5425 * unrecorded sector or a TERM descriptor. The next 5426 * descriptor is to be found in the sector that follows the 5427 * current sector. 5428 */ 5429 if (strat == 4096) { 5430 strat4096 = 1; 5431 needs_indirect = 1; 5432 5433 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5434 } 5435 5436 /* 5437 * Strategy 4 is the normal strategy and terminates, but if 5438 * we're in strategy 4096, we can't have strategy 4 mixed in 5439 */ 5440 5441 if (strat == 4) { 5442 if (strat4096) { 5443 error = EINVAL; 5444 break; 5445 } 5446 break; /* done */ 5447 } 5448 } while (!error); 5449 5450 /* first round of cleanup code */ 5451 if (error) { 5452 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5453 /* recycle udf_node */ 5454 udf_dispose_node(udf_node); 5455 5456 VOP_UNLOCK(nvp); 5457 nvp->v_data = NULL; 5458 ungetnewvnode(nvp); 5459 5460 return EINVAL; /* error code ok? */ 5461 } 5462 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5463 5464 /* assert no references to dscr anymore beyong this point */ 5465 assert((udf_node->fe) || (udf_node->efe)); 5466 dscr = NULL; 5467 5468 /* 5469 * Remember where to record an updated version of the descriptor. If 5470 * there is a sequence of indirect entries, icb_loc will have been 5471 * updated. Its the write disipline to allocate new space and to make 5472 * sure the chain is maintained. 5473 * 5474 * `needs_indirect' flags if the next location is to be filled with 5475 * with an indirect entry. 5476 */ 5477 udf_node->write_loc = icb_loc; 5478 udf_node->needs_indirect = needs_indirect; 5479 5480 /* 5481 * Go trough all allocations extents of this descriptor and when 5482 * encountering a redirect read in the allocation extension. These are 5483 * daisy-chained. 5484 */ 5485 UDF_LOCK_NODE(udf_node, 0); 5486 udf_node->num_extensions = 0; 5487 5488 error = 0; 5489 slot = 0; 5490 for (;;) { 5491 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5492 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5493 "lb_num = %d, part = %d\n", slot, eof, 5494 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5495 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5496 udf_rw32(icb_loc.loc.lb_num), 5497 udf_rw16(icb_loc.loc.part_num))); 5498 if (eof) 5499 break; 5500 slot++; 5501 5502 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5503 continue; 5504 5505 DPRINTF(NODE, ("\tgot redirect extent\n")); 5506 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5507 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5508 "too many allocation extensions on " 5509 "udf_node\n")); 5510 error = EINVAL; 5511 break; 5512 } 5513 5514 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5515 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5516 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5517 "extension size in udf_node\n")); 5518 error = EINVAL; 5519 break; 5520 } 5521 5522 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5523 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5524 /* load in allocation extent */ 5525 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5526 if (error || (dscr == NULL)) 5527 break; 5528 5529 /* process read-in descriptor */ 5530 dscr_type = udf_rw16(dscr->tag.id); 5531 5532 if (dscr_type != TAGID_ALLOCEXTENT) { 5533 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5534 error = ENOENT; 5535 break; 5536 } 5537 5538 DPRINTF(NODE, ("\trecording redirect extent\n")); 5539 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5540 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5541 5542 udf_node->num_extensions++; 5543 5544 } /* while */ 5545 UDF_UNLOCK_NODE(udf_node, 0); 5546 5547 /* second round of cleanup code */ 5548 if (error) { 5549 /* recycle udf_node */ 5550 udf_dispose_node(udf_node); 5551 5552 VOP_UNLOCK(nvp); 5553 nvp->v_data = NULL; 5554 ungetnewvnode(nvp); 5555 5556 return EINVAL; /* error code ok? */ 5557 } 5558 5559 DPRINTF(NODE, ("\tnode read in fine\n")); 5560 5561 /* 5562 * Translate UDF filetypes into vnode types. 5563 * 5564 * Systemfiles like the meta main and mirror files are not treated as 5565 * normal files, so we type them as having no type. UDF dictates that 5566 * they are not allowed to be visible. 5567 */ 5568 5569 switch (udf_file_type) { 5570 case UDF_ICB_FILETYPE_DIRECTORY : 5571 case UDF_ICB_FILETYPE_STREAMDIR : 5572 nvp->v_type = VDIR; 5573 break; 5574 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5575 nvp->v_type = VBLK; 5576 break; 5577 case UDF_ICB_FILETYPE_CHARDEVICE : 5578 nvp->v_type = VCHR; 5579 break; 5580 case UDF_ICB_FILETYPE_SOCKET : 5581 nvp->v_type = VSOCK; 5582 break; 5583 case UDF_ICB_FILETYPE_FIFO : 5584 nvp->v_type = VFIFO; 5585 break; 5586 case UDF_ICB_FILETYPE_SYMLINK : 5587 nvp->v_type = VLNK; 5588 break; 5589 case UDF_ICB_FILETYPE_VAT : 5590 case UDF_ICB_FILETYPE_META_MAIN : 5591 case UDF_ICB_FILETYPE_META_MIRROR : 5592 nvp->v_type = VNON; 5593 break; 5594 case UDF_ICB_FILETYPE_RANDOMACCESS : 5595 case UDF_ICB_FILETYPE_REALTIME : 5596 nvp->v_type = VREG; 5597 break; 5598 default: 5599 /* YIKES, something else */ 5600 nvp->v_type = VNON; 5601 } 5602 5603 /* TODO specfs, fifofs etc etc. vnops setting */ 5604 5605 /* don't forget to set vnode's v_size */ 5606 uvm_vnp_setsize(nvp, file_size); 5607 5608 /* TODO ext attr and streamdir udf_nodes */ 5609 5610 *udf_noderes = udf_node; 5611 5612 return 0; 5613 } 5614 5615 /* --------------------------------------------------------------------- */ 5616 5617 int 5618 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5619 { 5620 union dscrptr *dscr; 5621 struct long_ad *loc; 5622 int extnr, error; 5623 5624 DPRINTF(NODE, ("udf_writeout_node called\n")); 5625 5626 KASSERT(udf_node->outstanding_bufs == 0); 5627 KASSERT(udf_node->outstanding_nodedscr == 0); 5628 5629 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5630 5631 if (udf_node->i_flags & IN_DELETED) { 5632 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5633 udf_cleanup_reservation(udf_node); 5634 return 0; 5635 } 5636 5637 /* lock node; unlocked in callback */ 5638 UDF_LOCK_NODE(udf_node, 0); 5639 5640 /* remove pending reservations, we're written out */ 5641 udf_cleanup_reservation(udf_node); 5642 5643 /* at least one descriptor writeout */ 5644 udf_node->outstanding_nodedscr = 1; 5645 5646 /* we're going to write out the descriptor so clear the flags */ 5647 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5648 5649 /* if we were rebuild, write out the allocation extents */ 5650 if (udf_node->i_flags & IN_NODE_REBUILD) { 5651 /* mark outstanding node descriptors and issue them */ 5652 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5653 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5654 loc = &udf_node->ext_loc[extnr]; 5655 dscr = (union dscrptr *) udf_node->ext[extnr]; 5656 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5657 if (error) 5658 return error; 5659 } 5660 /* mark allocation extents written out */ 5661 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5662 } 5663 5664 if (udf_node->fe) { 5665 KASSERT(udf_node->efe == NULL); 5666 dscr = (union dscrptr *) udf_node->fe; 5667 } else { 5668 KASSERT(udf_node->efe); 5669 KASSERT(udf_node->fe == NULL); 5670 dscr = (union dscrptr *) udf_node->efe; 5671 } 5672 KASSERT(dscr); 5673 5674 loc = &udf_node->write_loc; 5675 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5676 5677 return error; 5678 } 5679 5680 /* --------------------------------------------------------------------- */ 5681 5682 int 5683 udf_dispose_node(struct udf_node *udf_node) 5684 { 5685 struct vnode *vp; 5686 int extnr; 5687 5688 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5689 if (!udf_node) { 5690 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5691 return 0; 5692 } 5693 5694 vp = udf_node->vnode; 5695 #ifdef DIAGNOSTIC 5696 if (vp->v_numoutput) 5697 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5698 "v_numoutput = %d", udf_node, vp->v_numoutput); 5699 #endif 5700 5701 udf_cleanup_reservation(udf_node); 5702 5703 /* TODO extended attributes and streamdir */ 5704 5705 /* remove dirhash if present */ 5706 dirhash_purge(&udf_node->dir_hash); 5707 5708 /* remove from our hash lookup table */ 5709 udf_deregister_node(udf_node); 5710 5711 /* destroy our lock */ 5712 mutex_destroy(&udf_node->node_mutex); 5713 cv_destroy(&udf_node->node_lock); 5714 5715 /* dissociate our udf_node from the vnode */ 5716 genfs_node_destroy(udf_node->vnode); 5717 vp->v_data = NULL; 5718 5719 /* free associated memory and the node itself */ 5720 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5721 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5722 udf_node->ext[extnr]); 5723 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5724 } 5725 5726 if (udf_node->fe) 5727 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5728 udf_node->fe); 5729 if (udf_node->efe) 5730 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5731 udf_node->efe); 5732 5733 udf_node->fe = (void *) 0xdeadaaaa; 5734 udf_node->efe = (void *) 0xdeadbbbb; 5735 udf_node->ump = (void *) 0xdeadbeef; 5736 pool_put(&udf_node_pool, udf_node); 5737 5738 return 0; 5739 } 5740 5741 5742 5743 /* 5744 * create a new node using the specified vnodeops, vap and cnp but with the 5745 * udf_file_type. This allows special files to be created. Use with care. 5746 */ 5747 5748 static int 5749 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type, 5750 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp) 5751 { 5752 union dscrptr *dscr; 5753 struct udf_node *dir_node = VTOI(dvp); 5754 struct udf_node *udf_node; 5755 struct udf_mount *ump = dir_node->ump; 5756 struct vnode *nvp; 5757 struct long_ad node_icb_loc; 5758 uint64_t parent_unique_id; 5759 uint64_t lmapping; 5760 uint32_t lb_size, lb_num; 5761 uint16_t vpart_num; 5762 uid_t uid; 5763 gid_t gid, parent_gid; 5764 int fid_size, error; 5765 5766 lb_size = udf_rw32(ump->logical_vol->lb_size); 5767 *vpp = NULL; 5768 5769 /* allocate vnode */ 5770 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp); 5771 if (error) 5772 return error; 5773 5774 /* lock node */ 5775 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY); 5776 if (error) 5777 goto error_out_unget; 5778 5779 /* reserve space for one logical block */ 5780 vpart_num = ump->node_part; 5781 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 5782 vpart_num, 1, /* can_fail */ true); 5783 if (error) 5784 goto error_out_unlock; 5785 5786 /* allocate node */ 5787 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 5788 vpart_num, 1, &lmapping); 5789 if (error) 5790 goto error_out_unreserve; 5791 lb_num = lmapping; 5792 5793 /* initialise pointer to location */ 5794 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5795 node_icb_loc.len = udf_rw32(lb_size); 5796 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5797 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5798 5799 /* build udf_node (do initialise!) */ 5800 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5801 memset(udf_node, 0, sizeof(struct udf_node)); 5802 5803 /* initialise crosslinks, note location of fe/efe for hashing */ 5804 /* bugalert: synchronise with udf_get_node() */ 5805 udf_node->ump = ump; 5806 udf_node->vnode = nvp; 5807 nvp->v_data = udf_node; 5808 udf_node->loc = node_icb_loc; 5809 udf_node->write_loc = node_icb_loc; 5810 udf_node->lockf = 0; 5811 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5812 cv_init(&udf_node->node_lock, "udf_nlk"); 5813 udf_node->outstanding_bufs = 0; 5814 udf_node->outstanding_nodedscr = 0; 5815 udf_node->uncommitted_lbs = 0; 5816 5817 /* initialise genfs */ 5818 genfs_node_init(nvp, &udf_genfsops); 5819 5820 /* insert into the hash lookup */ 5821 udf_register_node(udf_node); 5822 5823 /* get parent's unique ID for refering '..' if its a directory */ 5824 if (dir_node->fe) { 5825 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5826 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5827 } else { 5828 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5829 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5830 } 5831 5832 /* get descriptor */ 5833 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5834 5835 /* choose a fe or an efe for it */ 5836 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5837 udf_node->fe = &dscr->fe; 5838 fid_size = udf_create_new_fe(ump, udf_node->fe, 5839 udf_file_type, &udf_node->loc, 5840 &dir_node->loc, parent_unique_id); 5841 /* TODO add extended attribute for creation time */ 5842 } else { 5843 udf_node->efe = &dscr->efe; 5844 fid_size = udf_create_new_efe(ump, udf_node->efe, 5845 udf_file_type, &udf_node->loc, 5846 &dir_node->loc, parent_unique_id); 5847 } 5848 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5849 5850 /* update vnode's size and type */ 5851 nvp->v_type = vap->va_type; 5852 uvm_vnp_setsize(nvp, fid_size); 5853 5854 /* set access mode */ 5855 udf_setaccessmode(udf_node, vap->va_mode); 5856 5857 /* set ownership */ 5858 uid = kauth_cred_geteuid(cnp->cn_cred); 5859 gid = parent_gid; 5860 udf_setownership(udf_node, uid, gid); 5861 5862 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5863 if (error) { 5864 /* free disc allocation for node */ 5865 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5866 5867 /* recycle udf_node */ 5868 udf_dispose_node(udf_node); 5869 vput(nvp); 5870 5871 *vpp = NULL; 5872 return error; 5873 } 5874 5875 /* adjust file count */ 5876 udf_adjust_filecount(udf_node, 1); 5877 5878 /* return result */ 5879 *vpp = nvp; 5880 5881 return 0; 5882 5883 error_out_unreserve: 5884 udf_do_unreserve_space(ump, NULL, vpart_num, 1); 5885 5886 error_out_unlock: 5887 VOP_UNLOCK(nvp); 5888 5889 error_out_unget: 5890 nvp->v_data = NULL; 5891 ungetnewvnode(nvp); 5892 5893 return error; 5894 } 5895 5896 5897 int 5898 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5899 struct componentname *cnp) 5900 { 5901 int (**vnodeops)(void *); 5902 int udf_file_type; 5903 5904 DPRINTF(NODE, ("udf_create_node called\n")); 5905 5906 /* what type are we creating ? */ 5907 vnodeops = udf_vnodeop_p; 5908 /* start with a default */ 5909 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5910 5911 *vpp = NULL; 5912 5913 switch (vap->va_type) { 5914 case VREG : 5915 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5916 break; 5917 case VDIR : 5918 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5919 break; 5920 case VLNK : 5921 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5922 break; 5923 case VBLK : 5924 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5925 /* specfs */ 5926 return ENOTSUP; 5927 break; 5928 case VCHR : 5929 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5930 /* specfs */ 5931 return ENOTSUP; 5932 break; 5933 case VFIFO : 5934 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5935 /* specfs */ 5936 return ENOTSUP; 5937 break; 5938 case VSOCK : 5939 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5940 /* specfs */ 5941 return ENOTSUP; 5942 break; 5943 case VNON : 5944 case VBAD : 5945 default : 5946 /* nothing; can we even create these? */ 5947 return EINVAL; 5948 } 5949 5950 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp); 5951 } 5952 5953 /* --------------------------------------------------------------------- */ 5954 5955 static void 5956 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5957 { 5958 struct udf_mount *ump = udf_node->ump; 5959 uint32_t lb_size, lb_num, len, num_lb; 5960 uint16_t vpart_num; 5961 5962 /* is there really one? */ 5963 if (mem == NULL) 5964 return; 5965 5966 /* got a descriptor here */ 5967 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5968 lb_num = udf_rw32(loc->loc.lb_num); 5969 vpart_num = udf_rw16(loc->loc.part_num); 5970 5971 lb_size = udf_rw32(ump->logical_vol->lb_size); 5972 num_lb = (len + lb_size -1) / lb_size; 5973 5974 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5975 } 5976 5977 void 5978 udf_delete_node(struct udf_node *udf_node) 5979 { 5980 void *dscr; 5981 struct udf_mount *ump; 5982 struct long_ad *loc; 5983 int extnr, lvint, dummy; 5984 5985 ump = udf_node->ump; 5986 5987 /* paranoia check on integrity; should be open!; we could panic */ 5988 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5989 if (lvint == UDF_INTEGRITY_CLOSED) 5990 printf("\tIntegrity was CLOSED!\n"); 5991 5992 /* whatever the node type, change its size to zero */ 5993 (void) udf_resize_node(udf_node, 0, &dummy); 5994 5995 /* force it to be `clean'; no use writing it out */ 5996 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 5997 IN_CHANGE | IN_UPDATE | IN_MODIFY); 5998 5999 /* adjust file count */ 6000 udf_adjust_filecount(udf_node, -1); 6001 6002 /* 6003 * Free its allocated descriptors; memory will be released when 6004 * vop_reclaim() is called. 6005 */ 6006 loc = &udf_node->loc; 6007 6008 dscr = udf_node->fe; 6009 udf_free_descriptor_space(udf_node, loc, dscr); 6010 dscr = udf_node->efe; 6011 udf_free_descriptor_space(udf_node, loc, dscr); 6012 6013 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 6014 dscr = udf_node->ext[extnr]; 6015 loc = &udf_node->ext_loc[extnr]; 6016 udf_free_descriptor_space(udf_node, loc, dscr); 6017 } 6018 } 6019 6020 /* --------------------------------------------------------------------- */ 6021 6022 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 6023 int 6024 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 6025 { 6026 struct file_entry *fe = udf_node->fe; 6027 struct extfile_entry *efe = udf_node->efe; 6028 uint64_t file_size; 6029 int error; 6030 6031 if (fe) { 6032 file_size = udf_rw64(fe->inf_len); 6033 } else { 6034 assert(udf_node->efe); 6035 file_size = udf_rw64(efe->inf_len); 6036 } 6037 6038 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 6039 file_size, new_size)); 6040 6041 /* if not changing, we're done */ 6042 if (file_size == new_size) 6043 return 0; 6044 6045 *extended = (new_size > file_size); 6046 if (*extended) { 6047 error = udf_grow_node(udf_node, new_size); 6048 } else { 6049 error = udf_shrink_node(udf_node, new_size); 6050 } 6051 6052 return error; 6053 } 6054 6055 6056 /* --------------------------------------------------------------------- */ 6057 6058 void 6059 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 6060 struct timespec *mod, struct timespec *birth) 6061 { 6062 struct timespec now; 6063 struct file_entry *fe; 6064 struct extfile_entry *efe; 6065 struct filetimes_extattr_entry *ft_extattr; 6066 struct timestamp *atime, *mtime, *attrtime, *ctime; 6067 struct timestamp fe_ctime; 6068 struct timespec cur_birth; 6069 uint32_t offset, a_l; 6070 uint8_t *filedata; 6071 int error; 6072 6073 /* protect against rogue values */ 6074 if (!udf_node) 6075 return; 6076 6077 fe = udf_node->fe; 6078 efe = udf_node->efe; 6079 6080 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 6081 return; 6082 6083 /* get descriptor information */ 6084 if (fe) { 6085 atime = &fe->atime; 6086 mtime = &fe->mtime; 6087 attrtime = &fe->attrtime; 6088 filedata = fe->data; 6089 6090 /* initial save dummy setting */ 6091 ctime = &fe_ctime; 6092 6093 /* check our extended attribute if present */ 6094 error = udf_extattr_search_intern(udf_node, 6095 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 6096 if (!error) { 6097 ft_extattr = (struct filetimes_extattr_entry *) 6098 (filedata + offset); 6099 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 6100 ctime = &ft_extattr->times[0]; 6101 } 6102 /* TODO create the extended attribute if not found ? */ 6103 } else { 6104 assert(udf_node->efe); 6105 atime = &efe->atime; 6106 mtime = &efe->mtime; 6107 attrtime = &efe->attrtime; 6108 ctime = &efe->ctime; 6109 } 6110 6111 vfs_timestamp(&now); 6112 6113 /* set access time */ 6114 if (udf_node->i_flags & IN_ACCESS) { 6115 if (acc == NULL) 6116 acc = &now; 6117 udf_timespec_to_timestamp(acc, atime); 6118 } 6119 6120 /* set modification time */ 6121 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 6122 if (mod == NULL) 6123 mod = &now; 6124 udf_timespec_to_timestamp(mod, mtime); 6125 6126 /* ensure birthtime is older than set modification! */ 6127 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 6128 if ((cur_birth.tv_sec > mod->tv_sec) || 6129 ((cur_birth.tv_sec == mod->tv_sec) && 6130 (cur_birth.tv_nsec > mod->tv_nsec))) { 6131 udf_timespec_to_timestamp(mod, ctime); 6132 } 6133 } 6134 6135 /* update birthtime if specified */ 6136 /* XXX we asume here that given birthtime is older than mod */ 6137 if (birth && (birth->tv_sec != VNOVAL)) { 6138 udf_timespec_to_timestamp(birth, ctime); 6139 } 6140 6141 /* set change time */ 6142 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 6143 udf_timespec_to_timestamp(&now, attrtime); 6144 6145 /* notify updates to the node itself */ 6146 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 6147 udf_node->i_flags |= IN_ACCESSED; 6148 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 6149 udf_node->i_flags |= IN_MODIFIED; 6150 6151 /* clear modification flags */ 6152 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 6153 } 6154 6155 /* --------------------------------------------------------------------- */ 6156 6157 int 6158 udf_update(struct vnode *vp, struct timespec *acc, 6159 struct timespec *mod, struct timespec *birth, int updflags) 6160 { 6161 union dscrptr *dscrptr; 6162 struct udf_node *udf_node = VTOI(vp); 6163 struct udf_mount *ump = udf_node->ump; 6164 struct regid *impl_id; 6165 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 6166 int waitfor, flags; 6167 6168 #ifdef DEBUG 6169 char bits[128]; 6170 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 6171 updflags)); 6172 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 6173 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 6174 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 6175 #endif 6176 6177 /* set our times */ 6178 udf_itimes(udf_node, acc, mod, birth); 6179 6180 /* set our implementation id */ 6181 if (udf_node->fe) { 6182 dscrptr = (union dscrptr *) udf_node->fe; 6183 impl_id = &udf_node->fe->imp_id; 6184 } else { 6185 dscrptr = (union dscrptr *) udf_node->efe; 6186 impl_id = &udf_node->efe->imp_id; 6187 } 6188 6189 /* set our ID */ 6190 udf_set_regid(impl_id, IMPL_NAME); 6191 udf_add_impl_regid(ump, impl_id); 6192 6193 /* update our crc! on RMW we are not allowed to change a thing */ 6194 udf_validate_tag_and_crc_sums(dscrptr); 6195 6196 /* if called when mounted readonly, never write back */ 6197 if (vp->v_mount->mnt_flag & MNT_RDONLY) 6198 return 0; 6199 6200 /* check if the node is dirty 'enough'*/ 6201 if (updflags & UPDATE_CLOSE) { 6202 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6203 } else { 6204 flags = udf_node->i_flags & IN_MODIFIED; 6205 } 6206 if (flags == 0) 6207 return 0; 6208 6209 /* determine if we need to write sync or async */ 6210 waitfor = 0; 6211 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6212 /* sync mounted */ 6213 waitfor = updflags & UPDATE_WAIT; 6214 if (updflags & UPDATE_DIROP) 6215 waitfor |= UPDATE_WAIT; 6216 } 6217 if (waitfor) 6218 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6219 6220 return 0; 6221 } 6222 6223 6224 /* --------------------------------------------------------------------- */ 6225 6226 6227 /* 6228 * Read one fid and process it into a dirent and advance to the next (*fid) 6229 * has to be allocated a logical block in size, (*dirent) struct dirent length 6230 */ 6231 6232 int 6233 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6234 struct fileid_desc *fid, struct dirent *dirent) 6235 { 6236 struct udf_node *dir_node = VTOI(vp); 6237 struct udf_mount *ump = dir_node->ump; 6238 struct file_entry *fe = dir_node->fe; 6239 struct extfile_entry *efe = dir_node->efe; 6240 uint32_t fid_size, lb_size; 6241 uint64_t file_size; 6242 char *fid_name; 6243 int enough, error; 6244 6245 assert(fid); 6246 assert(dirent); 6247 assert(dir_node); 6248 assert(offset); 6249 assert(*offset != 1); 6250 6251 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6252 /* check if we're past the end of the directory */ 6253 if (fe) { 6254 file_size = udf_rw64(fe->inf_len); 6255 } else { 6256 assert(dir_node->efe); 6257 file_size = udf_rw64(efe->inf_len); 6258 } 6259 if (*offset >= file_size) 6260 return EINVAL; 6261 6262 /* get maximum length of FID descriptor */ 6263 lb_size = udf_rw32(ump->logical_vol->lb_size); 6264 6265 /* initialise return values */ 6266 fid_size = 0; 6267 memset(dirent, 0, sizeof(struct dirent)); 6268 memset(fid, 0, lb_size); 6269 6270 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6271 if (!enough) { 6272 /* short dir ... */ 6273 return EIO; 6274 } 6275 6276 error = vn_rdwr(UIO_READ, vp, 6277 fid, MIN(file_size - (*offset), lb_size), *offset, 6278 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6279 NULL, NULL); 6280 if (error) 6281 return error; 6282 6283 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6284 /* 6285 * Check if we got a whole descriptor. 6286 * TODO Try to `resync' directory stream when something is very wrong. 6287 */ 6288 6289 /* check if our FID header is OK */ 6290 error = udf_check_tag(fid); 6291 if (error) { 6292 goto brokendir; 6293 } 6294 DPRINTF(FIDS, ("\ttag check ok\n")); 6295 6296 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6297 error = EIO; 6298 goto brokendir; 6299 } 6300 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6301 6302 /* check for length */ 6303 fid_size = udf_fidsize(fid); 6304 enough = (file_size - (*offset) >= fid_size); 6305 if (!enough) { 6306 error = EIO; 6307 goto brokendir; 6308 } 6309 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6310 6311 /* check FID contents */ 6312 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6313 brokendir: 6314 if (error) { 6315 /* note that is sometimes a bit quick to report */ 6316 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6317 /* RESYNC? */ 6318 /* TODO: use udf_resync_fid_stream */ 6319 return EIO; 6320 } 6321 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6322 6323 /* we got a whole and valid descriptor! */ 6324 DPRINTF(FIDS, ("\tinterpret FID\n")); 6325 6326 /* create resulting dirent structure */ 6327 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6328 udf_to_unix_name(dirent->d_name, MAXNAMLEN, 6329 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6330 6331 /* '..' has no name, so provide one */ 6332 if (fid->file_char & UDF_FILE_CHAR_PAR) 6333 strcpy(dirent->d_name, ".."); 6334 6335 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ 6336 dirent->d_namlen = strlen(dirent->d_name); 6337 dirent->d_reclen = _DIRENT_SIZE(dirent); 6338 6339 /* 6340 * Note that its not worth trying to go for the filetypes now... its 6341 * too expensive too 6342 */ 6343 dirent->d_type = DT_UNKNOWN; 6344 6345 /* initial guess for filetype we can make */ 6346 if (fid->file_char & UDF_FILE_CHAR_DIR) 6347 dirent->d_type = DT_DIR; 6348 6349 /* advance */ 6350 *offset += fid_size; 6351 6352 return error; 6353 } 6354 6355 6356 /* --------------------------------------------------------------------- */ 6357 6358 static void 6359 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor, 6360 int pass, int *ndirty) 6361 { 6362 struct udf_node *udf_node, *n_udf_node; 6363 struct vnode *vp; 6364 int vdirty, error; 6365 int on_type, on_flags, on_vnode; 6366 6367 derailed: 6368 KASSERT(mutex_owned(&mntvnode_lock)); 6369 6370 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6371 udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6372 for (;udf_node; udf_node = n_udf_node) { 6373 DPRINTF(SYNC, (".")); 6374 6375 udf_node->i_flags &= ~IN_SYNCED; 6376 vp = udf_node->vnode; 6377 6378 mutex_enter(&vp->v_interlock); 6379 n_udf_node = rb_tree_iterate(&ump->udf_node_tree, 6380 udf_node, RB_DIR_RIGHT); 6381 6382 if (n_udf_node) 6383 n_udf_node->i_flags |= IN_SYNCED; 6384 6385 /* system nodes are not synced this way */ 6386 if (vp->v_vflag & VV_SYSTEM) { 6387 mutex_exit(&vp->v_interlock); 6388 continue; 6389 } 6390 6391 /* check if its dirty enough to even try */ 6392 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON); 6393 on_flags = ((udf_node->i_flags & 6394 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0); 6395 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd) 6396 && UVM_OBJ_IS_CLEAN(&vp->v_uobj); 6397 if (on_type || (on_flags || on_vnode)) { /* XXX */ 6398 /* not dirty (enough?) */ 6399 mutex_exit(&vp->v_interlock); 6400 continue; 6401 } 6402 6403 mutex_exit(&mntvnode_lock); 6404 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT); 6405 if (error) { 6406 mutex_enter(&mntvnode_lock); 6407 if (error == ENOENT) 6408 goto derailed; 6409 *ndirty += 1; 6410 continue; 6411 } 6412 6413 switch (pass) { 6414 case 1: 6415 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6416 break; 6417 case 2: 6418 vdirty = vp->v_numoutput; 6419 if (vp->v_tag == VT_UDF) 6420 vdirty += udf_node->outstanding_bufs + 6421 udf_node->outstanding_nodedscr; 6422 if (vdirty == 0) 6423 VOP_FSYNC(vp, cred, 0,0,0); 6424 *ndirty += vdirty; 6425 break; 6426 case 3: 6427 vdirty = vp->v_numoutput; 6428 if (vp->v_tag == VT_UDF) 6429 vdirty += udf_node->outstanding_bufs + 6430 udf_node->outstanding_nodedscr; 6431 *ndirty += vdirty; 6432 break; 6433 } 6434 6435 vput(vp); 6436 mutex_enter(&mntvnode_lock); 6437 } 6438 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6439 } 6440 6441 6442 void 6443 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6444 { 6445 int dummy, ndirty; 6446 6447 mutex_enter(&mntvnode_lock); 6448 recount: 6449 dummy = 0; 6450 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6451 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6452 udf_sync_pass(ump, cred, waitfor, 1, &dummy); 6453 6454 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6455 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6456 udf_sync_pass(ump, cred, waitfor, 2, &dummy); 6457 6458 if (waitfor == MNT_WAIT) { 6459 ndirty = ump->devvp->v_numoutput; 6460 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6461 ndirty)); 6462 udf_sync_pass(ump, cred, waitfor, 3, &ndirty); 6463 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6464 ndirty)); 6465 6466 if (ndirty) { 6467 /* 1/4 second wait */ 6468 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 6469 hz/4); 6470 goto recount; 6471 } 6472 } 6473 6474 mutex_exit(&mntvnode_lock); 6475 } 6476 6477 /* --------------------------------------------------------------------- */ 6478 6479 /* 6480 * Read and write file extent in/from the buffer. 6481 * 6482 * The splitup of the extent into seperate request-buffers is to minimise 6483 * copying around as much as possible. 6484 * 6485 * block based file reading and writing 6486 */ 6487 6488 static int 6489 udf_read_internal(struct udf_node *node, uint8_t *blob) 6490 { 6491 struct udf_mount *ump; 6492 struct file_entry *fe = node->fe; 6493 struct extfile_entry *efe = node->efe; 6494 uint64_t inflen; 6495 uint32_t sector_size; 6496 uint8_t *pos; 6497 int icbflags, addr_type; 6498 6499 /* get extent and do some paranoia checks */ 6500 ump = node->ump; 6501 sector_size = ump->discinfo.sector_size; 6502 6503 if (fe) { 6504 inflen = udf_rw64(fe->inf_len); 6505 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6506 icbflags = udf_rw16(fe->icbtag.flags); 6507 } else { 6508 assert(node->efe); 6509 inflen = udf_rw64(efe->inf_len); 6510 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6511 icbflags = udf_rw16(efe->icbtag.flags); 6512 } 6513 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6514 6515 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6516 assert(inflen < sector_size); 6517 6518 /* copy out info */ 6519 memset(blob, 0, sector_size); 6520 memcpy(blob, pos, inflen); 6521 6522 return 0; 6523 } 6524 6525 6526 static int 6527 udf_write_internal(struct udf_node *node, uint8_t *blob) 6528 { 6529 struct udf_mount *ump; 6530 struct file_entry *fe = node->fe; 6531 struct extfile_entry *efe = node->efe; 6532 uint64_t inflen; 6533 uint32_t sector_size; 6534 uint8_t *pos; 6535 int icbflags, addr_type; 6536 6537 /* get extent and do some paranoia checks */ 6538 ump = node->ump; 6539 sector_size = ump->discinfo.sector_size; 6540 6541 if (fe) { 6542 inflen = udf_rw64(fe->inf_len); 6543 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6544 icbflags = udf_rw16(fe->icbtag.flags); 6545 } else { 6546 assert(node->efe); 6547 inflen = udf_rw64(efe->inf_len); 6548 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6549 icbflags = udf_rw16(efe->icbtag.flags); 6550 } 6551 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6552 6553 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6554 assert(inflen < sector_size); 6555 6556 /* copy in blob */ 6557 /* memset(pos, 0, inflen); */ 6558 memcpy(pos, blob, inflen); 6559 6560 return 0; 6561 } 6562 6563 6564 void 6565 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6566 { 6567 struct buf *nestbuf; 6568 struct udf_mount *ump = udf_node->ump; 6569 uint64_t *mapping; 6570 uint64_t run_start; 6571 uint32_t sector_size; 6572 uint32_t buf_offset, sector, rbuflen, rblk; 6573 uint32_t from, lblkno; 6574 uint32_t sectors; 6575 uint8_t *buf_pos; 6576 int error, run_length, what; 6577 6578 sector_size = udf_node->ump->discinfo.sector_size; 6579 6580 from = buf->b_blkno; 6581 sectors = buf->b_bcount / sector_size; 6582 6583 what = udf_get_c_type(udf_node); 6584 6585 /* assure we have enough translation slots */ 6586 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6587 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6588 6589 if (sectors > UDF_MAX_MAPPINGS) { 6590 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6591 buf->b_error = EIO; 6592 biodone(buf); 6593 return; 6594 } 6595 6596 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6597 6598 error = 0; 6599 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6600 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6601 if (error) { 6602 buf->b_error = error; 6603 biodone(buf); 6604 goto out; 6605 } 6606 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6607 6608 /* pre-check if its an internal */ 6609 if (*mapping == UDF_TRANS_INTERN) { 6610 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6611 if (error) 6612 buf->b_error = error; 6613 biodone(buf); 6614 goto out; 6615 } 6616 DPRINTF(READ, ("\tnot intern\n")); 6617 6618 #ifdef DEBUG 6619 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6620 printf("Returned translation table:\n"); 6621 for (sector = 0; sector < sectors; sector++) { 6622 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6623 } 6624 } 6625 #endif 6626 6627 /* request read-in of data from disc sheduler */ 6628 buf->b_resid = buf->b_bcount; 6629 for (sector = 0; sector < sectors; sector++) { 6630 buf_offset = sector * sector_size; 6631 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6632 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6633 6634 /* check if its zero or unmapped to stop reading */ 6635 switch (mapping[sector]) { 6636 case UDF_TRANS_UNMAPPED: 6637 case UDF_TRANS_ZERO: 6638 /* copy zero sector TODO runlength like below */ 6639 memset(buf_pos, 0, sector_size); 6640 DPRINTF(READ, ("\treturning zero sector\n")); 6641 nestiobuf_done(buf, sector_size, 0); 6642 break; 6643 default : 6644 DPRINTF(READ, ("\tread sector " 6645 "%"PRIu64"\n", mapping[sector])); 6646 6647 lblkno = from + sector; 6648 run_start = mapping[sector]; 6649 run_length = 1; 6650 while (sector < sectors-1) { 6651 if (mapping[sector+1] != mapping[sector]+1) 6652 break; 6653 run_length++; 6654 sector++; 6655 } 6656 6657 /* 6658 * nest an iobuf and mark it for async reading. Since 6659 * we're using nested buffers, they can't be cached by 6660 * design. 6661 */ 6662 rbuflen = run_length * sector_size; 6663 rblk = run_start * (sector_size/DEV_BSIZE); 6664 6665 nestbuf = getiobuf(NULL, true); 6666 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6667 /* nestbuf is B_ASYNC */ 6668 6669 /* identify this nestbuf */ 6670 nestbuf->b_lblkno = lblkno; 6671 assert(nestbuf->b_vp == udf_node->vnode); 6672 6673 /* CD shedules on raw blkno */ 6674 nestbuf->b_blkno = rblk; 6675 nestbuf->b_proc = NULL; 6676 nestbuf->b_rawblkno = rblk; 6677 nestbuf->b_udf_c_type = what; 6678 6679 udf_discstrat_queuebuf(ump, nestbuf); 6680 } 6681 } 6682 out: 6683 /* if we're synchronously reading, wait for the completion */ 6684 if ((buf->b_flags & B_ASYNC) == 0) 6685 biowait(buf); 6686 6687 DPRINTF(READ, ("\tend of read_filebuf\n")); 6688 free(mapping, M_TEMP); 6689 return; 6690 } 6691 6692 6693 void 6694 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6695 { 6696 struct buf *nestbuf; 6697 struct udf_mount *ump = udf_node->ump; 6698 uint64_t *mapping; 6699 uint64_t run_start; 6700 uint32_t lb_size; 6701 uint32_t buf_offset, lb_num, rbuflen, rblk; 6702 uint32_t from, lblkno; 6703 uint32_t num_lb; 6704 int error, run_length, what, s; 6705 6706 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6707 6708 from = buf->b_blkno; 6709 num_lb = buf->b_bcount / lb_size; 6710 6711 what = udf_get_c_type(udf_node); 6712 6713 /* assure we have enough translation slots */ 6714 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6715 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6716 6717 if (num_lb > UDF_MAX_MAPPINGS) { 6718 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6719 buf->b_error = EIO; 6720 biodone(buf); 6721 return; 6722 } 6723 6724 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6725 6726 error = 0; 6727 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6728 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6729 if (error) { 6730 buf->b_error = error; 6731 biodone(buf); 6732 goto out; 6733 } 6734 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6735 6736 /* if its internally mapped, we can write it in the descriptor itself */ 6737 if (*mapping == UDF_TRANS_INTERN) { 6738 /* TODO paranoia check if we ARE going to have enough space */ 6739 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6740 if (error) 6741 buf->b_error = error; 6742 biodone(buf); 6743 goto out; 6744 } 6745 DPRINTF(WRITE, ("\tnot intern\n")); 6746 6747 /* request write out of data to disc sheduler */ 6748 buf->b_resid = buf->b_bcount; 6749 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6750 buf_offset = lb_num * lb_size; 6751 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6752 6753 /* 6754 * Mappings are not that important here. Just before we write 6755 * the lb_num we late-allocate them when needed and update the 6756 * mapping in the udf_node. 6757 */ 6758 6759 /* XXX why not ignore the mapping altogether ? */ 6760 DPRINTF(WRITE, ("\twrite lb_num " 6761 "%"PRIu64, mapping[lb_num])); 6762 6763 lblkno = from + lb_num; 6764 run_start = mapping[lb_num]; 6765 run_length = 1; 6766 while (lb_num < num_lb-1) { 6767 if (mapping[lb_num+1] != mapping[lb_num]+1) 6768 if (mapping[lb_num+1] != mapping[lb_num]) 6769 break; 6770 run_length++; 6771 lb_num++; 6772 } 6773 DPRINTF(WRITE, ("+ %d\n", run_length)); 6774 6775 /* nest an iobuf on the master buffer for the extent */ 6776 rbuflen = run_length * lb_size; 6777 rblk = run_start * (lb_size/DEV_BSIZE); 6778 6779 nestbuf = getiobuf(NULL, true); 6780 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6781 /* nestbuf is B_ASYNC */ 6782 6783 /* identify this nestbuf */ 6784 nestbuf->b_lblkno = lblkno; 6785 KASSERT(nestbuf->b_vp == udf_node->vnode); 6786 6787 /* CD shedules on raw blkno */ 6788 nestbuf->b_blkno = rblk; 6789 nestbuf->b_proc = NULL; 6790 nestbuf->b_rawblkno = rblk; 6791 nestbuf->b_udf_c_type = what; 6792 6793 /* increment our outstanding bufs counter */ 6794 s = splbio(); 6795 udf_node->outstanding_bufs++; 6796 splx(s); 6797 6798 udf_discstrat_queuebuf(ump, nestbuf); 6799 } 6800 out: 6801 /* if we're synchronously writing, wait for the completion */ 6802 if ((buf->b_flags & B_ASYNC) == 0) 6803 biowait(buf); 6804 6805 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6806 free(mapping, M_TEMP); 6807 return; 6808 } 6809 6810 /* --------------------------------------------------------------------- */ 6811 6812 6813