xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision 4817a0b0b8fe9612e8ebe21a9bf2d97b95038a97)
1 /* $NetBSD: udf_subr.c,v 1.109 2010/12/22 12:38:42 reinoud Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.109 2010/12/22 12:38:42 reinoud Exp $");
33 #endif /* not lint */
34 
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61 
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65 
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69 
70 
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72 
73 #define UDF_SET_SYSTEMFILE(vp) \
74 	/* XXXAD Is the vnode locked? */	\
75 	(vp)->v_vflag |= VV_SYSTEM;		\
76 	vref((vp));			\
77 	vput((vp));			\
78 
79 extern int syncer_maxdelay;     /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81 
82 /* --------------------------------------------------------------------- */
83 
84 //#ifdef DEBUG
85 #if 1
86 
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 	int i, j;
92 
93 	printf("blob = %p\n", blob);
94 	printf("dump of %d bytes\n", dlen);
95 
96 	for (i = 0; i < dlen; i+ = 16) {
97 		printf("%04x ", i);
98 		for (j = 0; j < 16; j++) {
99 			if (i+j < dlen) {
100 				printf("%02x ", blob[i+j]);
101 			} else {
102 				printf("   ");
103 			}
104 		}
105 		for (j = 0; j < 16; j++) {
106 			if (i+j < dlen) {
107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
108 					printf("%c", blob[i+j]);
109 				} else {
110 					printf(".");
111 				}
112 			}
113 		}
114 		printf("\n");
115 	}
116 	printf("\n");
117 	Debugger();
118 }
119 #endif
120 
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 	char   bits[128];
125 	struct mmc_discinfo *di = &ump->discinfo;
126 
127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 		return;
129 
130 	printf("Device/media info  :\n");
131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
132 	printf("\tderived class      %d\n", di->mmc_class);
133 	printf("\tsector size        %d\n", di->sector_size);
134 	printf("\tdisc state         %d\n", di->disc_state);
135 	printf("\tlast ses state     %d\n", di->last_session_state);
136 	printf("\tbg format state    %d\n", di->bg_format_state);
137 	printf("\tfrst track         %d\n", di->first_track);
138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 	printf("\tdisc flags         %s\n", bits);
143 	printf("\tdisc id            %x\n", di->disc_id);
144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
145 
146 	printf("\tnum sessions       %d\n", di->num_sessions);
147 	printf("\tnum tracks         %d\n", di->num_tracks);
148 
149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 	printf("\tcapabilities cur   %s\n", bits);
151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 	printf("\tcapabilities cap   %s\n", bits);
153 }
154 
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 	char   bits[128];
159 
160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 		return;
162 
163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 	printf("\tflags               %s\n", bits);
169 
170 	printf("\ttrack start         %d\n", trackinfo->track_start);
171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
174 	printf("\ttrack size          %d\n", trackinfo->track_size);
175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177 
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182 
183 
184 /* --------------------------------------------------------------------- */
185 
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 	struct vnode *devvp = ump->devvp;
191 	struct partinfo dpart;
192 	struct mmc_discinfo *di;
193 	int error;
194 
195 	DPRINTF(VOLUMES, ("read/update disc info\n"));
196 	di = &ump->discinfo;
197 	memset(di, 0, sizeof(struct mmc_discinfo));
198 
199 	/* check if we're on a MMC capable device, i.e. CD/DVD */
200 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
201 	if (error == 0) {
202 		udf_dump_discinfo(ump);
203 		return 0;
204 	}
205 
206 	/* disc partition support */
207 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
208 	if (error)
209 		return ENODEV;
210 
211 	/* set up a disc info profile for partitions */
212 	di->mmc_profile		= 0x01;	/* disc type */
213 	di->mmc_class		= MMC_CLASS_DISC;
214 	di->disc_state		= MMC_STATE_CLOSED;
215 	di->last_session_state	= MMC_STATE_CLOSED;
216 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
217 	di->link_block_penalty	= 0;
218 
219 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
220 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
221 	di->mmc_cap    = di->mmc_cur;
222 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
223 
224 	/* TODO problem with last_possible_lba on resizable VND; request */
225 	di->last_possible_lba = dpart.part->p_size;
226 	di->sector_size       = dpart.disklab->d_secsize;
227 
228 	di->num_sessions = 1;
229 	di->num_tracks   = 1;
230 
231 	di->first_track  = 1;
232 	di->first_track_last_session = di->last_track_last_session = 1;
233 
234 	udf_dump_discinfo(ump);
235 	return 0;
236 }
237 
238 
239 int
240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
241 {
242 	struct vnode *devvp = ump->devvp;
243 	struct mmc_discinfo *di = &ump->discinfo;
244 	int error, class;
245 
246 	DPRINTF(VOLUMES, ("read track info\n"));
247 
248 	class = di->mmc_class;
249 	if (class != MMC_CLASS_DISC) {
250 		/* tracknr specified in struct ti */
251 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
252 		return error;
253 	}
254 
255 	/* disc partition support */
256 	if (ti->tracknr != 1)
257 		return EIO;
258 
259 	/* create fake ti (TODO check for resized vnds) */
260 	ti->sessionnr  = 1;
261 
262 	ti->track_mode = 0;	/* XXX */
263 	ti->data_mode  = 0;	/* XXX */
264 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
265 
266 	ti->track_start    = 0;
267 	ti->packet_size    = 1;
268 
269 	/* TODO support for resizable vnd */
270 	ti->track_size    = di->last_possible_lba;
271 	ti->next_writable = di->last_possible_lba;
272 	ti->last_recorded = ti->next_writable;
273 	ti->free_blocks   = 0;
274 
275 	return 0;
276 }
277 
278 
279 int
280 udf_setup_writeparams(struct udf_mount *ump)
281 {
282 	struct mmc_writeparams mmc_writeparams;
283 	int error;
284 
285 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
286 		return 0;
287 
288 	/*
289 	 * only CD burning normally needs setting up, but other disc types
290 	 * might need other settings to be made. The MMC framework will set up
291 	 * the nessisary recording parameters according to the disc
292 	 * characteristics read in. Modifications can be made in the discinfo
293 	 * structure passed to change the nature of the disc.
294 	 */
295 
296 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
297 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
298 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
299 
300 	/*
301 	 * UDF dictates first track to determine track mode for the whole
302 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
303 	 * To prevent problems with a `reserved' track in front we start with
304 	 * the 2nd track and if that is not valid, go for the 1st.
305 	 */
306 	mmc_writeparams.tracknr = 2;
307 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
308 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
309 
310 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
311 			FKIOCTL, NOCRED);
312 	if (error) {
313 		mmc_writeparams.tracknr = 1;
314 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
315 				&mmc_writeparams, FKIOCTL, NOCRED);
316 	}
317 	return error;
318 }
319 
320 
321 int
322 udf_synchronise_caches(struct udf_mount *ump)
323 {
324 	struct mmc_op mmc_op;
325 
326 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
327 
328 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
329 		return 0;
330 
331 	/* discs are done now */
332 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
333 		return 0;
334 
335 	memset(&mmc_op, 0, sizeof(struct mmc_op));
336 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
337 
338 	/* ignore return code */
339 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
340 
341 	return 0;
342 }
343 
344 /* --------------------------------------------------------------------- */
345 
346 /* track/session searching for mounting */
347 int
348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
349 		  int *first_tracknr, int *last_tracknr)
350 {
351 	struct mmc_trackinfo trackinfo;
352 	uint32_t tracknr, start_track, num_tracks;
353 	int error;
354 
355 	/* if negative, sessionnr is relative to last session */
356 	if (args->sessionnr < 0) {
357 		args->sessionnr += ump->discinfo.num_sessions;
358 	}
359 
360 	/* sanity */
361 	if (args->sessionnr < 0)
362 		args->sessionnr = 0;
363 	if (args->sessionnr > ump->discinfo.num_sessions)
364 		args->sessionnr = ump->discinfo.num_sessions;
365 
366 	/* search the tracks for this session, zero session nr indicates last */
367 	if (args->sessionnr == 0)
368 		args->sessionnr = ump->discinfo.num_sessions;
369 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
370 		args->sessionnr--;
371 
372 	/* sanity again */
373 	if (args->sessionnr < 0)
374 		args->sessionnr = 0;
375 
376 	/* search the first and last track of the specified session */
377 	num_tracks  = ump->discinfo.num_tracks;
378 	start_track = ump->discinfo.first_track;
379 
380 	/* search for first track of this session */
381 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
382 		/* get track info */
383 		trackinfo.tracknr = tracknr;
384 		error = udf_update_trackinfo(ump, &trackinfo);
385 		if (error)
386 			return error;
387 
388 		if (trackinfo.sessionnr == args->sessionnr)
389 			break;
390 	}
391 	*first_tracknr = tracknr;
392 
393 	/* search for last track of this session */
394 	for (;tracknr <= num_tracks; tracknr++) {
395 		/* get track info */
396 		trackinfo.tracknr = tracknr;
397 		error = udf_update_trackinfo(ump, &trackinfo);
398 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
399 			tracknr--;
400 			break;
401 		}
402 	}
403 	if (tracknr > num_tracks)
404 		tracknr--;
405 
406 	*last_tracknr = tracknr;
407 
408 	if (*last_tracknr < *first_tracknr) {
409 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
410 			"drive returned garbage\n");
411 		return EINVAL;
412 	}
413 
414 	assert(*last_tracknr >= *first_tracknr);
415 	return 0;
416 }
417 
418 
419 /*
420  * NOTE: this is the only routine in this file that directly peeks into the
421  * metadata file but since its at a larval state of the mount it can't hurt.
422  *
423  * XXX candidate for udf_allocation.c
424  * XXX clean me up!, change to new node reading code.
425  */
426 
427 static void
428 udf_check_track_metadata_overlap(struct udf_mount *ump,
429 	struct mmc_trackinfo *trackinfo)
430 {
431 	struct part_desc *part;
432 	struct file_entry      *fe;
433 	struct extfile_entry   *efe;
434 	struct short_ad        *s_ad;
435 	struct long_ad         *l_ad;
436 	uint32_t track_start, track_end;
437 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
438 	uint32_t sector_size, len, alloclen, plb_num;
439 	uint8_t *pos;
440 	int addr_type, icblen, icbflags, flags;
441 
442 	/* get our track extents */
443 	track_start = trackinfo->track_start;
444 	track_end   = track_start + trackinfo->track_size;
445 
446 	/* get our base partition extent */
447 	KASSERT(ump->node_part == ump->fids_part);
448 	part = ump->partitions[ump->node_part];
449 	phys_part_start = udf_rw32(part->start_loc);
450 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
451 
452 	/* no use if its outside the physical partition */
453 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
454 		return;
455 
456 	/*
457 	 * now follow all extents in the fe/efe to see if they refer to this
458 	 * track
459 	 */
460 
461 	sector_size = ump->discinfo.sector_size;
462 
463 	/* XXX should we claim exclusive access to the metafile ? */
464 	/* TODO: move to new node read code */
465 	fe  = ump->metadata_node->fe;
466 	efe = ump->metadata_node->efe;
467 	if (fe) {
468 		alloclen = udf_rw32(fe->l_ad);
469 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
470 		icbflags = udf_rw16(fe->icbtag.flags);
471 	} else {
472 		assert(efe);
473 		alloclen = udf_rw32(efe->l_ad);
474 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
475 		icbflags = udf_rw16(efe->icbtag.flags);
476 	}
477 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
478 
479 	while (alloclen) {
480 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
481 			icblen = sizeof(struct short_ad);
482 			s_ad   = (struct short_ad *) pos;
483 			len        = udf_rw32(s_ad->len);
484 			plb_num    = udf_rw32(s_ad->lb_num);
485 		} else {
486 			/* should not be present, but why not */
487 			icblen = sizeof(struct long_ad);
488 			l_ad   = (struct long_ad *) pos;
489 			len        = udf_rw32(l_ad->len);
490 			plb_num    = udf_rw32(l_ad->loc.lb_num);
491 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
492 		}
493 		/* process extent */
494 		flags   = UDF_EXT_FLAGS(len);
495 		len     = UDF_EXT_LEN(len);
496 
497 		part_start = phys_part_start + plb_num;
498 		part_end   = part_start + (len / sector_size);
499 
500 		if ((part_start >= track_start) && (part_end <= track_end)) {
501 			/* extent is enclosed within this track */
502 			ump->metadata_track = *trackinfo;
503 			return;
504 		}
505 
506 		pos        += icblen;
507 		alloclen   -= icblen;
508 	}
509 }
510 
511 
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 	struct vnode *devvp = ump->devvp;
516 	struct mmc_trackinfo trackinfo;
517 	struct mmc_op        mmc_op;
518 	struct part_desc *part;
519 	uint32_t tracknr, start_track, num_tracks;
520 	uint32_t track_start, track_end, part_start, part_end;
521 	int node_alloc, error;
522 
523 	/*
524 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 	 * the last session might be open but in the UDF device model at most
526 	 * three tracks can be open: a reserved track for delayed ISO VRS
527 	 * writing, a data track and a metadata track. We search here for the
528 	 * data track and the metadata track. Note that the reserved track is
529 	 * troublesome but can be detected by its small size of < 512 sectors.
530 	 */
531 
532 	/* update discinfo since it might have changed */
533 	error = udf_update_discinfo(ump);
534 	if (error)
535 		return error;
536 
537 	num_tracks  = ump->discinfo.num_tracks;
538 	start_track = ump->discinfo.first_track;
539 
540 	/* fetch info on first and possibly only track */
541 	trackinfo.tracknr = start_track;
542 	error = udf_update_trackinfo(ump, &trackinfo);
543 	if (error)
544 		return error;
545 
546 	/* copy results to our mount point */
547 	ump->data_track     = trackinfo;
548 	ump->metadata_track = trackinfo;
549 
550 	/* if not sequential, we're done */
551 	if (num_tracks == 1)
552 		return 0;
553 
554 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 		/* get track info */
556 		trackinfo.tracknr = tracknr;
557 		error = udf_update_trackinfo(ump, &trackinfo);
558 		if (error)
559 			return error;
560 
561 		/*
562 		 * If this track is marked damaged, ask for repair. This is an
563 		 * optional command, so ignore its error but report warning.
564 		 */
565 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 			memset(&mmc_op, 0, sizeof(mmc_op));
567 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
568 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 			mmc_op.tracknr     = tracknr;
570 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 			if (error)
572 				(void)printf("Drive can't explicitly repair "
573 					"damaged track %d, but it might "
574 					"autorepair\n", tracknr);
575 
576 			/* reget track info */
577 			error = udf_update_trackinfo(ump, &trackinfo);
578 			if (error)
579 				return error;
580 		}
581 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 			continue;
583 
584 		track_start = trackinfo.track_start;
585 		track_end   = track_start + trackinfo.track_size;
586 
587 		/* check for overlap on data partition */
588 		part = ump->partitions[ump->data_part];
589 		part_start = udf_rw32(part->start_loc);
590 		part_end   = part_start + udf_rw32(part->part_len);
591 		if ((part_start < track_end) && (part_end > track_start)) {
592 			ump->data_track = trackinfo;
593 			/* TODO check if UDF partition data_part is writable */
594 		}
595 
596 		/* check for overlap on metadata partition */
597 		node_alloc = ump->vtop_alloc[ump->node_part];
598 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
600 			udf_check_track_metadata_overlap(ump, &trackinfo);
601 		} else {
602 			ump->metadata_track = trackinfo;
603 		}
604 	}
605 
606 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 		return EROFS;
608 
609 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 		return EROFS;
611 
612 	return 0;
613 }
614 
615 /* --------------------------------------------------------------------- */
616 
617 /*
618  * Check if the blob starts with a good UDF tag. Tags are protected by a
619  * checksum over the reader except one byte at position 4 that is the checksum
620  * itself.
621  */
622 
623 int
624 udf_check_tag(void *blob)
625 {
626 	struct desc_tag *tag = blob;
627 	uint8_t *pos, sum, cnt;
628 
629 	/* check TAG header checksum */
630 	pos = (uint8_t *) tag;
631 	sum = 0;
632 
633 	for(cnt = 0; cnt < 16; cnt++) {
634 		if (cnt != 4)
635 			sum += *pos;
636 		pos++;
637 	}
638 	if (sum != tag->cksum) {
639 		/* bad tag header checksum; this is not a valid tag */
640 		return EINVAL;
641 	}
642 
643 	return 0;
644 }
645 
646 
647 /*
648  * check tag payload will check descriptor CRC as specified.
649  * If the descriptor is too long, it will return EIO otherwise EINVAL.
650  */
651 
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 	struct desc_tag *tag = blob;
656 	uint16_t crc, crc_len;
657 
658 	crc_len = udf_rw16(tag->desc_crc_len);
659 
660 	/* check payload CRC if applicable */
661 	if (crc_len == 0)
662 		return 0;
663 
664 	if (crc_len > max_length)
665 		return EIO;
666 
667 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 	if (crc != udf_rw16(tag->desc_crc)) {
669 		/* bad payload CRC; this is a broken tag */
670 		return EINVAL;
671 	}
672 
673 	return 0;
674 }
675 
676 
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 	struct desc_tag *tag = blob;
681 	uint8_t *pos, sum, cnt;
682 
683 	/* calculate TAG header checksum */
684 	pos = (uint8_t *) tag;
685 	sum = 0;
686 
687 	for(cnt = 0; cnt < 16; cnt++) {
688 		if (cnt != 4) sum += *pos;
689 		pos++;
690 	}
691 	tag->cksum = sum;	/* 8 bit */
692 }
693 
694 
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 	struct desc_tag *tag  = blob;
700 	uint8_t         *btag = (uint8_t *) tag;
701 	uint16_t crc, crc_len;
702 
703 	crc_len = udf_rw16(tag->desc_crc_len);
704 
705 	/* check payload CRC if applicable */
706 	if (crc_len > 0) {
707 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 		tag->desc_crc = udf_rw16(crc);
709 	}
710 
711 	/* calculate TAG header checksum */
712 	udf_validate_tag_sum(blob);
713 }
714 
715 /* --------------------------------------------------------------------- */
716 
717 /*
718  * XXX note the different semantics from udfclient: for FIDs it still rounds
719  * up to sectors. Use udf_fidsize() for a correct length.
720  */
721 
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 	uint32_t size, tag_id, num_lb, elmsz;
726 
727 	tag_id = udf_rw16(dscr->tag.id);
728 
729 	switch (tag_id) {
730 	case TAGID_LOGVOL :
731 		size  = sizeof(struct logvol_desc) - 1;
732 		size += udf_rw32(dscr->lvd.mt_l);
733 		break;
734 	case TAGID_UNALLOC_SPACE :
735 		elmsz = sizeof(struct extent_ad);
736 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
737 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 		break;
739 	case TAGID_FID :
740 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 		size = (size + 3) & ~3;
742 		break;
743 	case TAGID_LOGVOL_INTEGRITY :
744 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 		size += udf_rw32(dscr->lvid.l_iu);
746 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 		break;
748 	case TAGID_SPACE_BITMAP :
749 		size  = sizeof(struct space_bitmap_desc) - 1;
750 		size += udf_rw32(dscr->sbd.num_bytes);
751 		break;
752 	case TAGID_SPARING_TABLE :
753 		elmsz = sizeof(struct spare_map_entry);
754 		size  = sizeof(struct udf_sparing_table) - elmsz;
755 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 		break;
757 	case TAGID_FENTRY :
758 		size  = sizeof(struct file_entry);
759 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 		break;
761 	case TAGID_EXTFENTRY :
762 		size  = sizeof(struct extfile_entry);
763 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 		break;
765 	case TAGID_FSD :
766 		size  = sizeof(struct fileset_desc);
767 		break;
768 	default :
769 		size = sizeof(union dscrptr);
770 		break;
771 	}
772 
773 	if ((size == 0) || (lb_size == 0))
774 		return 0;
775 
776 	if (lb_size == 1)
777 		return size;
778 
779 	/* round up in sectors */
780 	num_lb = (size + lb_size -1) / lb_size;
781 	return num_lb * lb_size;
782 }
783 
784 
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 	uint32_t size;
789 
790 	if (udf_rw16(fid->tag.id) != TAGID_FID)
791 		panic("got udf_fidsize on non FID\n");
792 
793 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 	size = (size + 3) & ~3;
795 
796 	return size;
797 }
798 
799 /* --------------------------------------------------------------------- */
800 
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 	int ret;
805 
806 	mutex_enter(&udf_node->node_mutex);
807 	/* wait until free */
808 	while (udf_node->i_flags & IN_LOCKED) {
809 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 		/* TODO check if we should return error; abort */
811 		if (ret == EWOULDBLOCK) {
812 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 				"wanted at %s:%d, previously locked at %s:%d\n",
814 				udf_node, fname, lineno,
815 				udf_node->lock_fname, udf_node->lock_lineno));
816 		}
817 	}
818 	/* grab */
819 	udf_node->i_flags |= IN_LOCKED | flag;
820 	/* debug */
821 	udf_node->lock_fname  = fname;
822 	udf_node->lock_lineno = lineno;
823 
824 	mutex_exit(&udf_node->node_mutex);
825 }
826 
827 
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 	mutex_enter(&udf_node->node_mutex);
832 	udf_node->i_flags &= ~(IN_LOCKED | flag);
833 	cv_broadcast(&udf_node->node_lock);
834 	mutex_exit(&udf_node->node_mutex);
835 }
836 
837 
838 /* --------------------------------------------------------------------- */
839 
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 	int error;
844 
845 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 			(union dscrptr **) dst);
847 	if (!error) {
848 		/* blank terminator blocks are not allowed here */
849 		if (*dst == NULL)
850 			return ENOENT;
851 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 			error = ENOENT;
853 			free(*dst, M_UDFVOLD);
854 			*dst = NULL;
855 			DPRINTF(VOLUMES, ("Not an anchor\n"));
856 		}
857 	}
858 
859 	return error;
860 }
861 
862 
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 	struct udf_args *args = &ump->mount_args;
867 	struct mmc_trackinfo first_track;
868 	struct mmc_trackinfo second_track;
869 	struct mmc_trackinfo last_track;
870 	struct anchor_vdp **anchorsp;
871 	uint32_t track_start;
872 	uint32_t track_end;
873 	uint32_t positions[4];
874 	int first_tracknr, last_tracknr;
875 	int error, anch, ok, first_anchor;
876 
877 	/* search the first and last track of the specified session */
878 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 	if (!error) {
880 		first_track.tracknr = first_tracknr;
881 		error = udf_update_trackinfo(ump, &first_track);
882 	}
883 	if (!error) {
884 		last_track.tracknr = last_tracknr;
885 		error = udf_update_trackinfo(ump, &last_track);
886 	}
887 	if ((!error) && (first_tracknr != last_tracknr)) {
888 		second_track.tracknr = first_tracknr+1;
889 		error = udf_update_trackinfo(ump, &second_track);
890 	}
891 	if (error) {
892 		printf("UDF mount: reading disc geometry failed\n");
893 		return 0;
894 	}
895 
896 	track_start = first_track.track_start;
897 
898 	/* `end' is not as straitforward as start. */
899 	track_end =   last_track.track_start
900 		    + last_track.track_size - last_track.free_blocks - 1;
901 
902 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 		/* end of track is not straitforward here */
904 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 			track_end = last_track.last_recorded;
906 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 			track_end = last_track.next_writable
908 				    - ump->discinfo.link_block_penalty;
909 	}
910 
911 	/* its no use reading a blank track */
912 	first_anchor = 0;
913 	if (first_track.flags & MMC_TRACKINFO_BLANK)
914 		first_anchor = 1;
915 
916 	/* get our packet size */
917 	ump->packet_size = first_track.packet_size;
918 	if (first_track.flags & MMC_TRACKINFO_BLANK)
919 		ump->packet_size = second_track.packet_size;
920 
921 	if (ump->packet_size <= 1) {
922 		/* take max, but not bigger than 64 */
923 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 		ump->packet_size = MIN(ump->packet_size, 64);
925 	}
926 	KASSERT(ump->packet_size >= 1);
927 
928 	/* read anchors start+256, start+512, end-256, end */
929 	positions[0] = track_start+256;
930 	positions[1] =   track_end-256;
931 	positions[2] =   track_end;
932 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
933 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934 
935 	ok = 0;
936 	anchorsp = ump->anchors;
937 	for (anch = first_anchor; anch < 4; anch++) {
938 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 		    positions[anch]));
940 		error = udf_read_anchor(ump, positions[anch], anchorsp);
941 		if (!error) {
942 			anchorsp++;
943 			ok++;
944 		}
945 	}
946 
947 	/* VATs are only recorded on sequential media, but initialise */
948 	ump->first_possible_vat_location = track_start + 2;
949 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
950 
951 	return ok;
952 }
953 
954 /* --------------------------------------------------------------------- */
955 
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 	int isdir, what;
960 
961 	isdir  = (udf_node->vnode->v_type == VDIR);
962 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963 
964 	if (udf_node->ump)
965 		if (udf_node == udf_node->ump->metadatabitmap_node)
966 			what = UDF_C_METADATA_SBM;
967 
968 	return what;
969 }
970 
971 
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 	int vpart_num;
976 
977 	vpart_num = ump->data_part;
978 	if (udf_c_type == UDF_C_NODE)
979 		vpart_num = ump->node_part;
980 	if (udf_c_type == UDF_C_FIDS)
981 		vpart_num = ump->fids_part;
982 
983 	return vpart_num;
984 }
985 
986 /* --------------------------------------------------------------------- */
987 
988 /* we dont try to be smart; we just record the parts */
989 #define UDF_UPDATE_DSCR(name, dscr) \
990 	if (name) \
991 		free(name, M_UDFVOLD); \
992 	name = dscr;
993 
994 static int
995 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
996 {
997 	struct part_desc *part;
998 	uint16_t phys_part, raw_phys_part;
999 
1000 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1001 	    udf_rw16(dscr->tag.id)));
1002 	switch (udf_rw16(dscr->tag.id)) {
1003 	case TAGID_PRI_VOL :		/* primary partition		*/
1004 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1005 		break;
1006 	case TAGID_LOGVOL :		/* logical volume		*/
1007 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1008 		break;
1009 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
1010 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1011 		break;
1012 	case TAGID_IMP_VOL :		/* implementation		*/
1013 		/* XXX do we care about multiple impl. descr ? */
1014 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1015 		break;
1016 	case TAGID_PARTITION :		/* physical partition		*/
1017 		/* not much use if its not allocated */
1018 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1019 			free(dscr, M_UDFVOLD);
1020 			break;
1021 		}
1022 
1023 		/*
1024 		 * BUGALERT: some rogue implementations use random physical
1025 		 * partition numbers to break other implementations so lookup
1026 		 * the number.
1027 		 */
1028 		raw_phys_part = udf_rw16(dscr->pd.part_num);
1029 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1030 			part = ump->partitions[phys_part];
1031 			if (part == NULL)
1032 				break;
1033 			if (udf_rw16(part->part_num) == raw_phys_part)
1034 				break;
1035 		}
1036 		if (phys_part == UDF_PARTITIONS) {
1037 			free(dscr, M_UDFVOLD);
1038 			return EINVAL;
1039 		}
1040 
1041 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1042 		break;
1043 	case TAGID_VOL :		/* volume space extender; rare	*/
1044 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1045 		free(dscr, M_UDFVOLD);
1046 		break;
1047 	default :
1048 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1049 		    udf_rw16(dscr->tag.id)));
1050 		free(dscr, M_UDFVOLD);
1051 	}
1052 
1053 	return 0;
1054 }
1055 #undef UDF_UPDATE_DSCR
1056 
1057 /* --------------------------------------------------------------------- */
1058 
1059 static int
1060 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1061 {
1062 	union dscrptr *dscr;
1063 	uint32_t sector_size, dscr_size;
1064 	int error;
1065 
1066 	sector_size = ump->discinfo.sector_size;
1067 
1068 	/* loc is sectornr, len is in bytes */
1069 	error = EIO;
1070 	while (len) {
1071 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1072 		if (error)
1073 			return error;
1074 
1075 		/* blank block is a terminator */
1076 		if (dscr == NULL)
1077 			return 0;
1078 
1079 		/* TERM descriptor is a terminator */
1080 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1081 			free(dscr, M_UDFVOLD);
1082 			return 0;
1083 		}
1084 
1085 		/* process all others */
1086 		dscr_size = udf_tagsize(dscr, sector_size);
1087 		error = udf_process_vds_descriptor(ump, dscr);
1088 		if (error) {
1089 			free(dscr, M_UDFVOLD);
1090 			break;
1091 		}
1092 		assert((dscr_size % sector_size) == 0);
1093 
1094 		len -= dscr_size;
1095 		loc += dscr_size / sector_size;
1096 	}
1097 
1098 	return error;
1099 }
1100 
1101 
1102 int
1103 udf_read_vds_space(struct udf_mount *ump)
1104 {
1105 	/* struct udf_args *args = &ump->mount_args; */
1106 	struct anchor_vdp *anchor, *anchor2;
1107 	size_t size;
1108 	uint32_t main_loc, main_len;
1109 	uint32_t reserve_loc, reserve_len;
1110 	int error;
1111 
1112 	/*
1113 	 * read in VDS space provided by the anchors; if one descriptor read
1114 	 * fails, try the mirror sector.
1115 	 *
1116 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1117 	 * avoids the `compatibility features' of DirectCD that may confuse
1118 	 * stuff completely.
1119 	 */
1120 
1121 	anchor  = ump->anchors[0];
1122 	anchor2 = ump->anchors[1];
1123 	assert(anchor);
1124 
1125 	if (anchor2) {
1126 		size = sizeof(struct extent_ad);
1127 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1128 			anchor = anchor2;
1129 		/* reserve is specified to be a literal copy of main */
1130 	}
1131 
1132 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
1133 	main_len    = udf_rw32(anchor->main_vds_ex.len);
1134 
1135 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1136 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1137 
1138 	error = udf_read_vds_extent(ump, main_loc, main_len);
1139 	if (error) {
1140 		printf("UDF mount: reading in reserve VDS extent\n");
1141 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1142 	}
1143 
1144 	return error;
1145 }
1146 
1147 /* --------------------------------------------------------------------- */
1148 
1149 /*
1150  * Read in the logical volume integrity sequence pointed to by our logical
1151  * volume descriptor. Its a sequence that can be extended using fields in the
1152  * integrity descriptor itself. On sequential media only one is found, on
1153  * rewritable media a sequence of descriptors can be found as a form of
1154  * history keeping and on non sequential write-once media the chain is vital
1155  * to allow more and more descriptors to be written. The last descriptor
1156  * written in an extent needs to claim space for a new extent.
1157  */
1158 
1159 static int
1160 udf_retrieve_lvint(struct udf_mount *ump)
1161 {
1162 	union dscrptr *dscr;
1163 	struct logvol_int_desc *lvint;
1164 	struct udf_lvintq *trace;
1165 	uint32_t lb_size, lbnum, len;
1166 	int dscr_type, error, trace_len;
1167 
1168 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1169 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1170 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1171 
1172 	/* clean trace */
1173 	memset(ump->lvint_trace, 0,
1174 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1175 
1176 	trace_len    = 0;
1177 	trace        = ump->lvint_trace;
1178 	trace->start = lbnum;
1179 	trace->end   = lbnum + len/lb_size;
1180 	trace->pos   = 0;
1181 	trace->wpos  = 0;
1182 
1183 	lvint = NULL;
1184 	dscr  = NULL;
1185 	error = 0;
1186 	while (len) {
1187 		trace->pos  = lbnum - trace->start;
1188 		trace->wpos = trace->pos + 1;
1189 
1190 		/* read in our integrity descriptor */
1191 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1192 		if (!error) {
1193 			if (dscr == NULL) {
1194 				trace->wpos = trace->pos;
1195 				break;		/* empty terminates */
1196 			}
1197 			dscr_type = udf_rw16(dscr->tag.id);
1198 			if (dscr_type == TAGID_TERM) {
1199 				trace->wpos = trace->pos;
1200 				break;		/* clean terminator */
1201 			}
1202 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1203 				/* fatal... corrupt disc */
1204 				error = ENOENT;
1205 				break;
1206 			}
1207 			if (lvint)
1208 				free(lvint, M_UDFVOLD);
1209 			lvint = &dscr->lvid;
1210 			dscr = NULL;
1211 		} /* else hope for the best... maybe the next is ok */
1212 
1213 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1214 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1215 
1216 		/* proceed sequential */
1217 		lbnum += 1;
1218 		len    -= lb_size;
1219 
1220 		/* are we linking to a new piece? */
1221 		if (dscr && lvint->next_extent.len) {
1222 			len    = udf_rw32(lvint->next_extent.len);
1223 			lbnum = udf_rw32(lvint->next_extent.loc);
1224 
1225 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1226 				/* IEK! segment link full... */
1227 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
1228 				error = EINVAL;
1229 			} else {
1230 				trace++;
1231 				trace_len++;
1232 
1233 				trace->start = lbnum;
1234 				trace->end   = lbnum + len/lb_size;
1235 				trace->pos   = 0;
1236 				trace->wpos  = 0;
1237 			}
1238 		}
1239 	}
1240 
1241 	/* clean up the mess, esp. when there is an error */
1242 	if (dscr)
1243 		free(dscr, M_UDFVOLD);
1244 
1245 	if (error && lvint) {
1246 		free(lvint, M_UDFVOLD);
1247 		lvint = NULL;
1248 	}
1249 
1250 	if (!lvint)
1251 		error = ENOENT;
1252 
1253 	ump->logvol_integrity = lvint;
1254 	return error;
1255 }
1256 
1257 
1258 static int
1259 udf_loose_lvint_history(struct udf_mount *ump)
1260 {
1261 	union dscrptr **bufs, *dscr, *last_dscr;
1262 	struct udf_lvintq *trace, *in_trace, *out_trace;
1263 	struct logvol_int_desc *lvint;
1264 	uint32_t in_ext, in_pos, in_len;
1265 	uint32_t out_ext, out_wpos, out_len;
1266 	uint32_t lb_size, packet_size, lb_num;
1267 	uint32_t len, start;
1268 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
1269 	int losing;
1270 	int error;
1271 
1272 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1273 
1274 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1275 	packet_size = ump->data_track.packet_size;	/* XXX data track */
1276 
1277 	/* search smallest extent */
1278 	trace = &ump->lvint_trace[0];
1279 	minext = trace->end - trace->start;
1280 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1281 		trace = &ump->lvint_trace[ext];
1282 		extlen = trace->end - trace->start;
1283 		if (extlen == 0)
1284 			break;
1285 		minext = MIN(minext, extlen);
1286 	}
1287 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
1288 	/* no sense wiping all */
1289 	if (losing == minext)
1290 		losing--;
1291 
1292 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1293 
1294 	/* get buffer for pieces */
1295 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1296 
1297 	in_ext    = 0;
1298 	in_pos    = losing;
1299 	in_trace  = &ump->lvint_trace[in_ext];
1300 	in_len    = in_trace->end - in_trace->start;
1301 	out_ext   = 0;
1302 	out_wpos  = 0;
1303 	out_trace = &ump->lvint_trace[out_ext];
1304 	out_len   = out_trace->end - out_trace->start;
1305 
1306 	last_dscr = NULL;
1307 	for(;;) {
1308 		out_trace->pos  = out_wpos;
1309 		out_trace->wpos = out_trace->pos;
1310 		if (in_pos >= in_len) {
1311 			in_ext++;
1312 			in_pos = 0;
1313 			in_trace = &ump->lvint_trace[in_ext];
1314 			in_len   = in_trace->end - in_trace->start;
1315 		}
1316 		if (out_wpos >= out_len) {
1317 			out_ext++;
1318 			out_wpos = 0;
1319 			out_trace = &ump->lvint_trace[out_ext];
1320 			out_len   = out_trace->end - out_trace->start;
1321 		}
1322 		/* copy overlap contents */
1323 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1324 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1325 		if (cpy_len == 0)
1326 			break;
1327 
1328 		/* copy */
1329 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1330 		for (cnt = 0; cnt < cpy_len; cnt++) {
1331 			/* read in our integrity descriptor */
1332 			lb_num = in_trace->start + in_pos + cnt;
1333 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1334 				&dscr);
1335 			if (error) {
1336 				/* copy last one */
1337 				dscr = last_dscr;
1338 			}
1339 			bufs[cnt] = dscr;
1340 			if (!error) {
1341 				if (dscr == NULL) {
1342 					out_trace->pos  = out_wpos + cnt;
1343 					out_trace->wpos = out_trace->pos;
1344 					break;		/* empty terminates */
1345 				}
1346 				dscr_type = udf_rw16(dscr->tag.id);
1347 				if (dscr_type == TAGID_TERM) {
1348 					out_trace->pos  = out_wpos + cnt;
1349 					out_trace->wpos = out_trace->pos;
1350 					break;		/* clean terminator */
1351 				}
1352 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1353 					panic(  "UDF integrity sequence "
1354 						"corrupted while mounted!\n");
1355 				}
1356 				last_dscr = dscr;
1357 			}
1358 		}
1359 
1360 		/* patch up if first entry was on error */
1361 		if (bufs[0] == NULL) {
1362 			for (cnt = 0; cnt < cpy_len; cnt++)
1363 				if (bufs[cnt] != NULL)
1364 					break;
1365 			last_dscr = bufs[cnt];
1366 			for (; cnt > 0; cnt--) {
1367 				bufs[cnt] = last_dscr;
1368 			}
1369 		}
1370 
1371 		/* glue + write out */
1372 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1373 		for (cnt = 0; cnt < cpy_len; cnt++) {
1374 			lb_num = out_trace->start + out_wpos + cnt;
1375 			lvint  = &bufs[cnt]->lvid;
1376 
1377 			/* set continuation */
1378 			len = 0;
1379 			start = 0;
1380 			if (out_wpos + cnt == out_len) {
1381 				/* get continuation */
1382 				trace = &ump->lvint_trace[out_ext+1];
1383 				len   = trace->end - trace->start;
1384 				start = trace->start;
1385 			}
1386 			lvint->next_extent.len = udf_rw32(len);
1387 			lvint->next_extent.loc = udf_rw32(start);
1388 
1389 			lb_num = trace->start + trace->wpos;
1390 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1391 				bufs[cnt], lb_num, lb_num);
1392 			DPRINTFIF(VOLUMES, error,
1393 				("error writing lvint lb_num\n"));
1394 		}
1395 
1396 		/* free non repeating descriptors */
1397 		last_dscr = NULL;
1398 		for (cnt = 0; cnt < cpy_len; cnt++) {
1399 			if (bufs[cnt] != last_dscr)
1400 				free(bufs[cnt], M_UDFVOLD);
1401 			last_dscr = bufs[cnt];
1402 		}
1403 
1404 		/* advance */
1405 		in_pos   += cpy_len;
1406 		out_wpos += cpy_len;
1407 	}
1408 
1409 	free(bufs, M_TEMP);
1410 
1411 	return 0;
1412 }
1413 
1414 
1415 static int
1416 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1417 {
1418 	struct udf_lvintq *trace;
1419 	struct timeval  now_v;
1420 	struct timespec now_s;
1421 	uint32_t sector;
1422 	int logvol_integrity;
1423 	int space, error;
1424 
1425 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1426 
1427 again:
1428 	/* get free space in last chunk */
1429 	trace = ump->lvint_trace;
1430 	while (trace->wpos > (trace->end - trace->start)) {
1431 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1432 				  "wpos = %d\n", trace->start, trace->end,
1433 				  trace->pos, trace->wpos));
1434 		trace++;
1435 	}
1436 
1437 	/* check if there is space to append */
1438 	space = (trace->end - trace->start) - trace->wpos;
1439 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1440 			  "space = %d\n", trace->start, trace->end, trace->pos,
1441 			  trace->wpos, space));
1442 
1443 	/* get state */
1444 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1445 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1446 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1447 			/* don't allow this logvol to be opened */
1448 			/* TODO extent LVINT space if possible */
1449 			return EROFS;
1450 		}
1451 	}
1452 
1453 	if (space < 1) {
1454 		if (lvflag & UDF_APPENDONLY_LVINT)
1455 			return EROFS;
1456 		/* loose history by re-writing extents */
1457 		error = udf_loose_lvint_history(ump);
1458 		if (error)
1459 			return error;
1460 		goto again;
1461 	}
1462 
1463 	/* update our integrity descriptor to identify us and timestamp it */
1464 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1465 	microtime(&now_v);
1466 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1467 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1468 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1469 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1470 
1471 	/* writeout integrity descriptor */
1472 	sector = trace->start + trace->wpos;
1473 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1474 			(union dscrptr *) ump->logvol_integrity,
1475 			sector, sector);
1476 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1477 	if (error)
1478 		return error;
1479 
1480 	/* advance write position */
1481 	trace->wpos++; space--;
1482 	if (space >= 1) {
1483 		/* append terminator */
1484 		sector = trace->start + trace->wpos;
1485 		error = udf_write_terminator(ump, sector);
1486 
1487 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1488 	}
1489 
1490 	space = (trace->end - trace->start) - trace->wpos;
1491 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1492 		"space = %d\n", trace->start, trace->end, trace->pos,
1493 		trace->wpos, space));
1494 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1495 		"successfull\n"));
1496 
1497 	return error;
1498 }
1499 
1500 /* --------------------------------------------------------------------- */
1501 
1502 static int
1503 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1504 {
1505 	union dscrptr        *dscr;
1506 	/* struct udf_args *args = &ump->mount_args; */
1507 	struct part_desc     *partd;
1508 	struct part_hdr_desc *parthdr;
1509 	struct udf_bitmap    *bitmap;
1510 	uint32_t phys_part;
1511 	uint32_t lb_num, len;
1512 	int error, dscr_type;
1513 
1514 	/* unallocated space map */
1515 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1516 		partd = ump->partitions[phys_part];
1517 		if (partd == NULL)
1518 			continue;
1519 		parthdr = &partd->_impl_use.part_hdr;
1520 
1521 		lb_num  = udf_rw32(partd->start_loc);
1522 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1523 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
1524 		if (len == 0)
1525 			continue;
1526 
1527 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1528 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1529 		if (!error && dscr) {
1530 			/* analyse */
1531 			dscr_type = udf_rw16(dscr->tag.id);
1532 			if (dscr_type == TAGID_SPACE_BITMAP) {
1533 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1534 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1535 
1536 				/* fill in ump->part_unalloc_bits */
1537 				bitmap = &ump->part_unalloc_bits[phys_part];
1538 				bitmap->blob  = (uint8_t *) dscr;
1539 				bitmap->bits  = dscr->sbd.data;
1540 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1541 				bitmap->pages = NULL;	/* TODO */
1542 				bitmap->data_pos     = 0;
1543 				bitmap->metadata_pos = 0;
1544 			} else {
1545 				free(dscr, M_UDFVOLD);
1546 
1547 				printf( "UDF mount: error reading unallocated "
1548 					"space bitmap\n");
1549 				return EROFS;
1550 			}
1551 		} else {
1552 			/* blank not allowed */
1553 			printf("UDF mount: blank unallocated space bitmap\n");
1554 			return EROFS;
1555 		}
1556 	}
1557 
1558 	/* unallocated space table (not supported) */
1559 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1560 		partd = ump->partitions[phys_part];
1561 		if (partd == NULL)
1562 			continue;
1563 		parthdr = &partd->_impl_use.part_hdr;
1564 
1565 		len     = udf_rw32(parthdr->unalloc_space_table.len);
1566 		if (len) {
1567 			printf("UDF mount: space tables not supported\n");
1568 			return EROFS;
1569 		}
1570 	}
1571 
1572 	/* freed space map */
1573 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1574 		partd = ump->partitions[phys_part];
1575 		if (partd == NULL)
1576 			continue;
1577 		parthdr = &partd->_impl_use.part_hdr;
1578 
1579 		/* freed space map */
1580 		lb_num  = udf_rw32(partd->start_loc);
1581 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1582 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
1583 		if (len == 0)
1584 			continue;
1585 
1586 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1587 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1588 		if (!error && dscr) {
1589 			/* analyse */
1590 			dscr_type = udf_rw16(dscr->tag.id);
1591 			if (dscr_type == TAGID_SPACE_BITMAP) {
1592 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1593 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
1594 
1595 				/* fill in ump->part_freed_bits */
1596 				bitmap = &ump->part_unalloc_bits[phys_part];
1597 				bitmap->blob  = (uint8_t *) dscr;
1598 				bitmap->bits  = dscr->sbd.data;
1599 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1600 				bitmap->pages = NULL;	/* TODO */
1601 				bitmap->data_pos     = 0;
1602 				bitmap->metadata_pos = 0;
1603 			} else {
1604 				free(dscr, M_UDFVOLD);
1605 
1606 				printf( "UDF mount: error reading freed  "
1607 					"space bitmap\n");
1608 				return EROFS;
1609 			}
1610 		} else {
1611 			/* blank not allowed */
1612 			printf("UDF mount: blank freed space bitmap\n");
1613 			return EROFS;
1614 		}
1615 	}
1616 
1617 	/* freed space table (not supported) */
1618 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1619 		partd = ump->partitions[phys_part];
1620 		if (partd == NULL)
1621 			continue;
1622 		parthdr = &partd->_impl_use.part_hdr;
1623 
1624 		len     = udf_rw32(parthdr->freed_space_table.len);
1625 		if (len) {
1626 			printf("UDF mount: space tables not supported\n");
1627 			return EROFS;
1628 		}
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 
1635 /* TODO implement async writeout */
1636 int
1637 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1638 {
1639 	union dscrptr        *dscr;
1640 	/* struct udf_args *args = &ump->mount_args; */
1641 	struct part_desc     *partd;
1642 	struct part_hdr_desc *parthdr;
1643 	uint32_t phys_part;
1644 	uint32_t lb_num, len, ptov;
1645 	int error_all, error;
1646 
1647 	error_all = 0;
1648 	/* unallocated space map */
1649 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1650 		partd = ump->partitions[phys_part];
1651 		if (partd == NULL)
1652 			continue;
1653 		parthdr = &partd->_impl_use.part_hdr;
1654 
1655 		ptov   = udf_rw32(partd->start_loc);
1656 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1657 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
1658 		if (len == 0)
1659 			continue;
1660 
1661 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1662 			lb_num + ptov));
1663 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1664 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1665 				(union dscrptr *) dscr,
1666 				ptov + lb_num, lb_num);
1667 		if (error) {
1668 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1669 			error_all = error;
1670 		}
1671 	}
1672 
1673 	/* freed space map */
1674 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1675 		partd = ump->partitions[phys_part];
1676 		if (partd == NULL)
1677 			continue;
1678 		parthdr = &partd->_impl_use.part_hdr;
1679 
1680 		/* freed space map */
1681 		ptov   = udf_rw32(partd->start_loc);
1682 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1683 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
1684 		if (len == 0)
1685 			continue;
1686 
1687 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1688 			lb_num + ptov));
1689 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1690 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1691 				(union dscrptr *) dscr,
1692 				ptov + lb_num, lb_num);
1693 		if (error) {
1694 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1695 			error_all = error;
1696 		}
1697 	}
1698 
1699 	return error_all;
1700 }
1701 
1702 
1703 static int
1704 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1705 {
1706 	struct udf_node	     *bitmap_node;
1707 	union dscrptr        *dscr;
1708 	struct udf_bitmap    *bitmap;
1709 	uint64_t inflen;
1710 	int error, dscr_type;
1711 
1712 	bitmap_node = ump->metadatabitmap_node;
1713 
1714 	/* only read in when metadata bitmap node is read in */
1715 	if (bitmap_node == NULL)
1716 		return 0;
1717 
1718 	if (bitmap_node->fe) {
1719 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1720 	} else {
1721 		KASSERT(bitmap_node->efe);
1722 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1723 	}
1724 
1725 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1726 		"%"PRIu64" bytes\n", inflen));
1727 
1728 	/* allocate space for bitmap */
1729 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1730 	if (!dscr)
1731 		return ENOMEM;
1732 
1733 	/* set vnode type to regular file or we can't read from it! */
1734 	bitmap_node->vnode->v_type = VREG;
1735 
1736 	/* read in complete metadata bitmap file */
1737 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1738 			dscr,
1739 			inflen, 0,
1740 			UIO_SYSSPACE,
1741 			IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1742 			NULL, NULL);
1743 	if (error) {
1744 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1745 		goto errorout;
1746 	}
1747 
1748 	/* analyse */
1749 	dscr_type = udf_rw16(dscr->tag.id);
1750 	if (dscr_type == TAGID_SPACE_BITMAP) {
1751 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1752 		ump->metadata_unalloc_dscr = &dscr->sbd;
1753 
1754 		/* fill in bitmap bits */
1755 		bitmap = &ump->metadata_unalloc_bits;
1756 		bitmap->blob  = (uint8_t *) dscr;
1757 		bitmap->bits  = dscr->sbd.data;
1758 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1759 		bitmap->pages = NULL;	/* TODO */
1760 		bitmap->data_pos     = 0;
1761 		bitmap->metadata_pos = 0;
1762 	} else {
1763 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1764 		goto errorout;
1765 	}
1766 
1767 	return 0;
1768 
1769 errorout:
1770 	free(dscr, M_UDFVOLD);
1771 	printf( "UDF mount: error reading unallocated "
1772 		"space bitmap for metadata partition\n");
1773 	return EROFS;
1774 }
1775 
1776 
1777 int
1778 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1779 {
1780 	struct udf_node	     *bitmap_node;
1781 	union dscrptr        *dscr;
1782 	uint64_t inflen, new_inflen;
1783 	int dummy, error;
1784 
1785 	bitmap_node = ump->metadatabitmap_node;
1786 
1787 	/* only write out when metadata bitmap node is known */
1788 	if (bitmap_node == NULL)
1789 		return 0;
1790 
1791 	if (bitmap_node->fe) {
1792 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1793 	} else {
1794 		KASSERT(bitmap_node->efe);
1795 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1796 	}
1797 
1798 	/* reduce length to zero */
1799 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1800 	new_inflen = udf_tagsize(dscr, 1);
1801 
1802 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1803 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1804 
1805 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1806 	if (error)
1807 		printf("Error resizing metadata space bitmap\n");
1808 
1809 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1810 			dscr,
1811 			new_inflen, 0,
1812 			UIO_SYSSPACE,
1813 			IO_ALTSEMANTICS, FSCRED,
1814 			NULL, NULL);
1815 
1816 	bitmap_node->i_flags |= IN_MODIFIED;
1817 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
1818 
1819 	error = VOP_FSYNC(bitmap_node->vnode,
1820 			FSCRED, FSYNC_WAIT, 0, 0);
1821 
1822 	if (error)
1823 		printf( "Error writing out metadata partition unalloced "
1824 			"space bitmap!\n");
1825 
1826 	return error;
1827 }
1828 
1829 
1830 /* --------------------------------------------------------------------- */
1831 
1832 /*
1833  * Checks if ump's vds information is correct and complete
1834  */
1835 
1836 int
1837 udf_process_vds(struct udf_mount *ump) {
1838 	union udf_pmap *mapping;
1839 	/* struct udf_args *args = &ump->mount_args; */
1840 	struct logvol_int_desc *lvint;
1841 	struct udf_logvol_info *lvinfo;
1842 	struct part_desc *part;
1843 	uint32_t n_pm, mt_l;
1844 	uint8_t *pmap_pos;
1845 	char *domain_name, *map_name;
1846 	const char *check_name;
1847 	char bits[128];
1848 	int pmap_stype, pmap_size;
1849 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1850 	int n_phys, n_virt, n_spar, n_meta;
1851 	int len, error;
1852 
1853 	if (ump == NULL)
1854 		return ENOENT;
1855 
1856 	/* we need at least an anchor (trivial, but for safety) */
1857 	if (ump->anchors[0] == NULL)
1858 		return EINVAL;
1859 
1860 	/* we need at least one primary and one logical volume descriptor */
1861 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1862 		return EINVAL;
1863 
1864 	/* we need at least one partition descriptor */
1865 	if (ump->partitions[0] == NULL)
1866 		return EINVAL;
1867 
1868 	/* check logical volume sector size verses device sector size */
1869 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1870 		printf("UDF mount: format violation, lb_size != sector size\n");
1871 		return EINVAL;
1872 	}
1873 
1874 	/* check domain name */
1875 	domain_name = ump->logical_vol->domain_id.id;
1876 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1877 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1878 		return EINVAL;
1879 	}
1880 
1881 	/* retrieve logical volume integrity sequence */
1882 	error = udf_retrieve_lvint(ump);
1883 
1884 	/*
1885 	 * We need at least one logvol integrity descriptor recorded.  Note
1886 	 * that its OK to have an open logical volume integrity here. The VAT
1887 	 * will close/update the integrity.
1888 	 */
1889 	if (ump->logvol_integrity == NULL)
1890 		return EINVAL;
1891 
1892 	/* process derived structures */
1893 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1894 	lvint  = ump->logvol_integrity;
1895 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1896 	ump->logvol_info = lvinfo;
1897 
1898 	/* TODO check udf versions? */
1899 
1900 	/*
1901 	 * check logvol mappings: effective virt->log partmap translation
1902 	 * check and recording of the mapping results. Saves expensive
1903 	 * strncmp() in tight places.
1904 	 */
1905 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1906 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1907 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1908 	pmap_pos =  ump->logical_vol->maps;
1909 
1910 	if (n_pm > UDF_PMAPS) {
1911 		printf("UDF mount: too many mappings\n");
1912 		return EINVAL;
1913 	}
1914 
1915 	/* count types and set partition numbers */
1916 	ump->data_part = ump->node_part = ump->fids_part = 0;
1917 	n_phys = n_virt = n_spar = n_meta = 0;
1918 	for (log_part = 0; log_part < n_pm; log_part++) {
1919 		mapping = (union udf_pmap *) pmap_pos;
1920 		pmap_stype = pmap_pos[0];
1921 		pmap_size  = pmap_pos[1];
1922 		switch (pmap_stype) {
1923 		case 1:	/* physical mapping */
1924 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1925 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1926 			pmap_type = UDF_VTOP_TYPE_PHYS;
1927 			n_phys++;
1928 			ump->data_part = log_part;
1929 			ump->node_part = log_part;
1930 			ump->fids_part = log_part;
1931 			break;
1932 		case 2: /* virtual/sparable/meta mapping */
1933 			map_name  = mapping->pm2.part_id.id;
1934 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1935 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1936 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1937 			len = UDF_REGID_ID_SIZE;
1938 
1939 			check_name = "*UDF Virtual Partition";
1940 			if (strncmp(map_name, check_name, len) == 0) {
1941 				pmap_type = UDF_VTOP_TYPE_VIRT;
1942 				n_virt++;
1943 				ump->node_part = log_part;
1944 				break;
1945 			}
1946 			check_name = "*UDF Sparable Partition";
1947 			if (strncmp(map_name, check_name, len) == 0) {
1948 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1949 				n_spar++;
1950 				ump->data_part = log_part;
1951 				ump->node_part = log_part;
1952 				ump->fids_part = log_part;
1953 				break;
1954 			}
1955 			check_name = "*UDF Metadata Partition";
1956 			if (strncmp(map_name, check_name, len) == 0) {
1957 				pmap_type = UDF_VTOP_TYPE_META;
1958 				n_meta++;
1959 				ump->node_part = log_part;
1960 				ump->fids_part = log_part;
1961 				break;
1962 			}
1963 			break;
1964 		default:
1965 			return EINVAL;
1966 		}
1967 
1968 		/*
1969 		 * BUGALERT: some rogue implementations use random physical
1970 		 * partition numbers to break other implementations so lookup
1971 		 * the number.
1972 		 */
1973 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1974 			part = ump->partitions[phys_part];
1975 			if (part == NULL)
1976 				continue;
1977 			if (udf_rw16(part->part_num) == raw_phys_part)
1978 				break;
1979 		}
1980 
1981 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1982 		    raw_phys_part, phys_part, pmap_type));
1983 
1984 		if (phys_part == UDF_PARTITIONS)
1985 			return EINVAL;
1986 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1987 			return EINVAL;
1988 
1989 		ump->vtop   [log_part] = phys_part;
1990 		ump->vtop_tp[log_part] = pmap_type;
1991 
1992 		pmap_pos += pmap_size;
1993 	}
1994 	/* not winning the beauty contest */
1995 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1996 
1997 	/* test some basic UDF assertions/requirements */
1998 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1999 		return EINVAL;
2000 
2001 	if (n_virt) {
2002 		if ((n_phys == 0) || n_spar || n_meta)
2003 			return EINVAL;
2004 	}
2005 	if (n_spar + n_phys == 0)
2006 		return EINVAL;
2007 
2008 	/* select allocation type for each logical partition */
2009 	for (log_part = 0; log_part < n_pm; log_part++) {
2010 		maps_on = ump->vtop[log_part];
2011 		switch (ump->vtop_tp[log_part]) {
2012 		case UDF_VTOP_TYPE_PHYS :
2013 			assert(maps_on == log_part);
2014 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2015 			break;
2016 		case UDF_VTOP_TYPE_VIRT :
2017 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2018 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2019 			break;
2020 		case UDF_VTOP_TYPE_SPARABLE :
2021 			assert(maps_on == log_part);
2022 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2023 			break;
2024 		case UDF_VTOP_TYPE_META :
2025 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2026 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2027 				/* special case for UDF 2.60 */
2028 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2029 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
2030 			}
2031 			break;
2032 		default:
2033 			panic("bad alloction type in udf's ump->vtop\n");
2034 		}
2035 	}
2036 
2037 	/* determine logical volume open/closure actions */
2038 	if (n_virt) {
2039 		ump->lvopen  = 0;
2040 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2041 			ump->lvopen |= UDF_OPEN_SESSION ;
2042 		ump->lvclose = UDF_WRITE_VAT;
2043 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2044 			ump->lvclose |= UDF_CLOSE_SESSION;
2045 	} else {
2046 		/* `normal' rewritable or non sequential media */
2047 		ump->lvopen  = UDF_WRITE_LVINT;
2048 		ump->lvclose = UDF_WRITE_LVINT;
2049 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2050 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
2051 	}
2052 
2053 	/*
2054 	 * Determine sheduler error behaviour. For virtual partitions, update
2055 	 * the trackinfo; for sparable partitions replace a whole block on the
2056 	 * sparable table. Allways requeue.
2057 	 */
2058 	ump->lvreadwrite = 0;
2059 	if (n_virt)
2060 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2061 	if (n_spar)
2062 		ump->lvreadwrite = UDF_REMAP_BLOCK;
2063 
2064 	/*
2065 	 * Select our sheduler
2066 	 */
2067 	ump->strategy = &udf_strat_rmw;
2068 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2069 		ump->strategy = &udf_strat_sequential;
2070 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2071 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2072 			ump->strategy = &udf_strat_direct;
2073 	if (n_spar)
2074 		ump->strategy = &udf_strat_rmw;
2075 
2076 #if 0
2077 	/* read-only access won't benefit from the other shedulers */
2078 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2079 		ump->strategy = &udf_strat_direct;
2080 #endif
2081 
2082 	/* print results */
2083 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
2084 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2085 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
2086 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2087 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
2088 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2089 
2090 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2091 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
2092 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2093 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2094 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2095 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2096 
2097 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2098 		(ump->strategy == &udf_strat_direct) ? "Direct" :
2099 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
2100 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2101 
2102 	/* signal its OK for now */
2103 	return 0;
2104 }
2105 
2106 /* --------------------------------------------------------------------- */
2107 
2108 /*
2109  * Update logical volume name in all structures that keep a record of it. We
2110  * use memmove since each of them might be specified as a source.
2111  *
2112  * Note that it doesn't update the VAT structure!
2113  */
2114 
2115 static void
2116 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2117 {
2118 	struct logvol_desc     *lvd = NULL;
2119 	struct fileset_desc    *fsd = NULL;
2120 	struct udf_lv_info     *lvi = NULL;
2121 
2122 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2123 	lvd = ump->logical_vol;
2124 	fsd = ump->fileset_desc;
2125 	if (ump->implementation)
2126 		lvi = &ump->implementation->_impl_use.lv_info;
2127 
2128 	/* logvol's id might be specified as origional so use memmove here */
2129 	memmove(lvd->logvol_id, logvol_id, 128);
2130 	if (fsd)
2131 		memmove(fsd->logvol_id, logvol_id, 128);
2132 	if (lvi)
2133 		memmove(lvi->logvol_id, logvol_id, 128);
2134 }
2135 
2136 /* --------------------------------------------------------------------- */
2137 
2138 void
2139 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2140 	uint32_t sector)
2141 {
2142 	assert(ump->logical_vol);
2143 
2144 	tag->id 		= udf_rw16(tagid);
2145 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
2146 	tag->cksum		= 0;
2147 	tag->reserved		= 0;
2148 	tag->serial_num		= ump->logical_vol->tag.serial_num;
2149 	tag->tag_loc            = udf_rw32(sector);
2150 }
2151 
2152 
2153 uint64_t
2154 udf_advance_uniqueid(struct udf_mount *ump)
2155 {
2156 	uint64_t unique_id;
2157 
2158 	mutex_enter(&ump->logvol_mutex);
2159 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2160 	if (unique_id < 0x10)
2161 		unique_id = 0x10;
2162 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2163 	mutex_exit(&ump->logvol_mutex);
2164 
2165 	return unique_id;
2166 }
2167 
2168 
2169 static void
2170 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2171 {
2172 	struct udf_mount *ump = udf_node->ump;
2173 	uint32_t num_dirs, num_files;
2174 	int udf_file_type;
2175 
2176 	/* get file type */
2177 	if (udf_node->fe) {
2178 		udf_file_type = udf_node->fe->icbtag.file_type;
2179 	} else {
2180 		udf_file_type = udf_node->efe->icbtag.file_type;
2181 	}
2182 
2183 	/* adjust file count */
2184 	mutex_enter(&ump->allocate_mutex);
2185 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2186 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
2187 		ump->logvol_info->num_directories =
2188 			udf_rw32((num_dirs + sign));
2189 	} else {
2190 		num_files = udf_rw32(ump->logvol_info->num_files);
2191 		ump->logvol_info->num_files =
2192 			udf_rw32((num_files + sign));
2193 	}
2194 	mutex_exit(&ump->allocate_mutex);
2195 }
2196 
2197 
2198 void
2199 udf_osta_charset(struct charspec *charspec)
2200 {
2201 	memset(charspec, 0, sizeof(struct charspec));
2202 	charspec->type = 0;
2203 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2204 }
2205 
2206 
2207 /* first call udf_set_regid and then the suffix */
2208 void
2209 udf_set_regid(struct regid *regid, char const *name)
2210 {
2211 	memset(regid, 0, sizeof(struct regid));
2212 	regid->flags    = 0;		/* not dirty and not protected */
2213 	strcpy((char *) regid->id, name);
2214 }
2215 
2216 
2217 void
2218 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2219 {
2220 	uint16_t *ver;
2221 
2222 	ver  = (uint16_t *) regid->id_suffix;
2223 	*ver = ump->logvol_info->min_udf_readver;
2224 }
2225 
2226 
2227 void
2228 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2229 {
2230 	uint16_t *ver;
2231 
2232 	ver  = (uint16_t *) regid->id_suffix;
2233 	*ver = ump->logvol_info->min_udf_readver;
2234 
2235 	regid->id_suffix[2] = 4;	/* unix */
2236 	regid->id_suffix[3] = 8;	/* NetBSD */
2237 }
2238 
2239 
2240 void
2241 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2242 {
2243 	regid->id_suffix[0] = 4;	/* unix */
2244 	regid->id_suffix[1] = 8;	/* NetBSD */
2245 }
2246 
2247 
2248 void
2249 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2250 {
2251 	regid->id_suffix[0] = APP_VERSION_MAIN;
2252 	regid->id_suffix[1] = APP_VERSION_SUB;
2253 }
2254 
2255 static int
2256 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2257 	struct long_ad *parent, uint64_t unique_id)
2258 {
2259 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
2260 	int fidsize = 40;
2261 
2262 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2263 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
2264 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2265 	fid->icb = *parent;
2266 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2267 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2268 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2269 
2270 	return fidsize;
2271 }
2272 
2273 /* --------------------------------------------------------------------- */
2274 
2275 /*
2276  * Extended attribute support. UDF knows of 3 places for extended attributes:
2277  *
2278  * (a) inside the file's (e)fe in the length of the extended attribute area
2279  * before the allocation descriptors/filedata
2280  *
2281  * (b) in a file referenced by (e)fe->ext_attr_icb and
2282  *
2283  * (c) in the e(fe)'s associated stream directory that can hold various
2284  * sub-files. In the stream directory a few fixed named subfiles are reserved
2285  * for NT/Unix ACL's and OS/2 attributes.
2286  *
2287  * NOTE: Extended attributes are read randomly but allways written
2288  * *atomicaly*. For ACL's this interface is propably different but not known
2289  * to me yet.
2290  *
2291  * Order of extended attributes in a space :
2292  *   ECMA 167 EAs
2293  *   Non block aligned Implementation Use EAs
2294  *   Block aligned Implementation Use EAs
2295  *   Application Use EAs
2296  */
2297 
2298 static int
2299 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2300 {
2301 	uint16_t   *spos;
2302 
2303 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2304 		/* checksum valid? */
2305 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2306 		spos = (uint16_t *) implext->data;
2307 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2308 			return EINVAL;
2309 	}
2310 	return 0;
2311 }
2312 
2313 static void
2314 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2315 {
2316 	uint16_t   *spos;
2317 
2318 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2319 		/* set checksum */
2320 		spos = (uint16_t *) implext->data;
2321 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2322 	}
2323 }
2324 
2325 
2326 int
2327 udf_extattr_search_intern(struct udf_node *node,
2328 	uint32_t sattr, char const *sattrname,
2329 	uint32_t *offsetp, uint32_t *lengthp)
2330 {
2331 	struct extattrhdr_desc    *eahdr;
2332 	struct extattr_entry      *attrhdr;
2333 	struct impl_extattr_entry *implext;
2334 	uint32_t    offset, a_l, sector_size;
2335 	 int32_t    l_ea;
2336 	uint8_t    *pos;
2337 	int         error;
2338 
2339 	/* get mountpoint */
2340 	sector_size = node->ump->discinfo.sector_size;
2341 
2342 	/* get information from fe/efe */
2343 	if (node->fe) {
2344 		l_ea  = udf_rw32(node->fe->l_ea);
2345 		eahdr = (struct extattrhdr_desc *) node->fe->data;
2346 	} else {
2347 		assert(node->efe);
2348 		l_ea  = udf_rw32(node->efe->l_ea);
2349 		eahdr = (struct extattrhdr_desc *) node->efe->data;
2350 	}
2351 
2352 	/* something recorded here? */
2353 	if (l_ea == 0)
2354 		return ENOENT;
2355 
2356 	/* check extended attribute tag; what to do if it fails? */
2357 	error = udf_check_tag(eahdr);
2358 	if (error)
2359 		return EINVAL;
2360 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2361 		return EINVAL;
2362 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2363 	if (error)
2364 		return EINVAL;
2365 
2366 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2367 
2368 	/* looking for Ecma-167 attributes? */
2369 	offset = sizeof(struct extattrhdr_desc);
2370 
2371 	/* looking for either implemenation use or application use */
2372 	if (sattr == 2048) {				/* [4/48.10.8] */
2373 		offset = udf_rw32(eahdr->impl_attr_loc);
2374 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2375 			return ENOENT;
2376 	}
2377 	if (sattr == 65536) {				/* [4/48.10.9] */
2378 		offset = udf_rw32(eahdr->appl_attr_loc);
2379 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2380 			return ENOENT;
2381 	}
2382 
2383 	/* paranoia check offset and l_ea */
2384 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2385 		return EINVAL;
2386 
2387 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2388 
2389 	/* find our extended attribute  */
2390 	l_ea -= offset;
2391 	pos = (uint8_t *) eahdr + offset;
2392 
2393 	while (l_ea >= sizeof(struct extattr_entry)) {
2394 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2395 		attrhdr = (struct extattr_entry *) pos;
2396 		implext = (struct impl_extattr_entry *) pos;
2397 
2398 		/* get complete attribute length and check for roque values */
2399 		a_l = udf_rw32(attrhdr->a_l);
2400 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2401 				udf_rw32(attrhdr->type),
2402 				attrhdr->subtype, a_l, l_ea));
2403 		if ((a_l == 0) || (a_l > l_ea))
2404 			return EINVAL;
2405 
2406 		if (attrhdr->type != sattr)
2407 			goto next_attribute;
2408 
2409 		/* we might have found it! */
2410 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
2411 			*offsetp = offset;
2412 			*lengthp = a_l;
2413 			return 0;		/* success */
2414 		}
2415 
2416 		/*
2417 		 * Implementation use and application use extended attributes
2418 		 * have a name to identify. They share the same structure only
2419 		 * UDF implementation use extended attributes have a checksum
2420 		 * we need to check
2421 		 */
2422 
2423 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2424 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
2425 			/* we have found our appl/implementation attribute */
2426 			*offsetp = offset;
2427 			*lengthp = a_l;
2428 			return 0;		/* success */
2429 		}
2430 
2431 next_attribute:
2432 		/* next attribute */
2433 		pos    += a_l;
2434 		l_ea   -= a_l;
2435 		offset += a_l;
2436 	}
2437 	/* not found */
2438 	return ENOENT;
2439 }
2440 
2441 
2442 static void
2443 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2444 	struct extattr_entry *extattr)
2445 {
2446 	struct file_entry      *fe;
2447 	struct extfile_entry   *efe;
2448 	struct extattrhdr_desc *extattrhdr;
2449 	struct impl_extattr_entry *implext;
2450 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2451 	uint32_t *l_eap, l_ad;
2452 	uint16_t *spos;
2453 	uint8_t *bpos, *data;
2454 
2455 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2456 		fe    = &dscr->fe;
2457 		data  = fe->data;
2458 		l_eap = &fe->l_ea;
2459 		l_ad  = udf_rw32(fe->l_ad);
2460 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2461 		efe   = &dscr->efe;
2462 		data  = efe->data;
2463 		l_eap = &efe->l_ea;
2464 		l_ad  = udf_rw32(efe->l_ad);
2465 	} else {
2466 		panic("Bad tag passed to udf_extattr_insert_internal");
2467 	}
2468 
2469 	/* can't append already written to file descriptors yet */
2470 	assert(l_ad == 0);
2471 
2472 	/* should have a header! */
2473 	extattrhdr = (struct extattrhdr_desc *) data;
2474 	l_ea = udf_rw32(*l_eap);
2475 	if (l_ea == 0) {
2476 		/* create empty extended attribute header */
2477 		exthdr_len = sizeof(struct extattrhdr_desc);
2478 
2479 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2480 			/* loc */ 0);
2481 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2482 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2483 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
2484 
2485 		/* record extended attribute header length */
2486 		l_ea = exthdr_len;
2487 		*l_eap = udf_rw32(l_ea);
2488 	}
2489 
2490 	/* extract locations */
2491 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2492 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2493 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2494 		impl_attr_loc = l_ea;
2495 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2496 		appl_attr_loc = l_ea;
2497 
2498 	/* Ecma 167 EAs */
2499 	if (udf_rw32(extattr->type) < 2048) {
2500 		assert(impl_attr_loc == l_ea);
2501 		assert(appl_attr_loc == l_ea);
2502 	}
2503 
2504 	/* implementation use extended attributes */
2505 	if (udf_rw32(extattr->type) == 2048) {
2506 		assert(appl_attr_loc == l_ea);
2507 
2508 		/* calculate and write extended attribute header checksum */
2509 		implext = (struct impl_extattr_entry *) extattr;
2510 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
2511 		spos = (uint16_t *) implext->data;
2512 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2513 	}
2514 
2515 	/* application use extended attributes */
2516 	assert(udf_rw32(extattr->type) != 65536);
2517 	assert(appl_attr_loc == l_ea);
2518 
2519 	/* append the attribute at the end of the current space */
2520 	bpos = data + udf_rw32(*l_eap);
2521 	a_l  = udf_rw32(extattr->a_l);
2522 
2523 	/* update impl. attribute locations */
2524 	if (udf_rw32(extattr->type) < 2048) {
2525 		impl_attr_loc = l_ea + a_l;
2526 		appl_attr_loc = l_ea + a_l;
2527 	}
2528 	if (udf_rw32(extattr->type) == 2048) {
2529 		appl_attr_loc = l_ea + a_l;
2530 	}
2531 
2532 	/* copy and advance */
2533 	memcpy(bpos, extattr, a_l);
2534 	l_ea += a_l;
2535 	*l_eap = udf_rw32(l_ea);
2536 
2537 	/* do the `dance` again backwards */
2538 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2539 		if (impl_attr_loc == l_ea)
2540 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2541 		if (appl_attr_loc == l_ea)
2542 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2543 	}
2544 
2545 	/* store offsets */
2546 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2547 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2548 }
2549 
2550 
2551 /* --------------------------------------------------------------------- */
2552 
2553 static int
2554 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2555 {
2556 	struct udf_mount       *ump;
2557 	struct udf_logvol_info *lvinfo;
2558 	struct impl_extattr_entry     *implext;
2559 	struct vatlvext_extattr_entry  lvext;
2560 	const char *extstr = "*UDF VAT LVExtension";
2561 	uint64_t    vat_uniqueid;
2562 	uint32_t    offset, a_l;
2563 	uint8_t    *ea_start, *lvextpos;
2564 	int         error;
2565 
2566 	/* get mountpoint and lvinfo */
2567 	ump    = vat_node->ump;
2568 	lvinfo = ump->logvol_info;
2569 
2570 	/* get information from fe/efe */
2571 	if (vat_node->fe) {
2572 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2573 		ea_start     = vat_node->fe->data;
2574 	} else {
2575 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2576 		ea_start     = vat_node->efe->data;
2577 	}
2578 
2579 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2580 	if (error)
2581 		return error;
2582 
2583 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2584 	error = udf_impl_extattr_check(implext);
2585 	if (error)
2586 		return error;
2587 
2588 	/* paranoia */
2589 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2590 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2591 		return EINVAL;
2592 	}
2593 
2594 	/*
2595 	 * we have found our "VAT LVExtension attribute. BUT due to a
2596 	 * bug in the specification it might not be word aligned so
2597 	 * copy first to avoid panics on some machines (!!)
2598 	 */
2599 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2600 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2601 	memcpy(&lvext, lvextpos, sizeof(lvext));
2602 
2603 	/* check if it was updated the last time */
2604 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2605 		lvinfo->num_files       = lvext.num_files;
2606 		lvinfo->num_directories = lvext.num_directories;
2607 		udf_update_logvolname(ump, lvext.logvol_id);
2608 	} else {
2609 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2610 		/* replace VAT LVExt by free space EA */
2611 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2612 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2613 		udf_calc_impl_extattr_checksum(implext);
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 
2620 static int
2621 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2622 {
2623 	struct udf_mount       *ump;
2624 	struct udf_logvol_info *lvinfo;
2625 	struct impl_extattr_entry     *implext;
2626 	struct vatlvext_extattr_entry  lvext;
2627 	const char *extstr = "*UDF VAT LVExtension";
2628 	uint64_t    vat_uniqueid;
2629 	uint32_t    offset, a_l;
2630 	uint8_t    *ea_start, *lvextpos;
2631 	int         error;
2632 
2633 	/* get mountpoint and lvinfo */
2634 	ump    = vat_node->ump;
2635 	lvinfo = ump->logvol_info;
2636 
2637 	/* get information from fe/efe */
2638 	if (vat_node->fe) {
2639 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2640 		ea_start     = vat_node->fe->data;
2641 	} else {
2642 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2643 		ea_start     = vat_node->efe->data;
2644 	}
2645 
2646 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2647 	if (error)
2648 		return error;
2649 	/* found, it existed */
2650 
2651 	/* paranoia */
2652 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2653 	error = udf_impl_extattr_check(implext);
2654 	if (error) {
2655 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2656 		return error;
2657 	}
2658 	/* it is correct */
2659 
2660 	/*
2661 	 * we have found our "VAT LVExtension attribute. BUT due to a
2662 	 * bug in the specification it might not be word aligned so
2663 	 * copy first to avoid panics on some machines (!!)
2664 	 */
2665 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2666 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2667 
2668 	lvext.unique_id_chk   = vat_uniqueid;
2669 	lvext.num_files       = lvinfo->num_files;
2670 	lvext.num_directories = lvinfo->num_directories;
2671 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2672 
2673 	memcpy(lvextpos, &lvext, sizeof(lvext));
2674 
2675 	return 0;
2676 }
2677 
2678 /* --------------------------------------------------------------------- */
2679 
2680 int
2681 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2682 {
2683 	struct udf_mount *ump = vat_node->ump;
2684 
2685 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2686 		return EINVAL;
2687 
2688 	memcpy(blob, ump->vat_table + offset, size);
2689 	return 0;
2690 }
2691 
2692 int
2693 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2694 {
2695 	struct udf_mount *ump = vat_node->ump;
2696 	uint32_t offset_high;
2697 	uint8_t *new_vat_table;
2698 
2699 	/* extent VAT allocation if needed */
2700 	offset_high = offset + size;
2701 	if (offset_high >= ump->vat_table_alloc_len) {
2702 		/* realloc */
2703 		new_vat_table = realloc(ump->vat_table,
2704 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2705 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
2706 		if (!new_vat_table) {
2707 			printf("udf_vat_write: can't extent VAT, out of mem\n");
2708 			return ENOMEM;
2709 		}
2710 		ump->vat_table = new_vat_table;
2711 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2712 	}
2713 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2714 
2715 	memcpy(ump->vat_table + offset, blob, size);
2716 	return 0;
2717 }
2718 
2719 /* --------------------------------------------------------------------- */
2720 
2721 /* TODO support previous VAT location writeout */
2722 static int
2723 udf_update_vat_descriptor(struct udf_mount *ump)
2724 {
2725 	struct udf_node *vat_node = ump->vat_node;
2726 	struct udf_logvol_info *lvinfo = ump->logvol_info;
2727 	struct icb_tag *icbtag;
2728 	struct udf_oldvat_tail *oldvat_tl;
2729 	struct udf_vat *vat;
2730 	uint64_t unique_id;
2731 	uint32_t lb_size;
2732 	uint8_t *raw_vat;
2733 	int filetype, error;
2734 
2735 	KASSERT(vat_node);
2736 	KASSERT(lvinfo);
2737 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2738 
2739 	/* get our new unique_id */
2740 	unique_id = udf_advance_uniqueid(ump);
2741 
2742 	/* get information from fe/efe */
2743 	if (vat_node->fe) {
2744 		icbtag    = &vat_node->fe->icbtag;
2745 		vat_node->fe->unique_id = udf_rw64(unique_id);
2746 	} else {
2747 		icbtag = &vat_node->efe->icbtag;
2748 		vat_node->efe->unique_id = udf_rw64(unique_id);
2749 	}
2750 
2751 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2752 	filetype = icbtag->file_type;
2753 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2754 
2755 	/* allocate piece to process head or tail of VAT file */
2756 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2757 
2758 	if (filetype == 0) {
2759 		/*
2760 		 * Update "*UDF VAT LVExtension" extended attribute from the
2761 		 * lvint if present.
2762 		 */
2763 		udf_update_vat_extattr_from_lvid(vat_node);
2764 
2765 		/* setup identifying regid */
2766 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2767 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2768 
2769 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2770 		udf_add_udf_regid(ump, &oldvat_tl->id);
2771 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2772 
2773 		/* write out new tail of virtual allocation table file */
2774 		error = udf_vat_write(vat_node, raw_vat,
2775 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2776 	} else {
2777 		/* compose the VAT2 header */
2778 		vat = (struct udf_vat *) raw_vat;
2779 		memset(vat, 0, sizeof(struct udf_vat));
2780 
2781 		vat->header_len       = udf_rw16(152);	/* as per spec */
2782 		vat->impl_use_len     = udf_rw16(0);
2783 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2784 		vat->prev_vat         = udf_rw32(0xffffffff);
2785 		vat->num_files        = lvinfo->num_files;
2786 		vat->num_directories  = lvinfo->num_directories;
2787 		vat->min_udf_readver  = lvinfo->min_udf_readver;
2788 		vat->min_udf_writever = lvinfo->min_udf_writever;
2789 		vat->max_udf_writever = lvinfo->max_udf_writever;
2790 
2791 		error = udf_vat_write(vat_node, raw_vat,
2792 			sizeof(struct udf_vat), 0);
2793 	}
2794 	free(raw_vat, M_TEMP);
2795 
2796 	return error;	/* success! */
2797 }
2798 
2799 
2800 int
2801 udf_writeout_vat(struct udf_mount *ump)
2802 {
2803 	struct udf_node *vat_node = ump->vat_node;
2804 	uint32_t vat_length;
2805 	int error;
2806 
2807 	KASSERT(vat_node);
2808 
2809 	DPRINTF(CALL, ("udf_writeout_vat\n"));
2810 
2811 //	mutex_enter(&ump->allocate_mutex);
2812 	udf_update_vat_descriptor(ump);
2813 
2814 	/* write out the VAT contents ; TODO intelligent writing */
2815 	vat_length = ump->vat_table_len;
2816 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2817 		ump->vat_table, ump->vat_table_len, 0,
2818 		UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2819 	if (error) {
2820 		printf("udf_writeout_vat: failed to write out VAT contents\n");
2821 		goto out;
2822 	}
2823 
2824 //	mutex_exit(&ump->allocate_mutex);
2825 
2826 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2827 	error = VOP_FSYNC(ump->vat_node->vnode,
2828 			FSCRED, FSYNC_WAIT, 0, 0);
2829 	if (error)
2830 		printf("udf_writeout_vat: error writing VAT node!\n");
2831 out:
2832 
2833 	return error;
2834 }
2835 
2836 /* --------------------------------------------------------------------- */
2837 
2838 /*
2839  * Read in relevant pieces of VAT file and check if its indeed a VAT file
2840  * descriptor. If OK, read in complete VAT file.
2841  */
2842 
2843 static int
2844 udf_check_for_vat(struct udf_node *vat_node)
2845 {
2846 	struct udf_mount *ump;
2847 	struct icb_tag   *icbtag;
2848 	struct timestamp *mtime;
2849 	struct udf_vat   *vat;
2850 	struct udf_oldvat_tail *oldvat_tl;
2851 	struct udf_logvol_info *lvinfo;
2852 	uint64_t  unique_id;
2853 	uint32_t  vat_length;
2854 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
2855 	uint32_t  sector_size;
2856 	uint32_t *raw_vat;
2857 	uint8_t  *vat_table;
2858 	char     *regid_name;
2859 	int filetype;
2860 	int error;
2861 
2862 	/* vat_length is really 64 bits though impossible */
2863 
2864 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
2865 	if (!vat_node)
2866 		return ENOENT;
2867 
2868 	/* get mount info */
2869 	ump = vat_node->ump;
2870 	sector_size = udf_rw32(ump->logical_vol->lb_size);
2871 
2872 	/* check assertions */
2873 	assert(vat_node->fe || vat_node->efe);
2874 	assert(ump->logvol_integrity);
2875 
2876 	/* set vnode type to regular file or we can't read from it! */
2877 	vat_node->vnode->v_type = VREG;
2878 
2879 	/* get information from fe/efe */
2880 	if (vat_node->fe) {
2881 		vat_length = udf_rw64(vat_node->fe->inf_len);
2882 		icbtag    = &vat_node->fe->icbtag;
2883 		mtime     = &vat_node->fe->mtime;
2884 		unique_id = udf_rw64(vat_node->fe->unique_id);
2885 	} else {
2886 		vat_length = udf_rw64(vat_node->efe->inf_len);
2887 		icbtag = &vat_node->efe->icbtag;
2888 		mtime  = &vat_node->efe->mtime;
2889 		unique_id = udf_rw64(vat_node->efe->unique_id);
2890 	}
2891 
2892 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2893 	filetype = icbtag->file_type;
2894 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2895 		return ENOENT;
2896 
2897 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2898 
2899 	vat_table_alloc_len =
2900 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2901 			* UDF_VAT_CHUNKSIZE;
2902 
2903 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2904 		M_CANFAIL | M_WAITOK);
2905 	if (vat_table == NULL) {
2906 		printf("allocation of %d bytes failed for VAT\n",
2907 			vat_table_alloc_len);
2908 		return ENOMEM;
2909 	}
2910 
2911 	/* allocate piece to read in head or tail of VAT file */
2912 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2913 
2914 	/*
2915 	 * check contents of the file if its the old 1.50 VAT table format.
2916 	 * Its notoriously broken and allthough some implementations support an
2917 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
2918 	 * to be useable since a lot of implementations don't maintain it.
2919 	 */
2920 	lvinfo = ump->logvol_info;
2921 
2922 	if (filetype == 0) {
2923 		/* definition */
2924 		vat_offset  = 0;
2925 		vat_entries = (vat_length-36)/4;
2926 
2927 		/* read in tail of virtual allocation table file */
2928 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2929 				(uint8_t *) raw_vat,
2930 				sizeof(struct udf_oldvat_tail),
2931 				vat_entries * 4,
2932 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2933 				NULL, NULL);
2934 		if (error)
2935 			goto out;
2936 
2937 		/* check 1.50 VAT */
2938 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2939 		regid_name = (char *) oldvat_tl->id.id;
2940 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2941 		if (error) {
2942 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2943 			error = ENOENT;
2944 			goto out;
2945 		}
2946 
2947 		/*
2948 		 * update LVID from "*UDF VAT LVExtension" extended attribute
2949 		 * if present.
2950 		 */
2951 		udf_update_lvid_from_vat_extattr(vat_node);
2952 	} else {
2953 		/* read in head of virtual allocation table file */
2954 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2955 				(uint8_t *) raw_vat,
2956 				sizeof(struct udf_vat), 0,
2957 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2958 				NULL, NULL);
2959 		if (error)
2960 			goto out;
2961 
2962 		/* definition */
2963 		vat = (struct udf_vat *) raw_vat;
2964 		vat_offset  = vat->header_len;
2965 		vat_entries = (vat_length - vat_offset)/4;
2966 
2967 		assert(lvinfo);
2968 		lvinfo->num_files        = vat->num_files;
2969 		lvinfo->num_directories  = vat->num_directories;
2970 		lvinfo->min_udf_readver  = vat->min_udf_readver;
2971 		lvinfo->min_udf_writever = vat->min_udf_writever;
2972 		lvinfo->max_udf_writever = vat->max_udf_writever;
2973 
2974 		udf_update_logvolname(ump, vat->logvol_id);
2975 	}
2976 
2977 	/* read in complete VAT file */
2978 	error = vn_rdwr(UIO_READ, vat_node->vnode,
2979 			vat_table,
2980 			vat_length, 0,
2981 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2982 			NULL, NULL);
2983 	if (error)
2984 		printf("read in of complete VAT file failed (error %d)\n",
2985 			error);
2986 	if (error)
2987 		goto out;
2988 
2989 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2990 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2991 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2992 	ump->logvol_integrity->time           = *mtime;
2993 
2994 	ump->vat_table_len = vat_length;
2995 	ump->vat_table_alloc_len = vat_table_alloc_len;
2996 	ump->vat_table   = vat_table;
2997 	ump->vat_offset  = vat_offset;
2998 	ump->vat_entries = vat_entries;
2999 	ump->vat_last_free_lb = 0;		/* start at beginning */
3000 
3001 out:
3002 	if (error) {
3003 		if (vat_table)
3004 			free(vat_table, M_UDFVOLD);
3005 	}
3006 	free(raw_vat, M_TEMP);
3007 
3008 	return error;
3009 }
3010 
3011 /* --------------------------------------------------------------------- */
3012 
3013 static int
3014 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3015 {
3016 	struct udf_node *vat_node;
3017 	struct long_ad	 icb_loc;
3018 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
3019 	int error;
3020 
3021 	/* mapping info not needed */
3022 	mapping = mapping;
3023 
3024 	vat_loc = ump->last_possible_vat_location;
3025 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
3026 
3027 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3028 		vat_loc, early_vat_loc));
3029 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3030 	late_vat_loc  = vat_loc + 1024;
3031 
3032 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3033 		vat_loc, early_vat_loc));
3034 
3035 	/* start looking from the end of the range */
3036 	do {
3037 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3038 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3039 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
3040 
3041 		error = udf_get_node(ump, &icb_loc, &vat_node);
3042 		if (!error) {
3043 			error = udf_check_for_vat(vat_node);
3044 			DPRINTFIF(VOLUMES, !error,
3045 				("VAT accepted at %d\n", vat_loc));
3046 			if (!error)
3047 				break;
3048 		}
3049 		if (vat_node) {
3050 			vput(vat_node->vnode);
3051 			vat_node = NULL;
3052 		}
3053 		vat_loc--;	/* walk backwards */
3054 	} while (vat_loc >= early_vat_loc);
3055 
3056 	/* keep our VAT node around */
3057 	if (vat_node) {
3058 		UDF_SET_SYSTEMFILE(vat_node->vnode);
3059 		ump->vat_node = vat_node;
3060 	}
3061 
3062 	return error;
3063 }
3064 
3065 /* --------------------------------------------------------------------- */
3066 
3067 static int
3068 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3069 {
3070 	union dscrptr *dscr;
3071 	struct part_map_spare *pms = &mapping->pms;
3072 	uint32_t lb_num;
3073 	int spar, error;
3074 
3075 	/*
3076 	 * The partition mapping passed on to us specifies the information we
3077 	 * need to locate and initialise the sparable partition mapping
3078 	 * information we need.
3079 	 */
3080 
3081 	DPRINTF(VOLUMES, ("Read sparable table\n"));
3082 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
3083 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
3084 
3085 	for (spar = 0; spar < pms->n_st; spar++) {
3086 		lb_num = pms->st_loc[spar];
3087 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3088 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3089 		if (!error && dscr) {
3090 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3091 				if (ump->sparing_table)
3092 					free(ump->sparing_table, M_UDFVOLD);
3093 				ump->sparing_table = &dscr->spt;
3094 				dscr = NULL;
3095 				DPRINTF(VOLUMES,
3096 				    ("Sparing table accepted (%d entries)\n",
3097 				     udf_rw16(ump->sparing_table->rt_l)));
3098 				break;	/* we're done */
3099 			}
3100 		}
3101 		if (dscr)
3102 			free(dscr, M_UDFVOLD);
3103 	}
3104 
3105 	if (ump->sparing_table)
3106 		return 0;
3107 
3108 	return ENOENT;
3109 }
3110 
3111 /* --------------------------------------------------------------------- */
3112 
3113 static int
3114 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3115 {
3116 	struct part_map_meta *pmm = &mapping->pmm;
3117 	struct long_ad	 icb_loc;
3118 	struct vnode *vp;
3119 	int error;
3120 
3121 	/* extract our allocation parameters set up on format */
3122 	ump->metadata_alloc_unit_size     = udf_rw32(mapping->pmm.alloc_unit_size);
3123 	ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3124 	ump->metadata_flags = mapping->pmm.flags;
3125 
3126 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3127 	icb_loc.loc.part_num = pmm->part_num;
3128 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
3129 	DPRINTF(VOLUMES, ("Metadata file\n"));
3130 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3131 	if (ump->metadata_node) {
3132 		vp = ump->metadata_node->vnode;
3133 		UDF_SET_SYSTEMFILE(vp);
3134 	}
3135 
3136 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
3137 	if (icb_loc.loc.lb_num != -1) {
3138 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
3139 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3140 		if (ump->metadatamirror_node) {
3141 			vp = ump->metadatamirror_node->vnode;
3142 			UDF_SET_SYSTEMFILE(vp);
3143 		}
3144 	}
3145 
3146 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
3147 	if (icb_loc.loc.lb_num != -1) {
3148 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3149 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3150 		if (ump->metadatabitmap_node) {
3151 			vp = ump->metadatabitmap_node->vnode;
3152 			UDF_SET_SYSTEMFILE(vp);
3153 		}
3154 	}
3155 
3156 	/* if we're mounting read-only we relax the requirements */
3157 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3158 		error = EFAULT;
3159 		if (ump->metadata_node)
3160 			error = 0;
3161 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3162 			printf( "udf mount: Metadata file not readable, "
3163 				"substituting Metadata copy file\n");
3164 			ump->metadata_node = ump->metadatamirror_node;
3165 			ump->metadatamirror_node = NULL;
3166 			error = 0;
3167 		}
3168 	} else {
3169 		/* mounting read/write */
3170 		/* XXX DISABLED! metadata writing is not working yet XXX */
3171 		if (error)
3172 			error = EROFS;
3173 	}
3174 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3175 				   "metadata files\n"));
3176 	return error;
3177 }
3178 
3179 /* --------------------------------------------------------------------- */
3180 
3181 int
3182 udf_read_vds_tables(struct udf_mount *ump)
3183 {
3184 	union udf_pmap *mapping;
3185 	/* struct udf_args *args = &ump->mount_args; */
3186 	uint32_t n_pm, mt_l;
3187 	uint32_t log_part;
3188 	uint8_t *pmap_pos;
3189 	int pmap_size;
3190 	int error;
3191 
3192 	/* Iterate (again) over the part mappings for locations   */
3193 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
3194 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
3195 	pmap_pos =  ump->logical_vol->maps;
3196 
3197 	for (log_part = 0; log_part < n_pm; log_part++) {
3198 		mapping = (union udf_pmap *) pmap_pos;
3199 		switch (ump->vtop_tp[log_part]) {
3200 		case UDF_VTOP_TYPE_PHYS :
3201 			/* nothing */
3202 			break;
3203 		case UDF_VTOP_TYPE_VIRT :
3204 			/* search and load VAT */
3205 			error = udf_search_vat(ump, mapping);
3206 			if (error)
3207 				return ENOENT;
3208 			break;
3209 		case UDF_VTOP_TYPE_SPARABLE :
3210 			/* load one of the sparable tables */
3211 			error = udf_read_sparables(ump, mapping);
3212 			if (error)
3213 				return ENOENT;
3214 			break;
3215 		case UDF_VTOP_TYPE_META :
3216 			/* load the associated file descriptors */
3217 			error = udf_read_metadata_nodes(ump, mapping);
3218 			if (error)
3219 				return ENOENT;
3220 			break;
3221 		default:
3222 			break;
3223 		}
3224 		pmap_size  = pmap_pos[1];
3225 		pmap_pos  += pmap_size;
3226 	}
3227 
3228 	/* read in and check unallocated and free space info if writing */
3229 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3230 		error = udf_read_physical_partition_spacetables(ump);
3231 		if (error)
3232 			return error;
3233 
3234 		/* also read in metadata partition spacebitmap if defined */
3235 		error = udf_read_metadata_partition_spacetable(ump);
3236 			return error;
3237 	}
3238 
3239 	return 0;
3240 }
3241 
3242 /* --------------------------------------------------------------------- */
3243 
3244 int
3245 udf_read_rootdirs(struct udf_mount *ump)
3246 {
3247 	union dscrptr *dscr;
3248 	/* struct udf_args *args = &ump->mount_args; */
3249 	struct udf_node *rootdir_node, *streamdir_node;
3250 	struct long_ad  fsd_loc, *dir_loc;
3251 	uint32_t lb_num, dummy;
3252 	uint32_t fsd_len;
3253 	int dscr_type;
3254 	int error;
3255 
3256 	/* TODO implement FSD reading in separate function like integrity? */
3257 	/* get fileset descriptor sequence */
3258 	fsd_loc = ump->logical_vol->lv_fsd_loc;
3259 	fsd_len = udf_rw32(fsd_loc.len);
3260 
3261 	dscr  = NULL;
3262 	error = 0;
3263 	while (fsd_len || error) {
3264 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3265 		/* translate fsd_loc to lb_num */
3266 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3267 		if (error)
3268 			break;
3269 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3270 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3271 		/* end markers */
3272 		if (error || (dscr == NULL))
3273 			break;
3274 
3275 		/* analyse */
3276 		dscr_type = udf_rw16(dscr->tag.id);
3277 		if (dscr_type == TAGID_TERM)
3278 			break;
3279 		if (dscr_type != TAGID_FSD) {
3280 			free(dscr, M_UDFVOLD);
3281 			return ENOENT;
3282 		}
3283 
3284 		/*
3285 		 * TODO check for multiple fileset descriptors; its only
3286 		 * picking the last now. Also check for FSD
3287 		 * correctness/interpretability
3288 		 */
3289 
3290 		/* update */
3291 		if (ump->fileset_desc) {
3292 			free(ump->fileset_desc, M_UDFVOLD);
3293 		}
3294 		ump->fileset_desc = &dscr->fsd;
3295 		dscr = NULL;
3296 
3297 		/* continue to the next fsd */
3298 		fsd_len -= ump->discinfo.sector_size;
3299 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3300 
3301 		/* follow up to fsd->next_ex (long_ad) if its not null */
3302 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3303 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3304 			fsd_loc = ump->fileset_desc->next_ex;
3305 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3306 		}
3307 	}
3308 	if (dscr)
3309 		free(dscr, M_UDFVOLD);
3310 
3311 	/* there has to be one */
3312 	if (ump->fileset_desc == NULL)
3313 		return ENOENT;
3314 
3315 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
3316 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3317 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3318 
3319 	/*
3320 	 * Now the FSD is known, read in the rootdirectory and if one exists,
3321 	 * the system stream dir. Some files in the system streamdir are not
3322 	 * wanted in this implementation since they are not maintained. If
3323 	 * writing is enabled we'll delete these files if they exist.
3324 	 */
3325 
3326 	rootdir_node = streamdir_node = NULL;
3327 	dir_loc = NULL;
3328 
3329 	/* try to read in the rootdir */
3330 	dir_loc = &ump->fileset_desc->rootdir_icb;
3331 	error = udf_get_node(ump, dir_loc, &rootdir_node);
3332 	if (error)
3333 		return ENOENT;
3334 
3335 	/* aparently it read in fine */
3336 
3337 	/*
3338 	 * Try the system stream directory; not very likely in the ones we
3339 	 * test, but for completeness.
3340 	 */
3341 	dir_loc = &ump->fileset_desc->streamdir_icb;
3342 	if (udf_rw32(dir_loc->len)) {
3343 		printf("udf_read_rootdirs: streamdir defined ");
3344 		error = udf_get_node(ump, dir_loc, &streamdir_node);
3345 		if (error) {
3346 			printf("but error in streamdir reading\n");
3347 		} else {
3348 			printf("but ignored\n");
3349 			/*
3350 			 * TODO process streamdir `baddies' i.e. files we dont
3351 			 * want if R/W
3352 			 */
3353 		}
3354 	}
3355 
3356 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3357 
3358 	/* release the vnodes again; they'll be auto-recycled later */
3359 	if (streamdir_node) {
3360 		vput(streamdir_node->vnode);
3361 	}
3362 	if (rootdir_node) {
3363 		vput(rootdir_node->vnode);
3364 	}
3365 
3366 	return 0;
3367 }
3368 
3369 /* --------------------------------------------------------------------- */
3370 
3371 /* To make absolutely sure we are NOT returning zero, add one :) */
3372 
3373 long
3374 udf_get_node_id(const struct long_ad *icbptr)
3375 {
3376 	/* ought to be enough since each mountpoint has its own chain */
3377 	return udf_rw32(icbptr->loc.lb_num) + 1;
3378 }
3379 
3380 
3381 int
3382 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3383 {
3384 	if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3385 		return -1;
3386 	if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3387 		return 1;
3388 
3389 	if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3390 		return -1;
3391 	if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3392 		return 1;
3393 
3394 	return 0;
3395 }
3396 
3397 
3398 static int
3399 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3400 {
3401 	const struct udf_node *a_node = a;
3402 	const struct udf_node *b_node = b;
3403 
3404 	return udf_compare_icb(&a_node->loc, &b_node->loc);
3405 }
3406 
3407 
3408 static int
3409 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3410 {
3411 	const struct udf_node *a_node = a;
3412 	const struct long_ad * const icb = key;
3413 
3414 	return udf_compare_icb(&a_node->loc, icb);
3415 }
3416 
3417 
3418 static const rb_tree_ops_t udf_node_rbtree_ops = {
3419 	.rbto_compare_nodes = udf_compare_rbnodes,
3420 	.rbto_compare_key = udf_compare_rbnode_icb,
3421 	.rbto_node_offset = offsetof(struct udf_node, rbnode),
3422 	.rbto_context = NULL
3423 };
3424 
3425 
3426 void
3427 udf_init_nodes_tree(struct udf_mount *ump)
3428 {
3429 
3430 	rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3431 }
3432 
3433 
3434 static struct udf_node *
3435 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3436 {
3437 	struct udf_node *udf_node;
3438 	struct vnode *vp;
3439 
3440 loop:
3441 	mutex_enter(&ump->ihash_lock);
3442 
3443 	udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3444 	if (udf_node) {
3445 		vp = udf_node->vnode;
3446 		assert(vp);
3447 		mutex_enter(&vp->v_interlock);
3448 		mutex_exit(&ump->ihash_lock);
3449 		if (vget(vp, LK_EXCLUSIVE))
3450 			goto loop;
3451 		return udf_node;
3452 	}
3453 	mutex_exit(&ump->ihash_lock);
3454 
3455 	return NULL;
3456 }
3457 
3458 
3459 static void
3460 udf_register_node(struct udf_node *udf_node)
3461 {
3462 	struct udf_mount *ump = udf_node->ump;
3463 
3464 	/* add node to the rb tree */
3465 	mutex_enter(&ump->ihash_lock);
3466 	rb_tree_insert_node(&ump->udf_node_tree, udf_node);
3467 	mutex_exit(&ump->ihash_lock);
3468 }
3469 
3470 
3471 static void
3472 udf_deregister_node(struct udf_node *udf_node)
3473 {
3474 	struct udf_mount *ump = udf_node->ump;
3475 
3476 	/* remove node from the rb tree */
3477 	mutex_enter(&ump->ihash_lock);
3478 	rb_tree_remove_node(&ump->udf_node_tree, udf_node);
3479 	mutex_exit(&ump->ihash_lock);
3480 }
3481 
3482 /* --------------------------------------------------------------------- */
3483 
3484 static int
3485 udf_validate_session_start(struct udf_mount *ump)
3486 {
3487 	struct mmc_trackinfo trackinfo;
3488 	struct vrs_desc *vrs;
3489 	uint32_t tracknr, sessionnr, sector, sector_size;
3490 	uint32_t iso9660_vrs, write_track_start;
3491 	uint8_t *buffer, *blank, *pos;
3492 	int blks, max_sectors, vrs_len;
3493 	int error;
3494 
3495 	/* disc appendable? */
3496 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
3497 		return EROFS;
3498 
3499 	/* already written here? if so, there should be an ISO VDS */
3500 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3501 		return 0;
3502 
3503 	/*
3504 	 * Check if the first track of the session is blank and if so, copy or
3505 	 * create a dummy ISO descriptor so the disc is valid again.
3506 	 */
3507 
3508 	tracknr = ump->discinfo.first_track_last_session;
3509 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3510 	trackinfo.tracknr = tracknr;
3511 	error = udf_update_trackinfo(ump, &trackinfo);
3512 	if (error)
3513 		return error;
3514 
3515 	udf_dump_trackinfo(&trackinfo);
3516 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3517 	KASSERT(trackinfo.sessionnr > 1);
3518 
3519 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3520 	write_track_start = trackinfo.next_writable;
3521 
3522 	/* we have to copy the ISO VRS from a former session */
3523 	DPRINTF(VOLUMES, ("validate_session_start: "
3524 			"blank or reserved track, copying VRS\n"));
3525 
3526 	/* sessionnr should be the session we're mounting */
3527 	sessionnr = ump->mount_args.sessionnr;
3528 
3529 	/* start at the first track */
3530 	tracknr   = ump->discinfo.first_track;
3531 	while (tracknr <= ump->discinfo.num_tracks) {
3532 		trackinfo.tracknr = tracknr;
3533 		error = udf_update_trackinfo(ump, &trackinfo);
3534 		if (error) {
3535 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3536 			return error;
3537 		}
3538 		if (trackinfo.sessionnr == sessionnr)
3539 			break;
3540 		tracknr++;
3541 	}
3542 	if (trackinfo.sessionnr != sessionnr) {
3543 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3544 		return ENOENT;
3545 	}
3546 
3547 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3548 	udf_dump_trackinfo(&trackinfo);
3549 
3550         /*
3551          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3552          * minimum ISO `sector size' 2048
3553          */
3554 	sector_size = ump->discinfo.sector_size;
3555 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3556 		 + trackinfo.track_start;
3557 
3558 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3559 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3560 	blks = MAX(1, 2048 / sector_size);
3561 
3562 	error = 0;
3563 	for (sector = 0; sector < max_sectors; sector += blks) {
3564 		pos = buffer + sector * sector_size;
3565 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3566 			iso9660_vrs + sector, blks);
3567 		if (error)
3568 			break;
3569 		/* check this ISO descriptor */
3570 		vrs = (struct vrs_desc *) pos;
3571 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3572 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3573 			continue;
3574 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3575 			continue;
3576 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3577 			continue;
3578 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3579 			continue;
3580 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3581 			continue;
3582 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3583 			break;
3584 		/* now what? for now, end of sequence */
3585 		break;
3586 	}
3587 	vrs_len = sector + blks;
3588 	if (error) {
3589 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3590 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3591 
3592 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
3593 
3594 		vrs = (struct vrs_desc *) (buffer);
3595 		vrs->struct_type = 0;
3596 		vrs->version     = 1;
3597 		memcpy(vrs->identifier,VRS_BEA01, 5);
3598 
3599 		vrs = (struct vrs_desc *) (buffer + 2048);
3600 		vrs->struct_type = 0;
3601 		vrs->version     = 1;
3602 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3603 			memcpy(vrs->identifier,VRS_NSR02, 5);
3604 		} else {
3605 			memcpy(vrs->identifier,VRS_NSR03, 5);
3606 		}
3607 
3608 		vrs = (struct vrs_desc *) (buffer + 4096);
3609 		vrs->struct_type = 0;
3610 		vrs->version     = 1;
3611 		memcpy(vrs->identifier, VRS_TEA01, 5);
3612 
3613 		vrs_len = 3*blks;
3614 	}
3615 
3616 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3617 
3618         /*
3619          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3620          * minimum ISO `sector size' 2048
3621          */
3622 	sector_size = ump->discinfo.sector_size;
3623 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3624 		 + write_track_start;
3625 
3626 	/* write out 32 kb */
3627 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
3628 	memset(blank, 0, sector_size);
3629 	error = 0;
3630 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3631 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3632 			blank, sector, 1);
3633 		if (error)
3634 			break;
3635 	}
3636 	if (!error) {
3637 		/* write out our ISO VRS */
3638 		KASSERT(sector == iso9660_vrs);
3639 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3640 				sector, vrs_len);
3641 		sector += vrs_len;
3642 	}
3643 	if (!error) {
3644 		/* fill upto the first anchor at S+256 */
3645 		for (; sector < write_track_start+256; sector++) {
3646 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3647 				blank, sector, 1);
3648 			if (error)
3649 				break;
3650 		}
3651 	}
3652 	if (!error) {
3653 		/* write out anchor; write at ABSOLUTE place! */
3654 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3655 			(union dscrptr *) ump->anchors[0], sector, sector);
3656 		if (error)
3657 			printf("writeout of anchor failed!\n");
3658 	}
3659 
3660 	free(blank, M_TEMP);
3661 	free(buffer, M_TEMP);
3662 
3663 	if (error)
3664 		printf("udf_open_session: error writing iso vrs! : "
3665 				"leaving disc in compromised state!\n");
3666 
3667 	/* synchronise device caches */
3668 	(void) udf_synchronise_caches(ump);
3669 
3670 	return error;
3671 }
3672 
3673 
3674 int
3675 udf_open_logvol(struct udf_mount *ump)
3676 {
3677 	int logvol_integrity;
3678 	int error;
3679 
3680 	/* already/still open? */
3681 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3682 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
3683 		return 0;
3684 
3685 	/* can we open it ? */
3686 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3687 		return EROFS;
3688 
3689 	/* setup write parameters */
3690 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3691 	if ((error = udf_setup_writeparams(ump)) != 0)
3692 		return error;
3693 
3694 	/* determine data and metadata tracks (most likely same) */
3695 	error = udf_search_writing_tracks(ump);
3696 	if (error) {
3697 		/* most likely lack of space */
3698 		printf("udf_open_logvol: error searching writing tracks\n");
3699 		return EROFS;
3700 	}
3701 
3702 	/* writeout/update lvint on disc or only in memory */
3703 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
3704 	if (ump->lvopen & UDF_OPEN_SESSION) {
3705 		/* TODO optional track reservation opening */
3706 		error = udf_validate_session_start(ump);
3707 		if (error)
3708 			return error;
3709 
3710 		/* determine data and metadata tracks again */
3711 		error = udf_search_writing_tracks(ump);
3712 	}
3713 
3714 	/* mark it open */
3715 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3716 
3717 	/* do we need to write it out? */
3718 	if (ump->lvopen & UDF_WRITE_LVINT) {
3719 		error = udf_writeout_lvint(ump, ump->lvopen);
3720 		/* if we couldn't write it mark it closed again */
3721 		if (error) {
3722 			ump->logvol_integrity->integrity_type =
3723 						udf_rw32(UDF_INTEGRITY_CLOSED);
3724 			return error;
3725 		}
3726 	}
3727 
3728 	return 0;
3729 }
3730 
3731 
3732 int
3733 udf_close_logvol(struct udf_mount *ump, int mntflags)
3734 {
3735 	struct vnode *devvp = ump->devvp;
3736 	struct mmc_op mmc_op;
3737 	int logvol_integrity;
3738 	int error = 0, error1 = 0, error2 = 0;
3739 	int tracknr;
3740 	int nvats, n, nok;
3741 
3742 	/* already/still closed? */
3743 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3744 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3745 		return 0;
3746 
3747 	/* writeout/update lvint or write out VAT */
3748 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3749 #ifdef DIAGNOSTIC
3750 	if (ump->lvclose & UDF_CLOSE_SESSION)
3751 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
3752 #endif
3753 
3754 	if (ump->lvclose & UDF_WRITE_VAT) {
3755 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3756 
3757 		/* write out the VAT data and all its descriptors */
3758 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
3759 		udf_writeout_vat(ump);
3760 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3761 
3762 		(void) VOP_FSYNC(ump->vat_node->vnode,
3763 				FSCRED, FSYNC_WAIT, 0, 0);
3764 
3765 		if (ump->lvclose & UDF_CLOSE_SESSION) {
3766 			DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3767 				"as requested\n"));
3768 		}
3769 
3770 		/* at least two DVD packets and 3 CD-R packets */
3771 		nvats = 32;
3772 
3773 #if notyet
3774 		/*
3775 		 * TODO calculate the available space and if the disc is
3776 		 * allmost full, write out till end-256-1 with banks, write
3777 		 * AVDP and fill up with VATs, then close session and close
3778 		 * disc.
3779 		 */
3780 		if (ump->lvclose & UDF_FINALISE_DISC) {
3781 			error = udf_write_phys_dscr_sync(ump, NULL,
3782 					UDF_C_FLOAT_DSCR,
3783 					(union dscrptr *) ump->anchors[0],
3784 					0, 0);
3785 			if (error)
3786 				printf("writeout of anchor failed!\n");
3787 
3788 			/* pad space with VAT ICBs */
3789 			nvats = 256;
3790 		}
3791 #endif
3792 
3793 		/* write out a number of VAT nodes */
3794 		nok = 0;
3795 		for (n = 0; n < nvats; n++) {
3796 			/* will now only write last FE/EFE */
3797 			ump->vat_node->i_flags |= IN_MODIFIED;
3798 			error = VOP_FSYNC(ump->vat_node->vnode,
3799 					FSCRED, FSYNC_WAIT, 0, 0);
3800 			if (!error)
3801 				nok++;
3802 		}
3803 		if (nok < 14) {
3804 			/* arbitrary; but at least one or two CD frames */
3805 			printf("writeout of at least 14 VATs failed\n");
3806 			return error;
3807 		}
3808 	}
3809 
3810 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
3811 
3812 	/* finish closing of session */
3813 	if (ump->lvclose & UDF_CLOSE_SESSION) {
3814 		error = udf_validate_session_start(ump);
3815 		if (error)
3816 			return error;
3817 
3818 		(void) udf_synchronise_caches(ump);
3819 
3820 		/* close all associated tracks */
3821 		tracknr = ump->discinfo.first_track_last_session;
3822 		error = 0;
3823 		while (tracknr <= ump->discinfo.last_track_last_session) {
3824 			DPRINTF(VOLUMES, ("\tclosing possible open "
3825 				"track %d\n", tracknr));
3826 			memset(&mmc_op, 0, sizeof(mmc_op));
3827 			mmc_op.operation   = MMC_OP_CLOSETRACK;
3828 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3829 			mmc_op.tracknr     = tracknr;
3830 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3831 					FKIOCTL, NOCRED);
3832 			if (error)
3833 				printf("udf_close_logvol: closing of "
3834 					"track %d failed\n", tracknr);
3835 			tracknr ++;
3836 		}
3837 		if (!error) {
3838 			DPRINTF(VOLUMES, ("closing session\n"));
3839 			memset(&mmc_op, 0, sizeof(mmc_op));
3840 			mmc_op.operation   = MMC_OP_CLOSESESSION;
3841 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3842 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
3843 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3844 					FKIOCTL, NOCRED);
3845 			if (error)
3846 				printf("udf_close_logvol: closing of session"
3847 						"failed\n");
3848 		}
3849 		if (!error)
3850 			ump->lvopen |= UDF_OPEN_SESSION;
3851 		if (error) {
3852 			printf("udf_close_logvol: leaving disc as it is\n");
3853 			ump->lvclose &= ~UDF_FINALISE_DISC;
3854 		}
3855 	}
3856 
3857 	if (ump->lvclose & UDF_FINALISE_DISC) {
3858 		memset(&mmc_op, 0, sizeof(mmc_op));
3859 		mmc_op.operation   = MMC_OP_FINALISEDISC;
3860 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3861 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
3862 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3863 				FKIOCTL, NOCRED);
3864 		if (error)
3865 			printf("udf_close_logvol: finalising disc"
3866 					"failed\n");
3867 	}
3868 
3869 	/* write out partition bitmaps if requested */
3870 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3871 		/* sync writeout metadata spacetable if existing */
3872 		error1 = udf_write_metadata_partition_spacetable(ump, true);
3873 		if (error1)
3874 			printf( "udf_close_logvol: writeout of metadata space "
3875 				"bitmap failed\n");
3876 
3877 		/* sync writeout partition spacetables */
3878 		error2 = udf_write_physical_partition_spacetables(ump, true);
3879 		if (error2)
3880 			printf( "udf_close_logvol: writeout of space tables "
3881 				"failed\n");
3882 
3883 		if (error1 || error2)
3884 			return (error1 | error2);
3885 
3886 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3887 	}
3888 
3889 	/* write out metadata partition nodes if requested */
3890 	if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3891 		/* sync writeout metadata descriptor node */
3892 		error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3893 		if (error1)
3894 			printf( "udf_close_logvol: writeout of metadata partition "
3895 				"node failed\n");
3896 
3897 		/* duplicate metadata partition descriptor if needed */
3898 		udf_synchronise_metadatamirror_node(ump);
3899 
3900 		/* sync writeout metadatamirror descriptor node */
3901 		error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3902 		if (error2)
3903 			printf( "udf_close_logvol: writeout of metadata partition "
3904 				"mirror node failed\n");
3905 
3906 		if (error1 || error2)
3907 			return (error1 | error2);
3908 
3909 		ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3910 	}
3911 
3912 	/* mark it closed */
3913 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3914 
3915 	/* do we need to write out the logical volume integrity? */
3916 	if (ump->lvclose & UDF_WRITE_LVINT)
3917 		error = udf_writeout_lvint(ump, ump->lvopen);
3918 	if (error) {
3919 		/* HELP now what? mark it open again for now */
3920 		ump->logvol_integrity->integrity_type =
3921 			udf_rw32(UDF_INTEGRITY_OPEN);
3922 		return error;
3923 	}
3924 
3925 	(void) udf_synchronise_caches(ump);
3926 
3927 	return 0;
3928 }
3929 
3930 /* --------------------------------------------------------------------- */
3931 
3932 /*
3933  * Genfs interfacing
3934  *
3935  * static const struct genfs_ops udf_genfsops = {
3936  * 	.gop_size = genfs_size,
3937  * 		size of transfers
3938  * 	.gop_alloc = udf_gop_alloc,
3939  * 		allocate len bytes at offset
3940  * 	.gop_write = genfs_gop_write,
3941  * 		putpages interface code
3942  * 	.gop_markupdate = udf_gop_markupdate,
3943  * 		set update/modify flags etc.
3944  * }
3945  */
3946 
3947 /*
3948  * Genfs interface. These four functions are the only ones defined though not
3949  * documented... great....
3950  */
3951 
3952 /*
3953  * Called for allocating an extent of the file either by VOP_WRITE() or by
3954  * genfs filling up gaps.
3955  */
3956 static int
3957 udf_gop_alloc(struct vnode *vp, off_t off,
3958     off_t len, int flags, kauth_cred_t cred)
3959 {
3960 	struct udf_node *udf_node = VTOI(vp);
3961 	struct udf_mount *ump = udf_node->ump;
3962 	uint64_t lb_start, lb_end;
3963 	uint32_t lb_size, num_lb;
3964 	int udf_c_type, vpart_num, can_fail;
3965 	int error;
3966 
3967 	DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3968 		off, len, flags? "SYNC":"NONE"));
3969 
3970 	/*
3971 	 * request the pages of our vnode and see how many pages will need to
3972 	 * be allocated and reserve that space
3973 	 */
3974 	lb_size  = udf_rw32(udf_node->ump->logical_vol->lb_size);
3975 	lb_start = off / lb_size;
3976 	lb_end   = (off + len + lb_size -1) / lb_size;
3977 	num_lb   = lb_end - lb_start;
3978 
3979 	udf_c_type = udf_get_c_type(udf_node);
3980 	vpart_num  = udf_get_record_vpart(ump, udf_c_type);
3981 
3982 	/* all requests can fail */
3983 	can_fail   = true;
3984 
3985 	/* fid's (directories) can't fail */
3986 	if (udf_c_type == UDF_C_FIDS)
3987 		can_fail   = false;
3988 
3989 	/* system files can't fail */
3990 	if (vp->v_vflag & VV_SYSTEM)
3991 		can_fail = false;
3992 
3993 	error = udf_reserve_space(ump, udf_node, udf_c_type,
3994 		vpart_num, num_lb, can_fail);
3995 
3996 	DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
3997 		lb_start, lb_end, num_lb));
3998 
3999 	return error;
4000 }
4001 
4002 
4003 /*
4004  * callback from genfs to update our flags
4005  */
4006 static void
4007 udf_gop_markupdate(struct vnode *vp, int flags)
4008 {
4009 	struct udf_node *udf_node = VTOI(vp);
4010 	u_long mask = 0;
4011 
4012 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4013 		mask = IN_ACCESS;
4014 	}
4015 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4016 		if (vp->v_type == VREG) {
4017 			mask |= IN_CHANGE | IN_UPDATE;
4018 		} else {
4019 			mask |= IN_MODIFY;
4020 		}
4021 	}
4022 	if (mask) {
4023 		udf_node->i_flags |= mask;
4024 	}
4025 }
4026 
4027 
4028 static const struct genfs_ops udf_genfsops = {
4029 	.gop_size = genfs_size,
4030 	.gop_alloc = udf_gop_alloc,
4031 	.gop_write = genfs_gop_write_rwmap,
4032 	.gop_markupdate = udf_gop_markupdate,
4033 };
4034 
4035 
4036 /* --------------------------------------------------------------------- */
4037 
4038 int
4039 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4040 {
4041 	union dscrptr *dscr;
4042 	int error;
4043 
4044 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4045 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4046 
4047 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4048 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4049 	(void) udf_validate_tag_and_crc_sums(dscr);
4050 
4051 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4052 			dscr, sector, sector);
4053 
4054 	free(dscr, M_TEMP);
4055 
4056 	return error;
4057 }
4058 
4059 
4060 /* --------------------------------------------------------------------- */
4061 
4062 /* UDF<->unix converters */
4063 
4064 /* --------------------------------------------------------------------- */
4065 
4066 static mode_t
4067 udf_perm_to_unix_mode(uint32_t perm)
4068 {
4069 	mode_t mode;
4070 
4071 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
4072 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
4073 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4074 
4075 	return mode;
4076 }
4077 
4078 /* --------------------------------------------------------------------- */
4079 
4080 static uint32_t
4081 unix_mode_to_udf_perm(mode_t mode)
4082 {
4083 	uint32_t perm;
4084 
4085 	perm  = ((mode & S_IRWXO)     );
4086 	perm |= ((mode & S_IRWXG) << 2);
4087 	perm |= ((mode & S_IRWXU) << 4);
4088 	perm |= ((mode & S_IWOTH) << 3);
4089 	perm |= ((mode & S_IWGRP) << 5);
4090 	perm |= ((mode & S_IWUSR) << 7);
4091 
4092 	return perm;
4093 }
4094 
4095 /* --------------------------------------------------------------------- */
4096 
4097 static uint32_t
4098 udf_icb_to_unix_filetype(uint32_t icbftype)
4099 {
4100 	switch (icbftype) {
4101 	case UDF_ICB_FILETYPE_DIRECTORY :
4102 	case UDF_ICB_FILETYPE_STREAMDIR :
4103 		return S_IFDIR;
4104 	case UDF_ICB_FILETYPE_FIFO :
4105 		return S_IFIFO;
4106 	case UDF_ICB_FILETYPE_CHARDEVICE :
4107 		return S_IFCHR;
4108 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
4109 		return S_IFBLK;
4110 	case UDF_ICB_FILETYPE_RANDOMACCESS :
4111 	case UDF_ICB_FILETYPE_REALTIME :
4112 		return S_IFREG;
4113 	case UDF_ICB_FILETYPE_SYMLINK :
4114 		return S_IFLNK;
4115 	case UDF_ICB_FILETYPE_SOCKET :
4116 		return S_IFSOCK;
4117 	}
4118 	/* no idea what this is */
4119 	return 0;
4120 }
4121 
4122 /* --------------------------------------------------------------------- */
4123 
4124 void
4125 udf_to_unix_name(char *result, int result_len, char *id, int len,
4126 	struct charspec *chsp)
4127 {
4128 	uint16_t   *raw_name, *unix_name;
4129 	uint16_t   *inchp, ch;
4130 	uint8_t	   *outchp;
4131 	const char *osta_id = "OSTA Compressed Unicode";
4132 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
4133 
4134 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4135 	unix_name = raw_name + 1024;			/* split space in half */
4136 	assert(sizeof(char) == sizeof(uint8_t));
4137 	outchp = (uint8_t *) result;
4138 
4139 	is_osta_typ0  = (chsp->type == 0);
4140 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4141 	if (is_osta_typ0) {
4142 		/* TODO clean up */
4143 		*raw_name = *unix_name = 0;
4144 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4145 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4146 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4147 		/* output UTF8 */
4148 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4149 			ch = *inchp;
4150 			nout = wput_utf8(outchp, result_len, ch);
4151 			outchp += nout; result_len -= nout;
4152 			if (!ch) break;
4153 		}
4154 		*outchp++ = 0;
4155 	} else {
4156 		/* assume 8bit char length byte latin-1 */
4157 		assert(*id == 8);
4158 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4159 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4160 	}
4161 	free(raw_name, M_UDFTEMP);
4162 }
4163 
4164 /* --------------------------------------------------------------------- */
4165 
4166 void
4167 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4168 	struct charspec *chsp)
4169 {
4170 	uint16_t   *raw_name;
4171 	uint16_t   *outchp;
4172 	const char *inchp;
4173 	const char *osta_id = "OSTA Compressed Unicode";
4174 	int         udf_chars, is_osta_typ0, bits;
4175 	size_t      cnt;
4176 
4177 	/* allocate temporary unicode-16 buffer */
4178 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4179 
4180 	/* convert utf8 to unicode-16 */
4181 	*raw_name = 0;
4182 	inchp  = name;
4183 	outchp = raw_name;
4184 	bits = 8;
4185 	for (cnt = name_len, udf_chars = 0; cnt;) {
4186 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4187 		*outchp = wget_utf8(&inchp, &cnt);
4188 		if (*outchp > 0xff)
4189 			bits=16;
4190 		outchp++;
4191 		udf_chars++;
4192 	}
4193 	/* null terminate just in case */
4194 	*outchp++ = 0;
4195 
4196 	is_osta_typ0  = (chsp->type == 0);
4197 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4198 	if (is_osta_typ0) {
4199 		udf_chars = udf_CompressUnicode(udf_chars, bits,
4200 				(unicode_t *) raw_name,
4201 				(byte *) result);
4202 	} else {
4203 		printf("unix to udf name: no CHSP0 ?\n");
4204 		/* XXX assume 8bit char length byte latin-1 */
4205 		*result++ = 8; udf_chars = 1;
4206 		strncpy(result, name + 1, name_len);
4207 		udf_chars += name_len;
4208 	}
4209 	*result_len = udf_chars;
4210 	free(raw_name, M_UDFTEMP);
4211 }
4212 
4213 /* --------------------------------------------------------------------- */
4214 
4215 void
4216 udf_timestamp_to_timespec(struct udf_mount *ump,
4217 			  struct timestamp *timestamp,
4218 			  struct timespec  *timespec)
4219 {
4220 	struct clock_ymdhms ymdhms;
4221 	uint32_t usecs, secs, nsecs;
4222 	uint16_t tz;
4223 
4224 	/* fill in ymdhms structure from timestamp */
4225 	memset(&ymdhms, 0, sizeof(ymdhms));
4226 	ymdhms.dt_year = udf_rw16(timestamp->year);
4227 	ymdhms.dt_mon  = timestamp->month;
4228 	ymdhms.dt_day  = timestamp->day;
4229 	ymdhms.dt_wday = 0; /* ? */
4230 	ymdhms.dt_hour = timestamp->hour;
4231 	ymdhms.dt_min  = timestamp->minute;
4232 	ymdhms.dt_sec  = timestamp->second;
4233 
4234 	secs = clock_ymdhms_to_secs(&ymdhms);
4235 	usecs = timestamp->usec +
4236 		100*timestamp->hund_usec + 10000*timestamp->centisec;
4237 	nsecs = usecs * 1000;
4238 
4239 	/*
4240 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
4241 	 * compliment, so we gotta do some extra magic to handle it right.
4242 	 */
4243 	tz  = udf_rw16(timestamp->type_tz);
4244 	tz &= 0x0fff;			/* only lower 12 bits are significant */
4245 	if (tz & 0x0800)		/* sign extention */
4246 		tz |= 0xf000;
4247 
4248 	/* TODO check timezone conversion */
4249 	/* check if we are specified a timezone to convert */
4250 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
4251 		if ((int16_t) tz != -2047)
4252 			secs -= (int16_t) tz * 60;
4253 	} else {
4254 		secs -= ump->mount_args.gmtoff;
4255 	}
4256 
4257 	timespec->tv_sec  = secs;
4258 	timespec->tv_nsec = nsecs;
4259 }
4260 
4261 
4262 void
4263 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4264 {
4265 	struct clock_ymdhms ymdhms;
4266 	uint32_t husec, usec, csec;
4267 
4268 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4269 
4270 	usec   = timespec->tv_nsec / 1000;
4271 	husec  =  usec / 100;
4272 	usec  -= husec * 100;				/* only 0-99 in usec  */
4273 	csec   = husec / 100;				/* only 0-99 in csec  */
4274 	husec -=  csec * 100;				/* only 0-99 in husec */
4275 
4276 	/* set method 1 for CUT/GMT */
4277 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
4278 	timestamp->year		= udf_rw16(ymdhms.dt_year);
4279 	timestamp->month	= ymdhms.dt_mon;
4280 	timestamp->day		= ymdhms.dt_day;
4281 	timestamp->hour		= ymdhms.dt_hour;
4282 	timestamp->minute	= ymdhms.dt_min;
4283 	timestamp->second	= ymdhms.dt_sec;
4284 	timestamp->centisec	= csec;
4285 	timestamp->hund_usec	= husec;
4286 	timestamp->usec		= usec;
4287 }
4288 
4289 /* --------------------------------------------------------------------- */
4290 
4291 /*
4292  * Attribute and filetypes converters with get/set pairs
4293  */
4294 
4295 uint32_t
4296 udf_getaccessmode(struct udf_node *udf_node)
4297 {
4298 	struct file_entry     *fe = udf_node->fe;
4299 	struct extfile_entry *efe = udf_node->efe;
4300 	uint32_t udf_perm, icbftype;
4301 	uint32_t mode, ftype;
4302 	uint16_t icbflags;
4303 
4304 	UDF_LOCK_NODE(udf_node, 0);
4305 	if (fe) {
4306 		udf_perm = udf_rw32(fe->perm);
4307 		icbftype = fe->icbtag.file_type;
4308 		icbflags = udf_rw16(fe->icbtag.flags);
4309 	} else {
4310 		assert(udf_node->efe);
4311 		udf_perm = udf_rw32(efe->perm);
4312 		icbftype = efe->icbtag.file_type;
4313 		icbflags = udf_rw16(efe->icbtag.flags);
4314 	}
4315 
4316 	mode  = udf_perm_to_unix_mode(udf_perm);
4317 	ftype = udf_icb_to_unix_filetype(icbftype);
4318 
4319 	/* set suid, sgid, sticky from flags in fe/efe */
4320 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4321 		mode |= S_ISUID;
4322 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4323 		mode |= S_ISGID;
4324 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4325 		mode |= S_ISVTX;
4326 
4327 	UDF_UNLOCK_NODE(udf_node, 0);
4328 
4329 	return mode | ftype;
4330 }
4331 
4332 
4333 void
4334 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4335 {
4336 	struct file_entry    *fe  = udf_node->fe;
4337 	struct extfile_entry *efe = udf_node->efe;
4338 	uint32_t udf_perm;
4339 	uint16_t icbflags;
4340 
4341 	UDF_LOCK_NODE(udf_node, 0);
4342 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4343 	if (fe) {
4344 		icbflags = udf_rw16(fe->icbtag.flags);
4345 	} else {
4346 		icbflags = udf_rw16(efe->icbtag.flags);
4347 	}
4348 
4349 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4350 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4351 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4352 	if (mode & S_ISUID)
4353 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4354 	if (mode & S_ISGID)
4355 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4356 	if (mode & S_ISVTX)
4357 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4358 
4359 	if (fe) {
4360 		fe->perm  = udf_rw32(udf_perm);
4361 		fe->icbtag.flags  = udf_rw16(icbflags);
4362 	} else {
4363 		efe->perm = udf_rw32(udf_perm);
4364 		efe->icbtag.flags = udf_rw16(icbflags);
4365 	}
4366 
4367 	UDF_UNLOCK_NODE(udf_node, 0);
4368 }
4369 
4370 
4371 void
4372 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4373 {
4374 	struct udf_mount     *ump = udf_node->ump;
4375 	struct file_entry    *fe  = udf_node->fe;
4376 	struct extfile_entry *efe = udf_node->efe;
4377 	uid_t uid;
4378 	gid_t gid;
4379 
4380 	UDF_LOCK_NODE(udf_node, 0);
4381 	if (fe) {
4382 		uid = (uid_t)udf_rw32(fe->uid);
4383 		gid = (gid_t)udf_rw32(fe->gid);
4384 	} else {
4385 		assert(udf_node->efe);
4386 		uid = (uid_t)udf_rw32(efe->uid);
4387 		gid = (gid_t)udf_rw32(efe->gid);
4388 	}
4389 
4390 	/* do the uid/gid translation game */
4391 	if (uid == (uid_t) -1)
4392 		uid = ump->mount_args.anon_uid;
4393 	if (gid == (gid_t) -1)
4394 		gid = ump->mount_args.anon_gid;
4395 
4396 	*uidp = uid;
4397 	*gidp = gid;
4398 
4399 	UDF_UNLOCK_NODE(udf_node, 0);
4400 }
4401 
4402 
4403 void
4404 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4405 {
4406 	struct udf_mount     *ump = udf_node->ump;
4407 	struct file_entry    *fe  = udf_node->fe;
4408 	struct extfile_entry *efe = udf_node->efe;
4409 	uid_t nobody_uid;
4410 	gid_t nobody_gid;
4411 
4412 	UDF_LOCK_NODE(udf_node, 0);
4413 
4414 	/* do the uid/gid translation game */
4415 	nobody_uid = ump->mount_args.nobody_uid;
4416 	nobody_gid = ump->mount_args.nobody_gid;
4417 	if (uid == nobody_uid)
4418 		uid = (uid_t) -1;
4419 	if (gid == nobody_gid)
4420 		gid = (gid_t) -1;
4421 
4422 	if (fe) {
4423 		fe->uid  = udf_rw32((uint32_t) uid);
4424 		fe->gid  = udf_rw32((uint32_t) gid);
4425 	} else {
4426 		efe->uid = udf_rw32((uint32_t) uid);
4427 		efe->gid = udf_rw32((uint32_t) gid);
4428 	}
4429 
4430 	UDF_UNLOCK_NODE(udf_node, 0);
4431 }
4432 
4433 
4434 /* --------------------------------------------------------------------- */
4435 
4436 
4437 static int
4438 dirhash_fill(struct udf_node *dir_node)
4439 {
4440 	struct vnode *dvp = dir_node->vnode;
4441 	struct dirhash *dirh;
4442 	struct file_entry    *fe  = dir_node->fe;
4443 	struct extfile_entry *efe = dir_node->efe;
4444 	struct fileid_desc *fid;
4445 	struct dirent *dirent;
4446 	uint64_t file_size, pre_diroffset, diroffset;
4447 	uint32_t lb_size;
4448 	int error;
4449 
4450 	/* make sure we have a dirhash to work on */
4451 	dirh = dir_node->dir_hash;
4452 	KASSERT(dirh);
4453 	KASSERT(dirh->refcnt > 0);
4454 
4455 	if (dirh->flags & DIRH_BROKEN)
4456 		return EIO;
4457 	if (dirh->flags & DIRH_COMPLETE)
4458 		return 0;
4459 
4460 	/* make sure we have a clean dirhash to add to */
4461 	dirhash_purge_entries(dirh);
4462 
4463 	/* get directory filesize */
4464 	if (fe) {
4465 		file_size = udf_rw64(fe->inf_len);
4466 	} else {
4467 		assert(efe);
4468 		file_size = udf_rw64(efe->inf_len);
4469 	}
4470 
4471 	/* allocate temporary space for fid */
4472 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4473 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4474 
4475 	/* allocate temporary space for dirent */
4476 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4477 
4478 	error = 0;
4479 	diroffset = 0;
4480 	while (diroffset < file_size) {
4481 		/* transfer a new fid/dirent */
4482 		pre_diroffset = diroffset;
4483 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4484 		if (error) {
4485 			/* TODO what to do? continue but not add? */
4486 			dirh->flags |= DIRH_BROKEN;
4487 			dirhash_purge_entries(dirh);
4488 			break;
4489 		}
4490 
4491 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4492 			/* register deleted extent for reuse */
4493 			dirhash_enter_freed(dirh, pre_diroffset,
4494 				udf_fidsize(fid));
4495 		} else {
4496 			/* append to the dirhash */
4497 			dirhash_enter(dirh, dirent, pre_diroffset,
4498 				udf_fidsize(fid), 0);
4499 		}
4500 	}
4501 	dirh->flags |= DIRH_COMPLETE;
4502 
4503 	free(fid, M_UDFTEMP);
4504 	free(dirent, M_UDFTEMP);
4505 
4506 	return error;
4507 }
4508 
4509 
4510 /* --------------------------------------------------------------------- */
4511 
4512 /*
4513  * Directory read and manipulation functions.
4514  *
4515  */
4516 
4517 int
4518 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4519        struct long_ad *icb_loc, int *found)
4520 {
4521 	struct udf_node  *dir_node = VTOI(vp);
4522 	struct dirhash       *dirh;
4523 	struct dirhash_entry *dirh_ep;
4524 	struct fileid_desc *fid;
4525 	struct dirent *dirent;
4526 	uint64_t diroffset;
4527 	uint32_t lb_size;
4528 	int hit, error;
4529 
4530 	/* set default return */
4531 	*found = 0;
4532 
4533 	/* get our dirhash and make sure its read in */
4534 	dirhash_get(&dir_node->dir_hash);
4535 	error = dirhash_fill(dir_node);
4536 	if (error) {
4537 		dirhash_put(dir_node->dir_hash);
4538 		return error;
4539 	}
4540 	dirh = dir_node->dir_hash;
4541 
4542 	/* allocate temporary space for fid */
4543 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4544 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4545 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4546 
4547 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4548 		namelen, namelen, name));
4549 
4550 	/* search our dirhash hits */
4551 	memset(icb_loc, 0, sizeof(*icb_loc));
4552 	dirh_ep = NULL;
4553 	for (;;) {
4554 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4555 		/* if no hit, abort the search */
4556 		if (!hit)
4557 			break;
4558 
4559 		/* check this hit */
4560 		diroffset = dirh_ep->offset;
4561 
4562 		/* transfer a new fid/dirent */
4563 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4564 		if (error)
4565 			break;
4566 
4567 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4568 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4569 
4570 		/* see if its our entry */
4571 		KASSERT(dirent->d_namlen == namelen);
4572 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4573 			*found = 1;
4574 			*icb_loc = fid->icb;
4575 			break;
4576 		}
4577 	}
4578 	free(fid, M_UDFTEMP);
4579 	free(dirent, M_UDFTEMP);
4580 
4581 	dirhash_put(dir_node->dir_hash);
4582 
4583 	return error;
4584 }
4585 
4586 /* --------------------------------------------------------------------- */
4587 
4588 static int
4589 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4590 	struct long_ad *node_icb, struct long_ad *parent_icb,
4591 	uint64_t parent_unique_id)
4592 {
4593 	struct timespec now;
4594 	struct icb_tag *icb;
4595 	struct filetimes_extattr_entry *ft_extattr;
4596 	uint64_t unique_id;
4597 	uint32_t fidsize, lb_num;
4598 	uint8_t *bpos;
4599 	int crclen, attrlen;
4600 
4601 	lb_num = udf_rw32(node_icb->loc.lb_num);
4602 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4603 	icb = &fe->icbtag;
4604 
4605 	/*
4606 	 * Always use strategy type 4 unless on WORM wich we don't support
4607 	 * (yet). Fill in defaults and set for internal allocation of data.
4608 	 */
4609 	icb->strat_type      = udf_rw16(4);
4610 	icb->max_num_entries = udf_rw16(1);
4611 	icb->file_type       = file_type;	/* 8 bit */
4612 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4613 
4614 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4615 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
4616 
4617 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4618 
4619 	vfs_timestamp(&now);
4620 	udf_timespec_to_timestamp(&now, &fe->atime);
4621 	udf_timespec_to_timestamp(&now, &fe->attrtime);
4622 	udf_timespec_to_timestamp(&now, &fe->mtime);
4623 
4624 	udf_set_regid(&fe->imp_id, IMPL_NAME);
4625 	udf_add_impl_regid(ump, &fe->imp_id);
4626 
4627 	unique_id = udf_advance_uniqueid(ump);
4628 	fe->unique_id = udf_rw64(unique_id);
4629 	fe->l_ea = udf_rw32(0);
4630 
4631 	/* create extended attribute to record our creation time */
4632 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4633 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4634 	memset(ft_extattr, 0, attrlen);
4635 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4636 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
4637 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4638 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4639 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4640 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4641 
4642 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4643 		(struct extattr_entry *) ft_extattr);
4644 	free(ft_extattr, M_UDFTEMP);
4645 
4646 	/* if its a directory, create '..' */
4647 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4648 	fidsize = 0;
4649 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4650 		fidsize = udf_create_parentfid(ump,
4651 			(struct fileid_desc *) bpos, parent_icb,
4652 			parent_unique_id);
4653 	}
4654 
4655 	/* record fidlength information */
4656 	fe->inf_len = udf_rw64(fidsize);
4657 	fe->l_ad    = udf_rw32(fidsize);
4658 	fe->logblks_rec = udf_rw64(0);		/* intern */
4659 
4660 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4661 	crclen += udf_rw32(fe->l_ea) + fidsize;
4662 	fe->tag.desc_crc_len = udf_rw16(crclen);
4663 
4664 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4665 
4666 	return fidsize;
4667 }
4668 
4669 /* --------------------------------------------------------------------- */
4670 
4671 static int
4672 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4673 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4674 	uint64_t parent_unique_id)
4675 {
4676 	struct timespec now;
4677 	struct icb_tag *icb;
4678 	uint64_t unique_id;
4679 	uint32_t fidsize, lb_num;
4680 	uint8_t *bpos;
4681 	int crclen;
4682 
4683 	lb_num = udf_rw32(node_icb->loc.lb_num);
4684 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4685 	icb = &efe->icbtag;
4686 
4687 	/*
4688 	 * Always use strategy type 4 unless on WORM wich we don't support
4689 	 * (yet). Fill in defaults and set for internal allocation of data.
4690 	 */
4691 	icb->strat_type      = udf_rw16(4);
4692 	icb->max_num_entries = udf_rw16(1);
4693 	icb->file_type       = file_type;	/* 8 bit */
4694 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4695 
4696 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4697 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
4698 
4699 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4700 
4701 	vfs_timestamp(&now);
4702 	udf_timespec_to_timestamp(&now, &efe->ctime);
4703 	udf_timespec_to_timestamp(&now, &efe->atime);
4704 	udf_timespec_to_timestamp(&now, &efe->attrtime);
4705 	udf_timespec_to_timestamp(&now, &efe->mtime);
4706 
4707 	udf_set_regid(&efe->imp_id, IMPL_NAME);
4708 	udf_add_impl_regid(ump, &efe->imp_id);
4709 
4710 	unique_id = udf_advance_uniqueid(ump);
4711 	efe->unique_id = udf_rw64(unique_id);
4712 	efe->l_ea = udf_rw32(0);
4713 
4714 	/* if its a directory, create '..' */
4715 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4716 	fidsize = 0;
4717 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4718 		fidsize = udf_create_parentfid(ump,
4719 			(struct fileid_desc *) bpos, parent_icb,
4720 			parent_unique_id);
4721 	}
4722 
4723 	/* record fidlength information */
4724 	efe->obj_size = udf_rw64(fidsize);
4725 	efe->inf_len  = udf_rw64(fidsize);
4726 	efe->l_ad     = udf_rw32(fidsize);
4727 	efe->logblks_rec = udf_rw64(0);		/* intern */
4728 
4729 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4730 	crclen += udf_rw32(efe->l_ea) + fidsize;
4731 	efe->tag.desc_crc_len = udf_rw16(crclen);
4732 
4733 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4734 
4735 	return fidsize;
4736 }
4737 
4738 /* --------------------------------------------------------------------- */
4739 
4740 int
4741 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4742 	struct udf_node *udf_node, struct componentname *cnp)
4743 {
4744 	struct vnode *dvp = dir_node->vnode;
4745 	struct dirhash       *dirh;
4746 	struct dirhash_entry *dirh_ep;
4747 	struct file_entry    *fe  = dir_node->fe;
4748 	struct extfile_entry *efe = dir_node->efe;
4749 	struct fileid_desc *fid;
4750 	struct dirent *dirent;
4751 	uint64_t file_size, diroffset;
4752 	uint32_t lb_size, fidsize;
4753 	int found, error;
4754 	char const *name  = cnp->cn_nameptr;
4755 	int namelen = cnp->cn_namelen;
4756 	int hit, refcnt;
4757 
4758 	/* get our dirhash and make sure its read in */
4759 	dirhash_get(&dir_node->dir_hash);
4760 	error = dirhash_fill(dir_node);
4761 	if (error) {
4762 		dirhash_put(dir_node->dir_hash);
4763 		return error;
4764 	}
4765 	dirh = dir_node->dir_hash;
4766 
4767 	/* get directory filesize */
4768 	if (fe) {
4769 		file_size = udf_rw64(fe->inf_len);
4770 	} else {
4771 		assert(efe);
4772 		file_size = udf_rw64(efe->inf_len);
4773 	}
4774 
4775 	/* allocate temporary space for fid */
4776 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4777 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4778 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4779 
4780 	/* search our dirhash hits */
4781 	found = 0;
4782 	dirh_ep = NULL;
4783 	for (;;) {
4784 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4785 		/* if no hit, abort the search */
4786 		if (!hit)
4787 			break;
4788 
4789 		/* check this hit */
4790 		diroffset = dirh_ep->offset;
4791 
4792 		/* transfer a new fid/dirent */
4793 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4794 		if (error)
4795 			break;
4796 
4797 		/* see if its our entry */
4798 		KASSERT(dirent->d_namlen == namelen);
4799 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4800 			found = 1;
4801 			break;
4802 		}
4803 	}
4804 
4805 	if (!found)
4806 		error = ENOENT;
4807 	if (error)
4808 		goto error_out;
4809 
4810 	/* mark deleted */
4811 	fid->file_char |= UDF_FILE_CHAR_DEL;
4812 #ifdef UDF_COMPLETE_DELETE
4813 	memset(&fid->icb, 0, sizeof(fid->icb));
4814 #endif
4815 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4816 
4817 	/* get size of fid and compensate for the read_fid_stream advance */
4818 	fidsize = udf_fidsize(fid);
4819 	diroffset -= fidsize;
4820 
4821 	/* write out */
4822 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4823 			fid, fidsize, diroffset,
4824 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4825 			FSCRED, NULL, NULL);
4826 	if (error)
4827 		goto error_out;
4828 
4829 	/* get reference count of attached node */
4830 	if (udf_node->fe) {
4831 		refcnt = udf_rw16(udf_node->fe->link_cnt);
4832 	} else {
4833 		KASSERT(udf_node->efe);
4834 		refcnt = udf_rw16(udf_node->efe->link_cnt);
4835 	}
4836 #ifdef UDF_COMPLETE_DELETE
4837 	/* substract reference counter in attached node */
4838 	refcnt -= 1;
4839 	if (udf_node->fe) {
4840 		udf_node->fe->link_cnt = udf_rw16(refcnt);
4841 	} else {
4842 		udf_node->efe->link_cnt = udf_rw16(refcnt);
4843 	}
4844 
4845 	/* prevent writeout when refcnt == 0 */
4846 	if (refcnt == 0)
4847 		udf_node->i_flags |= IN_DELETED;
4848 
4849 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
4850 		int drefcnt;
4851 
4852 		/* substract reference counter in directory node */
4853 		/* note subtract 2 (?) for its was also backreferenced */
4854 		if (dir_node->fe) {
4855 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
4856 			drefcnt -= 1;
4857 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
4858 		} else {
4859 			KASSERT(dir_node->efe);
4860 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
4861 			drefcnt -= 1;
4862 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
4863 		}
4864 	}
4865 
4866 	udf_node->i_flags |= IN_MODIFIED;
4867 	dir_node->i_flags |= IN_MODIFIED;
4868 #endif
4869 	/* if it is/was a hardlink adjust the file count */
4870 	if (refcnt > 0)
4871 		udf_adjust_filecount(udf_node, -1);
4872 
4873 	/* remove from the dirhash */
4874 	dirhash_remove(dirh, dirent, diroffset,
4875 		udf_fidsize(fid));
4876 
4877 error_out:
4878 	free(fid, M_UDFTEMP);
4879 	free(dirent, M_UDFTEMP);
4880 
4881 	dirhash_put(dir_node->dir_hash);
4882 
4883 	return error;
4884 }
4885 
4886 /* --------------------------------------------------------------------- */
4887 
4888 int
4889 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4890 	struct udf_node *new_parent_node)
4891 {
4892 	struct vnode *dvp = dir_node->vnode;
4893 	struct dirhash       *dirh;
4894 	struct dirhash_entry *dirh_ep;
4895 	struct file_entry    *fe;
4896 	struct extfile_entry *efe;
4897 	struct fileid_desc *fid;
4898 	struct dirent *dirent;
4899 	uint64_t file_size, diroffset;
4900 	uint64_t new_parent_unique_id;
4901 	uint32_t lb_size, fidsize;
4902 	int found, error;
4903 	char const *name  = "..";
4904 	int namelen = 2;
4905 	int hit;
4906 
4907 	/* get our dirhash and make sure its read in */
4908 	dirhash_get(&dir_node->dir_hash);
4909 	error = dirhash_fill(dir_node);
4910 	if (error) {
4911 		dirhash_put(dir_node->dir_hash);
4912 		return error;
4913 	}
4914 	dirh = dir_node->dir_hash;
4915 
4916 	/* get new parent's unique ID */
4917 	fe  = new_parent_node->fe;
4918 	efe = new_parent_node->efe;
4919 	if (fe) {
4920 		new_parent_unique_id = udf_rw64(fe->unique_id);
4921 	} else {
4922 		assert(efe);
4923 		new_parent_unique_id = udf_rw64(efe->unique_id);
4924 	}
4925 
4926 	/* get directory filesize */
4927 	fe  = dir_node->fe;
4928 	efe = dir_node->efe;
4929 	if (fe) {
4930 		file_size = udf_rw64(fe->inf_len);
4931 	} else {
4932 		assert(efe);
4933 		file_size = udf_rw64(efe->inf_len);
4934 	}
4935 
4936 	/* allocate temporary space for fid */
4937 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4938 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4939 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4940 
4941 	/*
4942 	 * NOTE the standard does not dictate the FID entry '..' should be
4943 	 * first, though in practice it will most likely be.
4944 	 */
4945 
4946 	/* search our dirhash hits */
4947 	found = 0;
4948 	dirh_ep = NULL;
4949 	for (;;) {
4950 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4951 		/* if no hit, abort the search */
4952 		if (!hit)
4953 			break;
4954 
4955 		/* check this hit */
4956 		diroffset = dirh_ep->offset;
4957 
4958 		/* transfer a new fid/dirent */
4959 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4960 		if (error)
4961 			break;
4962 
4963 		/* see if its our entry */
4964 		KASSERT(dirent->d_namlen == namelen);
4965 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4966 			found = 1;
4967 			break;
4968 		}
4969 	}
4970 
4971 	if (!found)
4972 		error = ENOENT;
4973 	if (error)
4974 		goto error_out;
4975 
4976 	/* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4977 	fid->icb = new_parent_node->write_loc;
4978 	fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4979 
4980 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4981 
4982 	/* get size of fid and compensate for the read_fid_stream advance */
4983 	fidsize = udf_fidsize(fid);
4984 	diroffset -= fidsize;
4985 
4986 	/* write out */
4987 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4988 			fid, fidsize, diroffset,
4989 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4990 			FSCRED, NULL, NULL);
4991 
4992 	/* nothing to be done in the dirhash */
4993 
4994 error_out:
4995 	free(fid, M_UDFTEMP);
4996 	free(dirent, M_UDFTEMP);
4997 
4998 	dirhash_put(dir_node->dir_hash);
4999 
5000 	return error;
5001 }
5002 
5003 /* --------------------------------------------------------------------- */
5004 
5005 /*
5006  * We are not allowed to split the fid tag itself over an logical block so
5007  * check the space remaining in the logical block.
5008  *
5009  * We try to select the smallest candidate for recycling or when none is
5010  * found, append a new one at the end of the directory.
5011  */
5012 
5013 int
5014 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5015 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5016 {
5017 	struct vnode *dvp = dir_node->vnode;
5018 	struct dirhash       *dirh;
5019 	struct dirhash_entry *dirh_ep;
5020 	struct fileid_desc   *fid;
5021 	struct icb_tag       *icbtag;
5022 	struct charspec osta_charspec;
5023 	struct dirent   dirent;
5024 	uint64_t unique_id, dir_size;
5025 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5026 	uint32_t chosen_size, chosen_size_diff;
5027 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5028 	int file_char, refcnt, icbflags, addr_type, hit, error;
5029 
5030 	/* get our dirhash and make sure its read in */
5031 	dirhash_get(&dir_node->dir_hash);
5032 	error = dirhash_fill(dir_node);
5033 	if (error) {
5034 		dirhash_put(dir_node->dir_hash);
5035 		return error;
5036 	}
5037 	dirh = dir_node->dir_hash;
5038 
5039 	/* get info */
5040 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5041 	udf_osta_charset(&osta_charspec);
5042 
5043 	if (dir_node->fe) {
5044 		dir_size = udf_rw64(dir_node->fe->inf_len);
5045 		icbtag   = &dir_node->fe->icbtag;
5046 	} else {
5047 		dir_size = udf_rw64(dir_node->efe->inf_len);
5048 		icbtag   = &dir_node->efe->icbtag;
5049 	}
5050 
5051 	icbflags   = udf_rw16(icbtag->flags);
5052 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5053 
5054 	if (udf_node->fe) {
5055 		unique_id = udf_rw64(udf_node->fe->unique_id);
5056 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
5057 	} else {
5058 		unique_id = udf_rw64(udf_node->efe->unique_id);
5059 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
5060 	}
5061 
5062 	if (refcnt > 0) {
5063 		unique_id = udf_advance_uniqueid(ump);
5064 		udf_adjust_filecount(udf_node, 1);
5065 	}
5066 
5067 	/* determine file characteristics */
5068 	file_char = 0;	/* visible non deleted file and not stream metadata */
5069 	if (vap->va_type == VDIR)
5070 		file_char = UDF_FILE_CHAR_DIR;
5071 
5072 	/* malloc scrap buffer */
5073 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5074 
5075 	/* calculate _minimum_ fid size */
5076 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
5077 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5078 	fidsize = UDF_FID_SIZE + fid->l_fi;
5079 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
5080 
5081 	/* find position that will fit the FID */
5082 	chosen_fid_pos   = dir_size;
5083 	chosen_size      = 0;
5084 	chosen_size_diff = UINT_MAX;
5085 
5086 	/* shut up gcc */
5087 	dirent.d_namlen = 0;
5088 
5089 	/* search our dirhash hits */
5090 	error = 0;
5091 	dirh_ep = NULL;
5092 	for (;;) {
5093 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5094 		/* if no hit, abort the search */
5095 		if (!hit)
5096 			break;
5097 
5098 		/* check this hit for size */
5099 		this_fidsize = dirh_ep->entry_size;
5100 
5101 		/* check this hit */
5102 		fid_pos     = dirh_ep->offset;
5103 		end_fid_pos = fid_pos + this_fidsize;
5104 		size_diff   = this_fidsize - fidsize;
5105 		lb_rest = lb_size - (end_fid_pos % lb_size);
5106 
5107 #ifndef UDF_COMPLETE_DELETE
5108 		/* transfer a new fid/dirent */
5109 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5110 		if (error)
5111 			goto error_out;
5112 
5113 		/* only reuse entries that are wiped */
5114 		/* check if the len + loc are marked zero */
5115 		if (udf_rw32(fid->icb.len) != 0)
5116 			continue;
5117 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
5118 			continue;
5119 		if (udf_rw16(fid->icb.loc.part_num) != 0)
5120 			continue;
5121 #endif	/* UDF_COMPLETE_DELETE */
5122 
5123 		/* select if not splitting the tag and its smaller */
5124 		if ((size_diff >= 0)  &&
5125 			(size_diff < chosen_size_diff) &&
5126 			(lb_rest >= sizeof(struct desc_tag)))
5127 		{
5128 			/* UDF 2.3.4.2+3 specifies rules for iu size */
5129 			if ((size_diff == 0) || (size_diff >= 32)) {
5130 				chosen_fid_pos   = fid_pos;
5131 				chosen_size      = this_fidsize;
5132 				chosen_size_diff = size_diff;
5133 			}
5134 		}
5135 	}
5136 
5137 
5138 	/* extend directory if no other candidate found */
5139 	if (chosen_size == 0) {
5140 		chosen_fid_pos   = dir_size;
5141 		chosen_size      = fidsize;
5142 		chosen_size_diff = 0;
5143 
5144 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5145 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
5146 			/* pre-grow directory to see if we're to switch */
5147 			udf_grow_node(dir_node, dir_size + chosen_size);
5148 
5149 			icbflags   = udf_rw16(icbtag->flags);
5150 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5151 		}
5152 
5153 		/* make sure the next fid desc_tag won't be splitted */
5154 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
5155 			end_fid_pos = chosen_fid_pos + chosen_size;
5156 			lb_rest = lb_size - (end_fid_pos % lb_size);
5157 
5158 			/* pad with implementation use regid if needed */
5159 			if (lb_rest < sizeof(struct desc_tag))
5160 				chosen_size += 32;
5161 		}
5162 	}
5163 	chosen_size_diff = chosen_size - fidsize;
5164 
5165 	/* populate the FID */
5166 	memset(fid, 0, lb_size);
5167 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5168 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
5169 	fid->file_char           = file_char;
5170 	fid->icb                 = udf_node->loc;
5171 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5172 	fid->l_iu                = udf_rw16(0);
5173 
5174 	if (chosen_size > fidsize) {
5175 		/* insert implementation-use regid to space it correctly */
5176 		fid->l_iu = udf_rw16(chosen_size_diff);
5177 
5178 		/* set implementation use */
5179 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5180 		udf_add_impl_regid(ump, (struct regid *) fid->data);
5181 	}
5182 
5183 	/* fill in name */
5184 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5185 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5186 
5187 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5188 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5189 
5190 	/* writeout FID/update parent directory */
5191 	error = vn_rdwr(UIO_WRITE, dvp,
5192 			fid, chosen_size, chosen_fid_pos,
5193 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5194 			FSCRED, NULL, NULL);
5195 
5196 	if (error)
5197 		goto error_out;
5198 
5199 	/* add reference counter in attached node */
5200 	if (udf_node->fe) {
5201 		refcnt = udf_rw16(udf_node->fe->link_cnt);
5202 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5203 	} else {
5204 		KASSERT(udf_node->efe);
5205 		refcnt = udf_rw16(udf_node->efe->link_cnt);
5206 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5207 	}
5208 
5209 	/* mark not deleted if it was... just in case, but do warn */
5210 	if (udf_node->i_flags & IN_DELETED) {
5211 		printf("udf: warning, marking a file undeleted\n");
5212 		udf_node->i_flags &= ~IN_DELETED;
5213 	}
5214 
5215 	if (file_char & UDF_FILE_CHAR_DIR) {
5216 		/* add reference counter in directory node for '..' */
5217 		if (dir_node->fe) {
5218 			refcnt = udf_rw16(dir_node->fe->link_cnt);
5219 			refcnt++;
5220 			dir_node->fe->link_cnt = udf_rw16(refcnt);
5221 		} else {
5222 			KASSERT(dir_node->efe);
5223 			refcnt = udf_rw16(dir_node->efe->link_cnt);
5224 			refcnt++;
5225 			dir_node->efe->link_cnt = udf_rw16(refcnt);
5226 		}
5227 	}
5228 
5229 	/* append to the dirhash */
5230 	dirent.d_namlen = cnp->cn_namelen;
5231 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5232 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
5233 		udf_fidsize(fid), 1);
5234 
5235 	/* note updates */
5236 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5237 	/* VN_KNOTE(udf_node,  ...) */
5238 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5239 
5240 error_out:
5241 	free(fid, M_TEMP);
5242 
5243 	dirhash_put(dir_node->dir_hash);
5244 
5245 	return error;
5246 }
5247 
5248 /* --------------------------------------------------------------------- */
5249 
5250 /*
5251  * Each node can have an attached streamdir node though not recursively. These
5252  * are otherwise known as named substreams/named extended attributes that have
5253  * no size limitations.
5254  *
5255  * `Normal' extended attributes are indicated with a number and are recorded
5256  * in either the fe/efe descriptor itself for small descriptors or recorded in
5257  * the attached extended attribute file. Since these spaces can get
5258  * fragmented, care ought to be taken.
5259  *
5260  * Since the size of the space reserved for allocation descriptors is limited,
5261  * there is a mechanim provided for extending this space; this is done by a
5262  * special extent to allow schrinking of the allocations without breaking the
5263  * linkage to the allocation extent descriptor.
5264  */
5265 
5266 int
5267 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5268 	     struct udf_node **udf_noderes)
5269 {
5270 	union dscrptr   *dscr;
5271 	struct udf_node *udf_node;
5272 	struct vnode    *nvp;
5273 	struct long_ad   icb_loc, last_fe_icb_loc;
5274 	uint64_t file_size;
5275 	uint32_t lb_size, sector, dummy;
5276 	uint8_t  *file_data;
5277 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5278 	int slot, eof, error;
5279 
5280 	DPRINTF(NODE, ("udf_get_node called\n"));
5281 	*udf_noderes = udf_node = NULL;
5282 
5283 	/* lock to disallow simultanious creation of same udf_node */
5284 	mutex_enter(&ump->get_node_lock);
5285 
5286 	DPRINTF(NODE, ("\tlookup in hash table\n"));
5287 	/* lookup in hash table */
5288 	assert(ump);
5289 	assert(node_icb_loc);
5290 	udf_node = udf_node_lookup(ump, node_icb_loc);
5291 	if (udf_node) {
5292 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
5293 		/* vnode is returned locked */
5294 		*udf_noderes = udf_node;
5295 		mutex_exit(&ump->get_node_lock);
5296 		return 0;
5297 	}
5298 
5299 	/* garbage check: translate udf_node_icb_loc to sectornr */
5300 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
5301 	if (error) {
5302 		/* no use, this will fail anyway */
5303 		mutex_exit(&ump->get_node_lock);
5304 		return EINVAL;
5305 	}
5306 
5307 	/* build udf_node (do initialise!) */
5308 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5309 	memset(udf_node, 0, sizeof(struct udf_node));
5310 
5311 	DPRINTF(NODE, ("\tget new vnode\n"));
5312 	/* give it a vnode */
5313 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5314         if (error) {
5315 		pool_put(&udf_node_pool, udf_node);
5316 		mutex_exit(&ump->get_node_lock);
5317 		return error;
5318 	}
5319 
5320 	/* always return locked vnode */
5321 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5322 		/* recycle vnode and unlock; simultanious will fail too */
5323 		ungetnewvnode(nvp);
5324 		mutex_exit(&ump->get_node_lock);
5325 		return error;
5326 	}
5327 
5328 	/* initialise crosslinks, note location of fe/efe for hashing */
5329 	udf_node->ump    =  ump;
5330 	udf_node->vnode  =  nvp;
5331 	nvp->v_data      =  udf_node;
5332 	udf_node->loc    = *node_icb_loc;
5333 	udf_node->lockf  =  0;
5334 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5335 	cv_init(&udf_node->node_lock, "udf_nlk");
5336 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
5337 	udf_node->outstanding_bufs = 0;
5338 	udf_node->outstanding_nodedscr = 0;
5339 	udf_node->uncommitted_lbs = 0;
5340 
5341 	/* check if we're fetching the root */
5342 	if (ump->fileset_desc)
5343 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5344 		    sizeof(struct long_ad)) == 0)
5345 			nvp->v_vflag |= VV_ROOT;
5346 
5347 	/* insert into the hash lookup */
5348 	udf_register_node(udf_node);
5349 
5350 	/* safe to unlock, the entry is in the hash table, vnode is locked */
5351 	mutex_exit(&ump->get_node_lock);
5352 
5353 	icb_loc = *node_icb_loc;
5354 	needs_indirect = 0;
5355 	strat4096 = 0;
5356 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5357 	file_size = 0;
5358 	file_data = NULL;
5359 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5360 
5361 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
5362 	do {
5363 		/* try to read in fe/efe */
5364 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5365 
5366 		/* blank sector marks end of sequence, check this */
5367 		if ((dscr == NULL) &&  (!strat4096))
5368 			error = ENOENT;
5369 
5370 		/* break if read error or blank sector */
5371 		if (error || (dscr == NULL))
5372 			break;
5373 
5374 		/* process descriptor based on the descriptor type */
5375 		dscr_type = udf_rw16(dscr->tag.id);
5376 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5377 
5378 		/* if dealing with an indirect entry, follow the link */
5379 		if (dscr_type == TAGID_INDIRECTENTRY) {
5380 			needs_indirect = 0;
5381 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5382 			icb_loc = dscr->inde.indirect_icb;
5383 			continue;
5384 		}
5385 
5386 		/* only file entries and extended file entries allowed here */
5387 		if ((dscr_type != TAGID_FENTRY) &&
5388 		    (dscr_type != TAGID_EXTFENTRY)) {
5389 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5390 			error = ENOENT;
5391 			break;
5392 		}
5393 
5394 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5395 
5396 		/* choose this one */
5397 		last_fe_icb_loc = icb_loc;
5398 
5399 		/* record and process/update (ext)fentry */
5400 		file_data = NULL;
5401 		if (dscr_type == TAGID_FENTRY) {
5402 			if (udf_node->fe)
5403 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5404 					udf_node->fe);
5405 			udf_node->fe  = &dscr->fe;
5406 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5407 			udf_file_type = udf_node->fe->icbtag.file_type;
5408 			file_size = udf_rw64(udf_node->fe->inf_len);
5409 			file_data = udf_node->fe->data;
5410 		} else {
5411 			if (udf_node->efe)
5412 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5413 					udf_node->efe);
5414 			udf_node->efe = &dscr->efe;
5415 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5416 			udf_file_type = udf_node->efe->icbtag.file_type;
5417 			file_size = udf_rw64(udf_node->efe->inf_len);
5418 			file_data = udf_node->efe->data;
5419 		}
5420 
5421 		/* check recording strategy (structure) */
5422 
5423 		/*
5424 		 * Strategy 4096 is a daisy linked chain terminating with an
5425 		 * unrecorded sector or a TERM descriptor. The next
5426 		 * descriptor is to be found in the sector that follows the
5427 		 * current sector.
5428 		 */
5429 		if (strat == 4096) {
5430 			strat4096 = 1;
5431 			needs_indirect = 1;
5432 
5433 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5434 		}
5435 
5436 		/*
5437 		 * Strategy 4 is the normal strategy and terminates, but if
5438 		 * we're in strategy 4096, we can't have strategy 4 mixed in
5439 		 */
5440 
5441 		if (strat == 4) {
5442 			if (strat4096) {
5443 				error = EINVAL;
5444 				break;
5445 			}
5446 			break;		/* done */
5447 		}
5448 	} while (!error);
5449 
5450 	/* first round of cleanup code */
5451 	if (error) {
5452 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5453 		/* recycle udf_node */
5454 		udf_dispose_node(udf_node);
5455 
5456 		VOP_UNLOCK(nvp);
5457 		nvp->v_data = NULL;
5458 		ungetnewvnode(nvp);
5459 
5460 		return EINVAL;		/* error code ok? */
5461 	}
5462 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5463 
5464 	/* assert no references to dscr anymore beyong this point */
5465 	assert((udf_node->fe) || (udf_node->efe));
5466 	dscr = NULL;
5467 
5468 	/*
5469 	 * Remember where to record an updated version of the descriptor. If
5470 	 * there is a sequence of indirect entries, icb_loc will have been
5471 	 * updated. Its the write disipline to allocate new space and to make
5472 	 * sure the chain is maintained.
5473 	 *
5474 	 * `needs_indirect' flags if the next location is to be filled with
5475 	 * with an indirect entry.
5476 	 */
5477 	udf_node->write_loc = icb_loc;
5478 	udf_node->needs_indirect = needs_indirect;
5479 
5480 	/*
5481 	 * Go trough all allocations extents of this descriptor and when
5482 	 * encountering a redirect read in the allocation extension. These are
5483 	 * daisy-chained.
5484 	 */
5485 	UDF_LOCK_NODE(udf_node, 0);
5486 	udf_node->num_extensions = 0;
5487 
5488 	error   = 0;
5489 	slot    = 0;
5490 	for (;;) {
5491 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5492 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5493 			"lb_num = %d, part = %d\n", slot, eof,
5494 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5495 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5496 			udf_rw32(icb_loc.loc.lb_num),
5497 			udf_rw16(icb_loc.loc.part_num)));
5498 		if (eof)
5499 			break;
5500 		slot++;
5501 
5502 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5503 			continue;
5504 
5505 		DPRINTF(NODE, ("\tgot redirect extent\n"));
5506 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5507 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5508 					"too many allocation extensions on "
5509 					"udf_node\n"));
5510 			error = EINVAL;
5511 			break;
5512 		}
5513 
5514 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5515 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5516 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5517 					"extension size in udf_node\n"));
5518 			error = EINVAL;
5519 			break;
5520 		}
5521 
5522 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5523 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5524 		/* load in allocation extent */
5525 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5526 		if (error || (dscr == NULL))
5527 			break;
5528 
5529 		/* process read-in descriptor */
5530 		dscr_type = udf_rw16(dscr->tag.id);
5531 
5532 		if (dscr_type != TAGID_ALLOCEXTENT) {
5533 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5534 			error = ENOENT;
5535 			break;
5536 		}
5537 
5538 		DPRINTF(NODE, ("\trecording redirect extent\n"));
5539 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5540 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5541 
5542 		udf_node->num_extensions++;
5543 
5544 	} /* while */
5545 	UDF_UNLOCK_NODE(udf_node, 0);
5546 
5547 	/* second round of cleanup code */
5548 	if (error) {
5549 		/* recycle udf_node */
5550 		udf_dispose_node(udf_node);
5551 
5552 		VOP_UNLOCK(nvp);
5553 		nvp->v_data = NULL;
5554 		ungetnewvnode(nvp);
5555 
5556 		return EINVAL;		/* error code ok? */
5557 	}
5558 
5559 	DPRINTF(NODE, ("\tnode read in fine\n"));
5560 
5561 	/*
5562 	 * Translate UDF filetypes into vnode types.
5563 	 *
5564 	 * Systemfiles like the meta main and mirror files are not treated as
5565 	 * normal files, so we type them as having no type. UDF dictates that
5566 	 * they are not allowed to be visible.
5567 	 */
5568 
5569 	switch (udf_file_type) {
5570 	case UDF_ICB_FILETYPE_DIRECTORY :
5571 	case UDF_ICB_FILETYPE_STREAMDIR :
5572 		nvp->v_type = VDIR;
5573 		break;
5574 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
5575 		nvp->v_type = VBLK;
5576 		break;
5577 	case UDF_ICB_FILETYPE_CHARDEVICE :
5578 		nvp->v_type = VCHR;
5579 		break;
5580 	case UDF_ICB_FILETYPE_SOCKET :
5581 		nvp->v_type = VSOCK;
5582 		break;
5583 	case UDF_ICB_FILETYPE_FIFO :
5584 		nvp->v_type = VFIFO;
5585 		break;
5586 	case UDF_ICB_FILETYPE_SYMLINK :
5587 		nvp->v_type = VLNK;
5588 		break;
5589 	case UDF_ICB_FILETYPE_VAT :
5590 	case UDF_ICB_FILETYPE_META_MAIN :
5591 	case UDF_ICB_FILETYPE_META_MIRROR :
5592 		nvp->v_type = VNON;
5593 		break;
5594 	case UDF_ICB_FILETYPE_RANDOMACCESS :
5595 	case UDF_ICB_FILETYPE_REALTIME :
5596 		nvp->v_type = VREG;
5597 		break;
5598 	default:
5599 		/* YIKES, something else */
5600 		nvp->v_type = VNON;
5601 	}
5602 
5603 	/* TODO specfs, fifofs etc etc. vnops setting */
5604 
5605 	/* don't forget to set vnode's v_size */
5606 	uvm_vnp_setsize(nvp, file_size);
5607 
5608 	/* TODO ext attr and streamdir udf_nodes */
5609 
5610 	*udf_noderes = udf_node;
5611 
5612 	return 0;
5613 }
5614 
5615 /* --------------------------------------------------------------------- */
5616 
5617 int
5618 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5619 {
5620 	union dscrptr *dscr;
5621 	struct long_ad *loc;
5622 	int extnr, error;
5623 
5624 	DPRINTF(NODE, ("udf_writeout_node called\n"));
5625 
5626 	KASSERT(udf_node->outstanding_bufs == 0);
5627 	KASSERT(udf_node->outstanding_nodedscr == 0);
5628 
5629 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5630 
5631 	if (udf_node->i_flags & IN_DELETED) {
5632 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5633 		udf_cleanup_reservation(udf_node);
5634 		return 0;
5635 	}
5636 
5637 	/* lock node; unlocked in callback */
5638 	UDF_LOCK_NODE(udf_node, 0);
5639 
5640 	/* remove pending reservations, we're written out */
5641 	udf_cleanup_reservation(udf_node);
5642 
5643 	/* at least one descriptor writeout */
5644 	udf_node->outstanding_nodedscr = 1;
5645 
5646 	/* we're going to write out the descriptor so clear the flags */
5647 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5648 
5649 	/* if we were rebuild, write out the allocation extents */
5650 	if (udf_node->i_flags & IN_NODE_REBUILD) {
5651 		/* mark outstanding node descriptors and issue them */
5652 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
5653 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5654 			loc = &udf_node->ext_loc[extnr];
5655 			dscr = (union dscrptr *) udf_node->ext[extnr];
5656 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5657 			if (error)
5658 				return error;
5659 		}
5660 		/* mark allocation extents written out */
5661 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
5662 	}
5663 
5664 	if (udf_node->fe) {
5665 		KASSERT(udf_node->efe == NULL);
5666 		dscr = (union dscrptr *) udf_node->fe;
5667 	} else {
5668 		KASSERT(udf_node->efe);
5669 		KASSERT(udf_node->fe == NULL);
5670 		dscr = (union dscrptr *) udf_node->efe;
5671 	}
5672 	KASSERT(dscr);
5673 
5674 	loc = &udf_node->write_loc;
5675 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5676 
5677 	return error;
5678 }
5679 
5680 /* --------------------------------------------------------------------- */
5681 
5682 int
5683 udf_dispose_node(struct udf_node *udf_node)
5684 {
5685 	struct vnode *vp;
5686 	int extnr;
5687 
5688 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5689 	if (!udf_node) {
5690 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5691 		return 0;
5692 	}
5693 
5694 	vp  = udf_node->vnode;
5695 #ifdef DIAGNOSTIC
5696 	if (vp->v_numoutput)
5697 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
5698 				"v_numoutput = %d", udf_node, vp->v_numoutput);
5699 #endif
5700 
5701 	udf_cleanup_reservation(udf_node);
5702 
5703 	/* TODO extended attributes and streamdir */
5704 
5705 	/* remove dirhash if present */
5706 	dirhash_purge(&udf_node->dir_hash);
5707 
5708 	/* remove from our hash lookup table */
5709 	udf_deregister_node(udf_node);
5710 
5711 	/* destroy our lock */
5712 	mutex_destroy(&udf_node->node_mutex);
5713 	cv_destroy(&udf_node->node_lock);
5714 
5715 	/* dissociate our udf_node from the vnode */
5716 	genfs_node_destroy(udf_node->vnode);
5717 	vp->v_data = NULL;
5718 
5719 	/* free associated memory and the node itself */
5720 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5721 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5722 			udf_node->ext[extnr]);
5723 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
5724 	}
5725 
5726 	if (udf_node->fe)
5727 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5728 			udf_node->fe);
5729 	if (udf_node->efe)
5730 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5731 			udf_node->efe);
5732 
5733 	udf_node->fe  = (void *) 0xdeadaaaa;
5734 	udf_node->efe = (void *) 0xdeadbbbb;
5735 	udf_node->ump = (void *) 0xdeadbeef;
5736 	pool_put(&udf_node_pool, udf_node);
5737 
5738 	return 0;
5739 }
5740 
5741 
5742 
5743 /*
5744  * create a new node using the specified vnodeops, vap and cnp but with the
5745  * udf_file_type. This allows special files to be created. Use with care.
5746  */
5747 
5748 static int
5749 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5750 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5751 {
5752 	union dscrptr *dscr;
5753 	struct udf_node *dir_node = VTOI(dvp);
5754 	struct udf_node *udf_node;
5755 	struct udf_mount *ump = dir_node->ump;
5756 	struct vnode *nvp;
5757 	struct long_ad node_icb_loc;
5758 	uint64_t parent_unique_id;
5759 	uint64_t lmapping;
5760 	uint32_t lb_size, lb_num;
5761 	uint16_t vpart_num;
5762 	uid_t uid;
5763 	gid_t gid, parent_gid;
5764 	int fid_size, error;
5765 
5766 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5767 	*vpp = NULL;
5768 
5769 	/* allocate vnode */
5770 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5771         if (error)
5772 		return error;
5773 
5774 	/* lock node */
5775 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5776 	if (error)
5777 		goto error_out_unget;
5778 
5779 	/* reserve space for one logical block */
5780 	vpart_num = ump->node_part;
5781 	error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5782 		vpart_num, 1, /* can_fail */ true);
5783 	if (error)
5784 		goto error_out_unlock;
5785 
5786 	/* allocate node */
5787 	error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5788 			vpart_num, 1, &lmapping);
5789 	if (error)
5790 		goto error_out_unreserve;
5791 	lb_num = lmapping;
5792 
5793 	/* initialise pointer to location */
5794 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
5795 	node_icb_loc.len = udf_rw32(lb_size);
5796 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
5797 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5798 
5799 	/* build udf_node (do initialise!) */
5800 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5801 	memset(udf_node, 0, sizeof(struct udf_node));
5802 
5803 	/* initialise crosslinks, note location of fe/efe for hashing */
5804 	/* bugalert: synchronise with udf_get_node() */
5805 	udf_node->ump       = ump;
5806 	udf_node->vnode     = nvp;
5807 	nvp->v_data         = udf_node;
5808 	udf_node->loc       = node_icb_loc;
5809 	udf_node->write_loc = node_icb_loc;
5810 	udf_node->lockf     = 0;
5811 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5812 	cv_init(&udf_node->node_lock, "udf_nlk");
5813 	udf_node->outstanding_bufs = 0;
5814 	udf_node->outstanding_nodedscr = 0;
5815 	udf_node->uncommitted_lbs = 0;
5816 
5817 	/* initialise genfs */
5818 	genfs_node_init(nvp, &udf_genfsops);
5819 
5820 	/* insert into the hash lookup */
5821 	udf_register_node(udf_node);
5822 
5823 	/* get parent's unique ID for refering '..' if its a directory */
5824 	if (dir_node->fe) {
5825 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5826 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
5827 	} else {
5828 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5829 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
5830 	}
5831 
5832 	/* get descriptor */
5833 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5834 
5835 	/* choose a fe or an efe for it */
5836 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5837 		udf_node->fe = &dscr->fe;
5838 		fid_size = udf_create_new_fe(ump, udf_node->fe,
5839 			udf_file_type, &udf_node->loc,
5840 			&dir_node->loc, parent_unique_id);
5841 		/* TODO add extended attribute for creation time */
5842 	} else {
5843 		udf_node->efe = &dscr->efe;
5844 		fid_size = udf_create_new_efe(ump, udf_node->efe,
5845 			udf_file_type, &udf_node->loc,
5846 			&dir_node->loc, parent_unique_id);
5847 	}
5848 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5849 
5850 	/* update vnode's size and type */
5851 	nvp->v_type = vap->va_type;
5852 	uvm_vnp_setsize(nvp, fid_size);
5853 
5854 	/* set access mode */
5855 	udf_setaccessmode(udf_node, vap->va_mode);
5856 
5857 	/* set ownership */
5858 	uid = kauth_cred_geteuid(cnp->cn_cred);
5859 	gid = parent_gid;
5860 	udf_setownership(udf_node, uid, gid);
5861 
5862 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5863 	if (error) {
5864 		/* free disc allocation for node */
5865 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5866 
5867 		/* recycle udf_node */
5868 		udf_dispose_node(udf_node);
5869 		vput(nvp);
5870 
5871 		*vpp = NULL;
5872 		return error;
5873 	}
5874 
5875 	/* adjust file count */
5876 	udf_adjust_filecount(udf_node, 1);
5877 
5878 	/* return result */
5879 	*vpp = nvp;
5880 
5881 	return 0;
5882 
5883 error_out_unreserve:
5884 	udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5885 
5886 error_out_unlock:
5887 	VOP_UNLOCK(nvp);
5888 
5889 error_out_unget:
5890 	nvp->v_data = NULL;
5891 	ungetnewvnode(nvp);
5892 
5893 	return error;
5894 }
5895 
5896 
5897 int
5898 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5899 	struct componentname *cnp)
5900 {
5901 	int (**vnodeops)(void *);
5902 	int udf_file_type;
5903 
5904 	DPRINTF(NODE, ("udf_create_node called\n"));
5905 
5906 	/* what type are we creating ? */
5907 	vnodeops = udf_vnodeop_p;
5908 	/* start with a default */
5909 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5910 
5911 	*vpp = NULL;
5912 
5913 	switch (vap->va_type) {
5914 	case VREG :
5915 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5916 		break;
5917 	case VDIR :
5918 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5919 		break;
5920 	case VLNK :
5921 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5922 		break;
5923 	case VBLK :
5924 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5925 		/* specfs */
5926 		return ENOTSUP;
5927 		break;
5928 	case VCHR :
5929 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5930 		/* specfs */
5931 		return ENOTSUP;
5932 		break;
5933 	case VFIFO :
5934 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
5935 		/* specfs */
5936 		return ENOTSUP;
5937 		break;
5938 	case VSOCK :
5939 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5940 		/* specfs */
5941 		return ENOTSUP;
5942 		break;
5943 	case VNON :
5944 	case VBAD :
5945 	default :
5946 		/* nothing; can we even create these? */
5947 		return EINVAL;
5948 	}
5949 
5950 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5951 }
5952 
5953 /* --------------------------------------------------------------------- */
5954 
5955 static void
5956 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5957 {
5958 	struct udf_mount *ump = udf_node->ump;
5959 	uint32_t lb_size, lb_num, len, num_lb;
5960 	uint16_t vpart_num;
5961 
5962 	/* is there really one? */
5963 	if (mem == NULL)
5964 		return;
5965 
5966 	/* got a descriptor here */
5967 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
5968 	lb_num    = udf_rw32(loc->loc.lb_num);
5969 	vpart_num = udf_rw16(loc->loc.part_num);
5970 
5971 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5972 	num_lb = (len + lb_size -1) / lb_size;
5973 
5974 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5975 }
5976 
5977 void
5978 udf_delete_node(struct udf_node *udf_node)
5979 {
5980 	void *dscr;
5981 	struct udf_mount *ump;
5982 	struct long_ad *loc;
5983 	int extnr, lvint, dummy;
5984 
5985 	ump = udf_node->ump;
5986 
5987 	/* paranoia check on integrity; should be open!; we could panic */
5988 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5989 	if (lvint == UDF_INTEGRITY_CLOSED)
5990 		printf("\tIntegrity was CLOSED!\n");
5991 
5992 	/* whatever the node type, change its size to zero */
5993 	(void) udf_resize_node(udf_node, 0, &dummy);
5994 
5995 	/* force it to be `clean'; no use writing it out */
5996 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5997 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
5998 
5999 	/* adjust file count */
6000 	udf_adjust_filecount(udf_node, -1);
6001 
6002 	/*
6003 	 * Free its allocated descriptors; memory will be released when
6004 	 * vop_reclaim() is called.
6005 	 */
6006 	loc = &udf_node->loc;
6007 
6008 	dscr = udf_node->fe;
6009 	udf_free_descriptor_space(udf_node, loc, dscr);
6010 	dscr = udf_node->efe;
6011 	udf_free_descriptor_space(udf_node, loc, dscr);
6012 
6013 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6014 		dscr =  udf_node->ext[extnr];
6015 		loc  = &udf_node->ext_loc[extnr];
6016 		udf_free_descriptor_space(udf_node, loc, dscr);
6017 	}
6018 }
6019 
6020 /* --------------------------------------------------------------------- */
6021 
6022 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6023 int
6024 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6025 {
6026 	struct file_entry    *fe  = udf_node->fe;
6027 	struct extfile_entry *efe = udf_node->efe;
6028 	uint64_t file_size;
6029 	int error;
6030 
6031 	if (fe) {
6032 		file_size  = udf_rw64(fe->inf_len);
6033 	} else {
6034 		assert(udf_node->efe);
6035 		file_size  = udf_rw64(efe->inf_len);
6036 	}
6037 
6038 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6039 			file_size, new_size));
6040 
6041 	/* if not changing, we're done */
6042 	if (file_size == new_size)
6043 		return 0;
6044 
6045 	*extended = (new_size > file_size);
6046 	if (*extended) {
6047 		error = udf_grow_node(udf_node, new_size);
6048 	} else {
6049 		error = udf_shrink_node(udf_node, new_size);
6050 	}
6051 
6052 	return error;
6053 }
6054 
6055 
6056 /* --------------------------------------------------------------------- */
6057 
6058 void
6059 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6060 	struct timespec *mod, struct timespec *birth)
6061 {
6062 	struct timespec now;
6063 	struct file_entry    *fe;
6064 	struct extfile_entry *efe;
6065 	struct filetimes_extattr_entry *ft_extattr;
6066 	struct timestamp *atime, *mtime, *attrtime, *ctime;
6067 	struct timestamp  fe_ctime;
6068 	struct timespec   cur_birth;
6069 	uint32_t offset, a_l;
6070 	uint8_t *filedata;
6071 	int error;
6072 
6073 	/* protect against rogue values */
6074 	if (!udf_node)
6075 		return;
6076 
6077 	fe  = udf_node->fe;
6078 	efe = udf_node->efe;
6079 
6080 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6081 		return;
6082 
6083 	/* get descriptor information */
6084 	if (fe) {
6085 		atime    = &fe->atime;
6086 		mtime    = &fe->mtime;
6087 		attrtime = &fe->attrtime;
6088 		filedata = fe->data;
6089 
6090 		/* initial save dummy setting */
6091 		ctime    = &fe_ctime;
6092 
6093 		/* check our extended attribute if present */
6094 		error = udf_extattr_search_intern(udf_node,
6095 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6096 		if (!error) {
6097 			ft_extattr = (struct filetimes_extattr_entry *)
6098 				(filedata + offset);
6099 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6100 				ctime = &ft_extattr->times[0];
6101 		}
6102 		/* TODO create the extended attribute if not found ? */
6103 	} else {
6104 		assert(udf_node->efe);
6105 		atime    = &efe->atime;
6106 		mtime    = &efe->mtime;
6107 		attrtime = &efe->attrtime;
6108 		ctime    = &efe->ctime;
6109 	}
6110 
6111 	vfs_timestamp(&now);
6112 
6113 	/* set access time */
6114 	if (udf_node->i_flags & IN_ACCESS) {
6115 		if (acc == NULL)
6116 			acc = &now;
6117 		udf_timespec_to_timestamp(acc, atime);
6118 	}
6119 
6120 	/* set modification time */
6121 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6122 		if (mod == NULL)
6123 			mod = &now;
6124 		udf_timespec_to_timestamp(mod, mtime);
6125 
6126 		/* ensure birthtime is older than set modification! */
6127 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6128 		if ((cur_birth.tv_sec > mod->tv_sec) ||
6129 			  ((cur_birth.tv_sec == mod->tv_sec) &&
6130 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
6131 			udf_timespec_to_timestamp(mod, ctime);
6132 		}
6133 	}
6134 
6135 	/* update birthtime if specified */
6136 	/* XXX we asume here that given birthtime is older than mod */
6137 	if (birth && (birth->tv_sec != VNOVAL)) {
6138 		udf_timespec_to_timestamp(birth, ctime);
6139 	}
6140 
6141 	/* set change time */
6142 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6143 		udf_timespec_to_timestamp(&now, attrtime);
6144 
6145 	/* notify updates to the node itself */
6146 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6147 		udf_node->i_flags |= IN_ACCESSED;
6148 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6149 		udf_node->i_flags |= IN_MODIFIED;
6150 
6151 	/* clear modification flags */
6152 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6153 }
6154 
6155 /* --------------------------------------------------------------------- */
6156 
6157 int
6158 udf_update(struct vnode *vp, struct timespec *acc,
6159 	struct timespec *mod, struct timespec *birth, int updflags)
6160 {
6161 	union dscrptr *dscrptr;
6162 	struct udf_node  *udf_node = VTOI(vp);
6163 	struct udf_mount *ump = udf_node->ump;
6164 	struct regid     *impl_id;
6165 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6166 	int waitfor, flags;
6167 
6168 #ifdef DEBUG
6169 	char bits[128];
6170 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6171 		updflags));
6172 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6173 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
6174 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6175 #endif
6176 
6177 	/* set our times */
6178 	udf_itimes(udf_node, acc, mod, birth);
6179 
6180 	/* set our implementation id */
6181 	if (udf_node->fe) {
6182 		dscrptr = (union dscrptr *) udf_node->fe;
6183 		impl_id = &udf_node->fe->imp_id;
6184 	} else {
6185 		dscrptr = (union dscrptr *) udf_node->efe;
6186 		impl_id = &udf_node->efe->imp_id;
6187 	}
6188 
6189 	/* set our ID */
6190 	udf_set_regid(impl_id, IMPL_NAME);
6191 	udf_add_impl_regid(ump, impl_id);
6192 
6193 	/* update our crc! on RMW we are not allowed to change a thing */
6194 	udf_validate_tag_and_crc_sums(dscrptr);
6195 
6196 	/* if called when mounted readonly, never write back */
6197 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
6198 		return 0;
6199 
6200 	/* check if the node is dirty 'enough'*/
6201 	if (updflags & UPDATE_CLOSE) {
6202 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6203 	} else {
6204 		flags = udf_node->i_flags & IN_MODIFIED;
6205 	}
6206 	if (flags == 0)
6207 		return 0;
6208 
6209 	/* determine if we need to write sync or async */
6210 	waitfor = 0;
6211 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6212 		/* sync mounted */
6213 		waitfor = updflags & UPDATE_WAIT;
6214 		if (updflags & UPDATE_DIROP)
6215 			waitfor |= UPDATE_WAIT;
6216 	}
6217 	if (waitfor)
6218 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6219 
6220 	return 0;
6221 }
6222 
6223 
6224 /* --------------------------------------------------------------------- */
6225 
6226 
6227 /*
6228  * Read one fid and process it into a dirent and advance to the next (*fid)
6229  * has to be allocated a logical block in size, (*dirent) struct dirent length
6230  */
6231 
6232 int
6233 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6234 		struct fileid_desc *fid, struct dirent *dirent)
6235 {
6236 	struct udf_node  *dir_node = VTOI(vp);
6237 	struct udf_mount *ump = dir_node->ump;
6238 	struct file_entry    *fe  = dir_node->fe;
6239 	struct extfile_entry *efe = dir_node->efe;
6240 	uint32_t      fid_size, lb_size;
6241 	uint64_t      file_size;
6242 	char         *fid_name;
6243 	int           enough, error;
6244 
6245 	assert(fid);
6246 	assert(dirent);
6247 	assert(dir_node);
6248 	assert(offset);
6249 	assert(*offset != 1);
6250 
6251 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6252 	/* check if we're past the end of the directory */
6253 	if (fe) {
6254 		file_size = udf_rw64(fe->inf_len);
6255 	} else {
6256 		assert(dir_node->efe);
6257 		file_size = udf_rw64(efe->inf_len);
6258 	}
6259 	if (*offset >= file_size)
6260 		return EINVAL;
6261 
6262 	/* get maximum length of FID descriptor */
6263 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6264 
6265 	/* initialise return values */
6266 	fid_size = 0;
6267 	memset(dirent, 0, sizeof(struct dirent));
6268 	memset(fid, 0, lb_size);
6269 
6270 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
6271 	if (!enough) {
6272 		/* short dir ... */
6273 		return EIO;
6274 	}
6275 
6276 	error = vn_rdwr(UIO_READ, vp,
6277 			fid, MIN(file_size - (*offset), lb_size), *offset,
6278 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6279 			NULL, NULL);
6280 	if (error)
6281 		return error;
6282 
6283 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6284 	/*
6285 	 * Check if we got a whole descriptor.
6286 	 * TODO Try to `resync' directory stream when something is very wrong.
6287 	 */
6288 
6289 	/* check if our FID header is OK */
6290 	error = udf_check_tag(fid);
6291 	if (error) {
6292 		goto brokendir;
6293 	}
6294 	DPRINTF(FIDS, ("\ttag check ok\n"));
6295 
6296 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
6297 		error = EIO;
6298 		goto brokendir;
6299 	}
6300 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6301 
6302 	/* check for length */
6303 	fid_size = udf_fidsize(fid);
6304 	enough = (file_size - (*offset) >= fid_size);
6305 	if (!enough) {
6306 		error = EIO;
6307 		goto brokendir;
6308 	}
6309 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6310 
6311 	/* check FID contents */
6312 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6313 brokendir:
6314 	if (error) {
6315 		/* note that is sometimes a bit quick to report */
6316 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
6317 		/* RESYNC? */
6318 		/* TODO: use udf_resync_fid_stream */
6319 		return EIO;
6320 	}
6321 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
6322 
6323 	/* we got a whole and valid descriptor! */
6324 	DPRINTF(FIDS, ("\tinterpret FID\n"));
6325 
6326 	/* create resulting dirent structure */
6327 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6328 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6329 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6330 
6331 	/* '..' has no name, so provide one */
6332 	if (fid->file_char & UDF_FILE_CHAR_PAR)
6333 		strcpy(dirent->d_name, "..");
6334 
6335 	dirent->d_fileno = udf_get_node_id(&fid->icb);	/* inode hash XXX */
6336 	dirent->d_namlen = strlen(dirent->d_name);
6337 	dirent->d_reclen = _DIRENT_SIZE(dirent);
6338 
6339 	/*
6340 	 * Note that its not worth trying to go for the filetypes now... its
6341 	 * too expensive too
6342 	 */
6343 	dirent->d_type = DT_UNKNOWN;
6344 
6345 	/* initial guess for filetype we can make */
6346 	if (fid->file_char & UDF_FILE_CHAR_DIR)
6347 		dirent->d_type = DT_DIR;
6348 
6349 	/* advance */
6350 	*offset += fid_size;
6351 
6352 	return error;
6353 }
6354 
6355 
6356 /* --------------------------------------------------------------------- */
6357 
6358 static void
6359 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6360 	int pass, int *ndirty)
6361 {
6362 	struct udf_node *udf_node, *n_udf_node;
6363 	struct vnode *vp;
6364 	int vdirty, error;
6365 	int on_type, on_flags, on_vnode;
6366 
6367 derailed:
6368 	KASSERT(mutex_owned(&mntvnode_lock));
6369 
6370 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
6371 	udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6372 	for (;udf_node; udf_node = n_udf_node) {
6373 		DPRINTF(SYNC, ("."));
6374 
6375 		udf_node->i_flags &= ~IN_SYNCED;
6376 		vp = udf_node->vnode;
6377 
6378 		mutex_enter(&vp->v_interlock);
6379 		n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6380 		    udf_node, RB_DIR_RIGHT);
6381 
6382 		if (n_udf_node)
6383 			n_udf_node->i_flags |= IN_SYNCED;
6384 
6385 		/* system nodes are not synced this way */
6386 		if (vp->v_vflag & VV_SYSTEM) {
6387 			mutex_exit(&vp->v_interlock);
6388 			continue;
6389 		}
6390 
6391 		/* check if its dirty enough to even try */
6392 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
6393 		on_flags = ((udf_node->i_flags &
6394 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6395 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6396 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6397 		if (on_type || (on_flags || on_vnode)) { /* XXX */
6398 			/* not dirty (enough?) */
6399 			mutex_exit(&vp->v_interlock);
6400 			continue;
6401 		}
6402 
6403 		mutex_exit(&mntvnode_lock);
6404 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6405 		if (error) {
6406 			mutex_enter(&mntvnode_lock);
6407 			if (error == ENOENT)
6408 				goto derailed;
6409 			*ndirty += 1;
6410 			continue;
6411 		}
6412 
6413 		switch (pass) {
6414 		case 1:
6415 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6416 			break;
6417 		case 2:
6418 			vdirty = vp->v_numoutput;
6419 			if (vp->v_tag == VT_UDF)
6420 				vdirty += udf_node->outstanding_bufs +
6421 					udf_node->outstanding_nodedscr;
6422 			if (vdirty == 0)
6423 				VOP_FSYNC(vp, cred, 0,0,0);
6424 			*ndirty += vdirty;
6425 			break;
6426 		case 3:
6427 			vdirty = vp->v_numoutput;
6428 			if (vp->v_tag == VT_UDF)
6429 				vdirty += udf_node->outstanding_bufs +
6430 					udf_node->outstanding_nodedscr;
6431 			*ndirty += vdirty;
6432 			break;
6433 		}
6434 
6435 		vput(vp);
6436 		mutex_enter(&mntvnode_lock);
6437 	}
6438 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6439 }
6440 
6441 
6442 void
6443 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6444 {
6445 	int dummy, ndirty;
6446 
6447 	mutex_enter(&mntvnode_lock);
6448 recount:
6449 	dummy = 0;
6450 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6451 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6452 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6453 
6454 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6455 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6456 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6457 
6458 	if (waitfor == MNT_WAIT) {
6459 		ndirty = ump->devvp->v_numoutput;
6460 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6461 			ndirty));
6462 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6463 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6464 			ndirty));
6465 
6466 		if (ndirty) {
6467 			/* 1/4 second wait */
6468 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6469 				hz/4);
6470 			goto recount;
6471 		}
6472 	}
6473 
6474 	mutex_exit(&mntvnode_lock);
6475 }
6476 
6477 /* --------------------------------------------------------------------- */
6478 
6479 /*
6480  * Read and write file extent in/from the buffer.
6481  *
6482  * The splitup of the extent into seperate request-buffers is to minimise
6483  * copying around as much as possible.
6484  *
6485  * block based file reading and writing
6486  */
6487 
6488 static int
6489 udf_read_internal(struct udf_node *node, uint8_t *blob)
6490 {
6491 	struct udf_mount *ump;
6492 	struct file_entry     *fe = node->fe;
6493 	struct extfile_entry *efe = node->efe;
6494 	uint64_t inflen;
6495 	uint32_t sector_size;
6496 	uint8_t  *pos;
6497 	int icbflags, addr_type;
6498 
6499 	/* get extent and do some paranoia checks */
6500 	ump = node->ump;
6501 	sector_size = ump->discinfo.sector_size;
6502 
6503 	if (fe) {
6504 		inflen   = udf_rw64(fe->inf_len);
6505 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6506 		icbflags = udf_rw16(fe->icbtag.flags);
6507 	} else {
6508 		assert(node->efe);
6509 		inflen   = udf_rw64(efe->inf_len);
6510 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6511 		icbflags = udf_rw16(efe->icbtag.flags);
6512 	}
6513 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6514 
6515 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6516 	assert(inflen < sector_size);
6517 
6518 	/* copy out info */
6519 	memset(blob, 0, sector_size);
6520 	memcpy(blob, pos, inflen);
6521 
6522 	return 0;
6523 }
6524 
6525 
6526 static int
6527 udf_write_internal(struct udf_node *node, uint8_t *blob)
6528 {
6529 	struct udf_mount *ump;
6530 	struct file_entry     *fe = node->fe;
6531 	struct extfile_entry *efe = node->efe;
6532 	uint64_t inflen;
6533 	uint32_t sector_size;
6534 	uint8_t  *pos;
6535 	int icbflags, addr_type;
6536 
6537 	/* get extent and do some paranoia checks */
6538 	ump = node->ump;
6539 	sector_size = ump->discinfo.sector_size;
6540 
6541 	if (fe) {
6542 		inflen   = udf_rw64(fe->inf_len);
6543 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6544 		icbflags = udf_rw16(fe->icbtag.flags);
6545 	} else {
6546 		assert(node->efe);
6547 		inflen   = udf_rw64(efe->inf_len);
6548 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6549 		icbflags = udf_rw16(efe->icbtag.flags);
6550 	}
6551 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6552 
6553 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6554 	assert(inflen < sector_size);
6555 
6556 	/* copy in blob */
6557 	/* memset(pos, 0, inflen); */
6558 	memcpy(pos, blob, inflen);
6559 
6560 	return 0;
6561 }
6562 
6563 
6564 void
6565 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6566 {
6567 	struct buf *nestbuf;
6568 	struct udf_mount *ump = udf_node->ump;
6569 	uint64_t   *mapping;
6570 	uint64_t    run_start;
6571 	uint32_t    sector_size;
6572 	uint32_t    buf_offset, sector, rbuflen, rblk;
6573 	uint32_t    from, lblkno;
6574 	uint32_t    sectors;
6575 	uint8_t    *buf_pos;
6576 	int error, run_length, what;
6577 
6578 	sector_size = udf_node->ump->discinfo.sector_size;
6579 
6580 	from    = buf->b_blkno;
6581 	sectors = buf->b_bcount / sector_size;
6582 
6583 	what = udf_get_c_type(udf_node);
6584 
6585 	/* assure we have enough translation slots */
6586 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6587 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6588 
6589 	if (sectors > UDF_MAX_MAPPINGS) {
6590 		printf("udf_read_filebuf: implementation limit on bufsize\n");
6591 		buf->b_error  = EIO;
6592 		biodone(buf);
6593 		return;
6594 	}
6595 
6596 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6597 
6598 	error = 0;
6599 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6600 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6601 	if (error) {
6602 		buf->b_error  = error;
6603 		biodone(buf);
6604 		goto out;
6605 	}
6606 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
6607 
6608 	/* pre-check if its an internal */
6609 	if (*mapping == UDF_TRANS_INTERN) {
6610 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6611 		if (error)
6612 			buf->b_error  = error;
6613 		biodone(buf);
6614 		goto out;
6615 	}
6616 	DPRINTF(READ, ("\tnot intern\n"));
6617 
6618 #ifdef DEBUG
6619 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6620 		printf("Returned translation table:\n");
6621 		for (sector = 0; sector < sectors; sector++) {
6622 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6623 		}
6624 	}
6625 #endif
6626 
6627 	/* request read-in of data from disc sheduler */
6628 	buf->b_resid = buf->b_bcount;
6629 	for (sector = 0; sector < sectors; sector++) {
6630 		buf_offset = sector * sector_size;
6631 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6632 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6633 
6634 		/* check if its zero or unmapped to stop reading */
6635 		switch (mapping[sector]) {
6636 		case UDF_TRANS_UNMAPPED:
6637 		case UDF_TRANS_ZERO:
6638 			/* copy zero sector TODO runlength like below */
6639 			memset(buf_pos, 0, sector_size);
6640 			DPRINTF(READ, ("\treturning zero sector\n"));
6641 			nestiobuf_done(buf, sector_size, 0);
6642 			break;
6643 		default :
6644 			DPRINTF(READ, ("\tread sector "
6645 			    "%"PRIu64"\n", mapping[sector]));
6646 
6647 			lblkno = from + sector;
6648 			run_start  = mapping[sector];
6649 			run_length = 1;
6650 			while (sector < sectors-1) {
6651 				if (mapping[sector+1] != mapping[sector]+1)
6652 					break;
6653 				run_length++;
6654 				sector++;
6655 			}
6656 
6657 			/*
6658 			 * nest an iobuf and mark it for async reading. Since
6659 			 * we're using nested buffers, they can't be cached by
6660 			 * design.
6661 			 */
6662 			rbuflen = run_length * sector_size;
6663 			rblk    = run_start  * (sector_size/DEV_BSIZE);
6664 
6665 			nestbuf = getiobuf(NULL, true);
6666 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6667 			/* nestbuf is B_ASYNC */
6668 
6669 			/* identify this nestbuf */
6670 			nestbuf->b_lblkno   = lblkno;
6671 			assert(nestbuf->b_vp == udf_node->vnode);
6672 
6673 			/* CD shedules on raw blkno */
6674 			nestbuf->b_blkno      = rblk;
6675 			nestbuf->b_proc       = NULL;
6676 			nestbuf->b_rawblkno   = rblk;
6677 			nestbuf->b_udf_c_type = what;
6678 
6679 			udf_discstrat_queuebuf(ump, nestbuf);
6680 		}
6681 	}
6682 out:
6683 	/* if we're synchronously reading, wait for the completion */
6684 	if ((buf->b_flags & B_ASYNC) == 0)
6685 		biowait(buf);
6686 
6687 	DPRINTF(READ, ("\tend of read_filebuf\n"));
6688 	free(mapping, M_TEMP);
6689 	return;
6690 }
6691 
6692 
6693 void
6694 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6695 {
6696 	struct buf *nestbuf;
6697 	struct udf_mount *ump = udf_node->ump;
6698 	uint64_t   *mapping;
6699 	uint64_t    run_start;
6700 	uint32_t    lb_size;
6701 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
6702 	uint32_t    from, lblkno;
6703 	uint32_t    num_lb;
6704 	int error, run_length, what, s;
6705 
6706 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6707 
6708 	from   = buf->b_blkno;
6709 	num_lb = buf->b_bcount / lb_size;
6710 
6711 	what = udf_get_c_type(udf_node);
6712 
6713 	/* assure we have enough translation slots */
6714 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6715 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6716 
6717 	if (num_lb > UDF_MAX_MAPPINGS) {
6718 		printf("udf_write_filebuf: implementation limit on bufsize\n");
6719 		buf->b_error  = EIO;
6720 		biodone(buf);
6721 		return;
6722 	}
6723 
6724 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6725 
6726 	error = 0;
6727 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6728 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6729 	if (error) {
6730 		buf->b_error  = error;
6731 		biodone(buf);
6732 		goto out;
6733 	}
6734 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6735 
6736 	/* if its internally mapped, we can write it in the descriptor itself */
6737 	if (*mapping == UDF_TRANS_INTERN) {
6738 		/* TODO paranoia check if we ARE going to have enough space */
6739 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6740 		if (error)
6741 			buf->b_error  = error;
6742 		biodone(buf);
6743 		goto out;
6744 	}
6745 	DPRINTF(WRITE, ("\tnot intern\n"));
6746 
6747 	/* request write out of data to disc sheduler */
6748 	buf->b_resid = buf->b_bcount;
6749 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
6750 		buf_offset = lb_num * lb_size;
6751 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6752 
6753 		/*
6754 		 * Mappings are not that important here. Just before we write
6755 		 * the lb_num we late-allocate them when needed and update the
6756 		 * mapping in the udf_node.
6757 		 */
6758 
6759 		/* XXX why not ignore the mapping altogether ? */
6760 		DPRINTF(WRITE, ("\twrite lb_num "
6761 		    "%"PRIu64, mapping[lb_num]));
6762 
6763 		lblkno = from + lb_num;
6764 		run_start  = mapping[lb_num];
6765 		run_length = 1;
6766 		while (lb_num < num_lb-1) {
6767 			if (mapping[lb_num+1] != mapping[lb_num]+1)
6768 				if (mapping[lb_num+1] != mapping[lb_num])
6769 					break;
6770 			run_length++;
6771 			lb_num++;
6772 		}
6773 		DPRINTF(WRITE, ("+ %d\n", run_length));
6774 
6775 		/* nest an iobuf on the master buffer for the extent */
6776 		rbuflen = run_length * lb_size;
6777 		rblk = run_start * (lb_size/DEV_BSIZE);
6778 
6779 		nestbuf = getiobuf(NULL, true);
6780 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6781 		/* nestbuf is B_ASYNC */
6782 
6783 		/* identify this nestbuf */
6784 		nestbuf->b_lblkno   = lblkno;
6785 		KASSERT(nestbuf->b_vp == udf_node->vnode);
6786 
6787 		/* CD shedules on raw blkno */
6788 		nestbuf->b_blkno      = rblk;
6789 		nestbuf->b_proc       = NULL;
6790 		nestbuf->b_rawblkno   = rblk;
6791 		nestbuf->b_udf_c_type = what;
6792 
6793 		/* increment our outstanding bufs counter */
6794 		s = splbio();
6795 			udf_node->outstanding_bufs++;
6796 		splx(s);
6797 
6798 		udf_discstrat_queuebuf(ump, nestbuf);
6799 	}
6800 out:
6801 	/* if we're synchronously writing, wait for the completion */
6802 	if ((buf->b_flags & B_ASYNC) == 0)
6803 		biowait(buf);
6804 
6805 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6806 	free(mapping, M_TEMP);
6807 	return;
6808 }
6809 
6810 /* --------------------------------------------------------------------- */
6811 
6812 
6813