1 /* $NetBSD: udf_subr.c,v 1.83 2008/12/19 18:49:39 cegger Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.83 2008/12/19 18:49:39 cegger Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref(vp); \ 77 vput(vp); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 #else 155 #define udf_dump_discinfo(a); 156 #endif 157 158 159 /* --------------------------------------------------------------------- */ 160 161 /* not called often */ 162 int 163 udf_update_discinfo(struct udf_mount *ump) 164 { 165 struct vnode *devvp = ump->devvp; 166 struct partinfo dpart; 167 struct mmc_discinfo *di; 168 int error; 169 170 DPRINTF(VOLUMES, ("read/update disc info\n")); 171 di = &ump->discinfo; 172 memset(di, 0, sizeof(struct mmc_discinfo)); 173 174 /* check if we're on a MMC capable device, i.e. CD/DVD */ 175 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 176 if (error == 0) { 177 udf_dump_discinfo(ump); 178 return 0; 179 } 180 181 /* disc partition support */ 182 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED); 183 if (error) 184 return ENODEV; 185 186 /* set up a disc info profile for partitions */ 187 di->mmc_profile = 0x01; /* disc type */ 188 di->mmc_class = MMC_CLASS_DISC; 189 di->disc_state = MMC_STATE_CLOSED; 190 di->last_session_state = MMC_STATE_CLOSED; 191 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 192 di->link_block_penalty = 0; 193 194 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 195 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 196 di->mmc_cap = di->mmc_cur; 197 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 198 199 /* TODO problem with last_possible_lba on resizable VND; request */ 200 di->last_possible_lba = dpart.part->p_size; 201 di->sector_size = dpart.disklab->d_secsize; 202 203 di->num_sessions = 1; 204 di->num_tracks = 1; 205 206 di->first_track = 1; 207 di->first_track_last_session = di->last_track_last_session = 1; 208 209 udf_dump_discinfo(ump); 210 return 0; 211 } 212 213 214 int 215 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 216 { 217 struct vnode *devvp = ump->devvp; 218 struct mmc_discinfo *di = &ump->discinfo; 219 int error, class; 220 221 DPRINTF(VOLUMES, ("read track info\n")); 222 223 class = di->mmc_class; 224 if (class != MMC_CLASS_DISC) { 225 /* tracknr specified in struct ti */ 226 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 227 return error; 228 } 229 230 /* disc partition support */ 231 if (ti->tracknr != 1) 232 return EIO; 233 234 /* create fake ti (TODO check for resized vnds) */ 235 ti->sessionnr = 1; 236 237 ti->track_mode = 0; /* XXX */ 238 ti->data_mode = 0; /* XXX */ 239 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 240 241 ti->track_start = 0; 242 ti->packet_size = 1; 243 244 /* TODO support for resizable vnd */ 245 ti->track_size = di->last_possible_lba; 246 ti->next_writable = di->last_possible_lba; 247 ti->last_recorded = ti->next_writable; 248 ti->free_blocks = 0; 249 250 return 0; 251 } 252 253 254 int 255 udf_setup_writeparams(struct udf_mount *ump) 256 { 257 struct mmc_writeparams mmc_writeparams; 258 int error; 259 260 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 261 return 0; 262 263 /* 264 * only CD burning normally needs setting up, but other disc types 265 * might need other settings to be made. The MMC framework will set up 266 * the nessisary recording parameters according to the disc 267 * characteristics read in. Modifications can be made in the discinfo 268 * structure passed to change the nature of the disc. 269 */ 270 271 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 272 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 273 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 274 275 /* 276 * UDF dictates first track to determine track mode for the whole 277 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 278 * To prevent problems with a `reserved' track in front we start with 279 * the 2nd track and if that is not valid, go for the 1st. 280 */ 281 mmc_writeparams.tracknr = 2; 282 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 283 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 284 285 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 286 FKIOCTL, NOCRED); 287 if (error) { 288 mmc_writeparams.tracknr = 1; 289 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 290 &mmc_writeparams, FKIOCTL, NOCRED); 291 } 292 return error; 293 } 294 295 296 int 297 udf_synchronise_caches(struct udf_mount *ump) 298 { 299 struct mmc_op mmc_op; 300 301 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 302 303 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 304 return 0; 305 306 /* discs are done now */ 307 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 308 return 0; 309 310 bzero(&mmc_op, sizeof(struct mmc_op)); 311 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 312 313 /* ignore return code */ 314 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 315 316 return 0; 317 } 318 319 /* --------------------------------------------------------------------- */ 320 321 /* track/session searching for mounting */ 322 int 323 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 324 int *first_tracknr, int *last_tracknr) 325 { 326 struct mmc_trackinfo trackinfo; 327 uint32_t tracknr, start_track, num_tracks; 328 int error; 329 330 /* if negative, sessionnr is relative to last session */ 331 if (args->sessionnr < 0) { 332 args->sessionnr += ump->discinfo.num_sessions; 333 } 334 335 /* sanity */ 336 if (args->sessionnr < 0) 337 args->sessionnr = 0; 338 if (args->sessionnr > ump->discinfo.num_sessions) 339 args->sessionnr = ump->discinfo.num_sessions; 340 341 /* search the tracks for this session, zero session nr indicates last */ 342 if (args->sessionnr == 0) 343 args->sessionnr = ump->discinfo.num_sessions; 344 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 345 args->sessionnr--; 346 347 /* sanity again */ 348 if (args->sessionnr < 0) 349 args->sessionnr = 0; 350 351 /* search the first and last track of the specified session */ 352 num_tracks = ump->discinfo.num_tracks; 353 start_track = ump->discinfo.first_track; 354 355 /* search for first track of this session */ 356 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 357 /* get track info */ 358 trackinfo.tracknr = tracknr; 359 error = udf_update_trackinfo(ump, &trackinfo); 360 if (error) 361 return error; 362 363 if (trackinfo.sessionnr == args->sessionnr) 364 break; 365 } 366 *first_tracknr = tracknr; 367 368 /* search for last track of this session */ 369 for (;tracknr <= num_tracks; tracknr++) { 370 /* get track info */ 371 trackinfo.tracknr = tracknr; 372 error = udf_update_trackinfo(ump, &trackinfo); 373 if (error || (trackinfo.sessionnr != args->sessionnr)) { 374 tracknr--; 375 break; 376 } 377 } 378 if (tracknr > num_tracks) 379 tracknr--; 380 381 *last_tracknr = tracknr; 382 383 if (*last_tracknr < *first_tracknr) { 384 printf( "udf_search_tracks: sanity check on drive+disc failed, " 385 "drive returned garbage\n"); 386 return EINVAL; 387 } 388 389 assert(*last_tracknr >= *first_tracknr); 390 return 0; 391 } 392 393 394 /* 395 * NOTE: this is the only routine in this file that directly peeks into the 396 * metadata file but since its at a larval state of the mount it can't hurt. 397 * 398 * XXX candidate for udf_allocation.c 399 * XXX clean me up!, change to new node reading code. 400 */ 401 402 static void 403 udf_check_track_metadata_overlap(struct udf_mount *ump, 404 struct mmc_trackinfo *trackinfo) 405 { 406 struct part_desc *part; 407 struct file_entry *fe; 408 struct extfile_entry *efe; 409 struct short_ad *s_ad; 410 struct long_ad *l_ad; 411 uint32_t track_start, track_end; 412 uint32_t phys_part_start, phys_part_end, part_start, part_end; 413 uint32_t sector_size, len, alloclen, plb_num; 414 uint8_t *pos; 415 int addr_type, icblen, icbflags, flags; 416 417 /* get our track extents */ 418 track_start = trackinfo->track_start; 419 track_end = track_start + trackinfo->track_size; 420 421 /* get our base partition extent */ 422 KASSERT(ump->node_part == ump->fids_part); 423 part = ump->partitions[ump->node_part]; 424 phys_part_start = udf_rw32(part->start_loc); 425 phys_part_end = phys_part_start + udf_rw32(part->part_len); 426 427 /* no use if its outside the physical partition */ 428 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 429 return; 430 431 /* 432 * now follow all extents in the fe/efe to see if they refer to this 433 * track 434 */ 435 436 sector_size = ump->discinfo.sector_size; 437 438 /* XXX should we claim exclusive access to the metafile ? */ 439 /* TODO: move to new node read code */ 440 fe = ump->metadata_node->fe; 441 efe = ump->metadata_node->efe; 442 if (fe) { 443 alloclen = udf_rw32(fe->l_ad); 444 pos = &fe->data[0] + udf_rw32(fe->l_ea); 445 icbflags = udf_rw16(fe->icbtag.flags); 446 } else { 447 assert(efe); 448 alloclen = udf_rw32(efe->l_ad); 449 pos = &efe->data[0] + udf_rw32(efe->l_ea); 450 icbflags = udf_rw16(efe->icbtag.flags); 451 } 452 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 453 454 while (alloclen) { 455 if (addr_type == UDF_ICB_SHORT_ALLOC) { 456 icblen = sizeof(struct short_ad); 457 s_ad = (struct short_ad *) pos; 458 len = udf_rw32(s_ad->len); 459 plb_num = udf_rw32(s_ad->lb_num); 460 } else { 461 /* should not be present, but why not */ 462 icblen = sizeof(struct long_ad); 463 l_ad = (struct long_ad *) pos; 464 len = udf_rw32(l_ad->len); 465 plb_num = udf_rw32(l_ad->loc.lb_num); 466 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 467 } 468 /* process extent */ 469 flags = UDF_EXT_FLAGS(len); 470 len = UDF_EXT_LEN(len); 471 472 part_start = phys_part_start + plb_num; 473 part_end = part_start + (len / sector_size); 474 475 if ((part_start >= track_start) && (part_end <= track_end)) { 476 /* extent is enclosed within this track */ 477 ump->metadata_track = *trackinfo; 478 return; 479 } 480 481 pos += icblen; 482 alloclen -= icblen; 483 } 484 } 485 486 487 int 488 udf_search_writing_tracks(struct udf_mount *ump) 489 { 490 struct vnode *devvp = ump->devvp; 491 struct mmc_trackinfo trackinfo; 492 struct mmc_op op; 493 struct part_desc *part; 494 uint32_t tracknr, start_track, num_tracks; 495 uint32_t track_start, track_end, part_start, part_end; 496 int node_alloc, error; 497 498 /* 499 * in the CD/(HD)DVD/BD recordable device model a few tracks within 500 * the last session might be open but in the UDF device model at most 501 * three tracks can be open: a reserved track for delayed ISO VRS 502 * writing, a data track and a metadata track. We search here for the 503 * data track and the metadata track. Note that the reserved track is 504 * troublesome but can be detected by its small size of < 512 sectors. 505 */ 506 507 num_tracks = ump->discinfo.num_tracks; 508 start_track = ump->discinfo.first_track; 509 510 /* fetch info on first and possibly only track */ 511 trackinfo.tracknr = start_track; 512 error = udf_update_trackinfo(ump, &trackinfo); 513 if (error) 514 return error; 515 516 /* copy results to our mount point */ 517 ump->data_track = trackinfo; 518 ump->metadata_track = trackinfo; 519 520 /* if not sequential, we're done */ 521 if (num_tracks == 1) 522 return 0; 523 524 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 525 /* get track info */ 526 trackinfo.tracknr = tracknr; 527 error = udf_update_trackinfo(ump, &trackinfo); 528 if (error) 529 return error; 530 531 /* 532 * If this track is marked damaged, ask for repair. This is an 533 * optional command, so ignore its error but report warning. 534 */ 535 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 536 memset(&op, 0, sizeof(op)); 537 op.operation = MMC_OP_REPAIRTRACK; 538 op.mmc_profile = ump->discinfo.mmc_profile; 539 op.tracknr = tracknr; 540 error = VOP_IOCTL(devvp, MMCOP, &op, FKIOCTL, NOCRED); 541 if (error) 542 (void)printf("Drive can't explicitly repair " 543 "damaged track %d, but it might " 544 "autorepair\n", tracknr); 545 546 /* reget track info */ 547 error = udf_update_trackinfo(ump, &trackinfo); 548 if (error) 549 return error; 550 } 551 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 552 continue; 553 554 track_start = trackinfo.track_start; 555 track_end = track_start + trackinfo.track_size; 556 557 /* check for overlap on data partition */ 558 part = ump->partitions[ump->data_part]; 559 part_start = udf_rw32(part->start_loc); 560 part_end = part_start + udf_rw32(part->part_len); 561 if ((part_start < track_end) && (part_end > track_start)) { 562 ump->data_track = trackinfo; 563 /* TODO check if UDF partition data_part is writable */ 564 } 565 566 /* check for overlap on metadata partition */ 567 node_alloc = ump->vtop_alloc[ump->node_part]; 568 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 569 (node_alloc == UDF_ALLOC_METABITMAP)) { 570 udf_check_track_metadata_overlap(ump, &trackinfo); 571 } else { 572 ump->metadata_track = trackinfo; 573 } 574 } 575 576 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 577 return EROFS; 578 579 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 580 return EROFS; 581 582 return 0; 583 } 584 585 /* --------------------------------------------------------------------- */ 586 587 /* 588 * Check if the blob starts with a good UDF tag. Tags are protected by a 589 * checksum over the reader except one byte at position 4 that is the checksum 590 * itself. 591 */ 592 593 int 594 udf_check_tag(void *blob) 595 { 596 struct desc_tag *tag = blob; 597 uint8_t *pos, sum, cnt; 598 599 /* check TAG header checksum */ 600 pos = (uint8_t *) tag; 601 sum = 0; 602 603 for(cnt = 0; cnt < 16; cnt++) { 604 if (cnt != 4) 605 sum += *pos; 606 pos++; 607 } 608 if (sum != tag->cksum) { 609 /* bad tag header checksum; this is not a valid tag */ 610 return EINVAL; 611 } 612 613 return 0; 614 } 615 616 617 /* 618 * check tag payload will check descriptor CRC as specified. 619 * If the descriptor is too long, it will return EIO otherwise EINVAL. 620 */ 621 622 int 623 udf_check_tag_payload(void *blob, uint32_t max_length) 624 { 625 struct desc_tag *tag = blob; 626 uint16_t crc, crc_len; 627 628 crc_len = udf_rw16(tag->desc_crc_len); 629 630 /* check payload CRC if applicable */ 631 if (crc_len == 0) 632 return 0; 633 634 if (crc_len > max_length) 635 return EIO; 636 637 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 638 if (crc != udf_rw16(tag->desc_crc)) { 639 /* bad payload CRC; this is a broken tag */ 640 return EINVAL; 641 } 642 643 return 0; 644 } 645 646 647 void 648 udf_validate_tag_sum(void *blob) 649 { 650 struct desc_tag *tag = blob; 651 uint8_t *pos, sum, cnt; 652 653 /* calculate TAG header checksum */ 654 pos = (uint8_t *) tag; 655 sum = 0; 656 657 for(cnt = 0; cnt < 16; cnt++) { 658 if (cnt != 4) sum += *pos; 659 pos++; 660 } 661 tag->cksum = sum; /* 8 bit */ 662 } 663 664 665 /* assumes sector number of descriptor to be saved already present */ 666 void 667 udf_validate_tag_and_crc_sums(void *blob) 668 { 669 struct desc_tag *tag = blob; 670 uint8_t *btag = (uint8_t *) tag; 671 uint16_t crc, crc_len; 672 673 crc_len = udf_rw16(tag->desc_crc_len); 674 675 /* check payload CRC if applicable */ 676 if (crc_len > 0) { 677 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 678 tag->desc_crc = udf_rw16(crc); 679 } 680 681 /* calculate TAG header checksum */ 682 udf_validate_tag_sum(blob); 683 } 684 685 /* --------------------------------------------------------------------- */ 686 687 /* 688 * XXX note the different semantics from udfclient: for FIDs it still rounds 689 * up to sectors. Use udf_fidsize() for a correct length. 690 */ 691 692 int 693 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 694 { 695 uint32_t size, tag_id, num_lb, elmsz; 696 697 tag_id = udf_rw16(dscr->tag.id); 698 699 switch (tag_id) { 700 case TAGID_LOGVOL : 701 size = sizeof(struct logvol_desc) - 1; 702 size += udf_rw32(dscr->lvd.mt_l); 703 break; 704 case TAGID_UNALLOC_SPACE : 705 elmsz = sizeof(struct extent_ad); 706 size = sizeof(struct unalloc_sp_desc) - elmsz; 707 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 708 break; 709 case TAGID_FID : 710 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 711 size = (size + 3) & ~3; 712 break; 713 case TAGID_LOGVOL_INTEGRITY : 714 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 715 size += udf_rw32(dscr->lvid.l_iu); 716 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 717 break; 718 case TAGID_SPACE_BITMAP : 719 size = sizeof(struct space_bitmap_desc) - 1; 720 size += udf_rw32(dscr->sbd.num_bytes); 721 break; 722 case TAGID_SPARING_TABLE : 723 elmsz = sizeof(struct spare_map_entry); 724 size = sizeof(struct udf_sparing_table) - elmsz; 725 size += udf_rw16(dscr->spt.rt_l) * elmsz; 726 break; 727 case TAGID_FENTRY : 728 size = sizeof(struct file_entry); 729 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 730 break; 731 case TAGID_EXTFENTRY : 732 size = sizeof(struct extfile_entry); 733 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 734 break; 735 case TAGID_FSD : 736 size = sizeof(struct fileset_desc); 737 break; 738 default : 739 size = sizeof(union dscrptr); 740 break; 741 } 742 743 if ((size == 0) || (lb_size == 0)) 744 return 0; 745 746 if (lb_size == 1) 747 return size; 748 749 /* round up in sectors */ 750 num_lb = (size + lb_size -1) / lb_size; 751 return num_lb * lb_size; 752 } 753 754 755 int 756 udf_fidsize(struct fileid_desc *fid) 757 { 758 uint32_t size; 759 760 if (udf_rw16(fid->tag.id) != TAGID_FID) 761 panic("got udf_fidsize on non FID\n"); 762 763 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 764 size = (size + 3) & ~3; 765 766 return size; 767 } 768 769 /* --------------------------------------------------------------------- */ 770 771 void 772 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 773 { 774 int ret; 775 776 mutex_enter(&udf_node->node_mutex); 777 /* wait until free */ 778 while (udf_node->i_flags & IN_LOCKED) { 779 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 780 /* TODO check if we should return error; abort */ 781 if (ret == EWOULDBLOCK) { 782 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 783 "wanted at %s:%d, previously locked at %s:%d\n", 784 udf_node, fname, lineno, 785 udf_node->lock_fname, udf_node->lock_lineno)); 786 } 787 } 788 /* grab */ 789 udf_node->i_flags |= IN_LOCKED | flag; 790 /* debug */ 791 udf_node->lock_fname = fname; 792 udf_node->lock_lineno = lineno; 793 794 mutex_exit(&udf_node->node_mutex); 795 } 796 797 798 void 799 udf_unlock_node(struct udf_node *udf_node, int flag) 800 { 801 mutex_enter(&udf_node->node_mutex); 802 udf_node->i_flags &= ~(IN_LOCKED | flag); 803 cv_broadcast(&udf_node->node_lock); 804 mutex_exit(&udf_node->node_mutex); 805 } 806 807 808 /* --------------------------------------------------------------------- */ 809 810 static int 811 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 812 { 813 int error; 814 815 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 816 (union dscrptr **) dst); 817 if (!error) { 818 /* blank terminator blocks are not allowed here */ 819 if (*dst == NULL) 820 return ENOENT; 821 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 822 error = ENOENT; 823 free(*dst, M_UDFVOLD); 824 *dst = NULL; 825 DPRINTF(VOLUMES, ("Not an anchor\n")); 826 } 827 } 828 829 return error; 830 } 831 832 833 int 834 udf_read_anchors(struct udf_mount *ump) 835 { 836 struct udf_args *args = &ump->mount_args; 837 struct mmc_trackinfo first_track; 838 struct mmc_trackinfo second_track; 839 struct mmc_trackinfo last_track; 840 struct anchor_vdp **anchorsp; 841 uint32_t track_start; 842 uint32_t track_end; 843 uint32_t positions[4]; 844 int first_tracknr, last_tracknr; 845 int error, anch, ok, first_anchor; 846 847 /* search the first and last track of the specified session */ 848 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 849 if (!error) { 850 first_track.tracknr = first_tracknr; 851 error = udf_update_trackinfo(ump, &first_track); 852 } 853 if (!error) { 854 last_track.tracknr = last_tracknr; 855 error = udf_update_trackinfo(ump, &last_track); 856 } 857 if ((!error) && (first_tracknr != last_tracknr)) { 858 second_track.tracknr = first_tracknr+1; 859 error = udf_update_trackinfo(ump, &second_track); 860 } 861 if (error) { 862 printf("UDF mount: reading disc geometry failed\n"); 863 return 0; 864 } 865 866 track_start = first_track.track_start; 867 868 /* `end' is not as straitforward as start. */ 869 track_end = last_track.track_start 870 + last_track.track_size - last_track.free_blocks - 1; 871 872 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 873 /* end of track is not straitforward here */ 874 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 875 track_end = last_track.last_recorded; 876 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 877 track_end = last_track.next_writable 878 - ump->discinfo.link_block_penalty; 879 } 880 881 /* its no use reading a blank track */ 882 first_anchor = 0; 883 if (first_track.flags & MMC_TRACKINFO_BLANK) 884 first_anchor = 1; 885 886 /* get our packet size */ 887 ump->packet_size = first_track.packet_size; 888 if (first_track.flags & MMC_TRACKINFO_BLANK) 889 ump->packet_size = second_track.packet_size; 890 891 if (ump->packet_size <= 1) { 892 /* take max, but not bigger than 64 */ 893 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 894 ump->packet_size = MIN(ump->packet_size, 64); 895 } 896 KASSERT(ump->packet_size >= 1); 897 898 /* read anchors start+256, start+512, end-256, end */ 899 positions[0] = track_start+256; 900 positions[1] = track_end-256; 901 positions[2] = track_end; 902 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 903 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 904 905 ok = 0; 906 anchorsp = ump->anchors; 907 for (anch = first_anchor; anch < 4; anch++) { 908 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 909 positions[anch])); 910 error = udf_read_anchor(ump, positions[anch], anchorsp); 911 if (!error) { 912 anchorsp++; 913 ok++; 914 } 915 } 916 917 /* VATs are only recorded on sequential media, but initialise */ 918 ump->first_possible_vat_location = track_start + 2; 919 ump->last_possible_vat_location = track_end + last_track.packet_size; 920 921 return ok; 922 } 923 924 /* --------------------------------------------------------------------- */ 925 926 /* we dont try to be smart; we just record the parts */ 927 #define UDF_UPDATE_DSCR(name, dscr) \ 928 if (name) \ 929 free(name, M_UDFVOLD); \ 930 name = dscr; 931 932 static int 933 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 934 { 935 struct part_desc *part; 936 uint16_t phys_part, raw_phys_part; 937 938 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 939 udf_rw16(dscr->tag.id))); 940 switch (udf_rw16(dscr->tag.id)) { 941 case TAGID_PRI_VOL : /* primary partition */ 942 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 943 break; 944 case TAGID_LOGVOL : /* logical volume */ 945 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 946 break; 947 case TAGID_UNALLOC_SPACE : /* unallocated space */ 948 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 949 break; 950 case TAGID_IMP_VOL : /* implementation */ 951 /* XXX do we care about multiple impl. descr ? */ 952 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 953 break; 954 case TAGID_PARTITION : /* physical partition */ 955 /* not much use if its not allocated */ 956 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 957 free(dscr, M_UDFVOLD); 958 break; 959 } 960 961 /* 962 * BUGALERT: some rogue implementations use random physical 963 * partion numbers to break other implementations so lookup 964 * the number. 965 */ 966 raw_phys_part = udf_rw16(dscr->pd.part_num); 967 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 968 part = ump->partitions[phys_part]; 969 if (part == NULL) 970 break; 971 if (udf_rw16(part->part_num) == raw_phys_part) 972 break; 973 } 974 if (phys_part == UDF_PARTITIONS) { 975 free(dscr, M_UDFVOLD); 976 return EINVAL; 977 } 978 979 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 980 break; 981 case TAGID_VOL : /* volume space extender; rare */ 982 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 983 free(dscr, M_UDFVOLD); 984 break; 985 default : 986 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 987 udf_rw16(dscr->tag.id))); 988 free(dscr, M_UDFVOLD); 989 } 990 991 return 0; 992 } 993 #undef UDF_UPDATE_DSCR 994 995 /* --------------------------------------------------------------------- */ 996 997 static int 998 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 999 { 1000 union dscrptr *dscr; 1001 uint32_t sector_size, dscr_size; 1002 int error; 1003 1004 sector_size = ump->discinfo.sector_size; 1005 1006 /* loc is sectornr, len is in bytes */ 1007 error = EIO; 1008 while (len) { 1009 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1010 if (error) 1011 return error; 1012 1013 /* blank block is a terminator */ 1014 if (dscr == NULL) 1015 return 0; 1016 1017 /* TERM descriptor is a terminator */ 1018 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1019 free(dscr, M_UDFVOLD); 1020 return 0; 1021 } 1022 1023 /* process all others */ 1024 dscr_size = udf_tagsize(dscr, sector_size); 1025 error = udf_process_vds_descriptor(ump, dscr); 1026 if (error) { 1027 free(dscr, M_UDFVOLD); 1028 break; 1029 } 1030 assert((dscr_size % sector_size) == 0); 1031 1032 len -= dscr_size; 1033 loc += dscr_size / sector_size; 1034 } 1035 1036 return error; 1037 } 1038 1039 1040 int 1041 udf_read_vds_space(struct udf_mount *ump) 1042 { 1043 /* struct udf_args *args = &ump->mount_args; */ 1044 struct anchor_vdp *anchor, *anchor2; 1045 size_t size; 1046 uint32_t main_loc, main_len; 1047 uint32_t reserve_loc, reserve_len; 1048 int error; 1049 1050 /* 1051 * read in VDS space provided by the anchors; if one descriptor read 1052 * fails, try the mirror sector. 1053 * 1054 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1055 * avoids the `compatibility features' of DirectCD that may confuse 1056 * stuff completely. 1057 */ 1058 1059 anchor = ump->anchors[0]; 1060 anchor2 = ump->anchors[1]; 1061 assert(anchor); 1062 1063 if (anchor2) { 1064 size = sizeof(struct extent_ad); 1065 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1066 anchor = anchor2; 1067 /* reserve is specified to be a literal copy of main */ 1068 } 1069 1070 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1071 main_len = udf_rw32(anchor->main_vds_ex.len); 1072 1073 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1074 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1075 1076 error = udf_read_vds_extent(ump, main_loc, main_len); 1077 if (error) { 1078 printf("UDF mount: reading in reserve VDS extent\n"); 1079 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1080 } 1081 1082 return error; 1083 } 1084 1085 /* --------------------------------------------------------------------- */ 1086 1087 /* 1088 * Read in the logical volume integrity sequence pointed to by our logical 1089 * volume descriptor. Its a sequence that can be extended using fields in the 1090 * integrity descriptor itself. On sequential media only one is found, on 1091 * rewritable media a sequence of descriptors can be found as a form of 1092 * history keeping and on non sequential write-once media the chain is vital 1093 * to allow more and more descriptors to be written. The last descriptor 1094 * written in an extent needs to claim space for a new extent. 1095 */ 1096 1097 static int 1098 udf_retrieve_lvint(struct udf_mount *ump) 1099 { 1100 union dscrptr *dscr; 1101 struct logvol_int_desc *lvint; 1102 struct udf_lvintq *trace; 1103 uint32_t lb_size, lbnum, len; 1104 int dscr_type, error, trace_len; 1105 1106 lb_size = udf_rw32(ump->logical_vol->lb_size); 1107 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1108 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1109 1110 /* clean trace */ 1111 memset(ump->lvint_trace, 0, 1112 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1113 1114 trace_len = 0; 1115 trace = ump->lvint_trace; 1116 trace->start = lbnum; 1117 trace->end = lbnum + len/lb_size; 1118 trace->pos = 0; 1119 trace->wpos = 0; 1120 1121 lvint = NULL; 1122 dscr = NULL; 1123 error = 0; 1124 while (len) { 1125 trace->pos = lbnum - trace->start; 1126 trace->wpos = trace->pos + 1; 1127 1128 /* read in our integrity descriptor */ 1129 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1130 if (!error) { 1131 if (dscr == NULL) { 1132 trace->wpos = trace->pos; 1133 break; /* empty terminates */ 1134 } 1135 dscr_type = udf_rw16(dscr->tag.id); 1136 if (dscr_type == TAGID_TERM) { 1137 trace->wpos = trace->pos; 1138 break; /* clean terminator */ 1139 } 1140 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1141 /* fatal... corrupt disc */ 1142 error = ENOENT; 1143 break; 1144 } 1145 if (lvint) 1146 free(lvint, M_UDFVOLD); 1147 lvint = &dscr->lvid; 1148 dscr = NULL; 1149 } /* else hope for the best... maybe the next is ok */ 1150 1151 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1152 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1153 1154 /* proceed sequential */ 1155 lbnum += 1; 1156 len -= lb_size; 1157 1158 /* are we linking to a new piece? */ 1159 if (dscr && lvint->next_extent.len) { 1160 len = udf_rw32(lvint->next_extent.len); 1161 lbnum = udf_rw32(lvint->next_extent.loc); 1162 1163 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1164 /* IEK! segment link full... */ 1165 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1166 error = EINVAL; 1167 } else { 1168 trace++; 1169 trace_len++; 1170 1171 trace->start = lbnum; 1172 trace->end = lbnum + len/lb_size; 1173 trace->pos = 0; 1174 trace->wpos = 0; 1175 } 1176 } 1177 } 1178 1179 /* clean up the mess, esp. when there is an error */ 1180 if (dscr) 1181 free(dscr, M_UDFVOLD); 1182 1183 if (error && lvint) { 1184 free(lvint, M_UDFVOLD); 1185 lvint = NULL; 1186 } 1187 1188 if (!lvint) 1189 error = ENOENT; 1190 1191 ump->logvol_integrity = lvint; 1192 return error; 1193 } 1194 1195 1196 static int 1197 udf_loose_lvint_history(struct udf_mount *ump) 1198 { 1199 union dscrptr **bufs, *dscr, *last_dscr; 1200 struct udf_lvintq *trace, *in_trace, *out_trace; 1201 struct logvol_int_desc *lvint; 1202 uint32_t in_ext, in_pos, in_len; 1203 uint32_t out_ext, out_wpos, out_len; 1204 uint32_t lb_size, packet_size, lb_num; 1205 uint32_t len, start; 1206 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1207 int losing; 1208 int error; 1209 1210 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1211 1212 lb_size = udf_rw32(ump->logical_vol->lb_size); 1213 packet_size = ump->data_track.packet_size; /* XXX data track */ 1214 1215 /* search smallest extent */ 1216 trace = &ump->lvint_trace[0]; 1217 minext = trace->end - trace->start; 1218 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1219 trace = &ump->lvint_trace[ext]; 1220 extlen = trace->end - trace->start; 1221 if (extlen == 0) 1222 break; 1223 minext = MIN(minext, extlen); 1224 } 1225 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1226 /* no sense wiping all */ 1227 if (losing == minext) 1228 losing--; 1229 1230 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1231 1232 /* get buffer for pieces */ 1233 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1234 1235 in_ext = 0; 1236 in_pos = losing; 1237 in_trace = &ump->lvint_trace[in_ext]; 1238 in_len = in_trace->end - in_trace->start; 1239 out_ext = 0; 1240 out_wpos = 0; 1241 out_trace = &ump->lvint_trace[out_ext]; 1242 out_len = out_trace->end - out_trace->start; 1243 1244 last_dscr = NULL; 1245 for(;;) { 1246 out_trace->pos = out_wpos; 1247 out_trace->wpos = out_trace->pos; 1248 if (in_pos >= in_len) { 1249 in_ext++; 1250 in_pos = 0; 1251 in_trace = &ump->lvint_trace[in_ext]; 1252 in_len = in_trace->end - in_trace->start; 1253 } 1254 if (out_wpos >= out_len) { 1255 out_ext++; 1256 out_wpos = 0; 1257 out_trace = &ump->lvint_trace[out_ext]; 1258 out_len = out_trace->end - out_trace->start; 1259 } 1260 /* copy overlap contents */ 1261 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1262 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1263 if (cpy_len == 0) 1264 break; 1265 1266 /* copy */ 1267 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1268 for (cnt = 0; cnt < cpy_len; cnt++) { 1269 /* read in our integrity descriptor */ 1270 lb_num = in_trace->start + in_pos + cnt; 1271 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1272 &dscr); 1273 if (error) { 1274 /* copy last one */ 1275 dscr = last_dscr; 1276 } 1277 bufs[cnt] = dscr; 1278 if (!error) { 1279 if (dscr == NULL) { 1280 out_trace->pos = out_wpos + cnt; 1281 out_trace->wpos = out_trace->pos; 1282 break; /* empty terminates */ 1283 } 1284 dscr_type = udf_rw16(dscr->tag.id); 1285 if (dscr_type == TAGID_TERM) { 1286 out_trace->pos = out_wpos + cnt; 1287 out_trace->wpos = out_trace->pos; 1288 break; /* clean terminator */ 1289 } 1290 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1291 panic( "UDF integrity sequence " 1292 "corrupted while mounted!\n"); 1293 } 1294 last_dscr = dscr; 1295 } 1296 } 1297 1298 /* patch up if first entry was on error */ 1299 if (bufs[0] == NULL) { 1300 for (cnt = 0; cnt < cpy_len; cnt++) 1301 if (bufs[cnt] != NULL) 1302 break; 1303 last_dscr = bufs[cnt]; 1304 for (; cnt > 0; cnt--) { 1305 bufs[cnt] = last_dscr; 1306 } 1307 } 1308 1309 /* glue + write out */ 1310 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1311 for (cnt = 0; cnt < cpy_len; cnt++) { 1312 lb_num = out_trace->start + out_wpos + cnt; 1313 lvint = &bufs[cnt]->lvid; 1314 1315 /* set continuation */ 1316 len = 0; 1317 start = 0; 1318 if (out_wpos + cnt == out_len) { 1319 /* get continuation */ 1320 trace = &ump->lvint_trace[out_ext+1]; 1321 len = trace->end - trace->start; 1322 start = trace->start; 1323 } 1324 lvint->next_extent.len = udf_rw32(len); 1325 lvint->next_extent.loc = udf_rw32(start); 1326 1327 lb_num = trace->start + trace->wpos; 1328 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1329 bufs[cnt], lb_num, lb_num); 1330 DPRINTFIF(VOLUMES, error, 1331 ("error writing lvint lb_num\n")); 1332 } 1333 1334 /* free non repeating descriptors */ 1335 last_dscr = NULL; 1336 for (cnt = 0; cnt < cpy_len; cnt++) { 1337 if (bufs[cnt] != last_dscr) 1338 free(bufs[cnt], M_UDFVOLD); 1339 last_dscr = bufs[cnt]; 1340 } 1341 1342 /* advance */ 1343 in_pos += cpy_len; 1344 out_wpos += cpy_len; 1345 } 1346 1347 free(bufs, M_TEMP); 1348 1349 return 0; 1350 } 1351 1352 1353 static int 1354 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1355 { 1356 struct udf_lvintq *trace; 1357 struct timeval now_v; 1358 struct timespec now_s; 1359 uint32_t sector; 1360 int logvol_integrity; 1361 int space, error; 1362 1363 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1364 1365 again: 1366 /* get free space in last chunk */ 1367 trace = ump->lvint_trace; 1368 while (trace->wpos > (trace->end - trace->start)) { 1369 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1370 "wpos = %d\n", trace->start, trace->end, 1371 trace->pos, trace->wpos)); 1372 trace++; 1373 } 1374 1375 /* check if there is space to append */ 1376 space = (trace->end - trace->start) - trace->wpos; 1377 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1378 "space = %d\n", trace->start, trace->end, trace->pos, 1379 trace->wpos, space)); 1380 1381 /* get state */ 1382 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1383 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1384 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1385 /* don't allow this logvol to be opened */ 1386 /* TODO extent LVINT space if possible */ 1387 return EROFS; 1388 } 1389 } 1390 1391 if (space < 1) { 1392 if (lvflag & UDF_APPENDONLY_LVINT) 1393 return EROFS; 1394 /* loose history by re-writing extents */ 1395 error = udf_loose_lvint_history(ump); 1396 if (error) 1397 return error; 1398 goto again; 1399 } 1400 1401 /* update our integrity descriptor to identify us and timestamp it */ 1402 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1403 microtime(&now_v); 1404 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1405 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1406 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1407 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1408 1409 /* writeout integrity descriptor */ 1410 sector = trace->start + trace->wpos; 1411 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1412 (union dscrptr *) ump->logvol_integrity, 1413 sector, sector); 1414 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1415 if (error) 1416 return error; 1417 1418 /* advance write position */ 1419 trace->wpos++; space--; 1420 if (space >= 1) { 1421 /* append terminator */ 1422 sector = trace->start + trace->wpos; 1423 error = udf_write_terminator(ump, sector); 1424 1425 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1426 } 1427 1428 space = (trace->end - trace->start) - trace->wpos; 1429 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1430 "space = %d\n", trace->start, trace->end, trace->pos, 1431 trace->wpos, space)); 1432 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1433 "successfull\n")); 1434 1435 return error; 1436 } 1437 1438 /* --------------------------------------------------------------------- */ 1439 1440 static int 1441 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1442 { 1443 union dscrptr *dscr; 1444 /* struct udf_args *args = &ump->mount_args; */ 1445 struct part_desc *partd; 1446 struct part_hdr_desc *parthdr; 1447 struct udf_bitmap *bitmap; 1448 uint32_t phys_part; 1449 uint32_t lb_num, len; 1450 int error, dscr_type; 1451 1452 /* unallocated space map */ 1453 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1454 partd = ump->partitions[phys_part]; 1455 if (partd == NULL) 1456 continue; 1457 parthdr = &partd->_impl_use.part_hdr; 1458 1459 lb_num = udf_rw32(partd->start_loc); 1460 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1461 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1462 if (len == 0) 1463 continue; 1464 1465 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1466 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1467 if (!error && dscr) { 1468 /* analyse */ 1469 dscr_type = udf_rw16(dscr->tag.id); 1470 if (dscr_type == TAGID_SPACE_BITMAP) { 1471 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1472 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1473 1474 /* fill in ump->part_unalloc_bits */ 1475 bitmap = &ump->part_unalloc_bits[phys_part]; 1476 bitmap->blob = (uint8_t *) dscr; 1477 bitmap->bits = dscr->sbd.data; 1478 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1479 bitmap->pages = NULL; /* TODO */ 1480 bitmap->data_pos = 0; 1481 bitmap->metadata_pos = 0; 1482 } else { 1483 free(dscr, M_UDFVOLD); 1484 1485 printf( "UDF mount: error reading unallocated " 1486 "space bitmap\n"); 1487 return EROFS; 1488 } 1489 } else { 1490 /* blank not allowed */ 1491 printf("UDF mount: blank unallocated space bitmap\n"); 1492 return EROFS; 1493 } 1494 } 1495 1496 /* unallocated space table (not supported) */ 1497 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1498 partd = ump->partitions[phys_part]; 1499 if (partd == NULL) 1500 continue; 1501 parthdr = &partd->_impl_use.part_hdr; 1502 1503 len = udf_rw32(parthdr->unalloc_space_table.len); 1504 if (len) { 1505 printf("UDF mount: space tables not supported\n"); 1506 return EROFS; 1507 } 1508 } 1509 1510 /* freed space map */ 1511 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1512 partd = ump->partitions[phys_part]; 1513 if (partd == NULL) 1514 continue; 1515 parthdr = &partd->_impl_use.part_hdr; 1516 1517 /* freed space map */ 1518 lb_num = udf_rw32(partd->start_loc); 1519 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1520 len = udf_rw32(parthdr->freed_space_bitmap.len); 1521 if (len == 0) 1522 continue; 1523 1524 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1525 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1526 if (!error && dscr) { 1527 /* analyse */ 1528 dscr_type = udf_rw16(dscr->tag.id); 1529 if (dscr_type == TAGID_SPACE_BITMAP) { 1530 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1531 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1532 1533 /* fill in ump->part_freed_bits */ 1534 bitmap = &ump->part_unalloc_bits[phys_part]; 1535 bitmap->blob = (uint8_t *) dscr; 1536 bitmap->bits = dscr->sbd.data; 1537 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1538 bitmap->pages = NULL; /* TODO */ 1539 bitmap->data_pos = 0; 1540 bitmap->metadata_pos = 0; 1541 } else { 1542 free(dscr, M_UDFVOLD); 1543 1544 printf( "UDF mount: error reading freed " 1545 "space bitmap\n"); 1546 return EROFS; 1547 } 1548 } else { 1549 /* blank not allowed */ 1550 printf("UDF mount: blank freed space bitmap\n"); 1551 return EROFS; 1552 } 1553 } 1554 1555 /* freed space table (not supported) */ 1556 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1557 partd = ump->partitions[phys_part]; 1558 if (partd == NULL) 1559 continue; 1560 parthdr = &partd->_impl_use.part_hdr; 1561 1562 len = udf_rw32(parthdr->freed_space_table.len); 1563 if (len) { 1564 printf("UDF mount: space tables not supported\n"); 1565 return EROFS; 1566 } 1567 } 1568 1569 return 0; 1570 } 1571 1572 1573 /* TODO implement async writeout */ 1574 int 1575 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1576 { 1577 union dscrptr *dscr; 1578 /* struct udf_args *args = &ump->mount_args; */ 1579 struct part_desc *partd; 1580 struct part_hdr_desc *parthdr; 1581 uint32_t phys_part; 1582 uint32_t lb_num, len, ptov; 1583 int error_all, error; 1584 1585 error_all = 0; 1586 /* unallocated space map */ 1587 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1588 partd = ump->partitions[phys_part]; 1589 if (partd == NULL) 1590 continue; 1591 parthdr = &partd->_impl_use.part_hdr; 1592 1593 ptov = udf_rw32(partd->start_loc); 1594 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1595 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1596 if (len == 0) 1597 continue; 1598 1599 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1600 lb_num + ptov)); 1601 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1602 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1603 (union dscrptr *) dscr, 1604 ptov + lb_num, lb_num); 1605 if (error) { 1606 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1607 error_all = error; 1608 } 1609 } 1610 1611 /* freed space map */ 1612 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1613 partd = ump->partitions[phys_part]; 1614 if (partd == NULL) 1615 continue; 1616 parthdr = &partd->_impl_use.part_hdr; 1617 1618 /* freed space map */ 1619 ptov = udf_rw32(partd->start_loc); 1620 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1621 len = udf_rw32(parthdr->freed_space_bitmap.len); 1622 if (len == 0) 1623 continue; 1624 1625 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1626 lb_num + ptov)); 1627 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1628 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1629 (union dscrptr *) dscr, 1630 ptov + lb_num, lb_num); 1631 if (error) { 1632 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1633 error_all = error; 1634 } 1635 } 1636 1637 return error_all; 1638 } 1639 1640 1641 static int 1642 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1643 { 1644 struct udf_node *bitmap_node; 1645 union dscrptr *dscr; 1646 struct udf_bitmap *bitmap; 1647 uint64_t inflen; 1648 int error, dscr_type; 1649 1650 bitmap_node = ump->metadatabitmap_node; 1651 1652 /* only read in when metadata bitmap node is read in */ 1653 if (bitmap_node == NULL) 1654 return 0; 1655 1656 if (bitmap_node->fe) { 1657 inflen = udf_rw64(bitmap_node->fe->inf_len); 1658 } else { 1659 KASSERT(bitmap_node->efe); 1660 inflen = udf_rw64(bitmap_node->efe->inf_len); 1661 } 1662 1663 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1664 "%"PRIu64" bytes\n", inflen)); 1665 1666 /* allocate space for bitmap */ 1667 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1668 if (!dscr) 1669 return ENOMEM; 1670 1671 /* set vnode type to regular file or we can't read from it! */ 1672 bitmap_node->vnode->v_type = VREG; 1673 1674 /* read in complete metadata bitmap file */ 1675 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1676 dscr, 1677 inflen, 0, 1678 UIO_SYSSPACE, 1679 IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED, 1680 NULL, NULL); 1681 if (error) { 1682 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1683 goto errorout; 1684 } 1685 1686 /* analyse */ 1687 dscr_type = udf_rw16(dscr->tag.id); 1688 if (dscr_type == TAGID_SPACE_BITMAP) { 1689 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1690 ump->metadata_unalloc_dscr = &dscr->sbd; 1691 1692 /* fill in bitmap bits */ 1693 bitmap = &ump->metadata_unalloc_bits; 1694 bitmap->blob = (uint8_t *) dscr; 1695 bitmap->bits = dscr->sbd.data; 1696 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1697 bitmap->pages = NULL; /* TODO */ 1698 bitmap->data_pos = 0; 1699 bitmap->metadata_pos = 0; 1700 } else { 1701 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1702 goto errorout; 1703 } 1704 1705 return 0; 1706 1707 errorout: 1708 free(dscr, M_UDFVOLD); 1709 printf( "UDF mount: error reading unallocated " 1710 "space bitmap for metadata partition\n"); 1711 return EROFS; 1712 } 1713 1714 1715 int 1716 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1717 { 1718 struct udf_node *bitmap_node; 1719 union dscrptr *dscr; 1720 uint64_t inflen, new_inflen; 1721 int dummy, error; 1722 1723 bitmap_node = ump->metadatabitmap_node; 1724 1725 /* only write out when metadata bitmap node is known */ 1726 if (bitmap_node == NULL) 1727 return 0; 1728 1729 if (bitmap_node->fe) { 1730 inflen = udf_rw64(bitmap_node->fe->inf_len); 1731 } else { 1732 KASSERT(bitmap_node->efe); 1733 inflen = udf_rw64(bitmap_node->efe->inf_len); 1734 } 1735 1736 /* reduce length to zero */ 1737 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1738 new_inflen = udf_tagsize(dscr, 1); 1739 1740 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from " 1741 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen)); 1742 1743 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1744 if (error) 1745 printf("Error resizing metadata space bitmap\n"); 1746 1747 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1748 dscr, 1749 new_inflen, 0, 1750 UIO_SYSSPACE, 1751 IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED, 1752 NULL, NULL); 1753 1754 bitmap_node->i_flags |= IN_MODIFIED; 1755 vflushbuf(bitmap_node->vnode, 1 /* sync */); 1756 1757 error = VOP_FSYNC(bitmap_node->vnode, 1758 FSCRED, FSYNC_WAIT, 0, 0); 1759 1760 if (error) 1761 printf( "Error writing out metadata partition unalloced " 1762 "space bitmap!\n"); 1763 1764 return error; 1765 } 1766 1767 1768 /* --------------------------------------------------------------------- */ 1769 1770 /* 1771 * Checks if ump's vds information is correct and complete 1772 */ 1773 1774 int 1775 udf_process_vds(struct udf_mount *ump) { 1776 union udf_pmap *mapping; 1777 /* struct udf_args *args = &ump->mount_args; */ 1778 struct logvol_int_desc *lvint; 1779 struct udf_logvol_info *lvinfo; 1780 struct part_desc *part; 1781 uint32_t n_pm, mt_l; 1782 uint8_t *pmap_pos; 1783 char *domain_name, *map_name; 1784 const char *check_name; 1785 char bits[128]; 1786 int pmap_stype, pmap_size; 1787 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1788 int n_phys, n_virt, n_spar, n_meta; 1789 int len, error; 1790 1791 if (ump == NULL) 1792 return ENOENT; 1793 1794 /* we need at least an anchor (trivial, but for safety) */ 1795 if (ump->anchors[0] == NULL) 1796 return EINVAL; 1797 1798 /* we need at least one primary and one logical volume descriptor */ 1799 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1800 return EINVAL; 1801 1802 /* we need at least one partition descriptor */ 1803 if (ump->partitions[0] == NULL) 1804 return EINVAL; 1805 1806 /* check logical volume sector size verses device sector size */ 1807 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1808 printf("UDF mount: format violation, lb_size != sector size\n"); 1809 return EINVAL; 1810 } 1811 1812 /* check domain name */ 1813 domain_name = ump->logical_vol->domain_id.id; 1814 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1815 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1816 return EINVAL; 1817 } 1818 1819 /* retrieve logical volume integrity sequence */ 1820 error = udf_retrieve_lvint(ump); 1821 1822 /* 1823 * We need at least one logvol integrity descriptor recorded. Note 1824 * that its OK to have an open logical volume integrity here. The VAT 1825 * will close/update the integrity. 1826 */ 1827 if (ump->logvol_integrity == NULL) 1828 return EINVAL; 1829 1830 /* process derived structures */ 1831 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1832 lvint = ump->logvol_integrity; 1833 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1834 ump->logvol_info = lvinfo; 1835 1836 /* TODO check udf versions? */ 1837 1838 /* 1839 * check logvol mappings: effective virt->log partmap translation 1840 * check and recording of the mapping results. Saves expensive 1841 * strncmp() in tight places. 1842 */ 1843 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1844 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1845 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 1846 pmap_pos = ump->logical_vol->maps; 1847 1848 if (n_pm > UDF_PMAPS) { 1849 printf("UDF mount: too many mappings\n"); 1850 return EINVAL; 1851 } 1852 1853 /* count types and set partition numbers */ 1854 ump->data_part = ump->node_part = ump->fids_part = 0; 1855 n_phys = n_virt = n_spar = n_meta = 0; 1856 for (log_part = 0; log_part < n_pm; log_part++) { 1857 mapping = (union udf_pmap *) pmap_pos; 1858 pmap_stype = pmap_pos[0]; 1859 pmap_size = pmap_pos[1]; 1860 switch (pmap_stype) { 1861 case 1: /* physical mapping */ 1862 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1863 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1864 pmap_type = UDF_VTOP_TYPE_PHYS; 1865 n_phys++; 1866 ump->data_part = log_part; 1867 ump->node_part = log_part; 1868 ump->fids_part = log_part; 1869 break; 1870 case 2: /* virtual/sparable/meta mapping */ 1871 map_name = mapping->pm2.part_id.id; 1872 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1873 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1874 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1875 len = UDF_REGID_ID_SIZE; 1876 1877 check_name = "*UDF Virtual Partition"; 1878 if (strncmp(map_name, check_name, len) == 0) { 1879 pmap_type = UDF_VTOP_TYPE_VIRT; 1880 n_virt++; 1881 ump->node_part = log_part; 1882 break; 1883 } 1884 check_name = "*UDF Sparable Partition"; 1885 if (strncmp(map_name, check_name, len) == 0) { 1886 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1887 n_spar++; 1888 ump->data_part = log_part; 1889 ump->node_part = log_part; 1890 ump->fids_part = log_part; 1891 break; 1892 } 1893 check_name = "*UDF Metadata Partition"; 1894 if (strncmp(map_name, check_name, len) == 0) { 1895 pmap_type = UDF_VTOP_TYPE_META; 1896 n_meta++; 1897 ump->node_part = log_part; 1898 ump->fids_part = log_part; 1899 break; 1900 } 1901 break; 1902 default: 1903 return EINVAL; 1904 } 1905 1906 /* 1907 * BUGALERT: some rogue implementations use random physical 1908 * partion numbers to break other implementations so lookup 1909 * the number. 1910 */ 1911 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1912 part = ump->partitions[phys_part]; 1913 if (part == NULL) 1914 continue; 1915 if (udf_rw16(part->part_num) == raw_phys_part) 1916 break; 1917 } 1918 1919 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1920 raw_phys_part, phys_part, pmap_type)); 1921 1922 if (phys_part == UDF_PARTITIONS) 1923 return EINVAL; 1924 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1925 return EINVAL; 1926 1927 ump->vtop [log_part] = phys_part; 1928 ump->vtop_tp[log_part] = pmap_type; 1929 1930 pmap_pos += pmap_size; 1931 } 1932 /* not winning the beauty contest */ 1933 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1934 1935 /* test some basic UDF assertions/requirements */ 1936 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 1937 return EINVAL; 1938 1939 if (n_virt) { 1940 if ((n_phys == 0) || n_spar || n_meta) 1941 return EINVAL; 1942 } 1943 if (n_spar + n_phys == 0) 1944 return EINVAL; 1945 1946 /* select allocation type for each logical partition */ 1947 for (log_part = 0; log_part < n_pm; log_part++) { 1948 maps_on = ump->vtop[log_part]; 1949 switch (ump->vtop_tp[log_part]) { 1950 case UDF_VTOP_TYPE_PHYS : 1951 assert(maps_on == log_part); 1952 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 1953 break; 1954 case UDF_VTOP_TYPE_VIRT : 1955 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 1956 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 1957 break; 1958 case UDF_VTOP_TYPE_SPARABLE : 1959 assert(maps_on == log_part); 1960 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 1961 break; 1962 case UDF_VTOP_TYPE_META : 1963 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 1964 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 1965 /* special case for UDF 2.60 */ 1966 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 1967 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 1968 } 1969 break; 1970 default: 1971 panic("bad alloction type in udf's ump->vtop\n"); 1972 } 1973 } 1974 1975 /* determine logical volume open/closure actions */ 1976 if (n_virt) { 1977 ump->lvopen = 0; 1978 if (ump->discinfo.last_session_state == MMC_STATE_CLOSED) 1979 ump->lvopen |= UDF_OPEN_SESSION ; 1980 ump->lvclose = UDF_WRITE_VAT; 1981 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 1982 ump->lvclose |= UDF_CLOSE_SESSION; 1983 } else { 1984 /* `normal' rewritable or non sequential media */ 1985 ump->lvopen = UDF_WRITE_LVINT; 1986 ump->lvclose = UDF_WRITE_LVINT; 1987 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 1988 ump->lvopen |= UDF_APPENDONLY_LVINT; 1989 } 1990 1991 /* 1992 * Determine sheduler error behaviour. For virtual partions, update 1993 * the trackinfo; for sparable partitions replace a whole block on the 1994 * sparable table. Allways requeue. 1995 */ 1996 ump->lvreadwrite = 0; 1997 if (n_virt) 1998 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 1999 if (n_spar) 2000 ump->lvreadwrite = UDF_REMAP_BLOCK; 2001 2002 /* 2003 * Select our sheduler 2004 */ 2005 ump->strategy = &udf_strat_rmw; 2006 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2007 ump->strategy = &udf_strat_sequential; 2008 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2009 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2010 ump->strategy = &udf_strat_direct; 2011 if (n_spar) 2012 ump->strategy = &udf_strat_rmw; 2013 2014 #if 0 2015 /* read-only access won't benefit from the other shedulers */ 2016 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2017 ump->strategy = &udf_strat_direct; 2018 #endif 2019 2020 /* print results */ 2021 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2022 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2023 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2024 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2025 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2026 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2027 2028 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2029 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2030 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2031 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2032 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2033 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2034 2035 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2036 (ump->strategy == &udf_strat_direct) ? "Direct" : 2037 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2038 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2039 2040 /* signal its OK for now */ 2041 return 0; 2042 } 2043 2044 /* --------------------------------------------------------------------- */ 2045 2046 /* 2047 * Update logical volume name in all structures that keep a record of it. We 2048 * use memmove since each of them might be specified as a source. 2049 * 2050 * Note that it doesn't update the VAT structure! 2051 */ 2052 2053 static void 2054 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2055 { 2056 struct logvol_desc *lvd = NULL; 2057 struct fileset_desc *fsd = NULL; 2058 struct udf_lv_info *lvi = NULL; 2059 2060 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2061 lvd = ump->logical_vol; 2062 fsd = ump->fileset_desc; 2063 if (ump->implementation) 2064 lvi = &ump->implementation->_impl_use.lv_info; 2065 2066 /* logvol's id might be specified as origional so use memmove here */ 2067 memmove(lvd->logvol_id, logvol_id, 128); 2068 if (fsd) 2069 memmove(fsd->logvol_id, logvol_id, 128); 2070 if (lvi) 2071 memmove(lvi->logvol_id, logvol_id, 128); 2072 } 2073 2074 /* --------------------------------------------------------------------- */ 2075 2076 void 2077 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2078 uint32_t sector) 2079 { 2080 assert(ump->logical_vol); 2081 2082 tag->id = udf_rw16(tagid); 2083 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2084 tag->cksum = 0; 2085 tag->reserved = 0; 2086 tag->serial_num = ump->logical_vol->tag.serial_num; 2087 tag->tag_loc = udf_rw32(sector); 2088 } 2089 2090 2091 uint64_t 2092 udf_advance_uniqueid(struct udf_mount *ump) 2093 { 2094 uint64_t unique_id; 2095 2096 mutex_enter(&ump->logvol_mutex); 2097 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2098 if (unique_id < 0x10) 2099 unique_id = 0x10; 2100 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2101 mutex_exit(&ump->logvol_mutex); 2102 2103 return unique_id; 2104 } 2105 2106 2107 static void 2108 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2109 { 2110 struct udf_mount *ump = udf_node->ump; 2111 uint32_t num_dirs, num_files; 2112 int udf_file_type; 2113 2114 /* get file type */ 2115 if (udf_node->fe) { 2116 udf_file_type = udf_node->fe->icbtag.file_type; 2117 } else { 2118 udf_file_type = udf_node->efe->icbtag.file_type; 2119 } 2120 2121 /* adjust file count */ 2122 mutex_enter(&ump->allocate_mutex); 2123 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2124 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2125 ump->logvol_info->num_directories = 2126 udf_rw32((num_dirs + sign)); 2127 } else { 2128 num_files = udf_rw32(ump->logvol_info->num_files); 2129 ump->logvol_info->num_files = 2130 udf_rw32((num_files + sign)); 2131 } 2132 mutex_exit(&ump->allocate_mutex); 2133 } 2134 2135 2136 void 2137 udf_osta_charset(struct charspec *charspec) 2138 { 2139 bzero(charspec, sizeof(struct charspec)); 2140 charspec->type = 0; 2141 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2142 } 2143 2144 2145 /* first call udf_set_regid and then the suffix */ 2146 void 2147 udf_set_regid(struct regid *regid, char const *name) 2148 { 2149 bzero(regid, sizeof(struct regid)); 2150 regid->flags = 0; /* not dirty and not protected */ 2151 strcpy((char *) regid->id, name); 2152 } 2153 2154 2155 void 2156 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2157 { 2158 uint16_t *ver; 2159 2160 ver = (uint16_t *) regid->id_suffix; 2161 *ver = ump->logvol_info->min_udf_readver; 2162 } 2163 2164 2165 void 2166 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2167 { 2168 uint16_t *ver; 2169 2170 ver = (uint16_t *) regid->id_suffix; 2171 *ver = ump->logvol_info->min_udf_readver; 2172 2173 regid->id_suffix[2] = 4; /* unix */ 2174 regid->id_suffix[3] = 8; /* NetBSD */ 2175 } 2176 2177 2178 void 2179 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2180 { 2181 regid->id_suffix[0] = 4; /* unix */ 2182 regid->id_suffix[1] = 8; /* NetBSD */ 2183 } 2184 2185 2186 void 2187 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2188 { 2189 regid->id_suffix[0] = APP_VERSION_MAIN; 2190 regid->id_suffix[1] = APP_VERSION_SUB; 2191 } 2192 2193 static int 2194 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2195 struct long_ad *parent, uint64_t unique_id) 2196 { 2197 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2198 int fidsize = 40; 2199 2200 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2201 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2202 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2203 fid->icb = *parent; 2204 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2205 fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH; 2206 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2207 2208 return fidsize; 2209 } 2210 2211 /* --------------------------------------------------------------------- */ 2212 2213 /* 2214 * Extended attribute support. UDF knows of 3 places for extended attributes: 2215 * 2216 * (a) inside the file's (e)fe in the length of the extended attribute area 2217 * before the allocation descriptors/filedata 2218 * 2219 * (b) in a file referenced by (e)fe->ext_attr_icb and 2220 * 2221 * (c) in the e(fe)'s associated stream directory that can hold various 2222 * sub-files. In the stream directory a few fixed named subfiles are reserved 2223 * for NT/Unix ACL's and OS/2 attributes. 2224 * 2225 * NOTE: Extended attributes are read randomly but allways written 2226 * *atomicaly*. For ACL's this interface is propably different but not known 2227 * to me yet. 2228 * 2229 * Order of extended attributes in a space : 2230 * ECMA 167 EAs 2231 * Non block aligned Implementation Use EAs 2232 * Block aligned Implementation Use EAs 2233 * Application Use EAs 2234 */ 2235 2236 static int 2237 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2238 { 2239 uint16_t *spos; 2240 2241 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2242 /* checksum valid? */ 2243 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2244 spos = (uint16_t *) implext->data; 2245 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2246 return EINVAL; 2247 } 2248 return 0; 2249 } 2250 2251 static void 2252 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2253 { 2254 uint16_t *spos; 2255 2256 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2257 /* set checksum */ 2258 spos = (uint16_t *) implext->data; 2259 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2260 } 2261 } 2262 2263 2264 int 2265 udf_extattr_search_intern(struct udf_node *node, 2266 uint32_t sattr, char const *sattrname, 2267 uint32_t *offsetp, uint32_t *lengthp) 2268 { 2269 struct extattrhdr_desc *eahdr; 2270 struct extattr_entry *attrhdr; 2271 struct impl_extattr_entry *implext; 2272 uint32_t offset, a_l, sector_size; 2273 int32_t l_ea; 2274 uint8_t *pos; 2275 int error; 2276 2277 /* get mountpoint */ 2278 sector_size = node->ump->discinfo.sector_size; 2279 2280 /* get information from fe/efe */ 2281 if (node->fe) { 2282 l_ea = udf_rw32(node->fe->l_ea); 2283 eahdr = (struct extattrhdr_desc *) node->fe->data; 2284 } else { 2285 assert(node->efe); 2286 l_ea = udf_rw32(node->efe->l_ea); 2287 eahdr = (struct extattrhdr_desc *) node->efe->data; 2288 } 2289 2290 /* something recorded here? */ 2291 if (l_ea == 0) 2292 return ENOENT; 2293 2294 /* check extended attribute tag; what to do if it fails? */ 2295 error = udf_check_tag(eahdr); 2296 if (error) 2297 return EINVAL; 2298 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2299 return EINVAL; 2300 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2301 if (error) 2302 return EINVAL; 2303 2304 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2305 2306 /* looking for Ecma-167 attributes? */ 2307 offset = sizeof(struct extattrhdr_desc); 2308 2309 /* looking for either implemenation use or application use */ 2310 if (sattr == 2048) { /* [4/48.10.8] */ 2311 offset = udf_rw32(eahdr->impl_attr_loc); 2312 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2313 return ENOENT; 2314 } 2315 if (sattr == 65536) { /* [4/48.10.9] */ 2316 offset = udf_rw32(eahdr->appl_attr_loc); 2317 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2318 return ENOENT; 2319 } 2320 2321 /* paranoia check offset and l_ea */ 2322 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2323 return EINVAL; 2324 2325 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2326 2327 /* find our extended attribute */ 2328 l_ea -= offset; 2329 pos = (uint8_t *) eahdr + offset; 2330 2331 while (l_ea >= sizeof(struct extattr_entry)) { 2332 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2333 attrhdr = (struct extattr_entry *) pos; 2334 implext = (struct impl_extattr_entry *) pos; 2335 2336 /* get complete attribute length and check for roque values */ 2337 a_l = udf_rw32(attrhdr->a_l); 2338 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2339 udf_rw32(attrhdr->type), 2340 attrhdr->subtype, a_l, l_ea)); 2341 if ((a_l == 0) || (a_l > l_ea)) 2342 return EINVAL; 2343 2344 if (attrhdr->type != sattr) 2345 goto next_attribute; 2346 2347 /* we might have found it! */ 2348 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2349 *offsetp = offset; 2350 *lengthp = a_l; 2351 return 0; /* success */ 2352 } 2353 2354 /* 2355 * Implementation use and application use extended attributes 2356 * have a name to identify. They share the same structure only 2357 * UDF implementation use extended attributes have a checksum 2358 * we need to check 2359 */ 2360 2361 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2362 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2363 /* we have found our appl/implementation attribute */ 2364 *offsetp = offset; 2365 *lengthp = a_l; 2366 return 0; /* success */ 2367 } 2368 2369 next_attribute: 2370 /* next attribute */ 2371 pos += a_l; 2372 l_ea -= a_l; 2373 offset += a_l; 2374 } 2375 /* not found */ 2376 return ENOENT; 2377 } 2378 2379 2380 static void 2381 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2382 struct extattr_entry *extattr) 2383 { 2384 struct file_entry *fe; 2385 struct extfile_entry *efe; 2386 struct extattrhdr_desc *extattrhdr; 2387 struct impl_extattr_entry *implext; 2388 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2389 uint32_t *l_eap, l_ad; 2390 uint16_t *spos; 2391 uint8_t *bpos, *data; 2392 2393 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2394 fe = &dscr->fe; 2395 data = fe->data; 2396 l_eap = &fe->l_ea; 2397 l_ad = udf_rw32(fe->l_ad); 2398 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2399 efe = &dscr->efe; 2400 data = efe->data; 2401 l_eap = &efe->l_ea; 2402 l_ad = udf_rw32(efe->l_ad); 2403 } else { 2404 panic("Bad tag passed to udf_extattr_insert_internal"); 2405 } 2406 2407 /* can't append already written to file descriptors yet */ 2408 assert(l_ad == 0); 2409 2410 /* should have a header! */ 2411 extattrhdr = (struct extattrhdr_desc *) data; 2412 l_ea = udf_rw32(*l_eap); 2413 if (l_ea == 0) { 2414 /* create empty extended attribute header */ 2415 exthdr_len = sizeof(struct extattrhdr_desc); 2416 2417 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2418 /* loc */ 0); 2419 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2420 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2421 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2422 2423 /* record extended attribute header length */ 2424 l_ea = exthdr_len; 2425 *l_eap = udf_rw32(l_ea); 2426 } 2427 2428 /* extract locations */ 2429 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2430 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2431 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2432 impl_attr_loc = l_ea; 2433 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2434 appl_attr_loc = l_ea; 2435 2436 /* Ecma 167 EAs */ 2437 if (udf_rw32(extattr->type) < 2048) { 2438 assert(impl_attr_loc == l_ea); 2439 assert(appl_attr_loc == l_ea); 2440 } 2441 2442 /* implementation use extended attributes */ 2443 if (udf_rw32(extattr->type) == 2048) { 2444 assert(appl_attr_loc == l_ea); 2445 2446 /* calculate and write extended attribute header checksum */ 2447 implext = (struct impl_extattr_entry *) extattr; 2448 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2449 spos = (uint16_t *) implext->data; 2450 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2451 } 2452 2453 /* application use extended attributes */ 2454 assert(udf_rw32(extattr->type) != 65536); 2455 assert(appl_attr_loc == l_ea); 2456 2457 /* append the attribute at the end of the current space */ 2458 bpos = data + udf_rw32(*l_eap); 2459 a_l = udf_rw32(extattr->a_l); 2460 2461 /* update impl. attribute locations */ 2462 if (udf_rw32(extattr->type) < 2048) { 2463 impl_attr_loc = l_ea + a_l; 2464 appl_attr_loc = l_ea + a_l; 2465 } 2466 if (udf_rw32(extattr->type) == 2048) { 2467 appl_attr_loc = l_ea + a_l; 2468 } 2469 2470 /* copy and advance */ 2471 memcpy(bpos, extattr, a_l); 2472 l_ea += a_l; 2473 *l_eap = udf_rw32(l_ea); 2474 2475 /* do the `dance` again backwards */ 2476 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2477 if (impl_attr_loc == l_ea) 2478 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2479 if (appl_attr_loc == l_ea) 2480 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2481 } 2482 2483 /* store offsets */ 2484 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2485 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2486 } 2487 2488 2489 /* --------------------------------------------------------------------- */ 2490 2491 static int 2492 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2493 { 2494 struct udf_mount *ump; 2495 struct udf_logvol_info *lvinfo; 2496 struct impl_extattr_entry *implext; 2497 struct vatlvext_extattr_entry lvext; 2498 const char *extstr = "*UDF VAT LVExtension"; 2499 uint64_t vat_uniqueid; 2500 uint32_t offset, a_l; 2501 uint8_t *ea_start, *lvextpos; 2502 int error; 2503 2504 /* get mountpoint and lvinfo */ 2505 ump = vat_node->ump; 2506 lvinfo = ump->logvol_info; 2507 2508 /* get information from fe/efe */ 2509 if (vat_node->fe) { 2510 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2511 ea_start = vat_node->fe->data; 2512 } else { 2513 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2514 ea_start = vat_node->efe->data; 2515 } 2516 2517 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2518 if (error) 2519 return error; 2520 2521 implext = (struct impl_extattr_entry *) (ea_start + offset); 2522 error = udf_impl_extattr_check(implext); 2523 if (error) 2524 return error; 2525 2526 /* paranoia */ 2527 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2528 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2529 return EINVAL; 2530 } 2531 2532 /* 2533 * we have found our "VAT LVExtension attribute. BUT due to a 2534 * bug in the specification it might not be word aligned so 2535 * copy first to avoid panics on some machines (!!) 2536 */ 2537 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2538 lvextpos = implext->data + udf_rw32(implext->iu_l); 2539 memcpy(&lvext, lvextpos, sizeof(lvext)); 2540 2541 /* check if it was updated the last time */ 2542 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2543 lvinfo->num_files = lvext.num_files; 2544 lvinfo->num_directories = lvext.num_directories; 2545 udf_update_logvolname(ump, lvext.logvol_id); 2546 } else { 2547 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2548 /* replace VAT LVExt by free space EA */ 2549 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2550 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2551 udf_calc_impl_extattr_checksum(implext); 2552 } 2553 2554 return 0; 2555 } 2556 2557 2558 static int 2559 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2560 { 2561 struct udf_mount *ump; 2562 struct udf_logvol_info *lvinfo; 2563 struct impl_extattr_entry *implext; 2564 struct vatlvext_extattr_entry lvext; 2565 const char *extstr = "*UDF VAT LVExtension"; 2566 uint64_t vat_uniqueid; 2567 uint32_t offset, a_l; 2568 uint8_t *ea_start, *lvextpos; 2569 int error; 2570 2571 /* get mountpoint and lvinfo */ 2572 ump = vat_node->ump; 2573 lvinfo = ump->logvol_info; 2574 2575 /* get information from fe/efe */ 2576 if (vat_node->fe) { 2577 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2578 ea_start = vat_node->fe->data; 2579 } else { 2580 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2581 ea_start = vat_node->efe->data; 2582 } 2583 2584 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2585 if (error) 2586 return error; 2587 /* found, it existed */ 2588 2589 /* paranoia */ 2590 implext = (struct impl_extattr_entry *) (ea_start + offset); 2591 error = udf_impl_extattr_check(implext); 2592 if (error) { 2593 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2594 return error; 2595 } 2596 /* it is correct */ 2597 2598 /* 2599 * we have found our "VAT LVExtension attribute. BUT due to a 2600 * bug in the specification it might not be word aligned so 2601 * copy first to avoid panics on some machines (!!) 2602 */ 2603 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2604 lvextpos = implext->data + udf_rw32(implext->iu_l); 2605 2606 lvext.unique_id_chk = vat_uniqueid; 2607 lvext.num_files = lvinfo->num_files; 2608 lvext.num_directories = lvinfo->num_directories; 2609 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2610 2611 memcpy(lvextpos, &lvext, sizeof(lvext)); 2612 2613 return 0; 2614 } 2615 2616 /* --------------------------------------------------------------------- */ 2617 2618 int 2619 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2620 { 2621 struct udf_mount *ump = vat_node->ump; 2622 2623 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2624 return EINVAL; 2625 2626 memcpy(blob, ump->vat_table + offset, size); 2627 return 0; 2628 } 2629 2630 int 2631 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2632 { 2633 struct udf_mount *ump = vat_node->ump; 2634 uint32_t offset_high; 2635 uint8_t *new_vat_table; 2636 2637 /* extent VAT allocation if needed */ 2638 offset_high = offset + size; 2639 if (offset_high >= ump->vat_table_alloc_len) { 2640 /* realloc */ 2641 new_vat_table = realloc(ump->vat_table, 2642 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2643 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2644 if (!new_vat_table) { 2645 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2646 return ENOMEM; 2647 } 2648 ump->vat_table = new_vat_table; 2649 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2650 } 2651 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2652 2653 memcpy(ump->vat_table + offset, blob, size); 2654 return 0; 2655 } 2656 2657 /* --------------------------------------------------------------------- */ 2658 2659 /* TODO support previous VAT location writeout */ 2660 static int 2661 udf_update_vat_descriptor(struct udf_mount *ump) 2662 { 2663 struct udf_node *vat_node = ump->vat_node; 2664 struct udf_logvol_info *lvinfo = ump->logvol_info; 2665 struct icb_tag *icbtag; 2666 struct udf_oldvat_tail *oldvat_tl; 2667 struct udf_vat *vat; 2668 uint64_t unique_id; 2669 uint32_t lb_size; 2670 uint8_t *raw_vat; 2671 int filetype, error; 2672 2673 KASSERT(vat_node); 2674 KASSERT(lvinfo); 2675 lb_size = udf_rw32(ump->logical_vol->lb_size); 2676 2677 /* get our new unique_id */ 2678 unique_id = udf_advance_uniqueid(ump); 2679 2680 /* get information from fe/efe */ 2681 if (vat_node->fe) { 2682 icbtag = &vat_node->fe->icbtag; 2683 vat_node->fe->unique_id = udf_rw64(unique_id); 2684 } else { 2685 icbtag = &vat_node->efe->icbtag; 2686 vat_node->efe->unique_id = udf_rw64(unique_id); 2687 } 2688 2689 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2690 filetype = icbtag->file_type; 2691 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2692 2693 /* allocate piece to process head or tail of VAT file */ 2694 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2695 2696 if (filetype == 0) { 2697 /* 2698 * Update "*UDF VAT LVExtension" extended attribute from the 2699 * lvint if present. 2700 */ 2701 udf_update_vat_extattr_from_lvid(vat_node); 2702 2703 /* setup identifying regid */ 2704 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2705 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2706 2707 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2708 udf_add_udf_regid(ump, &oldvat_tl->id); 2709 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2710 2711 /* write out new tail of virtual allocation table file */ 2712 error = udf_vat_write(vat_node, raw_vat, 2713 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2714 } else { 2715 /* compose the VAT2 header */ 2716 vat = (struct udf_vat *) raw_vat; 2717 memset(vat, 0, sizeof(struct udf_vat)); 2718 2719 vat->header_len = udf_rw16(152); /* as per spec */ 2720 vat->impl_use_len = udf_rw16(0); 2721 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2722 vat->prev_vat = udf_rw32(0xffffffff); 2723 vat->num_files = lvinfo->num_files; 2724 vat->num_directories = lvinfo->num_directories; 2725 vat->min_udf_readver = lvinfo->min_udf_readver; 2726 vat->min_udf_writever = lvinfo->min_udf_writever; 2727 vat->max_udf_writever = lvinfo->max_udf_writever; 2728 2729 error = udf_vat_write(vat_node, raw_vat, 2730 sizeof(struct udf_vat), 0); 2731 } 2732 free(raw_vat, M_TEMP); 2733 2734 return error; /* success! */ 2735 } 2736 2737 2738 int 2739 udf_writeout_vat(struct udf_mount *ump) 2740 { 2741 struct udf_node *vat_node = ump->vat_node; 2742 uint32_t vat_length; 2743 int error; 2744 2745 KASSERT(vat_node); 2746 2747 DPRINTF(CALL, ("udf_writeout_vat\n")); 2748 2749 mutex_enter(&ump->allocate_mutex); 2750 udf_update_vat_descriptor(ump); 2751 2752 /* write out the VAT contents ; TODO intelligent writing */ 2753 vat_length = ump->vat_table_len; 2754 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2755 ump->vat_table, ump->vat_table_len, 0, 2756 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL); 2757 if (error) { 2758 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2759 goto out; 2760 } 2761 2762 mutex_exit(&ump->allocate_mutex); 2763 2764 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 2765 error = VOP_FSYNC(ump->vat_node->vnode, 2766 FSCRED, FSYNC_WAIT, 0, 0); 2767 if (error) 2768 printf("udf_writeout_vat: error writing VAT node!\n"); 2769 out: 2770 2771 return error; 2772 } 2773 2774 /* --------------------------------------------------------------------- */ 2775 2776 /* 2777 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2778 * descriptor. If OK, read in complete VAT file. 2779 */ 2780 2781 static int 2782 udf_check_for_vat(struct udf_node *vat_node) 2783 { 2784 struct udf_mount *ump; 2785 struct icb_tag *icbtag; 2786 struct timestamp *mtime; 2787 struct udf_vat *vat; 2788 struct udf_oldvat_tail *oldvat_tl; 2789 struct udf_logvol_info *lvinfo; 2790 uint64_t unique_id; 2791 uint32_t vat_length; 2792 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2793 uint32_t sector_size; 2794 uint32_t *raw_vat; 2795 uint8_t *vat_table; 2796 char *regid_name; 2797 int filetype; 2798 int error; 2799 2800 /* vat_length is really 64 bits though impossible */ 2801 2802 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2803 if (!vat_node) 2804 return ENOENT; 2805 2806 /* get mount info */ 2807 ump = vat_node->ump; 2808 sector_size = udf_rw32(ump->logical_vol->lb_size); 2809 2810 /* check assertions */ 2811 assert(vat_node->fe || vat_node->efe); 2812 assert(ump->logvol_integrity); 2813 2814 /* set vnode type to regular file or we can't read from it! */ 2815 vat_node->vnode->v_type = VREG; 2816 2817 /* get information from fe/efe */ 2818 if (vat_node->fe) { 2819 vat_length = udf_rw64(vat_node->fe->inf_len); 2820 icbtag = &vat_node->fe->icbtag; 2821 mtime = &vat_node->fe->mtime; 2822 unique_id = udf_rw64(vat_node->fe->unique_id); 2823 } else { 2824 vat_length = udf_rw64(vat_node->efe->inf_len); 2825 icbtag = &vat_node->efe->icbtag; 2826 mtime = &vat_node->efe->mtime; 2827 unique_id = udf_rw64(vat_node->efe->unique_id); 2828 } 2829 2830 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2831 filetype = icbtag->file_type; 2832 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2833 return ENOENT; 2834 2835 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2836 2837 vat_table_alloc_len = 2838 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2839 * UDF_VAT_CHUNKSIZE; 2840 2841 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2842 M_CANFAIL | M_WAITOK); 2843 if (vat_table == NULL) { 2844 printf("allocation of %d bytes failed for VAT\n", 2845 vat_table_alloc_len); 2846 return ENOMEM; 2847 } 2848 2849 /* allocate piece to read in head or tail of VAT file */ 2850 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2851 2852 /* 2853 * check contents of the file if its the old 1.50 VAT table format. 2854 * Its notoriously broken and allthough some implementations support an 2855 * extention as defined in the UDF 1.50 errata document, its doubtfull 2856 * to be useable since a lot of implementations don't maintain it. 2857 */ 2858 lvinfo = ump->logvol_info; 2859 2860 if (filetype == 0) { 2861 /* definition */ 2862 vat_offset = 0; 2863 vat_entries = (vat_length-36)/4; 2864 2865 /* read in tail of virtual allocation table file */ 2866 error = vn_rdwr(UIO_READ, vat_node->vnode, 2867 (uint8_t *) raw_vat, 2868 sizeof(struct udf_oldvat_tail), 2869 vat_entries * 4, 2870 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2871 NULL, NULL); 2872 if (error) 2873 goto out; 2874 2875 /* check 1.50 VAT */ 2876 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2877 regid_name = (char *) oldvat_tl->id.id; 2878 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2879 if (error) { 2880 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2881 error = ENOENT; 2882 goto out; 2883 } 2884 2885 /* 2886 * update LVID from "*UDF VAT LVExtension" extended attribute 2887 * if present. 2888 */ 2889 udf_update_lvid_from_vat_extattr(vat_node); 2890 } else { 2891 /* read in head of virtual allocation table file */ 2892 error = vn_rdwr(UIO_READ, vat_node->vnode, 2893 (uint8_t *) raw_vat, 2894 sizeof(struct udf_vat), 0, 2895 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2896 NULL, NULL); 2897 if (error) 2898 goto out; 2899 2900 /* definition */ 2901 vat = (struct udf_vat *) raw_vat; 2902 vat_offset = vat->header_len; 2903 vat_entries = (vat_length - vat_offset)/4; 2904 2905 assert(lvinfo); 2906 lvinfo->num_files = vat->num_files; 2907 lvinfo->num_directories = vat->num_directories; 2908 lvinfo->min_udf_readver = vat->min_udf_readver; 2909 lvinfo->min_udf_writever = vat->min_udf_writever; 2910 lvinfo->max_udf_writever = vat->max_udf_writever; 2911 2912 udf_update_logvolname(ump, vat->logvol_id); 2913 } 2914 2915 /* read in complete VAT file */ 2916 error = vn_rdwr(UIO_READ, vat_node->vnode, 2917 vat_table, 2918 vat_length, 0, 2919 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2920 NULL, NULL); 2921 if (error) 2922 printf("read in of complete VAT file failed (error %d)\n", 2923 error); 2924 if (error) 2925 goto out; 2926 2927 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2928 ump->logvol_integrity->lvint_next_unique_id = unique_id; 2929 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2930 ump->logvol_integrity->time = *mtime; 2931 2932 ump->vat_table_len = vat_length; 2933 ump->vat_table_alloc_len = vat_table_alloc_len; 2934 ump->vat_table = vat_table; 2935 ump->vat_offset = vat_offset; 2936 ump->vat_entries = vat_entries; 2937 ump->vat_last_free_lb = 0; /* start at beginning */ 2938 2939 out: 2940 if (error) { 2941 if (vat_table) 2942 free(vat_table, M_UDFVOLD); 2943 } 2944 free(raw_vat, M_TEMP); 2945 2946 return error; 2947 } 2948 2949 /* --------------------------------------------------------------------- */ 2950 2951 static int 2952 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 2953 { 2954 struct udf_node *vat_node; 2955 struct long_ad icb_loc; 2956 uint32_t early_vat_loc, late_vat_loc, vat_loc; 2957 int error; 2958 2959 /* mapping info not needed */ 2960 mapping = mapping; 2961 2962 vat_loc = ump->last_possible_vat_location; 2963 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 2964 2965 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 2966 vat_loc, early_vat_loc)); 2967 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 2968 late_vat_loc = vat_loc + 1024; 2969 2970 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 2971 vat_loc, early_vat_loc)); 2972 2973 /* start looking from the end of the range */ 2974 do { 2975 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 2976 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 2977 icb_loc.loc.lb_num = udf_rw32(vat_loc); 2978 2979 error = udf_get_node(ump, &icb_loc, &vat_node); 2980 if (!error) { 2981 error = udf_check_for_vat(vat_node); 2982 DPRINTFIF(VOLUMES, !error, 2983 ("VAT accepted at %d\n", vat_loc)); 2984 if (!error) 2985 break; 2986 } 2987 if (vat_node) { 2988 vput(vat_node->vnode); 2989 vat_node = NULL; 2990 } 2991 vat_loc--; /* walk backwards */ 2992 } while (vat_loc >= early_vat_loc); 2993 2994 /* keep our VAT node around */ 2995 if (vat_node) { 2996 UDF_SET_SYSTEMFILE(vat_node->vnode); 2997 ump->vat_node = vat_node; 2998 } 2999 3000 return error; 3001 } 3002 3003 /* --------------------------------------------------------------------- */ 3004 3005 static int 3006 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3007 { 3008 union dscrptr *dscr; 3009 struct part_map_spare *pms = &mapping->pms; 3010 uint32_t lb_num; 3011 int spar, error; 3012 3013 /* 3014 * The partition mapping passed on to us specifies the information we 3015 * need to locate and initialise the sparable partition mapping 3016 * information we need. 3017 */ 3018 3019 DPRINTF(VOLUMES, ("Read sparable table\n")); 3020 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3021 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3022 3023 for (spar = 0; spar < pms->n_st; spar++) { 3024 lb_num = pms->st_loc[spar]; 3025 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3026 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3027 if (!error && dscr) { 3028 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3029 if (ump->sparing_table) 3030 free(ump->sparing_table, M_UDFVOLD); 3031 ump->sparing_table = &dscr->spt; 3032 dscr = NULL; 3033 DPRINTF(VOLUMES, 3034 ("Sparing table accepted (%d entries)\n", 3035 udf_rw16(ump->sparing_table->rt_l))); 3036 break; /* we're done */ 3037 } 3038 } 3039 if (dscr) 3040 free(dscr, M_UDFVOLD); 3041 } 3042 3043 if (ump->sparing_table) 3044 return 0; 3045 3046 return ENOENT; 3047 } 3048 3049 /* --------------------------------------------------------------------- */ 3050 3051 static int 3052 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3053 { 3054 struct part_map_meta *pmm = &mapping->pmm; 3055 struct long_ad icb_loc; 3056 struct vnode *vp; 3057 int error; 3058 3059 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3060 icb_loc.loc.part_num = pmm->part_num; 3061 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3062 DPRINTF(VOLUMES, ("Metadata file\n")); 3063 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3064 if (ump->metadata_node) { 3065 vp = ump->metadata_node->vnode; 3066 UDF_SET_SYSTEMFILE(vp); 3067 } 3068 3069 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3070 if (icb_loc.loc.lb_num != -1) { 3071 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3072 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3073 if (ump->metadatamirror_node) { 3074 vp = ump->metadatamirror_node->vnode; 3075 UDF_SET_SYSTEMFILE(vp); 3076 } 3077 } 3078 3079 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3080 if (icb_loc.loc.lb_num != -1) { 3081 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3082 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3083 if (ump->metadatabitmap_node) { 3084 vp = ump->metadatabitmap_node->vnode; 3085 UDF_SET_SYSTEMFILE(vp); 3086 } 3087 } 3088 3089 /* if we're mounting read-only we relax the requirements */ 3090 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3091 error = EFAULT; 3092 if (ump->metadata_node) 3093 error = 0; 3094 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3095 printf( "udf mount: Metadata file not readable, " 3096 "substituting Metadata copy file\n"); 3097 ump->metadata_node = ump->metadatamirror_node; 3098 ump->metadatamirror_node = NULL; 3099 error = 0; 3100 } 3101 } else { 3102 /* mounting read/write */ 3103 /* XXX DISABLED! metadata writing is not working yet XXX */ 3104 if (error) 3105 error = EROFS; 3106 } 3107 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3108 "metadata files\n")); 3109 return error; 3110 } 3111 3112 /* --------------------------------------------------------------------- */ 3113 3114 int 3115 udf_read_vds_tables(struct udf_mount *ump) 3116 { 3117 union udf_pmap *mapping; 3118 /* struct udf_args *args = &ump->mount_args; */ 3119 uint32_t n_pm, mt_l; 3120 uint32_t log_part; 3121 uint8_t *pmap_pos; 3122 int pmap_size; 3123 int error; 3124 3125 /* Iterate (again) over the part mappings for locations */ 3126 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3127 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 3128 pmap_pos = ump->logical_vol->maps; 3129 3130 for (log_part = 0; log_part < n_pm; log_part++) { 3131 mapping = (union udf_pmap *) pmap_pos; 3132 switch (ump->vtop_tp[log_part]) { 3133 case UDF_VTOP_TYPE_PHYS : 3134 /* nothing */ 3135 break; 3136 case UDF_VTOP_TYPE_VIRT : 3137 /* search and load VAT */ 3138 error = udf_search_vat(ump, mapping); 3139 if (error) 3140 return ENOENT; 3141 break; 3142 case UDF_VTOP_TYPE_SPARABLE : 3143 /* load one of the sparable tables */ 3144 error = udf_read_sparables(ump, mapping); 3145 if (error) 3146 return ENOENT; 3147 break; 3148 case UDF_VTOP_TYPE_META : 3149 /* load the associated file descriptors */ 3150 error = udf_read_metadata_nodes(ump, mapping); 3151 if (error) 3152 return ENOENT; 3153 break; 3154 default: 3155 break; 3156 } 3157 pmap_size = pmap_pos[1]; 3158 pmap_pos += pmap_size; 3159 } 3160 3161 /* read in and check unallocated and free space info if writing */ 3162 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3163 error = udf_read_physical_partition_spacetables(ump); 3164 if (error) 3165 return error; 3166 3167 /* also read in metadata partion spacebitmap if defined */ 3168 error = udf_read_metadata_partition_spacetable(ump); 3169 return error; 3170 } 3171 3172 return 0; 3173 } 3174 3175 /* --------------------------------------------------------------------- */ 3176 3177 int 3178 udf_read_rootdirs(struct udf_mount *ump) 3179 { 3180 union dscrptr *dscr; 3181 /* struct udf_args *args = &ump->mount_args; */ 3182 struct udf_node *rootdir_node, *streamdir_node; 3183 struct long_ad fsd_loc, *dir_loc; 3184 uint32_t lb_num, dummy; 3185 uint32_t fsd_len; 3186 int dscr_type; 3187 int error; 3188 3189 /* TODO implement FSD reading in separate function like integrity? */ 3190 /* get fileset descriptor sequence */ 3191 fsd_loc = ump->logical_vol->lv_fsd_loc; 3192 fsd_len = udf_rw32(fsd_loc.len); 3193 3194 dscr = NULL; 3195 error = 0; 3196 while (fsd_len || error) { 3197 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3198 /* translate fsd_loc to lb_num */ 3199 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3200 if (error) 3201 break; 3202 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3203 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3204 /* end markers */ 3205 if (error || (dscr == NULL)) 3206 break; 3207 3208 /* analyse */ 3209 dscr_type = udf_rw16(dscr->tag.id); 3210 if (dscr_type == TAGID_TERM) 3211 break; 3212 if (dscr_type != TAGID_FSD) { 3213 free(dscr, M_UDFVOLD); 3214 return ENOENT; 3215 } 3216 3217 /* 3218 * TODO check for multiple fileset descriptors; its only 3219 * picking the last now. Also check for FSD 3220 * correctness/interpretability 3221 */ 3222 3223 /* update */ 3224 if (ump->fileset_desc) { 3225 free(ump->fileset_desc, M_UDFVOLD); 3226 } 3227 ump->fileset_desc = &dscr->fsd; 3228 dscr = NULL; 3229 3230 /* continue to the next fsd */ 3231 fsd_len -= ump->discinfo.sector_size; 3232 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3233 3234 /* follow up to fsd->next_ex (long_ad) if its not null */ 3235 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3236 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3237 fsd_loc = ump->fileset_desc->next_ex; 3238 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3239 } 3240 } 3241 if (dscr) 3242 free(dscr, M_UDFVOLD); 3243 3244 /* there has to be one */ 3245 if (ump->fileset_desc == NULL) 3246 return ENOENT; 3247 3248 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3249 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3250 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3251 3252 /* 3253 * Now the FSD is known, read in the rootdirectory and if one exists, 3254 * the system stream dir. Some files in the system streamdir are not 3255 * wanted in this implementation since they are not maintained. If 3256 * writing is enabled we'll delete these files if they exist. 3257 */ 3258 3259 rootdir_node = streamdir_node = NULL; 3260 dir_loc = NULL; 3261 3262 /* try to read in the rootdir */ 3263 dir_loc = &ump->fileset_desc->rootdir_icb; 3264 error = udf_get_node(ump, dir_loc, &rootdir_node); 3265 if (error) 3266 return ENOENT; 3267 3268 /* aparently it read in fine */ 3269 3270 /* 3271 * Try the system stream directory; not very likely in the ones we 3272 * test, but for completeness. 3273 */ 3274 dir_loc = &ump->fileset_desc->streamdir_icb; 3275 if (udf_rw32(dir_loc->len)) { 3276 printf("udf_read_rootdirs: streamdir defined "); 3277 error = udf_get_node(ump, dir_loc, &streamdir_node); 3278 if (error) { 3279 printf("but error in streamdir reading\n"); 3280 } else { 3281 printf("but ignored\n"); 3282 /* 3283 * TODO process streamdir `baddies' i.e. files we dont 3284 * want if R/W 3285 */ 3286 } 3287 } 3288 3289 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3290 3291 /* release the vnodes again; they'll be auto-recycled later */ 3292 if (streamdir_node) { 3293 vput(streamdir_node->vnode); 3294 } 3295 if (rootdir_node) { 3296 vput(rootdir_node->vnode); 3297 } 3298 3299 return 0; 3300 } 3301 3302 /* --------------------------------------------------------------------- */ 3303 3304 /* To make absolutely sure we are NOT returning zero, add one :) */ 3305 3306 long 3307 udf_calchash(struct long_ad *icbptr) 3308 { 3309 /* ought to be enough since each mountpoint has its own chain */ 3310 return udf_rw32(icbptr->loc.lb_num) + 1; 3311 } 3312 3313 3314 static struct udf_node * 3315 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr) 3316 { 3317 struct udf_node *node; 3318 struct vnode *vp; 3319 uint32_t hashline; 3320 3321 loop: 3322 mutex_enter(&ump->ihash_lock); 3323 3324 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK; 3325 LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) { 3326 assert(node); 3327 if (node->loc.loc.lb_num == icbptr->loc.lb_num && 3328 node->loc.loc.part_num == icbptr->loc.part_num) { 3329 vp = node->vnode; 3330 assert(vp); 3331 mutex_enter(&vp->v_interlock); 3332 mutex_exit(&ump->ihash_lock); 3333 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) 3334 goto loop; 3335 return node; 3336 } 3337 } 3338 mutex_exit(&ump->ihash_lock); 3339 3340 return NULL; 3341 } 3342 3343 3344 static void 3345 udf_sorted_list_insert(struct udf_node *node) 3346 { 3347 struct udf_mount *ump; 3348 struct udf_node *s_node, *last_node; 3349 uint32_t loc, s_loc; 3350 3351 ump = node->ump; 3352 last_node = NULL; /* XXX gcc */ 3353 3354 if (LIST_EMPTY(&ump->sorted_udf_nodes)) { 3355 LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain); 3356 return; 3357 } 3358 3359 /* 3360 * We sort on logical block number here and not on physical block 3361 * number here. Ideally we should go for the physical block nr to get 3362 * better sync performance though this sort will ensure that packets 3363 * won't get spit up unnessisarily. 3364 */ 3365 3366 loc = udf_rw32(node->loc.loc.lb_num); 3367 LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) { 3368 s_loc = udf_rw32(s_node->loc.loc.lb_num); 3369 if (s_loc > loc) { 3370 LIST_INSERT_BEFORE(s_node, node, sortchain); 3371 return; 3372 } 3373 last_node = s_node; 3374 } 3375 LIST_INSERT_AFTER(last_node, node, sortchain); 3376 } 3377 3378 3379 static void 3380 udf_register_node(struct udf_node *node) 3381 { 3382 struct udf_mount *ump; 3383 struct udf_node *chk; 3384 uint32_t hashline; 3385 3386 ump = node->ump; 3387 mutex_enter(&ump->ihash_lock); 3388 3389 /* add to our hash table */ 3390 hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK; 3391 #ifdef DEBUG 3392 LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) { 3393 assert(chk); 3394 if (chk->loc.loc.lb_num == node->loc.loc.lb_num && 3395 chk->loc.loc.part_num == node->loc.loc.part_num) 3396 panic("Double node entered\n"); 3397 } 3398 #else 3399 chk = NULL; 3400 #endif 3401 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain); 3402 3403 /* add to our sorted list */ 3404 udf_sorted_list_insert(node); 3405 3406 mutex_exit(&ump->ihash_lock); 3407 } 3408 3409 3410 static void 3411 udf_deregister_node(struct udf_node *node) 3412 { 3413 struct udf_mount *ump; 3414 3415 ump = node->ump; 3416 mutex_enter(&ump->ihash_lock); 3417 3418 /* from hash and sorted list */ 3419 LIST_REMOVE(node, hashchain); 3420 LIST_REMOVE(node, sortchain); 3421 3422 mutex_exit(&ump->ihash_lock); 3423 } 3424 3425 /* --------------------------------------------------------------------- */ 3426 3427 int 3428 udf_open_logvol(struct udf_mount *ump) 3429 { 3430 int logvol_integrity; 3431 int error; 3432 3433 /* already/still open? */ 3434 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3435 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3436 return 0; 3437 3438 /* can we open it ? */ 3439 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3440 return EROFS; 3441 3442 /* setup write parameters */ 3443 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3444 if ((error = udf_setup_writeparams(ump)) != 0) 3445 return error; 3446 3447 /* determine data and metadata tracks (most likely same) */ 3448 error = udf_search_writing_tracks(ump); 3449 if (error) { 3450 /* most likely lack of space */ 3451 printf("udf_open_logvol: error searching writing tracks\n"); 3452 return EROFS; 3453 } 3454 3455 /* writeout/update lvint on disc or only in memory */ 3456 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3457 if (ump->lvopen & UDF_OPEN_SESSION) { 3458 /* TODO implement writeout of VRS + VDS */ 3459 printf( "udf_open_logvol:Opening a closed session not yet " 3460 "implemented\n"); 3461 return EROFS; 3462 3463 /* determine data and metadata tracks again */ 3464 error = udf_search_writing_tracks(ump); 3465 } 3466 3467 /* mark it open */ 3468 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3469 3470 /* do we need to write it out? */ 3471 if (ump->lvopen & UDF_WRITE_LVINT) { 3472 error = udf_writeout_lvint(ump, ump->lvopen); 3473 /* if we couldn't write it mark it closed again */ 3474 if (error) { 3475 ump->logvol_integrity->integrity_type = 3476 udf_rw32(UDF_INTEGRITY_CLOSED); 3477 return error; 3478 } 3479 } 3480 3481 return 0; 3482 } 3483 3484 3485 int 3486 udf_close_logvol(struct udf_mount *ump, int mntflags) 3487 { 3488 int logvol_integrity; 3489 int error = 0, error1 = 0, error2 = 0; 3490 int n; 3491 3492 /* already/still closed? */ 3493 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3494 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3495 return 0; 3496 3497 /* writeout/update lvint or write out VAT */ 3498 DPRINTF(VOLUMES, ("Closing logical volume\n")); 3499 if (ump->lvclose & UDF_WRITE_VAT) { 3500 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3501 3502 /* write out the VAT node */ 3503 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3504 udf_writeout_vat(ump); 3505 3506 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 3507 for (n = 0; n < 16; n++) { 3508 ump->vat_node->i_flags |= IN_MODIFIED; 3509 error = VOP_FSYNC(ump->vat_node->vnode, 3510 FSCRED, FSYNC_WAIT, 0, 0); 3511 } 3512 if (error) { 3513 printf("udf_close_logvol: writeout of VAT failed\n"); 3514 return error; 3515 } 3516 } 3517 3518 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3519 /* sync writeout metadata spacetable if existing */ 3520 error1 = udf_write_metadata_partition_spacetable(ump, true); 3521 if (error1) 3522 printf( "udf_close_logvol: writeout of metadata space " 3523 "bitmap failed\n"); 3524 3525 /* sync writeout partition spacetables */ 3526 error2 = udf_write_physical_partition_spacetables(ump, true); 3527 if (error2) 3528 printf( "udf_close_logvol: writeout of space tables " 3529 "failed\n"); 3530 3531 if (error1 || error2) 3532 return (error1 | error2); 3533 3534 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3535 } 3536 3537 if (ump->lvclose & UDF_CLOSE_SESSION) { 3538 printf("TODO: Closing a session is not yet implemented\n"); 3539 return EROFS; 3540 ump->lvopen |= UDF_OPEN_SESSION; 3541 } 3542 3543 /* mark it closed */ 3544 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3545 3546 /* do we need to write out the logical volume integrity */ 3547 if (ump->lvclose & UDF_WRITE_LVINT) 3548 error = udf_writeout_lvint(ump, ump->lvopen); 3549 if (error) { 3550 /* HELP now what? mark it open again for now */ 3551 ump->logvol_integrity->integrity_type = 3552 udf_rw32(UDF_INTEGRITY_OPEN); 3553 return error; 3554 } 3555 3556 (void) udf_synchronise_caches(ump); 3557 3558 return 0; 3559 } 3560 3561 /* --------------------------------------------------------------------- */ 3562 3563 /* 3564 * Genfs interfacing 3565 * 3566 * static const struct genfs_ops udf_genfsops = { 3567 * .gop_size = genfs_size, 3568 * size of transfers 3569 * .gop_alloc = udf_gop_alloc, 3570 * allocate len bytes at offset 3571 * .gop_write = genfs_gop_write, 3572 * putpages interface code 3573 * .gop_markupdate = udf_gop_markupdate, 3574 * set update/modify flags etc. 3575 * } 3576 */ 3577 3578 /* 3579 * Genfs interface. These four functions are the only ones defined though not 3580 * documented... great.... 3581 */ 3582 3583 /* 3584 * Callback from genfs to allocate len bytes at offset off; only called when 3585 * filling up gaps in the allocation. 3586 */ 3587 /* XXX should we check if there is space enough in udf_gop_alloc? */ 3588 static int 3589 udf_gop_alloc(struct vnode *vp, off_t off, 3590 off_t len, int flags, kauth_cred_t cred) 3591 { 3592 #if 0 3593 struct udf_node *udf_node = VTOI(vp); 3594 struct udf_mount *ump = udf_node->ump; 3595 uint32_t lb_size, num_lb; 3596 #endif 3597 3598 DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n")); 3599 DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len)); 3600 3601 return 0; 3602 } 3603 3604 3605 /* 3606 * callback from genfs to update our flags 3607 */ 3608 static void 3609 udf_gop_markupdate(struct vnode *vp, int flags) 3610 { 3611 struct udf_node *udf_node = VTOI(vp); 3612 u_long mask = 0; 3613 3614 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 3615 mask = IN_ACCESS; 3616 } 3617 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 3618 if (vp->v_type == VREG) { 3619 mask |= IN_CHANGE | IN_UPDATE; 3620 } else { 3621 mask |= IN_MODIFY; 3622 } 3623 } 3624 if (mask) { 3625 udf_node->i_flags |= mask; 3626 } 3627 } 3628 3629 3630 static const struct genfs_ops udf_genfsops = { 3631 .gop_size = genfs_size, 3632 .gop_alloc = udf_gop_alloc, 3633 .gop_write = genfs_gop_write_rwmap, 3634 .gop_markupdate = udf_gop_markupdate, 3635 }; 3636 3637 3638 /* --------------------------------------------------------------------- */ 3639 3640 int 3641 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 3642 { 3643 union dscrptr *dscr; 3644 int error; 3645 3646 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 3647 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 3648 3649 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 3650 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 3651 (void) udf_validate_tag_and_crc_sums(dscr); 3652 3653 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 3654 dscr, sector, sector); 3655 3656 free(dscr, M_TEMP); 3657 3658 return error; 3659 } 3660 3661 3662 /* --------------------------------------------------------------------- */ 3663 3664 /* UDF<->unix converters */ 3665 3666 /* --------------------------------------------------------------------- */ 3667 3668 static mode_t 3669 udf_perm_to_unix_mode(uint32_t perm) 3670 { 3671 mode_t mode; 3672 3673 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 3674 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 3675 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 3676 3677 return mode; 3678 } 3679 3680 /* --------------------------------------------------------------------- */ 3681 3682 static uint32_t 3683 unix_mode_to_udf_perm(mode_t mode) 3684 { 3685 uint32_t perm; 3686 3687 perm = ((mode & S_IRWXO) ); 3688 perm |= ((mode & S_IRWXG) << 2); 3689 perm |= ((mode & S_IRWXU) << 4); 3690 perm |= ((mode & S_IWOTH) << 3); 3691 perm |= ((mode & S_IWGRP) << 5); 3692 perm |= ((mode & S_IWUSR) << 7); 3693 3694 return perm; 3695 } 3696 3697 /* --------------------------------------------------------------------- */ 3698 3699 static uint32_t 3700 udf_icb_to_unix_filetype(uint32_t icbftype) 3701 { 3702 switch (icbftype) { 3703 case UDF_ICB_FILETYPE_DIRECTORY : 3704 case UDF_ICB_FILETYPE_STREAMDIR : 3705 return S_IFDIR; 3706 case UDF_ICB_FILETYPE_FIFO : 3707 return S_IFIFO; 3708 case UDF_ICB_FILETYPE_CHARDEVICE : 3709 return S_IFCHR; 3710 case UDF_ICB_FILETYPE_BLOCKDEVICE : 3711 return S_IFBLK; 3712 case UDF_ICB_FILETYPE_RANDOMACCESS : 3713 case UDF_ICB_FILETYPE_REALTIME : 3714 return S_IFREG; 3715 case UDF_ICB_FILETYPE_SYMLINK : 3716 return S_IFLNK; 3717 case UDF_ICB_FILETYPE_SOCKET : 3718 return S_IFSOCK; 3719 } 3720 /* no idea what this is */ 3721 return 0; 3722 } 3723 3724 /* --------------------------------------------------------------------- */ 3725 3726 void 3727 udf_to_unix_name(char *result, int result_len, char *id, int len, 3728 struct charspec *chsp) 3729 { 3730 uint16_t *raw_name, *unix_name; 3731 uint16_t *inchp, ch; 3732 uint8_t *outchp; 3733 const char *osta_id = "OSTA Compressed Unicode"; 3734 int ucode_chars, nice_uchars, is_osta_typ0, nout; 3735 3736 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 3737 unix_name = raw_name + 1024; /* split space in half */ 3738 assert(sizeof(char) == sizeof(uint8_t)); 3739 outchp = (uint8_t *) result; 3740 3741 is_osta_typ0 = (chsp->type == 0); 3742 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 3743 if (is_osta_typ0) { 3744 /* TODO clean up */ 3745 *raw_name = *unix_name = 0; 3746 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 3747 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 3748 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 3749 /* output UTF8 */ 3750 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 3751 ch = *inchp; 3752 nout = wput_utf8(outchp, result_len, ch); 3753 outchp += nout; result_len -= nout; 3754 if (!ch) break; 3755 } 3756 *outchp++ = 0; 3757 } else { 3758 /* assume 8bit char length byte latin-1 */ 3759 assert(*id == 8); 3760 assert(strlen((char *) (id+1)) <= MAXNAMLEN); 3761 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 3762 } 3763 free(raw_name, M_UDFTEMP); 3764 } 3765 3766 /* --------------------------------------------------------------------- */ 3767 3768 void 3769 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 3770 struct charspec *chsp) 3771 { 3772 uint16_t *raw_name; 3773 uint16_t *outchp; 3774 const char *inchp; 3775 const char *osta_id = "OSTA Compressed Unicode"; 3776 int udf_chars, is_osta_typ0, bits; 3777 size_t cnt; 3778 3779 /* allocate temporary unicode-16 buffer */ 3780 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 3781 3782 /* convert utf8 to unicode-16 */ 3783 *raw_name = 0; 3784 inchp = name; 3785 outchp = raw_name; 3786 bits = 8; 3787 for (cnt = name_len, udf_chars = 0; cnt;) { 3788 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/ 3789 *outchp = wget_utf8(&inchp, &cnt); 3790 if (*outchp > 0xff) 3791 bits=16; 3792 outchp++; 3793 udf_chars++; 3794 } 3795 /* null terminate just in case */ 3796 *outchp++ = 0; 3797 3798 is_osta_typ0 = (chsp->type == 0); 3799 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 3800 if (is_osta_typ0) { 3801 udf_chars = udf_CompressUnicode(udf_chars, bits, 3802 (unicode_t *) raw_name, 3803 (byte *) result); 3804 } else { 3805 printf("unix to udf name: no CHSP0 ?\n"); 3806 /* XXX assume 8bit char length byte latin-1 */ 3807 *result++ = 8; udf_chars = 1; 3808 strncpy(result, name + 1, name_len); 3809 udf_chars += name_len; 3810 } 3811 *result_len = udf_chars; 3812 free(raw_name, M_UDFTEMP); 3813 } 3814 3815 /* --------------------------------------------------------------------- */ 3816 3817 void 3818 udf_timestamp_to_timespec(struct udf_mount *ump, 3819 struct timestamp *timestamp, 3820 struct timespec *timespec) 3821 { 3822 struct clock_ymdhms ymdhms; 3823 uint32_t usecs, secs, nsecs; 3824 uint16_t tz; 3825 3826 /* fill in ymdhms structure from timestamp */ 3827 memset(&ymdhms, 0, sizeof(ymdhms)); 3828 ymdhms.dt_year = udf_rw16(timestamp->year); 3829 ymdhms.dt_mon = timestamp->month; 3830 ymdhms.dt_day = timestamp->day; 3831 ymdhms.dt_wday = 0; /* ? */ 3832 ymdhms.dt_hour = timestamp->hour; 3833 ymdhms.dt_min = timestamp->minute; 3834 ymdhms.dt_sec = timestamp->second; 3835 3836 secs = clock_ymdhms_to_secs(&ymdhms); 3837 usecs = timestamp->usec + 3838 100*timestamp->hund_usec + 10000*timestamp->centisec; 3839 nsecs = usecs * 1000; 3840 3841 /* 3842 * Calculate the time zone. The timezone is 12 bit signed 2's 3843 * compliment, so we gotta do some extra magic to handle it right. 3844 */ 3845 tz = udf_rw16(timestamp->type_tz); 3846 tz &= 0x0fff; /* only lower 12 bits are significant */ 3847 if (tz & 0x0800) /* sign extention */ 3848 tz |= 0xf000; 3849 3850 /* TODO check timezone conversion */ 3851 /* check if we are specified a timezone to convert */ 3852 if (udf_rw16(timestamp->type_tz) & 0x1000) { 3853 if ((int16_t) tz != -2047) 3854 secs -= (int16_t) tz * 60; 3855 } else { 3856 secs -= ump->mount_args.gmtoff; 3857 } 3858 3859 timespec->tv_sec = secs; 3860 timespec->tv_nsec = nsecs; 3861 } 3862 3863 3864 void 3865 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 3866 { 3867 struct clock_ymdhms ymdhms; 3868 uint32_t husec, usec, csec; 3869 3870 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 3871 3872 usec = timespec->tv_nsec / 1000; 3873 husec = usec / 100; 3874 usec -= husec * 100; /* only 0-99 in usec */ 3875 csec = husec / 100; /* only 0-99 in csec */ 3876 husec -= csec * 100; /* only 0-99 in husec */ 3877 3878 /* set method 1 for CUT/GMT */ 3879 timestamp->type_tz = udf_rw16((1<<12) + 0); 3880 timestamp->year = udf_rw16(ymdhms.dt_year); 3881 timestamp->month = ymdhms.dt_mon; 3882 timestamp->day = ymdhms.dt_day; 3883 timestamp->hour = ymdhms.dt_hour; 3884 timestamp->minute = ymdhms.dt_min; 3885 timestamp->second = ymdhms.dt_sec; 3886 timestamp->centisec = csec; 3887 timestamp->hund_usec = husec; 3888 timestamp->usec = usec; 3889 } 3890 3891 /* --------------------------------------------------------------------- */ 3892 3893 /* 3894 * Attribute and filetypes converters with get/set pairs 3895 */ 3896 3897 uint32_t 3898 udf_getaccessmode(struct udf_node *udf_node) 3899 { 3900 struct file_entry *fe = udf_node->fe;; 3901 struct extfile_entry *efe = udf_node->efe; 3902 uint32_t udf_perm, icbftype; 3903 uint32_t mode, ftype; 3904 uint16_t icbflags; 3905 3906 UDF_LOCK_NODE(udf_node, 0); 3907 if (fe) { 3908 udf_perm = udf_rw32(fe->perm); 3909 icbftype = fe->icbtag.file_type; 3910 icbflags = udf_rw16(fe->icbtag.flags); 3911 } else { 3912 assert(udf_node->efe); 3913 udf_perm = udf_rw32(efe->perm); 3914 icbftype = efe->icbtag.file_type; 3915 icbflags = udf_rw16(efe->icbtag.flags); 3916 } 3917 3918 mode = udf_perm_to_unix_mode(udf_perm); 3919 ftype = udf_icb_to_unix_filetype(icbftype); 3920 3921 /* set suid, sgid, sticky from flags in fe/efe */ 3922 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 3923 mode |= S_ISUID; 3924 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 3925 mode |= S_ISGID; 3926 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 3927 mode |= S_ISVTX; 3928 3929 UDF_UNLOCK_NODE(udf_node, 0); 3930 3931 return mode | ftype; 3932 } 3933 3934 3935 void 3936 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 3937 { 3938 struct file_entry *fe = udf_node->fe; 3939 struct extfile_entry *efe = udf_node->efe; 3940 uint32_t udf_perm; 3941 uint16_t icbflags; 3942 3943 UDF_LOCK_NODE(udf_node, 0); 3944 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 3945 if (fe) { 3946 icbflags = udf_rw16(fe->icbtag.flags); 3947 } else { 3948 icbflags = udf_rw16(efe->icbtag.flags); 3949 } 3950 3951 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 3952 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 3953 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 3954 if (mode & S_ISUID) 3955 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 3956 if (mode & S_ISGID) 3957 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 3958 if (mode & S_ISVTX) 3959 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 3960 3961 if (fe) { 3962 fe->perm = udf_rw32(udf_perm); 3963 fe->icbtag.flags = udf_rw16(icbflags); 3964 } else { 3965 efe->perm = udf_rw32(udf_perm); 3966 efe->icbtag.flags = udf_rw16(icbflags); 3967 } 3968 3969 UDF_UNLOCK_NODE(udf_node, 0); 3970 } 3971 3972 3973 void 3974 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 3975 { 3976 struct udf_mount *ump = udf_node->ump; 3977 struct file_entry *fe = udf_node->fe; 3978 struct extfile_entry *efe = udf_node->efe; 3979 uid_t uid; 3980 gid_t gid; 3981 3982 UDF_LOCK_NODE(udf_node, 0); 3983 if (fe) { 3984 uid = (uid_t)udf_rw32(fe->uid); 3985 gid = (gid_t)udf_rw32(fe->gid); 3986 } else { 3987 assert(udf_node->efe); 3988 uid = (uid_t)udf_rw32(efe->uid); 3989 gid = (gid_t)udf_rw32(efe->gid); 3990 } 3991 3992 /* do the uid/gid translation game */ 3993 if (uid == (uid_t) -1) 3994 uid = ump->mount_args.anon_uid; 3995 if (gid == (gid_t) -1) 3996 gid = ump->mount_args.anon_gid; 3997 3998 *uidp = uid; 3999 *gidp = gid; 4000 4001 UDF_UNLOCK_NODE(udf_node, 0); 4002 } 4003 4004 4005 void 4006 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4007 { 4008 struct udf_mount *ump = udf_node->ump; 4009 struct file_entry *fe = udf_node->fe; 4010 struct extfile_entry *efe = udf_node->efe; 4011 uid_t nobody_uid; 4012 gid_t nobody_gid; 4013 4014 UDF_LOCK_NODE(udf_node, 0); 4015 4016 /* do the uid/gid translation game */ 4017 nobody_uid = ump->mount_args.nobody_uid; 4018 nobody_gid = ump->mount_args.nobody_gid; 4019 if (uid == nobody_uid) 4020 uid = (uid_t) -1; 4021 if (gid == nobody_gid) 4022 gid = (gid_t) -1; 4023 4024 if (fe) { 4025 fe->uid = udf_rw32((uint32_t) uid); 4026 fe->gid = udf_rw32((uint32_t) gid); 4027 } else { 4028 efe->uid = udf_rw32((uint32_t) uid); 4029 efe->gid = udf_rw32((uint32_t) gid); 4030 } 4031 4032 UDF_UNLOCK_NODE(udf_node, 0); 4033 } 4034 4035 4036 /* --------------------------------------------------------------------- */ 4037 4038 4039 static int 4040 dirhash_fill(struct udf_node *dir_node) 4041 { 4042 struct vnode *dvp = dir_node->vnode; 4043 struct dirhash *dirh; 4044 struct file_entry *fe = dir_node->fe; 4045 struct extfile_entry *efe = dir_node->efe; 4046 struct fileid_desc *fid; 4047 struct dirent *dirent; 4048 uint64_t file_size, pre_diroffset, diroffset; 4049 uint32_t lb_size; 4050 int error; 4051 4052 /* make sure we have a dirhash to work on */ 4053 dirh = dir_node->dir_hash; 4054 KASSERT(dirh); 4055 KASSERT(dirh->refcnt > 0); 4056 4057 if (dirh->flags & DIRH_BROKEN) 4058 return EIO; 4059 if (dirh->flags & DIRH_COMPLETE) 4060 return 0; 4061 4062 /* make sure we have a clean dirhash to add to */ 4063 dirhash_purge_entries(dirh); 4064 4065 /* get directory filesize */ 4066 if (fe) { 4067 file_size = udf_rw64(fe->inf_len); 4068 } else { 4069 assert(efe); 4070 file_size = udf_rw64(efe->inf_len); 4071 } 4072 4073 /* allocate temporary space for fid */ 4074 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4075 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4076 4077 /* allocate temporary space for dirent */ 4078 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4079 4080 error = 0; 4081 diroffset = 0; 4082 while (diroffset < file_size) { 4083 /* transfer a new fid/dirent */ 4084 pre_diroffset = diroffset; 4085 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4086 if (error) { 4087 /* TODO what to do? continue but not add? */ 4088 dirh->flags |= DIRH_BROKEN; 4089 dirhash_purge_entries(dirh); 4090 break; 4091 } 4092 4093 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4094 /* register deleted extent for reuse */ 4095 dirhash_enter_freed(dirh, pre_diroffset, 4096 udf_fidsize(fid)); 4097 } else { 4098 /* append to the dirhash */ 4099 dirhash_enter(dirh, dirent, pre_diroffset, 4100 udf_fidsize(fid), 0); 4101 } 4102 } 4103 dirh->flags |= DIRH_COMPLETE; 4104 4105 free(fid, M_UDFTEMP); 4106 free(dirent, M_UDFTEMP); 4107 4108 return error; 4109 } 4110 4111 4112 /* --------------------------------------------------------------------- */ 4113 4114 /* 4115 * Directory read and manipulation functions. 4116 * 4117 */ 4118 4119 int 4120 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4121 struct long_ad *icb_loc, int *found) 4122 { 4123 struct udf_node *dir_node = VTOI(vp); 4124 struct dirhash *dirh; 4125 struct dirhash_entry *dirh_ep; 4126 struct fileid_desc *fid; 4127 struct dirent *dirent; 4128 uint64_t diroffset; 4129 uint32_t lb_size; 4130 int hit, error; 4131 4132 /* set default return */ 4133 *found = 0; 4134 4135 /* get our dirhash and make sure its read in */ 4136 dirhash_get(&dir_node->dir_hash); 4137 error = dirhash_fill(dir_node); 4138 if (error) { 4139 dirhash_put(dir_node->dir_hash); 4140 return error; 4141 } 4142 dirh = dir_node->dir_hash; 4143 4144 /* allocate temporary space for fid */ 4145 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4146 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4147 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4148 4149 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4150 namelen, namelen, name)); 4151 4152 /* search our dirhash hits */ 4153 memset(icb_loc, 0, sizeof(*icb_loc)); 4154 dirh_ep = NULL; 4155 for (;;) { 4156 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4157 /* if no hit, abort the search */ 4158 if (!hit) 4159 break; 4160 4161 /* check this hit */ 4162 diroffset = dirh_ep->offset; 4163 4164 /* transfer a new fid/dirent */ 4165 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4166 if (error) 4167 break; 4168 4169 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4170 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4171 4172 /* see if its our entry */ 4173 KASSERT(dirent->d_namlen == namelen); 4174 if (strncmp(dirent->d_name, name, namelen) == 0) { 4175 *found = 1; 4176 *icb_loc = fid->icb; 4177 break; 4178 } 4179 } 4180 free(fid, M_UDFTEMP); 4181 free(dirent, M_UDFTEMP); 4182 4183 dirhash_put(dir_node->dir_hash); 4184 4185 return error; 4186 } 4187 4188 /* --------------------------------------------------------------------- */ 4189 4190 static int 4191 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4192 struct long_ad *node_icb, struct long_ad *parent_icb, 4193 uint64_t parent_unique_id) 4194 { 4195 struct timespec now; 4196 struct icb_tag *icb; 4197 struct filetimes_extattr_entry *ft_extattr; 4198 uint64_t unique_id; 4199 uint32_t fidsize, lb_num; 4200 uint8_t *bpos; 4201 int crclen, attrlen; 4202 4203 lb_num = udf_rw32(node_icb->loc.lb_num); 4204 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4205 icb = &fe->icbtag; 4206 4207 /* 4208 * Always use strategy type 4 unless on WORM wich we don't support 4209 * (yet). Fill in defaults and set for internal allocation of data. 4210 */ 4211 icb->strat_type = udf_rw16(4); 4212 icb->max_num_entries = udf_rw16(1); 4213 icb->file_type = file_type; /* 8 bit */ 4214 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4215 4216 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4217 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4218 4219 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4220 4221 vfs_timestamp(&now); 4222 udf_timespec_to_timestamp(&now, &fe->atime); 4223 udf_timespec_to_timestamp(&now, &fe->attrtime); 4224 udf_timespec_to_timestamp(&now, &fe->mtime); 4225 4226 udf_set_regid(&fe->imp_id, IMPL_NAME); 4227 udf_add_impl_regid(ump, &fe->imp_id); 4228 4229 unique_id = udf_advance_uniqueid(ump); 4230 fe->unique_id = udf_rw64(unique_id); 4231 fe->l_ea = udf_rw32(0); 4232 4233 /* create extended attribute to record our creation time */ 4234 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4235 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4236 memset(ft_extattr, 0, attrlen); 4237 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4238 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4239 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4240 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4241 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4242 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4243 4244 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4245 (struct extattr_entry *) ft_extattr); 4246 free(ft_extattr, M_UDFTEMP); 4247 4248 /* if its a directory, create '..' */ 4249 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4250 fidsize = 0; 4251 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4252 fidsize = udf_create_parentfid(ump, 4253 (struct fileid_desc *) bpos, parent_icb, 4254 parent_unique_id); 4255 } 4256 4257 /* record fidlength information */ 4258 fe->inf_len = udf_rw64(fidsize); 4259 fe->l_ad = udf_rw32(fidsize); 4260 fe->logblks_rec = udf_rw64(0); /* intern */ 4261 4262 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4263 crclen += udf_rw32(fe->l_ea) + fidsize; 4264 fe->tag.desc_crc_len = udf_rw16(crclen); 4265 4266 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4267 4268 return fidsize; 4269 } 4270 4271 /* --------------------------------------------------------------------- */ 4272 4273 static int 4274 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4275 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4276 uint64_t parent_unique_id) 4277 { 4278 struct timespec now; 4279 struct icb_tag *icb; 4280 uint64_t unique_id; 4281 uint32_t fidsize, lb_num; 4282 uint8_t *bpos; 4283 int crclen; 4284 4285 lb_num = udf_rw32(node_icb->loc.lb_num); 4286 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4287 icb = &efe->icbtag; 4288 4289 /* 4290 * Always use strategy type 4 unless on WORM wich we don't support 4291 * (yet). Fill in defaults and set for internal allocation of data. 4292 */ 4293 icb->strat_type = udf_rw16(4); 4294 icb->max_num_entries = udf_rw16(1); 4295 icb->file_type = file_type; /* 8 bit */ 4296 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4297 4298 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4299 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4300 4301 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4302 4303 vfs_timestamp(&now); 4304 udf_timespec_to_timestamp(&now, &efe->ctime); 4305 udf_timespec_to_timestamp(&now, &efe->atime); 4306 udf_timespec_to_timestamp(&now, &efe->attrtime); 4307 udf_timespec_to_timestamp(&now, &efe->mtime); 4308 4309 udf_set_regid(&efe->imp_id, IMPL_NAME); 4310 udf_add_impl_regid(ump, &efe->imp_id); 4311 4312 unique_id = udf_advance_uniqueid(ump); 4313 efe->unique_id = udf_rw64(unique_id); 4314 efe->l_ea = udf_rw32(0); 4315 4316 /* if its a directory, create '..' */ 4317 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4318 fidsize = 0; 4319 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4320 fidsize = udf_create_parentfid(ump, 4321 (struct fileid_desc *) bpos, parent_icb, 4322 parent_unique_id); 4323 } 4324 4325 /* record fidlength information */ 4326 efe->obj_size = udf_rw64(fidsize); 4327 efe->inf_len = udf_rw64(fidsize); 4328 efe->l_ad = udf_rw32(fidsize); 4329 efe->logblks_rec = udf_rw64(0); /* intern */ 4330 4331 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4332 crclen += udf_rw32(efe->l_ea) + fidsize; 4333 efe->tag.desc_crc_len = udf_rw16(crclen); 4334 4335 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4336 4337 return fidsize; 4338 } 4339 4340 /* --------------------------------------------------------------------- */ 4341 4342 int 4343 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4344 struct udf_node *udf_node, struct componentname *cnp) 4345 { 4346 struct vnode *dvp = dir_node->vnode; 4347 struct dirhash *dirh; 4348 struct dirhash_entry *dirh_ep; 4349 struct file_entry *fe = dir_node->fe; 4350 struct extfile_entry *efe = dir_node->efe; 4351 struct fileid_desc *fid; 4352 struct dirent *dirent; 4353 uint64_t file_size, diroffset; 4354 uint32_t lb_size, fidsize; 4355 int found, error; 4356 char const *name = cnp->cn_nameptr; 4357 int namelen = cnp->cn_namelen; 4358 int hit, refcnt; 4359 4360 /* get our dirhash and make sure its read in */ 4361 dirhash_get(&dir_node->dir_hash); 4362 error = dirhash_fill(dir_node); 4363 if (error) { 4364 dirhash_put(dir_node->dir_hash); 4365 return error; 4366 } 4367 dirh = dir_node->dir_hash; 4368 4369 /* get directory filesize */ 4370 if (fe) { 4371 file_size = udf_rw64(fe->inf_len); 4372 } else { 4373 assert(efe); 4374 file_size = udf_rw64(efe->inf_len); 4375 } 4376 4377 /* allocate temporary space for fid */ 4378 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4379 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4380 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4381 4382 /* search our dirhash hits */ 4383 found = 0; 4384 dirh_ep = NULL; 4385 for (;;) { 4386 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4387 /* if no hit, abort the search */ 4388 if (!hit) 4389 break; 4390 4391 /* check this hit */ 4392 diroffset = dirh_ep->offset; 4393 4394 /* transfer a new fid/dirent */ 4395 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4396 if (error) 4397 break; 4398 4399 /* see if its our entry */ 4400 KASSERT(dirent->d_namlen == namelen); 4401 if (strncmp(dirent->d_name, name, namelen) == 0) { 4402 found = 1; 4403 break; 4404 } 4405 } 4406 4407 if (!found) 4408 error = ENOENT; 4409 if (error) 4410 goto error_out; 4411 4412 /* mark deleted */ 4413 fid->file_char |= UDF_FILE_CHAR_DEL; 4414 #ifdef UDF_COMPLETE_DELETE 4415 memset(&fid->icb, 0, sizeof(fid->icb)); 4416 #endif 4417 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4418 4419 /* get size of fid and compensate for the read_fid_stream advance */ 4420 fidsize = udf_fidsize(fid); 4421 diroffset -= fidsize; 4422 4423 /* write out */ 4424 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4425 fid, fidsize, diroffset, 4426 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4427 FSCRED, NULL, NULL); 4428 if (error) 4429 goto error_out; 4430 4431 /* get reference count of attached node */ 4432 if (udf_node->fe) { 4433 refcnt = udf_rw16(udf_node->fe->link_cnt); 4434 } else { 4435 KASSERT(udf_node->efe); 4436 refcnt = udf_rw16(udf_node->efe->link_cnt); 4437 } 4438 #ifdef UDF_COMPLETE_DELETE 4439 /* substract reference counter in attached node */ 4440 refcnt -= 1; 4441 if (udf_node->fe) { 4442 udf_node->fe->link_cnt = udf_rw16(refcnt); 4443 } else { 4444 udf_node->efe->link_cnt = udf_rw16(refcnt); 4445 } 4446 4447 /* prevent writeout when refcnt == 0 */ 4448 if (refcnt == 0) 4449 udf_node->i_flags |= IN_DELETED; 4450 4451 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4452 int drefcnt; 4453 4454 /* substract reference counter in directory node */ 4455 /* note subtract 2 (?) for its was also backreferenced */ 4456 if (dir_node->fe) { 4457 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4458 drefcnt -= 1; 4459 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4460 } else { 4461 KASSERT(dir_node->efe); 4462 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4463 drefcnt -= 1; 4464 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4465 } 4466 } 4467 4468 udf_node->i_flags |= IN_MODIFIED; 4469 dir_node->i_flags |= IN_MODIFIED; 4470 #endif 4471 /* if it is/was a hardlink adjust the file count */ 4472 if (refcnt > 0) 4473 udf_adjust_filecount(udf_node, -1); 4474 4475 /* remove from the dirhash */ 4476 dirhash_remove(dirh, dirent, diroffset, 4477 udf_fidsize(fid)); 4478 4479 error_out: 4480 free(fid, M_UDFTEMP); 4481 free(dirent, M_UDFTEMP); 4482 4483 dirhash_put(dir_node->dir_hash); 4484 4485 return error; 4486 } 4487 4488 /* --------------------------------------------------------------------- */ 4489 4490 /* 4491 * We are not allowed to split the fid tag itself over an logical block so 4492 * check the space remaining in the logical block. 4493 * 4494 * We try to select the smallest candidate for recycling or when none is 4495 * found, append a new one at the end of the directory. 4496 */ 4497 4498 int 4499 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 4500 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 4501 { 4502 struct vnode *dvp = dir_node->vnode; 4503 struct dirhash *dirh; 4504 struct dirhash_entry *dirh_ep; 4505 struct fileid_desc *fid; 4506 struct icb_tag *icbtag; 4507 struct charspec osta_charspec; 4508 struct dirent dirent; 4509 uint64_t unique_id, dir_size; 4510 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 4511 uint32_t chosen_size, chosen_size_diff; 4512 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 4513 int file_char, refcnt, icbflags, addr_type, hit, error; 4514 4515 /* get our dirhash and make sure its read in */ 4516 dirhash_get(&dir_node->dir_hash); 4517 error = dirhash_fill(dir_node); 4518 if (error) { 4519 dirhash_put(dir_node->dir_hash); 4520 return error; 4521 } 4522 dirh = dir_node->dir_hash; 4523 4524 /* get info */ 4525 lb_size = udf_rw32(ump->logical_vol->lb_size); 4526 udf_osta_charset(&osta_charspec); 4527 4528 if (dir_node->fe) { 4529 dir_size = udf_rw64(dir_node->fe->inf_len); 4530 icbtag = &dir_node->fe->icbtag; 4531 } else { 4532 dir_size = udf_rw64(dir_node->efe->inf_len); 4533 icbtag = &dir_node->efe->icbtag; 4534 } 4535 4536 icbflags = udf_rw16(icbtag->flags); 4537 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 4538 4539 if (udf_node->fe) { 4540 unique_id = udf_rw64(udf_node->fe->unique_id); 4541 refcnt = udf_rw16(udf_node->fe->link_cnt); 4542 } else { 4543 unique_id = udf_rw64(udf_node->efe->unique_id); 4544 refcnt = udf_rw16(udf_node->efe->link_cnt); 4545 } 4546 4547 if (refcnt > 0) { 4548 unique_id = udf_advance_uniqueid(ump); 4549 udf_adjust_filecount(udf_node, 1); 4550 } 4551 4552 /* determine file characteristics */ 4553 file_char = 0; /* visible non deleted file and not stream metadata */ 4554 if (vap->va_type == VDIR) 4555 file_char = UDF_FILE_CHAR_DIR; 4556 4557 /* malloc scrap buffer */ 4558 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 4559 4560 /* calculate _minimum_ fid size */ 4561 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4562 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4563 fidsize = UDF_FID_SIZE + fid->l_fi; 4564 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 4565 4566 /* find position that will fit the FID */ 4567 chosen_fid_pos = dir_size; 4568 chosen_size = 0; 4569 chosen_size_diff = UINT_MAX; 4570 4571 /* shut up gcc */ 4572 dirent.d_namlen = 0; 4573 4574 /* search our dirhash hits */ 4575 error = 0; 4576 dirh_ep = NULL; 4577 for (;;) { 4578 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 4579 /* if no hit, abort the search */ 4580 if (!hit) 4581 break; 4582 4583 /* check this hit for size */ 4584 this_fidsize = dirh_ep->entry_size; 4585 4586 /* check this hit */ 4587 fid_pos = dirh_ep->offset; 4588 end_fid_pos = fid_pos + this_fidsize; 4589 size_diff = this_fidsize - fidsize; 4590 lb_rest = lb_size - (end_fid_pos % lb_size); 4591 4592 #ifndef UDF_COMPLETE_DELETE 4593 /* transfer a new fid/dirent */ 4594 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 4595 if (error) 4596 goto error_out; 4597 4598 /* only reuse entries that are wiped */ 4599 /* check if the len + loc are marked zero */ 4600 if (udf_rw32(fid->icb.len != 0)) 4601 continue; 4602 if (udf_rw32(fid->icb.loc.lb_num) != 0) 4603 continue; 4604 if (udf_rw16(fid->icb.loc.part_num != 0)) 4605 continue; 4606 #endif /* UDF_COMPLETE_DELETE */ 4607 4608 /* select if not splitting the tag and its smaller */ 4609 if ((size_diff >= 0) && 4610 (size_diff < chosen_size_diff) && 4611 (lb_rest >= sizeof(struct desc_tag))) 4612 { 4613 /* UDF 2.3.4.2+3 specifies rules for iu size */ 4614 if ((size_diff == 0) || (size_diff >= 32)) { 4615 chosen_fid_pos = fid_pos; 4616 chosen_size = this_fidsize; 4617 chosen_size_diff = size_diff; 4618 } 4619 } 4620 } 4621 4622 4623 /* extend directory if no other candidate found */ 4624 if (chosen_size == 0) { 4625 chosen_fid_pos = dir_size; 4626 chosen_size = fidsize; 4627 chosen_size_diff = 0; 4628 4629 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 4630 if (addr_type == UDF_ICB_INTERN_ALLOC) { 4631 /* pre-grow directory to see if we're to switch */ 4632 udf_grow_node(dir_node, dir_size + chosen_size); 4633 4634 icbflags = udf_rw16(icbtag->flags); 4635 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 4636 } 4637 4638 /* make sure the next fid desc_tag won't be splitted */ 4639 if (addr_type != UDF_ICB_INTERN_ALLOC) { 4640 end_fid_pos = chosen_fid_pos + chosen_size; 4641 lb_rest = lb_size - (end_fid_pos % lb_size); 4642 4643 /* pad with implementation use regid if needed */ 4644 if (lb_rest < sizeof(struct desc_tag)) 4645 chosen_size += 32; 4646 } 4647 } 4648 chosen_size_diff = chosen_size - fidsize; 4649 4650 /* populate the FID */ 4651 memset(fid, 0, lb_size); 4652 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 4653 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 4654 fid->file_char = file_char; 4655 fid->icb = udf_node->loc; 4656 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 4657 fid->l_iu = udf_rw16(0); 4658 4659 if (chosen_size > fidsize) { 4660 /* insert implementation-use regid to space it correctly */ 4661 fid->l_iu = udf_rw16(chosen_size_diff); 4662 4663 /* set implementation use */ 4664 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 4665 udf_add_impl_regid(ump, (struct regid *) fid->data); 4666 } 4667 4668 /* fill in name */ 4669 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 4670 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4671 4672 fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH; 4673 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4674 4675 /* writeout FID/update parent directory */ 4676 error = vn_rdwr(UIO_WRITE, dvp, 4677 fid, chosen_size, chosen_fid_pos, 4678 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4679 FSCRED, NULL, NULL); 4680 4681 if (error) 4682 goto error_out; 4683 4684 /* add reference counter in attached node */ 4685 if (udf_node->fe) { 4686 refcnt = udf_rw16(udf_node->fe->link_cnt); 4687 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 4688 } else { 4689 KASSERT(udf_node->efe); 4690 refcnt = udf_rw16(udf_node->efe->link_cnt); 4691 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 4692 } 4693 4694 /* mark not deleted if it was... just in case, but do warn */ 4695 if (udf_node->i_flags & IN_DELETED) { 4696 printf("udf: warning, marking a file undeleted\n"); 4697 udf_node->i_flags &= ~IN_DELETED; 4698 } 4699 4700 if (file_char & UDF_FILE_CHAR_DIR) { 4701 /* add reference counter in directory node for '..' */ 4702 if (dir_node->fe) { 4703 refcnt = udf_rw16(dir_node->fe->link_cnt); 4704 refcnt++; 4705 dir_node->fe->link_cnt = udf_rw16(refcnt); 4706 } else { 4707 KASSERT(dir_node->efe); 4708 refcnt = udf_rw16(dir_node->efe->link_cnt); 4709 refcnt++; 4710 dir_node->efe->link_cnt = udf_rw16(refcnt); 4711 } 4712 } 4713 4714 /* append to the dirhash */ 4715 dirent.d_namlen = cnp->cn_namelen; 4716 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen); 4717 dirhash_enter(dirh, &dirent, chosen_fid_pos, 4718 udf_fidsize(fid), 1); 4719 4720 /* note updates */ 4721 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 4722 /* VN_KNOTE(udf_node, ...) */ 4723 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 4724 4725 error_out: 4726 free(fid, M_TEMP); 4727 4728 dirhash_put(dir_node->dir_hash); 4729 4730 return error; 4731 } 4732 4733 /* --------------------------------------------------------------------- */ 4734 4735 /* 4736 * Each node can have an attached streamdir node though not recursively. These 4737 * are otherwise known as named substreams/named extended attributes that have 4738 * no size limitations. 4739 * 4740 * `Normal' extended attributes are indicated with a number and are recorded 4741 * in either the fe/efe descriptor itself for small descriptors or recorded in 4742 * the attached extended attribute file. Since these spaces can get 4743 * fragmented, care ought to be taken. 4744 * 4745 * Since the size of the space reserved for allocation descriptors is limited, 4746 * there is a mechanim provided for extending this space; this is done by a 4747 * special extent to allow schrinking of the allocations without breaking the 4748 * linkage to the allocation extent descriptor. 4749 */ 4750 4751 int 4752 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 4753 struct udf_node **udf_noderes) 4754 { 4755 union dscrptr *dscr; 4756 struct udf_node *udf_node; 4757 struct vnode *nvp; 4758 struct long_ad icb_loc, last_fe_icb_loc; 4759 uint64_t file_size; 4760 uint32_t lb_size, sector, dummy; 4761 uint8_t *file_data; 4762 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 4763 int slot, eof, error; 4764 4765 DPRINTF(NODE, ("udf_get_node called\n")); 4766 *udf_noderes = udf_node = NULL; 4767 4768 /* lock to disallow simultanious creation of same udf_node */ 4769 mutex_enter(&ump->get_node_lock); 4770 4771 DPRINTF(NODE, ("\tlookup in hash table\n")); 4772 /* lookup in hash table */ 4773 assert(ump); 4774 assert(node_icb_loc); 4775 udf_node = udf_hash_lookup(ump, node_icb_loc); 4776 if (udf_node) { 4777 DPRINTF(NODE, ("\tgot it from the hash!\n")); 4778 /* vnode is returned locked */ 4779 *udf_noderes = udf_node; 4780 mutex_exit(&ump->get_node_lock); 4781 return 0; 4782 } 4783 4784 /* garbage check: translate udf_node_icb_loc to sectornr */ 4785 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); 4786 if (error) { 4787 /* no use, this will fail anyway */ 4788 mutex_exit(&ump->get_node_lock); 4789 return EINVAL; 4790 } 4791 4792 /* build udf_node (do initialise!) */ 4793 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 4794 memset(udf_node, 0, sizeof(struct udf_node)); 4795 4796 DPRINTF(NODE, ("\tget new vnode\n")); 4797 /* give it a vnode */ 4798 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp); 4799 if (error) { 4800 pool_put(&udf_node_pool, udf_node); 4801 mutex_exit(&ump->get_node_lock); 4802 return error; 4803 } 4804 4805 /* always return locked vnode */ 4806 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { 4807 /* recycle vnode and unlock; simultanious will fail too */ 4808 ungetnewvnode(nvp); 4809 mutex_exit(&ump->get_node_lock); 4810 return error; 4811 } 4812 4813 /* initialise crosslinks, note location of fe/efe for hashing */ 4814 udf_node->ump = ump; 4815 udf_node->vnode = nvp; 4816 nvp->v_data = udf_node; 4817 udf_node->loc = *node_icb_loc; 4818 udf_node->lockf = 0; 4819 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 4820 cv_init(&udf_node->node_lock, "udf_nlk"); 4821 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */ 4822 udf_node->outstanding_bufs = 0; 4823 udf_node->outstanding_nodedscr = 0; 4824 4825 /* check if we're fetching the root */ 4826 if (ump->fileset_desc) 4827 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 4828 sizeof(struct long_ad)) == 0) 4829 nvp->v_vflag |= VV_ROOT; 4830 4831 /* insert into the hash lookup */ 4832 udf_register_node(udf_node); 4833 4834 /* safe to unlock, the entry is in the hash table, vnode is locked */ 4835 mutex_exit(&ump->get_node_lock); 4836 4837 icb_loc = *node_icb_loc; 4838 needs_indirect = 0; 4839 strat4096 = 0; 4840 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 4841 file_size = 0; 4842 file_data = NULL; 4843 lb_size = udf_rw32(ump->logical_vol->lb_size); 4844 4845 DPRINTF(NODE, ("\tstart reading descriptors\n")); 4846 do { 4847 /* try to read in fe/efe */ 4848 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 4849 4850 /* blank sector marks end of sequence, check this */ 4851 if ((dscr == NULL) && (!strat4096)) 4852 error = ENOENT; 4853 4854 /* break if read error or blank sector */ 4855 if (error || (dscr == NULL)) 4856 break; 4857 4858 /* process descriptor based on the descriptor type */ 4859 dscr_type = udf_rw16(dscr->tag.id); 4860 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 4861 4862 /* if dealing with an indirect entry, follow the link */ 4863 if (dscr_type == TAGID_INDIRECTENTRY) { 4864 needs_indirect = 0; 4865 udf_free_logvol_dscr(ump, &icb_loc, dscr); 4866 icb_loc = dscr->inde.indirect_icb; 4867 continue; 4868 } 4869 4870 /* only file entries and extended file entries allowed here */ 4871 if ((dscr_type != TAGID_FENTRY) && 4872 (dscr_type != TAGID_EXTFENTRY)) { 4873 udf_free_logvol_dscr(ump, &icb_loc, dscr); 4874 error = ENOENT; 4875 break; 4876 } 4877 4878 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 4879 4880 /* choose this one */ 4881 last_fe_icb_loc = icb_loc; 4882 4883 /* record and process/update (ext)fentry */ 4884 file_data = NULL; 4885 if (dscr_type == TAGID_FENTRY) { 4886 if (udf_node->fe) 4887 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 4888 udf_node->fe); 4889 udf_node->fe = &dscr->fe; 4890 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 4891 udf_file_type = udf_node->fe->icbtag.file_type; 4892 file_size = udf_rw64(udf_node->fe->inf_len); 4893 file_data = udf_node->fe->data; 4894 } else { 4895 if (udf_node->efe) 4896 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 4897 udf_node->efe); 4898 udf_node->efe = &dscr->efe; 4899 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 4900 udf_file_type = udf_node->efe->icbtag.file_type; 4901 file_size = udf_rw64(udf_node->efe->inf_len); 4902 file_data = udf_node->efe->data; 4903 } 4904 4905 /* check recording strategy (structure) */ 4906 4907 /* 4908 * Strategy 4096 is a daisy linked chain terminating with an 4909 * unrecorded sector or a TERM descriptor. The next 4910 * descriptor is to be found in the sector that follows the 4911 * current sector. 4912 */ 4913 if (strat == 4096) { 4914 strat4096 = 1; 4915 needs_indirect = 1; 4916 4917 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 4918 } 4919 4920 /* 4921 * Strategy 4 is the normal strategy and terminates, but if 4922 * we're in strategy 4096, we can't have strategy 4 mixed in 4923 */ 4924 4925 if (strat == 4) { 4926 if (strat4096) { 4927 error = EINVAL; 4928 break; 4929 } 4930 break; /* done */ 4931 } 4932 } while (!error); 4933 4934 /* first round of cleanup code */ 4935 if (error) { 4936 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 4937 /* recycle udf_node */ 4938 udf_dispose_node(udf_node); 4939 4940 vlockmgr(nvp->v_vnlock, LK_RELEASE); 4941 nvp->v_data = NULL; 4942 ungetnewvnode(nvp); 4943 4944 return EINVAL; /* error code ok? */ 4945 } 4946 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 4947 4948 /* assert no references to dscr anymore beyong this point */ 4949 assert((udf_node->fe) || (udf_node->efe)); 4950 dscr = NULL; 4951 4952 /* 4953 * Remember where to record an updated version of the descriptor. If 4954 * there is a sequence of indirect entries, icb_loc will have been 4955 * updated. Its the write disipline to allocate new space and to make 4956 * sure the chain is maintained. 4957 * 4958 * `needs_indirect' flags if the next location is to be filled with 4959 * with an indirect entry. 4960 */ 4961 udf_node->write_loc = icb_loc; 4962 udf_node->needs_indirect = needs_indirect; 4963 4964 /* 4965 * Go trough all allocations extents of this descriptor and when 4966 * encountering a redirect read in the allocation extension. These are 4967 * daisy-chained. 4968 */ 4969 UDF_LOCK_NODE(udf_node, 0); 4970 udf_node->num_extensions = 0; 4971 4972 error = 0; 4973 slot = 0; 4974 for (;;) { 4975 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 4976 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 4977 "lb_num = %d, part = %d\n", slot, eof, 4978 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 4979 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 4980 udf_rw32(icb_loc.loc.lb_num), 4981 udf_rw16(icb_loc.loc.part_num))); 4982 if (eof) 4983 break; 4984 slot++; 4985 4986 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 4987 continue; 4988 4989 DPRINTF(NODE, ("\tgot redirect extent\n")); 4990 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 4991 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 4992 "too many allocation extensions on " 4993 "udf_node\n")); 4994 error = EINVAL; 4995 break; 4996 } 4997 4998 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 4999 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5000 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5001 "extension size in udf_node\n")); 5002 error = EINVAL; 5003 break; 5004 } 5005 5006 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5007 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5008 /* load in allocation extent */ 5009 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5010 if (error || (dscr == NULL)) 5011 break; 5012 5013 /* process read-in descriptor */ 5014 dscr_type = udf_rw16(dscr->tag.id); 5015 5016 if (dscr_type != TAGID_ALLOCEXTENT) { 5017 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5018 error = ENOENT; 5019 break; 5020 } 5021 5022 DPRINTF(NODE, ("\trecording redirect extent\n")); 5023 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5024 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5025 5026 udf_node->num_extensions++; 5027 5028 } /* while */ 5029 UDF_UNLOCK_NODE(udf_node, 0); 5030 5031 /* second round of cleanup code */ 5032 if (error) { 5033 /* recycle udf_node */ 5034 udf_dispose_node(udf_node); 5035 5036 vlockmgr(nvp->v_vnlock, LK_RELEASE); 5037 nvp->v_data = NULL; 5038 ungetnewvnode(nvp); 5039 5040 return EINVAL; /* error code ok? */ 5041 } 5042 5043 DPRINTF(NODE, ("\tnode read in fine\n")); 5044 5045 /* 5046 * Translate UDF filetypes into vnode types. 5047 * 5048 * Systemfiles like the meta main and mirror files are not treated as 5049 * normal files, so we type them as having no type. UDF dictates that 5050 * they are not allowed to be visible. 5051 */ 5052 5053 switch (udf_file_type) { 5054 case UDF_ICB_FILETYPE_DIRECTORY : 5055 case UDF_ICB_FILETYPE_STREAMDIR : 5056 nvp->v_type = VDIR; 5057 break; 5058 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5059 nvp->v_type = VBLK; 5060 break; 5061 case UDF_ICB_FILETYPE_CHARDEVICE : 5062 nvp->v_type = VCHR; 5063 break; 5064 case UDF_ICB_FILETYPE_SOCKET : 5065 nvp->v_type = VSOCK; 5066 break; 5067 case UDF_ICB_FILETYPE_FIFO : 5068 nvp->v_type = VFIFO; 5069 break; 5070 case UDF_ICB_FILETYPE_SYMLINK : 5071 nvp->v_type = VLNK; 5072 break; 5073 case UDF_ICB_FILETYPE_VAT : 5074 case UDF_ICB_FILETYPE_META_MAIN : 5075 case UDF_ICB_FILETYPE_META_MIRROR : 5076 nvp->v_type = VNON; 5077 break; 5078 case UDF_ICB_FILETYPE_RANDOMACCESS : 5079 case UDF_ICB_FILETYPE_REALTIME : 5080 nvp->v_type = VREG; 5081 break; 5082 default: 5083 /* YIKES, something else */ 5084 nvp->v_type = VNON; 5085 } 5086 5087 /* TODO specfs, fifofs etc etc. vnops setting */ 5088 5089 /* don't forget to set vnode's v_size */ 5090 uvm_vnp_setsize(nvp, file_size); 5091 5092 /* TODO ext attr and streamdir udf_nodes */ 5093 5094 *udf_noderes = udf_node; 5095 5096 return 0; 5097 } 5098 5099 /* --------------------------------------------------------------------- */ 5100 5101 int 5102 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5103 { 5104 union dscrptr *dscr; 5105 struct long_ad *loc; 5106 int extnr, flags, error; 5107 5108 DPRINTF(NODE, ("udf_writeout_node called\n")); 5109 5110 KASSERT(udf_node->outstanding_bufs == 0); 5111 KASSERT(udf_node->outstanding_nodedscr == 0); 5112 5113 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5114 5115 if (udf_node->i_flags & IN_DELETED) { 5116 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5117 return 0; 5118 } 5119 5120 /* lock node */ 5121 flags = waitfor ? 0 : IN_CALLBACK_ULK; 5122 UDF_LOCK_NODE(udf_node, flags); 5123 5124 /* at least one descriptor writeout */ 5125 udf_node->outstanding_nodedscr = 1; 5126 5127 /* we're going to write out the descriptor so clear the flags */ 5128 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5129 5130 /* if we were rebuild, write out the allocation extents */ 5131 if (udf_node->i_flags & IN_NODE_REBUILD) { 5132 /* mark outstanding node descriptors and issue them */ 5133 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5134 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5135 loc = &udf_node->ext_loc[extnr]; 5136 dscr = (union dscrptr *) udf_node->ext[extnr]; 5137 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5138 if (error) 5139 return error; 5140 } 5141 /* mark allocation extents written out */ 5142 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5143 } 5144 5145 if (udf_node->fe) { 5146 KASSERT(udf_node->efe == NULL); 5147 dscr = (union dscrptr *) udf_node->fe; 5148 } else { 5149 KASSERT(udf_node->efe); 5150 KASSERT(udf_node->fe == NULL); 5151 dscr = (union dscrptr *) udf_node->efe; 5152 } 5153 KASSERT(dscr); 5154 5155 loc = &udf_node->write_loc; 5156 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5157 return error; 5158 } 5159 5160 /* --------------------------------------------------------------------- */ 5161 5162 int 5163 udf_dispose_node(struct udf_node *udf_node) 5164 { 5165 struct vnode *vp; 5166 int extnr; 5167 5168 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5169 if (!udf_node) { 5170 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5171 return 0; 5172 } 5173 5174 vp = udf_node->vnode; 5175 #ifdef DIAGNOSTIC 5176 if (vp->v_numoutput) 5177 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5178 "v_numoutput = %d", udf_node, vp->v_numoutput); 5179 #endif 5180 5181 /* wait until out of sync (just in case we happen to stumble over one */ 5182 KASSERT(!mutex_owned(&mntvnode_lock)); 5183 mutex_enter(&mntvnode_lock); 5184 while (udf_node->i_flags & IN_SYNCED) { 5185 cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock, 5186 hz/16); 5187 } 5188 mutex_exit(&mntvnode_lock); 5189 5190 /* TODO extended attributes and streamdir */ 5191 5192 /* remove dirhash if present */ 5193 dirhash_purge(&udf_node->dir_hash); 5194 5195 /* remove from our hash lookup table */ 5196 udf_deregister_node(udf_node); 5197 5198 /* destroy our lock */ 5199 mutex_destroy(&udf_node->node_mutex); 5200 cv_destroy(&udf_node->node_lock); 5201 5202 /* dissociate our udf_node from the vnode */ 5203 genfs_node_destroy(udf_node->vnode); 5204 vp->v_data = NULL; 5205 5206 /* free associated memory and the node itself */ 5207 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5208 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5209 udf_node->ext[extnr]); 5210 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5211 } 5212 5213 if (udf_node->fe) 5214 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5215 udf_node->fe); 5216 if (udf_node->efe) 5217 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5218 udf_node->efe); 5219 5220 udf_node->fe = (void *) 0xdeadaaaa; 5221 udf_node->efe = (void *) 0xdeadbbbb; 5222 udf_node->ump = (void *) 0xdeadbeef; 5223 pool_put(&udf_node_pool, udf_node); 5224 5225 return 0; 5226 } 5227 5228 5229 5230 /* 5231 * create a new node using the specified vnodeops, vap and cnp but with the 5232 * udf_file_type. This allows special files to be created. Use with care. 5233 */ 5234 5235 static int 5236 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type, 5237 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp) 5238 { 5239 union dscrptr *dscr; 5240 struct udf_node *dir_node = VTOI(dvp);; 5241 struct udf_node *udf_node; 5242 struct udf_mount *ump = dir_node->ump; 5243 struct vnode *nvp; 5244 struct long_ad node_icb_loc; 5245 uint64_t parent_unique_id; 5246 uint64_t lmapping; 5247 uint32_t lb_size, lb_num; 5248 uint16_t vpart_num; 5249 uid_t uid; 5250 gid_t gid, parent_gid; 5251 int fid_size, error; 5252 5253 lb_size = udf_rw32(ump->logical_vol->lb_size); 5254 *vpp = NULL; 5255 5256 /* allocate vnode */ 5257 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp); 5258 if (error) 5259 return error; 5260 5261 /* lock node */ 5262 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY); 5263 if (error) { 5264 nvp->v_data = NULL; 5265 ungetnewvnode(nvp); 5266 return error; 5267 } 5268 5269 /* get disc allocation for one logical block */ 5270 vpart_num = ump->node_part; 5271 error = udf_pre_allocate_space(ump, UDF_C_NODE, 1, 5272 vpart_num, &lmapping); 5273 lb_num = lmapping; 5274 if (error) { 5275 vlockmgr(nvp->v_vnlock, LK_RELEASE); 5276 ungetnewvnode(nvp); 5277 return error; 5278 } 5279 5280 /* initialise pointer to location */ 5281 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5282 node_icb_loc.len = lb_size; 5283 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5284 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5285 5286 /* build udf_node (do initialise!) */ 5287 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5288 memset(udf_node, 0, sizeof(struct udf_node)); 5289 5290 /* initialise crosslinks, note location of fe/efe for hashing */ 5291 /* bugalert: synchronise with udf_get_node() */ 5292 udf_node->ump = ump; 5293 udf_node->vnode = nvp; 5294 nvp->v_data = udf_node; 5295 udf_node->loc = node_icb_loc; 5296 udf_node->write_loc = node_icb_loc; 5297 udf_node->lockf = 0; 5298 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5299 cv_init(&udf_node->node_lock, "udf_nlk"); 5300 udf_node->outstanding_bufs = 0; 5301 udf_node->outstanding_nodedscr = 0; 5302 5303 /* initialise genfs */ 5304 genfs_node_init(nvp, &udf_genfsops); 5305 5306 /* insert into the hash lookup */ 5307 udf_register_node(udf_node); 5308 5309 /* get parent's unique ID for refering '..' if its a directory */ 5310 if (dir_node->fe) { 5311 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5312 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5313 } else { 5314 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5315 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5316 } 5317 5318 /* get descriptor */ 5319 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5320 5321 /* choose a fe or an efe for it */ 5322 if (ump->logical_vol->tag.descriptor_ver == 2) { 5323 udf_node->fe = &dscr->fe; 5324 fid_size = udf_create_new_fe(ump, udf_node->fe, 5325 udf_file_type, &udf_node->loc, 5326 &dir_node->loc, parent_unique_id); 5327 /* TODO add extended attribute for creation time */ 5328 } else { 5329 udf_node->efe = &dscr->efe; 5330 fid_size = udf_create_new_efe(ump, udf_node->efe, 5331 udf_file_type, &udf_node->loc, 5332 &dir_node->loc, parent_unique_id); 5333 } 5334 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5335 5336 /* update vnode's size and type */ 5337 nvp->v_type = vap->va_type; 5338 uvm_vnp_setsize(nvp, fid_size); 5339 5340 /* set access mode */ 5341 udf_setaccessmode(udf_node, vap->va_mode); 5342 5343 /* set ownership */ 5344 uid = kauth_cred_geteuid(cnp->cn_cred); 5345 gid = parent_gid; 5346 udf_setownership(udf_node, uid, gid); 5347 5348 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5349 if (error) { 5350 /* free disc allocation for node */ 5351 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5352 5353 /* recycle udf_node */ 5354 udf_dispose_node(udf_node); 5355 vput(nvp); 5356 5357 *vpp = NULL; 5358 return error; 5359 } 5360 5361 /* adjust file count */ 5362 udf_adjust_filecount(udf_node, 1); 5363 5364 /* return result */ 5365 *vpp = nvp; 5366 5367 return 0; 5368 } 5369 5370 5371 int 5372 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5373 struct componentname *cnp) 5374 { 5375 int (**vnodeops)(void *); 5376 int udf_file_type; 5377 5378 DPRINTF(NODE, ("udf_create_node called\n")); 5379 5380 /* what type are we creating ? */ 5381 vnodeops = udf_vnodeop_p; 5382 /* start with a default */ 5383 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5384 5385 *vpp = NULL; 5386 5387 switch (vap->va_type) { 5388 case VREG : 5389 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5390 break; 5391 case VDIR : 5392 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5393 break; 5394 case VLNK : 5395 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5396 break; 5397 case VBLK : 5398 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5399 /* specfs */ 5400 return ENOTSUP; 5401 break; 5402 case VCHR : 5403 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5404 /* specfs */ 5405 return ENOTSUP; 5406 break; 5407 case VFIFO : 5408 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5409 /* specfs */ 5410 return ENOTSUP; 5411 break; 5412 case VSOCK : 5413 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5414 /* specfs */ 5415 return ENOTSUP; 5416 break; 5417 case VNON : 5418 case VBAD : 5419 default : 5420 /* nothing; can we even create these? */ 5421 return EINVAL; 5422 } 5423 5424 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp); 5425 } 5426 5427 /* --------------------------------------------------------------------- */ 5428 5429 static void 5430 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5431 { 5432 struct udf_mount *ump = udf_node->ump; 5433 uint32_t lb_size, lb_num, len, num_lb; 5434 uint16_t vpart_num; 5435 5436 /* is there really one? */ 5437 if (mem == NULL) 5438 return; 5439 5440 /* got a descriptor here */ 5441 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5442 lb_num = udf_rw32(loc->loc.lb_num); 5443 vpart_num = udf_rw16(loc->loc.part_num); 5444 5445 lb_size = udf_rw32(ump->logical_vol->lb_size); 5446 num_lb = (len + lb_size -1) / lb_size; 5447 5448 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5449 } 5450 5451 void 5452 udf_delete_node(struct udf_node *udf_node) 5453 { 5454 void *dscr; 5455 struct udf_mount *ump; 5456 struct long_ad *loc; 5457 int extnr, lvint, dummy; 5458 5459 ump = udf_node->ump; 5460 5461 /* paranoia check on integrity; should be open!; we could panic */ 5462 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5463 if (lvint == UDF_INTEGRITY_CLOSED) 5464 printf("\tIntegrity was CLOSED!\n"); 5465 5466 /* whatever the node type, change its size to zero */ 5467 (void) udf_resize_node(udf_node, 0, &dummy); 5468 5469 /* force it to be `clean'; no use writing it out */ 5470 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 5471 IN_CHANGE | IN_UPDATE | IN_MODIFY); 5472 5473 /* adjust file count */ 5474 udf_adjust_filecount(udf_node, -1); 5475 5476 /* 5477 * Free its allocated descriptors; memory will be released when 5478 * vop_reclaim() is called. 5479 */ 5480 loc = &udf_node->loc; 5481 5482 dscr = udf_node->fe; 5483 udf_free_descriptor_space(udf_node, loc, dscr); 5484 dscr = udf_node->efe; 5485 udf_free_descriptor_space(udf_node, loc, dscr); 5486 5487 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 5488 dscr = udf_node->ext[extnr]; 5489 loc = &udf_node->ext_loc[extnr]; 5490 udf_free_descriptor_space(udf_node, loc, dscr); 5491 } 5492 } 5493 5494 /* --------------------------------------------------------------------- */ 5495 5496 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 5497 int 5498 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 5499 { 5500 struct file_entry *fe = udf_node->fe; 5501 struct extfile_entry *efe = udf_node->efe; 5502 uint64_t file_size; 5503 int error; 5504 5505 if (fe) { 5506 file_size = udf_rw64(fe->inf_len); 5507 } else { 5508 assert(udf_node->efe); 5509 file_size = udf_rw64(efe->inf_len); 5510 } 5511 5512 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 5513 file_size, new_size)); 5514 5515 /* if not changing, we're done */ 5516 if (file_size == new_size) 5517 return 0; 5518 5519 *extended = (new_size > file_size); 5520 if (*extended) { 5521 error = udf_grow_node(udf_node, new_size); 5522 } else { 5523 error = udf_shrink_node(udf_node, new_size); 5524 } 5525 5526 return error; 5527 } 5528 5529 5530 /* --------------------------------------------------------------------- */ 5531 5532 void 5533 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 5534 struct timespec *mod, struct timespec *birth) 5535 { 5536 struct timespec now; 5537 struct file_entry *fe; 5538 struct extfile_entry *efe; 5539 struct filetimes_extattr_entry *ft_extattr; 5540 struct timestamp *atime, *mtime, *attrtime, *ctime; 5541 struct timestamp fe_ctime; 5542 struct timespec cur_birth; 5543 uint32_t offset, a_l; 5544 uint8_t *filedata; 5545 int error; 5546 5547 /* protect against rogue values */ 5548 if (!udf_node) 5549 return; 5550 5551 fe = udf_node->fe; 5552 efe = udf_node->efe; 5553 5554 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 5555 return; 5556 5557 /* get descriptor information */ 5558 if (fe) { 5559 atime = &fe->atime; 5560 mtime = &fe->mtime; 5561 attrtime = &fe->attrtime; 5562 filedata = fe->data; 5563 5564 /* initial save dummy setting */ 5565 ctime = &fe_ctime; 5566 5567 /* check our extended attribute if present */ 5568 error = udf_extattr_search_intern(udf_node, 5569 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 5570 if (!error) { 5571 ft_extattr = (struct filetimes_extattr_entry *) 5572 (filedata + offset); 5573 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 5574 ctime = &ft_extattr->times[0]; 5575 } 5576 /* TODO create the extended attribute if not found ? */ 5577 } else { 5578 assert(udf_node->efe); 5579 atime = &efe->atime; 5580 mtime = &efe->mtime; 5581 attrtime = &efe->attrtime; 5582 ctime = &efe->ctime; 5583 } 5584 5585 vfs_timestamp(&now); 5586 5587 /* set access time */ 5588 if (udf_node->i_flags & IN_ACCESS) { 5589 if (acc == NULL) 5590 acc = &now; 5591 udf_timespec_to_timestamp(acc, atime); 5592 } 5593 5594 /* set modification time */ 5595 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 5596 if (mod == NULL) 5597 mod = &now; 5598 udf_timespec_to_timestamp(mod, mtime); 5599 5600 /* ensure birthtime is older than set modification! */ 5601 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 5602 if ((cur_birth.tv_sec > mod->tv_sec) || 5603 ((cur_birth.tv_sec == mod->tv_sec) && 5604 (cur_birth.tv_nsec > mod->tv_nsec))) { 5605 udf_timespec_to_timestamp(mod, ctime); 5606 } 5607 } 5608 5609 /* update birthtime if specified */ 5610 /* XXX we asume here that given birthtime is older than mod */ 5611 if (birth && (birth->tv_sec != VNOVAL)) { 5612 udf_timespec_to_timestamp(birth, ctime); 5613 } 5614 5615 /* set change time */ 5616 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 5617 udf_timespec_to_timestamp(&now, attrtime); 5618 5619 /* notify updates to the node itself */ 5620 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 5621 udf_node->i_flags |= IN_ACCESSED; 5622 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 5623 udf_node->i_flags |= IN_MODIFIED; 5624 5625 /* clear modification flags */ 5626 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 5627 } 5628 5629 /* --------------------------------------------------------------------- */ 5630 5631 int 5632 udf_update(struct vnode *vp, struct timespec *acc, 5633 struct timespec *mod, struct timespec *birth, int updflags) 5634 { 5635 union dscrptr *dscrptr; 5636 struct udf_node *udf_node = VTOI(vp); 5637 struct udf_mount *ump = udf_node->ump; 5638 struct regid *impl_id; 5639 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 5640 int waitfor, flags; 5641 5642 #ifdef DEBUG 5643 char bits[128]; 5644 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 5645 updflags)); 5646 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 5647 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 5648 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 5649 #endif 5650 5651 /* set our times */ 5652 udf_itimes(udf_node, acc, mod, birth); 5653 5654 /* set our implementation id */ 5655 if (udf_node->fe) { 5656 dscrptr = (union dscrptr *) udf_node->fe; 5657 impl_id = &udf_node->fe->imp_id; 5658 } else { 5659 dscrptr = (union dscrptr *) udf_node->efe; 5660 impl_id = &udf_node->efe->imp_id; 5661 } 5662 5663 /* set our ID */ 5664 udf_set_regid(impl_id, IMPL_NAME); 5665 udf_add_impl_regid(ump, impl_id); 5666 5667 /* update our crc! on RMW we are not allowed to change a thing */ 5668 udf_validate_tag_and_crc_sums(dscrptr); 5669 5670 /* if called when mounted readonly, never write back */ 5671 if (vp->v_mount->mnt_flag & MNT_RDONLY) 5672 return 0; 5673 5674 /* check if the node is dirty 'enough'*/ 5675 if (updflags & UPDATE_CLOSE) { 5676 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 5677 } else { 5678 flags = udf_node->i_flags & IN_MODIFIED; 5679 } 5680 if (flags == 0) 5681 return 0; 5682 5683 /* determine if we need to write sync or async */ 5684 waitfor = 0; 5685 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 5686 /* sync mounted */ 5687 waitfor = updflags & UPDATE_WAIT; 5688 if (updflags & UPDATE_DIROP) 5689 waitfor |= UPDATE_WAIT; 5690 } 5691 if (waitfor) 5692 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 5693 5694 return 0; 5695 } 5696 5697 5698 /* --------------------------------------------------------------------- */ 5699 5700 5701 /* 5702 * Read one fid and process it into a dirent and advance to the next (*fid) 5703 * has to be allocated a logical block in size, (*dirent) struct dirent length 5704 */ 5705 5706 int 5707 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 5708 struct fileid_desc *fid, struct dirent *dirent) 5709 { 5710 struct udf_node *dir_node = VTOI(vp); 5711 struct udf_mount *ump = dir_node->ump; 5712 struct file_entry *fe = dir_node->fe; 5713 struct extfile_entry *efe = dir_node->efe; 5714 uint32_t fid_size, lb_size; 5715 uint64_t file_size; 5716 char *fid_name; 5717 int enough, error; 5718 5719 assert(fid); 5720 assert(dirent); 5721 assert(dir_node); 5722 assert(offset); 5723 assert(*offset != 1); 5724 5725 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 5726 /* check if we're past the end of the directory */ 5727 if (fe) { 5728 file_size = udf_rw64(fe->inf_len); 5729 } else { 5730 assert(dir_node->efe); 5731 file_size = udf_rw64(efe->inf_len); 5732 } 5733 if (*offset >= file_size) 5734 return EINVAL; 5735 5736 /* get maximum length of FID descriptor */ 5737 lb_size = udf_rw32(ump->logical_vol->lb_size); 5738 5739 /* initialise return values */ 5740 fid_size = 0; 5741 memset(dirent, 0, sizeof(struct dirent)); 5742 memset(fid, 0, lb_size); 5743 5744 enough = (file_size - (*offset) >= UDF_FID_SIZE); 5745 if (!enough) { 5746 /* short dir ... */ 5747 return EIO; 5748 } 5749 5750 error = vn_rdwr(UIO_READ, vp, 5751 fid, MIN(file_size - (*offset), lb_size), *offset, 5752 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 5753 NULL, NULL); 5754 if (error) 5755 return error; 5756 5757 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 5758 /* 5759 * Check if we got a whole descriptor. 5760 * TODO Try to `resync' directory stream when something is very wrong. 5761 */ 5762 5763 /* check if our FID header is OK */ 5764 error = udf_check_tag(fid); 5765 if (error) { 5766 goto brokendir; 5767 } 5768 DPRINTF(FIDS, ("\ttag check ok\n")); 5769 5770 if (udf_rw16(fid->tag.id) != TAGID_FID) { 5771 error = EIO; 5772 goto brokendir; 5773 } 5774 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 5775 5776 /* check for length */ 5777 fid_size = udf_fidsize(fid); 5778 enough = (file_size - (*offset) >= fid_size); 5779 if (!enough) { 5780 error = EIO; 5781 goto brokendir; 5782 } 5783 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 5784 5785 /* check FID contents */ 5786 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 5787 brokendir: 5788 if (error) { 5789 /* note that is sometimes a bit quick to report */ 5790 printf("BROKEN DIRECTORY ENTRY\n"); 5791 /* RESYNC? */ 5792 /* TODO: use udf_resync_fid_stream */ 5793 return EIO; 5794 } 5795 DPRINTF(FIDS, ("\tpayload checked ok\n")); 5796 5797 /* we got a whole and valid descriptor! */ 5798 DPRINTF(FIDS, ("\tinterpret FID\n")); 5799 5800 /* create resulting dirent structure */ 5801 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 5802 udf_to_unix_name(dirent->d_name, MAXNAMLEN, 5803 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 5804 5805 /* '..' has no name, so provide one */ 5806 if (fid->file_char & UDF_FILE_CHAR_PAR) 5807 strcpy(dirent->d_name, ".."); 5808 5809 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */ 5810 dirent->d_namlen = strlen(dirent->d_name); 5811 dirent->d_reclen = _DIRENT_SIZE(dirent); 5812 5813 /* 5814 * Note that its not worth trying to go for the filetypes now... its 5815 * too expensive too 5816 */ 5817 dirent->d_type = DT_UNKNOWN; 5818 5819 /* initial guess for filetype we can make */ 5820 if (fid->file_char & UDF_FILE_CHAR_DIR) 5821 dirent->d_type = DT_DIR; 5822 5823 /* advance */ 5824 *offset += fid_size; 5825 5826 return error; 5827 } 5828 5829 5830 /* --------------------------------------------------------------------- */ 5831 5832 static void 5833 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor, 5834 int pass, int *ndirty) 5835 { 5836 struct udf_node *udf_node, *n_udf_node; 5837 struct vnode *vp; 5838 int vdirty, error; 5839 int on_type, on_flags, on_vnode; 5840 5841 derailed: 5842 KASSERT(mutex_owned(&mntvnode_lock)); 5843 5844 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 5845 udf_node = LIST_FIRST(&ump->sorted_udf_nodes); 5846 for (;udf_node; udf_node = n_udf_node) { 5847 DPRINTF(SYNC, (".")); 5848 5849 udf_node->i_flags &= ~IN_SYNCED; 5850 vp = udf_node->vnode; 5851 5852 mutex_enter(&vp->v_interlock); 5853 n_udf_node = LIST_NEXT(udf_node, sortchain); 5854 if (n_udf_node) 5855 n_udf_node->i_flags |= IN_SYNCED; 5856 5857 /* system nodes are not synced this way */ 5858 if (vp->v_vflag & VV_SYSTEM) { 5859 mutex_exit(&vp->v_interlock); 5860 continue; 5861 } 5862 5863 /* check if its dirty enough to even try */ 5864 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON); 5865 on_flags = ((udf_node->i_flags & 5866 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0); 5867 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd) 5868 && UVM_OBJ_IS_CLEAN(&vp->v_uobj); 5869 if (on_type || (on_flags || on_vnode)) { /* XXX */ 5870 /* not dirty (enough?) */ 5871 mutex_exit(&vp->v_interlock); 5872 continue; 5873 } 5874 5875 mutex_exit(&mntvnode_lock); 5876 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK); 5877 if (error) { 5878 mutex_enter(&mntvnode_lock); 5879 if (error == ENOENT) 5880 goto derailed; 5881 *ndirty += 1; 5882 continue; 5883 } 5884 5885 switch (pass) { 5886 case 1: 5887 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 5888 break; 5889 case 2: 5890 vdirty = vp->v_numoutput; 5891 if (vp->v_tag == VT_UDF) 5892 vdirty += udf_node->outstanding_bufs + 5893 udf_node->outstanding_nodedscr; 5894 if (vdirty == 0) 5895 VOP_FSYNC(vp, cred, 0,0,0); 5896 *ndirty += vdirty; 5897 break; 5898 case 3: 5899 vdirty = vp->v_numoutput; 5900 if (vp->v_tag == VT_UDF) 5901 vdirty += udf_node->outstanding_bufs + 5902 udf_node->outstanding_nodedscr; 5903 *ndirty += vdirty; 5904 break; 5905 } 5906 5907 vput(vp); 5908 mutex_enter(&mntvnode_lock); 5909 } 5910 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 5911 } 5912 5913 5914 void 5915 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 5916 { 5917 int dummy, ndirty; 5918 5919 mutex_enter(&mntvnode_lock); 5920 recount: 5921 dummy = 0; 5922 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 5923 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 5924 udf_sync_pass(ump, cred, waitfor, 1, &dummy); 5925 5926 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 5927 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 5928 udf_sync_pass(ump, cred, waitfor, 2, &dummy); 5929 5930 if (waitfor == MNT_WAIT) { 5931 ndirty = ump->devvp->v_numoutput; 5932 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 5933 ndirty)); 5934 udf_sync_pass(ump, cred, waitfor, 3, &ndirty); 5935 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 5936 ndirty)); 5937 5938 if (ndirty) { 5939 /* 1/4 second wait */ 5940 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 5941 hz/4); 5942 goto recount; 5943 } 5944 } 5945 5946 mutex_exit(&mntvnode_lock); 5947 } 5948 5949 /* --------------------------------------------------------------------- */ 5950 5951 /* 5952 * Read and write file extent in/from the buffer. 5953 * 5954 * The splitup of the extent into seperate request-buffers is to minimise 5955 * copying around as much as possible. 5956 * 5957 * block based file reading and writing 5958 */ 5959 5960 static int 5961 udf_read_internal(struct udf_node *node, uint8_t *blob) 5962 { 5963 struct udf_mount *ump; 5964 struct file_entry *fe = node->fe; 5965 struct extfile_entry *efe = node->efe; 5966 uint64_t inflen; 5967 uint32_t sector_size; 5968 uint8_t *pos; 5969 int icbflags, addr_type; 5970 5971 /* get extent and do some paranoia checks */ 5972 ump = node->ump; 5973 sector_size = ump->discinfo.sector_size; 5974 5975 if (fe) { 5976 inflen = udf_rw64(fe->inf_len); 5977 pos = &fe->data[0] + udf_rw32(fe->l_ea); 5978 icbflags = udf_rw16(fe->icbtag.flags); 5979 } else { 5980 assert(node->efe); 5981 inflen = udf_rw64(efe->inf_len); 5982 pos = &efe->data[0] + udf_rw32(efe->l_ea); 5983 icbflags = udf_rw16(efe->icbtag.flags); 5984 } 5985 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5986 5987 assert(addr_type == UDF_ICB_INTERN_ALLOC); 5988 assert(inflen < sector_size); 5989 5990 /* copy out info */ 5991 memset(blob, 0, sector_size); 5992 memcpy(blob, pos, inflen); 5993 5994 return 0; 5995 } 5996 5997 5998 static int 5999 udf_write_internal(struct udf_node *node, uint8_t *blob) 6000 { 6001 struct udf_mount *ump; 6002 struct file_entry *fe = node->fe; 6003 struct extfile_entry *efe = node->efe; 6004 uint64_t inflen; 6005 uint32_t sector_size; 6006 uint8_t *pos; 6007 int icbflags, addr_type; 6008 6009 /* get extent and do some paranoia checks */ 6010 ump = node->ump; 6011 sector_size = ump->discinfo.sector_size; 6012 6013 if (fe) { 6014 inflen = udf_rw64(fe->inf_len); 6015 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6016 icbflags = udf_rw16(fe->icbtag.flags); 6017 } else { 6018 assert(node->efe); 6019 inflen = udf_rw64(efe->inf_len); 6020 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6021 icbflags = udf_rw16(efe->icbtag.flags); 6022 } 6023 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6024 6025 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6026 assert(inflen < sector_size); 6027 6028 /* copy in blob */ 6029 /* memset(pos, 0, inflen); */ 6030 memcpy(pos, blob, inflen); 6031 6032 return 0; 6033 } 6034 6035 6036 void 6037 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6038 { 6039 struct buf *nestbuf; 6040 struct udf_mount *ump = udf_node->ump; 6041 uint64_t *mapping; 6042 uint64_t run_start; 6043 uint32_t sector_size; 6044 uint32_t buf_offset, sector, rbuflen, rblk; 6045 uint32_t from, lblkno; 6046 uint32_t sectors; 6047 uint8_t *buf_pos; 6048 int error, run_length, isdir, what; 6049 6050 sector_size = udf_node->ump->discinfo.sector_size; 6051 6052 from = buf->b_blkno; 6053 sectors = buf->b_bcount / sector_size; 6054 6055 isdir = (udf_node->vnode->v_type == VDIR); 6056 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 6057 6058 /* assure we have enough translation slots */ 6059 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6060 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6061 6062 if (sectors > UDF_MAX_MAPPINGS) { 6063 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6064 buf->b_error = EIO; 6065 biodone(buf); 6066 return; 6067 } 6068 6069 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6070 6071 error = 0; 6072 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6073 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6074 if (error) { 6075 buf->b_error = error; 6076 biodone(buf); 6077 goto out; 6078 } 6079 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6080 6081 /* pre-check if its an internal */ 6082 if (*mapping == UDF_TRANS_INTERN) { 6083 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6084 if (error) 6085 buf->b_error = error; 6086 biodone(buf); 6087 goto out; 6088 } 6089 DPRINTF(READ, ("\tnot intern\n")); 6090 6091 #ifdef DEBUG 6092 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6093 printf("Returned translation table:\n"); 6094 for (sector = 0; sector < sectors; sector++) { 6095 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6096 } 6097 } 6098 #endif 6099 6100 /* request read-in of data from disc sheduler */ 6101 buf->b_resid = buf->b_bcount; 6102 for (sector = 0; sector < sectors; sector++) { 6103 buf_offset = sector * sector_size; 6104 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6105 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6106 6107 /* check if its zero or unmapped to stop reading */ 6108 switch (mapping[sector]) { 6109 case UDF_TRANS_UNMAPPED: 6110 case UDF_TRANS_ZERO: 6111 /* copy zero sector TODO runlength like below */ 6112 memset(buf_pos, 0, sector_size); 6113 DPRINTF(READ, ("\treturning zero sector\n")); 6114 nestiobuf_done(buf, sector_size, 0); 6115 break; 6116 default : 6117 DPRINTF(READ, ("\tread sector " 6118 "%"PRIu64"\n", mapping[sector])); 6119 6120 lblkno = from + sector; 6121 run_start = mapping[sector]; 6122 run_length = 1; 6123 while (sector < sectors-1) { 6124 if (mapping[sector+1] != mapping[sector]+1) 6125 break; 6126 run_length++; 6127 sector++; 6128 } 6129 6130 /* 6131 * nest an iobuf and mark it for async reading. Since 6132 * we're using nested buffers, they can't be cached by 6133 * design. 6134 */ 6135 rbuflen = run_length * sector_size; 6136 rblk = run_start * (sector_size/DEV_BSIZE); 6137 6138 nestbuf = getiobuf(NULL, true); 6139 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6140 /* nestbuf is B_ASYNC */ 6141 6142 /* identify this nestbuf */ 6143 nestbuf->b_lblkno = lblkno; 6144 assert(nestbuf->b_vp == udf_node->vnode); 6145 6146 /* CD shedules on raw blkno */ 6147 nestbuf->b_blkno = rblk; 6148 nestbuf->b_proc = NULL; 6149 nestbuf->b_rawblkno = rblk; 6150 nestbuf->b_udf_c_type = what; 6151 6152 udf_discstrat_queuebuf(ump, nestbuf); 6153 } 6154 } 6155 out: 6156 /* if we're synchronously reading, wait for the completion */ 6157 if ((buf->b_flags & B_ASYNC) == 0) 6158 biowait(buf); 6159 6160 DPRINTF(READ, ("\tend of read_filebuf\n")); 6161 free(mapping, M_TEMP); 6162 return; 6163 } 6164 6165 6166 void 6167 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6168 { 6169 struct buf *nestbuf; 6170 struct udf_mount *ump = udf_node->ump; 6171 uint64_t *mapping; 6172 uint64_t run_start; 6173 uint32_t lb_size; 6174 uint32_t buf_offset, lb_num, rbuflen, rblk; 6175 uint32_t from, lblkno; 6176 uint32_t num_lb; 6177 uint8_t *buf_pos; 6178 int error, run_length, isdir, what, s; 6179 6180 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6181 6182 from = buf->b_blkno; 6183 num_lb = buf->b_bcount / lb_size; 6184 6185 isdir = (udf_node->vnode->v_type == VDIR); 6186 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 6187 6188 if (udf_node == ump->metadatabitmap_node) 6189 what = UDF_C_METADATA_SBM; 6190 6191 /* assure we have enough translation slots */ 6192 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6193 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6194 6195 if (num_lb > UDF_MAX_MAPPINGS) { 6196 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6197 buf->b_error = EIO; 6198 biodone(buf); 6199 return; 6200 } 6201 6202 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6203 6204 error = 0; 6205 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6206 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6207 if (error) { 6208 buf->b_error = error; 6209 biodone(buf); 6210 goto out; 6211 } 6212 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6213 6214 /* if its internally mapped, we can write it in the descriptor itself */ 6215 if (*mapping == UDF_TRANS_INTERN) { 6216 /* TODO paranoia check if we ARE going to have enough space */ 6217 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6218 if (error) 6219 buf->b_error = error; 6220 biodone(buf); 6221 goto out; 6222 } 6223 DPRINTF(WRITE, ("\tnot intern\n")); 6224 6225 /* request write out of data to disc sheduler */ 6226 buf->b_resid = buf->b_bcount; 6227 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6228 buf_offset = lb_num * lb_size; 6229 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6230 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6231 6232 /* 6233 * Mappings are not that important here. Just before we write 6234 * the lb_num we late-allocate them when needed and update the 6235 * mapping in the udf_node. 6236 */ 6237 6238 /* XXX why not ignore the mapping altogether ? */ 6239 /* TODO estimate here how much will be late-allocated */ 6240 DPRINTF(WRITE, ("\twrite lb_num " 6241 "%"PRIu64, mapping[lb_num])); 6242 6243 lblkno = from + lb_num; 6244 run_start = mapping[lb_num]; 6245 run_length = 1; 6246 while (lb_num < num_lb-1) { 6247 if (mapping[lb_num+1] != mapping[lb_num]+1) 6248 if (mapping[lb_num+1] != mapping[lb_num]) 6249 break; 6250 run_length++; 6251 lb_num++; 6252 } 6253 DPRINTF(WRITE, ("+ %d\n", run_length)); 6254 6255 /* nest an iobuf on the master buffer for the extent */ 6256 rbuflen = run_length * lb_size; 6257 rblk = run_start * (lb_size/DEV_BSIZE); 6258 6259 #if 0 6260 /* if its zero or unmapped, our blknr gets -1 for unmapped */ 6261 switch (mapping[lb_num]) { 6262 case UDF_TRANS_UNMAPPED: 6263 case UDF_TRANS_ZERO: 6264 rblk = -1; 6265 break; 6266 default: 6267 rblk = run_start * (lb_size/DEV_BSIZE); 6268 break; 6269 } 6270 #endif 6271 6272 nestbuf = getiobuf(NULL, true); 6273 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6274 /* nestbuf is B_ASYNC */ 6275 6276 /* identify this nestbuf */ 6277 nestbuf->b_lblkno = lblkno; 6278 KASSERT(nestbuf->b_vp == udf_node->vnode); 6279 6280 /* CD shedules on raw blkno */ 6281 nestbuf->b_blkno = rblk; 6282 nestbuf->b_proc = NULL; 6283 nestbuf->b_rawblkno = rblk; 6284 nestbuf->b_udf_c_type = what; 6285 6286 /* increment our outstanding bufs counter */ 6287 s = splbio(); 6288 udf_node->outstanding_bufs++; 6289 splx(s); 6290 6291 udf_discstrat_queuebuf(ump, nestbuf); 6292 } 6293 out: 6294 /* if we're synchronously writing, wait for the completion */ 6295 if ((buf->b_flags & B_ASYNC) == 0) 6296 biowait(buf); 6297 6298 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6299 free(mapping, M_TEMP); 6300 return; 6301 } 6302 6303 /* --------------------------------------------------------------------- */ 6304 6305 6306