1 /* $NetBSD: udf_strat_sequential.c,v 1.20 2023/06/27 09:58:50 reinoud Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 #include <sys/cdefs.h> 30 #ifndef lint 31 __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.20 2023/06/27 09:58:50 reinoud Exp $"); 32 #endif /* not lint */ 33 34 35 #if defined(_KERNEL_OPT) 36 #include "opt_compat_netbsd.h" 37 #endif 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/sysctl.h> 42 #include <sys/namei.h> 43 #include <sys/proc.h> 44 #include <sys/kernel.h> 45 #include <sys/vnode.h> 46 #include <miscfs/genfs/genfs_node.h> 47 #include <sys/mount.h> 48 #include <sys/buf.h> 49 #include <sys/file.h> 50 #include <sys/device.h> 51 #include <sys/disklabel.h> 52 #include <sys/ioctl.h> 53 #include <sys/malloc.h> 54 #include <sys/dirent.h> 55 #include <sys/stat.h> 56 #include <sys/conf.h> 57 #include <sys/kauth.h> 58 #include <sys/kthread.h> 59 #include <dev/clock_subr.h> 60 61 #include <fs/udf/ecma167-udf.h> 62 #include <fs/udf/udf_mount.h> 63 64 #include "udf.h" 65 #include "udf_subr.h" 66 #include "udf_bswap.h" 67 68 69 #define VTOI(vnode) ((struct udf_node *) vnode->v_data) 70 #define PRIV(ump) ((struct strat_private *) ump->strategy_private) 71 72 /* --------------------------------------------------------------------- */ 73 74 /* BUFQ's */ 75 #define UDF_SHED_MAX 3 76 77 #define UDF_SHED_READING 0 78 #define UDF_SHED_WRITING 1 79 #define UDF_SHED_SEQWRITING 2 80 81 struct strat_private { 82 struct pool desc_pool; /* node descriptors */ 83 84 lwp_t *queue_lwp; 85 kcondvar_t discstrat_cv; /* to wait on */ 86 kmutex_t discstrat_mutex; /* disc strategy */ 87 88 int thread_running; /* thread control */ 89 int run_thread; /* thread control */ 90 int thread_finished; /* thread control */ 91 92 int sync_req; /* thread control */ 93 int cur_queue; 94 95 struct disk_strategy old_strategy_setting; 96 struct bufq_state *queues[UDF_SHED_MAX]; 97 struct timespec last_queued[UDF_SHED_MAX]; 98 }; 99 100 101 /* --------------------------------------------------------------------- */ 102 103 static void 104 udf_wr_nodedscr_callback(struct buf *buf) 105 { 106 struct udf_node *udf_node; 107 108 KASSERT(buf); 109 KASSERT(buf->b_data); 110 111 /* called when write action is done */ 112 DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n")); 113 114 udf_node = VTOI(buf->b_vp); 115 if (udf_node == NULL) { 116 putiobuf(buf); 117 printf("udf_wr_node_callback: NULL node?\n"); 118 return; 119 } 120 121 /* XXX right flags to mark dirty again on error? */ 122 if (buf->b_error) { 123 udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED; 124 /* XXX TODO reschedule on error */ 125 } 126 127 /* decrement outstanding_nodedscr */ 128 KASSERT(udf_node->outstanding_nodedscr >= 1); 129 udf_node->outstanding_nodedscr--; 130 if (udf_node->outstanding_nodedscr == 0) { 131 /* first unlock the node */ 132 UDF_UNLOCK_NODE(udf_node, 0); 133 cv_broadcast(&udf_node->node_lock); 134 } 135 136 putiobuf(buf); 137 } 138 139 /* --------------------------------------------------------------------- */ 140 141 static int 142 udf_create_logvol_dscr_seq(struct udf_strat_args *args) 143 { 144 union dscrptr **dscrptr = &args->dscr; 145 struct udf_mount *ump = args->ump; 146 struct strat_private *priv = PRIV(ump); 147 uint32_t lb_size; 148 149 lb_size = udf_rw32(ump->logical_vol->lb_size); 150 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK); 151 memset(*dscrptr, 0, lb_size); 152 153 return 0; 154 } 155 156 157 static void 158 udf_free_logvol_dscr_seq(struct udf_strat_args *args) 159 { 160 union dscrptr *dscr = args->dscr; 161 struct udf_mount *ump = args->ump; 162 struct strat_private *priv = PRIV(ump); 163 164 pool_put(&priv->desc_pool, dscr); 165 } 166 167 168 static int 169 udf_read_logvol_dscr_seq(struct udf_strat_args *args) 170 { 171 union dscrptr **dscrptr = &args->dscr; 172 union dscrptr *tmpdscr; 173 struct udf_mount *ump = args->ump; 174 struct long_ad *icb = args->icb; 175 struct strat_private *priv = PRIV(ump); 176 uint32_t lb_size; 177 uint32_t sector, dummy; 178 int error; 179 180 lb_size = udf_rw32(ump->logical_vol->lb_size); 181 182 error = udf_translate_vtop(ump, icb, §or, &dummy); 183 if (error) 184 return error; 185 186 /* try to read in fe/efe */ 187 error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr); 188 if (error) 189 return error; 190 191 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK); 192 memcpy(*dscrptr, tmpdscr, lb_size); 193 free(tmpdscr, M_UDFTEMP); 194 195 return 0; 196 } 197 198 199 static int 200 udf_write_logvol_dscr_seq(struct udf_strat_args *args) 201 { 202 union dscrptr *dscr = args->dscr; 203 struct udf_mount *ump = args->ump; 204 struct udf_node *udf_node = args->udf_node; 205 struct long_ad *icb = args->icb; 206 int waitfor = args->waitfor; 207 uint32_t logsectornr, sectornr, dummy; 208 int error, vpart; 209 210 /* 211 * we have to decide if we write it out sequential or at its fixed 212 * position by examining the partition its (to be) written on. 213 */ 214 vpart = udf_rw16(udf_node->loc.loc.part_num); 215 logsectornr = udf_rw32(icb->loc.lb_num); 216 sectornr = 0; 217 if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) { 218 error = udf_translate_vtop(ump, icb, §ornr, &dummy); 219 if (error) 220 goto out; 221 } 222 223 if (waitfor) { 224 DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n")); 225 226 error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE, 227 dscr, sectornr, logsectornr); 228 } else { 229 DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n")); 230 231 error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE, 232 dscr, sectornr, logsectornr, udf_wr_nodedscr_callback); 233 /* will be UNLOCKED in call back */ 234 return error; 235 } 236 out: 237 udf_node->outstanding_nodedscr--; 238 if (udf_node->outstanding_nodedscr == 0) { 239 UDF_UNLOCK_NODE(udf_node, 0); 240 cv_broadcast(&udf_node->node_lock); 241 } 242 243 return error; 244 } 245 246 /* --------------------------------------------------------------------- */ 247 248 /* 249 * Main file-system specific scheduler. Due to the nature of optical media 250 * scheduling can't be performed in the traditional way. Most OS 251 * implementations i've seen thus read or write a file atomically giving all 252 * kinds of side effects. 253 * 254 * This implementation uses a kernel thread to schedule the queued requests in 255 * such a way that is semi-optimal for optical media; this means approximately 256 * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in 257 * time. 258 */ 259 260 static void 261 udf_queuebuf_seq(struct udf_strat_args *args) 262 { 263 struct udf_mount *ump = args->ump; 264 struct buf *nestbuf = args->nestbuf; 265 struct strat_private *priv = PRIV(ump); 266 int queue; 267 int what; 268 269 KASSERT(ump); 270 KASSERT(nestbuf); 271 KASSERT(nestbuf->b_iodone == nestiobuf_iodone); 272 273 what = nestbuf->b_udf_c_type; 274 queue = UDF_SHED_READING; 275 if ((nestbuf->b_flags & B_READ) == 0) { 276 /* writing */ 277 queue = UDF_SHED_SEQWRITING; 278 if (what == UDF_C_ABSOLUTE) 279 queue = UDF_SHED_WRITING; 280 } 281 282 /* use our own scheduler lists for more complex scheduling */ 283 mutex_enter(&priv->discstrat_mutex); 284 bufq_put(priv->queues[queue], nestbuf); 285 vfs_timestamp(&priv->last_queued[queue]); 286 mutex_exit(&priv->discstrat_mutex); 287 288 /* signal our thread that there might be something to do */ 289 cv_signal(&priv->discstrat_cv); 290 } 291 292 /* --------------------------------------------------------------------- */ 293 294 static void 295 udf_sync_caches_seq(struct udf_strat_args *args) 296 { 297 struct udf_mount *ump = args->ump; 298 struct strat_private *priv = PRIV(ump); 299 300 /* we might be called during unmount inadvertedly, be on safe side */ 301 if (!priv) 302 return; 303 304 /* signal our thread that there might be something to do */ 305 priv->sync_req = 1; 306 cv_signal(&priv->discstrat_cv); 307 308 mutex_enter(&priv->discstrat_mutex); 309 while (priv->sync_req) { 310 cv_timedwait(&priv->discstrat_cv, 311 &priv->discstrat_mutex, hz/8); 312 } 313 mutex_exit(&priv->discstrat_mutex); 314 } 315 316 /* --------------------------------------------------------------------- */ 317 318 /* TODO convert to lb_size */ 319 static void 320 udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map) 321 { 322 union dscrptr *fdscr = (union dscrptr *) buf->b_data; 323 struct vnode *vp = buf->b_vp; 324 struct udf_node *udf_node = VTOI(vp); 325 uint32_t lb_num; 326 uint32_t udf_rw32_lbmap; 327 int c_type = buf->b_udf_c_type; 328 int error; 329 330 /* only interested when we're using a VAT */ 331 KASSERT(ump->vat_node); 332 KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT); 333 334 /* only nodes are recorded in the VAT */ 335 /* NOTE: and the fileset descriptor (FIXME ?) */ 336 if (c_type != UDF_C_NODE) 337 return; 338 339 udf_rw32_lbmap = udf_rw32(lb_map); 340 341 /* if we're the VAT itself, only update our assigned sector number */ 342 if (udf_node == ump->vat_node) { 343 fdscr->tag.tag_loc = udf_rw32_lbmap; 344 udf_validate_tag_sum(fdscr); 345 DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n", 346 udf_rw32(udf_rw32_lbmap))); 347 /* no use mapping the VAT node in the VAT */ 348 return; 349 } 350 351 /* record new position in VAT file */ 352 lb_num = udf_rw32(fdscr->tag.tag_loc); 353 354 /* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */ 355 356 DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n", 357 lb_num, lb_map)); 358 359 /* VAT should be the longer than this write, can't go wrong */ 360 KASSERT(lb_num <= ump->vat_entries); 361 362 mutex_enter(&ump->allocate_mutex); 363 error = udf_vat_write(ump->vat_node, 364 (uint8_t *) &udf_rw32_lbmap, 4, 365 ump->vat_offset + lb_num * 4); 366 mutex_exit(&ump->allocate_mutex); 367 368 if (error) 369 panic( "udf_VAT_mapping_update: HELP! i couldn't " 370 "write in the VAT file ?\n"); 371 } 372 373 374 static void 375 udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf) 376 { 377 union dscrptr *dscr; 378 struct long_ad *node_ad_cpy; 379 struct part_desc *pdesc; 380 uint64_t *lmapping, *lmappos; 381 uint32_t sectornr, bpos; 382 uint32_t ptov; 383 uint16_t vpart_num; 384 uint8_t *fidblk; 385 int sector_size = ump->discinfo.sector_size; 386 int blks = sector_size / DEV_BSIZE; 387 int len, buf_len; 388 389 /* if reading, just pass to the device's STRATEGY */ 390 if (queue == UDF_SHED_READING) { 391 DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d," 392 "b_resid %d, b_bcount %d, b_bufsize %d\n", 393 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type, 394 buf->b_resid, buf->b_bcount, buf->b_bufsize)); 395 VOP_STRATEGY(ump->devvp, buf); 396 return; 397 } 398 399 if (queue == UDF_SHED_WRITING) { 400 DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d " 401 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n", 402 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type, 403 buf->b_resid, buf->b_bcount, buf->b_bufsize)); 404 KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE); 405 406 // udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type); 407 VOP_STRATEGY(ump->devvp, buf); 408 return; 409 } 410 411 KASSERT(queue == UDF_SHED_SEQWRITING); 412 DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX " 413 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n", 414 buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount, 415 buf->b_bufsize)); 416 417 /* 418 * Buffers should not have been allocated to disc addresses yet on 419 * this queue. Note that a buffer can get multiple extents allocated. 420 * 421 * lmapping contains lb_num relative to base partition. 422 */ 423 lmapping = ump->la_lmapping; 424 node_ad_cpy = ump->la_node_ad_cpy; 425 426 /* logically allocate buf and map it in the file */ 427 udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num); 428 429 /* 430 * NOTE We are using the knowledge here that sequential media will 431 * always be mapped linearly. Thus no use to explicitly translate the 432 * lmapping list. 433 */ 434 435 /* calculate offset from physical base partition */ 436 pdesc = ump->partitions[ump->vtop[vpart_num]]; 437 ptov = udf_rw32(pdesc->start_loc); 438 439 /* set buffers blkno to the physical block number */ 440 buf->b_blkno = (*lmapping + ptov) * blks; 441 442 /* fixate floating descriptors */ 443 if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) { 444 /* set our tag location to the absolute position */ 445 dscr = (union dscrptr *) buf->b_data; 446 dscr->tag.tag_loc = udf_rw32(*lmapping + ptov); 447 udf_validate_tag_and_crc_sums(dscr); 448 } 449 450 /* update mapping in the VAT */ 451 if (buf->b_udf_c_type == UDF_C_NODE) { 452 udf_VAT_mapping_update(ump, buf, *lmapping); 453 udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type); 454 } 455 456 /* if we have FIDs, fixup using the new allocation table */ 457 if (buf->b_udf_c_type == UDF_C_FIDS) { 458 buf_len = buf->b_bcount; 459 bpos = 0; 460 lmappos = lmapping; 461 while (buf_len) { 462 sectornr = *lmappos++; 463 len = MIN(buf_len, sector_size); 464 fidblk = (uint8_t *) buf->b_data + bpos; 465 udf_fixup_fid_block(fidblk, sector_size, 466 0, len, sectornr); 467 bpos += len; 468 buf_len -= len; 469 } 470 } 471 472 VOP_STRATEGY(ump->devvp, buf); 473 } 474 475 476 static void 477 udf_doshedule(struct udf_mount *ump) 478 { 479 struct buf *buf; 480 struct timespec now, *last; 481 struct strat_private *priv = PRIV(ump); 482 void (*b_callback)(struct buf *); 483 int new_queue; 484 int error; 485 486 buf = bufq_get(priv->queues[priv->cur_queue]); 487 if (buf) { 488 /* transfer from the current queue to the device queue */ 489 mutex_exit(&priv->discstrat_mutex); 490 491 /* transform buffer to synchronous; XXX needed? */ 492 b_callback = buf->b_iodone; 493 buf->b_iodone = NULL; 494 CLR(buf->b_flags, B_ASYNC); 495 496 /* issue and wait on completion */ 497 udf_issue_buf(ump, priv->cur_queue, buf); 498 biowait(buf); 499 500 mutex_enter(&priv->discstrat_mutex); 501 502 /* if there is an error, repair this error, otherwise propagate */ 503 if (buf->b_error && ((buf->b_flags & B_READ) == 0)) { 504 /* check what we need to do */ 505 panic("UDF write error, can't handle yet!\n"); 506 } 507 508 /* propagate result to higher layers */ 509 if (b_callback) { 510 buf->b_iodone = b_callback; 511 (*buf->b_iodone)(buf); 512 } 513 514 return; 515 } 516 517 /* Check if we're idling in this state */ 518 vfs_timestamp(&now); 519 last = &priv->last_queued[priv->cur_queue]; 520 if (ump->discinfo.mmc_class == MMC_CLASS_CD) { 521 /* dont switch too fast for CD media; its expensive in time */ 522 if (now.tv_sec - last->tv_sec < 3) 523 return; 524 } 525 526 /* check if we can/should switch */ 527 new_queue = priv->cur_queue; 528 529 if (bufq_peek(priv->queues[UDF_SHED_READING])) 530 new_queue = UDF_SHED_READING; 531 if (bufq_peek(priv->queues[UDF_SHED_WRITING])) /* only for unmount */ 532 new_queue = UDF_SHED_WRITING; 533 if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING])) 534 new_queue = UDF_SHED_SEQWRITING; 535 if (priv->cur_queue == UDF_SHED_READING) { 536 if (new_queue == UDF_SHED_SEQWRITING) { 537 /* TODO use flag to signal if this is needed */ 538 mutex_exit(&priv->discstrat_mutex); 539 540 /* update trackinfo for data and metadata */ 541 error = udf_update_trackinfo(ump, 542 &ump->data_track); 543 assert(error == 0); 544 error = udf_update_trackinfo(ump, 545 &ump->metadata_track); 546 assert(error == 0); 547 mutex_enter(&priv->discstrat_mutex); 548 __USE(error); 549 } 550 } 551 552 if (new_queue != priv->cur_queue) { 553 DPRINTF(SHEDULE, ("switching from %d to %d\n", 554 priv->cur_queue, new_queue)); 555 if (new_queue == UDF_SHED_READING) 556 udf_mmc_synchronise_caches(ump); 557 } 558 559 priv->cur_queue = new_queue; 560 } 561 562 563 static void 564 udf_discstrat_thread(void *arg) 565 { 566 struct udf_mount *ump = (struct udf_mount *) arg; 567 struct strat_private *priv = PRIV(ump); 568 int empty; 569 570 empty = 1; 571 572 priv->thread_running = 1; 573 cv_broadcast(&priv->discstrat_cv); 574 575 mutex_enter(&priv->discstrat_mutex); 576 while (priv->run_thread || !empty || priv->sync_req) { 577 /* process the current selected queue */ 578 udf_doshedule(ump); 579 empty = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL); 580 empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL); 581 empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL); 582 583 /* wait for more if needed */ 584 if (empty) { 585 if (priv->sync_req) { 586 /* on sync, we need to simulate a read->write transition */ 587 udf_mmc_synchronise_caches(ump); 588 priv->cur_queue = UDF_SHED_READING; 589 priv->sync_req = 0; 590 } 591 cv_timedwait(&priv->discstrat_cv, 592 &priv->discstrat_mutex, hz/8); 593 } 594 } 595 mutex_exit(&priv->discstrat_mutex); 596 597 priv->thread_running = 0; 598 priv->thread_finished = 1; 599 cv_broadcast(&priv->discstrat_cv); 600 601 kthread_exit(0); 602 /* not reached */ 603 } 604 605 /* --------------------------------------------------------------------- */ 606 607 static void 608 udf_discstrat_init_seq(struct udf_strat_args *args) 609 { 610 struct udf_mount *ump = args->ump; 611 struct strat_private *priv = PRIV(ump); 612 struct disk_strategy dkstrat; 613 uint32_t lb_size; 614 615 KASSERT(ump); 616 KASSERT(ump->logical_vol); 617 KASSERT(priv == NULL); 618 619 lb_size = udf_rw32(ump->logical_vol->lb_size); 620 KASSERT(lb_size > 0); 621 622 /* initialise our memory space */ 623 ump->strategy_private = malloc(sizeof(struct strat_private), 624 M_UDFTEMP, M_WAITOK); 625 priv = ump->strategy_private; 626 memset(priv, 0 , sizeof(struct strat_private)); 627 628 /* initialise locks */ 629 cv_init(&priv->discstrat_cv, "udfstrat"); 630 mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE); 631 632 /* 633 * Initialise pool for descriptors associated with nodes. This is done 634 * in lb_size units though currently lb_size is dictated to be 635 * sector_size. 636 */ 637 pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL, 638 IPL_NONE); 639 640 /* 641 * remember old device strategy method and explicit set method 642 * `discsort' since we have our own more complex strategy that is not 643 * implementable on the CD device and other strategies will get in the 644 * way. 645 */ 646 memset(&priv->old_strategy_setting, 0, 647 sizeof(struct disk_strategy)); 648 VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting, 649 FREAD | FKIOCTL, NOCRED); 650 memset(&dkstrat, 0, sizeof(struct disk_strategy)); 651 strcpy(dkstrat.dks_name, "discsort"); 652 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL, 653 NOCRED); 654 655 /* initialise our internal scheduler */ 656 priv->cur_queue = UDF_SHED_READING; 657 bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort", 658 BUFQ_SORT_RAWBLOCK); 659 bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort", 660 BUFQ_SORT_RAWBLOCK); 661 bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0); 662 vfs_timestamp(&priv->last_queued[UDF_SHED_READING]); 663 vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]); 664 vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]); 665 666 /* create our disk strategy thread */ 667 priv->thread_finished = 0; 668 priv->thread_running = 0; 669 priv->run_thread = 1; 670 priv->sync_req = 0; 671 if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/, 672 udf_discstrat_thread, ump, &priv->queue_lwp, 673 "%s", "udf_rw")) { 674 panic("fork udf_rw"); 675 } 676 677 /* wait for thread to spin up */ 678 mutex_enter(&priv->discstrat_mutex); 679 while (!priv->thread_running) { 680 cv_timedwait(&priv->discstrat_cv, &priv->discstrat_mutex, hz); 681 } 682 mutex_exit(&priv->discstrat_mutex); 683 } 684 685 686 static void 687 udf_discstrat_finish_seq(struct udf_strat_args *args) 688 { 689 struct udf_mount *ump = args->ump; 690 struct strat_private *priv = PRIV(ump); 691 692 if (ump == NULL) 693 return; 694 695 /* stop our scheduling thread */ 696 KASSERT(priv->run_thread == 1); 697 priv->run_thread = 0; 698 699 mutex_enter(&priv->discstrat_mutex); 700 while (!priv->thread_finished) { 701 cv_broadcast(&priv->discstrat_cv); 702 cv_timedwait(&priv->discstrat_cv, &priv->discstrat_mutex, hz); 703 } 704 mutex_exit(&priv->discstrat_mutex); 705 706 /* kthread should be finished now */ 707 708 /* set back old device strategy method */ 709 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting, 710 FWRITE, NOCRED); 711 712 /* destroy our pool */ 713 pool_destroy(&priv->desc_pool); 714 715 mutex_destroy(&priv->discstrat_mutex); 716 cv_destroy(&priv->discstrat_cv); 717 718 /* free our private space */ 719 free(ump->strategy_private, M_UDFTEMP); 720 ump->strategy_private = NULL; 721 } 722 723 /* --------------------------------------------------------------------- */ 724 725 struct udf_strategy udf_strat_sequential = 726 { 727 udf_create_logvol_dscr_seq, 728 udf_free_logvol_dscr_seq, 729 udf_read_logvol_dscr_seq, 730 udf_write_logvol_dscr_seq, 731 udf_queuebuf_seq, 732 udf_sync_caches_seq, 733 udf_discstrat_init_seq, 734 udf_discstrat_finish_seq 735 }; 736 737 738