1 /* $NetBSD: udf_allocation.c,v 1.29 2010/02/26 09:57:39 reinoud Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 #include <sys/cdefs.h> 30 #ifndef lint 31 __KERNEL_RCSID(0, "$NetBSD: udf_allocation.c,v 1.29 2010/02/26 09:57:39 reinoud Exp $"); 32 #endif /* not lint */ 33 34 35 #if defined(_KERNEL_OPT) 36 #include "opt_compat_netbsd.h" 37 #endif 38 39 /* TODO strip */ 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <sys/kthread.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 65 #include "udf.h" 66 #include "udf_subr.h" 67 #include "udf_bswap.h" 68 69 70 #define VTOI(vnode) ((struct udf_node *) vnode->v_data) 71 72 static void udf_record_allocation_in_node(struct udf_mount *ump, 73 struct buf *buf, uint16_t vpart_num, uint64_t *mapping, 74 struct long_ad *node_ad_cpy); 75 76 static void udf_collect_free_space_for_vpart(struct udf_mount *ump, 77 uint16_t vpart_num, uint32_t num_lb); 78 79 static void udf_wipe_adslots(struct udf_node *udf_node); 80 static void udf_count_alloc_exts(struct udf_node *udf_node); 81 82 /* 83 * IDEA/BUSY: Each udf_node gets its own extentwalker state for all operations; 84 * this will hopefully/likely reduce O(nlog(n)) to O(1) for most functionality 85 * since actions are most likely sequencial and thus seeking doesn't need 86 * searching for the same or adjacent position again. 87 */ 88 89 /* --------------------------------------------------------------------- */ 90 91 #if 0 92 #if 1 93 static void 94 udf_node_dump(struct udf_node *udf_node) { 95 struct file_entry *fe; 96 struct extfile_entry *efe; 97 struct icb_tag *icbtag; 98 struct long_ad s_ad; 99 uint64_t inflen; 100 uint32_t icbflags, addr_type; 101 uint32_t len, lb_num; 102 uint32_t flags; 103 int part_num; 104 int lb_size, eof, slot; 105 106 if ((udf_verbose & UDF_DEBUG_NODEDUMP) == 0) 107 return; 108 109 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 110 111 fe = udf_node->fe; 112 efe = udf_node->efe; 113 if (fe) { 114 icbtag = &fe->icbtag; 115 inflen = udf_rw64(fe->inf_len); 116 } else { 117 icbtag = &efe->icbtag; 118 inflen = udf_rw64(efe->inf_len); 119 } 120 121 icbflags = udf_rw16(icbtag->flags); 122 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 123 124 printf("udf_node_dump %p :\n", udf_node); 125 126 if (addr_type == UDF_ICB_INTERN_ALLOC) { 127 printf("\tIntern alloc, len = %"PRIu64"\n", inflen); 128 return; 129 } 130 131 printf("\tInflen = %"PRIu64"\n", inflen); 132 printf("\t\t"); 133 134 slot = 0; 135 for (;;) { 136 udf_get_adslot(udf_node, slot, &s_ad, &eof); 137 if (eof) 138 break; 139 part_num = udf_rw16(s_ad.loc.part_num); 140 lb_num = udf_rw32(s_ad.loc.lb_num); 141 len = udf_rw32(s_ad.len); 142 flags = UDF_EXT_FLAGS(len); 143 len = UDF_EXT_LEN(len); 144 145 printf("["); 146 if (part_num >= 0) 147 printf("part %d, ", part_num); 148 printf("lb_num %d, len %d", lb_num, len); 149 if (flags) 150 printf(", flags %d", flags>>30); 151 printf("] "); 152 153 if (flags == UDF_EXT_REDIRECT) { 154 printf("\n\textent END\n\tallocation extent\n\t\t"); 155 } 156 157 slot++; 158 } 159 printf("\n\tl_ad END\n\n"); 160 } 161 #else 162 #define udf_node_dump(a) 163 #endif 164 165 166 static void 167 udf_assert_allocated(struct udf_mount *ump, uint16_t vpart_num, 168 uint32_t lb_num, uint32_t num_lb) 169 { 170 struct udf_bitmap *bitmap; 171 struct part_desc *pdesc; 172 uint32_t ptov; 173 uint32_t bitval; 174 uint8_t *bpos; 175 int bit; 176 int phys_part; 177 int ok; 178 179 DPRINTF(PARANOIA, ("udf_assert_allocated: check virt lbnum %d " 180 "part %d + %d sect\n", lb_num, vpart_num, num_lb)); 181 182 /* get partition backing up this vpart_num */ 183 pdesc = ump->partitions[ump->vtop[vpart_num]]; 184 185 switch (ump->vtop_tp[vpart_num]) { 186 case UDF_VTOP_TYPE_PHYS : 187 case UDF_VTOP_TYPE_SPARABLE : 188 /* free space to freed or unallocated space bitmap */ 189 ptov = udf_rw32(pdesc->start_loc); 190 phys_part = ump->vtop[vpart_num]; 191 192 /* use unallocated bitmap */ 193 bitmap = &ump->part_unalloc_bits[phys_part]; 194 195 /* if no bitmaps are defined, bail out */ 196 if (bitmap->bits == NULL) 197 break; 198 199 /* check bits */ 200 KASSERT(bitmap->bits); 201 ok = 1; 202 bpos = bitmap->bits + lb_num/8; 203 bit = lb_num % 8; 204 while (num_lb > 0) { 205 bitval = (1 << bit); 206 DPRINTF(PARANOIA, ("XXX : check %d, %p, bit %d\n", 207 lb_num, bpos, bit)); 208 KASSERT(bitmap->bits + lb_num/8 == bpos); 209 if (*bpos & bitval) { 210 printf("\tlb_num %d is NOT marked busy\n", 211 lb_num); 212 ok = 0; 213 } 214 lb_num++; num_lb--; 215 bit = (bit + 1) % 8; 216 if (bit == 0) 217 bpos++; 218 } 219 if (!ok) { 220 /* KASSERT(0); */ 221 } 222 223 break; 224 case UDF_VTOP_TYPE_VIRT : 225 /* TODO check space */ 226 KASSERT(num_lb == 1); 227 break; 228 case UDF_VTOP_TYPE_META : 229 /* TODO check space in the metadata bitmap */ 230 default: 231 /* not implemented */ 232 break; 233 } 234 } 235 236 237 static void 238 udf_node_sanity_check(struct udf_node *udf_node, 239 uint64_t *cnt_inflen, uint64_t *cnt_logblksrec) 240 { 241 union dscrptr *dscr; 242 struct file_entry *fe; 243 struct extfile_entry *efe; 244 struct icb_tag *icbtag; 245 struct long_ad s_ad; 246 uint64_t inflen, logblksrec; 247 uint32_t icbflags, addr_type; 248 uint32_t len, lb_num, l_ea, l_ad, max_l_ad; 249 uint16_t part_num; 250 uint8_t *data_pos; 251 int dscr_size, lb_size, flags, whole_lb; 252 int i, slot, eof; 253 254 // KASSERT(mutex_owned(&udf_node->ump->allocate_mutex)); 255 256 if (1) 257 udf_node_dump(udf_node); 258 259 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 260 261 fe = udf_node->fe; 262 efe = udf_node->efe; 263 if (fe) { 264 dscr = (union dscrptr *) fe; 265 icbtag = &fe->icbtag; 266 inflen = udf_rw64(fe->inf_len); 267 dscr_size = sizeof(struct file_entry) -1; 268 logblksrec = udf_rw64(fe->logblks_rec); 269 l_ad = udf_rw32(fe->l_ad); 270 l_ea = udf_rw32(fe->l_ea); 271 } else { 272 dscr = (union dscrptr *) efe; 273 icbtag = &efe->icbtag; 274 inflen = udf_rw64(efe->inf_len); 275 dscr_size = sizeof(struct extfile_entry) -1; 276 logblksrec = udf_rw64(efe->logblks_rec); 277 l_ad = udf_rw32(efe->l_ad); 278 l_ea = udf_rw32(efe->l_ea); 279 } 280 data_pos = (uint8_t *) dscr + dscr_size + l_ea; 281 max_l_ad = lb_size - dscr_size - l_ea; 282 icbflags = udf_rw16(icbtag->flags); 283 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 284 285 /* check if tail is zero */ 286 DPRINTF(PARANOIA, ("Sanity check blank tail\n")); 287 for (i = l_ad; i < max_l_ad; i++) { 288 if (data_pos[i] != 0) 289 printf( "sanity_check: violation: node byte %d " 290 "has value %d\n", i, data_pos[i]); 291 } 292 293 /* reset counters */ 294 *cnt_inflen = 0; 295 *cnt_logblksrec = 0; 296 297 if (addr_type == UDF_ICB_INTERN_ALLOC) { 298 KASSERT(l_ad <= max_l_ad); 299 KASSERT(l_ad == inflen); 300 *cnt_inflen = inflen; 301 return; 302 } 303 304 /* start counting */ 305 whole_lb = 1; 306 slot = 0; 307 for (;;) { 308 udf_get_adslot(udf_node, slot, &s_ad, &eof); 309 if (eof) 310 break; 311 KASSERT(whole_lb == 1); 312 313 part_num = udf_rw16(s_ad.loc.part_num); 314 lb_num = udf_rw32(s_ad.loc.lb_num); 315 len = udf_rw32(s_ad.len); 316 flags = UDF_EXT_FLAGS(len); 317 len = UDF_EXT_LEN(len); 318 319 if (flags != UDF_EXT_REDIRECT) { 320 *cnt_inflen += len; 321 if (flags == UDF_EXT_ALLOCATED) { 322 *cnt_logblksrec += (len + lb_size -1) / lb_size; 323 } 324 } else { 325 KASSERT(len == lb_size); 326 } 327 /* check allocation */ 328 if (flags == UDF_EXT_ALLOCATED) 329 udf_assert_allocated(udf_node->ump, part_num, lb_num, 330 (len + lb_size - 1) / lb_size); 331 332 /* check whole lb */ 333 whole_lb = ((len % lb_size) == 0); 334 335 slot++; 336 } 337 /* rest should be zero (ad_off > l_ad < max_l_ad - adlen) */ 338 339 KASSERT(*cnt_inflen == inflen); 340 KASSERT(*cnt_logblksrec == logblksrec); 341 342 // KASSERT(mutex_owned(&udf_node->ump->allocate_mutex)); 343 } 344 #else 345 static void 346 udf_node_sanity_check(struct udf_node *udf_node, 347 uint64_t *cnt_inflen, uint64_t *cnt_logblksrec) { 348 struct file_entry *fe; 349 struct extfile_entry *efe; 350 struct icb_tag *icbtag; 351 uint64_t inflen, logblksrec; 352 int dscr_size, lb_size; 353 354 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 355 356 fe = udf_node->fe; 357 efe = udf_node->efe; 358 if (fe) { 359 icbtag = &fe->icbtag; 360 inflen = udf_rw64(fe->inf_len); 361 dscr_size = sizeof(struct file_entry) -1; 362 logblksrec = udf_rw64(fe->logblks_rec); 363 } else { 364 icbtag = &efe->icbtag; 365 inflen = udf_rw64(efe->inf_len); 366 dscr_size = sizeof(struct extfile_entry) -1; 367 logblksrec = udf_rw64(efe->logblks_rec); 368 } 369 *cnt_logblksrec = logblksrec; 370 *cnt_inflen = inflen; 371 } 372 #endif 373 374 /* --------------------------------------------------------------------- */ 375 376 void 377 udf_calc_freespace(struct udf_mount *ump, uint64_t *sizeblks, uint64_t *freeblks) 378 { 379 struct logvol_int_desc *lvid; 380 uint32_t *pos1, *pos2; 381 int vpart, num_vpart; 382 383 lvid = ump->logvol_integrity; 384 *freeblks = *sizeblks = 0; 385 386 /* 387 * Sequentials media report free space directly (CD/DVD/BD-R), for the 388 * other media we need the logical volume integrity. 389 * 390 * We sum all free space up here regardless of type. 391 */ 392 393 KASSERT(lvid); 394 num_vpart = udf_rw32(lvid->num_part); 395 396 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 397 /* use track info directly summing if there are 2 open */ 398 /* XXX assumption at most two tracks open */ 399 *freeblks = ump->data_track.free_blocks; 400 if (ump->data_track.tracknr != ump->metadata_track.tracknr) 401 *freeblks += ump->metadata_track.free_blocks; 402 *sizeblks = ump->discinfo.last_possible_lba; 403 } else { 404 /* free and used space for mountpoint based on logvol integrity */ 405 for (vpart = 0; vpart < num_vpart; vpart++) { 406 pos1 = &lvid->tables[0] + vpart; 407 pos2 = &lvid->tables[0] + num_vpart + vpart; 408 if (udf_rw32(*pos1) != (uint32_t) -1) { 409 *freeblks += udf_rw32(*pos1); 410 *sizeblks += udf_rw32(*pos2); 411 } 412 } 413 } 414 /* adjust for accounted uncommitted blocks */ 415 for (vpart = 0; vpart < num_vpart; vpart++) 416 *freeblks -= ump->uncommitted_lbs[vpart]; 417 418 if (*freeblks > UDF_DISC_SLACK) { 419 *freeblks -= UDF_DISC_SLACK; 420 } else { 421 *freeblks = 0; 422 } 423 } 424 425 426 static void 427 udf_calc_vpart_freespace(struct udf_mount *ump, uint16_t vpart_num, uint64_t *freeblks) 428 { 429 struct logvol_int_desc *lvid; 430 uint32_t *pos1; 431 432 lvid = ump->logvol_integrity; 433 *freeblks = 0; 434 435 /* 436 * Sequentials media report free space directly (CD/DVD/BD-R), for the 437 * other media we need the logical volume integrity. 438 * 439 * We sum all free space up here regardless of type. 440 */ 441 442 KASSERT(lvid); 443 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 444 /* XXX assumption at most two tracks open */ 445 if (vpart_num == ump->data_part) { 446 *freeblks = ump->data_track.free_blocks; 447 } else { 448 *freeblks = ump->metadata_track.free_blocks; 449 } 450 } else { 451 /* free and used space for mountpoint based on logvol integrity */ 452 pos1 = &lvid->tables[0] + vpart_num; 453 if (udf_rw32(*pos1) != (uint32_t) -1) 454 *freeblks += udf_rw32(*pos1); 455 } 456 457 /* adjust for accounted uncommitted blocks */ 458 if (*freeblks > ump->uncommitted_lbs[vpart_num]) { 459 *freeblks -= ump->uncommitted_lbs[vpart_num]; 460 } else { 461 *freeblks = 0; 462 } 463 } 464 465 /* --------------------------------------------------------------------- */ 466 467 int 468 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc, 469 uint32_t *lb_numres, uint32_t *extres) 470 { 471 struct part_desc *pdesc; 472 struct spare_map_entry *sme; 473 struct long_ad s_icb_loc; 474 uint64_t foffset, end_foffset; 475 uint32_t lb_size, len; 476 uint32_t lb_num, lb_rel, lb_packet; 477 uint32_t udf_rw32_lbmap, ext_offset; 478 uint16_t vpart; 479 int rel, part, error, eof, slot, flags; 480 481 assert(ump && icb_loc && lb_numres); 482 483 vpart = udf_rw16(icb_loc->loc.part_num); 484 lb_num = udf_rw32(icb_loc->loc.lb_num); 485 if (vpart > UDF_VTOP_RAWPART) 486 return EINVAL; 487 488 translate_again: 489 part = ump->vtop[vpart]; 490 pdesc = ump->partitions[part]; 491 492 switch (ump->vtop_tp[vpart]) { 493 case UDF_VTOP_TYPE_RAW : 494 /* 1:1 to the end of the device */ 495 *lb_numres = lb_num; 496 *extres = INT_MAX; 497 return 0; 498 case UDF_VTOP_TYPE_PHYS : 499 /* transform into its disc logical block */ 500 if (lb_num > udf_rw32(pdesc->part_len)) 501 return EINVAL; 502 *lb_numres = lb_num + udf_rw32(pdesc->start_loc); 503 504 /* extent from here to the end of the partition */ 505 *extres = udf_rw32(pdesc->part_len) - lb_num; 506 return 0; 507 case UDF_VTOP_TYPE_VIRT : 508 /* only maps one logical block, lookup in VAT */ 509 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */ 510 return EINVAL; 511 512 /* lookup in virtual allocation table file */ 513 mutex_enter(&ump->allocate_mutex); 514 error = udf_vat_read(ump->vat_node, 515 (uint8_t *) &udf_rw32_lbmap, 4, 516 ump->vat_offset + lb_num * 4); 517 mutex_exit(&ump->allocate_mutex); 518 519 if (error) 520 return error; 521 522 lb_num = udf_rw32(udf_rw32_lbmap); 523 524 /* transform into its disc logical block */ 525 if (lb_num > udf_rw32(pdesc->part_len)) 526 return EINVAL; 527 *lb_numres = lb_num + udf_rw32(pdesc->start_loc); 528 529 /* just one logical block */ 530 *extres = 1; 531 return 0; 532 case UDF_VTOP_TYPE_SPARABLE : 533 /* check if the packet containing the lb_num is remapped */ 534 lb_packet = lb_num / ump->sparable_packet_size; 535 lb_rel = lb_num % ump->sparable_packet_size; 536 537 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) { 538 sme = &ump->sparing_table->entries[rel]; 539 if (lb_packet == udf_rw32(sme->org)) { 540 /* NOTE maps to absolute disc logical block! */ 541 *lb_numres = udf_rw32(sme->map) + lb_rel; 542 *extres = ump->sparable_packet_size - lb_rel; 543 return 0; 544 } 545 } 546 547 /* transform into its disc logical block */ 548 if (lb_num > udf_rw32(pdesc->part_len)) 549 return EINVAL; 550 *lb_numres = lb_num + udf_rw32(pdesc->start_loc); 551 552 /* rest of block */ 553 *extres = ump->sparable_packet_size - lb_rel; 554 return 0; 555 case UDF_VTOP_TYPE_META : 556 /* we have to look into the file's allocation descriptors */ 557 558 /* use metadatafile allocation mutex */ 559 lb_size = udf_rw32(ump->logical_vol->lb_size); 560 561 UDF_LOCK_NODE(ump->metadata_node, 0); 562 563 /* get first overlapping extent */ 564 foffset = 0; 565 slot = 0; 566 for (;;) { 567 udf_get_adslot(ump->metadata_node, 568 slot, &s_icb_loc, &eof); 569 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, " 570 "len = %d, lb_num = %d, part = %d\n", 571 slot, eof, 572 UDF_EXT_FLAGS(udf_rw32(s_icb_loc.len)), 573 UDF_EXT_LEN(udf_rw32(s_icb_loc.len)), 574 udf_rw32(s_icb_loc.loc.lb_num), 575 udf_rw16(s_icb_loc.loc.part_num))); 576 if (eof) { 577 DPRINTF(TRANSLATE, 578 ("Meta partition translation " 579 "failed: can't seek location\n")); 580 UDF_UNLOCK_NODE(ump->metadata_node, 0); 581 return EINVAL; 582 } 583 len = udf_rw32(s_icb_loc.len); 584 flags = UDF_EXT_FLAGS(len); 585 len = UDF_EXT_LEN(len); 586 587 if (flags == UDF_EXT_REDIRECT) { 588 slot++; 589 continue; 590 } 591 592 end_foffset = foffset + len; 593 594 if (end_foffset > lb_num * lb_size) 595 break; /* found */ 596 foffset = end_foffset; 597 slot++; 598 } 599 /* found overlapping slot */ 600 ext_offset = lb_num * lb_size - foffset; 601 602 /* process extent offset */ 603 lb_num = udf_rw32(s_icb_loc.loc.lb_num); 604 vpart = udf_rw16(s_icb_loc.loc.part_num); 605 lb_num += (ext_offset + lb_size -1) / lb_size; 606 ext_offset = 0; 607 608 UDF_UNLOCK_NODE(ump->metadata_node, 0); 609 if (flags != UDF_EXT_ALLOCATED) { 610 DPRINTF(TRANSLATE, ("Metadata partition translation " 611 "failed: not allocated\n")); 612 return EINVAL; 613 } 614 615 /* 616 * vpart and lb_num are updated, translate again since we 617 * might be mapped on sparable media 618 */ 619 goto translate_again; 620 default: 621 printf("UDF vtop translation scheme %d unimplemented yet\n", 622 ump->vtop_tp[vpart]); 623 } 624 625 return EINVAL; 626 } 627 628 629 /* XXX provisional primitive braindead version */ 630 /* TODO use ext_res */ 631 void 632 udf_translate_vtop_list(struct udf_mount *ump, uint32_t sectors, 633 uint16_t vpart_num, uint64_t *lmapping, uint64_t *pmapping) 634 { 635 struct long_ad loc; 636 uint32_t lb_numres, ext_res; 637 int sector; 638 639 for (sector = 0; sector < sectors; sector++) { 640 memset(&loc, 0, sizeof(struct long_ad)); 641 loc.loc.part_num = udf_rw16(vpart_num); 642 loc.loc.lb_num = udf_rw32(*lmapping); 643 udf_translate_vtop(ump, &loc, &lb_numres, &ext_res); 644 *pmapping = lb_numres; 645 lmapping++; pmapping++; 646 } 647 } 648 649 650 /* --------------------------------------------------------------------- */ 651 652 /* 653 * Translate an extent (in logical_blocks) into logical block numbers; used 654 * for read and write operations. DOESNT't check extents. 655 */ 656 657 int 658 udf_translate_file_extent(struct udf_node *udf_node, 659 uint32_t from, uint32_t num_lb, 660 uint64_t *map) 661 { 662 struct udf_mount *ump; 663 struct icb_tag *icbtag; 664 struct long_ad t_ad, s_ad; 665 uint64_t transsec; 666 uint64_t foffset, end_foffset; 667 uint32_t transsec32; 668 uint32_t lb_size; 669 uint32_t ext_offset; 670 uint32_t lb_num, len; 671 uint32_t overlap, translen; 672 uint16_t vpart_num; 673 int eof, error, flags; 674 int slot, addr_type, icbflags; 675 676 if (!udf_node) 677 return ENOENT; 678 679 KASSERT(num_lb > 0); 680 681 UDF_LOCK_NODE(udf_node, 0); 682 683 /* initialise derivative vars */ 684 ump = udf_node->ump; 685 lb_size = udf_rw32(ump->logical_vol->lb_size); 686 687 if (udf_node->fe) { 688 icbtag = &udf_node->fe->icbtag; 689 } else { 690 icbtag = &udf_node->efe->icbtag; 691 } 692 icbflags = udf_rw16(icbtag->flags); 693 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 694 695 /* do the work */ 696 if (addr_type == UDF_ICB_INTERN_ALLOC) { 697 *map = UDF_TRANS_INTERN; 698 UDF_UNLOCK_NODE(udf_node, 0); 699 return 0; 700 } 701 702 /* find first overlapping extent */ 703 foffset = 0; 704 slot = 0; 705 for (;;) { 706 udf_get_adslot(udf_node, slot, &s_ad, &eof); 707 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 708 "lb_num = %d, part = %d\n", slot, eof, 709 UDF_EXT_FLAGS(udf_rw32(s_ad.len)), 710 UDF_EXT_LEN(udf_rw32(s_ad.len)), 711 udf_rw32(s_ad.loc.lb_num), 712 udf_rw16(s_ad.loc.part_num))); 713 if (eof) { 714 DPRINTF(TRANSLATE, 715 ("Translate file extent " 716 "failed: can't seek location\n")); 717 UDF_UNLOCK_NODE(udf_node, 0); 718 return EINVAL; 719 } 720 len = udf_rw32(s_ad.len); 721 flags = UDF_EXT_FLAGS(len); 722 len = UDF_EXT_LEN(len); 723 lb_num = udf_rw32(s_ad.loc.lb_num); 724 725 if (flags == UDF_EXT_REDIRECT) { 726 slot++; 727 continue; 728 } 729 730 end_foffset = foffset + len; 731 732 if (end_foffset > from * lb_size) 733 break; /* found */ 734 foffset = end_foffset; 735 slot++; 736 } 737 /* found overlapping slot */ 738 ext_offset = from * lb_size - foffset; 739 740 for (;;) { 741 udf_get_adslot(udf_node, slot, &s_ad, &eof); 742 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 743 "lb_num = %d, part = %d\n", slot, eof, 744 UDF_EXT_FLAGS(udf_rw32(s_ad.len)), 745 UDF_EXT_LEN(udf_rw32(s_ad.len)), 746 udf_rw32(s_ad.loc.lb_num), 747 udf_rw16(s_ad.loc.part_num))); 748 if (eof) { 749 DPRINTF(TRANSLATE, 750 ("Translate file extent " 751 "failed: past eof\n")); 752 UDF_UNLOCK_NODE(udf_node, 0); 753 return EINVAL; 754 } 755 756 len = udf_rw32(s_ad.len); 757 flags = UDF_EXT_FLAGS(len); 758 len = UDF_EXT_LEN(len); 759 760 lb_num = udf_rw32(s_ad.loc.lb_num); 761 vpart_num = udf_rw16(s_ad.loc.part_num); 762 763 end_foffset = foffset + len; 764 765 /* process extent, don't forget to advance on ext_offset! */ 766 lb_num += (ext_offset + lb_size -1) / lb_size; 767 overlap = (len - ext_offset + lb_size -1) / lb_size; 768 ext_offset = 0; 769 770 /* 771 * note that the while(){} is nessisary for the extent that 772 * the udf_translate_vtop() returns doens't have to span the 773 * whole extent. 774 */ 775 776 overlap = MIN(overlap, num_lb); 777 while (overlap && (flags != UDF_EXT_REDIRECT)) { 778 switch (flags) { 779 case UDF_EXT_FREE : 780 case UDF_EXT_ALLOCATED_BUT_NOT_USED : 781 transsec = UDF_TRANS_ZERO; 782 translen = overlap; 783 while (overlap && num_lb && translen) { 784 *map++ = transsec; 785 lb_num++; 786 overlap--; num_lb--; translen--; 787 } 788 break; 789 case UDF_EXT_ALLOCATED : 790 t_ad.loc.lb_num = udf_rw32(lb_num); 791 t_ad.loc.part_num = udf_rw16(vpart_num); 792 error = udf_translate_vtop(ump, 793 &t_ad, &transsec32, &translen); 794 transsec = transsec32; 795 if (error) { 796 UDF_UNLOCK_NODE(udf_node, 0); 797 return error; 798 } 799 while (overlap && num_lb && translen) { 800 *map++ = transsec; 801 lb_num++; transsec++; 802 overlap--; num_lb--; translen--; 803 } 804 break; 805 default: 806 DPRINTF(TRANSLATE, 807 ("Translate file extent " 808 "failed: bad flags %x\n", flags)); 809 UDF_UNLOCK_NODE(udf_node, 0); 810 return EINVAL; 811 } 812 } 813 if (num_lb == 0) 814 break; 815 816 if (flags != UDF_EXT_REDIRECT) 817 foffset = end_foffset; 818 slot++; 819 } 820 UDF_UNLOCK_NODE(udf_node, 0); 821 822 return 0; 823 } 824 825 /* --------------------------------------------------------------------- */ 826 827 static int 828 udf_search_free_vatloc(struct udf_mount *ump, uint32_t *lbnumres) 829 { 830 uint32_t lb_size, lb_num, lb_map, udf_rw32_lbmap; 831 uint8_t *blob; 832 int entry, chunk, found, error; 833 834 KASSERT(ump); 835 KASSERT(ump->logical_vol); 836 837 lb_size = udf_rw32(ump->logical_vol->lb_size); 838 blob = malloc(lb_size, M_UDFTEMP, M_WAITOK); 839 840 /* TODO static allocation of search chunk */ 841 842 lb_num = MIN(ump->vat_entries, ump->vat_last_free_lb); 843 found = 0; 844 error = 0; 845 entry = 0; 846 do { 847 chunk = MIN(lb_size, (ump->vat_entries - lb_num) * 4); 848 if (chunk <= 0) 849 break; 850 /* load in chunk */ 851 error = udf_vat_read(ump->vat_node, blob, chunk, 852 ump->vat_offset + lb_num * 4); 853 854 if (error) 855 break; 856 857 /* search this chunk */ 858 for (entry=0; entry < chunk /4; entry++, lb_num++) { 859 udf_rw32_lbmap = *((uint32_t *) (blob + entry * 4)); 860 lb_map = udf_rw32(udf_rw32_lbmap); 861 if (lb_map == 0xffffffff) { 862 found = 1; 863 break; 864 } 865 } 866 } while (!found); 867 if (error) { 868 printf("udf_search_free_vatloc: error reading in vat chunk " 869 "(lb %d, size %d)\n", lb_num, chunk); 870 } 871 872 if (!found) { 873 /* extend VAT */ 874 DPRINTF(WRITE, ("udf_search_free_vatloc: extending\n")); 875 lb_num = ump->vat_entries; 876 ump->vat_entries++; 877 } 878 879 /* mark entry with initialiser just in case */ 880 lb_map = udf_rw32(0xfffffffe); 881 udf_vat_write(ump->vat_node, (uint8_t *) &lb_map, 4, 882 ump->vat_offset + lb_num *4); 883 ump->vat_last_free_lb = lb_num; 884 885 free(blob, M_UDFTEMP); 886 *lbnumres = lb_num; 887 return 0; 888 } 889 890 891 static void 892 udf_bitmap_allocate(struct udf_bitmap *bitmap, int ismetadata, 893 uint32_t *num_lb, uint64_t *lmappos) 894 { 895 uint32_t offset, lb_num, bit; 896 int32_t diff; 897 uint8_t *bpos; 898 int pass; 899 900 if (!ismetadata) { 901 /* heuristic to keep the two pointers not too close */ 902 diff = bitmap->data_pos - bitmap->metadata_pos; 903 if ((diff >= 0) && (diff < 1024)) 904 bitmap->data_pos = bitmap->metadata_pos + 1024; 905 } 906 offset = ismetadata ? bitmap->metadata_pos : bitmap->data_pos; 907 offset &= ~7; 908 for (pass = 0; pass < 2; pass++) { 909 if (offset >= bitmap->max_offset) 910 offset = 0; 911 912 while (offset < bitmap->max_offset) { 913 if (*num_lb == 0) 914 break; 915 916 /* use first bit not set */ 917 bpos = bitmap->bits + offset/8; 918 bit = ffs(*bpos); /* returns 0 or 1..8 */ 919 if (bit == 0) { 920 offset += 8; 921 continue; 922 } 923 924 /* check for ffs overshoot */ 925 if (offset + bit-1 >= bitmap->max_offset) { 926 offset = bitmap->max_offset; 927 break; 928 } 929 930 DPRINTF(PARANOIA, ("XXX : allocate %d, %p, bit %d\n", 931 offset + bit -1, bpos, bit-1)); 932 *bpos &= ~(1 << (bit-1)); 933 lb_num = offset + bit-1; 934 *lmappos++ = lb_num; 935 *num_lb = *num_lb - 1; 936 // offset = (offset & ~7); 937 } 938 } 939 940 if (ismetadata) { 941 bitmap->metadata_pos = offset; 942 } else { 943 bitmap->data_pos = offset; 944 } 945 } 946 947 948 static void 949 udf_bitmap_free(struct udf_bitmap *bitmap, uint32_t lb_num, uint32_t num_lb) 950 { 951 uint32_t offset; 952 uint32_t bit, bitval; 953 uint8_t *bpos; 954 955 offset = lb_num; 956 957 /* starter bits */ 958 bpos = bitmap->bits + offset/8; 959 bit = offset % 8; 960 while ((bit != 0) && (num_lb > 0)) { 961 bitval = (1 << bit); 962 KASSERT((*bpos & bitval) == 0); 963 DPRINTF(PARANOIA, ("XXX : free %d, %p, %d\n", 964 offset, bpos, bit)); 965 *bpos |= bitval; 966 offset++; num_lb--; 967 bit = (bit + 1) % 8; 968 } 969 if (num_lb == 0) 970 return; 971 972 /* whole bytes */ 973 KASSERT(bit == 0); 974 bpos = bitmap->bits + offset / 8; 975 while (num_lb >= 8) { 976 KASSERT((*bpos == 0)); 977 DPRINTF(PARANOIA, ("XXX : free %d + 8, %p\n", offset, bpos)); 978 *bpos = 255; 979 offset += 8; num_lb -= 8; 980 bpos++; 981 } 982 983 /* stop bits */ 984 KASSERT(num_lb < 8); 985 bit = 0; 986 while (num_lb > 0) { 987 bitval = (1 << bit); 988 KASSERT((*bpos & bitval) == 0); 989 DPRINTF(PARANOIA, ("XXX : free %d, %p, %d\n", 990 offset, bpos, bit)); 991 *bpos |= bitval; 992 offset++; num_lb--; 993 bit = (bit + 1) % 8; 994 } 995 } 996 997 998 static uint32_t 999 udf_bitmap_check_trunc_free(struct udf_bitmap *bitmap, uint32_t to_trunc) 1000 { 1001 uint32_t seq_free, offset; 1002 uint8_t *bpos; 1003 uint8_t bit, bitval; 1004 1005 DPRINTF(RESERVE, ("\ttrying to trunc %d bits from bitmap\n", to_trunc)); 1006 offset = bitmap->max_offset - to_trunc; 1007 1008 /* starter bits (if any) */ 1009 bpos = bitmap->bits + offset/8; 1010 bit = offset % 8; 1011 seq_free = 0; 1012 while (to_trunc > 0) { 1013 seq_free++; 1014 bitval = (1 << bit); 1015 if (!(*bpos & bitval)) 1016 seq_free = 0; 1017 offset++; to_trunc--; 1018 bit++; 1019 if (bit == 8) { 1020 bpos++; 1021 bit = 0; 1022 } 1023 } 1024 1025 DPRINTF(RESERVE, ("\tfound %d sequential free bits in bitmap\n", seq_free)); 1026 return seq_free; 1027 } 1028 1029 /* --------------------------------------------------------------------- */ 1030 1031 /* 1032 * We check for overall disc space with a margin to prevent critical 1033 * conditions. If disc space is low we try to force a sync() to improve our 1034 * estimates. When confronted with meta-data partition size shortage we know 1035 * we have to check if it can be extended and we need to extend it when 1036 * needed. 1037 * 1038 * A 2nd strategy we could use when disc space is getting low on a disc 1039 * formatted with a meta-data partition is to see if there are sparse areas in 1040 * the meta-data partition and free blocks there for extra data. 1041 */ 1042 1043 void 1044 udf_do_reserve_space(struct udf_mount *ump, struct udf_node *udf_node, 1045 uint16_t vpart_num, uint32_t num_lb) 1046 { 1047 ump->uncommitted_lbs[vpart_num] += num_lb; 1048 if (udf_node) 1049 udf_node->uncommitted_lbs += num_lb; 1050 } 1051 1052 1053 void 1054 udf_do_unreserve_space(struct udf_mount *ump, struct udf_node *udf_node, 1055 uint16_t vpart_num, uint32_t num_lb) 1056 { 1057 ump->uncommitted_lbs[vpart_num] -= num_lb; 1058 if (ump->uncommitted_lbs[vpart_num] < 0) { 1059 DPRINTF(RESERVE, ("UDF: underflow on partition reservation, " 1060 "part %d: %d\n", vpart_num, 1061 ump->uncommitted_lbs[vpart_num])); 1062 ump->uncommitted_lbs[vpart_num] = 0; 1063 } 1064 if (udf_node) { 1065 udf_node->uncommitted_lbs -= num_lb; 1066 if (udf_node->uncommitted_lbs < 0) { 1067 DPRINTF(RESERVE, ("UDF: underflow of node " 1068 "reservation : %d\n", 1069 udf_node->uncommitted_lbs)); 1070 udf_node->uncommitted_lbs = 0; 1071 } 1072 } 1073 } 1074 1075 1076 int 1077 udf_reserve_space(struct udf_mount *ump, struct udf_node *udf_node, 1078 int udf_c_type, uint16_t vpart_num, uint32_t num_lb, int can_fail) 1079 { 1080 uint64_t freeblks; 1081 uint64_t slack; 1082 int i, error; 1083 1084 slack = 0; 1085 if (can_fail) 1086 slack = UDF_DISC_SLACK; 1087 1088 error = 0; 1089 mutex_enter(&ump->allocate_mutex); 1090 1091 /* check if there is enough space available */ 1092 for (i = 0; i < 3; i++) { /* XXX arbitrary number */ 1093 udf_calc_vpart_freespace(ump, vpart_num, &freeblks); 1094 if (num_lb + slack < freeblks) 1095 break; 1096 /* issue SYNC */ 1097 DPRINTF(RESERVE, ("udf_reserve_space: issuing sync\n")); 1098 mutex_exit(&ump->allocate_mutex); 1099 udf_do_sync(ump, FSCRED, 0); 1100 mutex_enter(&mntvnode_lock); 1101 /* 1/8 second wait */ 1102 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 1103 hz/8); 1104 mutex_exit(&mntvnode_lock); 1105 mutex_enter(&ump->allocate_mutex); 1106 } 1107 1108 /* check if there is enough space available now */ 1109 udf_calc_vpart_freespace(ump, vpart_num, &freeblks); 1110 if (num_lb + slack >= freeblks) { 1111 DPRINTF(RESERVE, ("udf_reserve_space: try to redistribute " 1112 "partition space\n")); 1113 DPRINTF(RESERVE, ("\tvpart %d, type %d is full\n", 1114 vpart_num, ump->vtop_alloc[vpart_num])); 1115 /* Try to redistribute space if possible */ 1116 udf_collect_free_space_for_vpart(ump, vpart_num, num_lb + slack); 1117 } 1118 1119 /* check if there is enough space available now */ 1120 udf_calc_vpart_freespace(ump, vpart_num, &freeblks); 1121 if (num_lb + slack <= freeblks) { 1122 udf_do_reserve_space(ump, udf_node, vpart_num, num_lb); 1123 } else { 1124 DPRINTF(RESERVE, ("udf_reserve_space: out of disc space\n")); 1125 error = ENOSPC; 1126 } 1127 1128 mutex_exit(&ump->allocate_mutex); 1129 return error; 1130 } 1131 1132 1133 void 1134 udf_cleanup_reservation(struct udf_node *udf_node) 1135 { 1136 struct udf_mount *ump = udf_node->ump; 1137 int vpart_num; 1138 1139 mutex_enter(&ump->allocate_mutex); 1140 1141 /* compensate for overlapping blocks */ 1142 DPRINTF(RESERVE, ("UDF: overlapped %d blocks in count\n", udf_node->uncommitted_lbs)); 1143 1144 vpart_num = udf_get_record_vpart(ump, udf_get_c_type(udf_node)); 1145 udf_do_unreserve_space(ump, udf_node, vpart_num, udf_node->uncommitted_lbs); 1146 1147 DPRINTF(RESERVE, ("\ttotal now %d\n", ump->uncommitted_lbs[vpart_num])); 1148 1149 /* sanity */ 1150 if (ump->uncommitted_lbs[vpart_num] < 0) 1151 ump->uncommitted_lbs[vpart_num] = 0; 1152 1153 mutex_exit(&ump->allocate_mutex); 1154 } 1155 1156 /* --------------------------------------------------------------------- */ 1157 1158 /* 1159 * Allocate an extent of given length on given virt. partition. It doesn't 1160 * have to be one stretch. 1161 */ 1162 1163 int 1164 udf_allocate_space(struct udf_mount *ump, struct udf_node *udf_node, 1165 int udf_c_type, uint16_t vpart_num, uint32_t num_lb, uint64_t *lmapping) 1166 { 1167 struct mmc_trackinfo *alloc_track, *other_track; 1168 struct udf_bitmap *bitmap; 1169 struct part_desc *pdesc; 1170 struct logvol_int_desc *lvid; 1171 uint64_t *lmappos; 1172 uint32_t ptov, lb_num, *freepos, free_lbs; 1173 int lb_size, alloc_num_lb; 1174 int alloc_type, error; 1175 int is_node; 1176 1177 DPRINTF(CALL, ("udf_allocate_space(ctype %d, vpart %d, num_lb %d\n", 1178 udf_c_type, vpart_num, num_lb)); 1179 mutex_enter(&ump->allocate_mutex); 1180 1181 lb_size = udf_rw32(ump->logical_vol->lb_size); 1182 KASSERT(lb_size == ump->discinfo.sector_size); 1183 1184 alloc_type = ump->vtop_alloc[vpart_num]; 1185 is_node = (udf_c_type == UDF_C_NODE); 1186 1187 lmappos = lmapping; 1188 error = 0; 1189 switch (alloc_type) { 1190 case UDF_ALLOC_VAT : 1191 /* search empty slot in VAT file */ 1192 KASSERT(num_lb == 1); 1193 error = udf_search_free_vatloc(ump, &lb_num); 1194 if (!error) { 1195 *lmappos = lb_num; 1196 1197 /* reserve on the backing sequential partition since 1198 * that partition is credited back later */ 1199 udf_do_reserve_space(ump, udf_node, 1200 ump->vtop[vpart_num], num_lb); 1201 } 1202 break; 1203 case UDF_ALLOC_SEQUENTIAL : 1204 /* sequential allocation on recordable media */ 1205 /* get partition backing up this vpart_num_num */ 1206 pdesc = ump->partitions[ump->vtop[vpart_num]]; 1207 1208 /* calculate offset from physical base partition */ 1209 ptov = udf_rw32(pdesc->start_loc); 1210 1211 /* get our track descriptors */ 1212 if (vpart_num == ump->node_part) { 1213 alloc_track = &ump->metadata_track; 1214 other_track = &ump->data_track; 1215 } else { 1216 alloc_track = &ump->data_track; 1217 other_track = &ump->metadata_track; 1218 } 1219 1220 /* allocate */ 1221 for (lb_num = 0; lb_num < num_lb; lb_num++) { 1222 *lmappos++ = alloc_track->next_writable - ptov; 1223 alloc_track->next_writable++; 1224 alloc_track->free_blocks--; 1225 } 1226 1227 /* keep other track up-to-date */ 1228 if (alloc_track->tracknr == other_track->tracknr) 1229 memcpy(other_track, alloc_track, 1230 sizeof(struct mmc_trackinfo)); 1231 break; 1232 case UDF_ALLOC_SPACEMAP : 1233 /* try to allocate on unallocated bits */ 1234 alloc_num_lb = num_lb; 1235 bitmap = &ump->part_unalloc_bits[vpart_num]; 1236 udf_bitmap_allocate(bitmap, is_node, &alloc_num_lb, lmappos); 1237 ump->lvclose |= UDF_WRITE_PART_BITMAPS; 1238 1239 /* have we allocated all? */ 1240 if (alloc_num_lb) { 1241 /* TODO convert freed to unalloc and try again */ 1242 /* free allocated piece for now */ 1243 lmappos = lmapping; 1244 for (lb_num=0; lb_num < num_lb-alloc_num_lb; lb_num++) { 1245 udf_bitmap_free(bitmap, *lmappos++, 1); 1246 } 1247 error = ENOSPC; 1248 } 1249 if (!error) { 1250 /* adjust freecount */ 1251 lvid = ump->logvol_integrity; 1252 freepos = &lvid->tables[0] + vpart_num; 1253 free_lbs = udf_rw32(*freepos); 1254 *freepos = udf_rw32(free_lbs - num_lb); 1255 } 1256 break; 1257 case UDF_ALLOC_METABITMAP : /* UDF 2.50, 2.60 BluRay-RE */ 1258 /* allocate on metadata unallocated bits */ 1259 alloc_num_lb = num_lb; 1260 bitmap = &ump->metadata_unalloc_bits; 1261 udf_bitmap_allocate(bitmap, is_node, &alloc_num_lb, lmappos); 1262 ump->lvclose |= UDF_WRITE_PART_BITMAPS; 1263 1264 /* have we allocated all? */ 1265 if (alloc_num_lb) { 1266 /* YIKES! TODO we need to extend the metadata partition */ 1267 /* free allocated piece for now */ 1268 lmappos = lmapping; 1269 for (lb_num=0; lb_num < num_lb-alloc_num_lb; lb_num++) { 1270 udf_bitmap_free(bitmap, *lmappos++, 1); 1271 } 1272 error = ENOSPC; 1273 } 1274 if (!error) { 1275 /* adjust freecount */ 1276 lvid = ump->logvol_integrity; 1277 freepos = &lvid->tables[0] + vpart_num; 1278 free_lbs = udf_rw32(*freepos); 1279 *freepos = udf_rw32(free_lbs - num_lb); 1280 } 1281 break; 1282 case UDF_ALLOC_METASEQUENTIAL : /* UDF 2.60 BluRay-R */ 1283 case UDF_ALLOC_RELAXEDSEQUENTIAL : /* UDF 2.50/~meta BluRay-R */ 1284 printf("ALERT: udf_allocate_space : allocation %d " 1285 "not implemented yet!\n", alloc_type); 1286 /* TODO implement, doesn't have to be contiguous */ 1287 error = ENOSPC; 1288 break; 1289 } 1290 1291 if (!error) { 1292 /* credit our partition since we have committed the space */ 1293 udf_do_unreserve_space(ump, udf_node, vpart_num, num_lb); 1294 } 1295 1296 #ifdef DEBUG 1297 if (udf_verbose & UDF_DEBUG_ALLOC) { 1298 lmappos = lmapping; 1299 printf("udf_allocate_space, allocated logical lba :\n"); 1300 for (lb_num = 0; lb_num < num_lb; lb_num++) { 1301 printf("%s %"PRIu64, (lb_num > 0)?",":"", 1302 *lmappos++); 1303 } 1304 printf("\n"); 1305 } 1306 #endif 1307 mutex_exit(&ump->allocate_mutex); 1308 1309 return error; 1310 } 1311 1312 /* --------------------------------------------------------------------- */ 1313 1314 void 1315 udf_free_allocated_space(struct udf_mount *ump, uint32_t lb_num, 1316 uint16_t vpart_num, uint32_t num_lb) 1317 { 1318 struct udf_bitmap *bitmap; 1319 struct part_desc *pdesc; 1320 struct logvol_int_desc *lvid; 1321 uint32_t ptov, lb_map, udf_rw32_lbmap; 1322 uint32_t *freepos, free_lbs; 1323 int phys_part; 1324 int error; 1325 1326 DPRINTF(ALLOC, ("udf_free_allocated_space: freeing virt lbnum %d " 1327 "part %d + %d sect\n", lb_num, vpart_num, num_lb)); 1328 1329 /* no use freeing zero length */ 1330 if (num_lb == 0) 1331 return; 1332 1333 mutex_enter(&ump->allocate_mutex); 1334 1335 /* get partition backing up this vpart_num */ 1336 pdesc = ump->partitions[ump->vtop[vpart_num]]; 1337 1338 switch (ump->vtop_tp[vpart_num]) { 1339 case UDF_VTOP_TYPE_PHYS : 1340 case UDF_VTOP_TYPE_SPARABLE : 1341 /* free space to freed or unallocated space bitmap */ 1342 ptov = udf_rw32(pdesc->start_loc); 1343 phys_part = ump->vtop[vpart_num]; 1344 1345 /* first try freed space bitmap */ 1346 bitmap = &ump->part_freed_bits[phys_part]; 1347 1348 /* if not defined, use unallocated bitmap */ 1349 if (bitmap->bits == NULL) 1350 bitmap = &ump->part_unalloc_bits[phys_part]; 1351 1352 /* if no bitmaps are defined, bail out; XXX OK? */ 1353 if (bitmap->bits == NULL) 1354 break; 1355 1356 /* free bits if its defined */ 1357 KASSERT(bitmap->bits); 1358 ump->lvclose |= UDF_WRITE_PART_BITMAPS; 1359 udf_bitmap_free(bitmap, lb_num, num_lb); 1360 1361 /* adjust freecount */ 1362 lvid = ump->logvol_integrity; 1363 freepos = &lvid->tables[0] + vpart_num; 1364 free_lbs = udf_rw32(*freepos); 1365 *freepos = udf_rw32(free_lbs + num_lb); 1366 break; 1367 case UDF_VTOP_TYPE_VIRT : 1368 /* free this VAT entry */ 1369 KASSERT(num_lb == 1); 1370 1371 lb_map = 0xffffffff; 1372 udf_rw32_lbmap = udf_rw32(lb_map); 1373 error = udf_vat_write(ump->vat_node, 1374 (uint8_t *) &udf_rw32_lbmap, 4, 1375 ump->vat_offset + lb_num * 4); 1376 KASSERT(error == 0); 1377 ump->vat_last_free_lb = MIN(ump->vat_last_free_lb, lb_num); 1378 break; 1379 case UDF_VTOP_TYPE_META : 1380 /* free space in the metadata bitmap */ 1381 bitmap = &ump->metadata_unalloc_bits; 1382 KASSERT(bitmap->bits); 1383 1384 ump->lvclose |= UDF_WRITE_PART_BITMAPS; 1385 udf_bitmap_free(bitmap, lb_num, num_lb); 1386 1387 /* adjust freecount */ 1388 lvid = ump->logvol_integrity; 1389 freepos = &lvid->tables[0] + vpart_num; 1390 free_lbs = udf_rw32(*freepos); 1391 *freepos = udf_rw32(free_lbs + num_lb); 1392 break; 1393 default: 1394 printf("ALERT: udf_free_allocated_space : allocation %d " 1395 "not implemented yet!\n", ump->vtop_tp[vpart_num]); 1396 break; 1397 } 1398 1399 mutex_exit(&ump->allocate_mutex); 1400 } 1401 1402 /* --------------------------------------------------------------------- */ 1403 1404 /* 1405 * Special function to synchronise the metadatamirror file when they change on 1406 * resizing. When the metadatafile is actually duplicated, this action is a 1407 * no-op since they describe different extents on the disc. 1408 */ 1409 1410 void udf_synchronise_metadatamirror_node(struct udf_mount *ump) 1411 { 1412 struct udf_node *meta_node, *metamirror_node; 1413 struct long_ad s_ad; 1414 int slot, cpy_slot; 1415 int error, eof; 1416 1417 if (ump->metadata_flags & METADATA_DUPLICATED) 1418 return; 1419 1420 meta_node = ump->metadata_node; 1421 metamirror_node = ump->metadatamirror_node; 1422 1423 /* 1) wipe mirror node */ 1424 udf_wipe_adslots(metamirror_node); 1425 1426 /* 2) copy all node descriptors from the meta_node */ 1427 slot = 0; 1428 cpy_slot = 0; 1429 for (;;) { 1430 udf_get_adslot(meta_node, slot, &s_ad, &eof); 1431 if (eof) 1432 break; 1433 error = udf_append_adslot(metamirror_node, &cpy_slot, &s_ad); 1434 if (error) { 1435 /* WTF, this shouldn't happen, what to do now? */ 1436 panic("udf_synchronise_metadatamirror_node failed!"); 1437 } 1438 slot++; 1439 } 1440 1441 /* 3) adjust metamirror_node size */ 1442 if (meta_node->fe) { 1443 KASSERT(metamirror_node->fe); 1444 metamirror_node->fe->inf_len = meta_node->fe->inf_len; 1445 } else { 1446 KASSERT(meta_node->efe); 1447 KASSERT(metamirror_node->efe); 1448 metamirror_node->efe->inf_len = meta_node->efe->inf_len; 1449 metamirror_node->efe->obj_size = meta_node->efe->obj_size; 1450 } 1451 1452 /* for sanity */ 1453 udf_count_alloc_exts(metamirror_node); 1454 } 1455 1456 /* --------------------------------------------------------------------- */ 1457 1458 /* 1459 * When faced with an out of space but there is still space available on other 1460 * partitions, try to redistribute the space. This is only defined for media 1461 * using Metadata partitions. 1462 * 1463 * There are two formats to deal with. Either its a `normal' metadata 1464 * partition and we can move blocks between a metadata bitmap and its 1465 * companion data spacemap OR its a UDF 2.60 formatted BluRay-R disc with POW 1466 * and a metadata partition. 1467 */ 1468 1469 static uint32_t 1470 udf_trunc_metadatapart(struct udf_mount *ump, uint32_t num_lb) 1471 { 1472 struct udf_node *bitmap_node; 1473 struct udf_bitmap *bitmap; 1474 struct space_bitmap_desc *sbd, *new_sbd; 1475 struct logvol_int_desc *lvid; 1476 uint64_t inf_len; 1477 uint64_t meta_free_lbs, data_free_lbs; 1478 uint32_t *freepos, *sizepos; 1479 uint32_t unit, lb_size, to_trunc; 1480 uint16_t meta_vpart_num, data_vpart_num, num_vpart; 1481 int err; 1482 1483 unit = ump->metadata_alloc_unit_size; 1484 lb_size = udf_rw32(ump->logical_vol->lb_size); 1485 lvid = ump->logvol_integrity; 1486 1487 /* lookup vpart for metadata partition */ 1488 meta_vpart_num = ump->node_part; 1489 KASSERT(ump->vtop_alloc[meta_vpart_num] == UDF_ALLOC_METABITMAP); 1490 1491 /* lookup vpart for data partition */ 1492 data_vpart_num = ump->data_part; 1493 KASSERT(ump->vtop_alloc[data_vpart_num] == UDF_ALLOC_SPACEMAP); 1494 1495 udf_calc_vpart_freespace(ump, data_vpart_num, &data_free_lbs); 1496 udf_calc_vpart_freespace(ump, meta_vpart_num, &meta_free_lbs); 1497 1498 DPRINTF(RESERVE, ("\tfree space on data partition %"PRIu64" blks\n", data_free_lbs)); 1499 DPRINTF(RESERVE, ("\tfree space on metadata partition %"PRIu64" blks\n", meta_free_lbs)); 1500 1501 /* give away some of the free meta space, in unit block sizes */ 1502 to_trunc = meta_free_lbs/4; /* give out a quarter */ 1503 to_trunc = MAX(to_trunc, num_lb); 1504 to_trunc = unit * ((to_trunc + unit-1) / unit); /* round up */ 1505 1506 /* scale down if needed and bail out when out of space */ 1507 if (to_trunc >= meta_free_lbs) 1508 return num_lb; 1509 1510 /* check extent of bits marked free at the end of the map */ 1511 bitmap = &ump->metadata_unalloc_bits; 1512 to_trunc = udf_bitmap_check_trunc_free(bitmap, to_trunc); 1513 to_trunc = unit * (to_trunc / unit); /* round down again */ 1514 if (to_trunc == 0) 1515 return num_lb; 1516 1517 DPRINTF(RESERVE, ("\ttruncating %d lbs from the metadata bitmap\n", 1518 to_trunc)); 1519 1520 /* get length of the metadata bitmap node file */ 1521 bitmap_node = ump->metadatabitmap_node; 1522 if (bitmap_node->fe) { 1523 inf_len = udf_rw64(bitmap_node->fe->inf_len); 1524 } else { 1525 KASSERT(bitmap_node->efe); 1526 inf_len = udf_rw64(bitmap_node->efe->inf_len); 1527 } 1528 inf_len -= to_trunc/8; 1529 1530 /* as per [UDF 2.60/2.2.13.6] : */ 1531 /* 1) update the SBD in the metadata bitmap file */ 1532 sbd = (struct space_bitmap_desc *) bitmap->blob; 1533 sbd->num_bits = udf_rw32(sbd->num_bits) - to_trunc; 1534 sbd->num_bytes = udf_rw32(sbd->num_bytes) - to_trunc/8; 1535 bitmap->max_offset = udf_rw32(sbd->num_bits); 1536 1537 num_vpart = udf_rw32(lvid->num_part); 1538 freepos = &lvid->tables[0] + meta_vpart_num; 1539 sizepos = &lvid->tables[0] + num_vpart + meta_vpart_num; 1540 *freepos = udf_rw32(*freepos) - to_trunc; 1541 *sizepos = udf_rw32(*sizepos) - to_trunc; 1542 1543 /* realloc bitmap for better memory usage */ 1544 new_sbd = realloc(sbd, inf_len, M_UDFVOLD, 1545 M_CANFAIL | M_WAITOK); 1546 if (new_sbd) { 1547 /* update pointers */ 1548 ump->metadata_unalloc_dscr = new_sbd; 1549 bitmap->blob = (uint8_t *) new_sbd; 1550 } 1551 ump->lvclose |= UDF_WRITE_PART_BITMAPS; 1552 1553 /* 1554 * The truncated space is secured now and can't be allocated anymore. Release 1555 * the allocate mutex so we can shrink the nodes the normal way. 1556 */ 1557 mutex_exit(&ump->allocate_mutex); 1558 1559 /* 2) trunc the metadata bitmap information file, freeing blocks */ 1560 err = udf_shrink_node(bitmap_node, inf_len); 1561 KASSERT(err == 0); 1562 1563 /* 3) trunc the metadata file and mirror file, freeing blocks */ 1564 inf_len = udf_rw32(sbd->num_bits) * lb_size; /* [4/14.12.4] */ 1565 err = udf_shrink_node(ump->metadata_node, inf_len); 1566 KASSERT(err == 0); 1567 if (ump->metadatamirror_node && (ump->metadata_flags & METADATA_DUPLICATED)) { 1568 err = udf_shrink_node(ump->metadatamirror_node, inf_len); 1569 KASSERT(err == 0); 1570 } 1571 ump->lvclose |= UDF_WRITE_METAPART_NODES; 1572 1573 /* relock before exit */ 1574 mutex_enter(&ump->allocate_mutex); 1575 1576 if (to_trunc > num_lb) 1577 return 0; 1578 return num_lb - to_trunc; 1579 } 1580 1581 1582 static void 1583 udf_sparsify_metadatapart(struct udf_mount *ump, uint32_t num_lb) 1584 { 1585 /* NOT IMPLEMENTED, fail */ 1586 } 1587 1588 1589 static void 1590 udf_collect_free_space_for_vpart(struct udf_mount *ump, 1591 uint16_t vpart_num, uint32_t num_lb) 1592 { 1593 /* allocate mutex is helt */ 1594 1595 /* only defined for metadata partitions */ 1596 if (ump->vtop_tp[ump->node_part] != UDF_VTOP_TYPE_META) { 1597 DPRINTF(RESERVE, ("\tcan't grow/shrink; no metadata partitioning\n")); 1598 return; 1599 } 1600 1601 /* UDF 2.60 BD-R+POW? */ 1602 if (ump->vtop_alloc[ump->node_part] == UDF_ALLOC_METASEQUENTIAL) { 1603 DPRINTF(RESERVE, ("\tUDF 2.60 BD-R+POW track grow not implemented yet\n")); 1604 return; 1605 } 1606 1607 if (ump->vtop_tp[vpart_num] == UDF_VTOP_TYPE_META) { 1608 /* try to grow the meta partition */ 1609 DPRINTF(RESERVE, ("\ttrying to grow the meta partition\n")); 1610 /* as per [UDF 2.60/2.2.13.5] : extend bitmap and metadata file(s) */ 1611 } else { 1612 /* try to shrink the metadata partition */ 1613 DPRINTF(RESERVE, ("\ttrying to shrink the meta partition\n")); 1614 /* as per [UDF 2.60/2.2.13.6] : either trunc or make sparse */ 1615 num_lb = udf_trunc_metadatapart(ump, num_lb); 1616 if (num_lb) 1617 udf_sparsify_metadatapart(ump, num_lb); 1618 } 1619 1620 /* allocate mutex should still be helt */ 1621 } 1622 1623 /* --------------------------------------------------------------------- */ 1624 1625 /* 1626 * Allocate a buf on disc for direct write out. The space doesn't have to be 1627 * contiguous as the caller takes care of this. 1628 */ 1629 1630 void 1631 udf_late_allocate_buf(struct udf_mount *ump, struct buf *buf, 1632 uint64_t *lmapping, struct long_ad *node_ad_cpy, uint16_t *vpart_nump) 1633 { 1634 struct udf_node *udf_node = VTOI(buf->b_vp); 1635 int lb_size, blks, udf_c_type; 1636 int vpart_num, num_lb; 1637 int error, s; 1638 1639 /* 1640 * for each sector in the buf, allocate a sector on disc and record 1641 * its position in the provided mapping array. 1642 * 1643 * If its userdata or FIDs, record its location in its node. 1644 */ 1645 1646 lb_size = udf_rw32(ump->logical_vol->lb_size); 1647 num_lb = (buf->b_bcount + lb_size -1) / lb_size; 1648 blks = lb_size / DEV_BSIZE; 1649 udf_c_type = buf->b_udf_c_type; 1650 1651 KASSERT(lb_size == ump->discinfo.sector_size); 1652 1653 /* select partition to record the buffer on */ 1654 vpart_num = *vpart_nump = udf_get_record_vpart(ump, udf_c_type); 1655 1656 if (udf_c_type == UDF_C_NODE) { 1657 /* if not VAT, its allready allocated */ 1658 if (ump->vtop_alloc[ump->node_part] != UDF_ALLOC_VAT) 1659 return; 1660 1661 /* allocate on its backing sequential partition */ 1662 vpart_num = ump->data_part; 1663 } 1664 1665 /* XXX can this still happen? */ 1666 /* do allocation on the selected partition */ 1667 error = udf_allocate_space(ump, udf_node, udf_c_type, 1668 vpart_num, num_lb, lmapping); 1669 if (error) { 1670 /* 1671 * ARGH! we haven't done our accounting right! it should 1672 * allways succeed. 1673 */ 1674 panic("UDF disc allocation accounting gone wrong"); 1675 } 1676 1677 /* If its userdata or FIDs, record its allocation in its node. */ 1678 if ((udf_c_type == UDF_C_USERDATA) || 1679 (udf_c_type == UDF_C_FIDS) || 1680 (udf_c_type == UDF_C_METADATA_SBM)) 1681 { 1682 udf_record_allocation_in_node(ump, buf, vpart_num, lmapping, 1683 node_ad_cpy); 1684 /* decrement our outstanding bufs counter */ 1685 s = splbio(); 1686 udf_node->outstanding_bufs--; 1687 splx(s); 1688 } 1689 } 1690 1691 /* --------------------------------------------------------------------- */ 1692 1693 /* 1694 * Try to merge a1 with the new piece a2. udf_ads_merge returns error when not 1695 * possible (anymore); a2 returns the rest piece. 1696 */ 1697 1698 static int 1699 udf_ads_merge(uint32_t lb_size, struct long_ad *a1, struct long_ad *a2) 1700 { 1701 uint32_t max_len, merge_len; 1702 uint32_t a1_len, a2_len; 1703 uint32_t a1_flags, a2_flags; 1704 uint32_t a1_lbnum, a2_lbnum; 1705 uint16_t a1_part, a2_part; 1706 1707 max_len = ((UDF_EXT_MAXLEN / lb_size) * lb_size); 1708 1709 a1_flags = UDF_EXT_FLAGS(udf_rw32(a1->len)); 1710 a1_len = UDF_EXT_LEN(udf_rw32(a1->len)); 1711 a1_lbnum = udf_rw32(a1->loc.lb_num); 1712 a1_part = udf_rw16(a1->loc.part_num); 1713 1714 a2_flags = UDF_EXT_FLAGS(udf_rw32(a2->len)); 1715 a2_len = UDF_EXT_LEN(udf_rw32(a2->len)); 1716 a2_lbnum = udf_rw32(a2->loc.lb_num); 1717 a2_part = udf_rw16(a2->loc.part_num); 1718 1719 /* defines same space */ 1720 if (a1_flags != a2_flags) 1721 return 1; 1722 1723 if (a1_flags != UDF_EXT_FREE) { 1724 /* the same partition */ 1725 if (a1_part != a2_part) 1726 return 1; 1727 1728 /* a2 is successor of a1 */ 1729 if (a1_lbnum * lb_size + a1_len != a2_lbnum * lb_size) 1730 return 1; 1731 } 1732 1733 /* merge as most from a2 if possible */ 1734 merge_len = MIN(a2_len, max_len - a1_len); 1735 a1_len += merge_len; 1736 a2_len -= merge_len; 1737 a2_lbnum += merge_len/lb_size; 1738 1739 a1->len = udf_rw32(a1_len | a1_flags); 1740 a2->len = udf_rw32(a2_len | a2_flags); 1741 a2->loc.lb_num = udf_rw32(a2_lbnum); 1742 1743 if (a2_len > 0) 1744 return 1; 1745 1746 /* there is space over to merge */ 1747 return 0; 1748 } 1749 1750 /* --------------------------------------------------------------------- */ 1751 1752 static void 1753 udf_wipe_adslots(struct udf_node *udf_node) 1754 { 1755 struct file_entry *fe; 1756 struct extfile_entry *efe; 1757 struct alloc_ext_entry *ext; 1758 uint64_t inflen, objsize; 1759 uint32_t lb_size, dscr_size, l_ea, l_ad, max_l_ad, crclen; 1760 uint8_t *data_pos; 1761 int extnr; 1762 1763 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 1764 1765 fe = udf_node->fe; 1766 efe = udf_node->efe; 1767 if (fe) { 1768 inflen = udf_rw64(fe->inf_len); 1769 objsize = inflen; 1770 dscr_size = sizeof(struct file_entry) -1; 1771 l_ea = udf_rw32(fe->l_ea); 1772 l_ad = udf_rw32(fe->l_ad); 1773 data_pos = (uint8_t *) fe + dscr_size + l_ea; 1774 } else { 1775 inflen = udf_rw64(efe->inf_len); 1776 objsize = udf_rw64(efe->obj_size); 1777 dscr_size = sizeof(struct extfile_entry) -1; 1778 l_ea = udf_rw32(efe->l_ea); 1779 l_ad = udf_rw32(efe->l_ad); 1780 data_pos = (uint8_t *) efe + dscr_size + l_ea; 1781 } 1782 max_l_ad = lb_size - dscr_size - l_ea; 1783 1784 /* wipe fe/efe */ 1785 memset(data_pos, 0, max_l_ad); 1786 crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea; 1787 if (fe) { 1788 fe->l_ad = udf_rw32(0); 1789 fe->logblks_rec = udf_rw64(0); 1790 fe->tag.desc_crc_len = udf_rw16(crclen); 1791 } else { 1792 efe->l_ad = udf_rw32(0); 1793 efe->logblks_rec = udf_rw64(0); 1794 efe->tag.desc_crc_len = udf_rw16(crclen); 1795 } 1796 1797 /* wipe all allocation extent entries */ 1798 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 1799 ext = udf_node->ext[extnr]; 1800 dscr_size = sizeof(struct alloc_ext_entry) -1; 1801 data_pos = (uint8_t *) ext->data; 1802 max_l_ad = lb_size - dscr_size; 1803 memset(data_pos, 0, max_l_ad); 1804 ext->l_ad = udf_rw32(0); 1805 1806 crclen = dscr_size - UDF_DESC_TAG_LENGTH; 1807 ext->tag.desc_crc_len = udf_rw16(crclen); 1808 } 1809 udf_node->i_flags |= IN_NODE_REBUILD; 1810 } 1811 1812 /* --------------------------------------------------------------------- */ 1813 1814 void 1815 udf_get_adslot(struct udf_node *udf_node, int slot, struct long_ad *icb, 1816 int *eof) { 1817 struct file_entry *fe; 1818 struct extfile_entry *efe; 1819 struct alloc_ext_entry *ext; 1820 struct icb_tag *icbtag; 1821 struct short_ad *short_ad; 1822 struct long_ad *long_ad, l_icb; 1823 uint32_t offset; 1824 uint32_t lb_size, dscr_size, l_ea, l_ad, flags; 1825 uint8_t *data_pos; 1826 int icbflags, addr_type, adlen, extnr; 1827 1828 /* determine what descriptor we are in */ 1829 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 1830 1831 fe = udf_node->fe; 1832 efe = udf_node->efe; 1833 if (fe) { 1834 icbtag = &fe->icbtag; 1835 dscr_size = sizeof(struct file_entry) -1; 1836 l_ea = udf_rw32(fe->l_ea); 1837 l_ad = udf_rw32(fe->l_ad); 1838 data_pos = (uint8_t *) fe + dscr_size + l_ea; 1839 } else { 1840 icbtag = &efe->icbtag; 1841 dscr_size = sizeof(struct extfile_entry) -1; 1842 l_ea = udf_rw32(efe->l_ea); 1843 l_ad = udf_rw32(efe->l_ad); 1844 data_pos = (uint8_t *) efe + dscr_size + l_ea; 1845 } 1846 1847 icbflags = udf_rw16(icbtag->flags); 1848 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 1849 1850 /* just in case we're called on an intern, its EOF */ 1851 if (addr_type == UDF_ICB_INTERN_ALLOC) { 1852 memset(icb, 0, sizeof(struct long_ad)); 1853 *eof = 1; 1854 return; 1855 } 1856 1857 adlen = 0; 1858 if (addr_type == UDF_ICB_SHORT_ALLOC) { 1859 adlen = sizeof(struct short_ad); 1860 } else if (addr_type == UDF_ICB_LONG_ALLOC) { 1861 adlen = sizeof(struct long_ad); 1862 } 1863 1864 /* if offset too big, we go to the allocation extensions */ 1865 offset = slot * adlen; 1866 extnr = -1; 1867 while (offset >= l_ad) { 1868 /* check if our last entry is a redirect */ 1869 if (addr_type == UDF_ICB_SHORT_ALLOC) { 1870 short_ad = (struct short_ad *) (data_pos + l_ad-adlen); 1871 l_icb.len = short_ad->len; 1872 l_icb.loc.part_num = udf_node->loc.loc.part_num; 1873 l_icb.loc.lb_num = short_ad->lb_num; 1874 } else { 1875 KASSERT(addr_type == UDF_ICB_LONG_ALLOC); 1876 long_ad = (struct long_ad *) (data_pos + l_ad-adlen); 1877 l_icb = *long_ad; 1878 } 1879 flags = UDF_EXT_FLAGS(udf_rw32(l_icb.len)); 1880 if (flags != UDF_EXT_REDIRECT) { 1881 l_ad = 0; /* force EOF */ 1882 break; 1883 } 1884 1885 /* advance to next extent */ 1886 extnr++; 1887 if (extnr >= udf_node->num_extensions) { 1888 l_ad = 0; /* force EOF */ 1889 break; 1890 } 1891 offset = offset - l_ad; 1892 ext = udf_node->ext[extnr]; 1893 dscr_size = sizeof(struct alloc_ext_entry) -1; 1894 l_ad = udf_rw32(ext->l_ad); 1895 data_pos = (uint8_t *) ext + dscr_size; 1896 } 1897 1898 /* XXX l_ad == 0 should be enough to check */ 1899 *eof = (offset >= l_ad) || (l_ad == 0); 1900 if (*eof) { 1901 DPRINTF(PARANOIDADWLK, ("returning EOF, extnr %d, offset %d, " 1902 "l_ad %d\n", extnr, offset, l_ad)); 1903 memset(icb, 0, sizeof(struct long_ad)); 1904 return; 1905 } 1906 1907 /* get the element */ 1908 if (addr_type == UDF_ICB_SHORT_ALLOC) { 1909 short_ad = (struct short_ad *) (data_pos + offset); 1910 icb->len = short_ad->len; 1911 icb->loc.part_num = udf_node->loc.loc.part_num; 1912 icb->loc.lb_num = short_ad->lb_num; 1913 } else if (addr_type == UDF_ICB_LONG_ALLOC) { 1914 long_ad = (struct long_ad *) (data_pos + offset); 1915 *icb = *long_ad; 1916 } 1917 DPRINTF(PARANOIDADWLK, ("returning element : v %d, lb %d, len %d, " 1918 "flags %d\n", icb->loc.part_num, icb->loc.lb_num, 1919 UDF_EXT_LEN(icb->len), UDF_EXT_FLAGS(icb->len))); 1920 } 1921 1922 /* --------------------------------------------------------------------- */ 1923 1924 int 1925 udf_append_adslot(struct udf_node *udf_node, int *slot, struct long_ad *icb) { 1926 struct udf_mount *ump = udf_node->ump; 1927 union dscrptr *dscr, *extdscr; 1928 struct file_entry *fe; 1929 struct extfile_entry *efe; 1930 struct alloc_ext_entry *ext; 1931 struct icb_tag *icbtag; 1932 struct short_ad *short_ad; 1933 struct long_ad *long_ad, o_icb, l_icb; 1934 uint64_t logblks_rec, *logblks_rec_p; 1935 uint64_t lmapping; 1936 uint32_t offset, rest, len, lb_num; 1937 uint32_t lb_size, dscr_size, l_ea, l_ad, *l_ad_p, max_l_ad, crclen; 1938 uint32_t flags; 1939 uint16_t vpart_num; 1940 uint8_t *data_pos; 1941 int icbflags, addr_type, adlen, extnr; 1942 int error; 1943 1944 lb_size = udf_rw32(ump->logical_vol->lb_size); 1945 vpart_num = udf_rw16(udf_node->loc.loc.part_num); 1946 1947 /* determine what descriptor we are in */ 1948 fe = udf_node->fe; 1949 efe = udf_node->efe; 1950 if (fe) { 1951 icbtag = &fe->icbtag; 1952 dscr = (union dscrptr *) fe; 1953 dscr_size = sizeof(struct file_entry) -1; 1954 1955 l_ea = udf_rw32(fe->l_ea); 1956 l_ad_p = &fe->l_ad; 1957 logblks_rec_p = &fe->logblks_rec; 1958 } else { 1959 icbtag = &efe->icbtag; 1960 dscr = (union dscrptr *) efe; 1961 dscr_size = sizeof(struct extfile_entry) -1; 1962 1963 l_ea = udf_rw32(efe->l_ea); 1964 l_ad_p = &efe->l_ad; 1965 logblks_rec_p = &efe->logblks_rec; 1966 } 1967 data_pos = (uint8_t *) dscr + dscr_size + l_ea; 1968 max_l_ad = lb_size - dscr_size - l_ea; 1969 1970 icbflags = udf_rw16(icbtag->flags); 1971 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 1972 1973 /* just in case we're called on an intern, its EOF */ 1974 if (addr_type == UDF_ICB_INTERN_ALLOC) { 1975 panic("udf_append_adslot on UDF_ICB_INTERN_ALLOC\n"); 1976 } 1977 1978 adlen = 0; 1979 if (addr_type == UDF_ICB_SHORT_ALLOC) { 1980 adlen = sizeof(struct short_ad); 1981 } else if (addr_type == UDF_ICB_LONG_ALLOC) { 1982 adlen = sizeof(struct long_ad); 1983 } 1984 1985 /* clean up given long_ad since it can be a synthesized one */ 1986 flags = UDF_EXT_FLAGS(udf_rw32(icb->len)); 1987 if (flags == UDF_EXT_FREE) { 1988 icb->loc.part_num = udf_rw16(0); 1989 icb->loc.lb_num = udf_rw32(0); 1990 } 1991 1992 /* if offset too big, we go to the allocation extensions */ 1993 l_ad = udf_rw32(*l_ad_p); 1994 offset = (*slot) * adlen; 1995 extnr = -1; 1996 while (offset >= l_ad) { 1997 /* check if our last entry is a redirect */ 1998 if (addr_type == UDF_ICB_SHORT_ALLOC) { 1999 short_ad = (struct short_ad *) (data_pos + l_ad-adlen); 2000 l_icb.len = short_ad->len; 2001 l_icb.loc.part_num = udf_node->loc.loc.part_num; 2002 l_icb.loc.lb_num = short_ad->lb_num; 2003 } else { 2004 KASSERT(addr_type == UDF_ICB_LONG_ALLOC); 2005 long_ad = (struct long_ad *) (data_pos + l_ad-adlen); 2006 l_icb = *long_ad; 2007 } 2008 flags = UDF_EXT_FLAGS(udf_rw32(l_icb.len)); 2009 if (flags != UDF_EXT_REDIRECT) { 2010 /* only one past the last one is adressable */ 2011 break; 2012 } 2013 2014 /* advance to next extent */ 2015 extnr++; 2016 KASSERT(extnr < udf_node->num_extensions); 2017 offset = offset - l_ad; 2018 2019 ext = udf_node->ext[extnr]; 2020 dscr = (union dscrptr *) ext; 2021 dscr_size = sizeof(struct alloc_ext_entry) -1; 2022 max_l_ad = lb_size - dscr_size; 2023 l_ad_p = &ext->l_ad; 2024 l_ad = udf_rw32(*l_ad_p); 2025 data_pos = (uint8_t *) ext + dscr_size; 2026 } 2027 DPRINTF(PARANOIDADWLK, ("append, ext %d, offset %d, l_ad %d\n", 2028 extnr, offset, udf_rw32(*l_ad_p))); 2029 KASSERT(l_ad == udf_rw32(*l_ad_p)); 2030 2031 /* offset is offset within the current (E)FE/AED */ 2032 l_ad = udf_rw32(*l_ad_p); 2033 crclen = udf_rw16(dscr->tag.desc_crc_len); 2034 logblks_rec = udf_rw64(*logblks_rec_p); 2035 2036 /* overwriting old piece? */ 2037 if (offset < l_ad) { 2038 /* overwrite entry; compensate for the old element */ 2039 if (addr_type == UDF_ICB_SHORT_ALLOC) { 2040 short_ad = (struct short_ad *) (data_pos + offset); 2041 o_icb.len = short_ad->len; 2042 o_icb.loc.part_num = udf_rw16(0); /* ignore */ 2043 o_icb.loc.lb_num = short_ad->lb_num; 2044 } else if (addr_type == UDF_ICB_LONG_ALLOC) { 2045 long_ad = (struct long_ad *) (data_pos + offset); 2046 o_icb = *long_ad; 2047 } else { 2048 panic("Invalid address type in udf_append_adslot\n"); 2049 } 2050 2051 len = udf_rw32(o_icb.len); 2052 if (UDF_EXT_FLAGS(len) == UDF_EXT_ALLOCATED) { 2053 /* adjust counts */ 2054 len = UDF_EXT_LEN(len); 2055 logblks_rec -= (len + lb_size -1) / lb_size; 2056 } 2057 } 2058 2059 /* check if we're not appending a redirection */ 2060 flags = UDF_EXT_FLAGS(udf_rw32(icb->len)); 2061 KASSERT(flags != UDF_EXT_REDIRECT); 2062 2063 /* round down available space */ 2064 rest = adlen * ((max_l_ad - offset) / adlen); 2065 if (rest <= adlen) { 2066 /* have to append aed, see if we already have a spare one */ 2067 extnr++; 2068 ext = udf_node->ext[extnr]; 2069 l_icb = udf_node->ext_loc[extnr]; 2070 if (ext == NULL) { 2071 DPRINTF(ALLOC,("adding allocation extent %d\n", extnr)); 2072 2073 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 2074 vpart_num, 1, /* can fail */ false); 2075 if (error) { 2076 printf("UDF: couldn't reserve space for AED!\n"); 2077 return error; 2078 } 2079 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 2080 vpart_num, 1, &lmapping); 2081 lb_num = lmapping; 2082 if (error) 2083 panic("UDF: couldn't allocate AED!\n"); 2084 2085 /* initialise pointer to location */ 2086 memset(&l_icb, 0, sizeof(struct long_ad)); 2087 l_icb.len = udf_rw32(lb_size | UDF_EXT_REDIRECT); 2088 l_icb.loc.lb_num = udf_rw32(lb_num); 2089 l_icb.loc.part_num = udf_rw16(vpart_num); 2090 2091 /* create new aed descriptor */ 2092 udf_create_logvol_dscr(ump, udf_node, &l_icb, &extdscr); 2093 ext = &extdscr->aee; 2094 2095 udf_inittag(ump, &ext->tag, TAGID_ALLOCEXTENT, lb_num); 2096 dscr_size = sizeof(struct alloc_ext_entry) -1; 2097 max_l_ad = lb_size - dscr_size; 2098 memset(ext->data, 0, max_l_ad); 2099 ext->l_ad = udf_rw32(0); 2100 ext->tag.desc_crc_len = 2101 udf_rw16(dscr_size - UDF_DESC_TAG_LENGTH); 2102 2103 /* declare aed */ 2104 udf_node->num_extensions++; 2105 udf_node->ext_loc[extnr] = l_icb; 2106 udf_node->ext[extnr] = ext; 2107 } 2108 /* add redirect and adjust l_ad and crclen for old descr */ 2109 if (addr_type == UDF_ICB_SHORT_ALLOC) { 2110 short_ad = (struct short_ad *) (data_pos + offset); 2111 short_ad->len = l_icb.len; 2112 short_ad->lb_num = l_icb.loc.lb_num; 2113 } else if (addr_type == UDF_ICB_LONG_ALLOC) { 2114 long_ad = (struct long_ad *) (data_pos + offset); 2115 *long_ad = l_icb; 2116 } 2117 l_ad += adlen; 2118 crclen += adlen; 2119 dscr->tag.desc_crc_len = udf_rw16(crclen); 2120 *l_ad_p = udf_rw32(l_ad); 2121 2122 /* advance to the new extension */ 2123 KASSERT(ext != NULL); 2124 dscr = (union dscrptr *) ext; 2125 dscr_size = sizeof(struct alloc_ext_entry) -1; 2126 max_l_ad = lb_size - dscr_size; 2127 data_pos = (uint8_t *) dscr + dscr_size; 2128 2129 l_ad_p = &ext->l_ad; 2130 l_ad = udf_rw32(*l_ad_p); 2131 crclen = udf_rw16(dscr->tag.desc_crc_len); 2132 offset = 0; 2133 2134 /* adjust callees slot count for link insert */ 2135 *slot += 1; 2136 } 2137 2138 /* write out the element */ 2139 DPRINTF(PARANOIDADWLK, ("adding element : %p : v %d, lb %d, " 2140 "len %d, flags %d\n", data_pos + offset, 2141 icb->loc.part_num, icb->loc.lb_num, 2142 UDF_EXT_LEN(icb->len), UDF_EXT_FLAGS(icb->len))); 2143 if (addr_type == UDF_ICB_SHORT_ALLOC) { 2144 short_ad = (struct short_ad *) (data_pos + offset); 2145 short_ad->len = icb->len; 2146 short_ad->lb_num = icb->loc.lb_num; 2147 } else if (addr_type == UDF_ICB_LONG_ALLOC) { 2148 long_ad = (struct long_ad *) (data_pos + offset); 2149 *long_ad = *icb; 2150 } 2151 2152 /* adjust logblks recorded count */ 2153 len = udf_rw32(icb->len); 2154 flags = UDF_EXT_FLAGS(len); 2155 if (flags == UDF_EXT_ALLOCATED) 2156 logblks_rec += (UDF_EXT_LEN(len) + lb_size -1) / lb_size; 2157 *logblks_rec_p = udf_rw64(logblks_rec); 2158 2159 /* adjust l_ad and crclen when needed */ 2160 if (offset >= l_ad) { 2161 l_ad += adlen; 2162 crclen += adlen; 2163 dscr->tag.desc_crc_len = udf_rw16(crclen); 2164 *l_ad_p = udf_rw32(l_ad); 2165 } 2166 2167 return 0; 2168 } 2169 2170 /* --------------------------------------------------------------------- */ 2171 2172 static void 2173 udf_count_alloc_exts(struct udf_node *udf_node) 2174 { 2175 struct long_ad s_ad; 2176 uint32_t lb_num, len, flags; 2177 uint16_t vpart_num; 2178 int slot, eof; 2179 int num_extents, extnr; 2180 int lb_size; 2181 2182 if (udf_node->num_extensions == 0) 2183 return; 2184 2185 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 2186 /* count number of allocation extents in use */ 2187 num_extents = 0; 2188 slot = 0; 2189 for (;;) { 2190 udf_get_adslot(udf_node, slot, &s_ad, &eof); 2191 if (eof) 2192 break; 2193 len = udf_rw32(s_ad.len); 2194 flags = UDF_EXT_FLAGS(len); 2195 2196 if (flags == UDF_EXT_REDIRECT) 2197 num_extents++; 2198 2199 slot++; 2200 } 2201 2202 DPRINTF(ALLOC, ("udf_count_alloc_ext counted %d live extents\n", 2203 num_extents)); 2204 2205 /* XXX choice: we could delay freeing them on node writeout */ 2206 /* free excess entries */ 2207 extnr = num_extents; 2208 for (;extnr < udf_node->num_extensions; extnr++) { 2209 DPRINTF(ALLOC, ("freeing alloc ext %d\n", extnr)); 2210 /* free dscriptor */ 2211 s_ad = udf_node->ext_loc[extnr]; 2212 udf_free_logvol_dscr(udf_node->ump, &s_ad, 2213 udf_node->ext[extnr]); 2214 udf_node->ext[extnr] = NULL; 2215 2216 /* free disc space */ 2217 lb_num = udf_rw32(s_ad.loc.lb_num); 2218 vpart_num = udf_rw16(s_ad.loc.part_num); 2219 udf_free_allocated_space(udf_node->ump, lb_num, vpart_num, 1); 2220 2221 memset(&udf_node->ext_loc[extnr], 0, sizeof(struct long_ad)); 2222 } 2223 2224 /* set our new number of allocation extents */ 2225 udf_node->num_extensions = num_extents; 2226 } 2227 2228 2229 /* --------------------------------------------------------------------- */ 2230 2231 /* 2232 * Adjust the node's allocation descriptors to reflect the new mapping; do 2233 * take note that we might glue to existing allocation descriptors. 2234 * 2235 * XXX Note there can only be one allocation being recorded/mount; maybe 2236 * explicit allocation in shedule thread? 2237 */ 2238 2239 static void 2240 udf_record_allocation_in_node(struct udf_mount *ump, struct buf *buf, 2241 uint16_t vpart_num, uint64_t *mapping, struct long_ad *node_ad_cpy) 2242 { 2243 struct vnode *vp = buf->b_vp; 2244 struct udf_node *udf_node = VTOI(vp); 2245 struct file_entry *fe; 2246 struct extfile_entry *efe; 2247 struct icb_tag *icbtag; 2248 struct long_ad s_ad, c_ad; 2249 uint64_t inflen, from, till; 2250 uint64_t foffset, end_foffset, restart_foffset; 2251 uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec; 2252 uint32_t num_lb, len, flags, lb_num; 2253 uint32_t run_start; 2254 uint32_t slot_offset, replace_len, replace; 2255 int addr_type, icbflags; 2256 // int udf_c_type = buf->b_udf_c_type; 2257 int lb_size, run_length, eof; 2258 int slot, cpy_slot, cpy_slots, restart_slot; 2259 int error; 2260 2261 DPRINTF(ALLOC, ("udf_record_allocation_in_node\n")); 2262 2263 #if 0 2264 /* XXX disable sanity check for now */ 2265 /* sanity check ... should be panic ? */ 2266 if ((udf_c_type != UDF_C_USERDATA) && (udf_c_type != UDF_C_FIDS)) 2267 return; 2268 #endif 2269 2270 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 2271 2272 /* do the job */ 2273 UDF_LOCK_NODE(udf_node, 0); /* XXX can deadlock ? */ 2274 udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec); 2275 2276 fe = udf_node->fe; 2277 efe = udf_node->efe; 2278 if (fe) { 2279 icbtag = &fe->icbtag; 2280 inflen = udf_rw64(fe->inf_len); 2281 } else { 2282 icbtag = &efe->icbtag; 2283 inflen = udf_rw64(efe->inf_len); 2284 } 2285 2286 /* do check if `till' is not past file information length */ 2287 from = buf->b_lblkno * lb_size; 2288 till = MIN(inflen, from + buf->b_resid); 2289 2290 num_lb = (till - from + lb_size -1) / lb_size; 2291 2292 DPRINTF(ALLOC, ("record allocation from %"PRIu64" + %d\n", from, buf->b_bcount)); 2293 2294 icbflags = udf_rw16(icbtag->flags); 2295 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 2296 2297 if (addr_type == UDF_ICB_INTERN_ALLOC) { 2298 /* nothing to do */ 2299 /* XXX clean up rest of node? just in case? */ 2300 UDF_UNLOCK_NODE(udf_node, 0); 2301 return; 2302 } 2303 2304 slot = 0; 2305 cpy_slot = 0; 2306 foffset = 0; 2307 2308 /* 1) copy till first overlap piece to the rewrite buffer */ 2309 for (;;) { 2310 udf_get_adslot(udf_node, slot, &s_ad, &eof); 2311 if (eof) { 2312 DPRINTF(WRITE, 2313 ("Record allocation in node " 2314 "failed: encountered EOF\n")); 2315 UDF_UNLOCK_NODE(udf_node, 0); 2316 buf->b_error = EINVAL; 2317 return; 2318 } 2319 len = udf_rw32(s_ad.len); 2320 flags = UDF_EXT_FLAGS(len); 2321 len = UDF_EXT_LEN(len); 2322 2323 if (flags == UDF_EXT_REDIRECT) { 2324 slot++; 2325 continue; 2326 } 2327 2328 end_foffset = foffset + len; 2329 if (end_foffset > from) 2330 break; /* found */ 2331 2332 node_ad_cpy[cpy_slot++] = s_ad; 2333 2334 DPRINTF(ALLOC, ("\t1: vp %d, lb %d, len %d, flags %d " 2335 "-> stack\n", 2336 udf_rw16(s_ad.loc.part_num), 2337 udf_rw32(s_ad.loc.lb_num), 2338 UDF_EXT_LEN(udf_rw32(s_ad.len)), 2339 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 2340 2341 foffset = end_foffset; 2342 slot++; 2343 } 2344 restart_slot = slot; 2345 restart_foffset = foffset; 2346 2347 /* 2) trunc overlapping slot at overlap and copy it */ 2348 slot_offset = from - foffset; 2349 if (slot_offset > 0) { 2350 DPRINTF(ALLOC, ("\tslot_offset = %d, flags = %d (%d)\n", 2351 slot_offset, flags >> 30, flags)); 2352 2353 s_ad.len = udf_rw32(slot_offset | flags); 2354 node_ad_cpy[cpy_slot++] = s_ad; 2355 2356 DPRINTF(ALLOC, ("\t2: vp %d, lb %d, len %d, flags %d " 2357 "-> stack\n", 2358 udf_rw16(s_ad.loc.part_num), 2359 udf_rw32(s_ad.loc.lb_num), 2360 UDF_EXT_LEN(udf_rw32(s_ad.len)), 2361 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 2362 } 2363 foffset += slot_offset; 2364 2365 /* 3) insert new mappings */ 2366 memset(&s_ad, 0, sizeof(struct long_ad)); 2367 lb_num = 0; 2368 for (lb_num = 0; lb_num < num_lb; lb_num++) { 2369 run_start = mapping[lb_num]; 2370 run_length = 1; 2371 while (lb_num < num_lb-1) { 2372 if (mapping[lb_num+1] != mapping[lb_num]+1) 2373 if (mapping[lb_num+1] != mapping[lb_num]) 2374 break; 2375 run_length++; 2376 lb_num++; 2377 } 2378 /* insert slot for this mapping */ 2379 len = run_length * lb_size; 2380 2381 /* bounds checking */ 2382 if (foffset + len > till) 2383 len = till - foffset; 2384 KASSERT(foffset + len <= inflen); 2385 2386 s_ad.len = udf_rw32(len | UDF_EXT_ALLOCATED); 2387 s_ad.loc.part_num = udf_rw16(vpart_num); 2388 s_ad.loc.lb_num = udf_rw32(run_start); 2389 2390 foffset += len; 2391 2392 /* paranoia */ 2393 if (len == 0) { 2394 DPRINTF(WRITE, 2395 ("Record allocation in node " 2396 "failed: insert failed\n")); 2397 UDF_UNLOCK_NODE(udf_node, 0); 2398 buf->b_error = EINVAL; 2399 return; 2400 } 2401 node_ad_cpy[cpy_slot++] = s_ad; 2402 2403 DPRINTF(ALLOC, ("\t3: insert new mapping vp %d lb %d, len %d, " 2404 "flags %d -> stack\n", 2405 udf_rw16(s_ad.loc.part_num), udf_rw32(s_ad.loc.lb_num), 2406 UDF_EXT_LEN(udf_rw32(s_ad.len)), 2407 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 2408 } 2409 2410 /* 4) pop replaced length */ 2411 slot = restart_slot; 2412 foffset = restart_foffset; 2413 2414 replace_len = till - foffset; /* total amount of bytes to pop */ 2415 slot_offset = from - foffset; /* offset in first encounted slot */ 2416 KASSERT((slot_offset % lb_size) == 0); 2417 2418 for (;;) { 2419 udf_get_adslot(udf_node, slot, &s_ad, &eof); 2420 if (eof) 2421 break; 2422 2423 len = udf_rw32(s_ad.len); 2424 flags = UDF_EXT_FLAGS(len); 2425 len = UDF_EXT_LEN(len); 2426 lb_num = udf_rw32(s_ad.loc.lb_num); 2427 2428 if (flags == UDF_EXT_REDIRECT) { 2429 slot++; 2430 continue; 2431 } 2432 2433 DPRINTF(ALLOC, ("\t4i: got slot %d, slot_offset %d, " 2434 "replace_len %d, " 2435 "vp %d, lb %d, len %d, flags %d\n", 2436 slot, slot_offset, replace_len, 2437 udf_rw16(s_ad.loc.part_num), 2438 udf_rw32(s_ad.loc.lb_num), 2439 UDF_EXT_LEN(udf_rw32(s_ad.len)), 2440 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 2441 2442 /* adjust for slot offset */ 2443 if (slot_offset) { 2444 DPRINTF(ALLOC, ("\t4s: skipping %d\n", slot_offset)); 2445 lb_num += slot_offset / lb_size; 2446 len -= slot_offset; 2447 foffset += slot_offset; 2448 replace_len -= slot_offset; 2449 2450 /* mark adjusted */ 2451 slot_offset = 0; 2452 } 2453 2454 /* advance for (the rest of) this slot */ 2455 replace = MIN(len, replace_len); 2456 DPRINTF(ALLOC, ("\t4d: replacing %d\n", replace)); 2457 2458 /* advance for this slot */ 2459 if (replace) { 2460 /* note: dont round DOWN on num_lb since we then 2461 * forget the last partial one */ 2462 num_lb = (replace + lb_size - 1) / lb_size; 2463 if (flags != UDF_EXT_FREE) { 2464 udf_free_allocated_space(ump, lb_num, 2465 udf_rw16(s_ad.loc.part_num), num_lb); 2466 } 2467 lb_num += num_lb; 2468 len -= replace; 2469 foffset += replace; 2470 replace_len -= replace; 2471 } 2472 2473 /* do we have a slot tail ? */ 2474 if (len) { 2475 KASSERT(foffset % lb_size == 0); 2476 2477 /* we arrived at our point, push remainder */ 2478 s_ad.len = udf_rw32(len | flags); 2479 s_ad.loc.lb_num = udf_rw32(lb_num); 2480 if (flags == UDF_EXT_FREE) 2481 s_ad.loc.lb_num = udf_rw32(0); 2482 node_ad_cpy[cpy_slot++] = s_ad; 2483 foffset += len; 2484 slot++; 2485 2486 DPRINTF(ALLOC, ("\t4: vp %d, lb %d, len %d, flags %d " 2487 "-> stack\n", 2488 udf_rw16(s_ad.loc.part_num), 2489 udf_rw32(s_ad.loc.lb_num), 2490 UDF_EXT_LEN(udf_rw32(s_ad.len)), 2491 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 2492 break; 2493 } 2494 2495 slot++; 2496 } 2497 2498 /* 5) copy remainder */ 2499 for (;;) { 2500 udf_get_adslot(udf_node, slot, &s_ad, &eof); 2501 if (eof) 2502 break; 2503 2504 len = udf_rw32(s_ad.len); 2505 flags = UDF_EXT_FLAGS(len); 2506 len = UDF_EXT_LEN(len); 2507 2508 if (flags == UDF_EXT_REDIRECT) { 2509 slot++; 2510 continue; 2511 } 2512 2513 node_ad_cpy[cpy_slot++] = s_ad; 2514 2515 DPRINTF(ALLOC, ("\t5: insert new mapping " 2516 "vp %d lb %d, len %d, flags %d " 2517 "-> stack\n", 2518 udf_rw16(s_ad.loc.part_num), 2519 udf_rw32(s_ad.loc.lb_num), 2520 UDF_EXT_LEN(udf_rw32(s_ad.len)), 2521 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 2522 2523 slot++; 2524 } 2525 2526 /* 6) reset node descriptors */ 2527 udf_wipe_adslots(udf_node); 2528 2529 /* 7) copy back extents; merge when possible. Recounting on the fly */ 2530 cpy_slots = cpy_slot; 2531 2532 c_ad = node_ad_cpy[0]; 2533 slot = 0; 2534 DPRINTF(ALLOC, ("\t7s: stack -> got mapping vp %d " 2535 "lb %d, len %d, flags %d\n", 2536 udf_rw16(c_ad.loc.part_num), 2537 udf_rw32(c_ad.loc.lb_num), 2538 UDF_EXT_LEN(udf_rw32(c_ad.len)), 2539 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30)); 2540 2541 for (cpy_slot = 1; cpy_slot < cpy_slots; cpy_slot++) { 2542 s_ad = node_ad_cpy[cpy_slot]; 2543 2544 DPRINTF(ALLOC, ("\t7i: stack -> got mapping vp %d " 2545 "lb %d, len %d, flags %d\n", 2546 udf_rw16(s_ad.loc.part_num), 2547 udf_rw32(s_ad.loc.lb_num), 2548 UDF_EXT_LEN(udf_rw32(s_ad.len)), 2549 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 2550 2551 /* see if we can merge */ 2552 if (udf_ads_merge(lb_size, &c_ad, &s_ad)) { 2553 /* not mergable (anymore) */ 2554 DPRINTF(ALLOC, ("\t7: appending vp %d lb %d, " 2555 "len %d, flags %d\n", 2556 udf_rw16(c_ad.loc.part_num), 2557 udf_rw32(c_ad.loc.lb_num), 2558 UDF_EXT_LEN(udf_rw32(c_ad.len)), 2559 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30)); 2560 2561 error = udf_append_adslot(udf_node, &slot, &c_ad); 2562 if (error) { 2563 buf->b_error = error; 2564 goto out; 2565 } 2566 c_ad = s_ad; 2567 slot++; 2568 } 2569 } 2570 2571 /* 8) push rest slot (if any) */ 2572 if (UDF_EXT_LEN(c_ad.len) > 0) { 2573 DPRINTF(ALLOC, ("\t8: last append vp %d lb %d, " 2574 "len %d, flags %d\n", 2575 udf_rw16(c_ad.loc.part_num), 2576 udf_rw32(c_ad.loc.lb_num), 2577 UDF_EXT_LEN(udf_rw32(c_ad.len)), 2578 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30)); 2579 2580 error = udf_append_adslot(udf_node, &slot, &c_ad); 2581 if (error) { 2582 buf->b_error = error; 2583 goto out; 2584 } 2585 } 2586 2587 out: 2588 udf_count_alloc_exts(udf_node); 2589 2590 /* the node's descriptors should now be sane */ 2591 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec); 2592 UDF_UNLOCK_NODE(udf_node, 0); 2593 2594 KASSERT(orig_inflen == new_inflen); 2595 KASSERT(new_lbrec >= orig_lbrec); 2596 2597 return; 2598 } 2599 2600 /* --------------------------------------------------------------------- */ 2601 2602 int 2603 udf_grow_node(struct udf_node *udf_node, uint64_t new_size) 2604 { 2605 union dscrptr *dscr; 2606 struct vnode *vp = udf_node->vnode; 2607 struct udf_mount *ump = udf_node->ump; 2608 struct file_entry *fe; 2609 struct extfile_entry *efe; 2610 struct icb_tag *icbtag; 2611 struct long_ad c_ad, s_ad; 2612 uint64_t size_diff, old_size, inflen, objsize, chunk, append_len; 2613 uint64_t foffset, end_foffset; 2614 uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec; 2615 uint32_t lb_size, dscr_size, crclen, lastblock_grow; 2616 uint32_t icbflags, len, flags, max_len; 2617 uint32_t max_l_ad, l_ad, l_ea; 2618 uint16_t my_part, dst_part; 2619 uint8_t *data_pos, *evacuated_data; 2620 int addr_type; 2621 int slot, cpy_slot; 2622 int eof, error; 2623 2624 DPRINTF(ALLOC, ("udf_grow_node\n")); 2625 2626 UDF_LOCK_NODE(udf_node, 0); 2627 udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec); 2628 2629 lb_size = udf_rw32(ump->logical_vol->lb_size); 2630 max_len = ((UDF_EXT_MAXLEN / lb_size) * lb_size); 2631 2632 fe = udf_node->fe; 2633 efe = udf_node->efe; 2634 if (fe) { 2635 dscr = (union dscrptr *) fe; 2636 icbtag = &fe->icbtag; 2637 inflen = udf_rw64(fe->inf_len); 2638 objsize = inflen; 2639 dscr_size = sizeof(struct file_entry) -1; 2640 l_ea = udf_rw32(fe->l_ea); 2641 l_ad = udf_rw32(fe->l_ad); 2642 } else { 2643 dscr = (union dscrptr *) efe; 2644 icbtag = &efe->icbtag; 2645 inflen = udf_rw64(efe->inf_len); 2646 objsize = udf_rw64(efe->obj_size); 2647 dscr_size = sizeof(struct extfile_entry) -1; 2648 l_ea = udf_rw32(efe->l_ea); 2649 l_ad = udf_rw32(efe->l_ad); 2650 } 2651 data_pos = (uint8_t *) dscr + dscr_size + l_ea; 2652 max_l_ad = lb_size - dscr_size - l_ea; 2653 2654 icbflags = udf_rw16(icbtag->flags); 2655 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 2656 2657 old_size = inflen; 2658 size_diff = new_size - old_size; 2659 2660 DPRINTF(ALLOC, ("\tfrom %"PRIu64" to %"PRIu64"\n", old_size, new_size)); 2661 2662 evacuated_data = NULL; 2663 if (addr_type == UDF_ICB_INTERN_ALLOC) { 2664 if (l_ad + size_diff <= max_l_ad) { 2665 /* only reflect size change directly in the node */ 2666 inflen += size_diff; 2667 objsize += size_diff; 2668 l_ad += size_diff; 2669 crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad; 2670 if (fe) { 2671 fe->inf_len = udf_rw64(inflen); 2672 fe->l_ad = udf_rw32(l_ad); 2673 fe->tag.desc_crc_len = udf_rw16(crclen); 2674 } else { 2675 efe->inf_len = udf_rw64(inflen); 2676 efe->obj_size = udf_rw64(objsize); 2677 efe->l_ad = udf_rw32(l_ad); 2678 efe->tag.desc_crc_len = udf_rw16(crclen); 2679 } 2680 error = 0; 2681 2682 /* set new size for uvm */ 2683 uvm_vnp_setsize(vp, old_size); 2684 uvm_vnp_setwritesize(vp, new_size); 2685 2686 #if 0 2687 /* zero append space in buffer */ 2688 uvm_vnp_zerorange(vp, old_size, new_size - old_size); 2689 #endif 2690 2691 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec); 2692 2693 /* unlock */ 2694 UDF_UNLOCK_NODE(udf_node, 0); 2695 2696 KASSERT(new_inflen == orig_inflen + size_diff); 2697 KASSERT(new_lbrec == orig_lbrec); 2698 KASSERT(new_lbrec == 0); 2699 return 0; 2700 } 2701 2702 DPRINTF(ALLOC, ("\tCONVERT from internal\n")); 2703 2704 if (old_size > 0) { 2705 /* allocate some space and copy in the stuff to keep */ 2706 evacuated_data = malloc(lb_size, M_UDFTEMP, M_WAITOK); 2707 memset(evacuated_data, 0, lb_size); 2708 2709 /* node is locked, so safe to exit mutex */ 2710 UDF_UNLOCK_NODE(udf_node, 0); 2711 2712 /* read in using the `normal' vn_rdwr() */ 2713 error = vn_rdwr(UIO_READ, udf_node->vnode, 2714 evacuated_data, old_size, 0, 2715 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 2716 FSCRED, NULL, NULL); 2717 2718 /* enter again */ 2719 UDF_LOCK_NODE(udf_node, 0); 2720 } 2721 2722 /* convert to a normal alloc and select type */ 2723 my_part = udf_rw16(udf_node->loc.loc.part_num); 2724 dst_part = udf_get_record_vpart(ump, udf_get_c_type(udf_node)); 2725 addr_type = UDF_ICB_SHORT_ALLOC; 2726 if (dst_part != my_part) 2727 addr_type = UDF_ICB_LONG_ALLOC; 2728 2729 icbflags &= ~UDF_ICB_TAG_FLAGS_ALLOC_MASK; 2730 icbflags |= addr_type; 2731 icbtag->flags = udf_rw16(icbflags); 2732 2733 /* wipe old descriptor space */ 2734 udf_wipe_adslots(udf_node); 2735 2736 memset(&c_ad, 0, sizeof(struct long_ad)); 2737 c_ad.len = udf_rw32(old_size | UDF_EXT_FREE); 2738 c_ad.loc.part_num = udf_rw16(0); /* not relevant */ 2739 c_ad.loc.lb_num = udf_rw32(0); /* not relevant */ 2740 2741 slot = 0; 2742 } else { 2743 /* goto the last entry (if any) */ 2744 slot = 0; 2745 cpy_slot = 0; 2746 foffset = 0; 2747 memset(&c_ad, 0, sizeof(struct long_ad)); 2748 for (;;) { 2749 udf_get_adslot(udf_node, slot, &c_ad, &eof); 2750 if (eof) 2751 break; 2752 2753 len = udf_rw32(c_ad.len); 2754 flags = UDF_EXT_FLAGS(len); 2755 len = UDF_EXT_LEN(len); 2756 2757 end_foffset = foffset + len; 2758 if (flags != UDF_EXT_REDIRECT) 2759 foffset = end_foffset; 2760 2761 slot++; 2762 } 2763 /* at end of adslots */ 2764 2765 /* special case if the old size was zero, then there is no last slot */ 2766 if (old_size == 0) { 2767 c_ad.len = udf_rw32(0 | UDF_EXT_FREE); 2768 c_ad.loc.part_num = udf_rw16(0); /* not relevant */ 2769 c_ad.loc.lb_num = udf_rw32(0); /* not relevant */ 2770 } else { 2771 /* refetch last slot */ 2772 slot--; 2773 udf_get_adslot(udf_node, slot, &c_ad, &eof); 2774 } 2775 } 2776 2777 /* 2778 * If the length of the last slot is not a multiple of lb_size, adjust 2779 * length so that it is; don't forget to adjust `append_len'! relevant for 2780 * extending existing files 2781 */ 2782 len = udf_rw32(c_ad.len); 2783 flags = UDF_EXT_FLAGS(len); 2784 len = UDF_EXT_LEN(len); 2785 2786 lastblock_grow = 0; 2787 if (len % lb_size > 0) { 2788 lastblock_grow = lb_size - (len % lb_size); 2789 lastblock_grow = MIN(size_diff, lastblock_grow); 2790 len += lastblock_grow; 2791 c_ad.len = udf_rw32(len | flags); 2792 2793 /* TODO zero appened space in buffer! */ 2794 /* using uvm_vnp_zerorange(vp, old_size, new_size - old_size); ? */ 2795 } 2796 memset(&s_ad, 0, sizeof(struct long_ad)); 2797 2798 /* size_diff can be bigger than allowed, so grow in chunks */ 2799 append_len = size_diff - lastblock_grow; 2800 while (append_len > 0) { 2801 chunk = MIN(append_len, max_len); 2802 s_ad.len = udf_rw32(chunk | UDF_EXT_FREE); 2803 s_ad.loc.part_num = udf_rw16(0); 2804 s_ad.loc.lb_num = udf_rw32(0); 2805 2806 if (udf_ads_merge(lb_size, &c_ad, &s_ad)) { 2807 /* not mergable (anymore) */ 2808 error = udf_append_adslot(udf_node, &slot, &c_ad); 2809 if (error) 2810 goto errorout; 2811 slot++; 2812 c_ad = s_ad; 2813 memset(&s_ad, 0, sizeof(struct long_ad)); 2814 } 2815 append_len -= chunk; 2816 } 2817 2818 /* if there is a rest piece in the accumulator, append it */ 2819 if (UDF_EXT_LEN(udf_rw32(c_ad.len)) > 0) { 2820 error = udf_append_adslot(udf_node, &slot, &c_ad); 2821 if (error) 2822 goto errorout; 2823 slot++; 2824 } 2825 2826 /* if there is a rest piece that didn't fit, append it */ 2827 if (UDF_EXT_LEN(udf_rw32(s_ad.len)) > 0) { 2828 error = udf_append_adslot(udf_node, &slot, &s_ad); 2829 if (error) 2830 goto errorout; 2831 slot++; 2832 } 2833 2834 inflen += size_diff; 2835 objsize += size_diff; 2836 if (fe) { 2837 fe->inf_len = udf_rw64(inflen); 2838 } else { 2839 efe->inf_len = udf_rw64(inflen); 2840 efe->obj_size = udf_rw64(objsize); 2841 } 2842 error = 0; 2843 2844 if (evacuated_data) { 2845 /* set new write size for uvm */ 2846 uvm_vnp_setwritesize(vp, old_size); 2847 2848 /* write out evacuated data */ 2849 error = vn_rdwr(UIO_WRITE, udf_node->vnode, 2850 evacuated_data, old_size, 0, 2851 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 2852 FSCRED, NULL, NULL); 2853 uvm_vnp_setsize(vp, old_size); 2854 } 2855 2856 errorout: 2857 if (evacuated_data) 2858 free(evacuated_data, M_UDFTEMP); 2859 2860 udf_count_alloc_exts(udf_node); 2861 2862 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec); 2863 UDF_UNLOCK_NODE(udf_node, 0); 2864 2865 KASSERT(new_inflen == orig_inflen + size_diff); 2866 KASSERT(new_lbrec == orig_lbrec); 2867 2868 return error; 2869 } 2870 2871 /* --------------------------------------------------------------------- */ 2872 2873 int 2874 udf_shrink_node(struct udf_node *udf_node, uint64_t new_size) 2875 { 2876 struct vnode *vp = udf_node->vnode; 2877 struct udf_mount *ump = udf_node->ump; 2878 struct file_entry *fe; 2879 struct extfile_entry *efe; 2880 struct icb_tag *icbtag; 2881 struct long_ad c_ad, s_ad, *node_ad_cpy; 2882 uint64_t size_diff, old_size, inflen, objsize; 2883 uint64_t foffset, end_foffset; 2884 uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec; 2885 uint32_t lb_size, dscr_size, crclen; 2886 uint32_t slot_offset, slot_offset_lb; 2887 uint32_t len, flags, max_len; 2888 uint32_t num_lb, lb_num; 2889 uint32_t max_l_ad, l_ad, l_ea; 2890 uint16_t vpart_num; 2891 uint8_t *data_pos; 2892 int icbflags, addr_type; 2893 int slot, cpy_slot, cpy_slots; 2894 int eof, error; 2895 2896 DPRINTF(ALLOC, ("udf_shrink_node\n")); 2897 2898 UDF_LOCK_NODE(udf_node, 0); 2899 udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec); 2900 2901 lb_size = udf_rw32(ump->logical_vol->lb_size); 2902 max_len = ((UDF_EXT_MAXLEN / lb_size) * lb_size); 2903 2904 /* do the work */ 2905 fe = udf_node->fe; 2906 efe = udf_node->efe; 2907 if (fe) { 2908 icbtag = &fe->icbtag; 2909 inflen = udf_rw64(fe->inf_len); 2910 objsize = inflen; 2911 dscr_size = sizeof(struct file_entry) -1; 2912 l_ea = udf_rw32(fe->l_ea); 2913 l_ad = udf_rw32(fe->l_ad); 2914 data_pos = (uint8_t *) fe + dscr_size + l_ea; 2915 } else { 2916 icbtag = &efe->icbtag; 2917 inflen = udf_rw64(efe->inf_len); 2918 objsize = udf_rw64(efe->obj_size); 2919 dscr_size = sizeof(struct extfile_entry) -1; 2920 l_ea = udf_rw32(efe->l_ea); 2921 l_ad = udf_rw32(efe->l_ad); 2922 data_pos = (uint8_t *) efe + dscr_size + l_ea; 2923 } 2924 max_l_ad = lb_size - dscr_size - l_ea; 2925 2926 icbflags = udf_rw16(icbtag->flags); 2927 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 2928 2929 old_size = inflen; 2930 size_diff = old_size - new_size; 2931 2932 DPRINTF(ALLOC, ("\tfrom %"PRIu64" to %"PRIu64"\n", old_size, new_size)); 2933 2934 /* shrink the node to its new size */ 2935 if (addr_type == UDF_ICB_INTERN_ALLOC) { 2936 /* only reflect size change directly in the node */ 2937 KASSERT(new_size <= max_l_ad); 2938 inflen -= size_diff; 2939 objsize -= size_diff; 2940 l_ad -= size_diff; 2941 crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad; 2942 if (fe) { 2943 fe->inf_len = udf_rw64(inflen); 2944 fe->l_ad = udf_rw32(l_ad); 2945 fe->tag.desc_crc_len = udf_rw16(crclen); 2946 } else { 2947 efe->inf_len = udf_rw64(inflen); 2948 efe->obj_size = udf_rw64(objsize); 2949 efe->l_ad = udf_rw32(l_ad); 2950 efe->tag.desc_crc_len = udf_rw16(crclen); 2951 } 2952 error = 0; 2953 2954 /* clear the space in the descriptor */ 2955 KASSERT(old_size > new_size); 2956 memset(data_pos + new_size, 0, old_size - new_size); 2957 2958 /* TODO zero appened space in buffer! */ 2959 /* using uvm_vnp_zerorange(vp, old_size, old_size - new_size); ? */ 2960 2961 /* set new size for uvm */ 2962 uvm_vnp_setsize(vp, new_size); 2963 2964 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec); 2965 UDF_UNLOCK_NODE(udf_node, 0); 2966 2967 KASSERT(new_inflen == orig_inflen - size_diff); 2968 KASSERT(new_lbrec == orig_lbrec); 2969 KASSERT(new_lbrec == 0); 2970 2971 return 0; 2972 } 2973 2974 /* setup node cleanup extents copy space */ 2975 node_ad_cpy = malloc(lb_size * UDF_MAX_ALLOC_EXTENTS, 2976 M_UDFMNT, M_WAITOK); 2977 memset(node_ad_cpy, 0, lb_size * UDF_MAX_ALLOC_EXTENTS); 2978 2979 /* 2980 * Shrink the node by releasing the allocations and truncate the last 2981 * allocation to the new size. If the new size fits into the 2982 * allocation descriptor itself, transform it into an 2983 * UDF_ICB_INTERN_ALLOC. 2984 */ 2985 slot = 0; 2986 cpy_slot = 0; 2987 foffset = 0; 2988 2989 /* 1) copy till first overlap piece to the rewrite buffer */ 2990 for (;;) { 2991 udf_get_adslot(udf_node, slot, &s_ad, &eof); 2992 if (eof) { 2993 DPRINTF(WRITE, 2994 ("Shrink node failed: " 2995 "encountered EOF\n")); 2996 error = EINVAL; 2997 goto errorout; /* panic? */ 2998 } 2999 len = udf_rw32(s_ad.len); 3000 flags = UDF_EXT_FLAGS(len); 3001 len = UDF_EXT_LEN(len); 3002 3003 if (flags == UDF_EXT_REDIRECT) { 3004 slot++; 3005 continue; 3006 } 3007 3008 end_foffset = foffset + len; 3009 if (end_foffset > new_size) 3010 break; /* found */ 3011 3012 node_ad_cpy[cpy_slot++] = s_ad; 3013 3014 DPRINTF(ALLOC, ("\t1: vp %d, lb %d, len %d, flags %d " 3015 "-> stack\n", 3016 udf_rw16(s_ad.loc.part_num), 3017 udf_rw32(s_ad.loc.lb_num), 3018 UDF_EXT_LEN(udf_rw32(s_ad.len)), 3019 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 3020 3021 foffset = end_foffset; 3022 slot++; 3023 } 3024 slot_offset = new_size - foffset; 3025 3026 /* 2) trunc overlapping slot at overlap and copy it */ 3027 if (slot_offset > 0) { 3028 lb_num = udf_rw32(s_ad.loc.lb_num); 3029 vpart_num = udf_rw16(s_ad.loc.part_num); 3030 3031 if (flags == UDF_EXT_ALLOCATED) { 3032 /* calculate extent in lb, and offset in lb */ 3033 num_lb = (len + lb_size -1) / lb_size; 3034 slot_offset_lb = (slot_offset + lb_size -1) / lb_size; 3035 3036 /* adjust our slot */ 3037 lb_num += slot_offset_lb; 3038 num_lb -= slot_offset_lb; 3039 3040 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 3041 } 3042 3043 s_ad.len = udf_rw32(slot_offset | flags); 3044 node_ad_cpy[cpy_slot++] = s_ad; 3045 slot++; 3046 3047 DPRINTF(ALLOC, ("\t2: vp %d, lb %d, len %d, flags %d " 3048 "-> stack\n", 3049 udf_rw16(s_ad.loc.part_num), 3050 udf_rw32(s_ad.loc.lb_num), 3051 UDF_EXT_LEN(udf_rw32(s_ad.len)), 3052 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 3053 } 3054 3055 /* 3) delete remainder */ 3056 for (;;) { 3057 udf_get_adslot(udf_node, slot, &s_ad, &eof); 3058 if (eof) 3059 break; 3060 3061 len = udf_rw32(s_ad.len); 3062 flags = UDF_EXT_FLAGS(len); 3063 len = UDF_EXT_LEN(len); 3064 3065 if (flags == UDF_EXT_REDIRECT) { 3066 slot++; 3067 continue; 3068 } 3069 3070 DPRINTF(ALLOC, ("\t3: delete remainder " 3071 "vp %d lb %d, len %d, flags %d\n", 3072 udf_rw16(s_ad.loc.part_num), 3073 udf_rw32(s_ad.loc.lb_num), 3074 UDF_EXT_LEN(udf_rw32(s_ad.len)), 3075 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 3076 3077 if (flags == UDF_EXT_ALLOCATED) { 3078 lb_num = udf_rw32(s_ad.loc.lb_num); 3079 vpart_num = udf_rw16(s_ad.loc.part_num); 3080 num_lb = (len + lb_size - 1) / lb_size; 3081 3082 udf_free_allocated_space(ump, lb_num, vpart_num, 3083 num_lb); 3084 } 3085 3086 slot++; 3087 } 3088 3089 /* 4) if it will fit into the descriptor then convert */ 3090 if (new_size < max_l_ad) { 3091 /* 3092 * resque/evacuate old piece by reading it in, and convert it 3093 * to internal alloc. 3094 */ 3095 if (new_size == 0) { 3096 /* XXX/TODO only for zero sizing now */ 3097 udf_wipe_adslots(udf_node); 3098 3099 icbflags &= ~UDF_ICB_TAG_FLAGS_ALLOC_MASK; 3100 icbflags |= UDF_ICB_INTERN_ALLOC; 3101 icbtag->flags = udf_rw16(icbflags); 3102 3103 inflen -= size_diff; KASSERT(inflen == 0); 3104 objsize -= size_diff; 3105 l_ad = new_size; 3106 crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad; 3107 if (fe) { 3108 fe->inf_len = udf_rw64(inflen); 3109 fe->l_ad = udf_rw32(l_ad); 3110 fe->tag.desc_crc_len = udf_rw16(crclen); 3111 } else { 3112 efe->inf_len = udf_rw64(inflen); 3113 efe->obj_size = udf_rw64(objsize); 3114 efe->l_ad = udf_rw32(l_ad); 3115 efe->tag.desc_crc_len = udf_rw16(crclen); 3116 } 3117 /* eventually copy in evacuated piece */ 3118 /* set new size for uvm */ 3119 uvm_vnp_setsize(vp, new_size); 3120 3121 free(node_ad_cpy, M_UDFMNT); 3122 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec); 3123 3124 UDF_UNLOCK_NODE(udf_node, 0); 3125 3126 KASSERT(new_inflen == orig_inflen - size_diff); 3127 KASSERT(new_inflen == 0); 3128 KASSERT(new_lbrec == 0); 3129 3130 return 0; 3131 } 3132 3133 printf("UDF_SHRINK_NODE: could convert to internal alloc!\n"); 3134 } 3135 3136 /* 5) reset node descriptors */ 3137 udf_wipe_adslots(udf_node); 3138 3139 /* 6) copy back extents; merge when possible. Recounting on the fly */ 3140 cpy_slots = cpy_slot; 3141 3142 c_ad = node_ad_cpy[0]; 3143 slot = 0; 3144 for (cpy_slot = 1; cpy_slot < cpy_slots; cpy_slot++) { 3145 s_ad = node_ad_cpy[cpy_slot]; 3146 3147 DPRINTF(ALLOC, ("\t6: stack -> got mapping vp %d " 3148 "lb %d, len %d, flags %d\n", 3149 udf_rw16(s_ad.loc.part_num), 3150 udf_rw32(s_ad.loc.lb_num), 3151 UDF_EXT_LEN(udf_rw32(s_ad.len)), 3152 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30)); 3153 3154 /* see if we can merge */ 3155 if (udf_ads_merge(lb_size, &c_ad, &s_ad)) { 3156 /* not mergable (anymore) */ 3157 DPRINTF(ALLOC, ("\t6: appending vp %d lb %d, " 3158 "len %d, flags %d\n", 3159 udf_rw16(c_ad.loc.part_num), 3160 udf_rw32(c_ad.loc.lb_num), 3161 UDF_EXT_LEN(udf_rw32(c_ad.len)), 3162 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30)); 3163 3164 error = udf_append_adslot(udf_node, &slot, &c_ad); 3165 if (error) 3166 goto errorout; /* panic? */ 3167 c_ad = s_ad; 3168 slot++; 3169 } 3170 } 3171 3172 /* 7) push rest slot (if any) */ 3173 if (UDF_EXT_LEN(c_ad.len) > 0) { 3174 DPRINTF(ALLOC, ("\t7: last append vp %d lb %d, " 3175 "len %d, flags %d\n", 3176 udf_rw16(c_ad.loc.part_num), 3177 udf_rw32(c_ad.loc.lb_num), 3178 UDF_EXT_LEN(udf_rw32(c_ad.len)), 3179 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30)); 3180 3181 error = udf_append_adslot(udf_node, &slot, &c_ad); 3182 if (error) 3183 goto errorout; /* panic? */ 3184 ; 3185 } 3186 3187 inflen -= size_diff; 3188 objsize -= size_diff; 3189 if (fe) { 3190 fe->inf_len = udf_rw64(inflen); 3191 } else { 3192 efe->inf_len = udf_rw64(inflen); 3193 efe->obj_size = udf_rw64(objsize); 3194 } 3195 error = 0; 3196 3197 /* set new size for uvm */ 3198 uvm_vnp_setsize(vp, new_size); 3199 3200 errorout: 3201 free(node_ad_cpy, M_UDFMNT); 3202 3203 udf_count_alloc_exts(udf_node); 3204 3205 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec); 3206 UDF_UNLOCK_NODE(udf_node, 0); 3207 3208 KASSERT(new_inflen == orig_inflen - size_diff); 3209 3210 return error; 3211 } 3212 3213