1 /* $NetBSD: nfs_clvnops.c,v 1.2 2014/03/25 16:30:28 christos Exp $ */ 2 /*- 3 * Copyright (c) 1989, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Rick Macklem at The University of Guelph. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from nfs_vnops.c 8.16 (Berkeley) 5/27/95 34 */ 35 36 #include <sys/cdefs.h> 37 /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clvnops.c 252072 2013-06-21 22:26:18Z rmacklem "); */ 38 __RCSID("$NetBSD: nfs_clvnops.c,v 1.2 2014/03/25 16:30:28 christos Exp $"); 39 40 /* 41 * vnode op calls for Sun NFS version 2, 3 and 4 42 */ 43 44 #include "opt_kdtrace.h" 45 #include "opt_inet.h" 46 47 #include <sys/param.h> 48 #include <sys/kernel.h> 49 #include <sys/systm.h> 50 #include <sys/resourcevar.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/bio.h> 54 #include <sys/buf.h> 55 #include <sys/jail.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/namei.h> 59 #include <sys/socket.h> 60 #include <sys/vnode.h> 61 #include <sys/dirent.h> 62 #include <sys/fcntl.h> 63 #include <sys/lockf.h> 64 #include <sys/stat.h> 65 #include <sys/sysctl.h> 66 #include <sys/signalvar.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_extern.h> 70 #include <vm/vm_object.h> 71 72 #include <fs/nfs/nfsport.h> 73 #include <fs/nfsclient/nfsnode.h> 74 #include <fs/nfsclient/nfsmount.h> 75 #include <fs/nfsclient/nfs.h> 76 #include <fs/nfsclient/nfs_kdtrace.h> 77 78 #include <net/if.h> 79 #include <netinet/in.h> 80 #include <netinet/in_var.h> 81 82 #include <nfs/nfs_lock.h> 83 84 #ifdef KDTRACE_HOOKS 85 #include <sys/dtrace_bsd.h> 86 87 dtrace_nfsclient_accesscache_flush_probe_func_t 88 dtrace_nfscl_accesscache_flush_done_probe; 89 uint32_t nfscl_accesscache_flush_done_id; 90 91 dtrace_nfsclient_accesscache_get_probe_func_t 92 dtrace_nfscl_accesscache_get_hit_probe, 93 dtrace_nfscl_accesscache_get_miss_probe; 94 uint32_t nfscl_accesscache_get_hit_id; 95 uint32_t nfscl_accesscache_get_miss_id; 96 97 dtrace_nfsclient_accesscache_load_probe_func_t 98 dtrace_nfscl_accesscache_load_done_probe; 99 uint32_t nfscl_accesscache_load_done_id; 100 #endif /* !KDTRACE_HOOKS */ 101 102 /* Defs */ 103 #define TRUE 1 104 #define FALSE 0 105 106 extern struct nfsstats newnfsstats; 107 extern int nfsrv_useacl; 108 extern int nfscl_debuglevel; 109 MALLOC_DECLARE(M_NEWNFSREQ); 110 111 /* 112 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these 113 * calls are not in getblk() and brelse() so that they would not be necessary 114 * here. 115 */ 116 #ifndef B_VMIO 117 #define vfs_busy_pages(bp, f) 118 #endif 119 120 static vop_read_t nfsfifo_read; 121 static vop_write_t nfsfifo_write; 122 static vop_close_t nfsfifo_close; 123 static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *, 124 struct thread *); 125 static vop_lookup_t nfs_lookup; 126 static vop_create_t nfs_create; 127 static vop_mknod_t nfs_mknod; 128 static vop_open_t nfs_open; 129 static vop_pathconf_t nfs_pathconf; 130 static vop_close_t nfs_close; 131 static vop_access_t nfs_access; 132 static vop_getattr_t nfs_getattr; 133 static vop_setattr_t nfs_setattr; 134 static vop_read_t nfs_read; 135 static vop_fsync_t nfs_fsync; 136 static vop_remove_t nfs_remove; 137 static vop_link_t nfs_link; 138 static vop_rename_t nfs_rename; 139 static vop_mkdir_t nfs_mkdir; 140 static vop_rmdir_t nfs_rmdir; 141 static vop_symlink_t nfs_symlink; 142 static vop_readdir_t nfs_readdir; 143 static vop_strategy_t nfs_strategy; 144 static vop_lock1_t nfs_lock1; 145 static int nfs_lookitup(struct vnode *, char *, int, 146 struct ucred *, struct thread *, struct nfsnode **); 147 static int nfs_sillyrename(struct vnode *, struct vnode *, 148 struct componentname *); 149 static vop_access_t nfsspec_access; 150 static vop_readlink_t nfs_readlink; 151 static vop_print_t nfs_print; 152 static vop_advlock_t nfs_advlock; 153 static vop_advlockasync_t nfs_advlockasync; 154 static vop_getacl_t nfs_getacl; 155 static vop_setacl_t nfs_setacl; 156 157 /* 158 * Global vfs data structures for nfs 159 */ 160 struct vop_vector newnfs_vnodeops = { 161 .vop_default = &default_vnodeops, 162 .vop_access = nfs_access, 163 .vop_advlock = nfs_advlock, 164 .vop_advlockasync = nfs_advlockasync, 165 .vop_close = nfs_close, 166 .vop_create = nfs_create, 167 .vop_fsync = nfs_fsync, 168 .vop_getattr = nfs_getattr, 169 .vop_getpages = ncl_getpages, 170 .vop_putpages = ncl_putpages, 171 .vop_inactive = ncl_inactive, 172 .vop_link = nfs_link, 173 .vop_lock1 = nfs_lock1, 174 .vop_lookup = nfs_lookup, 175 .vop_mkdir = nfs_mkdir, 176 .vop_mknod = nfs_mknod, 177 .vop_open = nfs_open, 178 .vop_pathconf = nfs_pathconf, 179 .vop_print = nfs_print, 180 .vop_read = nfs_read, 181 .vop_readdir = nfs_readdir, 182 .vop_readlink = nfs_readlink, 183 .vop_reclaim = ncl_reclaim, 184 .vop_remove = nfs_remove, 185 .vop_rename = nfs_rename, 186 .vop_rmdir = nfs_rmdir, 187 .vop_setattr = nfs_setattr, 188 .vop_strategy = nfs_strategy, 189 .vop_symlink = nfs_symlink, 190 .vop_write = ncl_write, 191 .vop_getacl = nfs_getacl, 192 .vop_setacl = nfs_setacl, 193 }; 194 195 struct vop_vector newnfs_fifoops = { 196 .vop_default = &fifo_specops, 197 .vop_access = nfsspec_access, 198 .vop_close = nfsfifo_close, 199 .vop_fsync = nfs_fsync, 200 .vop_getattr = nfs_getattr, 201 .vop_inactive = ncl_inactive, 202 .vop_print = nfs_print, 203 .vop_read = nfsfifo_read, 204 .vop_reclaim = ncl_reclaim, 205 .vop_setattr = nfs_setattr, 206 .vop_write = nfsfifo_write, 207 }; 208 209 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, 210 struct componentname *cnp, struct vattr *vap); 211 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 212 int namelen, struct ucred *cred, struct thread *td); 213 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, 214 char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp, 215 char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); 216 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp, 217 struct componentname *scnp, struct sillyrename *sp); 218 219 /* 220 * Global variables 221 */ 222 #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1)) 223 224 SYSCTL_DECL(_vfs_nfs); 225 226 static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO; 227 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, 228 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); 229 230 static int nfs_prime_access_cache = 0; 231 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW, 232 &nfs_prime_access_cache, 0, 233 "Prime NFS ACCESS cache when fetching attributes"); 234 235 static int newnfs_commit_on_close = 0; 236 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW, 237 &newnfs_commit_on_close, 0, "write+commit on close, else only write"); 238 239 static int nfs_clean_pages_on_close = 1; 240 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW, 241 &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close"); 242 243 int newnfs_directio_enable = 0; 244 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW, 245 &newnfs_directio_enable, 0, "Enable NFS directio"); 246 247 int nfs_keep_dirty_on_error; 248 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW, 249 &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned"); 250 251 /* 252 * This sysctl allows other processes to mmap a file that has been opened 253 * O_DIRECT by a process. In general, having processes mmap the file while 254 * Direct IO is in progress can lead to Data Inconsistencies. But, we allow 255 * this by default to prevent DoS attacks - to prevent a malicious user from 256 * opening up files O_DIRECT preventing other users from mmap'ing these 257 * files. "Protected" environments where stricter consistency guarantees are 258 * required can disable this knob. The process that opened the file O_DIRECT 259 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not 260 * meaningful. 261 */ 262 int newnfs_directio_allow_mmap = 1; 263 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW, 264 &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens"); 265 266 #if 0 267 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, 268 &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); 269 270 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, 271 &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); 272 #endif 273 274 #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \ 275 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \ 276 | NFSACCESS_DELETE | NFSACCESS_LOOKUP) 277 278 /* 279 * SMP Locking Note : 280 * The list of locks after the description of the lock is the ordering 281 * of other locks acquired with the lock held. 282 * np->n_mtx : Protects the fields in the nfsnode. 283 VM Object Lock 284 VI_MTX (acquired indirectly) 285 * nmp->nm_mtx : Protects the fields in the nfsmount. 286 rep->r_mtx 287 * ncl_iod_mutex : Global lock, protects shared nfsiod state. 288 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list. 289 nmp->nm_mtx 290 rep->r_mtx 291 * rep->r_mtx : Protects the fields in an nfsreq. 292 */ 293 294 static int 295 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td, 296 struct ucred *cred, u_int32_t *retmode) 297 { 298 int error = 0, attrflag, i, lrupos; 299 u_int32_t rmode; 300 struct nfsnode *np = VTONFS(vp); 301 struct nfsvattr nfsva; 302 303 error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag, 304 &rmode, NULL); 305 if (attrflag) 306 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 307 if (!error) { 308 lrupos = 0; 309 mtx_lock(&np->n_mtx); 310 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 311 if (np->n_accesscache[i].uid == cred->cr_uid) { 312 np->n_accesscache[i].mode = rmode; 313 np->n_accesscache[i].stamp = time_second; 314 break; 315 } 316 if (i > 0 && np->n_accesscache[i].stamp < 317 np->n_accesscache[lrupos].stamp) 318 lrupos = i; 319 } 320 if (i == NFS_ACCESSCACHESIZE) { 321 np->n_accesscache[lrupos].uid = cred->cr_uid; 322 np->n_accesscache[lrupos].mode = rmode; 323 np->n_accesscache[lrupos].stamp = time_second; 324 } 325 mtx_unlock(&np->n_mtx); 326 if (retmode != NULL) 327 *retmode = rmode; 328 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0); 329 } else if (NFS_ISV4(vp)) { 330 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 331 } 332 #ifdef KDTRACE_HOOKS 333 if (error != 0) 334 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0, 335 error); 336 #endif 337 return (error); 338 } 339 340 /* 341 * nfs access vnode op. 342 * For nfs version 2, just return ok. File accesses may fail later. 343 * For nfs version 3, use the access rpc to check accessibility. If file modes 344 * are changed on the server, accesses might still fail later. 345 */ 346 static int 347 nfs_access(struct vop_access_args *ap) 348 { 349 struct vnode *vp = ap->a_vp; 350 int error = 0, i, gotahit; 351 u_int32_t mode, wmode, rmode; 352 int v34 = NFS_ISV34(vp); 353 struct nfsnode *np = VTONFS(vp); 354 355 /* 356 * Disallow write attempts on filesystems mounted read-only; 357 * unless the file is a socket, fifo, or a block or character 358 * device resident on the filesystem. 359 */ 360 if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS | 361 VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL | 362 VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) { 363 switch (vp->v_type) { 364 case VREG: 365 case VDIR: 366 case VLNK: 367 return (EROFS); 368 default: 369 break; 370 } 371 } 372 /* 373 * For nfs v3 or v4, check to see if we have done this recently, and if 374 * so return our cached result instead of making an ACCESS call. 375 * If not, do an access rpc, otherwise you are stuck emulating 376 * ufs_access() locally using the vattr. This may not be correct, 377 * since the server may apply other access criteria such as 378 * client uid-->server uid mapping that we do not know about. 379 */ 380 if (v34) { 381 if (ap->a_accmode & VREAD) 382 mode = NFSACCESS_READ; 383 else 384 mode = 0; 385 if (vp->v_type != VDIR) { 386 if (ap->a_accmode & VWRITE) 387 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 388 if (ap->a_accmode & VAPPEND) 389 mode |= NFSACCESS_EXTEND; 390 if (ap->a_accmode & VEXEC) 391 mode |= NFSACCESS_EXECUTE; 392 if (ap->a_accmode & VDELETE) 393 mode |= NFSACCESS_DELETE; 394 } else { 395 if (ap->a_accmode & VWRITE) 396 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND); 397 if (ap->a_accmode & VAPPEND) 398 mode |= NFSACCESS_EXTEND; 399 if (ap->a_accmode & VEXEC) 400 mode |= NFSACCESS_LOOKUP; 401 if (ap->a_accmode & VDELETE) 402 mode |= NFSACCESS_DELETE; 403 if (ap->a_accmode & VDELETE_CHILD) 404 mode |= NFSACCESS_MODIFY; 405 } 406 /* XXX safety belt, only make blanket request if caching */ 407 if (nfsaccess_cache_timeout > 0) { 408 wmode = NFSACCESS_READ | NFSACCESS_MODIFY | 409 NFSACCESS_EXTEND | NFSACCESS_EXECUTE | 410 NFSACCESS_DELETE | NFSACCESS_LOOKUP; 411 } else { 412 wmode = mode; 413 } 414 415 /* 416 * Does our cached result allow us to give a definite yes to 417 * this request? 418 */ 419 gotahit = 0; 420 mtx_lock(&np->n_mtx); 421 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) { 422 if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) { 423 if (time_second < (np->n_accesscache[i].stamp 424 + nfsaccess_cache_timeout) && 425 (np->n_accesscache[i].mode & mode) == mode) { 426 NFSINCRGLOBAL(newnfsstats.accesscache_hits); 427 gotahit = 1; 428 } 429 break; 430 } 431 } 432 mtx_unlock(&np->n_mtx); 433 #ifdef KDTRACE_HOOKS 434 if (gotahit != 0) 435 KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp, 436 ap->a_cred->cr_uid, mode); 437 else 438 KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp, 439 ap->a_cred->cr_uid, mode); 440 #endif 441 if (gotahit == 0) { 442 /* 443 * Either a no, or a don't know. Go to the wire. 444 */ 445 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 446 error = nfs34_access_otw(vp, wmode, ap->a_td, 447 ap->a_cred, &rmode); 448 if (!error && 449 (rmode & mode) != mode) 450 error = EACCES; 451 } 452 return (error); 453 } else { 454 if ((error = nfsspec_access(ap)) != 0) { 455 return (error); 456 } 457 /* 458 * Attempt to prevent a mapped root from accessing a file 459 * which it shouldn't. We try to read a byte from the file 460 * if the user is root and the file is not zero length. 461 * After calling nfsspec_access, we should have the correct 462 * file size cached. 463 */ 464 mtx_lock(&np->n_mtx); 465 if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD) 466 && VTONFS(vp)->n_size > 0) { 467 struct iovec aiov; 468 struct uio auio; 469 char buf[1]; 470 471 mtx_unlock(&np->n_mtx); 472 aiov.iov_base = buf; 473 aiov.iov_len = 1; 474 auio.uio_iov = &aiov; 475 auio.uio_iovcnt = 1; 476 auio.uio_offset = 0; 477 auio.uio_resid = 1; 478 auio.uio_segflg = UIO_SYSSPACE; 479 auio.uio_rw = UIO_READ; 480 auio.uio_td = ap->a_td; 481 482 if (vp->v_type == VREG) 483 error = ncl_readrpc(vp, &auio, ap->a_cred); 484 else if (vp->v_type == VDIR) { 485 char* bp; 486 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); 487 aiov.iov_base = bp; 488 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; 489 error = ncl_readdirrpc(vp, &auio, ap->a_cred, 490 ap->a_td); 491 free(bp, M_TEMP); 492 } else if (vp->v_type == VLNK) 493 error = ncl_readlinkrpc(vp, &auio, ap->a_cred); 494 else 495 error = EACCES; 496 } else 497 mtx_unlock(&np->n_mtx); 498 return (error); 499 } 500 } 501 502 503 /* 504 * nfs open vnode op 505 * Check to see if the type is ok 506 * and that deletion is not in progress. 507 * For paged in text files, you will need to flush the page cache 508 * if consistency is lost. 509 */ 510 /* ARGSUSED */ 511 static int 512 nfs_open(struct vop_open_args *ap) 513 { 514 struct vnode *vp = ap->a_vp; 515 struct nfsnode *np = VTONFS(vp); 516 struct vattr vattr; 517 int error; 518 int fmode = ap->a_mode; 519 struct ucred *cred; 520 521 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) 522 return (EOPNOTSUPP); 523 524 /* 525 * For NFSv4, we need to do the Open Op before cache validation, 526 * so that we conform to RFC3530 Sec. 9.3.1. 527 */ 528 if (NFS_ISV4(vp)) { 529 error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td); 530 if (error) { 531 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 532 (gid_t)0); 533 return (error); 534 } 535 } 536 537 /* 538 * Now, if this Open will be doing reading, re-validate/flush the 539 * cache, so that Close/Open coherency is maintained. 540 */ 541 mtx_lock(&np->n_mtx); 542 if (np->n_flag & NMODIFIED) { 543 mtx_unlock(&np->n_mtx); 544 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 545 if (error == EINTR || error == EIO) { 546 if (NFS_ISV4(vp)) 547 (void) nfsrpc_close(vp, 0, ap->a_td); 548 return (error); 549 } 550 mtx_lock(&np->n_mtx); 551 np->n_attrstamp = 0; 552 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 553 if (vp->v_type == VDIR) 554 np->n_direofoffset = 0; 555 mtx_unlock(&np->n_mtx); 556 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 557 if (error) { 558 if (NFS_ISV4(vp)) 559 (void) nfsrpc_close(vp, 0, ap->a_td); 560 return (error); 561 } 562 mtx_lock(&np->n_mtx); 563 np->n_mtime = vattr.va_mtime; 564 if (NFS_ISV4(vp)) 565 np->n_change = vattr.va_filerev; 566 } else { 567 mtx_unlock(&np->n_mtx); 568 error = VOP_GETATTR(vp, &vattr, ap->a_cred); 569 if (error) { 570 if (NFS_ISV4(vp)) 571 (void) nfsrpc_close(vp, 0, ap->a_td); 572 return (error); 573 } 574 mtx_lock(&np->n_mtx); 575 if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) || 576 NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 577 if (vp->v_type == VDIR) 578 np->n_direofoffset = 0; 579 mtx_unlock(&np->n_mtx); 580 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 581 if (error == EINTR || error == EIO) { 582 if (NFS_ISV4(vp)) 583 (void) nfsrpc_close(vp, 0, ap->a_td); 584 return (error); 585 } 586 mtx_lock(&np->n_mtx); 587 np->n_mtime = vattr.va_mtime; 588 if (NFS_ISV4(vp)) 589 np->n_change = vattr.va_filerev; 590 } 591 } 592 593 /* 594 * If the object has >= 1 O_DIRECT active opens, we disable caching. 595 */ 596 if (newnfs_directio_enable && (fmode & O_DIRECT) && 597 (vp->v_type == VREG)) { 598 if (np->n_directio_opens == 0) { 599 mtx_unlock(&np->n_mtx); 600 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 601 if (error) { 602 if (NFS_ISV4(vp)) 603 (void) nfsrpc_close(vp, 0, ap->a_td); 604 return (error); 605 } 606 mtx_lock(&np->n_mtx); 607 np->n_flag |= NNONCACHE; 608 } 609 np->n_directio_opens++; 610 } 611 612 /* If opened for writing via NFSv4.1 or later, mark that for pNFS. */ 613 if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0) 614 np->n_flag |= NWRITEOPENED; 615 616 /* 617 * If this is an open for writing, capture a reference to the 618 * credentials, so they can be used by ncl_putpages(). Using 619 * these write credentials is preferable to the credentials of 620 * whatever thread happens to be doing the VOP_PUTPAGES() since 621 * the write RPCs are less likely to fail with EACCES. 622 */ 623 if ((fmode & FWRITE) != 0) { 624 cred = np->n_writecred; 625 np->n_writecred = crhold(ap->a_cred); 626 } else 627 cred = NULL; 628 mtx_unlock(&np->n_mtx); 629 630 if (cred != NULL) 631 crfree(cred); 632 vnode_create_vobject(vp, vattr.va_size, ap->a_td); 633 return (0); 634 } 635 636 /* 637 * nfs close vnode op 638 * What an NFS client should do upon close after writing is a debatable issue. 639 * Most NFS clients push delayed writes to the server upon close, basically for 640 * two reasons: 641 * 1 - So that any write errors may be reported back to the client process 642 * doing the close system call. By far the two most likely errors are 643 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. 644 * 2 - To put a worst case upper bound on cache inconsistency between 645 * multiple clients for the file. 646 * There is also a consistency problem for Version 2 of the protocol w.r.t. 647 * not being able to tell if other clients are writing a file concurrently, 648 * since there is no way of knowing if the changed modify time in the reply 649 * is only due to the write for this client. 650 * (NFS Version 3 provides weak cache consistency data in the reply that 651 * should be sufficient to detect and handle this case.) 652 * 653 * The current code does the following: 654 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers 655 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate 656 * or commit them (this satisfies 1 and 2 except for the 657 * case where the server crashes after this close but 658 * before the commit RPC, which is felt to be "good 659 * enough". Changing the last argument to ncl_flush() to 660 * a 1 would force a commit operation, if it is felt a 661 * commit is necessary now. 662 * for NFS Version 4 - flush the dirty buffers and commit them, if 663 * nfscl_mustflush() says this is necessary. 664 * It is necessary if there is no write delegation held, 665 * in order to satisfy open/close coherency. 666 * If the file isn't cached on local stable storage, 667 * it may be necessary in order to detect "out of space" 668 * errors from the server, if the write delegation 669 * issued by the server doesn't allow the file to grow. 670 */ 671 /* ARGSUSED */ 672 static int 673 nfs_close(struct vop_close_args *ap) 674 { 675 struct vnode *vp = ap->a_vp; 676 struct nfsnode *np = VTONFS(vp); 677 struct nfsvattr nfsva; 678 struct ucred *cred; 679 int error = 0, ret, localcred = 0; 680 int fmode = ap->a_fflag; 681 682 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)) 683 return (0); 684 /* 685 * During shutdown, a_cred isn't valid, so just use root. 686 */ 687 if (ap->a_cred == NOCRED) { 688 cred = newnfs_getcred(); 689 localcred = 1; 690 } else { 691 cred = ap->a_cred; 692 } 693 if (vp->v_type == VREG) { 694 /* 695 * Examine and clean dirty pages, regardless of NMODIFIED. 696 * This closes a major hole in close-to-open consistency. 697 * We want to push out all dirty pages (and buffers) on 698 * close, regardless of whether they were dirtied by 699 * mmap'ed writes or via write(). 700 */ 701 if (nfs_clean_pages_on_close && vp->v_object) { 702 VM_OBJECT_WLOCK(vp->v_object); 703 vm_object_page_clean(vp->v_object, 0, 0, 0); 704 VM_OBJECT_WUNLOCK(vp->v_object); 705 } 706 mtx_lock(&np->n_mtx); 707 if (np->n_flag & NMODIFIED) { 708 mtx_unlock(&np->n_mtx); 709 if (NFS_ISV3(vp)) { 710 /* 711 * Under NFSv3 we have dirty buffers to dispose of. We 712 * must flush them to the NFS server. We have the option 713 * of waiting all the way through the commit rpc or just 714 * waiting for the initial write. The default is to only 715 * wait through the initial write so the data is in the 716 * server's cache, which is roughly similar to the state 717 * a standard disk subsystem leaves the file in on close(). 718 * 719 * We cannot clear the NMODIFIED bit in np->n_flag due to 720 * potential races with other processes, and certainly 721 * cannot clear it if we don't commit. 722 * These races occur when there is no longer the old 723 * traditional vnode locking implemented for Vnode Ops. 724 */ 725 int cm = newnfs_commit_on_close ? 1 : 0; 726 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0); 727 /* np->n_flag &= ~NMODIFIED; */ 728 } else if (NFS_ISV4(vp)) { 729 if (nfscl_mustflush(vp) != 0) { 730 int cm = newnfs_commit_on_close ? 1 : 0; 731 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, 732 cm, 0); 733 /* 734 * as above w.r.t races when clearing 735 * NMODIFIED. 736 * np->n_flag &= ~NMODIFIED; 737 */ 738 } 739 } else 740 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 741 mtx_lock(&np->n_mtx); 742 } 743 /* 744 * Invalidate the attribute cache in all cases. 745 * An open is going to fetch fresh attrs any way, other procs 746 * on this node that have file open will be forced to do an 747 * otw attr fetch, but this is safe. 748 * --> A user found that their RPC count dropped by 20% when 749 * this was commented out and I can't see any requirement 750 * for it, so I've disabled it when negative lookups are 751 * enabled. (What does this have to do with negative lookup 752 * caching? Well nothing, except it was reported by the 753 * same user that needed negative lookup caching and I wanted 754 * there to be a way to disable it to see if it 755 * is the cause of some caching/coherency issue that might 756 * crop up.) 757 */ 758 if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) { 759 np->n_attrstamp = 0; 760 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 761 } 762 if (np->n_flag & NWRITEERR) { 763 np->n_flag &= ~NWRITEERR; 764 error = np->n_error; 765 } 766 mtx_unlock(&np->n_mtx); 767 } 768 769 if (NFS_ISV4(vp)) { 770 /* 771 * Get attributes so "change" is up to date. 772 */ 773 if (error == 0 && nfscl_mustflush(vp) != 0) { 774 ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva, 775 NULL); 776 if (!ret) { 777 np->n_change = nfsva.na_filerev; 778 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, 779 NULL, 0, 0); 780 } 781 } 782 783 /* 784 * and do the close. 785 */ 786 ret = nfsrpc_close(vp, 0, ap->a_td); 787 if (!error && ret) 788 error = ret; 789 if (error) 790 error = nfscl_maperr(ap->a_td, error, (uid_t)0, 791 (gid_t)0); 792 } 793 if (newnfs_directio_enable) 794 KASSERT((np->n_directio_asyncwr == 0), 795 ("nfs_close: dirty unflushed (%d) directio buffers\n", 796 np->n_directio_asyncwr)); 797 if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) { 798 mtx_lock(&np->n_mtx); 799 KASSERT((np->n_directio_opens > 0), 800 ("nfs_close: unexpectedly value (0) of n_directio_opens\n")); 801 np->n_directio_opens--; 802 if (np->n_directio_opens == 0) 803 np->n_flag &= ~NNONCACHE; 804 mtx_unlock(&np->n_mtx); 805 } 806 if (localcred) 807 NFSFREECRED(cred); 808 return (error); 809 } 810 811 /* 812 * nfs getattr call from vfs. 813 */ 814 static int 815 nfs_getattr(struct vop_getattr_args *ap) 816 { 817 struct vnode *vp = ap->a_vp; 818 struct thread *td = curthread; /* XXX */ 819 struct nfsnode *np = VTONFS(vp); 820 int error = 0; 821 struct nfsvattr nfsva; 822 struct vattr *vap = ap->a_vap; 823 struct vattr vattr; 824 825 /* 826 * Update local times for special files. 827 */ 828 mtx_lock(&np->n_mtx); 829 if (np->n_flag & (NACC | NUPD)) 830 np->n_flag |= NCHG; 831 mtx_unlock(&np->n_mtx); 832 /* 833 * First look in the cache. 834 */ 835 if (ncl_getattrcache(vp, &vattr) == 0) { 836 vap->va_type = vattr.va_type; 837 vap->va_mode = vattr.va_mode; 838 vap->va_nlink = vattr.va_nlink; 839 vap->va_uid = vattr.va_uid; 840 vap->va_gid = vattr.va_gid; 841 vap->va_fsid = vattr.va_fsid; 842 vap->va_fileid = vattr.va_fileid; 843 vap->va_size = vattr.va_size; 844 vap->va_blocksize = vattr.va_blocksize; 845 vap->va_atime = vattr.va_atime; 846 vap->va_mtime = vattr.va_mtime; 847 vap->va_ctime = vattr.va_ctime; 848 vap->va_gen = vattr.va_gen; 849 vap->va_flags = vattr.va_flags; 850 vap->va_rdev = vattr.va_rdev; 851 vap->va_bytes = vattr.va_bytes; 852 vap->va_filerev = vattr.va_filerev; 853 /* 854 * Get the local modify time for the case of a write 855 * delegation. 856 */ 857 nfscl_deleggetmodtime(vp, &vap->va_mtime); 858 return (0); 859 } 860 861 if (NFS_ISV34(vp) && nfs_prime_access_cache && 862 nfsaccess_cache_timeout > 0) { 863 NFSINCRGLOBAL(newnfsstats.accesscache_misses); 864 nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL); 865 if (ncl_getattrcache(vp, ap->a_vap) == 0) { 866 nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime); 867 return (0); 868 } 869 } 870 error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL); 871 if (!error) 872 error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0); 873 if (!error) { 874 /* 875 * Get the local modify time for the case of a write 876 * delegation. 877 */ 878 nfscl_deleggetmodtime(vp, &vap->va_mtime); 879 } else if (NFS_ISV4(vp)) { 880 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 881 } 882 return (error); 883 } 884 885 /* 886 * nfs setattr call. 887 */ 888 static int 889 nfs_setattr(struct vop_setattr_args *ap) 890 { 891 struct vnode *vp = ap->a_vp; 892 struct nfsnode *np = VTONFS(vp); 893 struct thread *td = curthread; /* XXX */ 894 struct vattr *vap = ap->a_vap; 895 int error = 0; 896 u_quad_t tsize; 897 898 #ifndef nolint 899 tsize = (u_quad_t)0; 900 #endif 901 902 /* 903 * Setting of flags and marking of atimes are not supported. 904 */ 905 if (vap->va_flags != VNOVAL) 906 return (EOPNOTSUPP); 907 908 /* 909 * Disallow write attempts if the filesystem is mounted read-only. 910 */ 911 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 912 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 913 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 914 (vp->v_mount->mnt_flag & MNT_RDONLY)) 915 return (EROFS); 916 if (vap->va_size != VNOVAL) { 917 switch (vp->v_type) { 918 case VDIR: 919 return (EISDIR); 920 case VCHR: 921 case VBLK: 922 case VSOCK: 923 case VFIFO: 924 if (vap->va_mtime.tv_sec == VNOVAL && 925 vap->va_atime.tv_sec == VNOVAL && 926 vap->va_mode == (mode_t)VNOVAL && 927 vap->va_uid == (uid_t)VNOVAL && 928 vap->va_gid == (gid_t)VNOVAL) 929 return (0); 930 vap->va_size = VNOVAL; 931 break; 932 default: 933 /* 934 * Disallow write attempts if the filesystem is 935 * mounted read-only. 936 */ 937 if (vp->v_mount->mnt_flag & MNT_RDONLY) 938 return (EROFS); 939 /* 940 * We run vnode_pager_setsize() early (why?), 941 * we must set np->n_size now to avoid vinvalbuf 942 * V_SAVE races that might setsize a lower 943 * value. 944 */ 945 mtx_lock(&np->n_mtx); 946 tsize = np->n_size; 947 mtx_unlock(&np->n_mtx); 948 error = ncl_meta_setsize(vp, ap->a_cred, td, 949 vap->va_size); 950 mtx_lock(&np->n_mtx); 951 if (np->n_flag & NMODIFIED) { 952 tsize = np->n_size; 953 mtx_unlock(&np->n_mtx); 954 if (vap->va_size == 0) 955 error = ncl_vinvalbuf(vp, 0, td, 1); 956 else 957 error = ncl_vinvalbuf(vp, V_SAVE, td, 1); 958 if (error) { 959 vnode_pager_setsize(vp, tsize); 960 return (error); 961 } 962 /* 963 * Call nfscl_delegmodtime() to set the modify time 964 * locally, as required. 965 */ 966 nfscl_delegmodtime(vp); 967 } else 968 mtx_unlock(&np->n_mtx); 969 /* 970 * np->n_size has already been set to vap->va_size 971 * in ncl_meta_setsize(). We must set it again since 972 * nfs_loadattrcache() could be called through 973 * ncl_meta_setsize() and could modify np->n_size. 974 */ 975 mtx_lock(&np->n_mtx); 976 np->n_vattr.na_size = np->n_size = vap->va_size; 977 mtx_unlock(&np->n_mtx); 978 }; 979 } else { 980 mtx_lock(&np->n_mtx); 981 if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && 982 (np->n_flag & NMODIFIED) && vp->v_type == VREG) { 983 mtx_unlock(&np->n_mtx); 984 if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 && 985 (error == EINTR || error == EIO)) 986 return (error); 987 } else 988 mtx_unlock(&np->n_mtx); 989 } 990 error = nfs_setattrrpc(vp, vap, ap->a_cred, td); 991 if (error && vap->va_size != VNOVAL) { 992 mtx_lock(&np->n_mtx); 993 np->n_size = np->n_vattr.na_size = tsize; 994 vnode_pager_setsize(vp, tsize); 995 mtx_unlock(&np->n_mtx); 996 } 997 return (error); 998 } 999 1000 /* 1001 * Do an nfs setattr rpc. 1002 */ 1003 static int 1004 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, 1005 struct thread *td) 1006 { 1007 struct nfsnode *np = VTONFS(vp); 1008 int error, ret, attrflag, i; 1009 struct nfsvattr nfsva; 1010 1011 if (NFS_ISV34(vp)) { 1012 mtx_lock(&np->n_mtx); 1013 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) 1014 np->n_accesscache[i].stamp = 0; 1015 np->n_flag |= NDELEGMOD; 1016 mtx_unlock(&np->n_mtx); 1017 KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); 1018 } 1019 error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag, 1020 NULL); 1021 if (attrflag) { 1022 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1023 if (ret && !error) 1024 error = ret; 1025 } 1026 if (error && NFS_ISV4(vp)) 1027 error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid); 1028 return (error); 1029 } 1030 1031 /* 1032 * nfs lookup call, one step at a time... 1033 * First look in cache 1034 * If not found, unlock the directory nfsnode and do the rpc 1035 */ 1036 static int 1037 nfs_lookup(struct vop_lookup_args *ap) 1038 { 1039 struct componentname *cnp = ap->a_cnp; 1040 struct vnode *dvp = ap->a_dvp; 1041 struct vnode **vpp = ap->a_vpp; 1042 struct mount *mp = dvp->v_mount; 1043 int flags = cnp->cn_flags; 1044 struct vnode *newvp; 1045 struct nfsmount *nmp; 1046 struct nfsnode *np, *newnp; 1047 int error = 0, attrflag, dattrflag, ltype, ncticks; 1048 struct thread *td = cnp->cn_thread; 1049 struct nfsfh *nfhp; 1050 struct nfsvattr dnfsva, nfsva; 1051 struct vattr vattr; 1052 struct timespec nctime; 1053 1054 *vpp = NULLVP; 1055 if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) && 1056 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 1057 return (EROFS); 1058 if (dvp->v_type != VDIR) 1059 return (ENOTDIR); 1060 nmp = VFSTONFS(mp); 1061 np = VTONFS(dvp); 1062 1063 /* For NFSv4, wait until any remove is done. */ 1064 mtx_lock(&np->n_mtx); 1065 while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) { 1066 np->n_flag |= NREMOVEWANT; 1067 (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0); 1068 } 1069 mtx_unlock(&np->n_mtx); 1070 1071 if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) 1072 return (error); 1073 error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks); 1074 if (error > 0 && error != ENOENT) 1075 return (error); 1076 if (error == -1) { 1077 /* 1078 * Lookups of "." are special and always return the 1079 * current directory. cache_lookup() already handles 1080 * associated locking bookkeeping, etc. 1081 */ 1082 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') { 1083 /* XXX: Is this really correct? */ 1084 if (cnp->cn_nameiop != LOOKUP && 1085 (flags & ISLASTCN)) 1086 cnp->cn_flags |= SAVENAME; 1087 return (0); 1088 } 1089 1090 /* 1091 * We only accept a positive hit in the cache if the 1092 * change time of the file matches our cached copy. 1093 * Otherwise, we discard the cache entry and fallback 1094 * to doing a lookup RPC. We also only trust cache 1095 * entries for less than nm_nametimeo seconds. 1096 * 1097 * To better handle stale file handles and attributes, 1098 * clear the attribute cache of this node if it is a 1099 * leaf component, part of an open() call, and not 1100 * locally modified before fetching the attributes. 1101 * This should allow stale file handles to be detected 1102 * here where we can fall back to a LOOKUP RPC to 1103 * recover rather than having nfs_open() detect the 1104 * stale file handle and failing open(2) with ESTALE. 1105 */ 1106 newvp = *vpp; 1107 newnp = VTONFS(newvp); 1108 if (!(nmp->nm_flag & NFSMNT_NOCTO) && 1109 (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1110 !(newnp->n_flag & NMODIFIED)) { 1111 mtx_lock(&newnp->n_mtx); 1112 newnp->n_attrstamp = 0; 1113 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1114 mtx_unlock(&newnp->n_mtx); 1115 } 1116 if (nfscl_nodeleg(newvp, 0) == 0 || 1117 ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) && 1118 VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 && 1119 timespeccmp(&vattr.va_ctime, &nctime, ==))) { 1120 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1121 if (cnp->cn_nameiop != LOOKUP && 1122 (flags & ISLASTCN)) 1123 cnp->cn_flags |= SAVENAME; 1124 return (0); 1125 } 1126 cache_purge(newvp); 1127 if (dvp != newvp) 1128 vput(newvp); 1129 else 1130 vrele(newvp); 1131 *vpp = NULLVP; 1132 } else if (error == ENOENT) { 1133 if (dvp->v_iflag & VI_DOOMED) 1134 return (ENOENT); 1135 /* 1136 * We only accept a negative hit in the cache if the 1137 * modification time of the parent directory matches 1138 * the cached copy in the name cache entry. 1139 * Otherwise, we discard all of the negative cache 1140 * entries for this directory. We also only trust 1141 * negative cache entries for up to nm_negnametimeo 1142 * seconds. 1143 */ 1144 if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) && 1145 VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 && 1146 timespeccmp(&vattr.va_mtime, &nctime, ==)) { 1147 NFSINCRGLOBAL(newnfsstats.lookupcache_hits); 1148 return (ENOENT); 1149 } 1150 cache_purge_negative(dvp); 1151 } 1152 1153 error = 0; 1154 newvp = NULLVP; 1155 NFSINCRGLOBAL(newnfsstats.lookupcache_misses); 1156 error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1157 cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1158 NULL); 1159 if (dattrflag) 1160 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1161 if (error) { 1162 if (newvp != NULLVP) { 1163 vput(newvp); 1164 *vpp = NULLVP; 1165 } 1166 1167 if (error != ENOENT) { 1168 if (NFS_ISV4(dvp)) 1169 error = nfscl_maperr(td, error, (uid_t)0, 1170 (gid_t)0); 1171 return (error); 1172 } 1173 1174 /* The requested file was not found. */ 1175 if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && 1176 (flags & ISLASTCN)) { 1177 /* 1178 * XXX: UFS does a full VOP_ACCESS(dvp, 1179 * VWRITE) here instead of just checking 1180 * MNT_RDONLY. 1181 */ 1182 if (mp->mnt_flag & MNT_RDONLY) 1183 return (EROFS); 1184 cnp->cn_flags |= SAVENAME; 1185 return (EJUSTRETURN); 1186 } 1187 1188 if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE && 1189 dattrflag) { 1190 /* 1191 * Cache the modification time of the parent 1192 * directory from the post-op attributes in 1193 * the name cache entry. The negative cache 1194 * entry will be ignored once the directory 1195 * has changed. Don't bother adding the entry 1196 * if the directory has already changed. 1197 */ 1198 mtx_lock(&np->n_mtx); 1199 if (timespeccmp(&np->n_vattr.na_mtime, 1200 &dnfsva.na_mtime, ==)) { 1201 mtx_unlock(&np->n_mtx); 1202 cache_enter_time(dvp, NULL, cnp, 1203 &dnfsva.na_mtime, NULL); 1204 } else 1205 mtx_unlock(&np->n_mtx); 1206 } 1207 return (ENOENT); 1208 } 1209 1210 /* 1211 * Handle RENAME case... 1212 */ 1213 if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) { 1214 if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1215 FREE((caddr_t)nfhp, M_NFSFH); 1216 return (EISDIR); 1217 } 1218 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1219 LK_EXCLUSIVE); 1220 if (error) 1221 return (error); 1222 newvp = NFSTOV(np); 1223 if (attrflag) 1224 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1225 0, 1); 1226 *vpp = newvp; 1227 cnp->cn_flags |= SAVENAME; 1228 return (0); 1229 } 1230 1231 if (flags & ISDOTDOT) { 1232 ltype = NFSVOPISLOCKED(dvp); 1233 error = vfs_busy(mp, MBF_NOWAIT); 1234 if (error != 0) { 1235 vfs_ref(mp); 1236 NFSVOPUNLOCK(dvp, 0); 1237 error = vfs_busy(mp, 0); 1238 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1239 vfs_rel(mp); 1240 if (error == 0 && (dvp->v_iflag & VI_DOOMED)) { 1241 vfs_unbusy(mp); 1242 error = ENOENT; 1243 } 1244 if (error != 0) 1245 return (error); 1246 } 1247 NFSVOPUNLOCK(dvp, 0); 1248 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1249 cnp->cn_lkflags); 1250 if (error == 0) 1251 newvp = NFSTOV(np); 1252 vfs_unbusy(mp); 1253 if (newvp != dvp) 1254 NFSVOPLOCK(dvp, ltype | LK_RETRY); 1255 if (dvp->v_iflag & VI_DOOMED) { 1256 if (error == 0) { 1257 if (newvp == dvp) 1258 vrele(newvp); 1259 else 1260 vput(newvp); 1261 } 1262 error = ENOENT; 1263 } 1264 if (error != 0) 1265 return (error); 1266 if (attrflag) 1267 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1268 0, 1); 1269 } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) { 1270 FREE((caddr_t)nfhp, M_NFSFH); 1271 VREF(dvp); 1272 newvp = dvp; 1273 if (attrflag) 1274 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1275 0, 1); 1276 } else { 1277 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL, 1278 cnp->cn_lkflags); 1279 if (error) 1280 return (error); 1281 newvp = NFSTOV(np); 1282 if (attrflag) 1283 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1284 0, 1); 1285 else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) && 1286 !(np->n_flag & NMODIFIED)) { 1287 /* 1288 * Flush the attribute cache when opening a 1289 * leaf node to ensure that fresh attributes 1290 * are fetched in nfs_open() since we did not 1291 * fetch attributes from the LOOKUP reply. 1292 */ 1293 mtx_lock(&np->n_mtx); 1294 np->n_attrstamp = 0; 1295 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp); 1296 mtx_unlock(&np->n_mtx); 1297 } 1298 } 1299 if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) 1300 cnp->cn_flags |= SAVENAME; 1301 if ((cnp->cn_flags & MAKEENTRY) && 1302 (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) && 1303 attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0)) 1304 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1305 newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime); 1306 *vpp = newvp; 1307 return (0); 1308 } 1309 1310 /* 1311 * nfs read call. 1312 * Just call ncl_bioread() to do the work. 1313 */ 1314 static int 1315 nfs_read(struct vop_read_args *ap) 1316 { 1317 struct vnode *vp = ap->a_vp; 1318 1319 switch (vp->v_type) { 1320 case VREG: 1321 return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); 1322 case VDIR: 1323 return (EISDIR); 1324 default: 1325 return (EOPNOTSUPP); 1326 } 1327 } 1328 1329 /* 1330 * nfs readlink call 1331 */ 1332 static int 1333 nfs_readlink(struct vop_readlink_args *ap) 1334 { 1335 struct vnode *vp = ap->a_vp; 1336 1337 if (vp->v_type != VLNK) 1338 return (EINVAL); 1339 return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred)); 1340 } 1341 1342 /* 1343 * Do a readlink rpc. 1344 * Called by ncl_doio() from below the buffer cache. 1345 */ 1346 int 1347 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1348 { 1349 int error, ret, attrflag; 1350 struct nfsvattr nfsva; 1351 1352 error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva, 1353 &attrflag, NULL); 1354 if (attrflag) { 1355 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1356 if (ret && !error) 1357 error = ret; 1358 } 1359 if (error && NFS_ISV4(vp)) 1360 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1361 return (error); 1362 } 1363 1364 /* 1365 * nfs read rpc call 1366 * Ditto above 1367 */ 1368 int 1369 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred) 1370 { 1371 int error, ret, attrflag; 1372 struct nfsvattr nfsva; 1373 struct nfsmount *nmp; 1374 1375 nmp = VFSTONFS(vnode_mount(vp)); 1376 error = EIO; 1377 attrflag = 0; 1378 if (NFSHASPNFS(nmp)) 1379 error = nfscl_doiods(vp, uiop, NULL, NULL, 1380 NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td); 1381 NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error); 1382 if (error != 0) 1383 error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva, 1384 &attrflag, NULL); 1385 if (attrflag) { 1386 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 1387 if (ret && !error) 1388 error = ret; 1389 } 1390 if (error && NFS_ISV4(vp)) 1391 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1392 return (error); 1393 } 1394 1395 /* 1396 * nfs write call 1397 */ 1398 int 1399 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 1400 int *iomode, int *must_commit, int called_from_strategy) 1401 { 1402 struct nfsvattr nfsva; 1403 int error, attrflag, ret; 1404 struct nfsmount *nmp; 1405 1406 nmp = VFSTONFS(vnode_mount(vp)); 1407 error = EIO; 1408 attrflag = 0; 1409 if (NFSHASPNFS(nmp)) 1410 error = nfscl_doiods(vp, uiop, iomode, must_commit, 1411 NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td); 1412 NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error); 1413 if (error != 0) 1414 error = nfsrpc_write(vp, uiop, iomode, must_commit, cred, 1415 uiop->uio_td, &nfsva, &attrflag, NULL, 1416 called_from_strategy); 1417 if (attrflag) { 1418 if (VTONFS(vp)->n_flag & ND_NFSV4) 1419 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1, 1420 1); 1421 else 1422 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1423 1); 1424 if (ret && !error) 1425 error = ret; 1426 } 1427 if (DOINGASYNC(vp)) 1428 *iomode = NFSWRITE_FILESYNC; 1429 if (error && NFS_ISV4(vp)) 1430 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0); 1431 return (error); 1432 } 1433 1434 /* 1435 * nfs mknod rpc 1436 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the 1437 * mode set to specify the file type and the size field for rdev. 1438 */ 1439 static int 1440 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1441 struct vattr *vap) 1442 { 1443 struct nfsvattr nfsva, dnfsva; 1444 struct vnode *newvp = NULL; 1445 struct nfsnode *np = NULL, *dnp; 1446 struct nfsfh *nfhp; 1447 struct vattr vattr; 1448 int error = 0, attrflag, dattrflag; 1449 u_int32_t rdev; 1450 1451 if (vap->va_type == VCHR || vap->va_type == VBLK) 1452 rdev = vap->va_rdev; 1453 else if (vap->va_type == VFIFO || vap->va_type == VSOCK) 1454 rdev = 0xffffffff; 1455 else 1456 return (EOPNOTSUPP); 1457 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1458 return (error); 1459 error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap, 1460 rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva, 1461 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 1462 if (!error) { 1463 if (!nfhp) 1464 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1465 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1466 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1467 NULL); 1468 if (nfhp) 1469 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1470 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1471 } 1472 if (dattrflag) 1473 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1474 if (!error) { 1475 newvp = NFSTOV(np); 1476 if (attrflag != 0) { 1477 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1478 0, 1); 1479 if (error != 0) 1480 vput(newvp); 1481 } 1482 } 1483 if (!error) { 1484 *vpp = newvp; 1485 } else if (NFS_ISV4(dvp)) { 1486 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1487 vap->va_gid); 1488 } 1489 dnp = VTONFS(dvp); 1490 mtx_lock(&dnp->n_mtx); 1491 dnp->n_flag |= NMODIFIED; 1492 if (!dattrflag) { 1493 dnp->n_attrstamp = 0; 1494 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1495 } 1496 mtx_unlock(&dnp->n_mtx); 1497 return (error); 1498 } 1499 1500 /* 1501 * nfs mknod vop 1502 * just call nfs_mknodrpc() to do the work. 1503 */ 1504 /* ARGSUSED */ 1505 static int 1506 nfs_mknod(struct vop_mknod_args *ap) 1507 { 1508 return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap)); 1509 } 1510 1511 static struct mtx nfs_cverf_mtx; 1512 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex", 1513 MTX_DEF); 1514 1515 static nfsquad_t 1516 nfs_get_cverf(void) 1517 { 1518 static nfsquad_t cverf; 1519 nfsquad_t ret; 1520 static int cverf_initialized = 0; 1521 1522 mtx_lock(&nfs_cverf_mtx); 1523 if (cverf_initialized == 0) { 1524 cverf.lval[0] = arc4random(); 1525 cverf.lval[1] = arc4random(); 1526 cverf_initialized = 1; 1527 } else 1528 cverf.qval++; 1529 ret = cverf; 1530 mtx_unlock(&nfs_cverf_mtx); 1531 1532 return (ret); 1533 } 1534 1535 /* 1536 * nfs file create call 1537 */ 1538 static int 1539 nfs_create(struct vop_create_args *ap) 1540 { 1541 struct vnode *dvp = ap->a_dvp; 1542 struct vattr *vap = ap->a_vap; 1543 struct componentname *cnp = ap->a_cnp; 1544 struct nfsnode *np = NULL, *dnp; 1545 struct vnode *newvp = NULL; 1546 struct nfsmount *nmp; 1547 struct nfsvattr dnfsva, nfsva; 1548 struct nfsfh *nfhp; 1549 nfsquad_t cverf; 1550 int error = 0, attrflag, dattrflag, fmode = 0; 1551 struct vattr vattr; 1552 1553 /* 1554 * Oops, not for me.. 1555 */ 1556 if (vap->va_type == VSOCK) 1557 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); 1558 1559 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred))) 1560 return (error); 1561 if (vap->va_vaflags & VA_EXCLUSIVE) 1562 fmode |= O_EXCL; 1563 dnp = VTONFS(dvp); 1564 nmp = VFSTONFS(vnode_mount(dvp)); 1565 again: 1566 /* For NFSv4, wait until any remove is done. */ 1567 mtx_lock(&dnp->n_mtx); 1568 while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) { 1569 dnp->n_flag |= NREMOVEWANT; 1570 (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0); 1571 } 1572 mtx_unlock(&dnp->n_mtx); 1573 1574 cverf = nfs_get_cverf(); 1575 error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1576 vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, 1577 &nfhp, &attrflag, &dattrflag, NULL); 1578 if (!error) { 1579 if (nfhp == NULL) 1580 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr, 1581 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, 1582 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag, 1583 NULL); 1584 if (nfhp != NULL) 1585 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, 1586 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE); 1587 } 1588 if (dattrflag) 1589 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1590 if (!error) { 1591 newvp = NFSTOV(np); 1592 if (attrflag == 0) 1593 error = nfsrpc_getattr(newvp, cnp->cn_cred, 1594 cnp->cn_thread, &nfsva, NULL); 1595 if (error == 0) 1596 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 1597 0, 1); 1598 } 1599 if (error) { 1600 if (newvp != NULL) { 1601 vput(newvp); 1602 newvp = NULL; 1603 } 1604 if (NFS_ISV34(dvp) && (fmode & O_EXCL) && 1605 error == NFSERR_NOTSUPP) { 1606 fmode &= ~O_EXCL; 1607 goto again; 1608 } 1609 } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) { 1610 if (nfscl_checksattr(vap, &nfsva)) { 1611 /* 1612 * We are normally called with only a partially 1613 * initialized VAP. Since the NFSv3 spec says that 1614 * the server may use the file attributes to 1615 * store the verifier, the spec requires us to do a 1616 * SETATTR RPC. FreeBSD servers store the verifier in 1617 * atime, but we can't really assume that all servers 1618 * will so we ensure that our SETATTR sets both atime 1619 * and mtime. 1620 */ 1621 if (vap->va_mtime.tv_sec == VNOVAL) 1622 vfs_timestamp(&vap->va_mtime); 1623 if (vap->va_atime.tv_sec == VNOVAL) 1624 vap->va_atime = vap->va_mtime; 1625 error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred, 1626 cnp->cn_thread, &nfsva, &attrflag, NULL); 1627 if (error && (vap->va_uid != (uid_t)VNOVAL || 1628 vap->va_gid != (gid_t)VNOVAL)) { 1629 /* try again without setting uid/gid */ 1630 vap->va_uid = (uid_t)VNOVAL; 1631 vap->va_gid = (uid_t)VNOVAL; 1632 error = nfsrpc_setattr(newvp, vap, NULL, 1633 cnp->cn_cred, cnp->cn_thread, &nfsva, 1634 &attrflag, NULL); 1635 } 1636 if (attrflag) 1637 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 1638 NULL, 0, 1); 1639 if (error != 0) 1640 vput(newvp); 1641 } 1642 } 1643 if (!error) { 1644 if ((cnp->cn_flags & MAKEENTRY) && attrflag) 1645 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 1646 NULL); 1647 *ap->a_vpp = newvp; 1648 } else if (NFS_ISV4(dvp)) { 1649 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid, 1650 vap->va_gid); 1651 } 1652 mtx_lock(&dnp->n_mtx); 1653 dnp->n_flag |= NMODIFIED; 1654 if (!dattrflag) { 1655 dnp->n_attrstamp = 0; 1656 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1657 } 1658 mtx_unlock(&dnp->n_mtx); 1659 return (error); 1660 } 1661 1662 /* 1663 * nfs file remove call 1664 * To try and make nfs semantics closer to ufs semantics, a file that has 1665 * other processes using the vnode is renamed instead of removed and then 1666 * removed later on the last close. 1667 * - If v_usecount > 1 1668 * If a rename is not already in the works 1669 * call nfs_sillyrename() to set it up 1670 * else 1671 * do the remove rpc 1672 */ 1673 static int 1674 nfs_remove(struct vop_remove_args *ap) 1675 { 1676 struct vnode *vp = ap->a_vp; 1677 struct vnode *dvp = ap->a_dvp; 1678 struct componentname *cnp = ap->a_cnp; 1679 struct nfsnode *np = VTONFS(vp); 1680 int error = 0; 1681 struct vattr vattr; 1682 1683 KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name")); 1684 KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount")); 1685 if (vp->v_type == VDIR) 1686 error = EPERM; 1687 else if (vrefcnt(vp) == 1 || (np->n_sillyrename && 1688 VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 && 1689 vattr.va_nlink > 1)) { 1690 /* 1691 * Purge the name cache so that the chance of a lookup for 1692 * the name succeeding while the remove is in progress is 1693 * minimized. Without node locking it can still happen, such 1694 * that an I/O op returns ESTALE, but since you get this if 1695 * another host removes the file.. 1696 */ 1697 cache_purge(vp); 1698 /* 1699 * throw away biocache buffers, mainly to avoid 1700 * unnecessary delayed writes later. 1701 */ 1702 error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1); 1703 /* Do the rpc */ 1704 if (error != EINTR && error != EIO) 1705 error = nfs_removerpc(dvp, vp, cnp->cn_nameptr, 1706 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread); 1707 /* 1708 * Kludge City: If the first reply to the remove rpc is lost.. 1709 * the reply to the retransmitted request will be ENOENT 1710 * since the file was in fact removed 1711 * Therefore, we cheat and return success. 1712 */ 1713 if (error == ENOENT) 1714 error = 0; 1715 } else if (!np->n_sillyrename) 1716 error = nfs_sillyrename(dvp, vp, cnp); 1717 mtx_lock(&np->n_mtx); 1718 np->n_attrstamp = 0; 1719 mtx_unlock(&np->n_mtx); 1720 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1721 return (error); 1722 } 1723 1724 /* 1725 * nfs file remove rpc called from nfs_inactive 1726 */ 1727 int 1728 ncl_removeit(struct sillyrename *sp, struct vnode *vp) 1729 { 1730 /* 1731 * Make sure that the directory vnode is still valid. 1732 * XXX we should lock sp->s_dvp here. 1733 */ 1734 if (sp->s_dvp->v_type == VBAD) 1735 return (0); 1736 return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen, 1737 sp->s_cred, NULL)); 1738 } 1739 1740 /* 1741 * Nfs remove rpc, called from nfs_remove() and ncl_removeit(). 1742 */ 1743 static int 1744 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name, 1745 int namelen, struct ucred *cred, struct thread *td) 1746 { 1747 struct nfsvattr dnfsva; 1748 struct nfsnode *dnp = VTONFS(dvp); 1749 int error = 0, dattrflag; 1750 1751 mtx_lock(&dnp->n_mtx); 1752 dnp->n_flag |= NREMOVEINPROG; 1753 mtx_unlock(&dnp->n_mtx); 1754 error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva, 1755 &dattrflag, NULL); 1756 mtx_lock(&dnp->n_mtx); 1757 if ((dnp->n_flag & NREMOVEWANT)) { 1758 dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG); 1759 mtx_unlock(&dnp->n_mtx); 1760 wakeup((caddr_t)dnp); 1761 } else { 1762 dnp->n_flag &= ~NREMOVEINPROG; 1763 mtx_unlock(&dnp->n_mtx); 1764 } 1765 if (dattrflag) 1766 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 1767 mtx_lock(&dnp->n_mtx); 1768 dnp->n_flag |= NMODIFIED; 1769 if (!dattrflag) { 1770 dnp->n_attrstamp = 0; 1771 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 1772 } 1773 mtx_unlock(&dnp->n_mtx); 1774 if (error && NFS_ISV4(dvp)) 1775 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1776 return (error); 1777 } 1778 1779 /* 1780 * nfs file rename call 1781 */ 1782 static int 1783 nfs_rename(struct vop_rename_args *ap) 1784 { 1785 struct vnode *fvp = ap->a_fvp; 1786 struct vnode *tvp = ap->a_tvp; 1787 struct vnode *fdvp = ap->a_fdvp; 1788 struct vnode *tdvp = ap->a_tdvp; 1789 struct componentname *tcnp = ap->a_tcnp; 1790 struct componentname *fcnp = ap->a_fcnp; 1791 struct nfsnode *fnp = VTONFS(ap->a_fvp); 1792 struct nfsnode *tdnp = VTONFS(ap->a_tdvp); 1793 struct nfsv4node *newv4 = NULL; 1794 int error; 1795 1796 KASSERT((tcnp->cn_flags & HASBUF) != 0 && 1797 (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name")); 1798 /* Check for cross-device rename */ 1799 if ((fvp->v_mount != tdvp->v_mount) || 1800 (tvp && (fvp->v_mount != tvp->v_mount))) { 1801 error = EXDEV; 1802 goto out; 1803 } 1804 1805 if (fvp == tvp) { 1806 ncl_printf("nfs_rename: fvp == tvp (can't happen)\n"); 1807 error = 0; 1808 goto out; 1809 } 1810 if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0) 1811 goto out; 1812 1813 /* 1814 * We have to flush B_DELWRI data prior to renaming 1815 * the file. If we don't, the delayed-write buffers 1816 * can be flushed out later after the file has gone stale 1817 * under NFSV3. NFSV2 does not have this problem because 1818 * ( as far as I can tell ) it flushes dirty buffers more 1819 * often. 1820 * 1821 * Skip the rename operation if the fsync fails, this can happen 1822 * due to the server's volume being full, when we pushed out data 1823 * that was written back to our cache earlier. Not checking for 1824 * this condition can result in potential (silent) data loss. 1825 */ 1826 error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread); 1827 NFSVOPUNLOCK(fvp, 0); 1828 if (!error && tvp) 1829 error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread); 1830 if (error) 1831 goto out; 1832 1833 /* 1834 * If the tvp exists and is in use, sillyrename it before doing the 1835 * rename of the new file over it. 1836 * XXX Can't sillyrename a directory. 1837 */ 1838 if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename && 1839 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { 1840 vput(tvp); 1841 tvp = NULL; 1842 } 1843 1844 error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen, 1845 tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, 1846 tcnp->cn_thread); 1847 1848 if (error == 0 && NFS_ISV4(tdvp)) { 1849 /* 1850 * For NFSv4, check to see if it is the same name and 1851 * replace the name, if it is different. 1852 */ 1853 MALLOC(newv4, struct nfsv4node *, 1854 sizeof (struct nfsv4node) + 1855 tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1, 1856 M_NFSV4NODE, M_WAITOK); 1857 mtx_lock(&tdnp->n_mtx); 1858 mtx_lock(&fnp->n_mtx); 1859 if (fnp->n_v4 != NULL && fvp->v_type == VREG && 1860 (fnp->n_v4->n4_namelen != tcnp->cn_namelen || 1861 NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4), 1862 tcnp->cn_namelen) || 1863 tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen || 1864 NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1865 tdnp->n_fhp->nfh_len))) { 1866 #ifdef notdef 1867 { char nnn[100]; int nnnl; 1868 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99; 1869 bcopy(tcnp->cn_nameptr, nnn, nnnl); 1870 nnn[nnnl] = '\0'; 1871 printf("ren replace=%s\n",nnn); 1872 } 1873 #endif 1874 FREE((caddr_t)fnp->n_v4, M_NFSV4NODE); 1875 fnp->n_v4 = newv4; 1876 newv4 = NULL; 1877 fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len; 1878 fnp->n_v4->n4_namelen = tcnp->cn_namelen; 1879 NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data, 1880 tdnp->n_fhp->nfh_len); 1881 NFSBCOPY(tcnp->cn_nameptr, 1882 NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen); 1883 } 1884 mtx_unlock(&tdnp->n_mtx); 1885 mtx_unlock(&fnp->n_mtx); 1886 if (newv4 != NULL) 1887 FREE((caddr_t)newv4, M_NFSV4NODE); 1888 } 1889 1890 if (fvp->v_type == VDIR) { 1891 if (tvp != NULL && tvp->v_type == VDIR) 1892 cache_purge(tdvp); 1893 cache_purge(fdvp); 1894 } 1895 1896 out: 1897 if (tdvp == tvp) 1898 vrele(tdvp); 1899 else 1900 vput(tdvp); 1901 if (tvp) 1902 vput(tvp); 1903 vrele(fdvp); 1904 vrele(fvp); 1905 /* 1906 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. 1907 */ 1908 if (error == ENOENT) 1909 error = 0; 1910 return (error); 1911 } 1912 1913 /* 1914 * nfs file rename rpc called from nfs_remove() above 1915 */ 1916 static int 1917 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp, 1918 struct sillyrename *sp) 1919 { 1920 1921 return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen, 1922 sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred, 1923 scnp->cn_thread)); 1924 } 1925 1926 /* 1927 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). 1928 */ 1929 static int 1930 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr, 1931 int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr, 1932 int tnamelen, struct ucred *cred, struct thread *td) 1933 { 1934 struct nfsvattr fnfsva, tnfsva; 1935 struct nfsnode *fdnp = VTONFS(fdvp); 1936 struct nfsnode *tdnp = VTONFS(tdvp); 1937 int error = 0, fattrflag, tattrflag; 1938 1939 error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp, 1940 tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag, 1941 &tattrflag, NULL, NULL); 1942 mtx_lock(&fdnp->n_mtx); 1943 fdnp->n_flag |= NMODIFIED; 1944 if (fattrflag != 0) { 1945 mtx_unlock(&fdnp->n_mtx); 1946 (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1); 1947 } else { 1948 fdnp->n_attrstamp = 0; 1949 mtx_unlock(&fdnp->n_mtx); 1950 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp); 1951 } 1952 mtx_lock(&tdnp->n_mtx); 1953 tdnp->n_flag |= NMODIFIED; 1954 if (tattrflag != 0) { 1955 mtx_unlock(&tdnp->n_mtx); 1956 (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1); 1957 } else { 1958 tdnp->n_attrstamp = 0; 1959 mtx_unlock(&tdnp->n_mtx); 1960 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 1961 } 1962 if (error && NFS_ISV4(fdvp)) 1963 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 1964 return (error); 1965 } 1966 1967 /* 1968 * nfs hard link create call 1969 */ 1970 static int 1971 nfs_link(struct vop_link_args *ap) 1972 { 1973 struct vnode *vp = ap->a_vp; 1974 struct vnode *tdvp = ap->a_tdvp; 1975 struct componentname *cnp = ap->a_cnp; 1976 struct nfsnode *np, *tdnp; 1977 struct nfsvattr nfsva, dnfsva; 1978 int error = 0, attrflag, dattrflag; 1979 1980 if (vp->v_mount != tdvp->v_mount) { 1981 return (EXDEV); 1982 } 1983 1984 /* 1985 * Push all writes to the server, so that the attribute cache 1986 * doesn't get "out of sync" with the server. 1987 * XXX There should be a better way! 1988 */ 1989 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread); 1990 1991 error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen, 1992 cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag, 1993 &dattrflag, NULL); 1994 tdnp = VTONFS(tdvp); 1995 mtx_lock(&tdnp->n_mtx); 1996 tdnp->n_flag |= NMODIFIED; 1997 if (dattrflag != 0) { 1998 mtx_unlock(&tdnp->n_mtx); 1999 (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1); 2000 } else { 2001 tdnp->n_attrstamp = 0; 2002 mtx_unlock(&tdnp->n_mtx); 2003 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp); 2004 } 2005 if (attrflag) 2006 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2007 else { 2008 np = VTONFS(vp); 2009 mtx_lock(&np->n_mtx); 2010 np->n_attrstamp = 0; 2011 mtx_unlock(&np->n_mtx); 2012 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 2013 } 2014 /* 2015 * If negative lookup caching is enabled, I might as well 2016 * add an entry for this node. Not necessary for correctness, 2017 * but if negative caching is enabled, then the system 2018 * must care about lookup caching hit rate, so... 2019 */ 2020 if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 && 2021 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2022 cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL); 2023 } 2024 if (error && NFS_ISV4(vp)) 2025 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2026 (gid_t)0); 2027 return (error); 2028 } 2029 2030 /* 2031 * nfs symbolic link create call 2032 */ 2033 static int 2034 nfs_symlink(struct vop_symlink_args *ap) 2035 { 2036 struct vnode *dvp = ap->a_dvp; 2037 struct vattr *vap = ap->a_vap; 2038 struct componentname *cnp = ap->a_cnp; 2039 struct nfsvattr nfsva, dnfsva; 2040 struct nfsfh *nfhp; 2041 struct nfsnode *np = NULL, *dnp; 2042 struct vnode *newvp = NULL; 2043 int error = 0, attrflag, dattrflag, ret; 2044 2045 vap->va_type = VLNK; 2046 error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2047 ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, 2048 &nfsva, &nfhp, &attrflag, &dattrflag, NULL); 2049 if (nfhp) { 2050 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2051 &np, NULL, LK_EXCLUSIVE); 2052 if (!ret) 2053 newvp = NFSTOV(np); 2054 else if (!error) 2055 error = ret; 2056 } 2057 if (newvp != NULL) { 2058 if (attrflag) 2059 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2060 0, 1); 2061 } else if (!error) { 2062 /* 2063 * If we do not have an error and we could not extract the 2064 * newvp from the response due to the request being NFSv2, we 2065 * have to do a lookup in order to obtain a newvp to return. 2066 */ 2067 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2068 cnp->cn_cred, cnp->cn_thread, &np); 2069 if (!error) 2070 newvp = NFSTOV(np); 2071 } 2072 if (error) { 2073 if (newvp) 2074 vput(newvp); 2075 if (NFS_ISV4(dvp)) 2076 error = nfscl_maperr(cnp->cn_thread, error, 2077 vap->va_uid, vap->va_gid); 2078 } else { 2079 *ap->a_vpp = newvp; 2080 } 2081 2082 dnp = VTONFS(dvp); 2083 mtx_lock(&dnp->n_mtx); 2084 dnp->n_flag |= NMODIFIED; 2085 if (dattrflag != 0) { 2086 mtx_unlock(&dnp->n_mtx); 2087 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2088 } else { 2089 dnp->n_attrstamp = 0; 2090 mtx_unlock(&dnp->n_mtx); 2091 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2092 } 2093 /* 2094 * If negative lookup caching is enabled, I might as well 2095 * add an entry for this node. Not necessary for correctness, 2096 * but if negative caching is enabled, then the system 2097 * must care about lookup caching hit rate, so... 2098 */ 2099 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2100 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) { 2101 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL); 2102 } 2103 return (error); 2104 } 2105 2106 /* 2107 * nfs make dir call 2108 */ 2109 static int 2110 nfs_mkdir(struct vop_mkdir_args *ap) 2111 { 2112 struct vnode *dvp = ap->a_dvp; 2113 struct vattr *vap = ap->a_vap; 2114 struct componentname *cnp = ap->a_cnp; 2115 struct nfsnode *np = NULL, *dnp; 2116 struct vnode *newvp = NULL; 2117 struct vattr vattr; 2118 struct nfsfh *nfhp; 2119 struct nfsvattr nfsva, dnfsva; 2120 int error = 0, attrflag, dattrflag, ret; 2121 2122 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) 2123 return (error); 2124 vap->va_type = VDIR; 2125 error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2126 vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp, 2127 &attrflag, &dattrflag, NULL); 2128 dnp = VTONFS(dvp); 2129 mtx_lock(&dnp->n_mtx); 2130 dnp->n_flag |= NMODIFIED; 2131 if (dattrflag != 0) { 2132 mtx_unlock(&dnp->n_mtx); 2133 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2134 } else { 2135 dnp->n_attrstamp = 0; 2136 mtx_unlock(&dnp->n_mtx); 2137 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2138 } 2139 if (nfhp) { 2140 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread, 2141 &np, NULL, LK_EXCLUSIVE); 2142 if (!ret) { 2143 newvp = NFSTOV(np); 2144 if (attrflag) 2145 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, 2146 NULL, 0, 1); 2147 } else if (!error) 2148 error = ret; 2149 } 2150 if (!error && newvp == NULL) { 2151 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2152 cnp->cn_cred, cnp->cn_thread, &np); 2153 if (!error) { 2154 newvp = NFSTOV(np); 2155 if (newvp->v_type != VDIR) 2156 error = EEXIST; 2157 } 2158 } 2159 if (error) { 2160 if (newvp) 2161 vput(newvp); 2162 if (NFS_ISV4(dvp)) 2163 error = nfscl_maperr(cnp->cn_thread, error, 2164 vap->va_uid, vap->va_gid); 2165 } else { 2166 /* 2167 * If negative lookup caching is enabled, I might as well 2168 * add an entry for this node. Not necessary for correctness, 2169 * but if negative caching is enabled, then the system 2170 * must care about lookup caching hit rate, so... 2171 */ 2172 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 && 2173 (cnp->cn_flags & MAKEENTRY) && 2174 attrflag != 0 && dattrflag != 0) 2175 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, 2176 &dnfsva.na_ctime); 2177 *ap->a_vpp = newvp; 2178 } 2179 return (error); 2180 } 2181 2182 /* 2183 * nfs remove directory call 2184 */ 2185 static int 2186 nfs_rmdir(struct vop_rmdir_args *ap) 2187 { 2188 struct vnode *vp = ap->a_vp; 2189 struct vnode *dvp = ap->a_dvp; 2190 struct componentname *cnp = ap->a_cnp; 2191 struct nfsnode *dnp; 2192 struct nfsvattr dnfsva; 2193 int error, dattrflag; 2194 2195 if (dvp == vp) 2196 return (EINVAL); 2197 error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2198 cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL); 2199 dnp = VTONFS(dvp); 2200 mtx_lock(&dnp->n_mtx); 2201 dnp->n_flag |= NMODIFIED; 2202 if (dattrflag != 0) { 2203 mtx_unlock(&dnp->n_mtx); 2204 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2205 } else { 2206 dnp->n_attrstamp = 0; 2207 mtx_unlock(&dnp->n_mtx); 2208 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp); 2209 } 2210 2211 cache_purge(dvp); 2212 cache_purge(vp); 2213 if (error && NFS_ISV4(dvp)) 2214 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0, 2215 (gid_t)0); 2216 /* 2217 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. 2218 */ 2219 if (error == ENOENT) 2220 error = 0; 2221 return (error); 2222 } 2223 2224 /* 2225 * nfs readdir call 2226 */ 2227 static int 2228 nfs_readdir(struct vop_readdir_args *ap) 2229 { 2230 struct vnode *vp = ap->a_vp; 2231 struct nfsnode *np = VTONFS(vp); 2232 struct uio *uio = ap->a_uio; 2233 ssize_t tresid; 2234 int error = 0; 2235 struct vattr vattr; 2236 2237 if (ap->a_eofflag != NULL) 2238 *ap->a_eofflag = 0; 2239 if (vp->v_type != VDIR) 2240 return(EPERM); 2241 2242 /* 2243 * First, check for hit on the EOF offset cache 2244 */ 2245 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && 2246 (np->n_flag & NMODIFIED) == 0) { 2247 if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) { 2248 mtx_lock(&np->n_mtx); 2249 if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) || 2250 !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) { 2251 mtx_unlock(&np->n_mtx); 2252 NFSINCRGLOBAL(newnfsstats.direofcache_hits); 2253 if (ap->a_eofflag != NULL) 2254 *ap->a_eofflag = 1; 2255 return (0); 2256 } else 2257 mtx_unlock(&np->n_mtx); 2258 } 2259 } 2260 2261 /* 2262 * Call ncl_bioread() to do the real work. 2263 */ 2264 tresid = uio->uio_resid; 2265 error = ncl_bioread(vp, uio, 0, ap->a_cred); 2266 2267 if (!error && uio->uio_resid == tresid) { 2268 NFSINCRGLOBAL(newnfsstats.direofcache_misses); 2269 if (ap->a_eofflag != NULL) 2270 *ap->a_eofflag = 1; 2271 } 2272 return (error); 2273 } 2274 2275 /* 2276 * Readdir rpc call. 2277 * Called from below the buffer cache by ncl_doio(). 2278 */ 2279 int 2280 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2281 struct thread *td) 2282 { 2283 struct nfsvattr nfsva; 2284 nfsuint64 *cookiep, cookie; 2285 struct nfsnode *dnp = VTONFS(vp); 2286 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2287 int error = 0, eof, attrflag; 2288 2289 KASSERT(uiop->uio_iovcnt == 1 && 2290 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2291 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2292 ("nfs readdirrpc bad uio")); 2293 2294 /* 2295 * If there is no cookie, assume directory was stale. 2296 */ 2297 ncl_dircookie_lock(dnp); 2298 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2299 if (cookiep) { 2300 cookie = *cookiep; 2301 ncl_dircookie_unlock(dnp); 2302 } else { 2303 ncl_dircookie_unlock(dnp); 2304 return (NFSERR_BAD_COOKIE); 2305 } 2306 2307 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2308 (void)ncl_fsinfo(nmp, vp, cred, td); 2309 2310 error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva, 2311 &attrflag, &eof, NULL); 2312 if (attrflag) 2313 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2314 2315 if (!error) { 2316 /* 2317 * We are now either at the end of the directory or have filled 2318 * the block. 2319 */ 2320 if (eof) 2321 dnp->n_direofoffset = uiop->uio_offset; 2322 else { 2323 if (uiop->uio_resid > 0) 2324 ncl_printf("EEK! readdirrpc resid > 0\n"); 2325 ncl_dircookie_lock(dnp); 2326 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2327 *cookiep = cookie; 2328 ncl_dircookie_unlock(dnp); 2329 } 2330 } else if (NFS_ISV4(vp)) { 2331 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2332 } 2333 return (error); 2334 } 2335 2336 /* 2337 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc(). 2338 */ 2339 int 2340 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, 2341 struct thread *td) 2342 { 2343 struct nfsvattr nfsva; 2344 nfsuint64 *cookiep, cookie; 2345 struct nfsnode *dnp = VTONFS(vp); 2346 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2347 int error = 0, attrflag, eof; 2348 2349 KASSERT(uiop->uio_iovcnt == 1 && 2350 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 && 2351 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0, 2352 ("nfs readdirplusrpc bad uio")); 2353 2354 /* 2355 * If there is no cookie, assume directory was stale. 2356 */ 2357 ncl_dircookie_lock(dnp); 2358 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0); 2359 if (cookiep) { 2360 cookie = *cookiep; 2361 ncl_dircookie_unlock(dnp); 2362 } else { 2363 ncl_dircookie_unlock(dnp); 2364 return (NFSERR_BAD_COOKIE); 2365 } 2366 2367 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) 2368 (void)ncl_fsinfo(nmp, vp, cred, td); 2369 error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva, 2370 &attrflag, &eof, NULL); 2371 if (attrflag) 2372 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); 2373 2374 if (!error) { 2375 /* 2376 * We are now either at end of the directory or have filled the 2377 * the block. 2378 */ 2379 if (eof) 2380 dnp->n_direofoffset = uiop->uio_offset; 2381 else { 2382 if (uiop->uio_resid > 0) 2383 ncl_printf("EEK! readdirplusrpc resid > 0\n"); 2384 ncl_dircookie_lock(dnp); 2385 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1); 2386 *cookiep = cookie; 2387 ncl_dircookie_unlock(dnp); 2388 } 2389 } else if (NFS_ISV4(vp)) { 2390 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2391 } 2392 return (error); 2393 } 2394 2395 /* 2396 * Silly rename. To make the NFS filesystem that is stateless look a little 2397 * more like the "ufs" a remove of an active vnode is translated to a rename 2398 * to a funny looking filename that is removed by nfs_inactive on the 2399 * nfsnode. There is the potential for another process on a different client 2400 * to create the same funny name between the nfs_lookitup() fails and the 2401 * nfs_rename() completes, but... 2402 */ 2403 static int 2404 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2405 { 2406 struct sillyrename *sp; 2407 struct nfsnode *np; 2408 int error; 2409 short pid; 2410 unsigned int lticks; 2411 2412 cache_purge(dvp); 2413 np = VTONFS(vp); 2414 KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir")); 2415 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), 2416 M_NEWNFSREQ, M_WAITOK); 2417 sp->s_cred = crhold(cnp->cn_cred); 2418 sp->s_dvp = dvp; 2419 VREF(dvp); 2420 2421 /* 2422 * Fudge together a funny name. 2423 * Changing the format of the funny name to accomodate more 2424 * sillynames per directory. 2425 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is 2426 * CPU ticks since boot. 2427 */ 2428 pid = cnp->cn_thread->td_proc->p_pid; 2429 lticks = (unsigned int)ticks; 2430 for ( ; ; ) { 2431 sp->s_namlen = snprintf(sp->s_name, sizeof(sp->s_name), 2432 ".nfs.%08x.%04x4.4", lticks, 2433 pid); 2434 if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2435 cnp->cn_thread, NULL)) 2436 break; 2437 lticks++; 2438 } 2439 error = nfs_renameit(dvp, vp, cnp, sp); 2440 if (error) 2441 goto bad; 2442 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2443 cnp->cn_thread, &np); 2444 np->n_sillyrename = sp; 2445 return (0); 2446 bad: 2447 vrele(sp->s_dvp); 2448 crfree(sp->s_cred); 2449 free((caddr_t)sp, M_NEWNFSREQ); 2450 return (error); 2451 } 2452 2453 /* 2454 * Look up a file name and optionally either update the file handle or 2455 * allocate an nfsnode, depending on the value of npp. 2456 * npp == NULL --> just do the lookup 2457 * *npp == NULL --> allocate a new nfsnode and make sure attributes are 2458 * handled too 2459 * *npp != NULL --> update the file handle in the vnode 2460 */ 2461 static int 2462 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred, 2463 struct thread *td, struct nfsnode **npp) 2464 { 2465 struct vnode *newvp = NULL, *vp; 2466 struct nfsnode *np, *dnp = VTONFS(dvp); 2467 struct nfsfh *nfhp, *onfhp; 2468 struct nfsvattr nfsva, dnfsva; 2469 struct componentname cn; 2470 int error = 0, attrflag, dattrflag; 2471 u_int hash; 2472 2473 error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva, 2474 &nfhp, &attrflag, &dattrflag, NULL); 2475 if (dattrflag) 2476 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1); 2477 if (npp && !error) { 2478 if (*npp != NULL) { 2479 np = *npp; 2480 vp = NFSTOV(np); 2481 /* 2482 * For NFSv4, check to see if it is the same name and 2483 * replace the name, if it is different. 2484 */ 2485 if (np->n_v4 != NULL && nfsva.na_type == VREG && 2486 (np->n_v4->n4_namelen != len || 2487 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) || 2488 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen || 2489 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2490 dnp->n_fhp->nfh_len))) { 2491 #ifdef notdef 2492 { char nnn[100]; int nnnl; 2493 nnnl = (len < 100) ? len : 99; 2494 bcopy(name, nnn, nnnl); 2495 nnn[nnnl] = '\0'; 2496 printf("replace=%s\n",nnn); 2497 } 2498 #endif 2499 FREE((caddr_t)np->n_v4, M_NFSV4NODE); 2500 MALLOC(np->n_v4, struct nfsv4node *, 2501 sizeof (struct nfsv4node) + 2502 dnp->n_fhp->nfh_len + len - 1, 2503 M_NFSV4NODE, M_WAITOK); 2504 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len; 2505 np->n_v4->n4_namelen = len; 2506 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data, 2507 dnp->n_fhp->nfh_len); 2508 NFSBCOPY(name, NFS4NODENAME(np->n_v4), len); 2509 } 2510 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, 2511 FNV1_32_INIT); 2512 onfhp = np->n_fhp; 2513 /* 2514 * Rehash node for new file handle. 2515 */ 2516 vfs_hash_rehash(vp, hash); 2517 np->n_fhp = nfhp; 2518 if (onfhp != NULL) 2519 FREE((caddr_t)onfhp, M_NFSFH); 2520 newvp = NFSTOV(np); 2521 } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) { 2522 FREE((caddr_t)nfhp, M_NFSFH); 2523 VREF(dvp); 2524 newvp = dvp; 2525 } else { 2526 cn.cn_nameptr = name; 2527 cn.cn_namelen = len; 2528 error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td, 2529 &np, NULL, LK_EXCLUSIVE); 2530 if (error) 2531 return (error); 2532 newvp = NFSTOV(np); 2533 } 2534 if (!attrflag && *npp == NULL) { 2535 if (newvp == dvp) 2536 vrele(newvp); 2537 else 2538 vput(newvp); 2539 return (ENOENT); 2540 } 2541 if (attrflag) 2542 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL, 2543 0, 1); 2544 } 2545 if (npp && *npp == NULL) { 2546 if (error) { 2547 if (newvp) { 2548 if (newvp == dvp) 2549 vrele(newvp); 2550 else 2551 vput(newvp); 2552 } 2553 } else 2554 *npp = np; 2555 } 2556 if (error && NFS_ISV4(dvp)) 2557 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2558 return (error); 2559 } 2560 2561 /* 2562 * Nfs Version 3 and 4 commit rpc 2563 */ 2564 int 2565 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred, 2566 struct thread *td) 2567 { 2568 struct nfsvattr nfsva; 2569 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2570 int error, attrflag; 2571 2572 mtx_lock(&nmp->nm_mtx); 2573 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 2574 mtx_unlock(&nmp->nm_mtx); 2575 return (0); 2576 } 2577 mtx_unlock(&nmp->nm_mtx); 2578 error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva, 2579 &attrflag, NULL); 2580 if (attrflag != 0) 2581 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 2582 0, 1); 2583 if (error != 0 && NFS_ISV4(vp)) 2584 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); 2585 return (error); 2586 } 2587 2588 /* 2589 * Strategy routine. 2590 * For async requests when nfsiod(s) are running, queue the request by 2591 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the 2592 * request. 2593 */ 2594 static int 2595 nfs_strategy(struct vop_strategy_args *ap) 2596 { 2597 struct buf *bp = ap->a_bp; 2598 struct ucred *cr; 2599 2600 KASSERT(!(bp->b_flags & B_DONE), 2601 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); 2602 BUF_ASSERT_HELD(bp); 2603 2604 if (bp->b_iocmd == BIO_READ) 2605 cr = bp->b_rcred; 2606 else 2607 cr = bp->b_wcred; 2608 2609 /* 2610 * If the op is asynchronous and an i/o daemon is waiting 2611 * queue the request, wake it up and wait for completion 2612 * otherwise just do it ourselves. 2613 */ 2614 if ((bp->b_flags & B_ASYNC) == 0 || 2615 ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread)) 2616 (void) ncl_doio(ap->a_vp, bp, cr, curthread, 1); 2617 return (0); 2618 } 2619 2620 /* 2621 * fsync vnode op. Just call ncl_flush() with commit == 1. 2622 */ 2623 /* ARGSUSED */ 2624 static int 2625 nfs_fsync(struct vop_fsync_args *ap) 2626 { 2627 2628 if (ap->a_vp->v_type != VREG) { 2629 /* 2630 * For NFS, metadata is changed synchronously on the server, 2631 * so there is nothing to flush. Also, ncl_flush() clears 2632 * the NMODIFIED flag and that shouldn't be done here for 2633 * directories. 2634 */ 2635 return (0); 2636 } 2637 return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0)); 2638 } 2639 2640 /* 2641 * Flush all the blocks associated with a vnode. 2642 * Walk through the buffer pool and push any dirty pages 2643 * associated with the vnode. 2644 * If the called_from_renewthread argument is TRUE, it has been called 2645 * from the NFSv4 renew thread and, as such, cannot block indefinitely 2646 * waiting for a buffer write to complete. 2647 */ 2648 int 2649 ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td, 2650 int commit, int called_from_renewthread) 2651 { 2652 struct nfsnode *np = VTONFS(vp); 2653 struct buf *bp; 2654 int i; 2655 struct buf *nbp; 2656 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2657 int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; 2658 int passone = 1, trycnt = 0; 2659 u_quad_t off, endoff, toff; 2660 struct ucred* wcred = NULL; 2661 struct buf **bvec = NULL; 2662 struct bufobj *bo; 2663 #ifndef NFS_COMMITBVECSIZ 2664 #define NFS_COMMITBVECSIZ 20 2665 #endif 2666 struct buf *bvec_on_stack[NFS_COMMITBVECSIZ]; 2667 int bvecsize = 0, bveccount; 2668 2669 if (called_from_renewthread != 0) 2670 slptimeo = hz; 2671 if (nmp->nm_flag & NFSMNT_INT) 2672 slpflag = PCATCH; 2673 if (!commit) 2674 passone = 0; 2675 bo = &vp->v_bufobj; 2676 /* 2677 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the 2678 * server, but has not been committed to stable storage on the server 2679 * yet. On the first pass, the byte range is worked out and the commit 2680 * rpc is done. On the second pass, ncl_writebp() is called to do the 2681 * job. 2682 */ 2683 again: 2684 off = (u_quad_t)-1; 2685 endoff = 0; 2686 bvecpos = 0; 2687 if (NFS_ISV34(vp) && commit) { 2688 if (bvec != NULL && bvec != bvec_on_stack) 2689 free(bvec, M_TEMP); 2690 /* 2691 * Count up how many buffers waiting for a commit. 2692 */ 2693 bveccount = 0; 2694 BO_LOCK(bo); 2695 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2696 if (!BUF_ISLOCKED(bp) && 2697 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) 2698 == (B_DELWRI | B_NEEDCOMMIT)) 2699 bveccount++; 2700 } 2701 /* 2702 * Allocate space to remember the list of bufs to commit. It is 2703 * important to use M_NOWAIT here to avoid a race with nfs_write. 2704 * If we can't get memory (for whatever reason), we will end up 2705 * committing the buffers one-by-one in the loop below. 2706 */ 2707 if (bveccount > NFS_COMMITBVECSIZ) { 2708 /* 2709 * Release the vnode interlock to avoid a lock 2710 * order reversal. 2711 */ 2712 BO_UNLOCK(bo); 2713 bvec = (struct buf **) 2714 malloc(bveccount * sizeof(struct buf *), 2715 M_TEMP, M_NOWAIT); 2716 BO_LOCK(bo); 2717 if (bvec == NULL) { 2718 bvec = bvec_on_stack; 2719 bvecsize = NFS_COMMITBVECSIZ; 2720 } else 2721 bvecsize = bveccount; 2722 } else { 2723 bvec = bvec_on_stack; 2724 bvecsize = NFS_COMMITBVECSIZ; 2725 } 2726 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2727 if (bvecpos >= bvecsize) 2728 break; 2729 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2730 nbp = TAILQ_NEXT(bp, b_bobufs); 2731 continue; 2732 } 2733 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 2734 (B_DELWRI | B_NEEDCOMMIT)) { 2735 BUF_UNLOCK(bp); 2736 nbp = TAILQ_NEXT(bp, b_bobufs); 2737 continue; 2738 } 2739 BO_UNLOCK(bo); 2740 bremfree(bp); 2741 /* 2742 * Work out if all buffers are using the same cred 2743 * so we can deal with them all with one commit. 2744 * 2745 * NOTE: we are not clearing B_DONE here, so we have 2746 * to do it later on in this routine if we intend to 2747 * initiate I/O on the bp. 2748 * 2749 * Note: to avoid loopback deadlocks, we do not 2750 * assign b_runningbufspace. 2751 */ 2752 if (wcred == NULL) 2753 wcred = bp->b_wcred; 2754 else if (wcred != bp->b_wcred) 2755 wcred = NOCRED; 2756 vfs_busy_pages(bp, 1); 2757 2758 BO_LOCK(bo); 2759 /* 2760 * bp is protected by being locked, but nbp is not 2761 * and vfs_busy_pages() may sleep. We have to 2762 * recalculate nbp. 2763 */ 2764 nbp = TAILQ_NEXT(bp, b_bobufs); 2765 2766 /* 2767 * A list of these buffers is kept so that the 2768 * second loop knows which buffers have actually 2769 * been committed. This is necessary, since there 2770 * may be a race between the commit rpc and new 2771 * uncommitted writes on the file. 2772 */ 2773 bvec[bvecpos++] = bp; 2774 toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2775 bp->b_dirtyoff; 2776 if (toff < off) 2777 off = toff; 2778 toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); 2779 if (toff > endoff) 2780 endoff = toff; 2781 } 2782 BO_UNLOCK(bo); 2783 } 2784 if (bvecpos > 0) { 2785 /* 2786 * Commit data on the server, as required. 2787 * If all bufs are using the same wcred, then use that with 2788 * one call for all of them, otherwise commit each one 2789 * separately. 2790 */ 2791 if (wcred != NOCRED) 2792 retv = ncl_commit(vp, off, (int)(endoff - off), 2793 wcred, td); 2794 else { 2795 retv = 0; 2796 for (i = 0; i < bvecpos; i++) { 2797 off_t off, size; 2798 bp = bvec[i]; 2799 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + 2800 bp->b_dirtyoff; 2801 size = (u_quad_t)(bp->b_dirtyend 2802 - bp->b_dirtyoff); 2803 retv = ncl_commit(vp, off, (int)size, 2804 bp->b_wcred, td); 2805 if (retv) break; 2806 } 2807 } 2808 2809 if (retv == NFSERR_STALEWRITEVERF) 2810 ncl_clearcommit(vp->v_mount); 2811 2812 /* 2813 * Now, either mark the blocks I/O done or mark the 2814 * blocks dirty, depending on whether the commit 2815 * succeeded. 2816 */ 2817 for (i = 0; i < bvecpos; i++) { 2818 bp = bvec[i]; 2819 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 2820 if (retv) { 2821 /* 2822 * Error, leave B_DELWRI intact 2823 */ 2824 vfs_unbusy_pages(bp); 2825 brelse(bp); 2826 } else { 2827 /* 2828 * Success, remove B_DELWRI ( bundirty() ). 2829 * 2830 * b_dirtyoff/b_dirtyend seem to be NFS 2831 * specific. We should probably move that 2832 * into bundirty(). XXX 2833 */ 2834 bufobj_wref(bo); 2835 bp->b_flags |= B_ASYNC; 2836 bundirty(bp); 2837 bp->b_flags &= ~B_DONE; 2838 bp->b_ioflags &= ~BIO_ERROR; 2839 bp->b_dirtyoff = bp->b_dirtyend = 0; 2840 bufdone(bp); 2841 } 2842 } 2843 } 2844 2845 /* 2846 * Start/do any write(s) that are required. 2847 */ 2848 loop: 2849 BO_LOCK(bo); 2850 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2851 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2852 if (waitfor != MNT_WAIT || passone) 2853 continue; 2854 2855 error = BUF_TIMELOCK(bp, 2856 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2857 BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo); 2858 if (error == 0) { 2859 BUF_UNLOCK(bp); 2860 goto loop; 2861 } 2862 if (error == ENOLCK) { 2863 error = 0; 2864 goto loop; 2865 } 2866 if (called_from_renewthread != 0) { 2867 /* 2868 * Return EIO so the flush will be retried 2869 * later. 2870 */ 2871 error = EIO; 2872 goto done; 2873 } 2874 if (newnfs_sigintr(nmp, td)) { 2875 error = EINTR; 2876 goto done; 2877 } 2878 if (slpflag == PCATCH) { 2879 slpflag = 0; 2880 slptimeo = 2 * hz; 2881 } 2882 goto loop; 2883 } 2884 if ((bp->b_flags & B_DELWRI) == 0) 2885 panic("nfs_fsync: not dirty"); 2886 if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) { 2887 BUF_UNLOCK(bp); 2888 continue; 2889 } 2890 BO_UNLOCK(bo); 2891 bremfree(bp); 2892 if (passone || !commit) 2893 bp->b_flags |= B_ASYNC; 2894 else 2895 bp->b_flags |= B_ASYNC; 2896 bwrite(bp); 2897 if (newnfs_sigintr(nmp, td)) { 2898 error = EINTR; 2899 goto done; 2900 } 2901 goto loop; 2902 } 2903 if (passone) { 2904 passone = 0; 2905 BO_UNLOCK(bo); 2906 goto again; 2907 } 2908 if (waitfor == MNT_WAIT) { 2909 while (bo->bo_numoutput) { 2910 error = bufobj_wwait(bo, slpflag, slptimeo); 2911 if (error) { 2912 BO_UNLOCK(bo); 2913 if (called_from_renewthread != 0) { 2914 /* 2915 * Return EIO so that the flush will be 2916 * retried later. 2917 */ 2918 error = EIO; 2919 goto done; 2920 } 2921 error = newnfs_sigintr(nmp, td); 2922 if (error) 2923 goto done; 2924 if (slpflag == PCATCH) { 2925 slpflag = 0; 2926 slptimeo = 2 * hz; 2927 } 2928 BO_LOCK(bo); 2929 } 2930 } 2931 if (bo->bo_dirty.bv_cnt != 0 && commit) { 2932 BO_UNLOCK(bo); 2933 goto loop; 2934 } 2935 /* 2936 * Wait for all the async IO requests to drain 2937 */ 2938 BO_UNLOCK(bo); 2939 mtx_lock(&np->n_mtx); 2940 while (np->n_directio_asyncwr > 0) { 2941 np->n_flag |= NFSYNCWAIT; 2942 error = newnfs_msleep(td, &np->n_directio_asyncwr, 2943 &np->n_mtx, slpflag | (PRIBIO + 1), 2944 "nfsfsync", 0); 2945 if (error) { 2946 if (newnfs_sigintr(nmp, td)) { 2947 mtx_unlock(&np->n_mtx); 2948 error = EINTR; 2949 goto done; 2950 } 2951 } 2952 } 2953 mtx_unlock(&np->n_mtx); 2954 } else 2955 BO_UNLOCK(bo); 2956 if (NFSHASPNFS(nmp)) { 2957 nfscl_layoutcommit(vp, td); 2958 /* 2959 * Invalidate the attribute cache, since writes to a DS 2960 * won't update the size attribute. 2961 */ 2962 mtx_lock(&np->n_mtx); 2963 np->n_attrstamp = 0; 2964 } else 2965 mtx_lock(&np->n_mtx); 2966 if (np->n_flag & NWRITEERR) { 2967 error = np->n_error; 2968 np->n_flag &= ~NWRITEERR; 2969 } 2970 if (commit && bo->bo_dirty.bv_cnt == 0 && 2971 bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0) 2972 np->n_flag &= ~NMODIFIED; 2973 mtx_unlock(&np->n_mtx); 2974 done: 2975 if (bvec != NULL && bvec != bvec_on_stack) 2976 free(bvec, M_TEMP); 2977 if (error == 0 && commit != 0 && waitfor == MNT_WAIT && 2978 (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 || 2979 np->n_directio_asyncwr != 0) && trycnt++ < 5) { 2980 /* try, try again... */ 2981 passone = 1; 2982 wcred = NULL; 2983 bvec = NULL; 2984 bvecsize = 0; 2985 printf("try%d\n", trycnt); 2986 goto again; 2987 } 2988 return (error); 2989 } 2990 2991 /* 2992 * NFS advisory byte-level locks. 2993 */ 2994 static int 2995 nfs_advlock(struct vop_advlock_args *ap) 2996 { 2997 struct vnode *vp = ap->a_vp; 2998 struct ucred *cred; 2999 struct nfsnode *np = VTONFS(ap->a_vp); 3000 struct proc *p = (struct proc *)ap->a_id; 3001 struct thread *td = curthread; /* XXX */ 3002 struct vattr va; 3003 int ret, error = EOPNOTSUPP; 3004 u_quad_t size; 3005 3006 if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) { 3007 if (vp->v_type != VREG) 3008 return (EINVAL); 3009 if ((ap->a_flags & F_POSIX) != 0) 3010 cred = p->p_ucred; 3011 else 3012 cred = td->td_ucred; 3013 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 3014 if (vp->v_iflag & VI_DOOMED) { 3015 NFSVOPUNLOCK(vp, 0); 3016 return (EBADF); 3017 } 3018 3019 /* 3020 * If this is unlocking a write locked region, flush and 3021 * commit them before unlocking. This is required by 3022 * RFC3530 Sec. 9.3.2. 3023 */ 3024 if (ap->a_op == F_UNLCK && 3025 nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id, 3026 ap->a_flags)) 3027 (void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0); 3028 3029 /* 3030 * Loop around doing the lock op, while a blocking lock 3031 * must wait for the lock op to succeed. 3032 */ 3033 do { 3034 ret = nfsrpc_advlock(vp, np->n_size, ap->a_op, 3035 ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags); 3036 if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3037 ap->a_op == F_SETLK) { 3038 NFSVOPUNLOCK(vp, 0); 3039 error = nfs_catnap(PZERO | PCATCH, ret, 3040 "ncladvl"); 3041 if (error) 3042 return (EINTR); 3043 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY); 3044 if (vp->v_iflag & VI_DOOMED) { 3045 NFSVOPUNLOCK(vp, 0); 3046 return (EBADF); 3047 } 3048 } 3049 } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) && 3050 ap->a_op == F_SETLK); 3051 if (ret == NFSERR_DENIED) { 3052 NFSVOPUNLOCK(vp, 0); 3053 return (EAGAIN); 3054 } else if (ret == EINVAL || ret == EBADF || ret == EINTR) { 3055 NFSVOPUNLOCK(vp, 0); 3056 return (ret); 3057 } else if (ret != 0) { 3058 NFSVOPUNLOCK(vp, 0); 3059 return (EACCES); 3060 } 3061 3062 /* 3063 * Now, if we just got a lock, invalidate data in the buffer 3064 * cache, as required, so that the coherency conforms with 3065 * RFC3530 Sec. 9.3.2. 3066 */ 3067 if (ap->a_op == F_SETLK) { 3068 if ((np->n_flag & NMODIFIED) == 0) { 3069 np->n_attrstamp = 0; 3070 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3071 ret = VOP_GETATTR(vp, &va, cred); 3072 } 3073 if ((np->n_flag & NMODIFIED) || ret || 3074 np->n_change != va.va_filerev) { 3075 (void) ncl_vinvalbuf(vp, V_SAVE, td, 1); 3076 np->n_attrstamp = 0; 3077 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 3078 ret = VOP_GETATTR(vp, &va, cred); 3079 if (!ret) { 3080 np->n_mtime = va.va_mtime; 3081 np->n_change = va.va_filerev; 3082 } 3083 } 3084 } 3085 NFSVOPUNLOCK(vp, 0); 3086 return (0); 3087 } else if (!NFS_ISV4(vp)) { 3088 error = NFSVOPLOCK(vp, LK_SHARED); 3089 if (error) 3090 return (error); 3091 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3092 size = VTONFS(vp)->n_size; 3093 NFSVOPUNLOCK(vp, 0); 3094 error = lf_advlock(ap, &(vp->v_lockf), size); 3095 } else { 3096 if (nfs_advlock_p != NULL) 3097 error = nfs_advlock_p(ap); 3098 else { 3099 NFSVOPUNLOCK(vp, 0); 3100 error = ENOLCK; 3101 } 3102 } 3103 } 3104 return (error); 3105 } 3106 3107 /* 3108 * NFS advisory byte-level locks. 3109 */ 3110 static int 3111 nfs_advlockasync(struct vop_advlockasync_args *ap) 3112 { 3113 struct vnode *vp = ap->a_vp; 3114 u_quad_t size; 3115 int error; 3116 3117 if (NFS_ISV4(vp)) 3118 return (EOPNOTSUPP); 3119 error = NFSVOPLOCK(vp, LK_SHARED); 3120 if (error) 3121 return (error); 3122 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) { 3123 size = VTONFS(vp)->n_size; 3124 NFSVOPUNLOCK(vp, 0); 3125 error = lf_advlockasync(ap, &(vp->v_lockf), size); 3126 } else { 3127 NFSVOPUNLOCK(vp, 0); 3128 error = EOPNOTSUPP; 3129 } 3130 return (error); 3131 } 3132 3133 /* 3134 * Print out the contents of an nfsnode. 3135 */ 3136 static int 3137 nfs_print(struct vop_print_args *ap) 3138 { 3139 struct vnode *vp = ap->a_vp; 3140 struct nfsnode *np = VTONFS(vp); 3141 3142 ncl_printf("\tfileid %ld fsid 0x%x", 3143 np->n_vattr.na_fileid, np->n_vattr.na_fsid); 3144 if (vp->v_type == VFIFO) 3145 fifo_printinfo(vp); 3146 printf("\n"); 3147 return (0); 3148 } 3149 3150 /* 3151 * This is the "real" nfs::bwrite(struct buf*). 3152 * We set B_CACHE if this is a VMIO buffer. 3153 */ 3154 int 3155 ncl_writebp(struct buf *bp, int force __unused, struct thread *td) 3156 { 3157 int s; 3158 int oldflags = bp->b_flags; 3159 #if 0 3160 int retv = 1; 3161 off_t off; 3162 #endif 3163 3164 BUF_ASSERT_HELD(bp); 3165 3166 if (bp->b_flags & B_INVAL) { 3167 brelse(bp); 3168 return(0); 3169 } 3170 3171 bp->b_flags |= B_CACHE; 3172 3173 /* 3174 * Undirty the bp. We will redirty it later if the I/O fails. 3175 */ 3176 3177 s = splbio(); 3178 bundirty(bp); 3179 bp->b_flags &= ~B_DONE; 3180 bp->b_ioflags &= ~BIO_ERROR; 3181 bp->b_iocmd = BIO_WRITE; 3182 3183 bufobj_wref(bp->b_bufobj); 3184 curthread->td_ru.ru_oublock++; 3185 splx(s); 3186 3187 /* 3188 * Note: to avoid loopback deadlocks, we do not 3189 * assign b_runningbufspace. 3190 */ 3191 vfs_busy_pages(bp, 1); 3192 3193 BUF_KERNPROC(bp); 3194 bp->b_iooffset = dbtob(bp->b_blkno); 3195 bstrategy(bp); 3196 3197 if( (oldflags & B_ASYNC) == 0) { 3198 int rtval = bufwait(bp); 3199 3200 if (oldflags & B_DELWRI) { 3201 s = splbio(); 3202 reassignbuf(bp); 3203 splx(s); 3204 } 3205 brelse(bp); 3206 return (rtval); 3207 } 3208 3209 return (0); 3210 } 3211 3212 /* 3213 * nfs special file access vnode op. 3214 * Essentially just get vattr and then imitate iaccess() since the device is 3215 * local to the client. 3216 */ 3217 static int 3218 nfsspec_access(struct vop_access_args *ap) 3219 { 3220 struct vattr *vap; 3221 struct ucred *cred = ap->a_cred; 3222 struct vnode *vp = ap->a_vp; 3223 accmode_t accmode = ap->a_accmode; 3224 struct vattr vattr; 3225 int error; 3226 3227 /* 3228 * Disallow write attempts on filesystems mounted read-only; 3229 * unless the file is a socket, fifo, or a block or character 3230 * device resident on the filesystem. 3231 */ 3232 if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 3233 switch (vp->v_type) { 3234 case VREG: 3235 case VDIR: 3236 case VLNK: 3237 return (EROFS); 3238 default: 3239 break; 3240 } 3241 } 3242 vap = &vattr; 3243 error = VOP_GETATTR(vp, vap, cred); 3244 if (error) 3245 goto out; 3246 error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid, 3247 accmode, cred, NULL); 3248 out: 3249 return error; 3250 } 3251 3252 /* 3253 * Read wrapper for fifos. 3254 */ 3255 static int 3256 nfsfifo_read(struct vop_read_args *ap) 3257 { 3258 struct nfsnode *np = VTONFS(ap->a_vp); 3259 int error; 3260 3261 /* 3262 * Set access flag. 3263 */ 3264 mtx_lock(&np->n_mtx); 3265 np->n_flag |= NACC; 3266 vfs_timestamp(&np->n_atim); 3267 mtx_unlock(&np->n_mtx); 3268 error = fifo_specops.vop_read(ap); 3269 return error; 3270 } 3271 3272 /* 3273 * Write wrapper for fifos. 3274 */ 3275 static int 3276 nfsfifo_write(struct vop_write_args *ap) 3277 { 3278 struct nfsnode *np = VTONFS(ap->a_vp); 3279 3280 /* 3281 * Set update flag. 3282 */ 3283 mtx_lock(&np->n_mtx); 3284 np->n_flag |= NUPD; 3285 vfs_timestamp(&np->n_mtim); 3286 mtx_unlock(&np->n_mtx); 3287 return(fifo_specops.vop_write(ap)); 3288 } 3289 3290 /* 3291 * Close wrapper for fifos. 3292 * 3293 * Update the times on the nfsnode then do fifo close. 3294 */ 3295 static int 3296 nfsfifo_close(struct vop_close_args *ap) 3297 { 3298 struct vnode *vp = ap->a_vp; 3299 struct nfsnode *np = VTONFS(vp); 3300 struct vattr vattr; 3301 struct timespec ts; 3302 3303 mtx_lock(&np->n_mtx); 3304 if (np->n_flag & (NACC | NUPD)) { 3305 vfs_timestamp(&ts); 3306 if (np->n_flag & NACC) 3307 np->n_atim = ts; 3308 if (np->n_flag & NUPD) 3309 np->n_mtim = ts; 3310 np->n_flag |= NCHG; 3311 if (vrefcnt(vp) == 1 && 3312 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3313 VATTR_NULL(&vattr); 3314 if (np->n_flag & NACC) 3315 vattr.va_atime = np->n_atim; 3316 if (np->n_flag & NUPD) 3317 vattr.va_mtime = np->n_mtim; 3318 mtx_unlock(&np->n_mtx); 3319 (void)VOP_SETATTR(vp, &vattr, ap->a_cred); 3320 goto out; 3321 } 3322 } 3323 mtx_unlock(&np->n_mtx); 3324 out: 3325 return (fifo_specops.vop_close(ap)); 3326 } 3327 3328 /* 3329 * Just call ncl_writebp() with the force argument set to 1. 3330 * 3331 * NOTE: B_DONE may or may not be set in a_bp on call. 3332 */ 3333 static int 3334 nfs_bwrite(struct buf *bp) 3335 { 3336 3337 return (ncl_writebp(bp, 1, curthread)); 3338 } 3339 3340 struct buf_ops buf_ops_newnfs = { 3341 .bop_name = "buf_ops_nfs", 3342 .bop_write = nfs_bwrite, 3343 .bop_strategy = bufstrategy, 3344 .bop_sync = bufsync, 3345 .bop_bdflush = bufbdflush, 3346 }; 3347 3348 /* 3349 * Cloned from vop_stdlock(), and then the ugly hack added. 3350 */ 3351 static int 3352 nfs_lock1(struct vop_lock1_args *ap) 3353 { 3354 struct vnode *vp = ap->a_vp; 3355 int error = 0; 3356 3357 /* 3358 * Since vfs_hash_get() calls vget() and it will no longer work 3359 * for FreeBSD8 with flags == 0, I can only think of this horrible 3360 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER 3361 * and then handle it here. All I want for this case is a v_usecount 3362 * on the vnode to use for recovery, while another thread might 3363 * hold a lock on the vnode. I have the other threads blocked, so 3364 * there isn't any race problem. 3365 */ 3366 if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) { 3367 if ((ap->a_flags & LK_INTERLOCK) == 0) 3368 panic("ncllock1"); 3369 if ((vp->v_iflag & VI_DOOMED)) 3370 error = ENOENT; 3371 VI_UNLOCK(vp); 3372 return (error); 3373 } 3374 return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp), 3375 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file, 3376 ap->a_line)); 3377 } 3378 3379 static int 3380 nfs_getacl(struct vop_getacl_args *ap) 3381 { 3382 int error; 3383 3384 if (ap->a_type != ACL_TYPE_NFS4) 3385 return (EOPNOTSUPP); 3386 error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3387 NULL); 3388 if (error > NFSERR_STALE) { 3389 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3390 error = EPERM; 3391 } 3392 return (error); 3393 } 3394 3395 static int 3396 nfs_setacl(struct vop_setacl_args *ap) 3397 { 3398 int error; 3399 3400 if (ap->a_type != ACL_TYPE_NFS4) 3401 return (EOPNOTSUPP); 3402 error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp, 3403 NULL); 3404 if (error > NFSERR_STALE) { 3405 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0); 3406 error = EPERM; 3407 } 3408 return (error); 3409 } 3410 3411 /* 3412 * Return POSIX pathconf information applicable to nfs filesystems. 3413 */ 3414 static int 3415 nfs_pathconf(struct vop_pathconf_args *ap) 3416 { 3417 struct nfsv3_pathconf pc; 3418 struct nfsvattr nfsva; 3419 struct vnode *vp = ap->a_vp; 3420 struct thread *td = curthread; 3421 int attrflag, error; 3422 3423 if (NFS_ISV4(vp) || (NFS_ISV3(vp) && (ap->a_name == _PC_LINK_MAX || 3424 ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED || 3425 ap->a_name == _PC_NO_TRUNC))) { 3426 /* 3427 * Since only the above 4 a_names are returned by the NFSv3 3428 * Pathconf RPC, there is no point in doing it for others. 3429 */ 3430 error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva, 3431 &attrflag, NULL); 3432 if (attrflag != 0) 3433 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 3434 1); 3435 if (error != 0) 3436 return (error); 3437 } else { 3438 /* 3439 * For NFSv2 (or NFSv3 when not one of the above 4 a_names), 3440 * just fake them. 3441 */ 3442 pc.pc_linkmax = LINK_MAX; 3443 pc.pc_namemax = NFS_MAXNAMLEN; 3444 pc.pc_notrunc = 1; 3445 pc.pc_chownrestricted = 1; 3446 pc.pc_caseinsensitive = 0; 3447 pc.pc_casepreserving = 1; 3448 error = 0; 3449 } 3450 switch (ap->a_name) { 3451 case _PC_LINK_MAX: 3452 *ap->a_retval = pc.pc_linkmax; 3453 break; 3454 case _PC_NAME_MAX: 3455 *ap->a_retval = pc.pc_namemax; 3456 break; 3457 case _PC_PATH_MAX: 3458 *ap->a_retval = PATH_MAX; 3459 break; 3460 case _PC_PIPE_BUF: 3461 *ap->a_retval = PIPE_BUF; 3462 break; 3463 case _PC_CHOWN_RESTRICTED: 3464 *ap->a_retval = pc.pc_chownrestricted; 3465 break; 3466 case _PC_NO_TRUNC: 3467 *ap->a_retval = pc.pc_notrunc; 3468 break; 3469 case _PC_ACL_EXTENDED: 3470 *ap->a_retval = 0; 3471 break; 3472 case _PC_ACL_NFS4: 3473 if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 && 3474 NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) 3475 *ap->a_retval = 1; 3476 else 3477 *ap->a_retval = 0; 3478 break; 3479 case _PC_ACL_PATH_MAX: 3480 if (NFS_ISV4(vp)) 3481 *ap->a_retval = ACL_MAX_ENTRIES; 3482 else 3483 *ap->a_retval = 3; 3484 break; 3485 case _PC_MAC_PRESENT: 3486 *ap->a_retval = 0; 3487 break; 3488 case _PC_ASYNC_IO: 3489 /* _PC_ASYNC_IO should have been handled by upper layers. */ 3490 KASSERT(0, ("_PC_ASYNC_IO should not get here")); 3491 error = EINVAL; 3492 break; 3493 case _PC_PRIO_IO: 3494 *ap->a_retval = 0; 3495 break; 3496 case _PC_SYNC_IO: 3497 *ap->a_retval = 0; 3498 break; 3499 case _PC_ALLOC_SIZE_MIN: 3500 *ap->a_retval = vp->v_mount->mnt_stat.f_bsize; 3501 break; 3502 case _PC_FILESIZEBITS: 3503 if (NFS_ISV34(vp)) 3504 *ap->a_retval = 64; 3505 else 3506 *ap->a_retval = 32; 3507 break; 3508 case _PC_REC_INCR_XFER_SIZE: 3509 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3510 break; 3511 case _PC_REC_MAX_XFER_SIZE: 3512 *ap->a_retval = -1; /* means ``unlimited'' */ 3513 break; 3514 case _PC_REC_MIN_XFER_SIZE: 3515 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize; 3516 break; 3517 case _PC_REC_XFER_ALIGN: 3518 *ap->a_retval = PAGE_SIZE; 3519 break; 3520 case _PC_SYMLINK_MAX: 3521 *ap->a_retval = NFS_MAXPATHLEN; 3522 break; 3523 3524 default: 3525 error = EINVAL; 3526 break; 3527 } 3528 return (error); 3529 } 3530 3531