xref: /netbsd-src/sys/fs/efs/efs_subr.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: efs_subr.c,v 1.12 2015/09/26 12:16:28 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 2006 Stephen M. Rumble <rumble@ephemeral.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __KERNEL_RCSID(0, "$NetBSD: efs_subr.c,v 1.12 2015/09/26 12:16:28 maxv Exp $");
21 
22 #include <sys/param.h>
23 #include <sys/kauth.h>
24 #include <sys/lwp.h>
25 #include <sys/proc.h>
26 #include <sys/buf.h>
27 #include <sys/mount.h>
28 #include <sys/vnode.h>
29 #include <sys/namei.h>
30 #include <sys/stat.h>
31 #include <sys/malloc.h>
32 
33 #include <miscfs/genfs/genfs_node.h>
34 
35 #include <fs/efs/efs.h>
36 #include <fs/efs/efs_sb.h>
37 #include <fs/efs/efs_dir.h>
38 #include <fs/efs/efs_genfs.h>
39 #include <fs/efs/efs_mount.h>
40 #include <fs/efs/efs_extent.h>
41 #include <fs/efs/efs_dinode.h>
42 #include <fs/efs/efs_inode.h>
43 #include <fs/efs/efs_subr.h>
44 
45 struct pool efs_inode_pool;
46 
47 /*
48  * Calculate a checksum for the provided superblock in __host byte order__.
49  *
50  * At some point SGI changed the checksum algorithm slightly, which can be
51  * enabled with the 'new' flag.
52  *
53  * Presumably this change occured on or before 24 Oct 1988 (around IRIX 3.1),
54  * so we're pretty unlikely to ever actually see an old checksum. Further, it
55  * means that EFS_NEWMAGIC filesystems (IRIX >= 3.3) must match the new
56  * checksum whereas EFS_MAGIC filesystems could potentially use either
57  * algorithm.
58  *
59  * See comp.sys.sgi <1991Aug9.050838.16876@odin.corp.sgi.com>
60  */
61 int32_t
62 efs_sb_checksum(struct efs_sb *esb, int new)
63 {
64 	int i;
65 	int32_t cksum;
66 	uint16_t *sbarray = (uint16_t *)esb;
67 
68 	KASSERT((EFS_SB_CHECKSUM_SIZE % 2) == 0);
69 
70 	for (i = cksum = 0; i < (EFS_SB_CHECKSUM_SIZE / 2); i++) {
71 		cksum ^= be16toh(sbarray[i]);
72 		cksum  = (cksum << 1) | (new && cksum < 0);
73 	}
74 
75 	return (cksum);
76 }
77 
78 /*
79  * Determine if the superblock is valid.
80  *
81  * Returns 0 if valid, else invalid. If invalid, 'why' is set to an
82  * explanation.
83  */
84 int
85 efs_sb_validate(struct efs_sb *esb, const char **why)
86 {
87 	uint32_t ocksum, ncksum;
88 
89 	*why = NULL;
90 
91 	if (be32toh(esb->sb_magic) != EFS_SB_MAGIC &&
92 	    be32toh(esb->sb_magic) != EFS_SB_NEWMAGIC) {
93 		*why = "sb_magic invalid";
94 		return (1);
95 	}
96 
97 	ocksum = htobe32(efs_sb_checksum(esb, 0));
98 	ncksum = htobe32(efs_sb_checksum(esb, 1));
99 	if (esb->sb_checksum != ocksum && esb->sb_checksum != ncksum) {
100 		*why = "sb_checksum invalid";
101 		return (1);
102 	}
103 
104 	if (be32toh(esb->sb_size) > EFS_SIZE_MAX) {
105 		*why = "sb_size > EFS_SIZE_MAX";
106 		return (1);
107 	}
108 
109 	if (be32toh(esb->sb_firstcg) <= EFS_BB_BITMAP) {
110 		*why = "sb_firstcg <= EFS_BB_BITMAP";
111 		return (1);
112 	}
113 
114 	/* XXX - add better sb consistency checks here */
115 	if (esb->sb_cgfsize == 0 ||
116 	    esb->sb_cgisize == 0 ||
117 	    esb->sb_ncg == 0 ||
118 	    esb->sb_bmsize == 0) {
119 		*why = "something bad happened";
120 		return (1);
121 	}
122 
123 	return (0);
124 }
125 
126 /*
127  * Determine the basic block offset and inode index within that block, given
128  * the inode 'ino' and filesystem parameters _in host byte order_. The inode
129  * will live at byte address 'bboff' * EFS_BB_SIZE + 'index' * EFS_DINODE_SIZE.
130  */
131 void
132 efs_locate_inode(ino_t ino, struct efs_sb *sbp, uint32_t *bboff, int *index)
133 {
134 	uint32_t cgfsize, firstcg;
135 	uint16_t cgisize;
136 
137 	cgisize = be16toh(sbp->sb_cgisize);
138 	cgfsize = be32toh(sbp->sb_cgfsize);
139 	firstcg = be32toh(sbp->sb_firstcg);
140 
141 	*bboff = firstcg + ((ino / (cgisize * EFS_DINODES_PER_BB)) * cgfsize) +
142 	    ((ino % (cgisize * EFS_DINODES_PER_BB)) / EFS_DINODES_PER_BB);
143 	*index = ino & (EFS_DINODES_PER_BB - 1);
144 }
145 
146 /*
147  * Read in an inode from disk.
148  *
149  * We actually take in four inodes at a time. Hopefully these will stick
150  * around in the buffer cache and get used without going to disk.
151  *
152  * Returns 0 on success.
153  */
154 int
155 efs_read_inode(struct efs_mount *emp, ino_t ino, struct lwp *l,
156     struct efs_dinode *di)
157 {
158 	struct efs_sb *sbp;
159 	struct buf *bp;
160 	int index, err;
161 	uint32_t bboff;
162 
163 	sbp = &emp->em_sb;
164 	efs_locate_inode(ino, sbp, &bboff, &index);
165 
166 	err = efs_bread(emp, bboff, l, &bp);
167 	if (err) {
168 		return (err);
169 	}
170 	memcpy(di, ((struct efs_dinode *)bp->b_data) + index, sizeof(*di));
171 	brelse(bp, 0);
172 
173 	return (0);
174 }
175 
176 /*
177  * Perform a read from our device handling the potential DEV_BSIZE
178  * messiness (although as of 19.2.2006, all ports appear to use 512) as
179  * we as EFS block sizing.
180  *
181  * bboff: basic block offset
182  *
183  * Returns 0 on success.
184  */
185 int
186 efs_bread(struct efs_mount *emp, uint32_t bboff, struct lwp *l, struct buf **bp)
187 {
188 	KASSERT(bboff < EFS_SIZE_MAX);
189 
190 	return (bread(emp->em_devvp, (daddr_t)bboff * (EFS_BB_SIZE / DEV_BSIZE),
191 	    EFS_BB_SIZE, 0, bp));
192 }
193 
194 /*
195  * Synchronise the in-core, host ordered and typed inode fields with their
196  * corresponding on-disk, EFS ordered and typed copies.
197  *
198  * This is the inverse of efs_dinode_sync_inode(), and should be called when
199  * an inode is loaded from disk.
200  */
201 void
202 efs_sync_dinode_to_inode(struct efs_inode *ei)
203 {
204 
205 	ei->ei_mode		= be16toh(ei->ei_di.di_mode);	/*same as nbsd*/
206 	ei->ei_nlink		= be16toh(ei->ei_di.di_nlink);
207 	ei->ei_uid		= be16toh(ei->ei_di.di_uid);
208 	ei->ei_gid		= be16toh(ei->ei_di.di_gid);
209 	ei->ei_size		= be32toh(ei->ei_di.di_size);
210 	ei->ei_atime		= be32toh(ei->ei_di.di_atime);
211 	ei->ei_mtime		= be32toh(ei->ei_di.di_mtime);
212 	ei->ei_ctime		= be32toh(ei->ei_di.di_ctime);
213 	ei->ei_gen		= be32toh(ei->ei_di.di_gen);
214 	ei->ei_numextents 	= be16toh(ei->ei_di.di_numextents);
215 	ei->ei_version		= ei->ei_di.di_version;
216 }
217 
218 /*
219  * Synchronise the on-disk, EFS ordered and typed inode fields with their
220  * corresponding in-core, host ordered and typed copies.
221  *
222  * This is the inverse of efs_inode_sync_dinode(), and should be called before
223  * an inode is flushed to disk.
224  */
225 void
226 efs_sync_inode_to_dinode(struct efs_inode *ei)
227 {
228 
229 	panic("readonly -- no need to call me");
230 }
231 
232 #ifdef DIAGNOSTIC
233 /*
234  * Ensure that the in-core inode's host cached fields match its on-disk copy.
235  *
236  * Returns 0 if they match.
237  */
238 static int
239 efs_is_inode_synced(struct efs_inode *ei)
240 {
241 	int s;
242 
243 	s = 0;
244 	/* XXX -- see above remarks about assumption */
245 	s += (ei->ei_mode	!= be16toh(ei->ei_di.di_mode));
246 	s += (ei->ei_nlink	!= be16toh(ei->ei_di.di_nlink));
247 	s += (ei->ei_uid	!= be16toh(ei->ei_di.di_uid));
248 	s += (ei->ei_gid	!= be16toh(ei->ei_di.di_gid));
249 	s += (ei->ei_size	!= be32toh(ei->ei_di.di_size));
250 	s += (ei->ei_atime	!= be32toh(ei->ei_di.di_atime));
251 	s += (ei->ei_mtime	!= be32toh(ei->ei_di.di_mtime));
252 	s += (ei->ei_ctime	!= be32toh(ei->ei_di.di_ctime));
253 	s += (ei->ei_gen	!= be32toh(ei->ei_di.di_gen));
254 	s += (ei->ei_numextents	!= be16toh(ei->ei_di.di_numextents));
255 	s += (ei->ei_version	!= ei->ei_di.di_version);
256 
257 	return (s);
258 }
259 #endif
260 
261 /*
262  * Given an efs_dirblk structure and a componentname to search for, return the
263  * corresponding inode if it is found.
264  *
265  * Returns 0 on success.
266  */
267 static int
268 efs_dirblk_lookup(struct efs_dirblk *dir, struct componentname *cn,
269     ino_t *inode)
270 {
271 	struct efs_dirent *de;
272 	int i, slot __diagused, offset;
273 
274 	KASSERT(cn->cn_namelen <= EFS_DIRENT_NAMELEN_MAX);
275 
276 	slot = offset = 0;
277 
278 	for (i = 0; i < dir->db_slots; i++) {
279 		offset = EFS_DIRENT_OFF_EXPND(dir->db_space[i]);
280 
281 		if (offset == EFS_DIRBLK_SLOT_FREE)
282 			continue;
283 
284 		de = (struct efs_dirent *)((char *)dir + offset);
285 		if (de->de_namelen == cn->cn_namelen &&
286 		   (strncmp(cn->cn_nameptr, de->de_name, cn->cn_namelen) == 0)){
287 			slot = i;
288 			break;
289 		}
290 	}
291 	if (i == dir->db_slots)
292 		return (ENOENT);
293 
294 	KASSERT(slot < offset && offset < EFS_DIRBLK_SPACE_SIZE);
295 	de = (struct efs_dirent *)((char *)dir + offset);
296 	*inode = be32toh(de->de_inumber);
297 
298 	return (0);
299 }
300 
301 /*
302  * Given an extent descriptor that represents a directory, look up
303  * componentname within its efs_dirblk's. If it is found, return the
304  * corresponding inode in 'ino'.
305  *
306  * Returns 0 on success.
307  */
308 static int
309 efs_extent_lookup(struct efs_mount *emp, struct efs_extent *ex,
310     struct componentname *cn, ino_t *ino)
311 {
312 	struct efs_dirblk *db;
313 	struct buf *bp;
314 	int i, err;
315 
316 	/*
317 	 * Read in each of the dirblks until we find our entry.
318 	 * If we don't, return ENOENT.
319 	 */
320 	for (i = 0; i < ex->ex_length; i++) {
321 		err = efs_bread(emp, ex->ex_bn + i, NULL, &bp);
322 		if (err) {
323 			printf("efs: warning: invalid extent descriptor\n");
324 			return (err);
325 		}
326 
327 		db = (struct efs_dirblk *)bp->b_data;
328 		if (efs_dirblk_lookup(db, cn, ino) == 0) {
329 			brelse(bp, 0);
330 			return (0);
331 		}
332 		brelse(bp, 0);
333 	}
334 
335 	return (ENOENT);
336 }
337 
338 /*
339  * Given the provided in-core inode, look up the pathname requested. If
340  * we find it, 'ino' reflects its corresponding on-disk inode number.
341  *
342  * Returns 0 on success.
343  */
344 int
345 efs_inode_lookup(struct efs_mount *emp, struct efs_inode *ei,
346     struct componentname *cn, ino_t *ino)
347 {
348 	struct efs_extent ex;
349 	struct efs_extent_iterator exi;
350 	int ret;
351 
352 	KASSERT(VOP_ISLOCKED(ei->ei_vp));
353 #ifdef DIAGNOSTIC
354 	KASSERT(efs_is_inode_synced(ei) == 0);
355 #endif
356 	KASSERT((ei->ei_mode & S_IFMT) == S_IFDIR);
357 
358 	efs_extent_iterator_init(&exi, ei, 0);
359 	while ((ret = efs_extent_iterator_next(&exi, &ex)) == 0) {
360 		if (efs_extent_lookup(emp, &ex, cn, ino) == 0) {
361 			return (0);
362 		}
363 	}
364 
365 	return ((ret == -1) ? ENOENT : ret);
366 }
367 
368 /*
369  * Convert on-disk extent structure to in-core format.
370  */
371 void
372 efs_dextent_to_extent(struct efs_dextent *dex, struct efs_extent *ex)
373 {
374 
375 	KASSERT(dex != NULL && ex != NULL);
376 
377 	ex->ex_magic	= dex->ex_bytes[0];
378 	ex->ex_bn	= be32toh(dex->ex_words[0]) & 0x00ffffff;
379 	ex->ex_length	= dex->ex_bytes[4];
380 	ex->ex_offset	= be32toh(dex->ex_words[1]) & 0x00ffffff;
381 }
382 
383 /*
384  * Convert in-core extent format to on-disk structure.
385  */
386 void
387 efs_extent_to_dextent(struct efs_extent *ex, struct efs_dextent *dex)
388 {
389 
390 	KASSERT(ex != NULL && dex != NULL);
391 	KASSERT(ex->ex_magic == EFS_EXTENT_MAGIC);
392 	KASSERT((ex->ex_bn & ~EFS_EXTENT_BN_MASK) == 0);
393 	KASSERT((ex->ex_offset & ~EFS_EXTENT_OFFSET_MASK) == 0);
394 
395 	dex->ex_words[0] = htobe32(ex->ex_bn);
396 	dex->ex_bytes[0] = ex->ex_magic;
397 	dex->ex_words[1] = htobe32(ex->ex_offset);
398 	dex->ex_bytes[4] = ex->ex_length;
399 }
400 
401 /*
402  * Initialise an extent iterator.
403  *
404  * If start_hint is non-0, attempt to set up the iterator beginning with the
405  * extent descriptor in which the start_hint'th byte exists. Callers must not
406  * expect success (this is simply an optimisation), so we reserve the right
407  * to start from the beginning.
408  */
409 void
410 efs_extent_iterator_init(struct efs_extent_iterator *exi, struct efs_inode *eip,
411     off_t start_hint)
412 {
413 	struct efs_extent ex, ex2;
414 	struct buf *bp;
415 	struct efs_mount *emp = VFSTOEFS(eip->ei_vp->v_mount);
416 	off_t offset, length, next;
417 	int i, err, numextents, numinextents;
418 	int hi, lo, mid;
419 	int indir;
420 
421 	exi->exi_eip	= eip;
422 	exi->exi_next	= 0;
423 	exi->exi_dnext	= 0;
424 	exi->exi_innext	= 0;
425 
426 	if (start_hint == 0)
427 		return;
428 
429 	/* force iterator to end if hint is too big */
430 	if (start_hint >= eip->ei_size) {
431 		exi->exi_next = eip->ei_numextents;
432 		return;
433 	}
434 
435 	/*
436 	 * Use start_hint to jump to the right extent descriptor. We'll
437 	 * iterate over the 12 indirect extents because it's cheap, then
438 	 * bring the appropriate vector into core and binary search it.
439 	 */
440 
441 	/*
442 	 * Handle the small file case separately first...
443 	 */
444 	if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
445 		for (i = 0; i < eip->ei_numextents; i++) {
446 			efs_dextent_to_extent(&eip->ei_di.di_extents[i], &ex);
447 
448 			offset = ex.ex_offset * EFS_BB_SIZE;
449 			length = ex.ex_length * EFS_BB_SIZE;
450 
451 			if (start_hint >= offset &&
452 			    start_hint < (offset + length)) {
453 				exi->exi_next = exi->exi_dnext = i;
454 				return;
455 			}
456 		}
457 
458 		/* shouldn't get here, no? */
459 		EFS_DPRINTF(("efs_extent_iterator_init: bad direct extents\n"));
460 		return;
461 	}
462 
463 	/*
464 	 * Now do the large files with indirect extents...
465 	 *
466 	 * The first indirect extent's ex_offset field contains the
467 	 * number of indirect extents used.
468 	 */
469 	efs_dextent_to_extent(&eip->ei_di.di_extents[0], &ex);
470 
471 	numinextents = ex.ex_offset;
472 	if (numinextents < 1 || numinextents >= EFS_DIRECTEXTENTS) {
473 		EFS_DPRINTF(("efs_extent_iterator_init: bad ex.ex_offset\n"));
474 		return;
475 	}
476 
477 	next = 0;
478 	indir = -1;
479 	numextents = 0;
480 	for (i = 0; i < numinextents; i++) {
481 		efs_dextent_to_extent(&eip->ei_di.di_extents[i], &ex);
482 
483 		err = efs_bread(emp, ex.ex_bn, NULL, &bp);
484 		if (err) {
485 			return;
486 		}
487 
488 		efs_dextent_to_extent((struct efs_dextent *)bp->b_data, &ex2);
489 		brelse(bp, 0);
490 
491 		offset = ex2.ex_offset * EFS_BB_SIZE;
492 
493 		if (offset > start_hint) {
494 			indir = MAX(0, i - 1);
495 			break;
496 		}
497 
498 		/* number of extents prior to this indirect vector of extents */
499 		next += numextents;
500 
501 		/* number of extents within this indirect vector of extents */
502 		numextents = ex.ex_length * EFS_EXTENTS_PER_BB;
503 		numextents = MIN(numextents, eip->ei_numextents - next);
504 	}
505 
506 	/*
507 	 * We hit the end, so assume it's in the last extent.
508 	 */
509 	if (indir == -1)
510 		indir = numinextents - 1;
511 
512 	/*
513 	 * Binary search to find our desired direct extent.
514 	 */
515 	lo = 0;
516 	mid = 0;
517 	hi = numextents - 1;
518 	efs_dextent_to_extent(&eip->ei_di.di_extents[indir], &ex);
519 	while (lo <= hi) {
520 		int bboff;
521 		int index;
522 
523 		mid = (lo + hi) / 2;
524 
525 		bboff = mid / EFS_EXTENTS_PER_BB;
526 		index = mid % EFS_EXTENTS_PER_BB;
527 
528 		err = efs_bread(emp, ex.ex_bn + bboff, NULL, &bp);
529 		if (err) {
530 			EFS_DPRINTF(("efs_extent_iterator_init: bsrch read\n"));
531 			return;
532 		}
533 
534 		efs_dextent_to_extent((struct efs_dextent *)bp->b_data + index,
535 		    &ex2);
536 		brelse(bp, 0);
537 
538 		offset = ex2.ex_offset * EFS_BB_SIZE;
539 		length = ex2.ex_length * EFS_BB_SIZE;
540 
541 		if (start_hint >= offset && start_hint < (offset + length))
542 			break;
543 
544 		if (start_hint < offset)
545 			hi = mid - 1;
546 		else
547 			lo = mid + 1;
548 	}
549 
550 	/*
551 	 * This is bad. Either the hint is bogus (which shouldn't
552 	 * happen) or the extent list must be screwed up. We
553 	 * have to abort.
554 	 */
555 	if (lo > hi) {
556 		EFS_DPRINTF(("efs_extent_iterator_init: bsearch "
557 		    "failed to find extent\n"));
558 		return;
559 	}
560 
561 	exi->exi_next	= next + mid;
562 	exi->exi_dnext	= indir;
563 	exi->exi_innext	= mid;
564 }
565 
566 /*
567  * Return the next EFS extent.
568  *
569  * Returns 0 if another extent was iterated, -1 if we've exhausted all
570  * extents, or an error number. If 'exi' is non-NULL, the next extent is
571  * written to it (should it exist).
572  */
573 int
574 efs_extent_iterator_next(struct efs_extent_iterator *exi,
575     struct efs_extent *exp)
576 {
577 	struct efs_extent ex;
578 	struct efs_dextent *dexp;
579 	struct efs_inode *eip = exi->exi_eip;
580 	struct buf *bp;
581 	int err, bboff, index;
582 
583 	if (exi->exi_next++ >= eip->ei_numextents)
584 		return (-1);
585 
586 	/* direct or indirect extents? */
587 	if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
588 		if (exp != NULL) {
589 			dexp = &eip->ei_di.di_extents[exi->exi_dnext++];
590 			efs_dextent_to_extent(dexp, exp);
591 		}
592 	} else {
593 		efs_dextent_to_extent(
594 		    &eip->ei_di.di_extents[exi->exi_dnext], &ex);
595 
596 		bboff	= exi->exi_innext / EFS_EXTENTS_PER_BB;
597 		index	= exi->exi_innext % EFS_EXTENTS_PER_BB;
598 
599 		err = efs_bread(VFSTOEFS(eip->ei_vp->v_mount),
600 		    ex.ex_bn + bboff, NULL, &bp);
601 		if (err) {
602 			EFS_DPRINTF(("efs_extent_iterator_next: "
603 			    "efs_bread failed: %d\n", err));
604 			return (err);
605 		}
606 
607 		if (exp != NULL) {
608 			dexp = (struct efs_dextent *)bp->b_data + index;
609 			efs_dextent_to_extent(dexp, exp);
610 		}
611 		brelse(bp, 0);
612 
613 		bboff = exi->exi_innext++ / EFS_EXTENTS_PER_BB;
614 		if (bboff >= ex.ex_length) {
615 			exi->exi_innext = 0;
616 			exi->exi_dnext++;
617 		}
618 	}
619 
620 	return (0);
621 }
622