xref: /netbsd-src/sys/external/isc/atheros_hal/dist/ar5416/ar5416_reset.c (revision b62fc9e20372b08e1785ff6d769312d209fa2005)
1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar5416_reset.c,v 1.2 2009/01/06 06:03:57 mrg Exp $
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 
25 #include "ah_eeprom_v14.h"
26 
27 #include "ar5416/ar5416.h"
28 #include "ar5416/ar5416reg.h"
29 #include "ar5416/ar5416phy.h"
30 #ifdef AH_SUPPORT_AR9280
31 #include "ar5416/ar9280.h"
32 #endif
33 
34 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
35 #define	EEP_MINOR(_ah) \
36 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
37 #define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
38 #define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
39 
40 /* Additional Time delay to wait after activiting the Base band */
41 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
42 #define PLL_SETTLE_DELAY	300	/* 300 usec */
43 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
44 
45 static void ar5416InitDMA(struct ath_hal *ah);
46 static void ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan);
47 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
48 static void ar5416InitQoS(struct ath_hal *ah);
49 static void ar5416InitUserSettings(struct ath_hal *ah);
50 
51 static HAL_BOOL ar5416SetTransmitPower(struct ath_hal *ah,
52 	HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
53 
54 #if 0
55 static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, HAL_CHANNEL *);
56 #endif
57 static void ar5416SetDeltaSlope(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
58 static void ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
59 #ifdef AH_SUPPORT_AR9280
60 static void ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
61 #endif
62 
63 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
64 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
65 static void ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan);
66 static HAL_BOOL ar5416SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
67 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
68 	struct ar5416eeprom *pEepData,
69 	HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
70 	uint16_t cfgCtl, uint16_t AntennaReduction,
71 	uint16_t twiceMaxRegulatoryPower,
72 	uint16_t powerLimit);
73 static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
74 	struct ar5416eeprom *pEepData,
75 	HAL_CHANNEL_INTERNAL *chan,
76 	int16_t *pTxPowerIndexOffset);
77 static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
78 	CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
79 static void ar5416GetTargetPowers(struct ath_hal *ah,
80 	HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_HT *powInfo,
81 	uint16_t numChannels, CAL_TARGET_POWER_HT *pNewPower,
82 	uint16_t numRates, HAL_BOOL isHt40Target);
83 static void ar5416GetTargetPowersLeg(struct ath_hal *ah,
84 	HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_LEG *powInfo,
85 	uint16_t numChannels, CAL_TARGET_POWER_LEG *pNewPower,
86 	uint16_t numRates, HAL_BOOL isExtTarget);
87 
88 static int16_t interpolate(uint16_t target, uint16_t srcLeft,
89 	uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
90 static void ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan);
91 static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
92 	HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
93 	uint8_t * bChans, uint16_t availPiers,
94 	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
95 	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
96 	uint16_t numXpdGains);
97 static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
98 	uint16_t listSize,  uint16_t *indexL, uint16_t *indexR);
99 static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
100 	uint8_t *pPwrList, uint8_t *pVpdList,
101 	uint16_t numIntercepts, uint8_t *pRetVpdList);
102 
103 /*
104  * Places the device in and out of reset and then places sane
105  * values in the registers based on EEPROM config, initialization
106  * vectors (as determined by the mode), and station configuration
107  *
108  * bChannelChange is used to preserve DMA/PCU registers across
109  * a HW Reset during channel change.
110  */
111 HAL_BOOL
112 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
113 	HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
114 {
115 #define	N(a)	(sizeof (a) / sizeof (a[0]))
116 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
117 	struct ath_hal_5212 *ahp = AH5212(ah);
118 	HAL_CHANNEL_INTERNAL *ichan;
119 	uint32_t softLedCfg;
120 	uint32_t saveDefAntenna, saveLedState;
121 	uint32_t macStaId1;
122 	uint16_t rfXpdGain[2];
123 	u_int modesIndex, freqIndex;
124 	HAL_STATUS ecode;
125 	int i, regWrites = 0;
126 	uint32_t powerVal, rssiThrReg;
127 	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
128 
129 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
130 #define	IS(_c,_f)	(((_c)->channelFlags & _f) || 0)
131 	if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
132 		HALDEBUG(ah, HAL_DEBUG_ANY,
133 		    "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
134 		    __func__, chan->channel, chan->channelFlags);
135 		FAIL(HAL_EINVAL);
136 	}
137 	if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
138 		HALDEBUG(ah, HAL_DEBUG_ANY,
139 		    "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
140 		    __func__, chan->channel, chan->channelFlags);
141 		FAIL(HAL_EINVAL);
142 	}
143 #undef IS
144 
145 	/* Bring out of sleep mode */
146 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
147 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
148 		    __func__);
149 		FAIL(HAL_EIO);
150 	}
151 
152 	/*
153 	 * Map public channel to private.
154 	 */
155 	ichan = ath_hal_checkchannel(ah, chan);
156 	if (ichan == AH_NULL) {
157 		HALDEBUG(ah, HAL_DEBUG_ANY,
158 		    "%s: invalid channel %u/0x%x; no mapping\n",
159 		    __func__, chan->channel, chan->channelFlags);
160 		FAIL(HAL_EINVAL);
161 	} else {
162 		HALDEBUG(ah, HAL_DEBUG_RESET,
163 		    "%s: Ch=%u Max=%d Min=%d\n",__func__,
164 		    ichan->channel, ichan->maxTxPower, ichan->minTxPower);
165 	}
166 	switch (opmode) {
167 	case HAL_M_STA:
168 	case HAL_M_IBSS:
169 	case HAL_M_HOSTAP:
170 	case HAL_M_MONITOR:
171 		break;
172 	default:
173 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
174 		    __func__, opmode);
175 		FAIL(HAL_EINVAL);
176 		break;
177 	}
178 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
179 
180 	/* XXX Turn on fast channel change for 5416 */
181 	/*
182 	 * Preserve the bmiss rssi threshold and count threshold
183 	 * across resets
184 	 */
185 	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
186 	/* If reg is zero, first time thru set to default val */
187 	if (rssiThrReg == 0)
188 		rssiThrReg = INIT_RSSI_THR;
189 
190 	/*
191 	 * Preserve the antenna on a channel change
192 	 */
193 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
194 	if (saveDefAntenna == 0)		/* XXX magic constants */
195 		saveDefAntenna = 1;
196 
197 	/* Save hardware flag before chip reset clears the register */
198 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
199 		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
200 
201 	/* Save led state from pci config register */
202 	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
203 		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
204 		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
205 	softLedCfg = OS_REG_READ(ah, AR_GPIO_INTR_OUT);
206 
207 	/*
208 	 * Adjust gain parameters before reset if
209 	 * there's an outstanding gain updated.
210 	 */
211 	(void) ar5416GetRfgain(ah);
212 
213 	if (!ar5416ChipReset(ah, chan)) {
214 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
215 		FAIL(HAL_EIO);
216 	}
217 
218 	/* Restore bmiss rssi & count thresholds */
219 	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
220 
221 	/* Setup the indices for the next set of register array writes */
222 	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
223 	switch (chan->channelFlags & CHANNEL_ALL) {
224 	case CHANNEL_A:
225     	case CHANNEL_A_HT20:
226                 modesIndex = 1;
227                 freqIndex  = 1;
228 		break;
229     	case CHANNEL_T:
230     	case CHANNEL_A_HT40PLUS:
231     	case CHANNEL_A_HT40MINUS:
232                 modesIndex = 2;
233                 freqIndex  = 1;
234 	    	break;
235 	case CHANNEL_PUREG:
236 	case CHANNEL_G_HT20:
237 	case CHANNEL_B:	/* treat as channel G , no  B mode suport in owl */
238 		modesIndex = 4;
239 		freqIndex  = 2;
240 		break;
241     	case CHANNEL_G_HT40PLUS:
242     	case CHANNEL_G_HT40MINUS:
243 		modesIndex = 3;
244 		freqIndex  = 2;
245 		break;
246 	case CHANNEL_108G:
247 		modesIndex = 5;
248 		freqIndex  = 2;
249 		break;
250 	default:
251 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
252 		    __func__, chan->channelFlags);
253 		FAIL(HAL_EINVAL);
254 	}
255 
256 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
257 
258 	/* Set correct Baseband to analog shift setting to access analog chips. */
259 	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
260 
261 	 /*
262 	 * Write addac shifts
263 	 */
264 	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
265 #if 0
266 	/* NB: only required for Sowl */
267 	ar5416EepromSetAddac(ah, ichan);
268 #endif
269 	regWrites = ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_addac, 1,
270 	    regWrites);
271 	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
272 
273 	/* XXX Merlin ini fixups */
274 	/* XXX Merlin 100us delay for shift registers */
275 	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex,
276 	    regWrites);
277 #ifdef AH_SUPPORT_AR9280
278 	if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
279 		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
280 		    modesIndex, regWrites);
281 		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
282 		    modesIndex, regWrites);
283 	}
284 #endif
285 	/* XXX Merlin 100us delay for shift registers */
286 	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_common, 1, regWrites);
287 	/* Setup 11n MAC/Phy mode registers */
288 	ar5416Set11nRegs(ah,chan);
289 	/* XXX updated regWrites? */
290 	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
291 #ifdef AH_SUPPORT_AR9280
292 	if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
293 		/* 5GHz channels w/ Fast Clock use different modal values */
294 		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
295 		    modesIndex, regWrites);
296 	}
297 #endif
298 
299 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
300 
301 	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
302 		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
303 	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
304 		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
305 
306 	/* Set the mute mask to the correct default */
307 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
308 		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
309 
310 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
311 		/* Clear reg to alllow RX_CLEAR line debug */
312 		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
313 	}
314 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
315 #ifdef notyet
316 		/* Enable burst prefetch for the data queues */
317 		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
318 		/* Enable double-buffering */
319 		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
320 #endif
321 	}
322 
323 	/* Set ADC/DAC select values */
324 	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
325 
326 	if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
327 	    AH5416(ah)->ah_tx_chainmask == 0x5)
328 		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
329 	/* Setup Chain Masks */
330 	OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
331 	OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
332 	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
333 
334 	/* Setup the transmit power values. */
335 	if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
336 		HALDEBUG(ah, HAL_DEBUG_ANY,
337 		    "%s: error init'ing transmit power\n", __func__);
338 		FAIL(HAL_EIO);
339 	}
340 
341 	/* Write the analog registers */
342 	if (!ahp->ah_rfHal->setRfRegs(ah, ichan, freqIndex, rfXpdGain)) {
343 		HALDEBUG(ah, HAL_DEBUG_ANY,
344 		    "%s: ar5212SetRfRegs failed\n", __func__);
345 		FAIL(HAL_EIO);
346 	}
347 
348 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
349 	if (IS_CHAN_OFDM(chan)|| IS_CHAN_HT(chan))
350 		ar5416SetDeltaSlope(ah, ichan);
351 
352 #ifdef AH_SUPPORT_AR9280
353 	if (AR_SREV_MERLIN_10_OR_LATER(ah))
354 		ar9280SpurMitigate(ah, ichan);
355 	else
356 #endif
357 		ar5416SpurMitigate(ah, ichan);
358 
359 	/* Setup board specific options for EEPROM version 3 */
360 	if (!ar5416SetBoardValues(ah, ichan)) {
361 		HALDEBUG(ah, HAL_DEBUG_ANY,
362 		    "%s: error setting board options\n", __func__);
363 		FAIL(HAL_EIO);
364 	}
365 
366 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
367 
368 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
369 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
370 		| macStaId1
371 		| AR_STA_ID1_RTS_USE_DEF
372 		| ahp->ah_staId1Defaults
373 	);
374 	ar5212SetOperatingMode(ah, opmode);
375 
376 	/* Set Venice BSSID mask according to current state */
377 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
378 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
379 
380 	/* Restore previous led state */
381 	OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
382 	/* Restore soft Led state to GPIO */
383 	OS_REG_WRITE(ah, AR_GPIO_INTR_OUT, softLedCfg);
384 
385 	/* Restore previous antenna */
386 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
387 
388 	/* then our BSSID */
389 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
390 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
391 
392 	/* Restore bmiss rssi & count thresholds */
393 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
394 
395 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
396 
397 	if (!ar5212SetChannel(ah, ichan))
398 		FAIL(HAL_EIO);
399 
400 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
401 
402 	/* Set 1:1 QCU to DCU mapping for all queues */
403 	for (i = 0; i < AR_NUM_DCU; i++)
404 		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
405 
406 	ahp->ah_intrTxqs = 0;
407 	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
408 		ar5212ResetTxQueue(ah, i);
409 
410 	ar5416InitIMR(ah, opmode);
411 	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
412 	ar5416InitQoS(ah);
413 	ar5416InitUserSettings(ah);
414 
415 	/*
416 	 * disable seq number generation in hw
417 	 */
418 	 OS_REG_WRITE(ah, AR_STA_ID1,
419 	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
420 
421 	ar5416InitDMA(ah);
422 
423 	/*
424 	 * program OBS bus to see MAC interrupts
425 	 */
426 	OS_REG_WRITE(ah, AR_OBS, 8);
427 
428 #ifdef AR5416_INT_MITIGATION
429 	OS_REG_WRITE(ah, AR_MIRT, 0);
430 	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
431 	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
432 #endif
433 
434 	ar5416InitBB(ah, chan);
435 
436 	/* Setup compression registers */
437 	ar5212SetCompRegs(ah);		/* XXX not needed? */
438 
439 	/*
440 	 * 5416 baseband will check the per rate power table
441 	 * and select the lower of the two
442 	 */
443 	ackTpcPow = 63;
444 	ctsTpcPow = 63;
445 	chirpTpcPow = 63;
446 	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
447 		SM(ctsTpcPow, AR_TPC_CTS) |
448 		SM(chirpTpcPow, AR_TPC_CHIRP);
449 	OS_REG_WRITE(ah, AR_TPC, powerVal);
450 
451 	if (!ar5416InitCal(ah, chan))
452 		FAIL(HAL_ESELFTEST);
453 
454 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
455 
456 	if (bChannelChange) {
457 		if (!(ichan->privFlags & CHANNEL_DFS))
458 			ichan->privFlags &= ~CHANNEL_INTERFERENCE;
459 		chan->channelFlags = ichan->channelFlags;
460 		chan->privFlags = ichan->privFlags;
461 		chan->maxRegTxPower = ichan->maxRegTxPower;
462 		chan->maxTxPower = ichan->maxTxPower;
463 		chan->minTxPower = ichan->minTxPower;
464 	}
465 
466 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
467 
468 	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
469 
470 	return AH_TRUE;
471 bad:
472 	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
473 	if (*status)
474 		*status = ecode;
475 	return AH_FALSE;
476 #undef FAIL
477 #undef N
478 }
479 
480 #if 0
481 /*
482  * This channel change evaluates whether the selected hardware can
483  * perform a synthesizer-only channel change (no reset).  If the
484  * TX is not stopped, or the RFBus cannot be granted in the given
485  * time, the function returns false as a reset is necessary
486  */
487 HAL_BOOL
488 ar5416ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
489 {
490 	uint32_t       ulCount;
491 	uint32_t   data, synthDelay, qnum;
492 	uint16_t   rfXpdGain[4];
493 	struct ath_hal_5212 *ahp = AH5212(ah);
494 	HAL_CHANNEL_INTERNAL *ichan;
495 
496 	/*
497 	 * Map public channel to private.
498 	 */
499 	ichan = ath_hal_checkchannel(ah, chan);
500 
501 	/* TX must be stopped or RF Bus grant will not work */
502 	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
503 		if (ar5212NumTxPending(ah, qnum)) {
504 			HALDEBUG(ah, HAL_DEBUG_ANY,
505 			    "%s: frames pending on queue %d\n", __func__, qnum);
506 			return AH_FALSE;
507 		}
508 	}
509 
510 	/*
511 	 * Kill last Baseband Rx Frame - Request analog bus grant
512 	 */
513 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
514 	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
515 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
516 		    __func__);
517 		return AH_FALSE;
518 	}
519 
520 	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
521 
522 	/* Change the synth */
523 	if (!ar5212SetChannel(ah, ichan))
524 		return AH_FALSE;
525 
526 	/* Setup the transmit power values. */
527 	if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
528 		HALDEBUG(ah, HAL_DEBUG_ANY,
529 		    "%s: error init'ing transmit power\n", __func__);
530 		return AH_FALSE;
531 	}
532 
533 	/*
534 	 * Wait for the frequency synth to settle (synth goes on
535 	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
536 	 * Value is in 100ns increments.
537 	 */
538 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
539 	if (IS_CHAN_CCK(ichan)) {
540 		synthDelay = (4 * data) / 22;
541 	} else {
542 		synthDelay = data / 10;
543 	}
544 
545 	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
546 
547 	/* Release the RFBus Grant */
548 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
549 
550 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
551 	if (IS_CHAN_OFDM(ichan)|| IS_CHAN_HT(chan)) {
552 		if (ahp->ah_eeprom.ee_version >= AR_EEPROM_VER5_3 &&
553 		    !IS_CHAN_B(chan))
554 			ar5212SetSpurMitigation(ah, ichan);
555 		ar5416SetDeltaSlope(ah, ichan);
556 	}
557 
558 	/* XXX spur mitigation for Melin */
559 
560 	/* Copy over internal channel flags to public hal channel */
561 
562 	if (!(ichan->privFlags & CHANNEL_DFS))
563 		ichan->privFlags &= ~CHANNEL_INTERFERENCE;
564 	chan->channelFlags = ichan->channelFlags;
565 	chan->privFlags = ichan->privFlags;
566 	chan->maxRegTxPower = ichan->maxRegTxPower;
567 	chan->maxTxPower = ichan->maxTxPower;
568 	chan->minTxPower = ichan->minTxPower;
569 	AH_PRIVATE(ah)->ah_curchan->ah_channel_time=0;
570 	AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar5212GetTsf64(ah);
571 	ar5212TxEnable(ah,AH_TRUE);
572 	return AH_TRUE;
573 }
574 #endif
575 
576 static void
577 ar5416InitDMA(struct ath_hal *ah)
578 {
579 
580 	/*
581 	 * set AHB_MODE not to do cacheline prefetches
582 	 */
583 	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
584 
585 	/*
586 	 * let mac dma reads be in 128 byte chunks
587 	 */
588 	OS_REG_WRITE(ah, AR_TXCFG,
589 		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
590 
591 	/*
592 	 * let mac dma writes be in 128 byte chunks
593 	 */
594 	OS_REG_WRITE(ah, AR_RXCFG,
595 		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
596 
597 	/* XXX restore TX trigger level */
598 
599 	/*
600 	 * Setup receive FIFO threshold to hold off TX activities
601 	 */
602 	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
603 
604 	/*
605 	 * reduce the number of usable entries in PCU TXBUF to avoid
606 	 * wrap around.
607 	 */
608 	OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
609 }
610 
611 static void
612 ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan)
613 {
614 	uint32_t synthDelay;
615 
616 	/*
617 	 * Wait for the frequency synth to settle (synth goes on
618 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
619 	 * Value is in 100ns increments.
620 	  */
621 	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
622 	if (IS_CHAN_CCK(chan)) {
623 		synthDelay = (4 * synthDelay) / 22;
624 	} else {
625 		synthDelay /= 10;
626 	}
627 
628 	/* Turn on PLL on 5416 */
629 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
630 	    __func__, IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
631 	ar5416InitPLL(ah, chan);
632 
633 	/* Activate the PHY (includes baseband activate and synthesizer on) */
634 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
635 
636 	/*
637 	 * If the AP starts the calibration before the base band timeout
638 	 * completes  we could get rx_clear false triggering.  Add an
639 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
640 	 * does not happen.
641 	 */
642 	if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
643 		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
644 	} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
645 		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
646 	} else {
647 		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
648 	}
649 }
650 
651 static void
652 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
653 {
654 	struct ath_hal_5212 *ahp = AH5212(ah);
655 
656 	/*
657 	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
658 	 * manipulates the secondary IMR's as queues are enabled
659 	 * and disabled.  This is done with RMW ops to insure the
660 	 * settings we make here are preserved.
661 	 */
662         ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
663 			| AR_IMR_RXERR | AR_IMR_RXORN
664                         | AR_IMR_BCNMISC;
665 
666 #ifdef AR5416_INT_MITIGATION
667        	ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
668 			|  AR_IMR_TXMINTR | AR_IMR_RXMINTR;
669 #else
670         ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
671 #endif
672 	if (opmode == HAL_M_HOSTAP)
673 		ahp->ah_maskReg |= AR_IMR_MIB;
674 	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
675 	/* Enable bus errors that are OR'd to set the HIUERR bit */
676 
677 #if 0
678 	OS_REG_WRITE(ah, AR_IMR_S2,
679 	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
680 #endif
681 }
682 
683 static void
684 ar5416InitQoS(struct ath_hal *ah)
685 {
686 	/* QoS support */
687 	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
688 	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
689 
690 	/* Turn on NOACK Support for QoS packets */
691 	OS_REG_WRITE(ah, AR_NOACK,
692 		SM(2, AR_NOACK_2BIT_VALUE) |
693 		SM(5, AR_NOACK_BIT_OFFSET) |
694 		SM(0, AR_NOACK_BYTE_OFFSET));
695 
696     	/*
697     	 * initialize TXOP for all TIDs
698     	 */
699 	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
700 	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
701 	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
702 	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
703 	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
704 }
705 
706 static void
707 ar5416InitUserSettings(struct ath_hal *ah)
708 {
709 	struct ath_hal_5212 *ahp = AH5212(ah);
710 
711 	/* Restore user-specified settings */
712 	if (ahp->ah_miscMode != 0)
713 		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
714 	if (ahp->ah_sifstime != (u_int) -1)
715 		ar5212SetSifsTime(ah, ahp->ah_sifstime);
716 	if (ahp->ah_slottime != (u_int) -1)
717 		ar5212SetSlotTime(ah, ahp->ah_slottime);
718 	if (ahp->ah_acktimeout != (u_int) -1)
719 		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
720 	if (ahp->ah_ctstimeout != (u_int) -1)
721 		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
722 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
723 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
724 #if 0 /* XXX Todo */
725 	if (ahp->ah_globaltxtimeout != (u_int) -1)
726         	ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
727 #endif
728 }
729 
730 /*
731  * Places the hardware into reset and then pulls it out of reset
732  */
733 HAL_BOOL
734 ar5416ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
735 {
736 	uint32_t rfMode = 0;
737 
738 	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
739 	/*
740 	 * Warm reset is optimistic.
741 	 */
742 	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
743 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
744 		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
745 			return AH_FALSE;
746 	} else {
747 		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
748 			return AH_FALSE;
749 	}
750 
751 	/* Bring out of sleep mode (AGAIN) */
752 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
753 	       return AH_FALSE;
754 
755 	ar5416InitPLL(ah, chan);
756 
757 	/*
758 	 * Perform warm reset before the mode/PLL/turbo registers
759 	 * are changed in order to deactivate the radio.  Mode changes
760 	 * with an active radio can result in corrupted shifts to the
761 	 * radio device.
762 	 */
763 	if (chan != AH_NULL) {
764 		/* treat channel B as channel G , no  B mode suport in owl */
765 		rfMode |= (IS_CHAN_G(chan) || IS_CHAN_B(chan)) ?
766 			AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
767 		if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
768 			/* phy mode bits for 5GHz channels require Fast Clock */
769 			rfMode |= AR_PHY_MODE_DYNAMIC
770 			       |  AR_PHY_MODE_DYN_CCK_DISABLE;
771 		} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
772 			rfMode |= (IS_CHAN_5GHZ(chan)) ?
773 				AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
774 		}
775 		OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
776 	}
777 	return AH_TRUE;
778 }
779 
780 /*
781  * Delta slope coefficient computation.
782  * Required for OFDM operation.
783  */
784 static void
785 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
786                           uint32_t *coef_mantissa, uint32_t *coef_exponent)
787 {
788 #define COEF_SCALE_S 24
789     uint32_t coef_exp, coef_man;
790     /*
791      * ALGO -> coef_exp = 14-floor(log2(coef));
792      * floor(log2(x)) is the highest set bit position
793      */
794     for (coef_exp = 31; coef_exp > 0; coef_exp--)
795             if ((coef_scaled >> coef_exp) & 0x1)
796                     break;
797     /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
798     HALASSERT(coef_exp);
799     coef_exp = 14 - (coef_exp - COEF_SCALE_S);
800 
801     /*
802      * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
803      * The coefficient is already shifted up for scaling
804      */
805     coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
806 
807     *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
808     *coef_exponent = coef_exp - 16;
809 
810 #undef COEF_SCALE_S
811 }
812 
813 void
814 ar5416SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
815 {
816 #define INIT_CLOCKMHZSCALED	0x64000000
817 	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
818 	uint32_t clockMhzScaled = INIT_CLOCKMHZSCALED;
819 
820 	CHAN_CENTERS centers;
821 
822 	if (IS_CHAN_TURBO(chan))
823 		clockMhzScaled *= 2;
824 	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
825 	/* scale for selected channel bandwidth */
826 	if (IS_CHAN_HALF_RATE(chan)) {
827 		clockMhzScaled = clockMhzScaled >> 1;
828 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
829 		clockMhzScaled = clockMhzScaled >> 2;
830 	}
831 
832 	/*
833 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
834 	 * scaled coef to provide precision for this floating calculation
835 	 */
836 	ar5416GetChannelCenters(ah, chan, &centers);
837 	coef_scaled = clockMhzScaled / centers.synth_center;
838 
839  	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
840 
841 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
842 		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
843 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
844 		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
845 
846         /*
847          * For Short GI,
848          * scaled coeff is 9/10 that of normal coeff
849          */
850         coef_scaled = (9 * coef_scaled)/10;
851 
852         ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
853 
854         /* for short gi */
855         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
856                 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
857         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
858                 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
859 #undef INIT_CLOCKMHZSCALED
860 }
861 
862 /*
863  * Convert to baseband spur frequency given input channel frequency
864  * and compute register settings below.
865  */
866 #define SPUR_RSSI_THRESH 40
867 
868 static void
869 ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
870 {
871     static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
872                 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
873     static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
874                 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
875     static const int inc[4] = { 0, 100, 0, 0 };
876 
877     int bb_spur = AR_NO_SPUR;
878     int bin, cur_bin;
879     int spur_freq_sd;
880     int spur_delta_phase;
881     int denominator;
882     int upper, lower, cur_vit_mask;
883     int tmp, new;
884     int i;
885 
886     int8_t mask_m[123];
887     int8_t mask_p[123];
888     int8_t mask_amt;
889     int tmp_mask;
890     int cur_bb_spur;
891     HAL_BOOL is2GHz = IS_CHAN_2GHZ(chan);
892 
893     OS_MEMZERO(mask_m, sizeof(mask_m));
894     OS_MEMZERO(mask_p, sizeof(mask_p));
895 
896     /*
897      * Need to verify range +/- 9.5 for static ht20, otherwise spur
898      * is out-of-band and can be ignored.
899      */
900     for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
901         cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
902         if (AR_NO_SPUR == cur_bb_spur)
903             break;
904         cur_bb_spur = cur_bb_spur - (chan->channel * 10);
905         if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
906             bb_spur = cur_bb_spur;
907             break;
908         }
909     }
910     if (AR_NO_SPUR == bb_spur)
911         return;
912 
913     bin = bb_spur * 32;
914 
915     tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
916     new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
917         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
918         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
919         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
920 
921     OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), new);
922 
923     new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
924         AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
925         AR_PHY_SPUR_REG_MASK_RATE_SELECT |
926         AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
927         SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
928     OS_REG_WRITE(ah, AR_PHY_SPUR_REG, new);
929     /*
930      * Should offset bb_spur by +/- 10 MHz for dynamic 2040 MHz
931      * config, no offset for HT20.
932      * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
933      * /80 for dyn2040.
934      */
935     spur_delta_phase = ((bb_spur * 524288) / 100) &
936         AR_PHY_TIMING11_SPUR_DELTA_PHASE;
937     /*
938      * in 11A mode the denominator of spur_freq_sd should be 40 and
939      * it should be 44 in 11G
940      */
941     denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
942     spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
943 
944     new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
945         SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
946         SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
947     OS_REG_WRITE(ah, AR_PHY_TIMING11, new);
948 
949 
950     /*
951      * ============================================
952      * pilot mask 1 [31:0] = +6..-26, no 0 bin
953      * pilot mask 2 [19:0] = +26..+7
954      *
955      * channel mask 1 [31:0] = +6..-26, no 0 bin
956      * channel mask 2 [19:0] = +26..+7
957      */
958     //cur_bin = -26;
959     cur_bin = -6000;
960     upper = bin + 100;
961     lower = bin - 100;
962 
963     for (i = 0; i < 4; i++) {
964         int pilot_mask = 0;
965         int chan_mask  = 0;
966         int bp         = 0;
967         for (bp = 0; bp < 30; bp++) {
968             if ((cur_bin > lower) && (cur_bin < upper)) {
969                 pilot_mask = pilot_mask | 0x1 << bp;
970                 chan_mask  = chan_mask | 0x1 << bp;
971             }
972             cur_bin += 100;
973         }
974         cur_bin += inc[i];
975         OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
976         OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
977     }
978 
979     /* =================================================
980      * viterbi mask 1 based on channel magnitude
981      * four levels 0-3
982      *  - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
983      *      [1 2 2 1] for -9.6 or [1 2 1] for +16
984      *  - enable_mask_ppm, all bins move with freq
985      *
986      *  - mask_select,    8 bits for rates (reg 67,0x990c)
987      *  - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
988      *      choose which mask to use mask or mask2
989      */
990 
991     /*
992      * viterbi mask 2  2nd set for per data rate puncturing
993      * four levels 0-3
994      *  - mask_select, 8 bits for rates (reg 67)
995      *  - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
996      *      [1 2 2 1] for -9.6 or [1 2 1] for +16
997      */
998     cur_vit_mask = 6100;
999     upper        = bin + 120;
1000     lower        = bin - 120;
1001 
1002     for (i = 0; i < 123; i++) {
1003         if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1004             if ((abs(cur_vit_mask - bin)) < 75) {
1005                 mask_amt = 1;
1006             } else {
1007                 mask_amt = 0;
1008             }
1009             if (cur_vit_mask < 0) {
1010                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1011             } else {
1012                 mask_p[cur_vit_mask / 100] = mask_amt;
1013             }
1014         }
1015         cur_vit_mask -= 100;
1016     }
1017 
1018     tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1019           | (mask_m[48] << 26) | (mask_m[49] << 24)
1020           | (mask_m[50] << 22) | (mask_m[51] << 20)
1021           | (mask_m[52] << 18) | (mask_m[53] << 16)
1022           | (mask_m[54] << 14) | (mask_m[55] << 12)
1023           | (mask_m[56] << 10) | (mask_m[57] <<  8)
1024           | (mask_m[58] <<  6) | (mask_m[59] <<  4)
1025           | (mask_m[60] <<  2) | (mask_m[61] <<  0);
1026     OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1027     OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1028 
1029     tmp_mask =             (mask_m[31] << 28)
1030           | (mask_m[32] << 26) | (mask_m[33] << 24)
1031           | (mask_m[34] << 22) | (mask_m[35] << 20)
1032           | (mask_m[36] << 18) | (mask_m[37] << 16)
1033           | (mask_m[48] << 14) | (mask_m[39] << 12)
1034           | (mask_m[40] << 10) | (mask_m[41] <<  8)
1035           | (mask_m[42] <<  6) | (mask_m[43] <<  4)
1036           | (mask_m[44] <<  2) | (mask_m[45] <<  0);
1037     OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1038     OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1039 
1040     tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1041           | (mask_m[18] << 26) | (mask_m[18] << 24)
1042           | (mask_m[20] << 22) | (mask_m[20] << 20)
1043           | (mask_m[22] << 18) | (mask_m[22] << 16)
1044           | (mask_m[24] << 14) | (mask_m[24] << 12)
1045           | (mask_m[25] << 10) | (mask_m[26] <<  8)
1046           | (mask_m[27] <<  6) | (mask_m[28] <<  4)
1047           | (mask_m[29] <<  2) | (mask_m[30] <<  0);
1048     OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1049     OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1050 
1051     tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
1052           | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
1053           | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
1054           | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
1055           | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
1056           | (mask_m[10] << 10) | (mask_m[11] <<  8)
1057           | (mask_m[12] <<  6) | (mask_m[13] <<  4)
1058           | (mask_m[14] <<  2) | (mask_m[15] <<  0);
1059     OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1060     OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1061 
1062     tmp_mask =             (mask_p[15] << 28)
1063           | (mask_p[14] << 26) | (mask_p[13] << 24)
1064           | (mask_p[12] << 22) | (mask_p[11] << 20)
1065           | (mask_p[10] << 18) | (mask_p[ 9] << 16)
1066           | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
1067           | (mask_p[ 6] << 10) | (mask_p[ 5] <<  8)
1068           | (mask_p[ 4] <<  6) | (mask_p[ 3] <<  4)
1069           | (mask_p[ 2] <<  2) | (mask_p[ 1] <<  0);
1070     OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1071     OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1072 
1073     tmp_mask =             (mask_p[30] << 28)
1074           | (mask_p[29] << 26) | (mask_p[28] << 24)
1075           | (mask_p[27] << 22) | (mask_p[26] << 20)
1076           | (mask_p[25] << 18) | (mask_p[24] << 16)
1077           | (mask_p[23] << 14) | (mask_p[22] << 12)
1078           | (mask_p[21] << 10) | (mask_p[20] <<  8)
1079           | (mask_p[19] <<  6) | (mask_p[18] <<  4)
1080           | (mask_p[17] <<  2) | (mask_p[16] <<  0);
1081     OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1082     OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1083 
1084     tmp_mask =             (mask_p[45] << 28)
1085           | (mask_p[44] << 26) | (mask_p[43] << 24)
1086           | (mask_p[42] << 22) | (mask_p[41] << 20)
1087           | (mask_p[40] << 18) | (mask_p[39] << 16)
1088           | (mask_p[38] << 14) | (mask_p[37] << 12)
1089           | (mask_p[36] << 10) | (mask_p[35] <<  8)
1090           | (mask_p[34] <<  6) | (mask_p[33] <<  4)
1091           | (mask_p[32] <<  2) | (mask_p[31] <<  0);
1092     OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1093     OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1094 
1095     tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1096           | (mask_p[59] << 26) | (mask_p[58] << 24)
1097           | (mask_p[57] << 22) | (mask_p[56] << 20)
1098           | (mask_p[55] << 18) | (mask_p[54] << 16)
1099           | (mask_p[53] << 14) | (mask_p[52] << 12)
1100           | (mask_p[51] << 10) | (mask_p[50] <<  8)
1101           | (mask_p[49] <<  6) | (mask_p[48] <<  4)
1102           | (mask_p[47] <<  2) | (mask_p[46] <<  0);
1103     OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1104     OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1105 }
1106 
1107 #ifdef AH_SUPPORT_AR9280
1108 #define	AR_BASE_FREQ_2GHZ	2300
1109 #define	AR_BASE_FREQ_5GHZ	4900
1110 #define	AR_SPUR_FEEQ_BOUND_HT40	19
1111 #define	AR_SPUR_FEEQ_BOUND_HT20	10
1112 
1113 static void
1114 ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
1115 {
1116     static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1117                 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
1118     static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1119                 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
1120     static int inc[4] = { 0, 100, 0, 0 };
1121 
1122     int bb_spur = AR_NO_SPUR;
1123     int freq;
1124     int bin, cur_bin;
1125     int bb_spur_off, spur_subchannel_sd;
1126     int spur_freq_sd;
1127     int spur_delta_phase;
1128     int denominator;
1129     int upper, lower, cur_vit_mask;
1130     int tmp, newVal;
1131     int i;
1132     CHAN_CENTERS centers;
1133 
1134     int8_t mask_m[123];
1135     int8_t mask_p[123];
1136     int8_t mask_amt;
1137     int tmp_mask;
1138     int cur_bb_spur;
1139     HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
1140 
1141     OS_MEMZERO(&mask_m, sizeof(int8_t) * 123);
1142     OS_MEMZERO(&mask_p, sizeof(int8_t) * 123);
1143 
1144     ar5416GetChannelCenters(ah, ichan, &centers);
1145     freq = centers.synth_center;
1146 
1147     /*
1148      * Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40,
1149      * otherwise spur is out-of-band and can be ignored.
1150      */
1151     for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
1152         cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
1153         /* Get actual spur freq in MHz from EEPROM read value */
1154         if (is2GHz) {
1155             cur_bb_spur =  (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1156         } else {
1157             cur_bb_spur =  (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1158         }
1159 
1160         if (AR_NO_SPUR == cur_bb_spur)
1161             break;
1162         cur_bb_spur = cur_bb_spur - freq;
1163 
1164         if (IS_CHAN_HT40(ichan)) {
1165             if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1166                 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1167                 bb_spur = cur_bb_spur;
1168                 break;
1169             }
1170         } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1171                    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1172             bb_spur = cur_bb_spur;
1173             break;
1174         }
1175     }
1176 
1177     if (AR_NO_SPUR == bb_spur) {
1178 #if 1
1179         /*
1180          * MRC CCK can interfere with beacon detection and cause deaf/mute.
1181          * Disable MRC CCK for now.
1182          */
1183         OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1184 #else
1185         /* Enable MRC CCK if no spur is found in this channel. */
1186         OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1187 #endif
1188         return;
1189     } else {
1190         /*
1191          * For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur
1192          * is found in this channel.
1193          */
1194         OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1195     }
1196 
1197     bin = bb_spur * 320;
1198 
1199     tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
1200 
1201     newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1202         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1203         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1204         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1205     OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal);
1206 
1207     newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1208         AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1209         AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1210         AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1211         SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1212     OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1213 
1214     /* Pick control or extn channel to cancel the spur */
1215     if (IS_CHAN_HT40(ichan)) {
1216         if (bb_spur < 0) {
1217             spur_subchannel_sd = 1;
1218             bb_spur_off = bb_spur + 10;
1219         } else {
1220             spur_subchannel_sd = 0;
1221             bb_spur_off = bb_spur - 10;
1222         }
1223     } else {
1224         spur_subchannel_sd = 0;
1225         bb_spur_off = bb_spur;
1226     }
1227 
1228     /*
1229      * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
1230      * /80 for dyn2040.
1231      */
1232     if (IS_CHAN_HT40(ichan))
1233         spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1234     else
1235         spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1236 
1237     /*
1238      * in 11A mode the denominator of spur_freq_sd should be 40 and
1239      * it should be 44 in 11G
1240      */
1241     denominator = IS_CHAN_2GHZ(ichan) ? 44 : 40;
1242     spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1243 
1244     newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1245         SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1246         SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1247     OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1248 
1249     /* Choose to cancel between control and extension channels */
1250     newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1251     OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1252 
1253     /*
1254      * ============================================
1255      * Set Pilot and Channel Masks
1256      *
1257      * pilot mask 1 [31:0] = +6..-26, no 0 bin
1258      * pilot mask 2 [19:0] = +26..+7
1259      *
1260      * channel mask 1 [31:0] = +6..-26, no 0 bin
1261      * channel mask 2 [19:0] = +26..+7
1262      */
1263     cur_bin = -6000;
1264     upper = bin + 100;
1265     lower = bin - 100;
1266 
1267     for (i = 0; i < 4; i++) {
1268         int pilot_mask = 0;
1269         int chan_mask  = 0;
1270         int bp         = 0;
1271         for (bp = 0; bp < 30; bp++) {
1272             if ((cur_bin > lower) && (cur_bin < upper)) {
1273                 pilot_mask = pilot_mask | 0x1 << bp;
1274                 chan_mask  = chan_mask | 0x1 << bp;
1275             }
1276             cur_bin += 100;
1277         }
1278         cur_bin += inc[i];
1279         OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1280         OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1281     }
1282 
1283     /* =================================================
1284      * viterbi mask 1 based on channel magnitude
1285      * four levels 0-3
1286      *  - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
1287      *      [1 2 2 1] for -9.6 or [1 2 1] for +16
1288      *  - enable_mask_ppm, all bins move with freq
1289      *
1290      *  - mask_select,    8 bits for rates (reg 67,0x990c)
1291      *  - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
1292      *      choose which mask to use mask or mask2
1293      */
1294 
1295     /*
1296      * viterbi mask 2  2nd set for per data rate puncturing
1297      * four levels 0-3
1298      *  - mask_select, 8 bits for rates (reg 67)
1299      *  - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
1300      *      [1 2 2 1] for -9.6 or [1 2 1] for +16
1301      */
1302     cur_vit_mask = 6100;
1303     upper        = bin + 120;
1304     lower        = bin - 120;
1305 
1306     for (i = 0; i < 123; i++) {
1307         if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1308             if ((abs(cur_vit_mask - bin)) < 75) {
1309                 mask_amt = 1;
1310             } else {
1311                 mask_amt = 0;
1312             }
1313             if (cur_vit_mask < 0) {
1314                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1315             } else {
1316                 mask_p[cur_vit_mask / 100] = mask_amt;
1317             }
1318         }
1319         cur_vit_mask -= 100;
1320     }
1321 
1322     tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1323           | (mask_m[48] << 26) | (mask_m[49] << 24)
1324           | (mask_m[50] << 22) | (mask_m[51] << 20)
1325           | (mask_m[52] << 18) | (mask_m[53] << 16)
1326           | (mask_m[54] << 14) | (mask_m[55] << 12)
1327           | (mask_m[56] << 10) | (mask_m[57] <<  8)
1328           | (mask_m[58] <<  6) | (mask_m[59] <<  4)
1329           | (mask_m[60] <<  2) | (mask_m[61] <<  0);
1330     OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1331     OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1332 
1333     tmp_mask =             (mask_m[31] << 28)
1334           | (mask_m[32] << 26) | (mask_m[33] << 24)
1335           | (mask_m[34] << 22) | (mask_m[35] << 20)
1336           | (mask_m[36] << 18) | (mask_m[37] << 16)
1337           | (mask_m[48] << 14) | (mask_m[39] << 12)
1338           | (mask_m[40] << 10) | (mask_m[41] <<  8)
1339           | (mask_m[42] <<  6) | (mask_m[43] <<  4)
1340           | (mask_m[44] <<  2) | (mask_m[45] <<  0);
1341     OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1342     OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1343 
1344     tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1345           | (mask_m[18] << 26) | (mask_m[18] << 24)
1346           | (mask_m[20] << 22) | (mask_m[20] << 20)
1347           | (mask_m[22] << 18) | (mask_m[22] << 16)
1348           | (mask_m[24] << 14) | (mask_m[24] << 12)
1349           | (mask_m[25] << 10) | (mask_m[26] <<  8)
1350           | (mask_m[27] <<  6) | (mask_m[28] <<  4)
1351           | (mask_m[29] <<  2) | (mask_m[30] <<  0);
1352     OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1353     OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1354 
1355     tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
1356           | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
1357           | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
1358           | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
1359           | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
1360           | (mask_m[10] << 10) | (mask_m[11] <<  8)
1361           | (mask_m[12] <<  6) | (mask_m[13] <<  4)
1362           | (mask_m[14] <<  2) | (mask_m[15] <<  0);
1363     OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1364     OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1365 
1366     tmp_mask =             (mask_p[15] << 28)
1367           | (mask_p[14] << 26) | (mask_p[13] << 24)
1368           | (mask_p[12] << 22) | (mask_p[11] << 20)
1369           | (mask_p[10] << 18) | (mask_p[ 9] << 16)
1370           | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
1371           | (mask_p[ 6] << 10) | (mask_p[ 5] <<  8)
1372           | (mask_p[ 4] <<  6) | (mask_p[ 3] <<  4)
1373           | (mask_p[ 2] <<  2) | (mask_p[ 1] <<  0);
1374     OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1375     OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1376 
1377     tmp_mask =             (mask_p[30] << 28)
1378           | (mask_p[29] << 26) | (mask_p[28] << 24)
1379           | (mask_p[27] << 22) | (mask_p[26] << 20)
1380           | (mask_p[25] << 18) | (mask_p[24] << 16)
1381           | (mask_p[23] << 14) | (mask_p[22] << 12)
1382           | (mask_p[21] << 10) | (mask_p[20] <<  8)
1383           | (mask_p[19] <<  6) | (mask_p[18] <<  4)
1384           | (mask_p[17] <<  2) | (mask_p[16] <<  0);
1385     OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1386     OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1387 
1388     tmp_mask =             (mask_p[45] << 28)
1389           | (mask_p[44] << 26) | (mask_p[43] << 24)
1390           | (mask_p[42] << 22) | (mask_p[41] << 20)
1391           | (mask_p[40] << 18) | (mask_p[39] << 16)
1392           | (mask_p[38] << 14) | (mask_p[37] << 12)
1393           | (mask_p[36] << 10) | (mask_p[35] <<  8)
1394           | (mask_p[34] <<  6) | (mask_p[33] <<  4)
1395           | (mask_p[32] <<  2) | (mask_p[31] <<  0);
1396     OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1397     OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1398 
1399     tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1400           | (mask_p[59] << 26) | (mask_p[58] << 24)
1401           | (mask_p[57] << 22) | (mask_p[56] << 20)
1402           | (mask_p[55] << 18) | (mask_p[54] << 16)
1403           | (mask_p[53] << 14) | (mask_p[52] << 12)
1404           | (mask_p[51] << 10) | (mask_p[50] <<  8)
1405           | (mask_p[49] <<  6) | (mask_p[48] <<  4)
1406           | (mask_p[47] <<  2) | (mask_p[46] <<  0);
1407     OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1408     OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1409 }
1410 #endif /* AH_SUPPORT_AR9280 */
1411 
1412 /*
1413  * Set a limit on the overall output power.  Used for dynamic
1414  * transmit power control and the like.
1415  *
1416  * NB: limit is in units of 0.5 dbM.
1417  */
1418 HAL_BOOL
1419 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1420 {
1421 	uint16_t dummyXpdGains[2];
1422 
1423 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1424 	return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
1425 			dummyXpdGains);
1426 }
1427 
1428 HAL_BOOL
1429 ar5416GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
1430 {
1431 	struct ath_hal_5212 *ahp = AH5212(ah);
1432 	int16_t minPower, maxPower;
1433 	HAL_CHANNEL *chan;
1434 	int i;
1435 
1436 	/*
1437 	 * Get Pier table max and min powers.
1438 	 */
1439 	for (i = 0; i < nchans; i++) {
1440 		chan = &chans[i];
1441 		if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
1442 			/* NB: rf code returns 1/4 dBm units, convert */
1443 			chan->maxTxPower = maxPower / 2;
1444 			chan->minTxPower = minPower / 2;
1445 		} else {
1446 			HALDEBUG(ah, HAL_DEBUG_ANY,
1447 			    "%s: no min/max power for %u/0x%x\n",
1448 			    __func__, chan->channel, chan->channelFlags);
1449 			chan->maxTxPower = AR5416_MAX_RATE_POWER;
1450 			chan->minTxPower = 0;
1451 		}
1452 	}
1453 #ifdef AH_DEBUG
1454 	for (i=0; i<nchans; i++) {
1455 		HALDEBUG(ah, HAL_DEBUG_RESET,
1456 		    "Chan %d: MaxPow = %d MinPow = %d\n",
1457 		    chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
1458 	}
1459 #endif
1460 	return AH_TRUE;
1461 }
1462 
1463 /* XXX gag, this is sick */
1464 typedef enum Ar5416_Rates {
1465 	rate6mb,  rate9mb,  rate12mb, rate18mb,
1466 	rate24mb, rate36mb, rate48mb, rate54mb,
1467 	rate1l,   rate2l,   rate2s,   rate5_5l,
1468 	rate5_5s, rate11l,  rate11s,  rateXr,
1469 	rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
1470 	rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
1471 	rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
1472 	rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
1473 	rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
1474 	Ar5416RateSize
1475 } AR5416_RATES;
1476 
1477 /**************************************************************
1478  * ar5416SetTransmitPower
1479  *
1480  * Set the transmit power in the baseband for the given
1481  * operating channel and mode.
1482  */
1483 static HAL_BOOL
1484 ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain)
1485 {
1486 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
1487 #define N(a)            (sizeof (a) / sizeof (a[0]))
1488 
1489     MODAL_EEP_HEADER	*pModal;
1490     struct ath_hal_5212 *ahp = AH5212(ah);
1491     int16_t		ratesArray[Ar5416RateSize];
1492     int16_t		txPowerIndexOffset = 0;
1493     uint8_t		ht40PowerIncForPdadc = 2;
1494     int			i;
1495 
1496     uint16_t		cfgCtl;
1497     uint16_t		powerLimit;
1498     uint16_t		twiceAntennaReduction;
1499     uint16_t		twiceMaxRegulatoryPower;
1500     int16_t		maxPower;
1501     HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1502     struct ar5416eeprom	*pEepData = &ee->ee_base;
1503 
1504     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1505 
1506     /* Setup info for the actual eeprom */
1507     ath_hal_memzero(ratesArray, sizeof(ratesArray));
1508     cfgCtl = ath_hal_getctl(ah, (HAL_CHANNEL *)chan);
1509     powerLimit = chan->maxRegTxPower * 2;
1510     twiceAntennaReduction = chan->antennaMax;
1511     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1512     pModal = &pEepData->modalHeader[IS_CHAN_2GHZ(chan)];
1513     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1514 	__func__,chan->channel, cfgCtl );
1515 
1516     if (IS_EEP_MINOR_V2(ah)) {
1517         ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1518     }
1519 
1520     if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
1521                                     &ratesArray[0],cfgCtl,
1522                                     twiceAntennaReduction,
1523 				    twiceMaxRegulatoryPower, powerLimit)) {
1524         HALDEBUG(ah, HAL_DEBUG_ANY,
1525 	    "%s: unable to set tx power per rate table\n", __func__);
1526         return AH_FALSE;
1527     }
1528 
1529     if (!ar5416SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
1530         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1531 	    __func__);
1532         return AH_FALSE;
1533     }
1534 
1535     maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
1536 
1537     if (IS_CHAN_2GHZ(chan)) {
1538         maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
1539     }
1540 
1541     if (IS_CHAN_HT40(chan)) {
1542         maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
1543     }
1544 
1545     ahp->ah_tx6PowerInHalfDbm = maxPower;
1546     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1547     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1548 
1549     /*
1550      * txPowerIndexOffset is set by the SetPowerTable() call -
1551      *  adjust the rate table (0 offset if rates EEPROM not loaded)
1552      */
1553     for (i = 0; i < N(ratesArray); i++) {
1554         ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1555         if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1556             ratesArray[i] = AR5416_MAX_RATE_POWER;
1557     }
1558 
1559 #ifdef AH_EEPROM_DUMP
1560     ar5416PrintPowerPerRate(ah, ratesArray);
1561 #endif
1562 
1563     /* Write the OFDM power per rate set */
1564     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1565         POW_SM(ratesArray[rate18mb], 24)
1566           | POW_SM(ratesArray[rate12mb], 16)
1567           | POW_SM(ratesArray[rate9mb], 8)
1568           | POW_SM(ratesArray[rate6mb], 0)
1569     );
1570     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1571         POW_SM(ratesArray[rate54mb], 24)
1572           | POW_SM(ratesArray[rate48mb], 16)
1573           | POW_SM(ratesArray[rate36mb], 8)
1574           | POW_SM(ratesArray[rate24mb], 0)
1575     );
1576 
1577     if (IS_CHAN_2GHZ(chan)) {
1578         /* Write the CCK power per rate set */
1579         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1580             POW_SM(ratesArray[rate2s], 24)
1581               | POW_SM(ratesArray[rate2l],  16)
1582               | POW_SM(ratesArray[rateXr],  8) /* XR target power */
1583               | POW_SM(ratesArray[rate1l],   0)
1584         );
1585         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1586             POW_SM(ratesArray[rate11s], 24)
1587               | POW_SM(ratesArray[rate11l], 16)
1588               | POW_SM(ratesArray[rate5_5s], 8)
1589               | POW_SM(ratesArray[rate5_5l], 0)
1590         );
1591     HALDEBUG(ah, HAL_DEBUG_RESET,
1592 	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
1593 	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1594 	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1595     }
1596 
1597     /* Write the HT20 power per rate set */
1598     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1599         POW_SM(ratesArray[rateHt20_3], 24)
1600           | POW_SM(ratesArray[rateHt20_2], 16)
1601           | POW_SM(ratesArray[rateHt20_1], 8)
1602           | POW_SM(ratesArray[rateHt20_0], 0)
1603     );
1604     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1605         POW_SM(ratesArray[rateHt20_7], 24)
1606           | POW_SM(ratesArray[rateHt20_6], 16)
1607           | POW_SM(ratesArray[rateHt20_5], 8)
1608           | POW_SM(ratesArray[rateHt20_4], 0)
1609     );
1610 
1611     if (IS_CHAN_HT40(chan)) {
1612         /* Write the HT40 power per rate set */
1613 	/* Correct PAR difference between HT40 and HT20/LEGACY */
1614         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1615             POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
1616               | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
1617               | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
1618               | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
1619         );
1620         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1621             POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
1622               | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
1623               | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
1624               | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
1625         );
1626         /* Write the Dup/Ext 40 power per rate set */
1627         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1628             POW_SM(ratesArray[rateExtOfdm], 24)
1629               | POW_SM(ratesArray[rateExtCck], 16)
1630               | POW_SM(ratesArray[rateDupOfdm], 8)
1631               | POW_SM(ratesArray[rateDupCck], 0)
1632         );
1633     }
1634 
1635     /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1636     OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1637         POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1638           | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1639     );
1640     return AH_TRUE;
1641 #undef POW_SM
1642 #undef N
1643 }
1644 
1645 /*
1646  * Exported call to check for a recent gain reading and return
1647  * the current state of the thermal calibration gain engine.
1648  */
1649 HAL_RFGAIN
1650 ar5416GetRfgain(struct ath_hal *ah)
1651 {
1652 	return HAL_RFGAIN_INACTIVE;
1653 }
1654 
1655 /*
1656  * Places all of hardware into reset
1657  */
1658 HAL_BOOL
1659 ar5416Disable(struct ath_hal *ah)
1660 {
1661 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1662 		return AH_FALSE;
1663 	return ar5416SetResetReg(ah, HAL_RESET_COLD);
1664 }
1665 
1666 /*
1667  * Places the PHY and Radio chips into reset.  A full reset
1668  * must be called to leave this state.  The PCI/MAC/PCU are
1669  * not placed into reset as we must receive interrupt to
1670  * re-enable the hardware.
1671  */
1672 HAL_BOOL
1673 ar5416PhyDisable(struct ath_hal *ah)
1674 {
1675 	return ar5416SetResetReg(ah, HAL_RESET_WARM);
1676 }
1677 
1678 /*
1679  * Write the given reset bit mask into the reset register
1680  */
1681 HAL_BOOL
1682 ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1683 {
1684 	/*
1685 	 * Set force wake
1686 	 */
1687 	OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1688 	     AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1689 
1690 	switch (type) {
1691 	case HAL_RESET_POWER_ON:
1692 		return ar5416SetResetPowerOn(ah);
1693 		break;
1694 	case HAL_RESET_WARM:
1695 	case HAL_RESET_COLD:
1696 		return ar5416SetReset(ah, type);
1697 		break;
1698 	default:
1699 		return AH_FALSE;
1700 	}
1701 }
1702 
1703 static HAL_BOOL
1704 ar5416SetResetPowerOn(struct ath_hal *ah)
1705 {
1706     /* Power On Reset (Hard Reset) */
1707 
1708     /*
1709      * Set force wake
1710      *
1711      * If the MAC was running, previously calling
1712      * reset will wake up the MAC but it may go back to sleep
1713      * before we can start polling.
1714      * Set force wake  stops that
1715      * This must be called before initiating a hard reset.
1716      */
1717     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1718             AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1719 
1720     /*
1721      * RTC reset and clear
1722      */
1723     OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1724     OS_DELAY(20);
1725     OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1726 
1727     /*
1728      * Poll till RTC is ON
1729      */
1730     if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1731         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1732         return AH_FALSE;
1733     }
1734 
1735     return ar5416SetReset(ah, HAL_RESET_COLD);
1736 }
1737 
1738 static HAL_BOOL
1739 ar5416SetReset(struct ath_hal *ah, int type)
1740 {
1741     uint32_t tmpReg;
1742 
1743     /*
1744      * Force wake
1745      */
1746     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1747 	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1748 
1749     /*
1750      * Reset AHB
1751      */
1752     tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1753     if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1754 	OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1755 	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1756     } else {
1757 	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1758     }
1759 
1760     /*
1761      * Set Mac(BB,Phy) Warm Reset
1762      */
1763     switch (type) {
1764     case HAL_RESET_WARM:
1765             OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
1766             break;
1767         case HAL_RESET_COLD:
1768             OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
1769             break;
1770         default:
1771             HALASSERT(0);
1772             break;
1773     }
1774 
1775     /*
1776      * Clear resets and force wakeup
1777      */
1778     OS_REG_WRITE(ah, AR_RTC_RC, 0);
1779     if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1780         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1781         return AH_FALSE;
1782     }
1783 
1784     /* Clear AHB reset */
1785     OS_REG_WRITE(ah, AR_RC, 0);
1786 
1787    /* Set register and descriptor swapping on
1788     * Bigendian platforms on cold reset
1789     */
1790 #ifdef __BIG_ENDIAN__
1791     if (type == HAL_RESET_COLD) {
1792     		uint32_t	mask;
1793 
1794 		HALDEBUG(ah, HAL_DEBUG_RESET,
1795 		    "%s Applying descriptor swap\n", __func__);
1796 
1797 		mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1798 #ifndef AH_NEED_DESC_SWAP
1799 		mask |= AR_CFG_SWTD;
1800 #endif
1801 		OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1802 	}
1803 #endif
1804 
1805     ar5416InitPLL(ah, AH_NULL);
1806 
1807     return AH_TRUE;
1808 }
1809 
1810 #ifndef IS_5GHZ_FAST_CLOCK_EN
1811 #define	IS_5GHZ_FAST_CLOCK_EN(ah, chan)	AH_FALSE
1812 #endif
1813 
1814 static void
1815 ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan)
1816 {
1817 	uint32_t pll;
1818 
1819 	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1820 		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1821 
1822 		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1823 			pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1824 		} else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1825 			pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1826 		}
1827 		if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1828 			pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
1829 
1830 			/*
1831 			 * PLL WAR for Merlin 2.0/2.1
1832 			 * When doing fast clock, set PLL to 0x142c
1833 			 * Else, set PLL to 0x2850 to prevent reset-to-reset variation
1834 			 */
1835 			if (AR_SREV_MERLIN_20(ah)) {
1836 				if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
1837 					pll = 0x142c;
1838 				} else {
1839 					pll = 0x2850;
1840 				}
1841 			}
1842 		} else {
1843 			pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1844 		}
1845 	} else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
1846 		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1847 
1848 		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1849 			pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1850 		} else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1851 			pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1852 		}
1853 		if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1854 			pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
1855 		} else {
1856 			pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1857 		}
1858 	} else {
1859 		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1860 
1861 		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1862 			pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1863 		} else if (chan != AH_NULL && IS_CHAN_QUARTER_RATE(chan)) {
1864 			pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1865 		}
1866 		if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1867 			pll |= SM(0xa, AR_RTC_PLL_DIV);
1868 		} else {
1869 			pll |= SM(0xb, AR_RTC_PLL_DIV);
1870 		}
1871 	}
1872 	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1873 
1874 	/* TODO:
1875 	* For multi-band owl, switch between bands by reiniting the PLL.
1876 	*/
1877 
1878 	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1879 
1880 	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1881 }
1882 
1883 /*
1884  * Read EEPROM header info and program the device for correct operation
1885  * given the channel value.
1886  */
1887 static HAL_BOOL
1888 ar5416SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
1889 {
1890     const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1891     const struct ar5416eeprom *eep = &ee->ee_base;
1892     const MODAL_EEP_HEADER *pModal;
1893     int			i, regChainOffset;
1894     uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1895 
1896     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1897     pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1898 
1899     txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;    /* workaround for eeprom versions <= 14.2 */
1900 
1901     OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1902     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1903 	   if (AR_SREV_MERLIN(ah)) {
1904 		if (i >= 2) break;
1905 	   }
1906        	   if (AR_SREV_OWL_20_OR_LATER(ah) &&
1907             (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1908 	     AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
1909             /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1910              * only chains 0 and 2 populated
1911              */
1912             regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1913         } else {
1914             regChainOffset = i * 0x1000;
1915         }
1916 
1917         OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1918         OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1919         	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1920         	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1921         	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1922         	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1923 
1924         /*
1925          * Large signal upgrade.
1926 	 * XXX update
1927          */
1928 
1929         if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1930             OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
1931 		(OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1932 			SM(IS_EEP_MINOR_V3(ah)  ? pModal->txRxAttenCh[i] : txRxAttenLocal,
1933 				AR_PHY_RXGAIN_TXRX_ATTEN));
1934 
1935             OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1936 	    	(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1937 			SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1938         }
1939     }
1940 
1941     OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1942     OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1943     OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1944     OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1945         SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1946         | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1947         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1948         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1949 
1950     OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1951 
1952     if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1953 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1954 	    pModal->thresh62);
1955 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1956 	    pModal->thresh62);
1957     } else {
1958 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1959 	    pModal->thresh62);
1960 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
1961 	    pModal->thresh62);
1962     }
1963 
1964     /* Minor Version Specific application */
1965     if (IS_EEP_MINOR_V2(ah)) {
1966         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
1967         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
1968     }
1969 
1970     if (IS_EEP_MINOR_V3(ah)) {
1971 	if (IS_CHAN_HT40(chan)) {
1972 		/* Overwrite switch settling with HT40 value */
1973 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1974 	}
1975 
1976         if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
1977             (  AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
1978             /* Reg Offsets are swapped for logical mapping */
1979 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1980 			SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1981 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1982 			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1983 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1984 			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1985 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1986 			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1987         } else {
1988 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1989 			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1990 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1991 			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1992 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1993 			SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1994 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1995 			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1996         }
1997         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
1998         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
1999     }
2000     return AH_TRUE;
2001 }
2002 
2003 /*
2004  * Helper functions common for AP/CB/XB
2005  */
2006 
2007 /*
2008  * ar5416SetPowerPerRateTable
2009  *
2010  * Sets the transmit power in the baseband for the given
2011  * operating channel and mode.
2012  */
2013 static HAL_BOOL
2014 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2015                            HAL_CHANNEL_INTERNAL *chan,
2016                            int16_t *ratesArray, uint16_t cfgCtl,
2017                            uint16_t AntennaReduction,
2018                            uint16_t twiceMaxRegulatoryPower,
2019                            uint16_t powerLimit)
2020 {
2021 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2022 /* Local defines to distinguish between extension and control CTL's */
2023 #define EXT_ADDITIVE (0x8000)
2024 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
2025 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
2026 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
2027 
2028 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2029 	int i;
2030 	int16_t  twiceLargestAntenna;
2031 	CAL_CTL_DATA *rep;
2032 	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
2033 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
2034 	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
2035 	int16_t scaledPower, minCtlPower;
2036 
2037 #define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
2038 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
2039 	static const uint16_t ctlModesFor11a[] = {
2040 	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
2041 	};
2042 	static const uint16_t ctlModesFor11g[] = {
2043 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
2044 	};
2045 	const uint16_t *pCtlMode;
2046 	uint16_t numCtlModes, ctlMode, freq;
2047 	CHAN_CENTERS centers;
2048 
2049 	ar5416GetChannelCenters(ah,  chan, &centers);
2050 
2051 	/* Compute TxPower reduction due to Antenna Gain */
2052 
2053 	twiceLargestAntenna = AH_MAX(AH_MAX(pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
2054 					pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
2055 					pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2056 #if 0
2057 	/* Turn it back on if we need to calculate per chain antenna gain reduction */
2058 	/* Use only if the expected gain > 6dbi */
2059 	/* Chain 0 is always used */
2060 	twiceLargestAntenna = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0];
2061 
2062 	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
2063 	if (ahp->ah_tx_chainmask & 0x2)
2064 		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
2065 			pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
2066 
2067 	if (ahp->ah_tx_chainmask & 0x4)
2068 		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
2069 			pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2070 #endif
2071 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
2072 
2073 	/* XXX setup for 5212 use (really used?) */
2074 	ath_hal_eepromSet(ah,
2075 	    IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
2076 	    twiceLargestAntenna);
2077 
2078 	/*
2079 	 * scaledPower is the minimum of the user input power level and
2080 	 * the regulatory allowed power level
2081 	 */
2082 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
2083 
2084 	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
2085 	/* TODO: better value than these? */
2086 	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
2087 	case 1:
2088 		break;
2089 	case 2:
2090 		scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
2091 		break;
2092 	case 3:
2093 		scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
2094 		break;
2095 	default:
2096 		return AH_FALSE; /* Unsupported number of chains */
2097 	}
2098 
2099 	scaledPower = AH_MAX(0, scaledPower);
2100 
2101 	/* Get target powers from EEPROM - our baseline for TX Power */
2102 	if (IS_CHAN_2GHZ(chan)) {
2103 		/* Setup for CTL modes */
2104 		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
2105 		pCtlMode = ctlModesFor11g;
2106 
2107 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
2108 				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
2109 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
2110 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
2111 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
2112 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
2113 
2114 		if (IS_CHAN_HT40(chan)) {
2115 			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
2116 
2117 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
2118 				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
2119 			/* Get target powers for extension channels */
2120 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
2121 				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
2122 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
2123 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
2124 		}
2125 	} else {
2126 		/* Setup for CTL modes */
2127 		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
2128 		pCtlMode = ctlModesFor11a;
2129 
2130 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
2131 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
2132 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
2133 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
2134 
2135 		if (IS_CHAN_HT40(chan)) {
2136 			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
2137 
2138 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
2139 				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
2140 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
2141 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
2142 		}
2143 	}
2144 
2145 	/*
2146 	 * For MIMO, need to apply regulatory caps individually across dynamically
2147 	 * running modes: CCK, OFDM, HT20, HT40
2148 	 *
2149 	 * The outer loop walks through each possible applicable runtime mode.
2150 	 * The inner loop walks through each ctlIndex entry in EEPROM.
2151 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
2152 	 *
2153 	 */
2154 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
2155 
2156 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
2157 								 (pCtlMode[ctlMode] == CTL_2GHT40);
2158 		if (isHt40CtlMode) {
2159 			freq = centers.ctl_center;
2160 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
2161 			freq = centers.ext_center;
2162 		} else {
2163 			freq = centers.ctl_center;
2164 		}
2165 
2166 		/* walk through each CTL index stored in EEPROM */
2167 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
2168 			uint16_t twiceMinEdgePower;
2169 
2170 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
2171 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
2172 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2173 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
2174 				rep = &(pEepData->ctlData[i]);
2175 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
2176 							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
2177 							IS_CHAN_2GHZ(chan));
2178 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2179 					/* Find the minimum of all CTL edge powers that apply to this channel */
2180 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2181 				} else {
2182 					/* specific */
2183 					twiceMaxEdgePower = twiceMinEdgePower;
2184 					break;
2185 				}
2186 			}
2187 		}
2188 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
2189 		/* Apply ctl mode to correct target power set */
2190 		switch(pCtlMode[ctlMode]) {
2191 		case CTL_11B:
2192 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
2193 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
2194 			}
2195 			break;
2196 		case CTL_11A:
2197 		case CTL_11G:
2198 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
2199 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
2200 			}
2201 			break;
2202 		case CTL_5GHT20:
2203 		case CTL_2GHT20:
2204 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2205 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2206 			}
2207 			break;
2208 		case CTL_11B_EXT:
2209 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2210 			break;
2211 		case CTL_11A_EXT:
2212 		case CTL_11G_EXT:
2213 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2214 			break;
2215 		case CTL_5GHT40:
2216 		case CTL_2GHT40:
2217 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2218 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2219 			}
2220 			break;
2221 		default:
2222 			return AH_FALSE;
2223 			break;
2224 		}
2225 	} /* end ctl mode checking */
2226 
2227 	/* Set rates Array from collected data */
2228 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
2229 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
2230 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
2231 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
2232 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
2233 
2234 	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2235 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
2236 	}
2237 
2238 	if (IS_CHAN_2GHZ(chan)) {
2239 		ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
2240 		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
2241 		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
2242 		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
2243 	}
2244 	if (IS_CHAN_HT40(chan)) {
2245 		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2246 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
2247 		}
2248 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
2249 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
2250 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
2251 		if (IS_CHAN_2GHZ(chan)) {
2252 			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
2253 		}
2254 	}
2255 	return AH_TRUE;
2256 #undef EXT_ADDITIVE
2257 #undef CTL_11A_EXT
2258 #undef CTL_11G_EXT
2259 #undef CTL_11B_EXT
2260 #undef SUB_NUM_CTL_MODES_AT_5G_40
2261 #undef SUB_NUM_CTL_MODES_AT_2G_40
2262 #undef N
2263 }
2264 
2265 /**************************************************************************
2266  * fbin2freq
2267  *
2268  * Get channel value from binary representation held in eeprom
2269  * RETURNS: the frequency in MHz
2270  */
2271 static uint16_t
2272 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2273 {
2274     /*
2275      * Reserved value 0xFF provides an empty definition both as
2276      * an fbin and as a frequency - do not convert
2277      */
2278     if (fbin == AR5416_BCHAN_UNUSED) {
2279         return fbin;
2280     }
2281 
2282     return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2283 }
2284 
2285 /*
2286  * ar5416GetMaxEdgePower
2287  *
2288  * Find the maximum conformance test limit for the given channel and CTL info
2289  */
2290 static uint16_t
2291 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2292 {
2293     uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2294     int      i;
2295 
2296     /* Get the edge power */
2297     for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2298         /*
2299          * If there's an exact channel match or an inband flag set
2300          * on the lower channel use the given rdEdgePower
2301          */
2302         if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2303             twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2304             break;
2305         } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2306             if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2307                 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2308             }
2309             /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2310             break;
2311         }
2312     }
2313     HALASSERT(twiceMaxEdgePower > 0);
2314     return twiceMaxEdgePower;
2315 }
2316 
2317 /**************************************************************
2318  * ar5416GetTargetPowers
2319  *
2320  * Return the rates of target power for the given target power table
2321  * channel, and number of channels
2322  */
2323 static void
2324 ar5416GetTargetPowers(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan,
2325                       CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2326                       CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2327                       HAL_BOOL isHt40Target)
2328 {
2329     uint16_t clo, chi;
2330     int i;
2331     int matchIndex = -1, lowIndex = -1;
2332     uint16_t freq;
2333     CHAN_CENTERS centers;
2334 
2335     ar5416GetChannelCenters(ah,  chan, &centers);
2336     freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2337 
2338     /* Copy the target powers into the temp channel list */
2339     if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
2340         matchIndex = 0;
2341     } else {
2342         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2343             if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
2344                 matchIndex = i;
2345                 break;
2346             } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
2347                        (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
2348             {
2349                 lowIndex = i - 1;
2350                 break;
2351             }
2352         }
2353         if ((matchIndex == -1) && (lowIndex == -1)) {
2354             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
2355             matchIndex = i - 1;
2356         }
2357     }
2358 
2359     if (matchIndex != -1) {
2360         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2361     } else {
2362         HALASSERT(lowIndex != -1);
2363         /*
2364          * Get the lower and upper channels, target powers,
2365          * and interpolate between them.
2366          */
2367         clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
2368         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
2369 
2370         for (i = 0; i < numRates; i++) {
2371             pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
2372                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2373         }
2374     }
2375 }
2376 /**************************************************************
2377  * ar5416GetTargetPowersLeg
2378  *
2379  * Return the four rates of target power for the given target power table
2380  * channel, and number of channels
2381  */
2382 static void
2383 ar5416GetTargetPowersLeg(struct ath_hal *ah,
2384                          HAL_CHANNEL_INTERNAL *chan,
2385                          CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2386                          CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2387 			 HAL_BOOL isExtTarget)
2388 {
2389     uint16_t clo, chi;
2390     int i;
2391     int matchIndex = -1, lowIndex = -1;
2392     uint16_t freq;
2393     CHAN_CENTERS centers;
2394 
2395     ar5416GetChannelCenters(ah,  chan, &centers);
2396     freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2397 
2398     /* Copy the target powers into the temp channel list */
2399     if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
2400         matchIndex = 0;
2401     } else {
2402         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2403             if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
2404                 matchIndex = i;
2405                 break;
2406             } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
2407                        (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
2408             {
2409                 lowIndex = i - 1;
2410                 break;
2411             }
2412         }
2413         if ((matchIndex == -1) && (lowIndex == -1)) {
2414             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
2415             matchIndex = i - 1;
2416         }
2417     }
2418 
2419     if (matchIndex != -1) {
2420         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2421     } else {
2422         HALASSERT(lowIndex != -1);
2423         /*
2424          * Get the lower and upper channels, target powers,
2425          * and interpolate between them.
2426          */
2427         clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
2428         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
2429 
2430         for (i = 0; i < numRates; i++) {
2431             pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
2432                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2433         }
2434     }
2435 }
2436 
2437 /**************************************************************
2438  * ar5416SetPowerCalTable
2439  *
2440  * Pull the PDADC piers from cal data and interpolate them across the given
2441  * points as well as from the nearest pier(s) to get a power detector
2442  * linear voltage to power level table.
2443  */
2444 static HAL_BOOL
2445 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
2446 {
2447     CAL_DATA_PER_FREQ *pRawDataset;
2448     uint8_t  *pCalBChans = AH_NULL;
2449     uint16_t pdGainOverlap_t2;
2450     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
2451     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2452     uint16_t numPiers, i, j;
2453     int16_t  tMinCalPower;
2454     uint16_t numXpdGain, xpdMask;
2455     uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2456     uint32_t reg32, regOffset, regChainOffset;
2457 
2458     ath_hal_memzero(xpdGainValues, sizeof(xpdGainValues));
2459 
2460     xpdMask = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].xpdGain;
2461 
2462     if (IS_EEP_MINOR_V2(ah)) {
2463         pdGainOverlap_t2 = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pdGainOverlap;
2464     } else {
2465     	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2466     }
2467 
2468     if (IS_CHAN_2GHZ(chan)) {
2469         pCalBChans = pEepData->calFreqPier2G;
2470         numPiers = AR5416_NUM_2G_CAL_PIERS;
2471     } else {
2472         pCalBChans = pEepData->calFreqPier5G;
2473         numPiers = AR5416_NUM_5G_CAL_PIERS;
2474     }
2475 
2476     numXpdGain = 0;
2477     /* Calculate the value of xpdgains from the xpdGain Mask */
2478     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2479         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2480             if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2481                 HALASSERT(0);
2482                 break;
2483             }
2484             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2485             numXpdGain++;
2486         }
2487     }
2488 
2489     /* Write the detector gain biases and their number */
2490     OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2491     	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2492 	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2493 	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
2494 
2495     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2496 
2497             if (AR_SREV_OWL_20_OR_LATER(ah) &&
2498             ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
2499             /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
2500              * only chains 0 and 2 populated
2501              */
2502             regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2503         } else {
2504             regChainOffset = i * 0x1000;
2505         }
2506 
2507         if (pEepData->baseEepHeader.txMask & (1 << i)) {
2508             if (IS_CHAN_2GHZ(chan)) {
2509                 pRawDataset = pEepData->calPierData2G[i];
2510             } else {
2511                 pRawDataset = pEepData->calPierData5G[i];
2512             }
2513 
2514             ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
2515                                              pCalBChans, numPiers,
2516                                              pdGainOverlap_t2,
2517                                              &tMinCalPower, gainBoundaries,
2518                                              pdadcValues, numXpdGain);
2519 
2520             if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
2521                 /*
2522                  * Note the pdadc table may not start at 0 dBm power, could be
2523                  * negative or greater than 0.  Need to offset the power
2524                  * values by the amount of minPower for griffin
2525                  */
2526 
2527                 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2528                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2529                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
2530                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
2531                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
2532                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2533             }
2534 
2535             /* Write the power values into the baseband power table */
2536             regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2537 
2538             for (j = 0; j < 32; j++) {
2539                 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
2540                     ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
2541                     ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2542                     ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2543                 OS_REG_WRITE(ah, regOffset, reg32);
2544 
2545 #ifdef PDADC_DUMP
2546 		ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
2547 			       i,
2548 			       4*j, pdadcValues[4*j],
2549 			       4*j+1, pdadcValues[4*j + 1],
2550 			       4*j+2, pdadcValues[4*j + 2],
2551 			       4*j+3, pdadcValues[4*j + 3]);
2552 #endif
2553                 regOffset += 4;
2554             }
2555         }
2556     }
2557     *pTxPowerIndexOffset = 0;
2558 
2559     return AH_TRUE;
2560 }
2561 
2562 /**************************************************************
2563  * ar5416GetGainBoundariesAndPdadcs
2564  *
2565  * Uses the data points read from EEPROM to reconstruct the pdadc power table
2566  * Called by ar5416SetPowerCalTable only.
2567  */
2568 static void
2569 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2570                                  HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
2571                                  uint8_t * bChans,  uint16_t availPiers,
2572                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2573                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
2574 {
2575 
2576     int       i, j, k;
2577     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
2578     uint16_t  idxL = 0, idxR = 0, numPiers; /* Pier indexes */
2579 
2580     /* filled out Vpd table for all pdGains (chanL) */
2581     static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2582 
2583     /* filled out Vpd table for all pdGains (chanR) */
2584     static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2585 
2586     /* filled out Vpd table for all pdGains (interpolated) */
2587     static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2588 
2589     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2590     uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
2591     uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
2592     int16_t   vpdStep;
2593     int16_t   tmpVal;
2594     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
2595     HAL_BOOL    match;
2596     int16_t  minDelta = 0;
2597     CHAN_CENTERS centers;
2598 
2599     ar5416GetChannelCenters(ah, chan, &centers);
2600 
2601     /* Trim numPiers for the number of populated channel Piers */
2602     for (numPiers = 0; numPiers < availPiers; numPiers++) {
2603         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2604             break;
2605         }
2606     }
2607 
2608     /* Find pier indexes around the current channel */
2609     match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2610 			bChans, numPiers, &idxL, &idxR);
2611 
2612     if (match) {
2613         /* Directly fill both vpd tables from the matching index */
2614         for (i = 0; i < numXpdGains; i++) {
2615             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2616             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2617             ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2618                                pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2619         }
2620     } else {
2621         for (i = 0; i < numXpdGains; i++) {
2622             pVpdL = pRawDataSet[idxL].vpdPdg[i];
2623             pPwrL = pRawDataSet[idxL].pwrPdg[i];
2624             pVpdR = pRawDataSet[idxR].vpdPdg[i];
2625             pPwrR = pRawDataSet[idxR].pwrPdg[i];
2626 
2627             /* Start Vpd interpolation from the max of the minimum powers */
2628             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2629 
2630             /* End Vpd interpolation from the min of the max powers */
2631             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2632             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2633 
2634             /* Fill pier Vpds */
2635             ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2636             ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2637 
2638             /* Interpolate the final vpd */
2639             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2640                 vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2641                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2642             }
2643         }
2644     }
2645     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2646 
2647     k = 0; /* index for the final table */
2648     for (i = 0; i < numXpdGains; i++) {
2649         if (i == (numXpdGains - 1)) {
2650             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2651         } else {
2652             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2653         }
2654 
2655         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2656 
2657 	/* NB: only applies to owl 1.0 */
2658         if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
2659 	    /*
2660              * fix the gain delta, but get a delta that can be applied to min to
2661              * keep the upper power values accurate, don't think max needs to
2662              * be adjusted because should not be at that area of the table?
2663 	     */
2664             minDelta = pPdGainBoundaries[0] - 23;
2665             pPdGainBoundaries[0] = 23;
2666         }
2667         else {
2668             minDelta = 0;
2669         }
2670 
2671         /* Find starting index for this pdGain */
2672         if (i == 0) {
2673             ss = 0; /* for the first pdGain, start from index 0 */
2674         } else {
2675 	    /* need overlap entries extrapolated below. */
2676             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2677         }
2678         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2679         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2680         /*
2681          *-ve ss indicates need to extrapolate data below for this pdGain
2682          */
2683         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2684             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2685             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2686             ss++;
2687         }
2688 
2689         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2690         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2691         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2692 
2693         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2694             pPDADCValues[k++] = vpdTableI[i][ss++];
2695         }
2696 
2697         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2698         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2699         /*
2700          * for last gain, pdGainBoundary == Pmax_t2, so will
2701          * have to extrapolate
2702          */
2703         if (tgtIndex > maxIndex) {  /* need to extrapolate above */
2704             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2705                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2706                           (ss - maxIndex +1) * vpdStep));
2707                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2708                 ss++;
2709             }
2710         }               /* extrapolated above */
2711     }                   /* for all pdGainUsed */
2712 
2713     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2714     while (i < AR5416_PD_GAINS_IN_MASK) {
2715         pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2716         i++;
2717     }
2718 
2719     while (k < AR5416_NUM_PDADC_VALUES) {
2720         pPDADCValues[k] = pPDADCValues[k-1];
2721         k++;
2722     }
2723     return;
2724 }
2725 
2726 /**************************************************************
2727  * getLowerUppderIndex
2728  *
2729  * Return indices surrounding the value in sorted integer lists.
2730  * Requirement: the input list must be monotonically increasing
2731  *     and populated up to the list size
2732  * Returns: match is set if an index in the array matches exactly
2733  *     or a the target is before or after the range of the array.
2734  */
2735 HAL_BOOL
2736 getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
2737                    uint16_t *indexL, uint16_t *indexR)
2738 {
2739     uint16_t i;
2740 
2741     /*
2742      * Check first and last elements for beyond ordered array cases.
2743      */
2744     if (target <= pList[0]) {
2745         *indexL = *indexR = 0;
2746         return AH_TRUE;
2747     }
2748     if (target >= pList[listSize-1]) {
2749         *indexL = *indexR = (uint16_t)(listSize - 1);
2750         return AH_TRUE;
2751     }
2752 
2753     /* look for value being near or between 2 values in list */
2754     for (i = 0; i < listSize - 1; i++) {
2755         /*
2756          * If value is close to the current value of the list
2757          * then target is not between values, it is one of the values
2758          */
2759         if (pList[i] == target) {
2760             *indexL = *indexR = i;
2761             return AH_TRUE;
2762         }
2763         /*
2764          * Look for value being between current value and next value
2765          * if so return these 2 values
2766          */
2767         if (target < pList[i + 1]) {
2768             *indexL = i;
2769             *indexR = (uint16_t)(i + 1);
2770             return AH_FALSE;
2771         }
2772     }
2773     HALASSERT(0);
2774     return AH_FALSE;
2775 }
2776 
2777 /**************************************************************
2778  * ar5416FillVpdTable
2779  *
2780  * Fill the Vpdlist for indices Pmax-Pmin
2781  * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
2782  */
2783 static HAL_BOOL
2784 ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
2785                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
2786 {
2787     uint16_t  i, k;
2788     uint8_t   currPwr = pwrMin;
2789     uint16_t  idxL = 0, idxR = 0;
2790 
2791     HALASSERT(pwrMax > pwrMin);
2792     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
2793         getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
2794                            &(idxL), &(idxR));
2795         if (idxR < 1)
2796             idxR = 1;           /* extrapolate below */
2797         if (idxL == numIntercepts - 1)
2798             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
2799         if (pPwrList[idxL] == pPwrList[idxR])
2800             k = pVpdList[idxL];
2801         else
2802             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
2803                   (pPwrList[idxR] - pPwrList[idxL]) );
2804         HALASSERT(k < 256);
2805         pRetVpdList[i] = (uint8_t)k;
2806         currPwr += 2;               /* half dB steps */
2807     }
2808 
2809     return AH_TRUE;
2810 }
2811 
2812 /**************************************************************************
2813  * interpolate
2814  *
2815  * Returns signed interpolated or the scaled up interpolated value
2816  */
2817 static int16_t
2818 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2819             int16_t targetLeft, int16_t targetRight)
2820 {
2821     int16_t rv;
2822 
2823     if (srcRight == srcLeft) {
2824         rv = targetLeft;
2825     } else {
2826         rv = (int16_t)( ((target - srcLeft) * targetRight +
2827               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
2828     }
2829     return rv;
2830 }
2831 
2832 static void
2833 ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan)
2834 {
2835 	uint32_t phymode;
2836 	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2837 
2838 	if (!IS_CHAN_HT(chan))
2839 		return;
2840 
2841 	/* Enable 11n HT, 20 MHz */
2842 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2843 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
2844 
2845 	/* Configure baseband for dynamic 20/40 operation */
2846 	if (IS_CHAN_HT40(chan)) {
2847 		phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
2848 
2849 		/* Configure control (primary) channel at +-10MHz */
2850 		if ((chan->channelFlags & CHANNEL_HT40PLUS))
2851 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2852 #if 0
2853 		/* Configure 20/25 spacing */
2854 		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2855 			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2856 #endif
2857 		macmode = HAL_HT_MACMODE_2040;
2858 	} else
2859 		macmode = HAL_HT_MACMODE_20;
2860 	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2861 
2862 	/* Configure MAC for 20/40 operation */
2863 	ar5416Set11nMac2040(ah, macmode);
2864 
2865 	/* global transmit timeout (25 TUs default)*/
2866 	/* XXX - put this elsewhere??? */
2867 	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2868 
2869 	/* carrier sense timeout */
2870 	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2871 	OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
2872 }
2873 
2874 void
2875 ar5416GetChannelCenters(struct ath_hal *ah,
2876 	HAL_CHANNEL_INTERNAL *chan, CHAN_CENTERS *centers)
2877 {
2878 	centers->ctl_center = chan->channel;
2879 	centers->synth_center = chan->channel;
2880 	/*
2881 	 * In 20/40 phy mode, the center frequency is
2882 	 * "between" the control and extension channels.
2883 	 */
2884 	if (chan->channelFlags & CHANNEL_HT40PLUS) {
2885 		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2886 		centers->ext_center =
2887 		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2888 	} else if (chan->channelFlags & CHANNEL_HT40MINUS) {
2889 		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2890 		centers->ext_center =
2891 		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2892 	} else {
2893 		centers->ext_center = chan->channel;
2894 	}
2895 }
2896