1 /* 2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 3 * Copyright (c) 2002-2008 Atheros Communications, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $Id: ar2317.c,v 1.3 2009/01/06 06:03:57 mrg Exp $ 18 */ 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_devid.h" 23 #include "ah_internal.h" 24 25 #include "ar5212/ar5212.h" 26 #include "ar5212/ar5212reg.h" 27 #include "ar5212/ar5212phy.h" 28 29 #include "ah_eeprom_v3.h" 30 31 #define AH_5212_2317 32 #include "ar5212/ar5212.ini" 33 34 #define N(a) (sizeof(a)/sizeof(a[0])) 35 36 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317; 37 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317; 38 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413 39 40 struct ar2317State { 41 RF_HAL_FUNCS base; /* public state, must be first */ 42 uint16_t pcdacTable[PWR_TABLE_SIZE_2317]; 43 44 uint32_t Bank1Data[N(ar5212Bank1_2317)]; 45 uint32_t Bank2Data[N(ar5212Bank2_2317)]; 46 uint32_t Bank3Data[N(ar5212Bank3_2317)]; 47 uint32_t Bank6Data[N(ar5212Bank6_2317)]; 48 uint32_t Bank7Data[N(ar5212Bank7_2317)]; 49 50 /* 51 * Private state for reduced stack usage. 52 */ 53 /* filled out Vpd table for all pdGains (chanL) */ 54 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] 55 [MAX_PWR_RANGE_IN_HALF_DB]; 56 /* filled out Vpd table for all pdGains (chanR) */ 57 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] 58 [MAX_PWR_RANGE_IN_HALF_DB]; 59 /* filled out Vpd table for all pdGains (interpolated) */ 60 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] 61 [MAX_PWR_RANGE_IN_HALF_DB]; 62 }; 63 #define AR2317(ah) ((struct ar2317State *) AH5212(ah)->ah_rfHal) 64 65 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 66 uint32_t numBits, uint32_t firstBit, uint32_t column); 67 68 static void 69 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 70 int writes) 71 { 72 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes); 73 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes); 74 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes); 75 } 76 77 /* 78 * Take the MHz channel value and set the Channel value 79 * 80 * ASSUMES: Writes enabled to analog bus 81 */ 82 static HAL_BOOL 83 ar2317SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) 84 { 85 uint32_t channelSel = 0; 86 uint32_t bModeSynth = 0; 87 uint32_t aModeRefSel = 0; 88 uint32_t reg32 = 0; 89 90 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); 91 92 if (chan->channel < 4800) { 93 uint32_t txctl; 94 channelSel = chan->channel - 2272 ; 95 channelSel = ath_hal_reverseBits(channelSel, 8); 96 97 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 98 if (chan->channel == 2484) { 99 /* Enable channel spreading for channel 14 */ 100 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 101 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 102 } else { 103 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 104 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 105 } 106 } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { 107 channelSel = ath_hal_reverseBits( 108 ((chan->channel - 4800) / 20 << 2), 8); 109 aModeRefSel = ath_hal_reverseBits(3, 2); 110 } else if ((chan->channel % 10) == 0) { 111 channelSel = ath_hal_reverseBits( 112 ((chan->channel - 4800) / 10 << 1), 8); 113 aModeRefSel = ath_hal_reverseBits(2, 2); 114 } else if ((chan->channel % 5) == 0) { 115 channelSel = ath_hal_reverseBits( 116 (chan->channel - 4800) / 5, 8); 117 aModeRefSel = ath_hal_reverseBits(1, 2); 118 } else { 119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 120 __func__, chan->channel); 121 return AH_FALSE; 122 } 123 124 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 125 (1 << 12) | 0x1; 126 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 127 128 reg32 >>= 8; 129 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 130 131 AH_PRIVATE(ah)->ah_curchan = chan; 132 return AH_TRUE; 133 } 134 135 /* 136 * Reads EEPROM header info from device structure and programs 137 * all rf registers 138 * 139 * REQUIRES: Access to the analog rf device 140 */ 141 static HAL_BOOL 142 ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain) 143 { 144 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 145 int i; \ 146 for (i = 0; i < N(ar5212Bank##_ix##_2317); i++) \ 147 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\ 148 } while (0) 149 struct ath_hal_5212 *ahp = AH5212(ah); 150 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 151 uint16_t ob2GHz = 0, db2GHz = 0; 152 struct ar2317State *priv = AR2317(ah); 153 int regWrites = 0; 154 155 HALDEBUG(ah, HAL_DEBUG_RFPARAM, 156 "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n", 157 __func__, chan->channel, chan->channelFlags, modesIndex); 158 159 HALASSERT(priv); 160 161 /* Setup rf parameters */ 162 switch (chan->channelFlags & CHANNEL_ALL) { 163 case CHANNEL_B: 164 ob2GHz = ee->ee_obFor24; 165 db2GHz = ee->ee_dbFor24; 166 break; 167 case CHANNEL_G: 168 case CHANNEL_108G: 169 ob2GHz = ee->ee_obFor24g; 170 db2GHz = ee->ee_dbFor24g; 171 break; 172 default: 173 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", 174 __func__, chan->channelFlags); 175 return AH_FALSE; 176 } 177 178 /* Bank 1 Write */ 179 RF_BANK_SETUP(priv, 1, 1); 180 181 /* Bank 2 Write */ 182 RF_BANK_SETUP(priv, 2, modesIndex); 183 184 /* Bank 3 Write */ 185 RF_BANK_SETUP(priv, 3, modesIndex); 186 187 /* Bank 6 Write */ 188 RF_BANK_SETUP(priv, 6, modesIndex); 189 190 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0); 191 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0); 192 193 /* Bank 7 Setup */ 194 RF_BANK_SETUP(priv, 7, modesIndex); 195 196 /* Write Analog registers */ 197 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites); 198 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites); 199 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites); 200 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites); 201 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites); 202 /* Now that we have reprogrammed rfgain value, clear the flag. */ 203 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 204 205 return AH_TRUE; 206 #undef RF_BANK_SETUP 207 } 208 209 /* 210 * Return a reference to the requested RF Bank. 211 */ 212 static uint32_t * 213 ar2317GetRfBank(struct ath_hal *ah, int bank) 214 { 215 struct ar2317State *priv = AR2317(ah); 216 217 HALASSERT(priv != AH_NULL); 218 switch (bank) { 219 case 1: return priv->Bank1Data; 220 case 2: return priv->Bank2Data; 221 case 3: return priv->Bank3Data; 222 case 6: return priv->Bank6Data; 223 case 7: return priv->Bank7Data; 224 } 225 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 226 __func__, bank); 227 return AH_NULL; 228 } 229 230 /* 231 * Return indices surrounding the value in sorted integer lists. 232 * 233 * NB: the input list is assumed to be sorted in ascending order 234 */ 235 static void 236 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, 237 uint32_t *vlo, uint32_t *vhi) 238 { 239 int16_t target = v; 240 const int16_t *ep = lp+listSize; 241 const int16_t *tp; 242 243 /* 244 * Check first and last elements for out-of-bounds conditions. 245 */ 246 if (target < lp[0]) { 247 *vlo = *vhi = 0; 248 return; 249 } 250 if (target >= ep[-1]) { 251 *vlo = *vhi = listSize - 1; 252 return; 253 } 254 255 /* look for value being near or between 2 values in list */ 256 for (tp = lp; tp < ep; tp++) { 257 /* 258 * If value is close to the current value of the list 259 * then target is not between values, it is one of the values 260 */ 261 if (*tp == target) { 262 *vlo = *vhi = tp - (const int16_t *) lp; 263 return; 264 } 265 /* 266 * Look for value being between current value and next value 267 * if so return these 2 values 268 */ 269 if (target < tp[1]) { 270 *vlo = tp - (const int16_t *) lp; 271 *vhi = *vlo + 1; 272 return; 273 } 274 } 275 } 276 277 /* 278 * Fill the Vpdlist for indices Pmax-Pmin 279 */ 280 static HAL_BOOL 281 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, 282 const int16_t *pwrList, const int16_t *VpdList, 283 uint16_t numIntercepts, uint16_t retVpdList[][64]) 284 { 285 uint16_t ii, jj, kk; 286 int16_t currPwr = (int16_t)(2*Pmin); 287 /* since Pmin is pwr*2 and pwrList is 4*pwr */ 288 uint32_t idxL = 0, idxR = 0; 289 290 ii = 0; 291 jj = 0; 292 293 if (numIntercepts < 2) 294 return AH_FALSE; 295 296 while (ii <= (uint16_t)(Pmax - Pmin)) { 297 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 298 &(idxL), &(idxR)); 299 if (idxR < 1) 300 idxR = 1; /* extrapolate below */ 301 if (idxL == (uint32_t)(numIntercepts - 1)) 302 idxL = numIntercepts - 2; /* extrapolate above */ 303 if (pwrList[idxL] == pwrList[idxR]) 304 kk = VpdList[idxL]; 305 else 306 kk = (uint16_t) 307 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 308 (pwrList[idxR] - currPwr)*VpdList[idxL])/ 309 (pwrList[idxR] - pwrList[idxL])); 310 retVpdList[pdGainIdx][ii] = kk; 311 ii++; 312 currPwr += 2; /* half dB steps */ 313 } 314 315 return AH_TRUE; 316 } 317 318 /* 319 * Returns interpolated or the scaled up interpolated value 320 */ 321 static int16_t 322 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 323 int16_t targetLeft, int16_t targetRight) 324 { 325 int16_t rv; 326 327 if (srcRight != srcLeft) { 328 rv = ((target - srcLeft)*targetRight + 329 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 330 } else { 331 rv = targetLeft; 332 } 333 return rv; 334 } 335 336 /* 337 * Uses the data points read from EEPROM to reconstruct the pdadc power table 338 * Called by ar2317SetPowerTable() 339 */ 340 static int 341 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, 342 const RAW_DATA_STRUCT_2317 *pRawDataset, 343 uint16_t pdGainOverlap_t2, 344 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], 345 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 346 { 347 struct ar2317State *priv = AR2317(ah); 348 #define VpdTable_L priv->vpdTable_L 349 #define VpdTable_R priv->vpdTable_R 350 #define VpdTable_I priv->vpdTable_I 351 /* XXX excessive stack usage? */ 352 uint32_t ii, jj, kk; 353 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ 354 uint32_t idxL = 0, idxR = 0; 355 uint32_t numPdGainsUsed = 0; 356 /* 357 * If desired to support -ve power levels in future, just 358 * change pwr_I_0 to signed 5-bits. 359 */ 360 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 361 /* to accomodate -ve power levels later on. */ 362 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 363 /* to accomodate -ve power levels later on */ 364 uint16_t numVpd = 0; 365 uint16_t Vpd_step; 366 int16_t tmpVal ; 367 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; 368 369 /* Get upper lower index */ 370 GetLowerUpperIndex(channel, pRawDataset->pChannels, 371 pRawDataset->numChannels, &(idxL), &(idxR)); 372 373 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 374 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 375 /* work backwards 'cause highest pdGain for lowest power */ 376 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; 377 if (numVpd > 0) { 378 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; 379 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; 380 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { 381 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; 382 } 383 Pmin_t2[numPdGainsUsed] = (int16_t) 384 (Pmin_t2[numPdGainsUsed] / 2); 385 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 386 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) 387 Pmax_t2[numPdGainsUsed] = 388 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 389 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); 390 ar2317FillVpdTable( 391 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 392 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 393 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L 394 ); 395 ar2317FillVpdTable( 396 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 397 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), 398 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R 399 ); 400 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { 401 VpdTable_I[numPdGainsUsed][kk] = 402 interpolate_signed( 403 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], 404 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); 405 } 406 /* fill VpdTable_I for this pdGain */ 407 numPdGainsUsed++; 408 } 409 /* if this pdGain is used */ 410 } 411 412 *pMinCalPower = Pmin_t2[0]; 413 kk = 0; /* index for the final table */ 414 for (ii = 0; ii < numPdGainsUsed; ii++) { 415 if (ii == (numPdGainsUsed - 1)) 416 pPdGainBoundaries[ii] = Pmax_t2[ii] + 417 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; 418 else 419 pPdGainBoundaries[ii] = (uint16_t) 420 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); 421 if (pPdGainBoundaries[ii] > 63) { 422 HALDEBUG(ah, HAL_DEBUG_ANY, 423 "%s: clamp pPdGainBoundaries[%d] %d\n", 424 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ 425 pPdGainBoundaries[ii] = 63; 426 } 427 428 /* Find starting index for this pdGain */ 429 if (ii == 0) 430 ss = 0; /* for the first pdGain, start from index 0 */ 431 else 432 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 433 pdGainOverlap_t2; 434 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); 435 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 436 /* 437 *-ve ss indicates need to extrapolate data below for this pdGain 438 */ 439 while (ss < 0) { 440 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); 441 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); 442 ss++; 443 } 444 445 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; 446 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; 447 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 448 449 while (ss < (int16_t)maxIndex) 450 pPDADCValues[kk++] = VpdTable_I[ii][ss++]; 451 452 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - 453 VpdTable_I[ii][sizeCurrVpdTable-2]); 454 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 455 /* 456 * for last gain, pdGainBoundary == Pmax_t2, so will 457 * have to extrapolate 458 */ 459 if (tgtIndex > maxIndex) { /* need to extrapolate above */ 460 while(ss < (int16_t)tgtIndex) { 461 tmpVal = (uint16_t) 462 (VpdTable_I[ii][sizeCurrVpdTable-1] + 463 (ss-maxIndex)*Vpd_step); 464 pPDADCValues[kk++] = (tmpVal > 127) ? 465 127 : tmpVal; 466 ss++; 467 } 468 } /* extrapolated above */ 469 } /* for all pdGainUsed */ 470 471 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { 472 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; 473 ii++; 474 } 475 while (kk < 128) { 476 pPDADCValues[kk] = pPDADCValues[kk-1]; 477 kk++; 478 } 479 480 return numPdGainsUsed; 481 #undef VpdTable_L 482 #undef VpdTable_R 483 #undef VpdTable_I 484 } 485 486 static HAL_BOOL 487 ar2317SetPowerTable(struct ath_hal *ah, 488 int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, 489 uint16_t *rfXpdGain) 490 { 491 struct ath_hal_5212 *ahp = AH5212(ah); 492 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 493 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL; 494 uint16_t pdGainOverlap_t2; 495 int16_t minCalPower2317_t2; 496 uint16_t *pdadcValues = ahp->ah_pcdacTable; 497 uint16_t gainBoundaries[4]; 498 uint32_t reg32, regoffset; 499 int i, numPdGainsUsed; 500 #ifndef AH_USE_INIPDGAIN 501 uint32_t tpcrg1; 502 #endif 503 504 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", 505 __func__, chan->channel,chan->channelFlags); 506 507 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) 508 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 509 else if (IS_CHAN_B(chan)) 510 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 511 else { 512 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__); 513 return AH_FALSE; 514 } 515 516 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), 517 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 518 519 numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah, 520 chan->channel, pRawDataset, pdGainOverlap_t2, 521 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues); 522 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); 523 524 #ifdef AH_USE_INIPDGAIN 525 /* 526 * Use pd_gains curve from eeprom; Atheros always uses 527 * the default curve from the ini file but some vendors 528 * (e.g. Zcomax) want to override this curve and not 529 * honoring their settings results in tx power 5dBm low. 530 */ 531 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 532 (pRawDataset->pDataPerChannel[0].numPdGains - 1)); 533 #else 534 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); 535 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) 536 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); 537 switch (numPdGainsUsed) { 538 case 3: 539 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; 540 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); 541 /* fall thru... */ 542 case 2: 543 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; 544 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); 545 /* fall thru... */ 546 case 1: 547 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; 548 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); 549 break; 550 } 551 #ifdef AH_DEBUG 552 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) 553 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " 554 "pd_gains (default 0x%x, calculated 0x%x)\n", 555 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); 556 #endif 557 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); 558 #endif 559 560 /* 561 * Note the pdadc table may not start at 0 dBm power, could be 562 * negative or greater than 0. Need to offset the power 563 * values by the amount of minPower for griffin 564 */ 565 if (minCalPower2317_t2 != 0) 566 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2); 567 else 568 ahp->ah_txPowerIndexOffset = 0; 569 570 /* Finally, write the power values into the baseband power table */ 571 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ 572 for (i = 0; i < 32; i++) { 573 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | 574 ((pdadcValues[4*i + 1] & 0xFF) << 8) | 575 ((pdadcValues[4*i + 2] & 0xFF) << 16) | 576 ((pdadcValues[4*i + 3] & 0xFF) << 24) ; 577 OS_REG_WRITE(ah, regoffset, reg32); 578 regoffset += 4; 579 } 580 581 OS_REG_WRITE(ah, AR_PHY_TPCRG5, 582 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 583 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 584 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 585 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 586 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 587 588 return AH_TRUE; 589 } 590 591 static int16_t 592 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data) 593 { 594 uint32_t ii,jj; 595 uint16_t Pmin=0,numVpd; 596 597 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 598 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 599 /* work backwards 'cause highest pdGain for lowest power */ 600 numVpd = data->pDataPerPDGain[jj].numVpd; 601 if (numVpd > 0) { 602 Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; 603 return(Pmin); 604 } 605 } 606 return(Pmin); 607 } 608 609 static int16_t 610 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data) 611 { 612 uint32_t ii; 613 uint16_t Pmax=0,numVpd; 614 uint16_t vpdmax; 615 616 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 617 /* work forwards cuase lowest pdGain for highest power */ 618 numVpd = data->pDataPerPDGain[ii].numVpd; 619 if (numVpd > 0) { 620 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; 621 vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1]; 622 return(Pmax); 623 } 624 } 625 return(Pmax); 626 } 627 628 static HAL_BOOL 629 ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, 630 int16_t *maxPow, int16_t *minPow) 631 { 632 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 633 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL; 634 const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL; 635 uint16_t numChannels; 636 int totalD,totalF, totalMin,last, i; 637 638 *maxPow = 0; 639 640 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) 641 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 642 else if (IS_CHAN_B(chan)) 643 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 644 else 645 return(AH_FALSE); 646 647 numChannels = pRawDataset->numChannels; 648 data = pRawDataset->pDataPerChannel; 649 650 /* Make sure the channel is in the range of the TP values 651 * (freq piers) 652 */ 653 if (numChannels < 1) 654 return(AH_FALSE); 655 656 if ((chan->channel < data[0].channelValue) || 657 (chan->channel > data[numChannels-1].channelValue)) { 658 if (chan->channel < data[0].channelValue) { 659 *maxPow = ar2317GetMaxPower(ah, &data[0]); 660 *minPow = ar2317GetMinPower(ah, &data[0]); 661 return(AH_TRUE); 662 } else { 663 *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]); 664 *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]); 665 return(AH_TRUE); 666 } 667 } 668 669 /* Linearly interpolate the power value now */ 670 for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); 671 last = i++); 672 totalD = data[i].channelValue - data[last].channelValue; 673 if (totalD > 0) { 674 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]); 675 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + 676 ar2317GetMaxPower(ah, &data[last])*totalD)/totalD); 677 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]); 678 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + 679 ar2317GetMinPower(ah, &data[last])*totalD)/totalD); 680 return(AH_TRUE); 681 } else { 682 if (chan->channel == data[i].channelValue) { 683 *maxPow = ar2317GetMaxPower(ah, &data[i]); 684 *minPow = ar2317GetMinPower(ah, &data[i]); 685 return(AH_TRUE); 686 } else 687 return(AH_FALSE); 688 } 689 } 690 691 /* 692 * Free memory for analog bank scratch buffers 693 */ 694 static void 695 ar2317RfDetach(struct ath_hal *ah) 696 { 697 struct ath_hal_5212 *ahp = AH5212(ah); 698 699 HALASSERT(ahp->ah_rfHal != AH_NULL); 700 ath_hal_free(ahp->ah_rfHal); 701 ahp->ah_rfHal = AH_NULL; 702 } 703 704 /* 705 * Allocate memory for analog bank scratch buffers 706 * Scratch Buffer will be reinitialized every reset so no need to zero now 707 */ 708 static HAL_BOOL 709 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status) 710 { 711 struct ath_hal_5212 *ahp = AH5212(ah); 712 struct ar2317State *priv; 713 714 HALASSERT(ah->ah_magic == AR5212_MAGIC); 715 716 HALASSERT(ahp->ah_rfHal == AH_NULL); 717 priv = ath_hal_malloc(sizeof(struct ar2317State)); 718 if (priv == AH_NULL) { 719 HALDEBUG(ah, HAL_DEBUG_ANY, 720 "%s: cannot allocate private state\n", __func__); 721 *status = HAL_ENOMEM; /* XXX */ 722 return AH_FALSE; 723 } 724 priv->base.rfDetach = ar2317RfDetach; 725 priv->base.writeRegs = ar2317WriteRegs; 726 priv->base.getRfBank = ar2317GetRfBank; 727 priv->base.setChannel = ar2317SetChannel; 728 priv->base.setRfRegs = ar2317SetRfRegs; 729 priv->base.setPowerTable = ar2317SetPowerTable; 730 priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower; 731 priv->base.getNfAdjust = ar5212GetNfAdjust; 732 733 ahp->ah_pcdacTable = priv->pcdacTable; 734 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 735 ahp->ah_rfHal = &priv->base; 736 737 return AH_TRUE; 738 } 739 740 static HAL_BOOL 741 ar2317Probe(struct ath_hal *ah) 742 { 743 return IS_2317(ah); 744 } 745 AH_RF(RF2317, ar2317Probe, ar2317RfAttach); 746