xref: /netbsd-src/sys/external/isc/atheros_hal/dist/ar5212/ar2316.c (revision daf6c4152fcddc27c445489775ed1f66ab4ea9a9)
1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar2316.c,v 1.2 2009/01/06 06:03:57 mrg Exp $
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27 
28 #include "ah_eeprom_v3.h"
29 
30 #define AH_5212_2316
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
37 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
38 
39 struct ar2316State {
40 	RF_HAL_FUNCS	base;		/* public state, must be first */
41 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2316];
42 
43 	uint32_t	Bank1Data[N(ar5212Bank1_2316)];
44 	uint32_t	Bank2Data[N(ar5212Bank2_2316)];
45 	uint32_t	Bank3Data[N(ar5212Bank3_2316)];
46 	uint32_t	Bank6Data[N(ar5212Bank6_2316)];
47 	uint32_t	Bank7Data[N(ar5212Bank7_2316)];
48 
49 	/*
50 	 * Private state for reduced stack usage.
51 	 */
52 	/* filled out Vpd table for all pdGains (chanL) */
53 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54 			    [MAX_PWR_RANGE_IN_HALF_DB];
55 	/* filled out Vpd table for all pdGains (chanR) */
56 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57 			    [MAX_PWR_RANGE_IN_HALF_DB];
58 	/* filled out Vpd table for all pdGains (interpolated) */
59 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60 			    [MAX_PWR_RANGE_IN_HALF_DB];
61 };
62 #define	AR2316(ah)	((struct ar2316State *) AH5212(ah)->ah_rfHal)
63 
64 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65 		uint32_t numBits, uint32_t firstBit, uint32_t column);
66 
67 static void
68 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69 	int regWrites)
70 {
71 	struct ath_hal_5212 *ahp = AH5212(ah);
72 
73 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
74 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
75 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
76 
77 	/* For AP51 */
78         if (!ahp->ah_cwCalRequire) {
79 		OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
80         } else {
81 		ahp->ah_cwCalRequire = AH_FALSE;
82         }
83 }
84 
85 /*
86  * Take the MHz channel value and set the Channel value
87  *
88  * ASSUMES: Writes enabled to analog bus
89  */
90 static HAL_BOOL
91 ar2316SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
92 {
93 	uint32_t channelSel  = 0;
94 	uint32_t bModeSynth  = 0;
95 	uint32_t aModeRefSel = 0;
96 	uint32_t reg32       = 0;
97 
98 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
99 
100 	if (chan->channel < 4800) {
101 		uint32_t txctl;
102 
103 		if (((chan->channel - 2192) % 5) == 0) {
104 			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
105 			bModeSynth = 0;
106 		} else if (((chan->channel - 2224) % 5) == 0) {
107 			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
108 			bModeSynth = 1;
109 		} else {
110 			HALDEBUG(ah, HAL_DEBUG_ANY,
111 			    "%s: invalid channel %u MHz\n",
112 			    __func__, chan->channel);
113 			return AH_FALSE;
114 		}
115 
116 		channelSel = (channelSel << 2) & 0xff;
117 		channelSel = ath_hal_reverseBits(channelSel, 8);
118 
119 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
120 		if (chan->channel == 2484) {
121 			/* Enable channel spreading for channel 14 */
122 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
123 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
124 		} else {
125 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
126 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
127 		}
128 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
129 		channelSel = ath_hal_reverseBits(
130 			((chan->channel - 4800) / 20 << 2), 8);
131 		aModeRefSel = ath_hal_reverseBits(3, 2);
132 	} else if ((chan->channel % 10) == 0) {
133 		channelSel = ath_hal_reverseBits(
134 			((chan->channel - 4800) / 10 << 1), 8);
135 		aModeRefSel = ath_hal_reverseBits(2, 2);
136 	} else if ((chan->channel % 5) == 0) {
137 		channelSel = ath_hal_reverseBits(
138 			(chan->channel - 4800) / 5, 8);
139 		aModeRefSel = ath_hal_reverseBits(1, 2);
140 	} else {
141 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
142 		    __func__, chan->channel);
143 		return AH_FALSE;
144 	}
145 
146 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
147 			(1 << 12) | 0x1;
148 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
149 
150 	reg32 >>= 8;
151 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
152 
153 	AH_PRIVATE(ah)->ah_curchan = chan;
154 	return AH_TRUE;
155 }
156 
157 /*
158  * Reads EEPROM header info from device structure and programs
159  * all rf registers
160  *
161  * REQUIRES: Access to the analog rf device
162  */
163 static HAL_BOOL
164 ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
165 {
166 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
167 	int i;								    \
168 	for (i = 0; i < N(ar5212Bank##_ix##_2316); i++)			    \
169 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
170 } while (0)
171 	struct ath_hal_5212 *ahp = AH5212(ah);
172 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
173 	uint16_t ob2GHz = 0, db2GHz = 0;
174 	struct ar2316State *priv = AR2316(ah);
175 	int regWrites = 0;
176 
177 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
178 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
179 	    __func__, chan->channel, chan->channelFlags, modesIndex);
180 
181 	HALASSERT(priv != AH_NULL);
182 
183 	/* Setup rf parameters */
184 	switch (chan->channelFlags & CHANNEL_ALL) {
185 	case CHANNEL_B:
186 		ob2GHz = ee->ee_obFor24;
187 		db2GHz = ee->ee_dbFor24;
188 		break;
189 	case CHANNEL_G:
190 	case CHANNEL_108G:
191 		ob2GHz = ee->ee_obFor24g;
192 		db2GHz = ee->ee_dbFor24g;
193 		break;
194 	default:
195 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
196 		    __func__, chan->channelFlags);
197 		return AH_FALSE;
198 	}
199 
200 	/* Bank 1 Write */
201 	RF_BANK_SETUP(priv, 1, 1);
202 
203 	/* Bank 2 Write */
204 	RF_BANK_SETUP(priv, 2, modesIndex);
205 
206 	/* Bank 3 Write */
207 	RF_BANK_SETUP(priv, 3, modesIndex);
208 
209 	/* Bank 6 Write */
210 	RF_BANK_SETUP(priv, 6, modesIndex);
211 
212 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 178, 0);
213 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 175, 0);
214 
215 	/* Bank 7 Setup */
216 	RF_BANK_SETUP(priv, 7, modesIndex);
217 
218 	/* Write Analog registers */
219 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
220 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
221 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
222 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
223 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
224 
225 	/* Now that we have reprogrammed rfgain value, clear the flag. */
226 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
227 
228 	return AH_TRUE;
229 #undef	RF_BANK_SETUP
230 }
231 
232 /*
233  * Return a reference to the requested RF Bank.
234  */
235 static uint32_t *
236 ar2316GetRfBank(struct ath_hal *ah, int bank)
237 {
238 	struct ar2316State *priv = AR2316(ah);
239 
240 	HALASSERT(priv != AH_NULL);
241 	switch (bank) {
242 	case 1: return priv->Bank1Data;
243 	case 2: return priv->Bank2Data;
244 	case 3: return priv->Bank3Data;
245 	case 6: return priv->Bank6Data;
246 	case 7: return priv->Bank7Data;
247 	}
248 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
249 	    __func__, bank);
250 	return AH_NULL;
251 }
252 
253 /*
254  * Return indices surrounding the value in sorted integer lists.
255  *
256  * NB: the input list is assumed to be sorted in ascending order
257  */
258 static void
259 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
260                           uint32_t *vlo, uint32_t *vhi)
261 {
262 	int16_t target = v;
263 	const int16_t *ep = lp+listSize;
264 	const int16_t *tp;
265 
266 	/*
267 	 * Check first and last elements for out-of-bounds conditions.
268 	 */
269 	if (target < lp[0]) {
270 		*vlo = *vhi = 0;
271 		return;
272 	}
273 	if (target >= ep[-1]) {
274 		*vlo = *vhi = listSize - 1;
275 		return;
276 	}
277 
278 	/* look for value being near or between 2 values in list */
279 	for (tp = lp; tp < ep; tp++) {
280 		/*
281 		 * If value is close to the current value of the list
282 		 * then target is not between values, it is one of the values
283 		 */
284 		if (*tp == target) {
285 			*vlo = *vhi = tp - (const int16_t *) lp;
286 			return;
287 		}
288 		/*
289 		 * Look for value being between current value and next value
290 		 * if so return these 2 values
291 		 */
292 		if (target < tp[1]) {
293 			*vlo = tp - (const int16_t *) lp;
294 			*vhi = *vlo + 1;
295 			return;
296 		}
297 	}
298 }
299 
300 /*
301  * Fill the Vpdlist for indices Pmax-Pmin
302  */
303 static HAL_BOOL
304 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
305 		   const int16_t *pwrList, const int16_t *VpdList,
306 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
307 {
308 	uint16_t ii, jj, kk;
309 	int16_t currPwr = (int16_t)(2*Pmin);
310 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
311 	uint32_t  idxL = 0, idxR = 0;
312 
313 	ii = 0;
314 	jj = 0;
315 
316 	if (numIntercepts < 2)
317 		return AH_FALSE;
318 
319 	while (ii <= (uint16_t)(Pmax - Pmin)) {
320 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
321 					 &(idxL), &(idxR));
322 		if (idxR < 1)
323 			idxR = 1;			/* extrapolate below */
324 		if (idxL == (uint32_t)(numIntercepts - 1))
325 			idxL = numIntercepts - 2;	/* extrapolate above */
326 		if (pwrList[idxL] == pwrList[idxR])
327 			kk = VpdList[idxL];
328 		else
329 			kk = (uint16_t)
330 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
331 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
332 				 (pwrList[idxR] - pwrList[idxL]));
333 		retVpdList[pdGainIdx][ii] = kk;
334 		ii++;
335 		currPwr += 2;				/* half dB steps */
336 	}
337 
338 	return AH_TRUE;
339 }
340 
341 /*
342  * Returns interpolated or the scaled up interpolated value
343  */
344 static int16_t
345 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
346 	int16_t targetLeft, int16_t targetRight)
347 {
348 	int16_t rv;
349 
350 	if (srcRight != srcLeft) {
351 		rv = ((target - srcLeft)*targetRight +
352 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
353 	} else {
354 		rv = targetLeft;
355 	}
356 	return rv;
357 }
358 
359 /*
360  * Uses the data points read from EEPROM to reconstruct the pdadc power table
361  * Called by ar2316SetPowerTable()
362  */
363 static int
364 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
365 		const RAW_DATA_STRUCT_2316 *pRawDataset,
366 		uint16_t pdGainOverlap_t2,
367 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
368 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
369 {
370 	struct ar2316State *priv = AR2316(ah);
371 #define	VpdTable_L	priv->vpdTable_L
372 #define	VpdTable_R	priv->vpdTable_R
373 #define	VpdTable_I	priv->vpdTable_I
374 	uint32_t ii, jj, kk;
375 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
376 	uint32_t idxL = 0, idxR = 0;
377 	uint32_t numPdGainsUsed = 0;
378 	/*
379 	 * If desired to support -ve power levels in future, just
380 	 * change pwr_I_0 to signed 5-bits.
381 	 */
382 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
383 	/* to accomodate -ve power levels later on. */
384 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
385 	/* to accomodate -ve power levels later on */
386 	uint16_t numVpd = 0;
387 	uint16_t Vpd_step;
388 	int16_t tmpVal ;
389 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
390 
391 	/* Get upper lower index */
392 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
393 				 pRawDataset->numChannels, &(idxL), &(idxR));
394 
395 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
396 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
397 		/* work backwards 'cause highest pdGain for lowest power */
398 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
399 		if (numVpd > 0) {
400 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
401 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
402 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
403 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
404 			}
405 			Pmin_t2[numPdGainsUsed] = (int16_t)
406 				(Pmin_t2[numPdGainsUsed] / 2);
407 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
408 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
409 				Pmax_t2[numPdGainsUsed] =
410 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
411 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
412 			ar2316FillVpdTable(
413 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
414 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
415 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
416 					   );
417 			ar2316FillVpdTable(
418 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
419 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
420 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
421 					   );
422 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
423 				VpdTable_I[numPdGainsUsed][kk] =
424 					interpolate_signed(
425 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
426 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
427 			}
428 			/* fill VpdTable_I for this pdGain */
429 			numPdGainsUsed++;
430 		}
431 		/* if this pdGain is used */
432 	}
433 
434 	*pMinCalPower = Pmin_t2[0];
435 	kk = 0; /* index for the final table */
436 	for (ii = 0; ii < numPdGainsUsed; ii++) {
437 		if (ii == (numPdGainsUsed - 1))
438 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
439 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
440 		else
441 			pPdGainBoundaries[ii] = (uint16_t)
442 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
443 		if (pPdGainBoundaries[ii] > 63) {
444 			HALDEBUG(ah, HAL_DEBUG_ANY,
445 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
446 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
447 			pPdGainBoundaries[ii] = 63;
448 		}
449 
450 		/* Find starting index for this pdGain */
451 		if (ii == 0)
452 			ss = 0; /* for the first pdGain, start from index 0 */
453 		else
454 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
455 				pdGainOverlap_t2;
456 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
457 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
458 		/*
459 		 *-ve ss indicates need to extrapolate data below for this pdGain
460 		 */
461 		while (ss < 0) {
462 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
463 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
464 			ss++;
465 		}
466 
467 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
468 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
469 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
470 
471 		while (ss < (int16_t)maxIndex)
472 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
473 
474 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
475 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
476 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
477 		/*
478 		 * for last gain, pdGainBoundary == Pmax_t2, so will
479 		 * have to extrapolate
480 		 */
481 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
482 			while(ss < (int16_t)tgtIndex) {
483 				tmpVal = (uint16_t)
484 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
485 					 (ss-maxIndex)*Vpd_step);
486 				pPDADCValues[kk++] = (tmpVal > 127) ?
487 					127 : tmpVal;
488 				ss++;
489 			}
490 		}				/* extrapolated above */
491 	}					/* for all pdGainUsed */
492 
493 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
494 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
495 		ii++;
496 	}
497 	while (kk < 128) {
498 		pPDADCValues[kk] = pPDADCValues[kk-1];
499 		kk++;
500 	}
501 
502 	return numPdGainsUsed;
503 #undef VpdTable_L
504 #undef VpdTable_R
505 #undef VpdTable_I
506 }
507 
508 static HAL_BOOL
509 ar2316SetPowerTable(struct ath_hal *ah,
510 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
511 	uint16_t *rfXpdGain)
512 {
513 	struct ath_hal_5212 *ahp = AH5212(ah);
514 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
515 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
516 	uint16_t pdGainOverlap_t2;
517 	int16_t minCalPower2316_t2;
518 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
519 	uint16_t gainBoundaries[4];
520 	uint32_t reg32, regoffset;
521 	int i, numPdGainsUsed;
522 #ifndef AH_USE_INIPDGAIN
523 	uint32_t tpcrg1;
524 #endif
525 
526 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
527 	    __func__, chan->channel,chan->channelFlags);
528 
529 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
530 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
531 	else if (IS_CHAN_B(chan))
532 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
533 	else {
534 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
535 		return AH_FALSE;
536 	}
537 
538 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
539 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
540 
541 	numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
542 		chan->channel, pRawDataset, pdGainOverlap_t2,
543 		&minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
544 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
545 
546 #ifdef AH_USE_INIPDGAIN
547 	/*
548 	 * Use pd_gains curve from eeprom; Atheros always uses
549 	 * the default curve from the ini file but some vendors
550 	 * (e.g. Zcomax) want to override this curve and not
551 	 * honoring their settings results in tx power 5dBm low.
552 	 */
553 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
554 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
555 #else
556 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
557 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
558 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
559 	switch (numPdGainsUsed) {
560 	case 3:
561 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
562 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
563 		/* fall thru... */
564 	case 2:
565 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
566 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
567 		/* fall thru... */
568 	case 1:
569 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
570 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
571 		break;
572 	}
573 #ifdef AH_DEBUG
574 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
575 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
576 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
577 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
578 #endif
579 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
580 #endif
581 
582 	/*
583 	 * Note the pdadc table may not start at 0 dBm power, could be
584 	 * negative or greater than 0.  Need to offset the power
585 	 * values by the amount of minPower for griffin
586 	 */
587 	if (minCalPower2316_t2 != 0)
588 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
589 	else
590 		ahp->ah_txPowerIndexOffset = 0;
591 
592 	/* Finally, write the power values into the baseband power table */
593 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
594 	for (i = 0; i < 32; i++) {
595 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
596 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
597 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
598 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
599 		OS_REG_WRITE(ah, regoffset, reg32);
600 		regoffset += 4;
601 	}
602 
603 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
604 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
605 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
606 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
607 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
608 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
609 
610 	return AH_TRUE;
611 }
612 
613 static int16_t
614 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
615 {
616 	uint32_t ii,jj;
617 	uint16_t Pmin=0,numVpd;
618 
619 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
620 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
621 		/* work backwards 'cause highest pdGain for lowest power */
622 		numVpd = data->pDataPerPDGain[jj].numVpd;
623 		if (numVpd > 0) {
624 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
625 			return(Pmin);
626 		}
627 	}
628 	return(Pmin);
629 }
630 
631 static int16_t
632 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
633 {
634 	uint32_t ii;
635 	uint16_t Pmax=0,numVpd;
636 
637 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
638 		/* work forwards cuase lowest pdGain for highest power */
639 		numVpd = data->pDataPerPDGain[ii].numVpd;
640 		if (numVpd > 0) {
641 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
642 			return(Pmax);
643 		}
644 	}
645 	return(Pmax);
646 }
647 
648 static HAL_BOOL
649 ar2316GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
650 	int16_t *maxPow, int16_t *minPow)
651 {
652 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
653 	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
654 	const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
655 	uint16_t numChannels;
656 	int totalD,totalF, totalMin,last, i;
657 
658 	*maxPow = 0;
659 
660 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
661 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
662 	else if (IS_CHAN_B(chan))
663 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
664 	else
665 		return(AH_FALSE);
666 
667 	numChannels = pRawDataset->numChannels;
668 	data = pRawDataset->pDataPerChannel;
669 
670 	/* Make sure the channel is in the range of the TP values
671 	 *  (freq piers)
672 	 */
673 	if (numChannels < 1)
674 		return(AH_FALSE);
675 
676 	if ((chan->channel < data[0].channelValue) ||
677 	    (chan->channel > data[numChannels-1].channelValue)) {
678 		if (chan->channel < data[0].channelValue) {
679 			*maxPow = ar2316GetMaxPower(ah, &data[0]);
680 			*minPow = ar2316GetMinPower(ah, &data[0]);
681 			return(AH_TRUE);
682 		} else {
683 			*maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
684 			*minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
685 			return(AH_TRUE);
686 		}
687 	}
688 
689 	/* Linearly interpolate the power value now */
690 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
691 	     last = i++);
692 	totalD = data[i].channelValue - data[last].channelValue;
693 	if (totalD > 0) {
694 		totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
695 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
696 				     ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
697 		totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
698 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
699 				     ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
700 		return(AH_TRUE);
701 	} else {
702 		if (chan->channel == data[i].channelValue) {
703 			*maxPow = ar2316GetMaxPower(ah, &data[i]);
704 			*minPow = ar2316GetMinPower(ah, &data[i]);
705 			return(AH_TRUE);
706 		} else
707 			return(AH_FALSE);
708 	}
709 }
710 
711 /*
712  * Free memory for analog bank scratch buffers
713  */
714 static void
715 ar2316RfDetach(struct ath_hal *ah)
716 {
717 	struct ath_hal_5212 *ahp = AH5212(ah);
718 
719 	HALASSERT(ahp->ah_rfHal != AH_NULL);
720 	ath_hal_free(ahp->ah_rfHal);
721 	ahp->ah_rfHal = AH_NULL;
722 }
723 
724 /*
725  * Allocate memory for private state.
726  * Scratch Buffer will be reinitialized every reset so no need to zero now
727  */
728 static HAL_BOOL
729 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
730 {
731 	struct ath_hal_5212 *ahp = AH5212(ah);
732 	struct ar2316State *priv;
733 
734 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
735 
736 	HALASSERT(ahp->ah_rfHal == AH_NULL);
737 	priv = ath_hal_malloc(sizeof(struct ar2316State));
738 	if (priv == AH_NULL) {
739 		HALDEBUG(ah, HAL_DEBUG_ANY,
740 		    "%s: cannot allocate private state\n", __func__);
741 		*status = HAL_ENOMEM;		/* XXX */
742 		return AH_FALSE;
743 	}
744 	priv->base.rfDetach		= ar2316RfDetach;
745 	priv->base.writeRegs		= ar2316WriteRegs;
746 	priv->base.getRfBank		= ar2316GetRfBank;
747 	priv->base.setChannel		= ar2316SetChannel;
748 	priv->base.setRfRegs		= ar2316SetRfRegs;
749 	priv->base.setPowerTable	= ar2316SetPowerTable;
750 	priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
751 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
752 
753 	ahp->ah_pcdacTable = priv->pcdacTable;
754 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
755 	ahp->ah_rfHal = &priv->base;
756 
757 	ahp->ah_cwCalRequire = AH_TRUE;		/* force initial cal */
758 
759 	return AH_TRUE;
760 }
761 
762 static HAL_BOOL
763 ar2316Probe(struct ath_hal *ah)
764 {
765 	return IS_2316(ah);
766 }
767 AH_RF(RF2316, ar2316Probe, ar2316RfAttach);
768