xref: /netbsd-src/sys/external/bsd/sljit/dist/sljit_src/sljitNativeTILEGX_64.c (revision 75f6d617e282811cb173c2ccfbf5df0dd71f7045)
1 /*	$NetBSD: sljitNativeTILEGX_64.c,v 1.2 2014/06/17 19:33:20 alnsn Exp $	*/
2 
3 /*
4  *    Stack-less Just-In-Time compiler
5  *
6  *    Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved.
7  *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without modification, are
10  * permitted provided that the following conditions are met:
11  *
12  *   1. Redistributions of source code must retain the above copyright notice, this list of
13  *      conditions and the following disclaimer.
14  *
15  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
16  *      of conditions and the following disclaimer in the documentation and/or other materials
17  *      provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
22  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
24  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
25  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
27  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 /* TileGX architecture. */
31 /* Contributed by Tilera Corporation. */
32 #include "sljitNativeTILEGX-encoder.c"
33 
34 #define SIMM_8BIT_MAX (0x7f)
35 #define SIMM_8BIT_MIN (-0x80)
36 #define SIMM_16BIT_MAX (0x7fff)
37 #define SIMM_16BIT_MIN (-0x8000)
38 #define SIMM_17BIT_MAX (0xffff)
39 #define SIMM_17BIT_MIN (-0x10000)
40 #define SIMM_32BIT_MIN (-0x80000000)
41 #define SIMM_32BIT_MAX (0x7fffffff)
42 #define SIMM_48BIT_MIN (0x800000000000L)
43 #define SIMM_48BIT_MAX (0x7fffffff0000L)
44 #define IMM16(imm) ((imm) & 0xffff)
45 
46 #define UIMM_16BIT_MAX (0xffff)
47 
48 #define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
49 #define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
50 #define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
51 #define ADDR_TMP (SLJIT_NO_REGISTERS + 4)
52 #define PIC_ADDR_REG TMP_REG2
53 
54 static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
55 	63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
56 };
57 
58 #define SLJIT_LOCALS_REG_mapped 54
59 #define TMP_REG1_mapped 5
60 #define TMP_REG2_mapped 16
61 #define TMP_REG3_mapped 6
62 #define ADDR_TMP_mapped 7
63 #define SLJIT_SAVED_REG1_mapped 30
64 #define SLJIT_SAVED_REG2_mapped 31
65 #define SLJIT_SAVED_REG3_mapped 32
66 #define SLJIT_SAVED_EREG1_mapped 33
67 #define SLJIT_SAVED_EREG2_mapped 34
68 
69 /* Flags are keept in volatile registers. */
70 #define EQUAL_FLAG 8
71 /* And carry flag as well. */
72 #define ULESS_FLAG 9
73 #define UGREATER_FLAG 10
74 #define LESS_FLAG 11
75 #define GREATER_FLAG 12
76 #define OVERFLOW_FLAG 13
77 
78 #define ZERO 63
79 #define RA 55
80 #define TMP_EREG1 14
81 #define TMP_EREG2 15
82 
83 #define LOAD_DATA 0x01
84 #define WORD_DATA 0x00
85 #define BYTE_DATA 0x02
86 #define HALF_DATA 0x04
87 #define INT_DATA 0x06
88 #define SIGNED_DATA 0x08
89 #define DOUBLE_DATA 0x10
90 
91 /* Separates integer and floating point registers */
92 #define GPR_REG 0xf
93 
94 #define MEM_MASK 0x1f
95 
96 #define WRITE_BACK 0x00020
97 #define ARG_TEST 0x00040
98 #define ALT_KEEP_CACHE 0x00080
99 #define CUMULATIVE_OP 0x00100
100 #define LOGICAL_OP 0x00200
101 #define IMM_OP 0x00400
102 #define SRC2_IMM 0x00800
103 
104 #define UNUSED_DEST 0x01000
105 #define REG_DEST 0x02000
106 #define REG1_SOURCE 0x04000
107 #define REG2_SOURCE 0x08000
108 #define SLOW_SRC1 0x10000
109 #define SLOW_SRC2 0x20000
110 #define SLOW_DEST 0x40000
111 
112 /* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
113  */
114 #define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
115 
116 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char *sljit_get_platform_name(void)
117 {
118 	return "TileGX" SLJIT_CPUINFO;
119 }
120 
121 /* Length of an instruction word */
122 typedef sljit_uw sljit_ins;
123 
124 struct jit_instr {
125 	const struct tilegx_opcode* opcode;
126 	tilegx_pipeline pipe;
127 	unsigned long input_registers;
128 	unsigned long output_registers;
129 	int operand_value[4];
130 	int line;
131 };
132 
133 /* Opcode Helper Macros */
134 #define TILEGX_X_MODE 0
135 
136 #define X_MODE create_Mode(TILEGX_X_MODE)
137 
138 #define FNOP_X0 \
139 	create_Opcode_X0(RRR_0_OPCODE_X0) | \
140 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
141 	create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)
142 
143 #define FNOP_X1 \
144 	create_Opcode_X1(RRR_0_OPCODE_X1) | \
145 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
146 	create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)
147 
148 #define NOP \
149 	create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1
150 
151 #define ANOP_X0 \
152 	create_Opcode_X0(RRR_0_OPCODE_X0) | \
153 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
154 	create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)
155 
156 #define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
157 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
158 	create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
159 	create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0
160 
161 #define ADD_X1 \
162 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
163 	create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0
164 
165 #define ADDI_X1 \
166 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
167 	create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0
168 
169 #define SUB_X1 \
170 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
171 	create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0
172 
173 #define NOR_X1 \
174 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
175 	create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0
176 
177 #define OR_X1 \
178 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
179 	create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0
180 
181 #define AND_X1 \
182 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
183 	create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0
184 
185 #define XOR_X1 \
186 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
187 	create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0
188 
189 #define CMOVNEZ_X0 \
190 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
191 	create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1
192 
193 #define CMOVEQZ_X0 \
194 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
195 	create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1
196 
197 #define ADDLI_X1 \
198 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0
199 
200 #define V4INT_L_X1 \
201 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
202 	create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0
203 
204 #define BFEXTU_X0 \
205 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
206 	create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1
207 
208 #define BFEXTS_X0 \
209 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
210 	create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1
211 
212 #define SHL16INSLI_X1 \
213 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0
214 
215 #define ST_X1 \
216 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
217 	create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0
218 
219 #define LD_X1 \
220 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
221 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
222 	create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0
223 
224 #define JR_X1 \
225 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
226 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
227 	create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0
228 
229 #define JALR_X1 \
230 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
231 	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
232 	create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0
233 
234 #define CLZ_X0 \
235 	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
236 	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
237 	create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1
238 
239 #define CMPLTUI_X1 \
240 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
241 	create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0
242 
243 #define CMPLTU_X1 \
244 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
245 	create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0
246 
247 #define CMPLTS_X1 \
248 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
249 	create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0
250 
251 #define XORI_X1 \
252 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
253 	create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0
254 
255 #define ORI_X1 \
256 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
257 	create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0
258 
259 #define ANDI_X1 \
260 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
261 	create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0
262 
263 #define SHLI_X1 \
264 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
265 	create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0
266 
267 #define SHL_X1 \
268 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
269 	create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0
270 
271 #define SHRSI_X1 \
272 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
273 	create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0
274 
275 #define SHRS_X1 \
276 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
277 	create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0
278 
279 #define SHRUI_X1 \
280 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
281 	create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0
282 
283 #define SHRU_X1 \
284 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
285 	create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0
286 
287 #define BEQZ_X1 \
288 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
289 	create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0
290 
291 #define BNEZ_X1 \
292 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
293 	create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0
294 
295 #define J_X1 \
296 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
297 	create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0
298 
299 #define JAL_X1 \
300 	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
301 	create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0
302 
303 #define DEST_X0(x) create_Dest_X0(x)
304 #define SRCA_X0(x) create_SrcA_X0(x)
305 #define SRCB_X0(x) create_SrcB_X0(x)
306 #define DEST_X1(x) create_Dest_X1(x)
307 #define SRCA_X1(x) create_SrcA_X1(x)
308 #define SRCB_X1(x) create_SrcB_X1(x)
309 #define IMM16_X1(x) create_Imm16_X1(x)
310 #define IMM8_X1(x) create_Imm8_X1(x)
311 #define BFSTART_X0(x) create_BFStart_X0(x)
312 #define BFEND_X0(x) create_BFEnd_X0(x)
313 #define SHIFTIMM_X1(x) create_ShAmt_X1(x)
314 #define JOFF_X1(x) create_JumpOff_X1(x)
315 #define BOFF_X1(x) create_BrOff_X1(x)
316 
317 static SLJIT_CONST tilegx_mnemonic data_transfer_insts[16] = {
318 	/* u w s */ TILEGX_OPC_ST   /* st */,
319 	/* u w l */ TILEGX_OPC_LD   /* ld */,
320 	/* u b s */ TILEGX_OPC_ST1  /* st1 */,
321 	/* u b l */ TILEGX_OPC_LD1U /* ld1u */,
322 	/* u h s */ TILEGX_OPC_ST2  /* st2 */,
323 	/* u h l */ TILEGX_OPC_LD2U /* ld2u */,
324 	/* u i s */ TILEGX_OPC_ST4  /* st4 */,
325 	/* u i l */ TILEGX_OPC_LD4U /* ld4u */,
326 	/* s w s */ TILEGX_OPC_ST   /* st */,
327 	/* s w l */ TILEGX_OPC_LD   /* ld */,
328 	/* s b s */ TILEGX_OPC_ST1  /* st1 */,
329 	/* s b l */ TILEGX_OPC_LD1S /* ld1s */,
330 	/* s h s */ TILEGX_OPC_ST2  /* st2 */,
331 	/* s h l */ TILEGX_OPC_LD2S /* ld2s */,
332 	/* s i s */ TILEGX_OPC_ST4  /* st4 */,
333 	/* s i l */ TILEGX_OPC_LD4S /* ld4s */,
334 };
335 
336 #ifdef TILEGX_JIT_DEBUG
337 static sljit_si push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
338 {
339 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
340 	FAIL_IF(!ptr);
341 	*ptr = ins;
342 	compiler->size++;
343 	printf("|%04d|S0|:\t\t", line);
344 	print_insn_tilegx(ptr);
345 	return SLJIT_SUCCESS;
346 }
347 
348 static sljit_si push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
349 {
350 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
351 	FAIL_IF(!ptr);
352 	*ptr = ins;
353 	compiler->size++;
354 	return SLJIT_SUCCESS;
355 }
356 
357 #define push_inst(a, b) push_inst_debug(a, b, __LINE__)
358 #else
359 static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
360 {
361 	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
362 	FAIL_IF(!ptr);
363 	*ptr = ins;
364 	compiler->size++;
365 	return SLJIT_SUCCESS;
366 }
367 #endif
368 
369 #define BUNDLE_FORMAT_MASK(p0, p1, p2) \
370 	((p0) | ((p1) << 8) | ((p2) << 16))
371 
372 #define BUNDLE_FORMAT(p0, p1, p2) \
373 	{ \
374 		{ \
375 			(tilegx_pipeline)(p0), \
376 			(tilegx_pipeline)(p1), \
377 			(tilegx_pipeline)(p2) \
378 		}, \
379 		BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
380 	}
381 
382 #define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS
383 
384 #define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)
385 
386 #define PI(encoding) \
387 	push_inst(compiler, encoding)
388 
389 #define PB3(opcode, dst, srca, srcb) \
390 	push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)
391 
392 #define PB2(opcode, dst, src) \
393 	push_2_buffer(compiler, opcode, dst, src, __LINE__)
394 
395 #define JR(reg) \
396 	push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)
397 
398 #define ADD(dst, srca, srcb) \
399 	push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)
400 
401 #define SUB(dst, srca, srcb) \
402 	push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)
403 
404 #define NOR(dst, srca, srcb) \
405 	push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)
406 
407 #define OR(dst, srca, srcb) \
408 	push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)
409 
410 #define XOR(dst, srca, srcb) \
411 	push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)
412 
413 #define AND(dst, srca, srcb) \
414 	push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)
415 
416 #define CLZ(dst, src) \
417 	push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)
418 
419 #define SHLI(dst, srca, srcb) \
420 	push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)
421 
422 #define SHRUI(dst, srca, imm) \
423 	push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)
424 
425 #define XORI(dst, srca, imm) \
426 	push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)
427 
428 #define ORI(dst, srca, imm) \
429 	push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)
430 
431 #define CMPLTU(dst, srca, srcb) \
432 	push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)
433 
434 #define CMPLTS(dst, srca, srcb) \
435 	push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)
436 
437 #define CMPLTUI(dst, srca, imm) \
438 	push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)
439 
440 #define CMOVNEZ(dst, srca, srcb) \
441 	push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)
442 
443 #define CMOVEQZ(dst, srca, srcb) \
444 	push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)
445 
446 #define ADDLI(dst, srca, srcb) \
447 	push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)
448 
449 #define SHL16INSLI(dst, srca, srcb) \
450 	push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)
451 
452 #define LD_ADD(dst, addr, adjust) \
453 	push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)
454 
455 #define ST_ADD(src, addr, adjust) \
456 	push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)
457 
458 #define LD(dst, addr) \
459 	push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)
460 
461 #define BFEXTU(dst, src, start, end) \
462 	push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)
463 
464 #define BFEXTS(dst, src, start, end) \
465 	push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)
466 
467 #define ADD_SOLO(dest, srca, srcb) \
468 	push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))
469 
470 #define ADDI_SOLO(dest, srca, imm) \
471 	push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))
472 
473 #define ADDLI_SOLO(dest, srca, imm) \
474 	push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
475 
476 #define SHL16INSLI_SOLO(dest, srca, imm) \
477 	push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
478 
479 #define JALR_SOLO(reg) \
480 	push_inst(compiler, JALR_X1 | SRCA_X1(reg))
481 
482 #define JR_SOLO(reg) \
483 	push_inst(compiler, JR_X1 | SRCA_X1(reg))
484 
485 struct Format {
486 	/* Mapping of bundle issue slot to assigned pipe. */
487 	tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
488 
489 	/* Mask of pipes used by this bundle. */
490 	unsigned int pipe_mask;
491 };
492 
493 const struct Format formats[] =
494 {
495 	/* In Y format we must always have something in Y2, since it has
496 	* no fnop, so this conveys that Y2 must always be used. */
497 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
498 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
499 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
500 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),
501 
502 	/* Y format has three instructions. */
503 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
504 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
505 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
506 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
507 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
508 	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),
509 
510 	/* X format has only two instructions. */
511 	BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
512 	BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
513 };
514 
515 
516 struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
517 unsigned long inst_buf_index;
518 
519 tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
520 {
521 	/* FIXME: tile: we could pregenerate this. */
522 	int pipe;
523 	for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
524 		;
525 	return (tilegx_pipeline)(pipe);
526 }
527 
528 void insert_nop(tilegx_mnemonic opc, int line)
529 {
530 	const struct tilegx_opcode* opcode = NULL;
531 
532 	memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);
533 
534 	opcode = &tilegx_opcodes[opc];
535 	inst_buf[0].opcode = opcode;
536 	inst_buf[0].pipe = get_any_valid_pipe(opcode);
537 	inst_buf[0].input_registers = 0;
538 	inst_buf[0].output_registers = 0;
539 	inst_buf[0].line = line;
540 	++inst_buf_index;
541 }
542 
543 const struct Format* compute_format()
544 {
545 	unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
546 		inst_buf[0].opcode->pipes,
547 		inst_buf[1].opcode->pipes,
548 		(inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));
549 
550 	const struct Format* match = NULL;
551 	const struct Format *b = NULL;
552 	unsigned int i = 0;
553 	for (i; i < sizeof formats / sizeof formats[0]; i++) {
554 		b = &formats[i];
555 		if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
556 			match = b;
557 			break;
558 		}
559 	}
560 
561 	return match;
562 }
563 
564 sljit_si assign_pipes()
565 {
566 	unsigned long output_registers = 0;
567 	unsigned int i = 0;
568 
569 	if (inst_buf_index == 1) {
570 		tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
571 					? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
572 		insert_nop(opc, __LINE__);
573 	}
574 
575 	const struct Format* match = compute_format();
576 
577 	if (match == NULL)
578 		return -1;
579 
580 	for (i = 0; i < inst_buf_index; i++) {
581 
582 		if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
583 			return -1;
584 
585 		if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
586 			return -1;
587 
588 		/* Don't include Rzero in the match set, to avoid triggering
589 		   needlessly on 'prefetch' instrs. */
590 
591 		output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;
592 
593 		inst_buf[i].pipe = match->pipe[i];
594 	}
595 
596 	/* If only 2 instrs, and in Y-mode, insert a nop. */
597 	if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
598 		insert_nop(TILEGX_OPC_FNOP, __LINE__);
599 
600 		/* Select the yet unassigned pipe. */
601 		tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
602 					+ TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
603 					- (inst_buf[1].pipe + inst_buf[2].pipe)));
604 
605 		inst_buf[0].pipe = pipe;
606 	}
607 
608 	return 0;
609 }
610 
611 tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
612 {
613 	int i, val;
614 	const struct tilegx_opcode* opcode = inst->opcode;
615 	tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];
616 
617 	const struct tilegx_operand* operand = NULL;
618 	for (i = 0; i < opcode->num_operands; i++) {
619 		operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
620 		val = inst->operand_value[i];
621 
622 		bits |= operand->insert(val);
623 	}
624 
625 	return bits;
626 }
627 
628 static sljit_si update_buffer(struct sljit_compiler *compiler)
629 {
630 	int count;
631 	int i;
632 	int orig_index = inst_buf_index;
633 	struct jit_instr inst0 = inst_buf[0];
634 	struct jit_instr inst1 = inst_buf[1];
635 	struct jit_instr inst2 = inst_buf[2];
636 	tilegx_bundle_bits bits = 0;
637 
638 	/* If the bundle is valid as is, perform the encoding and return 1. */
639 	if (assign_pipes() == 0) {
640 		for (i = 0; i < inst_buf_index; i++) {
641 			bits |= get_bundle_bit(inst_buf + i);
642 #ifdef TILEGX_JIT_DEBUG
643 			printf("|%04d", inst_buf[i].line);
644 #endif
645 		}
646 #ifdef TILEGX_JIT_DEBUG
647 		if (inst_buf_index == 3)
648 			printf("|M0|:\t");
649 		else
650 			printf("|M0|:\t\t");
651 		print_insn_tilegx(&bits);
652 #endif
653 
654 		inst_buf_index = 0;
655 
656 #ifdef TILEGX_JIT_DEBUG
657 		return push_inst_nodebug(compiler, bits);
658 #else
659 		return push_inst(compiler, bits);
660 #endif
661 	}
662 
663 	/* If the bundle is invalid, split it in two. First encode the first two
664 	   (or possibly 1) instructions, and then the last, separately. Note that
665 	   assign_pipes may have re-ordered the instrs (by inserting no-ops in
666 	   lower slots) so we need to reset them. */
667 
668 	inst_buf_index = orig_index - 1;
669 	inst_buf[0] = inst0;
670 	inst_buf[1] = inst1;
671 	inst_buf[2] = inst2;
672 	if (assign_pipes() == 0) {
673 		for (i = 0; i < inst_buf_index; i++) {
674 			bits |= get_bundle_bit(inst_buf + i);
675 #ifdef TILEGX_JIT_DEBUG
676 			printf("|%04d", inst_buf[i].line);
677 #endif
678 		}
679 
680 #ifdef TILEGX_JIT_DEBUG
681 		if (inst_buf_index == 3)
682 			printf("|M1|:\t");
683 		else
684 			printf("|M1|:\t\t");
685 		print_insn_tilegx(&bits);
686 #endif
687 
688 		if ((orig_index - 1) == 2) {
689 			inst_buf[0] = inst2;
690 			inst_buf_index = 1;
691 		} else if ((orig_index - 1) == 1) {
692 			inst_buf[0] = inst1;
693 			inst_buf_index = 1;
694 		} else
695 			SLJIT_ASSERT_STOP();
696 
697 #ifdef TILEGX_JIT_DEBUG
698 		return push_inst_nodebug(compiler, bits);
699 #else
700 		return push_inst(compiler, bits);
701 #endif
702 	} else {
703 		/* We had 3 instrs of which the first 2 can't live in the same bundle.
704 		   Split those two. Note that we don't try to then combine the second
705 		   and third instr into a single bundle.  First instruction: */
706 		inst_buf_index = 1;
707 		inst_buf[0] = inst0;
708 		inst_buf[1] = inst1;
709 		inst_buf[2] = inst2;
710 		if (assign_pipes() == 0) {
711 			for (i = 0; i < inst_buf_index; i++) {
712 				bits |= get_bundle_bit(inst_buf + i);
713 #ifdef TILEGX_JIT_DEBUG
714 				printf("|%04d", inst_buf[i].line);
715 #endif
716 			}
717 
718 #ifdef TILEGX_JIT_DEBUG
719 			if (inst_buf_index == 3)
720 				printf("|M2|:\t");
721 			else
722 				printf("|M2|:\t\t");
723 			print_insn_tilegx(&bits);
724 #endif
725 
726 			inst_buf[0] = inst1;
727 			inst_buf[1] = inst2;
728 			inst_buf_index = orig_index - 1;
729 #ifdef TILEGX_JIT_DEBUG
730 			return push_inst_nodebug(compiler, bits);
731 #else
732 			return push_inst(compiler, bits);
733 #endif
734 		} else
735 			SLJIT_ASSERT_STOP();
736 	}
737 
738 	SLJIT_ASSERT_STOP();
739 }
740 
741 static sljit_si flush_buffer(struct sljit_compiler *compiler)
742 {
743 	while (inst_buf_index != 0)
744 		update_buffer(compiler);
745 }
746 
747 static sljit_si push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
748 {
749 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
750 		FAIL_IF(update_buffer(compiler));
751 
752 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
753 	inst_buf[inst_buf_index].opcode = opcode;
754 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
755 	inst_buf[inst_buf_index].operand_value[0] = op0;
756 	inst_buf[inst_buf_index].operand_value[1] = op1;
757 	inst_buf[inst_buf_index].operand_value[2] = op2;
758 	inst_buf[inst_buf_index].operand_value[3] = op3;
759 	inst_buf[inst_buf_index].input_registers = 1L << op1;
760 	inst_buf[inst_buf_index].output_registers = 1L << op0;
761 	inst_buf[inst_buf_index].line = line;
762 	inst_buf_index++;
763 
764 	return SLJIT_SUCCESS;
765 }
766 
767 static sljit_si push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
768 {
769 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
770 		FAIL_IF(update_buffer(compiler));
771 
772 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
773 	inst_buf[inst_buf_index].opcode = opcode;
774 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
775 	inst_buf[inst_buf_index].operand_value[0] = op0;
776 	inst_buf[inst_buf_index].operand_value[1] = op1;
777 	inst_buf[inst_buf_index].operand_value[2] = op2;
778 	inst_buf[inst_buf_index].line = line;
779 
780 	switch (opc) {
781 	case TILEGX_OPC_ST_ADD:
782 		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
783 		inst_buf[inst_buf_index].output_registers = 1L << op0;
784 		break;
785 	case TILEGX_OPC_LD_ADD:
786 		inst_buf[inst_buf_index].input_registers = 1L << op1;
787 		inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
788 		break;
789 	case TILEGX_OPC_ADD:
790 	case TILEGX_OPC_AND:
791 	case TILEGX_OPC_SUB:
792 	case TILEGX_OPC_OR:
793 	case TILEGX_OPC_XOR:
794 	case TILEGX_OPC_NOR:
795 	case TILEGX_OPC_SHL:
796 	case TILEGX_OPC_SHRU:
797 	case TILEGX_OPC_SHRS:
798 	case TILEGX_OPC_CMPLTU:
799 	case TILEGX_OPC_CMPLTS:
800 	case TILEGX_OPC_CMOVEQZ:
801 	case TILEGX_OPC_CMOVNEZ:
802 		inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
803 		inst_buf[inst_buf_index].output_registers = 1L << op0;
804 		break;
805 	case TILEGX_OPC_ADDLI:
806 	case TILEGX_OPC_XORI:
807 	case TILEGX_OPC_ORI:
808 	case TILEGX_OPC_SHLI:
809 	case TILEGX_OPC_SHRUI:
810 	case TILEGX_OPC_SHRSI:
811 	case TILEGX_OPC_SHL16INSLI:
812 	case TILEGX_OPC_CMPLTUI:
813 	case TILEGX_OPC_CMPLTSI:
814 		inst_buf[inst_buf_index].input_registers = 1L << op1;
815 		inst_buf[inst_buf_index].output_registers = 1L << op0;
816 		break;
817 	default:
818 		printf("unrecoginzed opc: %s\n", opcode->name);
819 		SLJIT_ASSERT_STOP();
820 	}
821 
822 	inst_buf_index++;
823 
824 	return SLJIT_SUCCESS;
825 }
826 
827 static sljit_si push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
828 {
829 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
830 		FAIL_IF(update_buffer(compiler));
831 
832 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
833 	inst_buf[inst_buf_index].opcode = opcode;
834 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
835 	inst_buf[inst_buf_index].operand_value[0] = op0;
836 	inst_buf[inst_buf_index].operand_value[1] = op1;
837 	inst_buf[inst_buf_index].line = line;
838 
839 	switch (opc) {
840 	case TILEGX_OPC_BEQZ:
841 	case TILEGX_OPC_BNEZ:
842 		inst_buf[inst_buf_index].input_registers = 1L << op0;
843 		break;
844 	case TILEGX_OPC_ST:
845 	case TILEGX_OPC_ST1:
846 	case TILEGX_OPC_ST2:
847 	case TILEGX_OPC_ST4:
848 		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
849 		inst_buf[inst_buf_index].output_registers = 0;
850 		break;
851 	case TILEGX_OPC_CLZ:
852 	case TILEGX_OPC_LD:
853 	case TILEGX_OPC_LD1U:
854 	case TILEGX_OPC_LD1S:
855 	case TILEGX_OPC_LD2U:
856 	case TILEGX_OPC_LD2S:
857 	case TILEGX_OPC_LD4U:
858 	case TILEGX_OPC_LD4S:
859 		inst_buf[inst_buf_index].input_registers = 1L << op1;
860 		inst_buf[inst_buf_index].output_registers = 1L << op0;
861 		break;
862 	default:
863 		printf("unrecoginzed opc: %s\n", opcode->name);
864 		SLJIT_ASSERT_STOP();
865 	}
866 
867 	inst_buf_index++;
868 
869 	return SLJIT_SUCCESS;
870 }
871 
872 static sljit_si push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
873 {
874 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
875 		FAIL_IF(update_buffer(compiler));
876 
877 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
878 	inst_buf[inst_buf_index].opcode = opcode;
879 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
880 	inst_buf[inst_buf_index].input_registers = 0;
881 	inst_buf[inst_buf_index].output_registers = 0;
882 	inst_buf[inst_buf_index].line = line;
883 	inst_buf_index++;
884 
885 	return SLJIT_SUCCESS;
886 }
887 
888 static sljit_si push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
889 {
890 	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
891 		FAIL_IF(update_buffer(compiler));
892 
893 	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
894 	inst_buf[inst_buf_index].opcode = opcode;
895 	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
896 	inst_buf[inst_buf_index].operand_value[0] = op0;
897 	inst_buf[inst_buf_index].input_registers = 1L << op0;
898 	inst_buf[inst_buf_index].output_registers = 0;
899 	inst_buf[inst_buf_index].line = line;
900 	inst_buf_index++;
901 
902 	return flush_buffer(compiler);
903 }
904 
905 static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
906 {
907 	sljit_sw diff;
908 	sljit_uw target_addr;
909 	sljit_ins *inst;
910 	sljit_ins saved_inst;
911 
912 	if (jump->flags & SLJIT_REWRITABLE_JUMP)
913 		return code_ptr;
914 
915 	if (jump->flags & JUMP_ADDR)
916 		target_addr = jump->u.target;
917 	else {
918 		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
919 		target_addr = (sljit_uw)(code + jump->u.label->size);
920 	}
921 
922 	inst = (sljit_ins *)jump->addr;
923 	if (jump->flags & IS_COND)
924 		inst--;
925 
926 	diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
927 	if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
928 		jump->flags |= PATCH_B;
929 
930 		if (!(jump->flags & IS_COND)) {
931 			if (jump->flags & IS_JAL) {
932 				jump->flags &= ~(PATCH_B);
933 				jump->flags |= PATCH_J;
934 				inst[0] = JAL_X1;
935 
936 #ifdef TILEGX_JIT_DEBUG
937 				printf("[runtime relocate]%04d:\t", __LINE__);
938 				print_insn_tilegx(inst);
939 #endif
940 			} else {
941 				inst[0] = BEQZ_X1 | SRCA_X1(ZERO);
942 
943 #ifdef TILEGX_JIT_DEBUG
944 				printf("[runtime relocate]%04d:\t", __LINE__);
945 				print_insn_tilegx(inst);
946 #endif
947 			}
948 
949 			return inst;
950 		}
951 
952 		inst[0] = inst[0] ^ (0x7L << 55);
953 
954 #ifdef TILEGX_JIT_DEBUG
955 		printf("[runtime relocate]%04d:\t", __LINE__);
956 		print_insn_tilegx(inst);
957 #endif
958 		jump->addr -= sizeof(sljit_ins);
959 		return inst;
960 	}
961 
962 	if (jump->flags & IS_COND) {
963 		if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
964 			jump->flags |= PATCH_J;
965 			inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
966 			inst[1] = J_X1;
967 			return inst + 1;
968 		}
969 
970 		return code_ptr;
971 	}
972 
973 	if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
974 		jump->flags |= PATCH_J;
975 
976 		if (jump->flags & IS_JAL) {
977 			inst[0] = JAL_X1;
978 
979 #ifdef TILEGX_JIT_DEBUG
980 			printf("[runtime relocate]%04d:\t", __LINE__);
981 			print_insn_tilegx(inst);
982 #endif
983 
984 		} else {
985 			inst[0] = J_X1;
986 
987 #ifdef TILEGX_JIT_DEBUG
988 			printf("[runtime relocate]%04d:\t", __LINE__);
989 			print_insn_tilegx(inst);
990 #endif
991 		}
992 
993 		return inst;
994 	}
995 
996 	return code_ptr;
997 }
998 
999 SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
1000 {
1001 	struct sljit_memory_fragment *buf;
1002 	sljit_ins *code;
1003 	sljit_ins *code_ptr;
1004 	sljit_ins *buf_ptr;
1005 	sljit_ins *buf_end;
1006 	sljit_uw word_count;
1007 	sljit_uw addr;
1008 
1009 	struct sljit_label *label;
1010 	struct sljit_jump *jump;
1011 	struct sljit_const *const_;
1012 
1013 	CHECK_ERROR_PTR();
1014 	check_sljit_generate_code(compiler);
1015 	reverse_buf(compiler);
1016 
1017 	code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
1018 	PTR_FAIL_WITH_EXEC_IF(code);
1019 	buf = compiler->buf;
1020 
1021 	code_ptr = code;
1022 	word_count = 0;
1023 	label = compiler->labels;
1024 	jump = compiler->jumps;
1025 	const_ = compiler->consts;
1026 	do {
1027 		buf_ptr = (sljit_ins *)buf->memory;
1028 		buf_end = buf_ptr + (buf->used_size >> 3);
1029 		do {
1030 			*code_ptr = *buf_ptr++;
1031 			SLJIT_ASSERT(!label || label->size >= word_count);
1032 			SLJIT_ASSERT(!jump || jump->addr >= word_count);
1033 			SLJIT_ASSERT(!const_ || const_->addr >= word_count);
1034 			/* These structures are ordered by their address. */
1035 			if (label && label->size == word_count) {
1036 				/* Just recording the address. */
1037 				label->addr = (sljit_uw) code_ptr;
1038 				label->size = code_ptr - code;
1039 				label = label->next;
1040 			}
1041 
1042 			if (jump && jump->addr == word_count) {
1043 				if (jump->flags & IS_JAL)
1044 					jump->addr = (sljit_uw)(code_ptr - 4);
1045 				else
1046 					jump->addr = (sljit_uw)(code_ptr - 3);
1047 
1048 				code_ptr = detect_jump_type(jump, code_ptr, code);
1049 				jump = jump->next;
1050 			}
1051 
1052 			if (const_ && const_->addr == word_count) {
1053 				/* Just recording the address. */
1054 				const_->addr = (sljit_uw) code_ptr;
1055 				const_ = const_->next;
1056 			}
1057 
1058 			code_ptr++;
1059 			word_count++;
1060 		} while (buf_ptr < buf_end);
1061 
1062 		buf = buf->next;
1063 	} while (buf);
1064 
1065 	if (label && label->size == word_count) {
1066 		label->addr = (sljit_uw) code_ptr;
1067 		label->size = code_ptr - code;
1068 		label = label->next;
1069 	}
1070 
1071 	SLJIT_ASSERT(!label);
1072 	SLJIT_ASSERT(!jump);
1073 	SLJIT_ASSERT(!const_);
1074 	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
1075 
1076 	jump = compiler->jumps;
1077 	while (jump) {
1078 		do {
1079 			addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
1080 			buf_ptr = (sljit_ins *)jump->addr;
1081 
1082 			if (jump->flags & PATCH_B) {
1083 				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
1084 				SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
1085 				buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);
1086 
1087 #ifdef TILEGX_JIT_DEBUG
1088 				printf("[runtime relocate]%04d:\t", __LINE__);
1089 				print_insn_tilegx(buf_ptr);
1090 #endif
1091 				break;
1092 			}
1093 
1094 			if (jump->flags & PATCH_J) {
1095 				SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
1096 				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
1097 				buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);
1098 
1099 #ifdef TILEGX_JIT_DEBUG
1100 				printf("[runtime relocate]%04d:\t", __LINE__);
1101 				print_insn_tilegx(buf_ptr);
1102 #endif
1103 				break;
1104 			}
1105 
1106 			SLJIT_ASSERT(!(jump->flags & IS_JAL));
1107 
1108 			/* Set the fields of immediate loads. */
1109 			buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
1110 			buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
1111 			buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
1112 		} while (0);
1113 
1114 		jump = jump->next;
1115 	}
1116 
1117 	compiler->error = SLJIT_ERR_COMPILED;
1118 	compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
1119 	SLJIT_CACHE_FLUSH(code, code_ptr);
1120 	return code;
1121 }
1122 
1123 static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
1124 {
1125 
1126 	if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
1127 		return ADDLI(dst_ar, ZERO, imm);
1128 
1129 	if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
1130 		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
1131 		return SHL16INSLI(dst_ar, dst_ar, imm);
1132 	}
1133 
1134 	if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
1135 		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
1136 		FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1137 		return SHL16INSLI(dst_ar, dst_ar, imm);
1138 	}
1139 
1140 	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
1141 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
1142 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1143 	return SHL16INSLI(dst_ar, dst_ar, imm);
1144 }
1145 
1146 static sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
1147 {
1148 	/* Should *not* be optimized as load_immediate, as pcre relocation
1149 	   mechanism will match this fixed 4-instruction pattern. */
1150 	if (flush) {
1151 		FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
1152 		FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
1153 		return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
1154 	}
1155 
1156 	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
1157 	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1158 	return SHL16INSLI(dst_ar, dst_ar, imm);
1159 }
1160 
1161 static sljit_si emit_const_64(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
1162 {
1163 	/* Should *not* be optimized as load_immediate, as pcre relocation
1164 	   mechanism will match this fixed 4-instruction pattern. */
1165 	if (flush) {
1166 		FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
1167 		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
1168 		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
1169 		return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
1170 	}
1171 
1172 	FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
1173 	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
1174 	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
1175 	return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
1176 }
1177 
1178 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
1179 {
1180 	sljit_ins base;
1181 	sljit_ins bundle = 0;
1182 
1183 	CHECK_ERROR();
1184 	check_sljit_emit_enter(compiler, args, scratches, saveds, local_size);
1185 
1186 	compiler->scratches = scratches;
1187 	compiler->saveds = saveds;
1188 #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
1189 	compiler->logical_local_size = local_size;
1190 #endif
1191 
1192 	local_size += (saveds + 1) * sizeof(sljit_sw);
1193 	local_size = (local_size + 7) & ~7;
1194 	compiler->local_size = local_size;
1195 
1196 	if (local_size <= SIMM_16BIT_MAX) {
1197 		/* Frequent case. */
1198 		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
1199 		base = SLJIT_LOCALS_REG_mapped;
1200 	} else {
1201 		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
1202 		FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
1203 		FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
1204 		base = TMP_REG2_mapped;
1205 		local_size = 0;
1206 	}
1207 
1208 	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
1209 	FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));
1210 
1211 	if (saveds >= 1)
1212 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG1_mapped, -8));
1213 
1214 	if (saveds >= 2)
1215 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG2_mapped, -8));
1216 
1217 	if (saveds >= 3)
1218 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_REG3_mapped, -8));
1219 
1220 	if (saveds >= 4)
1221 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_EREG1_mapped, -8));
1222 
1223 	if (saveds >= 5)
1224 		FAIL_IF(ST_ADD(ADDR_TMP_mapped, SLJIT_SAVED_EREG2_mapped, -8));
1225 
1226 	if (args >= 1)
1227 		FAIL_IF(ADD(SLJIT_SAVED_REG1_mapped, 0, ZERO));
1228 
1229 	if (args >= 2)
1230 		FAIL_IF(ADD(SLJIT_SAVED_REG2_mapped, 1, ZERO));
1231 
1232 	if (args >= 3)
1233 		FAIL_IF(ADD(SLJIT_SAVED_REG3_mapped, 2, ZERO));
1234 
1235 	return SLJIT_SUCCESS;
1236 }
1237 
1238 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
1239 {
1240 	CHECK_ERROR_VOID();
1241 	check_sljit_set_context(compiler, args, scratches, saveds, local_size);
1242 
1243 	compiler->scratches = scratches;
1244 	compiler->saveds = saveds;
1245 #if (defined SLJIT_DEBUG && SLJIT_DEBUG)
1246 	compiler->logical_local_size = local_size;
1247 #endif
1248 
1249 	local_size += (saveds + 1) * sizeof(sljit_sw);
1250 	compiler->local_size = (local_size + 7) & ~7;
1251 }
1252 
1253 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
1254 {
1255 	sljit_si local_size;
1256 	sljit_ins base;
1257 	int addr_initialized = 0;
1258 
1259 	CHECK_ERROR();
1260 	check_sljit_emit_return(compiler, op, src, srcw);
1261 
1262 	FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
1263 
1264 	local_size = compiler->local_size;
1265 	if (local_size <= SIMM_16BIT_MAX)
1266 		base = SLJIT_LOCALS_REG_mapped;
1267 	else {
1268 		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
1269 		FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
1270 		base = TMP_REG1_mapped;
1271 		local_size = 0;
1272 	}
1273 
1274 	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
1275 	FAIL_IF(LD(RA, ADDR_TMP_mapped));
1276 
1277 	if (compiler->saveds >= 5) {
1278 		FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 48));
1279 		addr_initialized = 1;
1280 
1281 		FAIL_IF(LD_ADD(SLJIT_SAVED_EREG2_mapped, ADDR_TMP_mapped, 8));
1282 	}
1283 
1284 	if (compiler->saveds >= 4) {
1285 		if (addr_initialized == 0) {
1286 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 40));
1287 			addr_initialized = 1;
1288 		}
1289 
1290 		FAIL_IF(LD_ADD(SLJIT_SAVED_EREG1_mapped, ADDR_TMP_mapped, 8));
1291 	}
1292 
1293 	if (compiler->saveds >= 3) {
1294 		if (addr_initialized == 0) {
1295 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 32));
1296 			addr_initialized = 1;
1297 		}
1298 
1299 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG3_mapped, ADDR_TMP_mapped, 8));
1300 	}
1301 
1302 	if (compiler->saveds >= 2) {
1303 		if (addr_initialized == 0) {
1304 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 24));
1305 			addr_initialized = 1;
1306 		}
1307 
1308 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG2_mapped, ADDR_TMP_mapped, 8));
1309 	}
1310 
1311 	if (compiler->saveds >= 1) {
1312 		if (addr_initialized == 0) {
1313 			FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 16));
1314 			/* addr_initialized = 1; no need to initialize as it's the last one. */
1315 		}
1316 
1317 		FAIL_IF(LD_ADD(SLJIT_SAVED_REG1_mapped, ADDR_TMP_mapped, 8));
1318 	}
1319 
1320 	if (compiler->local_size <= SIMM_16BIT_MAX)
1321 		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
1322 	else
1323 		FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));
1324 
1325 	return JR(RA);
1326 }
1327 
1328 /* reg_ar is an absoulute register! */
1329 
1330 /* Can perform an operation using at most 1 instruction. */
1331 static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
1332 {
1333 	SLJIT_ASSERT(arg & SLJIT_MEM);
1334 
1335 	if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
1336 			&& !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1337 		/* Works for both absoulte and relative addresses. */
1338 		if (SLJIT_UNLIKELY(flags & ARG_TEST))
1339 			return 1;
1340 
1341 		FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));
1342 
1343 		if (flags & LOAD_DATA)
1344 			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
1345 		else
1346 			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
1347 
1348 		return -1;
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 /* See getput_arg below.
1355    Note: can_cache is called only for binary operators. Those
1356    operators always uses word arguments without write back. */
1357 static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
1358 {
1359 	SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
1360 
1361 	/* Simple operation except for updates. */
1362 	if (arg & OFFS_REG_MASK) {
1363 		argw &= 0x3;
1364 		next_argw &= 0x3;
1365 		if (argw && argw == next_argw
1366 				&& (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
1367 			return 1;
1368 		return 0;
1369 	}
1370 
1371 	if (arg == next_arg) {
1372 		if (((next_argw - argw) <= SIMM_16BIT_MAX
1373 				&& (next_argw - argw) >= SIMM_16BIT_MIN))
1374 			return 1;
1375 
1376 		return 0;
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 /* Emit the necessary instructions. See can_cache above. */
1383 static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
1384 {
1385 	sljit_si tmp_ar, base;
1386 
1387 	SLJIT_ASSERT(arg & SLJIT_MEM);
1388 	if (!(next_arg & SLJIT_MEM)) {
1389 		next_arg = 0;
1390 		next_argw = 0;
1391 	}
1392 
1393 	if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
1394 		tmp_ar = reg_ar;
1395 	else
1396 		tmp_ar = TMP_REG1_mapped;
1397 
1398 	base = arg & REG_MASK;
1399 
1400 	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
1401 		argw &= 0x3;
1402 
1403 		if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
1404 			SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
1405 			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
1406 			reg_ar = TMP_REG1_mapped;
1407 		}
1408 
1409 		/* Using the cache. */
1410 		if (argw == compiler->cache_argw) {
1411 			if (!(flags & WRITE_BACK)) {
1412 				if (arg == compiler->cache_arg) {
1413 					if (flags & LOAD_DATA)
1414 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1415 					else
1416 						return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1417 				}
1418 
1419 				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
1420 					if (arg == next_arg && argw == (next_argw & 0x3)) {
1421 						compiler->cache_arg = arg;
1422 						compiler->cache_argw = argw;
1423 						FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
1424 						if (flags & LOAD_DATA)
1425 							return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1426 						else
1427 							return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1428 					}
1429 
1430 					FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
1431 					if (flags & LOAD_DATA)
1432 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1433 					else
1434 						return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1435 				}
1436 			} else {
1437 				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
1438 					FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1439 					if (flags & LOAD_DATA)
1440 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1441 					else
1442 						return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1443 				}
1444 			}
1445 		}
1446 
1447 		if (SLJIT_UNLIKELY(argw)) {
1448 			compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
1449 			compiler->cache_argw = argw;
1450 			FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
1451 		}
1452 
1453 		if (!(flags & WRITE_BACK)) {
1454 			if (arg == next_arg && argw == (next_argw & 0x3)) {
1455 				compiler->cache_arg = arg;
1456 				compiler->cache_argw = argw;
1457 				FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1458 				tmp_ar = TMP_REG3_mapped;
1459 			} else
1460 				FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1461 
1462 			if (flags & LOAD_DATA)
1463 				return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1464 			else
1465 				return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1466 		}
1467 
1468 		FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1469 
1470 		if (flags & LOAD_DATA)
1471 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1472 		else
1473 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1474 	}
1475 
1476 	if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
1477 		/* Update only applies if a base register exists. */
1478 		if (reg_ar == reg_map[base]) {
1479 			SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
1480 			if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1481 				FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
1482 				if (flags & LOAD_DATA)
1483 					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
1484 				else
1485 					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
1486 
1487 				if (argw)
1488 					return ADDLI(reg_map[base], reg_map[base], argw);
1489 
1490 				return SLJIT_SUCCESS;
1491 			}
1492 
1493 			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
1494 			reg_ar = TMP_REG1_mapped;
1495 		}
1496 
1497 		if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1498 			if (argw)
1499 				FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
1500 		} else {
1501 			if (compiler->cache_arg == SLJIT_MEM
1502 					&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
1503 					&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1504 				if (argw != compiler->cache_argw) {
1505 					FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1506 					compiler->cache_argw = argw;
1507 				}
1508 
1509 				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1510 			} else {
1511 				compiler->cache_arg = SLJIT_MEM;
1512 				compiler->cache_argw = argw;
1513 				FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
1514 				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1515 			}
1516 		}
1517 
1518 		if (flags & LOAD_DATA)
1519 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1520 		else
1521 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1522 	}
1523 
1524 	if (compiler->cache_arg == arg
1525 			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
1526 			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1527 		if (argw != compiler->cache_argw) {
1528 			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1529 			compiler->cache_argw = argw;
1530 		}
1531 
1532 		if (flags & LOAD_DATA)
1533 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1534 		else
1535 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1536 	}
1537 
1538 	if (compiler->cache_arg == SLJIT_MEM
1539 			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
1540 			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1541 		if (argw != compiler->cache_argw)
1542 			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1543 	} else {
1544 		compiler->cache_arg = SLJIT_MEM;
1545 		FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
1546 	}
1547 
1548 	compiler->cache_argw = argw;
1549 
1550 	if (!base) {
1551 		if (flags & LOAD_DATA)
1552 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1553 		else
1554 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1555 	}
1556 
1557 	if (arg == next_arg
1558 			&& next_argw - argw <= SIMM_16BIT_MAX
1559 			&& next_argw - argw >= SIMM_16BIT_MIN) {
1560 		compiler->cache_arg = arg;
1561 		FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
1562 		if (flags & LOAD_DATA)
1563 			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1564 		else
1565 			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1566 	}
1567 
1568 	FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));
1569 
1570 	if (flags & LOAD_DATA)
1571 		return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1572 	else
1573 		return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1574 }
1575 
1576 static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
1577 {
1578 	if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
1579 		return compiler->error;
1580 
1581 	compiler->cache_arg = 0;
1582 	compiler->cache_argw = 0;
1583 	return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
1584 }
1585 
1586 static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
1587 {
1588 	if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
1589 		return compiler->error;
1590 	return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
1591 }
1592 
1593 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
1594 {
1595 	CHECK_ERROR();
1596 	check_sljit_emit_fast_enter(compiler, dst, dstw);
1597 	ADJUST_LOCAL_OFFSET(dst, dstw);
1598 
1599 	/* For UNUSED dst. Uncommon, but possible. */
1600 	if (dst == SLJIT_UNUSED)
1601 		return SLJIT_SUCCESS;
1602 
1603 	if (FAST_IS_REG(dst))
1604 		return ADD(reg_map[dst], RA, ZERO);
1605 
1606 	/* Memory. */
1607 	return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
1608 }
1609 
1610 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
1611 {
1612 	CHECK_ERROR();
1613 	check_sljit_emit_fast_return(compiler, src, srcw);
1614 	ADJUST_LOCAL_OFFSET(src, srcw);
1615 
1616 	if (FAST_IS_REG(src))
1617 		FAIL_IF(ADD(RA, reg_map[src], ZERO));
1618 
1619 	else if (src & SLJIT_MEM)
1620 		FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));
1621 
1622 	else if (src & SLJIT_IMM)
1623 		FAIL_IF(load_immediate(compiler, RA, srcw));
1624 
1625 	return JR(RA);
1626 }
1627 
1628 static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_si src1, sljit_sw src2)
1629 {
1630 	sljit_si overflow_ra = 0;
1631 
1632 	switch (GET_OPCODE(op)) {
1633 	case SLJIT_MOV:
1634 	case SLJIT_MOV_P:
1635 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1636 		if (dst != src2)
1637 			return ADD(reg_map[dst], reg_map[src2], ZERO);
1638 		return SLJIT_SUCCESS;
1639 
1640 	case SLJIT_MOV_UI:
1641 	case SLJIT_MOV_SI:
1642 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1643 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1644 			if (op == SLJIT_MOV_SI)
1645 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);
1646 
1647 		return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
1648 		} else if (dst != src2)
1649 			SLJIT_ASSERT_STOP();
1650 
1651 		return SLJIT_SUCCESS;
1652 
1653 	case SLJIT_MOV_UB:
1654 	case SLJIT_MOV_SB:
1655 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1656 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1657 			if (op == SLJIT_MOV_SB)
1658 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);
1659 
1660 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
1661 		} else if (dst != src2)
1662 			SLJIT_ASSERT_STOP();
1663 
1664 		return SLJIT_SUCCESS;
1665 
1666 	case SLJIT_MOV_UH:
1667 	case SLJIT_MOV_SH:
1668 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1669 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1670 			if (op == SLJIT_MOV_SH)
1671 				return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);
1672 
1673 			return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
1674 		} else if (dst != src2)
1675 			SLJIT_ASSERT_STOP();
1676 
1677 		return SLJIT_SUCCESS;
1678 
1679 	case SLJIT_NOT:
1680 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1681 		if (op & SLJIT_SET_E)
1682 			FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
1683 		if (CHECK_FLAGS(SLJIT_SET_E))
1684 			FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));
1685 
1686 		return SLJIT_SUCCESS;
1687 
1688 	case SLJIT_CLZ:
1689 		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1690 		if (op & SLJIT_SET_E)
1691 			FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
1692 		if (CHECK_FLAGS(SLJIT_SET_E))
1693 			FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));
1694 
1695 		return SLJIT_SUCCESS;
1696 
1697 	case SLJIT_ADD:
1698 		if (flags & SRC2_IMM) {
1699 			if (op & SLJIT_SET_O) {
1700 				FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
1701 				if (src2 < 0)
1702 					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
1703 			}
1704 
1705 			if (op & SLJIT_SET_E)
1706 				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));
1707 
1708 			if (op & SLJIT_SET_C) {
1709 				if (src2 >= 0)
1710 					FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
1711 				else {
1712 					FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
1713 					FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
1714 				}
1715 			}
1716 
1717 			/* dst may be the same as src1 or src2. */
1718 			if (CHECK_FLAGS(SLJIT_SET_E))
1719 				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
1720 
1721 			if (op & SLJIT_SET_O) {
1722 				FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));
1723 
1724 				if (src2 < 0)
1725 					FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
1726 			}
1727 		} else {
1728 			if (op & SLJIT_SET_O) {
1729 				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1730 				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
1731 
1732 				if (src1 != dst)
1733 					overflow_ra = reg_map[src1];
1734 				else if (src2 != dst)
1735 					overflow_ra = reg_map[src2];
1736 				else {
1737 					/* Rare ocasion. */
1738 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1739 					overflow_ra = TMP_EREG2;
1740 				}
1741 			}
1742 
1743 			if (op & SLJIT_SET_E)
1744 				FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));
1745 
1746 			if (op & SLJIT_SET_C)
1747 				FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));
1748 
1749 			/* dst may be the same as src1 or src2. */
1750 			if (CHECK_FLAGS(SLJIT_SET_E))
1751 				FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));
1752 
1753 			if (op & SLJIT_SET_O) {
1754 				FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
1755 				FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
1756 			}
1757 		}
1758 
1759 		/* a + b >= a | b (otherwise, the carry should be set to 1). */
1760 		if (op & SLJIT_SET_C)
1761 			FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));
1762 
1763 		if (op & SLJIT_SET_O)
1764 			return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
1765 
1766 		return SLJIT_SUCCESS;
1767 
1768 	case SLJIT_ADDC:
1769 		if (flags & SRC2_IMM) {
1770 			if (op & SLJIT_SET_C) {
1771 				if (src2 >= 0)
1772 					FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
1773 				else {
1774 					FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
1775 					FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
1776 				}
1777 			}
1778 
1779 			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
1780 
1781 		} else {
1782 			if (op & SLJIT_SET_C)
1783 				FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1784 
1785 			/* dst may be the same as src1 or src2. */
1786 			FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
1787 		}
1788 
1789 		if (op & SLJIT_SET_C)
1790 			FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));
1791 
1792 		FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));
1793 
1794 		if (!(op & SLJIT_SET_C))
1795 			return SLJIT_SUCCESS;
1796 
1797 		/* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
1798 		FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
1799 		FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
1800 		/* Set carry flag. */
1801 		return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);
1802 
1803 	case SLJIT_SUB:
1804 		if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
1805 			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
1806 			src2 = TMP_REG2;
1807 			flags &= ~SRC2_IMM;
1808 		}
1809 
1810 		if (flags & SRC2_IMM) {
1811 			if (op & SLJIT_SET_O) {
1812 				FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));
1813 
1814 				if (src2 < 0)
1815 					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
1816 
1817 				if (src1 != dst)
1818 					overflow_ra = reg_map[src1];
1819 				else {
1820 					/* Rare ocasion. */
1821 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1822 
1823 					overflow_ra = TMP_EREG2;
1824 				}
1825 			}
1826 
1827 			if (op & SLJIT_SET_E)
1828 				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));
1829 
1830 			if (op & SLJIT_SET_C) {
1831 				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
1832 				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
1833 			}
1834 
1835 			/* dst may be the same as src1 or src2. */
1836 			if (CHECK_FLAGS(SLJIT_SET_E))
1837 				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
1838 
1839 		} else {
1840 
1841 			if (op & SLJIT_SET_O) {
1842 				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1843 				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
1844 
1845 				if (src1 != dst)
1846 					overflow_ra = reg_map[src1];
1847 				else {
1848 					/* Rare ocasion. */
1849 					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1850 					overflow_ra = TMP_EREG2;
1851 				}
1852 			}
1853 
1854 			if (op & SLJIT_SET_E)
1855 				FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));
1856 
1857 			if (op & (SLJIT_SET_U | SLJIT_SET_C))
1858 				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));
1859 
1860 			if (op & SLJIT_SET_U)
1861 				FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));
1862 
1863 			if (op & SLJIT_SET_S) {
1864 				FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
1865 				FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
1866 			}
1867 
1868 			/* dst may be the same as src1 or src2. */
1869 			if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
1870 				FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
1871 		}
1872 
1873 		if (op & SLJIT_SET_O) {
1874 			FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
1875 			FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
1876 			return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
1877 		}
1878 
1879 		return SLJIT_SUCCESS;
1880 
1881 	case SLJIT_SUBC:
1882 		if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
1883 			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
1884 			src2 = TMP_REG2;
1885 			flags &= ~SRC2_IMM;
1886 		}
1887 
1888 		if (flags & SRC2_IMM) {
1889 			if (op & SLJIT_SET_C) {
1890 				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
1891 				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
1892 			}
1893 
1894 			/* dst may be the same as src1 or src2. */
1895 			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
1896 
1897 		} else {
1898 			if (op & SLJIT_SET_C)
1899 				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
1900 				/* dst may be the same as src1 or src2. */
1901 			FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
1902 		}
1903 
1904 		if (op & SLJIT_SET_C)
1905 			FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));
1906 
1907 		FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));
1908 
1909 		if (op & SLJIT_SET_C)
1910 			FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));
1911 
1912 		return SLJIT_SUCCESS;
1913 
1914 #define EMIT_LOGICAL(op_imm, op_norm) \
1915 	if (flags & SRC2_IMM) { \
1916 		FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
1917 		if (op & SLJIT_SET_E) \
1918 			FAIL_IF(push_3_buffer( \
1919 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1920 				ADDR_TMP_mapped, __LINE__)); \
1921 		if (CHECK_FLAGS(SLJIT_SET_E)) \
1922 			FAIL_IF(push_3_buffer( \
1923 				compiler, op_norm, reg_map[dst], reg_map[src1], \
1924 				ADDR_TMP_mapped, __LINE__)); \
1925 	} else { \
1926 		if (op & SLJIT_SET_E) \
1927 			FAIL_IF(push_3_buffer( \
1928 				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1929 				reg_map[src2], __LINE__)); \
1930 		if (CHECK_FLAGS(SLJIT_SET_E)) \
1931 			FAIL_IF(push_3_buffer( \
1932 				compiler, op_norm, reg_map[dst], reg_map[src1], \
1933 				reg_map[src2], __LINE__)); \
1934 	}
1935 
1936 	case SLJIT_AND:
1937 		EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
1938 		return SLJIT_SUCCESS;
1939 
1940 	case SLJIT_OR:
1941 		EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
1942 		return SLJIT_SUCCESS;
1943 
1944 	case SLJIT_XOR:
1945 		EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
1946 		return SLJIT_SUCCESS;
1947 
1948 #define EMIT_SHIFT(op_imm, op_norm) \
1949 	if (flags & SRC2_IMM) { \
1950 		if (op & SLJIT_SET_E) \
1951 			FAIL_IF(push_3_buffer( \
1952 				compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
1953 				src2 & 0x3F, __LINE__)); \
1954 		if (CHECK_FLAGS(SLJIT_SET_E)) \
1955 			FAIL_IF(push_3_buffer( \
1956 				compiler, op_imm, reg_map[dst], reg_map[src1], \
1957 				src2 & 0x3F, __LINE__)); \
1958 	} else { \
1959 		if (op & SLJIT_SET_E) \
1960 			FAIL_IF(push_3_buffer( \
1961 				compiler, op_imm, reg_map[dst], reg_map[src1], \
1962 				src2 & 0x3F, __LINE__)); \
1963 		if (CHECK_FLAGS(SLJIT_SET_E)) \
1964 			FAIL_IF(push_3_buffer( \
1965 				compiler, op_norm, reg_map[dst], reg_map[src1], \
1966 				reg_map[src2], __LINE__)); \
1967 	}
1968 
1969 	case SLJIT_SHL:
1970 		EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
1971 		return SLJIT_SUCCESS;
1972 
1973 	case SLJIT_LSHR:
1974 		EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
1975 		return SLJIT_SUCCESS;
1976 
1977 	case SLJIT_ASHR:
1978 		EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
1979 		return SLJIT_SUCCESS;
1980 	}
1981 
1982 	SLJIT_ASSERT_STOP();
1983 	return SLJIT_SUCCESS;
1984 }
1985 
1986 static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
1987 {
1988 	/* arg1 goes to TMP_REG1 or src reg.
1989 	   arg2 goes to TMP_REG2, imm or src reg.
1990 	   TMP_REG3 can be used for caching.
1991 	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
1992 	sljit_si dst_r = TMP_REG2;
1993 	sljit_si src1_r;
1994 	sljit_sw src2_r = 0;
1995 	sljit_si sugg_src2_r = TMP_REG2;
1996 
1997 	if (!(flags & ALT_KEEP_CACHE)) {
1998 		compiler->cache_arg = 0;
1999 		compiler->cache_argw = 0;
2000 	}
2001 
2002 	if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
2003 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
2004 			return SLJIT_SUCCESS;
2005 		if (GET_FLAGS(op))
2006 			flags |= UNUSED_DEST;
2007 	} else if (FAST_IS_REG(dst)) {
2008 		dst_r = dst;
2009 		flags |= REG_DEST;
2010 		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
2011 			sugg_src2_r = dst_r;
2012 	} else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
2013 		flags |= SLOW_DEST;
2014 
2015 	if (flags & IMM_OP) {
2016 		if ((src2 & SLJIT_IMM) && src2w) {
2017 			if ((!(flags & LOGICAL_OP)
2018 					&& (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
2019 					|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
2020 				flags |= SRC2_IMM;
2021 				src2_r = src2w;
2022 			}
2023 		}
2024 
2025 		if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
2026 			if ((!(flags & LOGICAL_OP)
2027 					&& (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
2028 					|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
2029 				flags |= SRC2_IMM;
2030 				src2_r = src1w;
2031 
2032 				/* And swap arguments. */
2033 				src1 = src2;
2034 				src1w = src2w;
2035 				src2 = SLJIT_IMM;
2036 				/* src2w = src2_r unneeded. */
2037 			}
2038 		}
2039 	}
2040 
2041 	/* Source 1. */
2042 	if (FAST_IS_REG(src1)) {
2043 		src1_r = src1;
2044 		flags |= REG1_SOURCE;
2045 	} else if (src1 & SLJIT_IMM) {
2046 		if (src1w) {
2047 			FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
2048 			src1_r = TMP_REG1;
2049 		} else
2050 			src1_r = 0;
2051 	} else {
2052 		if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
2053 			FAIL_IF(compiler->error);
2054 		else
2055 			flags |= SLOW_SRC1;
2056 		src1_r = TMP_REG1;
2057 	}
2058 
2059 	/* Source 2. */
2060 	if (FAST_IS_REG(src2)) {
2061 		src2_r = src2;
2062 		flags |= REG2_SOURCE;
2063 		if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
2064 			dst_r = src2_r;
2065 	} else if (src2 & SLJIT_IMM) {
2066 		if (!(flags & SRC2_IMM)) {
2067 			if (src2w) {
2068 				FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
2069 				src2_r = sugg_src2_r;
2070 			} else {
2071 				src2_r = 0;
2072 				if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
2073 					dst_r = 0;
2074 			}
2075 		}
2076 	} else {
2077 		if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
2078 			FAIL_IF(compiler->error);
2079 		else
2080 			flags |= SLOW_SRC2;
2081 		src2_r = sugg_src2_r;
2082 	}
2083 
2084 	if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
2085 		SLJIT_ASSERT(src2_r == TMP_REG2);
2086 		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
2087 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
2088 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
2089 		} else {
2090 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
2091 			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
2092 		}
2093 	} else if (flags & SLOW_SRC1)
2094 		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
2095 	else if (flags & SLOW_SRC2)
2096 		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));
2097 
2098 	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
2099 
2100 	if (dst & SLJIT_MEM) {
2101 		if (!(flags & SLOW_DEST)) {
2102 			getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
2103 			return compiler->error;
2104 		}
2105 
2106 		return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
2107 	}
2108 
2109 	return SLJIT_SUCCESS;
2110 }
2111 
2112 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw, sljit_si type)
2113 {
2114 	sljit_si sugg_dst_ar, dst_ar;
2115 	sljit_si flags = GET_ALL_FLAGS(op);
2116 
2117 	CHECK_ERROR();
2118 	check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type);
2119 	ADJUST_LOCAL_OFFSET(dst, dstw);
2120 
2121 	if (dst == SLJIT_UNUSED)
2122 		return SLJIT_SUCCESS;
2123 
2124 	op = GET_OPCODE(op);
2125 	sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];
2126 
2127 	compiler->cache_arg = 0;
2128 	compiler->cache_argw = 0;
2129 	if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
2130 		ADJUST_LOCAL_OFFSET(src, srcw);
2131 		FAIL_IF(emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
2132 		src = TMP_REG1;
2133 		srcw = 0;
2134 	}
2135 
2136 	switch (type) {
2137 	case SLJIT_C_EQUAL:
2138 	case SLJIT_C_NOT_EQUAL:
2139 		FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
2140 		dst_ar = sugg_dst_ar;
2141 		break;
2142 	case SLJIT_C_LESS:
2143 	case SLJIT_C_GREATER_EQUAL:
2144 	case SLJIT_C_FLOAT_LESS:
2145 	case SLJIT_C_FLOAT_GREATER_EQUAL:
2146 		dst_ar = ULESS_FLAG;
2147 		break;
2148 	case SLJIT_C_GREATER:
2149 	case SLJIT_C_LESS_EQUAL:
2150 	case SLJIT_C_FLOAT_GREATER:
2151 	case SLJIT_C_FLOAT_LESS_EQUAL:
2152 		dst_ar = UGREATER_FLAG;
2153 		break;
2154 	case SLJIT_C_SIG_LESS:
2155 	case SLJIT_C_SIG_GREATER_EQUAL:
2156 		dst_ar = LESS_FLAG;
2157 		break;
2158 	case SLJIT_C_SIG_GREATER:
2159 	case SLJIT_C_SIG_LESS_EQUAL:
2160 		dst_ar = GREATER_FLAG;
2161 		break;
2162 	case SLJIT_C_OVERFLOW:
2163 	case SLJIT_C_NOT_OVERFLOW:
2164 		dst_ar = OVERFLOW_FLAG;
2165 		break;
2166 	case SLJIT_C_MUL_OVERFLOW:
2167 	case SLJIT_C_MUL_NOT_OVERFLOW:
2168 		FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
2169 		dst_ar = sugg_dst_ar;
2170 		type ^= 0x1; /* Flip type bit for the XORI below. */
2171 		break;
2172 	case SLJIT_C_FLOAT_EQUAL:
2173 	case SLJIT_C_FLOAT_NOT_EQUAL:
2174 		dst_ar = EQUAL_FLAG;
2175 		break;
2176 
2177 	default:
2178 		SLJIT_ASSERT_STOP();
2179 		dst_ar = sugg_dst_ar;
2180 		break;
2181 	}
2182 
2183 	if (type & 0x1) {
2184 		FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
2185 		dst_ar = sugg_dst_ar;
2186 	}
2187 
2188 	if (op >= SLJIT_ADD) {
2189 		if (TMP_REG2_mapped != dst_ar)
2190 			FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
2191 		return emit_op(compiler, op | flags, CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
2192 	}
2193 
2194 	if (dst & SLJIT_MEM)
2195 		return emit_op_mem(compiler, WORD_DATA, dst_ar, dst, dstw);
2196 
2197 	if (sugg_dst_ar != dst_ar)
2198 		return ADD(sugg_dst_ar, dst_ar, ZERO);
2199 
2200 	return SLJIT_SUCCESS;
2201 }
2202 
2203 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op) {
2204 	CHECK_ERROR();
2205 	check_sljit_emit_op0(compiler, op);
2206 
2207 	op = GET_OPCODE(op);
2208 	switch (op) {
2209 	case SLJIT_NOP:
2210 		return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);
2211 
2212 	case SLJIT_BREAKPOINT:
2213 		return PI(BPT);
2214 
2215 	case SLJIT_UMUL:
2216 	case SLJIT_SMUL:
2217 	case SLJIT_UDIV:
2218 	case SLJIT_SDIV:
2219 		SLJIT_ASSERT_STOP();
2220 	}
2221 
2222 	return SLJIT_SUCCESS;
2223 }
2224 
2225 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
2226 {
2227 	CHECK_ERROR();
2228 	check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
2229 	ADJUST_LOCAL_OFFSET(dst, dstw);
2230 	ADJUST_LOCAL_OFFSET(src, srcw);
2231 
2232 	switch (GET_OPCODE(op)) {
2233 	case SLJIT_MOV:
2234 	case SLJIT_MOV_P:
2235 		return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2236 
2237 	case SLJIT_MOV_UI:
2238 		return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2239 
2240 	case SLJIT_MOV_SI:
2241 		return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2242 
2243 	case SLJIT_MOV_UB:
2244 		return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
2245 
2246 	case SLJIT_MOV_SB:
2247 		return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
2248 
2249 	case SLJIT_MOV_UH:
2250 		return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
2251 
2252 	case SLJIT_MOV_SH:
2253 		return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
2254 
2255 	case SLJIT_MOVU:
2256 	case SLJIT_MOVU_P:
2257 		return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2258 
2259 	case SLJIT_MOVU_UI:
2260 		return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2261 
2262 	case SLJIT_MOVU_SI:
2263 		return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2264 
2265 	case SLJIT_MOVU_UB:
2266 		return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
2267 
2268 	case SLJIT_MOVU_SB:
2269 		return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
2270 
2271 	case SLJIT_MOVU_UH:
2272 		return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
2273 
2274 	case SLJIT_MOVU_SH:
2275 		return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
2276 
2277 	case SLJIT_NOT:
2278 		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
2279 
2280 	case SLJIT_NEG:
2281 		return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
2282 
2283 	case SLJIT_CLZ:
2284 		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
2285 	}
2286 
2287 	return SLJIT_SUCCESS;
2288 }
2289 
2290 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
2291 {
2292 	CHECK_ERROR();
2293 	check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
2294 	ADJUST_LOCAL_OFFSET(dst, dstw);
2295 	ADJUST_LOCAL_OFFSET(src1, src1w);
2296 	ADJUST_LOCAL_OFFSET(src2, src2w);
2297 
2298 	switch (GET_OPCODE(op)) {
2299 	case SLJIT_ADD:
2300 	case SLJIT_ADDC:
2301 		return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2302 
2303 	case SLJIT_SUB:
2304 	case SLJIT_SUBC:
2305 		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2306 
2307 	case SLJIT_MUL:
2308 		return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
2309 
2310 	case SLJIT_AND:
2311 	case SLJIT_OR:
2312 	case SLJIT_XOR:
2313 		return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2314 
2315 	case SLJIT_SHL:
2316 	case SLJIT_LSHR:
2317 	case SLJIT_ASHR:
2318 		if (src2 & SLJIT_IMM)
2319 			src2w &= 0x3f;
2320 		if (op & SLJIT_INT_OP)
2321 			src2w &= 0x1f;
2322 
2323 		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2324 	}
2325 
2326 	return SLJIT_SUCCESS;
2327 }
2328 
2329 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
2330 {
2331 	struct sljit_label *label;
2332 
2333 	flush_buffer(compiler);
2334 
2335 	CHECK_ERROR_PTR();
2336 	check_sljit_emit_label(compiler);
2337 
2338 	if (compiler->last_label && compiler->last_label->size == compiler->size)
2339 		return compiler->last_label;
2340 
2341 	label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
2342 	PTR_FAIL_IF(!label);
2343 	set_label(label, compiler);
2344 	return label;
2345 }
2346 
2347 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
2348 {
2349 	sljit_si src_r = TMP_REG2;
2350 	struct sljit_jump *jump = NULL;
2351 
2352 	flush_buffer(compiler);
2353 
2354 	CHECK_ERROR();
2355 	check_sljit_emit_ijump(compiler, type, src, srcw);
2356 	ADJUST_LOCAL_OFFSET(src, srcw);
2357 
2358 	if (FAST_IS_REG(src)) {
2359 		if (reg_map[src] != 0)
2360 			src_r = src;
2361 		else
2362 			FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
2363 	}
2364 
2365 	if (type >= SLJIT_CALL0) {
2366 		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
2367 		if (src & (SLJIT_IMM | SLJIT_MEM)) {
2368 			if (src & SLJIT_IMM)
2369 				FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
2370 			else {
2371 				SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
2372 				FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2373 			}
2374 
2375 			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
2376 
2377 			FAIL_IF(ADDI_SOLO(54, 54, -16));
2378 
2379 			FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));
2380 
2381 			return ADDI_SOLO(54, 54, 16);
2382 		}
2383 
2384 		/* Register input. */
2385 		if (type >= SLJIT_CALL1)
2386 			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
2387 
2388 		FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));
2389 
2390 		FAIL_IF(ADDI_SOLO(54, 54, -16));
2391 
2392 		FAIL_IF(JALR_SOLO(reg_map[src_r]));
2393 
2394 		return ADDI_SOLO(54, 54, 16);
2395 	}
2396 
2397 	if (src & SLJIT_IMM) {
2398 		jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
2399 		FAIL_IF(!jump);
2400 		set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
2401 		jump->u.target = srcw;
2402 		FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
2403 
2404 		if (type >= SLJIT_FAST_CALL) {
2405 			FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
2406 			jump->addr = compiler->size;
2407 			FAIL_IF(JR_SOLO(reg_map[src_r]));
2408 		} else {
2409 			jump->addr = compiler->size;
2410 			FAIL_IF(JR_SOLO(reg_map[src_r]));
2411 		}
2412 
2413 		return SLJIT_SUCCESS;
2414 
2415 	} else if (src & SLJIT_MEM)
2416 		FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2417 
2418 	FAIL_IF(JR_SOLO(reg_map[src_r]));
2419 
2420 	if (jump)
2421 		jump->addr = compiler->size;
2422 
2423 	return SLJIT_SUCCESS;
2424 }
2425 
2426 #define BR_Z(src) \
2427 	inst = BEQZ_X1 | SRCA_X1(src); \
2428 	flags = IS_COND;
2429 
2430 #define BR_NZ(src) \
2431 	inst = BNEZ_X1 | SRCA_X1(src); \
2432 	flags = IS_COND;
2433 
2434 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
2435 {
2436 	struct sljit_jump *jump;
2437 	sljit_ins inst;
2438 	sljit_si flags = 0;
2439 
2440 	flush_buffer(compiler);
2441 
2442 	CHECK_ERROR_PTR();
2443 	check_sljit_emit_jump(compiler, type);
2444 
2445 	jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
2446 	PTR_FAIL_IF(!jump);
2447 	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
2448 	type &= 0xff;
2449 
2450 	switch (type) {
2451 	case SLJIT_C_EQUAL:
2452 	case SLJIT_C_FLOAT_NOT_EQUAL:
2453 		BR_NZ(EQUAL_FLAG);
2454 		break;
2455 	case SLJIT_C_NOT_EQUAL:
2456 	case SLJIT_C_FLOAT_EQUAL:
2457 		BR_Z(EQUAL_FLAG);
2458 		break;
2459 	case SLJIT_C_LESS:
2460 	case SLJIT_C_FLOAT_LESS:
2461 		BR_Z(ULESS_FLAG);
2462 		break;
2463 	case SLJIT_C_GREATER_EQUAL:
2464 	case SLJIT_C_FLOAT_GREATER_EQUAL:
2465 		BR_NZ(ULESS_FLAG);
2466 		break;
2467 	case SLJIT_C_GREATER:
2468 	case SLJIT_C_FLOAT_GREATER:
2469 		BR_Z(UGREATER_FLAG);
2470 		break;
2471 	case SLJIT_C_LESS_EQUAL:
2472 	case SLJIT_C_FLOAT_LESS_EQUAL:
2473 		BR_NZ(UGREATER_FLAG);
2474 		break;
2475 	case SLJIT_C_SIG_LESS:
2476 		BR_Z(LESS_FLAG);
2477 		break;
2478 	case SLJIT_C_SIG_GREATER_EQUAL:
2479 		BR_NZ(LESS_FLAG);
2480 		break;
2481 	case SLJIT_C_SIG_GREATER:
2482 		BR_Z(GREATER_FLAG);
2483 		break;
2484 	case SLJIT_C_SIG_LESS_EQUAL:
2485 		BR_NZ(GREATER_FLAG);
2486 		break;
2487 	case SLJIT_C_OVERFLOW:
2488 	case SLJIT_C_MUL_OVERFLOW:
2489 		BR_Z(OVERFLOW_FLAG);
2490 		break;
2491 	case SLJIT_C_NOT_OVERFLOW:
2492 	case SLJIT_C_MUL_NOT_OVERFLOW:
2493 		BR_NZ(OVERFLOW_FLAG);
2494 		break;
2495 	default:
2496 		/* Not conditional branch. */
2497 		inst = 0;
2498 		break;
2499 	}
2500 
2501 	jump->flags |= flags;
2502 
2503 	if (inst) {
2504 		inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
2505 		PTR_FAIL_IF(PI(inst));
2506 	}
2507 
2508 	PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
2509 	if (type <= SLJIT_JUMP) {
2510 		jump->addr = compiler->size;
2511 		PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
2512 	} else {
2513 		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
2514 		/* Cannot be optimized out if type is >= CALL0. */
2515 		jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
2516 		PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_SCRATCH_REG1], ZERO));
2517 		jump->addr = compiler->size;
2518 		PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
2519 	}
2520 
2521 	return jump;
2522 }
2523 
2524 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
2525 {
2526 	return 0;
2527 }
2528 
2529 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
2530 {
2531 	SLJIT_ASSERT_STOP();
2532 }
2533 
2534 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
2535 {
2536 	SLJIT_ASSERT_STOP();
2537 }
2538 
2539 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
2540 {
2541 	struct sljit_const *const_;
2542 	sljit_si reg;
2543 
2544 	flush_buffer(compiler);
2545 
2546 	CHECK_ERROR_PTR();
2547 	check_sljit_emit_const(compiler, dst, dstw, init_value);
2548 	ADJUST_LOCAL_OFFSET(dst, dstw);
2549 
2550 	const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
2551 	PTR_FAIL_IF(!const_);
2552 	set_const(const_, compiler);
2553 
2554 	reg = FAST_IS_REG(dst) ? dst : TMP_REG2;
2555 
2556 	PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));
2557 
2558 	if (dst & SLJIT_MEM)
2559 		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
2560 	return const_;
2561 }
2562 
2563 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
2564 {
2565 	sljit_ins *inst = (sljit_ins *)addr;
2566 
2567 	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
2568 	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
2569 	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
2570 	SLJIT_CACHE_FLUSH(inst, inst + 3);
2571 }
2572 
2573 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
2574 {
2575 	sljit_ins *inst = (sljit_ins *)addr;
2576 
2577 	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
2578 	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
2579 	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
2580 	inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
2581 	SLJIT_CACHE_FLUSH(inst, inst + 4);
2582 }
2583