xref: /netbsd-src/sys/external/bsd/ipf/netinet/fil.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /*	$NetBSD: fil.c,v 1.22 2018/02/04 08:19:42 mrg Exp $	*/
2 
3 /*
4  * Copyright (C) 2012 by Darren Reed.
5  *
6  * See the IPFILTER.LICENCE file for details on licencing.
7  *
8  * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $
9  *
10  */
11 #if defined(KERNEL) || defined(_KERNEL)
12 # undef KERNEL
13 # undef _KERNEL
14 # define        KERNEL	1
15 # define        _KERNEL	1
16 #endif
17 #include <sys/errno.h>
18 #include <sys/types.h>
19 #include <sys/param.h>
20 #include <sys/time.h>
21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
22     (__FreeBSD_version >= 220000)
23 # if (__FreeBSD_version >= 400000)
24 #  if !defined(IPFILTER_LKM)
25 #   include "opt_inet6.h"
26 #  endif
27 #  if (__FreeBSD_version == 400019)
28 #   define CSUM_DELAY_DATA
29 #  endif
30 # endif
31 # include <sys/filio.h>
32 #else
33 # include <sys/ioctl.h>
34 #endif
35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
36 # include <sys/filio.h>
37 #endif
38 #if !defined(_AIX51)
39 # include <sys/fcntl.h>
40 #endif
41 #if defined(_KERNEL)
42 # include <sys/systm.h>
43 # include <sys/file.h>
44 #else
45 # include <stdio.h>
46 # include <string.h>
47 # include <stdlib.h>
48 # include <stddef.h>
49 # include <sys/file.h>
50 # define _KERNEL
51 # ifdef __OpenBSD__
52 struct file;
53 # endif
54 # include <sys/uio.h>
55 # undef _KERNEL
56 #endif
57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
58     !defined(linux)
59 # include <sys/mbuf.h>
60 #else
61 # if !defined(linux)
62 #  include <sys/byteorder.h>
63 # endif
64 # if (SOLARIS2 < 5) && defined(sun)
65 #  include <sys/dditypes.h>
66 # endif
67 #endif
68 #ifdef __hpux
69 # define _NET_ROUTE_INCLUDED
70 #endif
71 #if !defined(linux)
72 # include <sys/protosw.h>
73 #endif
74 #include <sys/socket.h>
75 #include <net/if.h>
76 #ifdef sun
77 # include <net/af.h>
78 #endif
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
83 # include <sys/hashing.h>
84 # include <netinet/in_var.h>
85 #endif
86 #include <netinet/tcp.h>
87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
88 # include <netinet/udp.h>
89 # include <netinet/ip_icmp.h>
90 #endif
91 #ifdef __hpux
92 # undef _NET_ROUTE_INCLUDED
93 #endif
94 #ifdef __osf__
95 # undef _RADIX_H_
96 #endif
97 #include "netinet/ip_compat.h"
98 #ifdef	USE_INET6
99 # include <netinet/icmp6.h>
100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
101 #  include <netinet6/in6_var.h>
102 # endif
103 #endif
104 #include "netinet/ip_fil.h"
105 #include "netinet/ip_nat.h"
106 #include "netinet/ip_frag.h"
107 #include "netinet/ip_state.h"
108 #include "netinet/ip_proxy.h"
109 #include "netinet/ip_auth.h"
110 #ifdef IPFILTER_SCAN
111 # include "netinet/ip_scan.h"
112 #endif
113 #include "netinet/ip_sync.h"
114 #include "netinet/ip_lookup.h"
115 #include "netinet/ip_pool.h"
116 #include "netinet/ip_htable.h"
117 #ifdef IPFILTER_COMPILED
118 # include "netinet/ip_rules.h"
119 #endif
120 #if defined(IPFILTER_BPF) && defined(_KERNEL)
121 # include <net/bpf.h>
122 #endif
123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
124 # include <sys/malloc.h>
125 #endif
126 #include "netinet/ipl.h"
127 
128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
129 # include <sys/callout.h>
130 extern struct callout ipf_slowtimer_ch;
131 #endif
132 #if defined(__OpenBSD__)
133 # include <sys/timeout.h>
134 extern struct timeout ipf_slowtimer_ch;
135 #endif
136 /* END OF INCLUDES */
137 
138 #if !defined(lint)
139 #if defined(__NetBSD__)
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.22 2018/02/04 08:19:42 mrg Exp $");
142 #else
143 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
144 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $";
145 #endif
146 #endif
147 
148 #ifndef	_KERNEL
149 # include "ipf.h"
150 # include "ipt.h"
151 extern	int	opts;
152 extern	int	blockreason;
153 #endif /* _KERNEL */
154 
155 #define	LBUMP(x)	softc->x++
156 #define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
157 
158 static	INLINE int	ipf_check_ipf(fr_info_t *, frentry_t *, int);
159 static	u_32_t		ipf_checkcipso(fr_info_t *, u_char *, int);
160 static	u_32_t		ipf_checkripso(u_char *);
161 static	u_32_t		ipf_decaps(fr_info_t *, u_32_t, int);
162 #ifdef	IPFILTER_LOG
163 static	frentry_t	*ipf_dolog(fr_info_t *, u_32_t *);
164 #endif
165 static	int		ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
166 static	int		ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int);
167 static	ipfunc_t	ipf_findfunc(ipfunc_t);
168 static	void		*ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
169 					i6addr_t *, i6addr_t *);
170 static	frentry_t	*ipf_firewall(fr_info_t *, u_32_t *);
171 static	int		ipf_fr_matcharray(fr_info_t *, int *);
172 static	int		ipf_frruleiter(ipf_main_softc_t *, void *, int, void *);
173 static	void		ipf_funcfini(ipf_main_softc_t *, frentry_t *);;
174 static	int		ipf_funcinit(ipf_main_softc_t *, frentry_t *);
175 static	int		ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
176 				    ipfgeniter_t *);
177 static	void		ipf_getstat(ipf_main_softc_t *,
178 				    struct friostat *, int);
179 static	int		ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
180 static	void		ipf_group_free(frgroup_t *);
181 static	int		ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *);
182 static	int		ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *);
183 static	frentry_t	*ipf_nextrule(ipf_main_softc_t *, int, int,
184 					frentry_t *, int);
185 static	int		ipf_portcheck(frpcmp_t *, u_32_t);
186 static	INLINE int	ipf_pr_ah(fr_info_t *);
187 static	INLINE void	ipf_pr_esp(fr_info_t *);
188 static	INLINE void	ipf_pr_gre(fr_info_t *);
189 static	INLINE void	ipf_pr_udp(fr_info_t *);
190 static	INLINE void	ipf_pr_tcp(fr_info_t *);
191 static	INLINE void	ipf_pr_icmp(fr_info_t *);
192 static	INLINE void	ipf_pr_ipv4hdr(fr_info_t *);
193 static	INLINE void	ipf_pr_short(fr_info_t *, int);
194 static	INLINE int	ipf_pr_tcpcommon(fr_info_t *);
195 static	INLINE int	ipf_pr_udpcommon(fr_info_t *);
196 static	void		ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
197 					int, int);
198 static	void		ipf_rule_expire_insert(ipf_main_softc_t *,
199 					       frentry_t *, int);
200 static	int		ipf_synclist(ipf_main_softc_t *, frentry_t *, void *);
201 static	void		ipf_token_flush(ipf_main_softc_t *);
202 static	void		ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *);
203 static	ipftuneable_t	*ipf_tune_findbyname(ipftuneable_t *, const char *);
204 static	ipftuneable_t	*ipf_tune_findbycookie(ipftuneable_t **, void *,
205 					       void **);
206 static	int		ipf_updateipid(fr_info_t *);
207 static	int		ipf_settimeout(struct ipf_main_softc_s *,
208 				       struct ipftuneable *, ipftuneval_t *);
209 
210 
211 /*
212  * bit values for identifying presence of individual IP options
213  * All of these tables should be ordered by increasing key value on the left
214  * hand side to allow for binary searching of the array and include a trailer
215  * with a 0 for the bitmask for linear searches to easily find the end with.
216  */
217 static const	struct	optlist	ipopts[20] = {
218 	{ IPOPT_NOP,	0x000001 },
219 	{ IPOPT_RR,	0x000002 },
220 	{ IPOPT_ZSU,	0x000004 },
221 	{ IPOPT_MTUP,	0x000008 },
222 	{ IPOPT_MTUR,	0x000010 },
223 	{ IPOPT_ENCODE,	0x000020 },
224 	{ IPOPT_TS,	0x000040 },
225 	{ IPOPT_TR,	0x000080 },
226 	{ IPOPT_SECURITY, 0x000100 },
227 	{ IPOPT_LSRR,	0x000200 },
228 	{ IPOPT_E_SEC,	0x000400 },
229 	{ IPOPT_CIPSO,	0x000800 },
230 	{ IPOPT_SATID,	0x001000 },
231 	{ IPOPT_SSRR,	0x002000 },
232 	{ IPOPT_ADDEXT,	0x004000 },
233 	{ IPOPT_VISA,	0x008000 },
234 	{ IPOPT_IMITD,	0x010000 },
235 	{ IPOPT_EIP,	0x020000 },
236 	{ IPOPT_FINN,	0x040000 },
237 	{ 0,		0x000000 }
238 };
239 
240 #ifdef USE_INET6
241 static const struct optlist ip6exthdr[] = {
242 	{ IPPROTO_HOPOPTS,		0x000001 },
243 	{ IPPROTO_IPV6,			0x000002 },
244 	{ IPPROTO_ROUTING,		0x000004 },
245 	{ IPPROTO_FRAGMENT,		0x000008 },
246 	{ IPPROTO_ESP,			0x000010 },
247 	{ IPPROTO_AH,			0x000020 },
248 	{ IPPROTO_NONE,			0x000040 },
249 	{ IPPROTO_DSTOPTS,		0x000080 },
250 	{ IPPROTO_MOBILITY,		0x000100 },
251 	{ 0,				0 }
252 };
253 #endif
254 
255 /*
256  * bit values for identifying presence of individual IP security options
257  */
258 static const	struct	optlist	secopt[8] = {
259 	{ IPSO_CLASS_RES4,	0x01 },
260 	{ IPSO_CLASS_TOPS,	0x02 },
261 	{ IPSO_CLASS_SECR,	0x04 },
262 	{ IPSO_CLASS_RES3,	0x08 },
263 	{ IPSO_CLASS_CONF,	0x10 },
264 	{ IPSO_CLASS_UNCL,	0x20 },
265 	{ IPSO_CLASS_RES2,	0x40 },
266 	{ IPSO_CLASS_RES1,	0x80 }
267 };
268 
269 char	ipfilter_version[] = IPL_VERSION;
270 
271 int	ipf_features = 0
272 #ifdef	IPFILTER_LKM
273 		| IPF_FEAT_LKM
274 #endif
275 #ifdef	IPFILTER_LOG
276 		| IPF_FEAT_LOG
277 #endif
278 		| IPF_FEAT_LOOKUP
279 #ifdef	IPFILTER_BPF
280 		| IPF_FEAT_BPF
281 #endif
282 #ifdef	IPFILTER_COMPILED
283 		| IPF_FEAT_COMPILED
284 #endif
285 #ifdef	IPFILTER_CKSUM
286 		| IPF_FEAT_CKSUM
287 #endif
288 		| IPF_FEAT_SYNC
289 #ifdef	IPFILTER_SCAN
290 		| IPF_FEAT_SCAN
291 #endif
292 #ifdef	USE_INET6
293 		| IPF_FEAT_IPV6
294 #endif
295 	;
296 
297 
298 /*
299  * Table of functions available for use with call rules.
300  */
301 static ipfunc_resolve_t ipf_availfuncs[] = {
302 	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
303 	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
304 	{ "",	       NULL,	      NULL,	      NULL }
305 };
306 
307 static ipftuneable_t ipf_main_tuneables[] = {
308 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
309 		"ipf_flags",		0,	0xffffffff,
310 		stsizeof(ipf_main_softc_t, ipf_flags),
311 		0,			NULL,	NULL },
312 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
313 		"active",		0,	0,
314 		stsizeof(ipf_main_softc_t, ipf_active),
315 		IPFT_RDONLY,		NULL,	NULL },
316 	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
317 		"control_forwarding",	0, 1,
318 		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
319 		0,			NULL,	NULL },
320 	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
321 		"update_ipid",		0,	1,
322 		stsizeof(ipf_main_softc_t, ipf_update_ipid),
323 		0,			NULL,	NULL },
324 	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
325 		"chksrc",		0,	1,
326 		stsizeof(ipf_main_softc_t, ipf_chksrc),
327 		0,			NULL,	NULL },
328 	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
329 		"min_ttl",		0,	1,
330 		stsizeof(ipf_main_softc_t, ipf_minttl),
331 		0,			NULL,	NULL },
332 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
333 		"icmp_minfragmtu",	0,	1,
334 		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
335 		0,			NULL,	NULL },
336 	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
337 		"default_pass",		0,	0xffffffff,
338 		stsizeof(ipf_main_softc_t, ipf_pass),
339 		0,			NULL,	NULL },
340 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
341 		"tcp_idle_timeout",	1,	0x7fffffff,
342 		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
343 		0,			NULL,	ipf_settimeout },
344 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
345 		"tcp_close_wait",	1,	0x7fffffff,
346 		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
347 		0,			NULL,	ipf_settimeout },
348 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
349 		"tcp_last_ack",		1,	0x7fffffff,
350 		stsizeof(ipf_main_softc_t, ipf_tcplastack),
351 		0,			NULL,	ipf_settimeout },
352 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
353 		"tcp_timeout",		1,	0x7fffffff,
354 		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
355 		0,			NULL,	ipf_settimeout },
356 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
357 		"tcp_syn_sent",		1,	0x7fffffff,
358 		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
359 		0,			NULL,	ipf_settimeout },
360 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
361 		"tcp_syn_received",	1,	0x7fffffff,
362 		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
363 		0,			NULL,	ipf_settimeout },
364 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
365 		"tcp_closed",		1,	0x7fffffff,
366 		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
367 		0,			NULL,	ipf_settimeout },
368 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
369 		"tcp_half_closed",	1,	0x7fffffff,
370 		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
371 		0,			NULL,	ipf_settimeout },
372 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
373 		"tcp_time_wait",	1,	0x7fffffff,
374 		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
375 		0,			NULL,	ipf_settimeout },
376 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
377 		"udp_timeout",		1,	0x7fffffff,
378 		stsizeof(ipf_main_softc_t, ipf_udptimeout),
379 		0,			NULL,	ipf_settimeout },
380 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
381 		"udp_ack_timeout",	1,	0x7fffffff,
382 		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
383 		0,			NULL,	ipf_settimeout },
384 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
385 		"icmp_timeout",		1,	0x7fffffff,
386 		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
387 		0,			NULL,	ipf_settimeout },
388 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
389 		"icmp_ack_timeout",	1,	0x7fffffff,
390 		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
391 		0,			NULL,	ipf_settimeout },
392 	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
393 		"ip_timeout",		1,	0x7fffffff,
394 		stsizeof(ipf_main_softc_t, ipf_iptimeout),
395 		0,			NULL,	ipf_settimeout },
396 #if defined(INSTANCES) && defined(_KERNEL)
397 	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
398 		"intercept_loopback",	0,	1,
399 		stsizeof(ipf_main_softc_t, ipf_get_loopback),
400 		0,			NULL,	ipf_set_loopback },
401 #endif
402 	{ { 0 },
403 		NULL,			0,	0,
404 		0,
405 		0,			NULL,	NULL }
406 };
407 
408 
409 /*
410  * The next section of code is a a collection of small routines that set
411  * fields in the fr_info_t structure passed based on properties of the
412  * current packet.  There are different routines for the same protocol
413  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
414  * will "special" inspection for setup, is now more easily done by adding
415  * a new routine and expanding the ipf_pr_ipinit*() function rather than by
416  * adding more code to a growing switch statement.
417  */
418 #ifdef USE_INET6
419 static	INLINE int	ipf_pr_ah6(fr_info_t *);
420 static	INLINE void	ipf_pr_esp6(fr_info_t *);
421 static	INLINE void	ipf_pr_gre6(fr_info_t *);
422 static	INLINE void	ipf_pr_udp6(fr_info_t *);
423 static	INLINE void	ipf_pr_tcp6(fr_info_t *);
424 static	INLINE void	ipf_pr_icmp6(fr_info_t *);
425 static	INLINE void	ipf_pr_ipv6hdr(fr_info_t *);
426 static	INLINE void	ipf_pr_short6(fr_info_t *, int);
427 static	INLINE int	ipf_pr_hopopts6(fr_info_t *);
428 static	INLINE int	ipf_pr_mobility6(fr_info_t *);
429 static	INLINE int	ipf_pr_routing6(fr_info_t *);
430 static	INLINE int	ipf_pr_dstopts6(fr_info_t *);
431 static	INLINE int	ipf_pr_fragment6(fr_info_t *);
432 static	INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
433 
434 
435 /* ------------------------------------------------------------------------ */
436 /* Function:    ipf_pr_short6                                               */
437 /* Returns:     void                                                        */
438 /* Parameters:  fin(I)  - pointer to packet information                     */
439 /*              xmin(I) - minimum header size                               */
440 /*                                                                          */
441 /* IPv6 Only                                                                */
442 /* This is function enforces the 'is a packet too short to be legit' rule   */
443 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
444 /* for ipf_pr_short() for more details.                                     */
445 /* ------------------------------------------------------------------------ */
446 static INLINE void
447 ipf_pr_short6(fr_info_t *fin, int xmin)
448 {
449 
450 	if (fin->fin_dlen < xmin)
451 		fin->fin_flx |= FI_SHORT;
452 }
453 
454 
455 /* ------------------------------------------------------------------------ */
456 /* Function:    ipf_pr_ipv6hdr                                              */
457 /* Returns:     void                                                        */
458 /* Parameters:  fin(I) - pointer to packet information                      */
459 /*                                                                          */
460 /* IPv6 Only                                                                */
461 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
462 /* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
463 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
464 /* of that possibility arising.                                             */
465 /* ------------------------------------------------------------------------ */
466 static INLINE void
467 ipf_pr_ipv6hdr(fr_info_t *fin)
468 {
469 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
470 	int p, go = 1, i, hdrcount;
471 	fr_ip_t *fi = &fin->fin_fi;
472 
473 	fin->fin_off = 0;
474 
475 	fi->fi_tos = 0;
476 	fi->fi_optmsk = 0;
477 	fi->fi_secmsk = 0;
478 	fi->fi_auth = 0;
479 
480 	p = ip6->ip6_nxt;
481 	fin->fin_crc = p;
482 	fi->fi_ttl = ip6->ip6_hlim;
483 	fi->fi_src.in6 = ip6->ip6_src;
484 	fin->fin_crc += fi->fi_src.i6[0];
485 	fin->fin_crc += fi->fi_src.i6[1];
486 	fin->fin_crc += fi->fi_src.i6[2];
487 	fin->fin_crc += fi->fi_src.i6[3];
488 	fi->fi_dst.in6 = ip6->ip6_dst;
489 	fin->fin_crc += fi->fi_dst.i6[0];
490 	fin->fin_crc += fi->fi_dst.i6[1];
491 	fin->fin_crc += fi->fi_dst.i6[2];
492 	fin->fin_crc += fi->fi_dst.i6[3];
493 	fin->fin_id = 0;
494 	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
495 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
496 
497 	hdrcount = 0;
498 	while (go && !(fin->fin_flx & FI_SHORT)) {
499 		switch (p)
500 		{
501 		case IPPROTO_UDP :
502 			ipf_pr_udp6(fin);
503 			go = 0;
504 			break;
505 
506 		case IPPROTO_TCP :
507 			ipf_pr_tcp6(fin);
508 			go = 0;
509 			break;
510 
511 		case IPPROTO_ICMPV6 :
512 			ipf_pr_icmp6(fin);
513 			go = 0;
514 			break;
515 
516 		case IPPROTO_GRE :
517 			ipf_pr_gre6(fin);
518 			go = 0;
519 			break;
520 
521 		case IPPROTO_HOPOPTS :
522 			p = ipf_pr_hopopts6(fin);
523 			break;
524 
525 		case IPPROTO_MOBILITY :
526 			p = ipf_pr_mobility6(fin);
527 			break;
528 
529 		case IPPROTO_DSTOPTS :
530 			p = ipf_pr_dstopts6(fin);
531 			break;
532 
533 		case IPPROTO_ROUTING :
534 			p = ipf_pr_routing6(fin);
535 			break;
536 
537 		case IPPROTO_AH :
538 			p = ipf_pr_ah6(fin);
539 			break;
540 
541 		case IPPROTO_ESP :
542 			ipf_pr_esp6(fin);
543 			go = 0;
544 			break;
545 
546 		case IPPROTO_IPV6 :
547 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
548 				if (ip6exthdr[i].ol_val == p) {
549 					fin->fin_flx |= ip6exthdr[i].ol_bit;
550 					break;
551 				}
552 			go = 0;
553 			break;
554 
555 		case IPPROTO_NONE :
556 			go = 0;
557 			break;
558 
559 		case IPPROTO_FRAGMENT :
560 			p = ipf_pr_fragment6(fin);
561 			/*
562 			 * Given that the only fragments we want to let through
563 			 * (where fin_off != 0) are those where the non-first
564 			 * fragments only have data, we can safely stop looking
565 			 * at headers if this is a non-leading fragment.
566 			 */
567 			if (fin->fin_off != 0)
568 				go = 0;
569 			break;
570 
571 		default :
572 			go = 0;
573 			break;
574 		}
575 		hdrcount++;
576 
577 		/*
578 		 * It is important to note that at this point, for the
579 		 * extension headers (go != 0), the entire header may not have
580 		 * been pulled up when the code gets to this point.  This is
581 		 * only done for "go != 0" because the other header handlers
582 		 * will all pullup their complete header.  The other indicator
583 		 * of an incomplete packet is that this was just an extension
584 		 * header.
585 		 */
586 		if ((go != 0) && (p != IPPROTO_NONE) &&
587 		    (ipf_pr_pullup(fin, 0) == -1)) {
588 			p = IPPROTO_NONE;
589 			break;
590 		}
591 	}
592 
593 	/*
594 	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
595 	 * and destroy whatever packet was here.  The caller of this function
596 	 * expects us to return if there is a problem with ipf_pullup.
597 	 */
598 	if (fin->fin_m == NULL) {
599 		ipf_main_softc_t *softc = fin->fin_main_soft;
600 
601 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
602 		return;
603 	}
604 
605 	fi->fi_p = p;
606 
607 	/*
608 	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
609 	 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
610 	 */
611 	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
612 		ipf_main_softc_t *softc = fin->fin_main_soft;
613 
614 		fin->fin_flx |= FI_BAD;
615 		DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
616 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
617 		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
618 	}
619 }
620 
621 
622 /* ------------------------------------------------------------------------ */
623 /* Function:    ipf_pr_ipv6exthdr                                           */
624 /* Returns:     struct ip6_ext * - pointer to the start of the next header  */
625 /*                                 or NULL if there is a prolblem.          */
626 /* Parameters:  fin(I)      - pointer to packet information                 */
627 /*              multiple(I) - flag indicating yes/no if multiple occurances */
628 /*                            of this extension header are allowed.         */
629 /*              proto(I)    - protocol number for this extension header     */
630 /*                                                                          */
631 /* IPv6 Only                                                                */
632 /* This function embodies a number of common checks that all IPv6 extension */
633 /* headers must be subjected to.  For example, making sure the packet is    */
634 /* big enough for it to be in, checking if it is repeated and setting a     */
635 /* flag to indicate its presence.                                           */
636 /* ------------------------------------------------------------------------ */
637 static INLINE struct ip6_ext *
638 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
639 {
640 	ipf_main_softc_t *softc = fin->fin_main_soft;
641 	struct ip6_ext *hdr;
642 	u_short shift;
643 	int i;
644 
645 	fin->fin_flx |= FI_V6EXTHDR;
646 
647 				/* 8 is default length of extension hdr */
648 	if ((fin->fin_dlen - 8) < 0) {
649 		fin->fin_flx |= FI_SHORT;
650 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
651 		return NULL;
652 	}
653 
654 	if (ipf_pr_pullup(fin, 8) == -1) {
655 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
656 		return NULL;
657 	}
658 
659 	hdr = fin->fin_dp;
660 	switch (proto)
661 	{
662 	case IPPROTO_FRAGMENT :
663 		shift = 8;
664 		break;
665 	default :
666 		shift = 8 + (hdr->ip6e_len << 3);
667 		break;
668 	}
669 
670 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
671 		fin->fin_flx |= FI_BAD;
672 		DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
673 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
674 		return NULL;
675 	}
676 
677 	fin->fin_dp = (char *)fin->fin_dp + shift;
678 	fin->fin_dlen -= shift;
679 
680 	/*
681 	 * If we have seen a fragment header, do not set any flags to indicate
682 	 * the presence of this extension header as it has no impact on the
683 	 * end result until after it has been defragmented.
684 	 */
685 	if (fin->fin_flx & FI_FRAG)
686 		return hdr;
687 
688 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
689 		if (ip6exthdr[i].ol_val == proto) {
690 			/*
691 			 * Most IPv6 extension headers are only allowed once.
692 			 */
693 			if ((multiple == 0) &&
694 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
695 				fin->fin_flx |= FI_BAD;
696 				DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
697 			} else
698 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
699 			break;
700 		}
701 
702 	return hdr;
703 }
704 
705 
706 /* ------------------------------------------------------------------------ */
707 /* Function:    ipf_pr_hopopts6                                             */
708 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
709 /* Parameters:  fin(I) - pointer to packet information                      */
710 /*                                                                          */
711 /* IPv6 Only                                                                */
712 /* This is function checks pending hop by hop options extension header      */
713 /* ------------------------------------------------------------------------ */
714 static INLINE int
715 ipf_pr_hopopts6(fr_info_t *fin)
716 {
717 	struct ip6_ext *hdr;
718 
719 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
720 	if (hdr == NULL)
721 		return IPPROTO_NONE;
722 	return hdr->ip6e_nxt;
723 }
724 
725 
726 /* ------------------------------------------------------------------------ */
727 /* Function:    ipf_pr_mobility6                                            */
728 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
729 /* Parameters:  fin(I) - pointer to packet information                      */
730 /*                                                                          */
731 /* IPv6 Only                                                                */
732 /* This is function checks the IPv6 mobility extension header               */
733 /* ------------------------------------------------------------------------ */
734 static INLINE int
735 ipf_pr_mobility6(fr_info_t *fin)
736 {
737 	struct ip6_ext *hdr;
738 
739 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
740 	if (hdr == NULL)
741 		return IPPROTO_NONE;
742 	return hdr->ip6e_nxt;
743 }
744 
745 
746 /* ------------------------------------------------------------------------ */
747 /* Function:    ipf_pr_routing6                                             */
748 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
749 /* Parameters:  fin(I) - pointer to packet information                      */
750 /*                                                                          */
751 /* IPv6 Only                                                                */
752 /* This is function checks pending routing extension header                 */
753 /* ------------------------------------------------------------------------ */
754 static INLINE int
755 ipf_pr_routing6(fr_info_t *fin)
756 {
757 	struct ip6_routing *hdr;
758 
759 	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
760 	if (hdr == NULL)
761 		return IPPROTO_NONE;
762 
763 	switch (hdr->ip6r_type)
764 	{
765 	case 0 :
766 		/*
767 		 * Nasty extension header length?
768 		 */
769 		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
770 		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
771 			ipf_main_softc_t *softc = fin->fin_main_soft;
772 
773 			fin->fin_flx |= FI_BAD;
774 			DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
775 			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
776 			return IPPROTO_NONE;
777 		}
778 		break;
779 
780 	default :
781 		break;
782 	}
783 
784 	return hdr->ip6r_nxt;
785 }
786 
787 
788 /* ------------------------------------------------------------------------ */
789 /* Function:    ipf_pr_fragment6                                            */
790 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
791 /* Parameters:  fin(I) - pointer to packet information                      */
792 /*                                                                          */
793 /* IPv6 Only                                                                */
794 /* Examine the IPv6 fragment header and extract fragment offset information.*/
795 /*                                                                          */
796 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
797 /* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
798 /* packets with a fragment header can fit into.  They are as follows:       */
799 /*                                                                          */
800 /* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
801 /* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
802 /* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
803 /* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
804 /* 5.  [IPV6][0-n EH][FH][data]                                             */
805 /*                                                                          */
806 /* IPV6 = IPv6 header, FH = Fragment Header,                                */
807 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
808 /*                                                                          */
809 /* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
810 /* scenario in which they happen is in extreme circumstances that are most  */
811 /* likely to be an indication of an attack rather than normal traffic.      */
812 /* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
813 /* are two rules that can be used to guard against type 3 packets: L4       */
814 /* headers must always be in a packet that has the offset field set to 0    */
815 /* and no packet is allowed to overlay that where offset = 0.               */
816 /* ------------------------------------------------------------------------ */
817 static INLINE int
818 ipf_pr_fragment6(fr_info_t *fin)
819 {
820 	ipf_main_softc_t *softc = fin->fin_main_soft;
821 	struct ip6_frag *frag;
822 
823 	fin->fin_flx |= FI_FRAG;
824 
825 	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
826 	if (frag == NULL) {
827 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
828 		return IPPROTO_NONE;
829 	}
830 
831 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
832 		/*
833 		 * Any fragment that isn't the last fragment must have its
834 		 * length as a multiple of 8.
835 		 */
836 		if ((fin->fin_plen & 7) != 0) {
837 			fin->fin_flx |= FI_BAD;
838 			DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
839 		}
840 	}
841 
842 	fin->fin_fraghdr = frag;
843 	fin->fin_id = frag->ip6f_ident;
844 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
845 	if (fin->fin_off != 0)
846 		fin->fin_flx |= FI_FRAGBODY;
847 
848 	/*
849 	 * Jumbograms aren't handled, so the max. length is 64k
850 	 */
851 	if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
852 		  fin->fin_flx |= FI_BAD;
853 		  DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
854 	}
855 
856 	/*
857 	 * We don't know where the transport layer header (or whatever is next
858 	 * is), as it could be behind destination options (amongst others) so
859 	 * return the fragment header as the type of packet this is.  Note that
860 	 * this effectively disables the fragment cache for > 1 protocol at a
861 	 * time.
862 	 */
863 	return frag->ip6f_nxt;
864 }
865 
866 
867 /* ------------------------------------------------------------------------ */
868 /* Function:    ipf_pr_dstopts6                                             */
869 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
870 /* Parameters:  fin(I) - pointer to packet information                      */
871 /*                                                                          */
872 /* IPv6 Only                                                                */
873 /* This is function checks pending destination options extension header     */
874 /* ------------------------------------------------------------------------ */
875 static INLINE int
876 ipf_pr_dstopts6(fr_info_t *fin)
877 {
878 	ipf_main_softc_t *softc = fin->fin_main_soft;
879 	struct ip6_ext *hdr;
880 
881 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
882 	if (hdr == NULL) {
883 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
884 		return IPPROTO_NONE;
885 	}
886 	return hdr->ip6e_nxt;
887 }
888 
889 
890 /* ------------------------------------------------------------------------ */
891 /* Function:    ipf_pr_icmp6                                                */
892 /* Returns:     void                                                        */
893 /* Parameters:  fin(I) - pointer to packet information                      */
894 /*                                                                          */
895 /* IPv6 Only                                                                */
896 /* This routine is mainly concerned with determining the minimum valid size */
897 /* for an ICMPv6 packet.                                                    */
898 /* ------------------------------------------------------------------------ */
899 static INLINE void
900 ipf_pr_icmp6(fr_info_t *fin)
901 {
902 	int minicmpsz = sizeof(struct icmp6_hdr);
903 	struct icmp6_hdr *icmp6;
904 
905 	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
906 		ipf_main_softc_t *softc = fin->fin_main_soft;
907 
908 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
909 		return;
910 	}
911 
912 	if (fin->fin_dlen > 1) {
913 		ip6_t *ip6;
914 
915 		icmp6 = fin->fin_dp;
916 
917 		fin->fin_data[0] = *(u_short *)icmp6;
918 
919 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
920 			fin->fin_flx |= FI_ICMPQUERY;
921 
922 		switch (icmp6->icmp6_type)
923 		{
924 		case ICMP6_ECHO_REPLY :
925 		case ICMP6_ECHO_REQUEST :
926 			if (fin->fin_dlen >= 6)
927 				fin->fin_data[1] = icmp6->icmp6_id;
928 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
929 			break;
930 
931 		case ICMP6_DST_UNREACH :
932 		case ICMP6_PACKET_TOO_BIG :
933 		case ICMP6_TIME_EXCEEDED :
934 		case ICMP6_PARAM_PROB :
935 			fin->fin_flx |= FI_ICMPERR;
936 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
937 			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
938 				break;
939 
940 			if (M_LEN(fin->fin_m) < fin->fin_plen) {
941 				if (ipf_coalesce(fin) != 1)
942 					return;
943 			}
944 
945 			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
946 				return;
947 
948 			/*
949 			 * If the destination of this packet doesn't match the
950 			 * source of the original packet then this packet is
951 			 * not correct.
952 			 */
953 			icmp6 = fin->fin_dp;
954 			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
955 			if (IP6_NEQ(&fin->fin_fi.fi_dst,
956 				    &ip6->ip6_src)) {
957 				fin->fin_flx |= FI_BAD;
958 				DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
959 			}
960 			break;
961 		default :
962 			break;
963 		}
964 	}
965 
966 	ipf_pr_short6(fin, minicmpsz);
967 	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
968 		u_char p = fin->fin_p;
969 
970 		fin->fin_p = IPPROTO_ICMPV6;
971 		ipf_checkv6sum(fin);
972 		fin->fin_p = p;
973 	}
974 }
975 
976 
977 /* ------------------------------------------------------------------------ */
978 /* Function:    ipf_pr_udp6                                                 */
979 /* Returns:     void                                                        */
980 /* Parameters:  fin(I) - pointer to packet information                      */
981 /*                                                                          */
982 /* IPv6 Only                                                                */
983 /* Analyse the packet for IPv6/UDP properties.                              */
984 /* Is not expected to be called for fragmented packets.                     */
985 /* ------------------------------------------------------------------------ */
986 static INLINE void
987 ipf_pr_udp6(fr_info_t *fin)
988 {
989 
990 	if (ipf_pr_udpcommon(fin) == 0) {
991 		u_char p = fin->fin_p;
992 
993 		fin->fin_p = IPPROTO_UDP;
994 		ipf_checkv6sum(fin);
995 		fin->fin_p = p;
996 	}
997 }
998 
999 
1000 /* ------------------------------------------------------------------------ */
1001 /* Function:    ipf_pr_tcp6                                                 */
1002 /* Returns:     void                                                        */
1003 /* Parameters:  fin(I) - pointer to packet information                      */
1004 /*                                                                          */
1005 /* IPv6 Only                                                                */
1006 /* Analyse the packet for IPv6/TCP properties.                              */
1007 /* Is not expected to be called for fragmented packets.                     */
1008 /* ------------------------------------------------------------------------ */
1009 static INLINE void
1010 ipf_pr_tcp6(fr_info_t *fin)
1011 {
1012 
1013 	if (ipf_pr_tcpcommon(fin) == 0) {
1014 		u_char p = fin->fin_p;
1015 
1016 		fin->fin_p = IPPROTO_TCP;
1017 		ipf_checkv6sum(fin);
1018 		fin->fin_p = p;
1019 	}
1020 }
1021 
1022 
1023 /* ------------------------------------------------------------------------ */
1024 /* Function:    ipf_pr_esp6                                                 */
1025 /* Returns:     void                                                        */
1026 /* Parameters:  fin(I) - pointer to packet information                      */
1027 /*                                                                          */
1028 /* IPv6 Only                                                                */
1029 /* Analyse the packet for ESP properties.                                   */
1030 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1031 /* even though the newer ESP packets must also have a sequence number that  */
1032 /* is 32bits as well, it is not possible(?) to determine the version from a */
1033 /* simple packet header.                                                    */
1034 /* ------------------------------------------------------------------------ */
1035 static INLINE void
1036 ipf_pr_esp6(fr_info_t *fin)
1037 {
1038 
1039 	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1040 		ipf_main_softc_t *softc = fin->fin_main_soft;
1041 
1042 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1043 		return;
1044 	}
1045 }
1046 
1047 
1048 /* ------------------------------------------------------------------------ */
1049 /* Function:    ipf_pr_ah6                                                  */
1050 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1051 /* Parameters:  fin(I) - pointer to packet information                      */
1052 /*                                                                          */
1053 /* IPv6 Only                                                                */
1054 /* Analyse the packet for AH properties.                                    */
1055 /* The minimum length is taken to be the combination of all fields in the   */
1056 /* header being present and no authentication data (null algorithm used.)   */
1057 /* ------------------------------------------------------------------------ */
1058 static INLINE int
1059 ipf_pr_ah6(fr_info_t *fin)
1060 {
1061 	authhdr_t *ah;
1062 
1063 	fin->fin_flx |= FI_AH;
1064 
1065 	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1066 	if (ah == NULL) {
1067 		ipf_main_softc_t *softc = fin->fin_main_soft;
1068 
1069 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1070 		return IPPROTO_NONE;
1071 	}
1072 
1073 	ipf_pr_short6(fin, sizeof(*ah));
1074 
1075 	/*
1076 	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1077 	 * enough data to satisfy ah_next (the very first one.)
1078 	 */
1079 	return ah->ah_next;
1080 }
1081 
1082 
1083 /* ------------------------------------------------------------------------ */
1084 /* Function:    ipf_pr_gre6                                                 */
1085 /* Returns:     void                                                        */
1086 /* Parameters:  fin(I) - pointer to packet information                      */
1087 /*                                                                          */
1088 /* Analyse the packet for GRE properties.                                   */
1089 /* ------------------------------------------------------------------------ */
1090 static INLINE void
1091 ipf_pr_gre6(fr_info_t *fin)
1092 {
1093 	grehdr_t *gre;
1094 
1095 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1096 		ipf_main_softc_t *softc = fin->fin_main_soft;
1097 
1098 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1099 		return;
1100 	}
1101 
1102 	gre = fin->fin_dp;
1103 	if (GRE_REV(gre->gr_flags) == 1)
1104 		fin->fin_data[0] = gre->gr_call;
1105 }
1106 #endif	/* USE_INET6 */
1107 
1108 
1109 /* ------------------------------------------------------------------------ */
1110 /* Function:    ipf_pr_pullup                                               */
1111 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1112 /* Parameters:  fin(I)  - pointer to packet information                     */
1113 /*              plen(I) - length (excluding L3 header) to pullup            */
1114 /*                                                                          */
1115 /* Short inline function to cut down on code duplication to perform a call  */
1116 /* to ipf_pullup to ensure there is the required amount of data,            */
1117 /* consecutively in the packet buffer.                                      */
1118 /*                                                                          */
1119 /* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1120 /* points to the first byte after the complete layer 3 header, which will   */
1121 /* include all of the known extension headers for IPv6 or options for IPv4. */
1122 /*                                                                          */
1123 /* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1124 /* is necessary to add those we can already assume to be pulled up (fin_dp  */
1125 /* - fin_ip) to what is passed through.                                     */
1126 /* ------------------------------------------------------------------------ */
1127 int
1128 ipf_pr_pullup(fr_info_t *fin, int plen)
1129 {
1130 	ipf_main_softc_t *softc = fin->fin_main_soft;
1131 
1132 	if (fin->fin_m != NULL) {
1133 		if (fin->fin_dp != NULL)
1134 			plen += (char *)fin->fin_dp -
1135 				((char *)fin->fin_ip + fin->fin_hlen);
1136 		plen += fin->fin_hlen;
1137 		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1138 #if defined(_KERNEL)
1139 			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1140 				DT(ipf_pullup_fail);
1141 				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1142 				return -1;
1143 			}
1144 			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1145 #else
1146 			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1147 			/*
1148 			 * Fake ipf_pullup failing
1149 			 */
1150 			fin->fin_reason = FRB_PULLUP;
1151 			*fin->fin_mp = NULL;
1152 			fin->fin_m = NULL;
1153 			fin->fin_ip = NULL;
1154 			return -1;
1155 #endif
1156 		}
1157 	}
1158 	return 0;
1159 }
1160 
1161 
1162 /* ------------------------------------------------------------------------ */
1163 /* Function:    ipf_pr_short                                                */
1164 /* Returns:     void                                                        */
1165 /* Parameters:  fin(I)  - pointer to packet information                     */
1166 /*              xmin(I) - minimum header size                               */
1167 /*                                                                          */
1168 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
1169 /* applying here is that the packet must not be fragmented within the layer */
1170 /* 4 header.  That is, it must not be a fragment that has its offset set to */
1171 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1172 /* entire layer 4 header must be present (min).                             */
1173 /* ------------------------------------------------------------------------ */
1174 static INLINE void
1175 ipf_pr_short(fr_info_t *fin, int xmin)
1176 {
1177 
1178 	if (fin->fin_off == 0) {
1179 		if (fin->fin_dlen < xmin)
1180 			fin->fin_flx |= FI_SHORT;
1181 	} else if (fin->fin_off < xmin) {
1182 		fin->fin_flx |= FI_SHORT;
1183 	}
1184 }
1185 
1186 
1187 /* ------------------------------------------------------------------------ */
1188 /* Function:    ipf_pr_icmp                                                 */
1189 /* Returns:     void                                                        */
1190 /* Parameters:  fin(I) - pointer to packet information                      */
1191 /*                                                                          */
1192 /* IPv4 Only                                                                */
1193 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1194 /* except extrememly bad packets, both type and code will be present.       */
1195 /* The expected minimum size of an ICMP packet is very much dependent on    */
1196 /* the type of it.                                                          */
1197 /*                                                                          */
1198 /* XXX - other ICMP sanity checks?                                          */
1199 /* ------------------------------------------------------------------------ */
1200 static INLINE void
1201 ipf_pr_icmp(fr_info_t *fin)
1202 {
1203 	ipf_main_softc_t *softc = fin->fin_main_soft;
1204 	int minicmpsz = sizeof(struct icmp);
1205 	icmphdr_t *icmp;
1206 	ip_t *oip;
1207 
1208 	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1209 
1210 	if (fin->fin_off != 0) {
1211 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1212 		return;
1213 	}
1214 
1215 	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1216 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1217 		return;
1218 	}
1219 
1220 	icmp = fin->fin_dp;
1221 
1222 	fin->fin_data[0] = *(u_short *)icmp;
1223 	fin->fin_data[1] = icmp->icmp_id;
1224 
1225 	switch (icmp->icmp_type)
1226 	{
1227 	case ICMP_ECHOREPLY :
1228 	case ICMP_ECHO :
1229 	/* Router discovery messaes - RFC 1256 */
1230 	case ICMP_ROUTERADVERT :
1231 	case ICMP_ROUTERSOLICIT :
1232 		fin->fin_flx |= FI_ICMPQUERY;
1233 		minicmpsz = ICMP_MINLEN;
1234 		break;
1235 	/*
1236 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1237 	 * 3 * timestamp(3 * 4)
1238 	 */
1239 	case ICMP_TSTAMP :
1240 	case ICMP_TSTAMPREPLY :
1241 		fin->fin_flx |= FI_ICMPQUERY;
1242 		minicmpsz = 20;
1243 		break;
1244 	/*
1245 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1246 	 * mask(4)
1247 	 */
1248 	case ICMP_IREQ :
1249 	case ICMP_IREQREPLY :
1250 	case ICMP_MASKREQ :
1251 	case ICMP_MASKREPLY :
1252 		fin->fin_flx |= FI_ICMPQUERY;
1253 		minicmpsz = 12;
1254 		break;
1255 	/*
1256 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1257 	 */
1258 	case ICMP_UNREACH :
1259 #ifdef icmp_nextmtu
1260 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1261 			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1262 				fin->fin_flx |= FI_BAD;
1263 				DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1264 			}
1265 		}
1266 #endif
1267 	case ICMP_SOURCEQUENCH :
1268 	case ICMP_REDIRECT :
1269 	case ICMP_TIMXCEED :
1270 	case ICMP_PARAMPROB :
1271 		fin->fin_flx |= FI_ICMPERR;
1272 		if (ipf_coalesce(fin) != 1) {
1273 			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1274 			return;
1275 		}
1276 
1277 		/*
1278 		 * ICMP error packets should not be generated for IP
1279 		 * packets that are a fragment that isn't the first
1280 		 * fragment.
1281 		 */
1282 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1283 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1284 			fin->fin_flx |= FI_BAD;
1285 			DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1286 		}
1287 
1288 		/*
1289 		 * If the destination of this packet doesn't match the
1290 		 * source of the original packet then this packet is
1291 		 * not correct.
1292 		 */
1293 		if (oip->ip_src.s_addr != fin->fin_daddr) {
1294 			fin->fin_flx |= FI_BAD;
1295 			DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1296 		}
1297 		break;
1298 	default :
1299 		break;
1300 	}
1301 
1302 	ipf_pr_short(fin, minicmpsz);
1303 
1304 	ipf_checkv4sum(fin);
1305 }
1306 
1307 
1308 /* ------------------------------------------------------------------------ */
1309 /* Function:    ipf_pr_tcpcommon                                            */
1310 /* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1311 /* Parameters:  fin(I) - pointer to packet information                      */
1312 /*                                                                          */
1313 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1314 /* and make some checks with how they interact with other fields.           */
1315 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1316 /* valid and mark the packet as bad if not.                                 */
1317 /* ------------------------------------------------------------------------ */
1318 static INLINE int
1319 ipf_pr_tcpcommon(fr_info_t *fin)
1320 {
1321 	ipf_main_softc_t *softc = fin->fin_main_soft;
1322 	int flags, tlen;
1323 	tcphdr_t *tcp;
1324 
1325 	fin->fin_flx |= FI_TCPUDP;
1326 	if (fin->fin_off != 0) {
1327 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1328 		return 0;
1329 	}
1330 
1331 	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1332 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1333 		return -1;
1334 	}
1335 
1336 	tcp = fin->fin_dp;
1337 	if (fin->fin_dlen > 3) {
1338 		fin->fin_sport = ntohs(tcp->th_sport);
1339 		fin->fin_dport = ntohs(tcp->th_dport);
1340 	}
1341 
1342 	if ((fin->fin_flx & FI_SHORT) != 0) {
1343 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1344 		return 1;
1345 	}
1346 
1347 	/*
1348 	 * Use of the TCP data offset *must* result in a value that is at
1349 	 * least the same size as the TCP header.
1350 	 */
1351 	tlen = TCP_OFF(tcp) << 2;
1352 	if (tlen < sizeof(tcphdr_t)) {
1353 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1354 		fin->fin_flx |= FI_BAD;
1355 		DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1356 		return 1;
1357 	}
1358 
1359 	flags = tcp->th_flags;
1360 	fin->fin_tcpf = tcp->th_flags;
1361 
1362 	/*
1363 	 * If the urgent flag is set, then the urgent pointer must
1364 	 * also be set and vice versa.  Good TCP packets do not have
1365 	 * just one of these set.
1366 	 */
1367 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1368 		fin->fin_flx |= FI_BAD;
1369 		DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1370 #if 0
1371 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1372 		/*
1373 		 * Ignore this case (#if 0) as it shows up in "real"
1374 		 * traffic with bogus values in the urgent pointer field.
1375 		 */
1376 		fin->fin_flx |= FI_BAD;
1377 		DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1378 #endif
1379 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1380 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1381 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1382 		fin->fin_flx |= FI_BAD;
1383 		DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1384 #if 1
1385 	} else if (((flags & TH_SYN) != 0) &&
1386 		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1387 		/*
1388 		 * SYN with URG and PUSH set is not for normal TCP but it is
1389 		 * possible(?) with T/TCP...but who uses T/TCP?
1390 		 */
1391 		fin->fin_flx |= FI_BAD;
1392 		DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1393 #endif
1394 	} else if (!(flags & TH_ACK)) {
1395 		/*
1396 		 * If the ack bit isn't set, then either the SYN or
1397 		 * RST bit must be set.  If the SYN bit is set, then
1398 		 * we expect the ACK field to be 0.  If the ACK is
1399 		 * not set and if URG, PSH or FIN are set, consdier
1400 		 * that to indicate a bad TCP packet.
1401 		 */
1402 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1403 			/*
1404 			 * Cisco PIX sets the ACK field to a random value.
1405 			 * In light of this, do not set FI_BAD until a patch
1406 			 * is available from Cisco to ensure that
1407 			 * interoperability between existing systems is
1408 			 * achieved.
1409 			 */
1410 			/*fin->fin_flx |= FI_BAD*/;
1411 			/*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1412 		} else if (!(flags & (TH_RST|TH_SYN))) {
1413 			fin->fin_flx |= FI_BAD;
1414 			DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1415 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1416 			fin->fin_flx |= FI_BAD;
1417 			DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1418 		}
1419 	}
1420 	if (fin->fin_flx & FI_BAD) {
1421 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1422 		return 1;
1423 	}
1424 
1425 	/*
1426 	 * At this point, it's not exactly clear what is to be gained by
1427 	 * marking up which TCP options are and are not present.  The one we
1428 	 * are most interested in is the TCP window scale.  This is only in
1429 	 * a SYN packet [RFC1323] so we don't need this here...?
1430 	 * Now if we were to analyse the header for passive fingerprinting,
1431 	 * then that might add some weight to adding this...
1432 	 */
1433 	if (tlen == sizeof(tcphdr_t)) {
1434 		return 0;
1435 	}
1436 
1437 	if (ipf_pr_pullup(fin, tlen) == -1) {
1438 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1439 		return -1;
1440 	}
1441 
1442 #if 0
1443 	tcp = fin->fin_dp;
1444 	ip = fin->fin_ip;
1445 	s = (u_char *)(tcp + 1);
1446 	off = IP_HL(ip) << 2;
1447 # ifdef _KERNEL
1448 	if (fin->fin_mp != NULL) {
1449 		mb_t *m = *fin->fin_mp;
1450 
1451 		if (off + tlen > M_LEN(m))
1452 			return;
1453 	}
1454 # endif
1455 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1456 		opt = *s;
1457 		if (opt == '\0')
1458 			break;
1459 		else if (opt == TCPOPT_NOP)
1460 			ol = 1;
1461 		else {
1462 			if (tlen < 2)
1463 				break;
1464 			ol = (int)*(s + 1);
1465 			if (ol < 2 || ol > tlen)
1466 				break;
1467 		}
1468 
1469 		for (i = 9, mv = 4; mv >= 0; ) {
1470 			op = ipopts + i;
1471 			if (opt == (u_char)op->ol_val) {
1472 				optmsk |= op->ol_bit;
1473 				break;
1474 			}
1475 		}
1476 		tlen -= ol;
1477 		s += ol;
1478 	}
1479 #endif /* 0 */
1480 
1481 	return 0;
1482 }
1483 
1484 
1485 
1486 /* ------------------------------------------------------------------------ */
1487 /* Function:    ipf_pr_udpcommon                                            */
1488 /* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1489 /* Parameters:  fin(I) - pointer to packet information                      */
1490 /*                                                                          */
1491 /* Extract the UDP source and destination ports, if present.  If compiled   */
1492 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1493 /* ------------------------------------------------------------------------ */
1494 static INLINE int
1495 ipf_pr_udpcommon(fr_info_t *fin)
1496 {
1497 	udphdr_t *udp;
1498 
1499 	fin->fin_flx |= FI_TCPUDP;
1500 
1501 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1502 		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1503 			ipf_main_softc_t *softc = fin->fin_main_soft;
1504 
1505 			fin->fin_flx |= FI_SHORT;
1506 			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1507 			return 1;
1508 		}
1509 
1510 		udp = fin->fin_dp;
1511 
1512 		fin->fin_sport = ntohs(udp->uh_sport);
1513 		fin->fin_dport = ntohs(udp->uh_dport);
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 
1520 /* ------------------------------------------------------------------------ */
1521 /* Function:    ipf_pr_tcp                                                  */
1522 /* Returns:     void                                                        */
1523 /* Parameters:  fin(I) - pointer to packet information                      */
1524 /*                                                                          */
1525 /* IPv4 Only                                                                */
1526 /* Analyse the packet for IPv4/TCP properties.                              */
1527 /* ------------------------------------------------------------------------ */
1528 static INLINE void
1529 ipf_pr_tcp(fr_info_t *fin)
1530 {
1531 
1532 	ipf_pr_short(fin, sizeof(tcphdr_t));
1533 
1534 	if (ipf_pr_tcpcommon(fin) == 0)
1535 		ipf_checkv4sum(fin);
1536 }
1537 
1538 
1539 /* ------------------------------------------------------------------------ */
1540 /* Function:    ipf_pr_udp                                                  */
1541 /* Returns:     void                                                        */
1542 /* Parameters:  fin(I) - pointer to packet information                      */
1543 /*                                                                          */
1544 /* IPv4 Only                                                                */
1545 /* Analyse the packet for IPv4/UDP properties.                              */
1546 /* ------------------------------------------------------------------------ */
1547 static INLINE void
1548 ipf_pr_udp(fr_info_t *fin)
1549 {
1550 
1551 	ipf_pr_short(fin, sizeof(udphdr_t));
1552 
1553 	if (ipf_pr_udpcommon(fin) == 0)
1554 		ipf_checkv4sum(fin);
1555 }
1556 
1557 
1558 /* ------------------------------------------------------------------------ */
1559 /* Function:    ipf_pr_esp                                                  */
1560 /* Returns:     void                                                        */
1561 /* Parameters:  fin(I) - pointer to packet information                      */
1562 /*                                                                          */
1563 /* Analyse the packet for ESP properties.                                   */
1564 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1565 /* even though the newer ESP packets must also have a sequence number that  */
1566 /* is 32bits as well, it is not possible(?) to determine the version from a */
1567 /* simple packet header.                                                    */
1568 /* ------------------------------------------------------------------------ */
1569 static INLINE void
1570 ipf_pr_esp(fr_info_t *fin)
1571 {
1572 
1573 	if (fin->fin_off == 0) {
1574 		ipf_pr_short(fin, 8);
1575 		if (ipf_pr_pullup(fin, 8) == -1) {
1576 			ipf_main_softc_t *softc = fin->fin_main_soft;
1577 
1578 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1579 		}
1580 	}
1581 }
1582 
1583 
1584 /* ------------------------------------------------------------------------ */
1585 /* Function:    ipf_pr_ah                                                   */
1586 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1587 /* Parameters:  fin(I) - pointer to packet information                      */
1588 /*                                                                          */
1589 /* Analyse the packet for AH properties.                                    */
1590 /* The minimum length is taken to be the combination of all fields in the   */
1591 /* header being present and no authentication data (null algorithm used.)   */
1592 /* ------------------------------------------------------------------------ */
1593 static INLINE int
1594 ipf_pr_ah(fr_info_t *fin)
1595 {
1596 	ipf_main_softc_t *softc = fin->fin_main_soft;
1597 	authhdr_t *ah;
1598 	int len;
1599 
1600 	fin->fin_flx |= FI_AH;
1601 	ipf_pr_short(fin, sizeof(*ah));
1602 
1603 	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1604 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1605 		return IPPROTO_NONE;
1606 	}
1607 
1608 	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1609 		DT(fr_v4_ah_pullup_1);
1610 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1611 		return IPPROTO_NONE;
1612 	}
1613 
1614 	ah = (authhdr_t *)fin->fin_dp;
1615 
1616 	len = (ah->ah_plen + 2) << 2;
1617 	ipf_pr_short(fin, len);
1618 	if (ipf_pr_pullup(fin, len) == -1) {
1619 		DT(fr_v4_ah_pullup_2);
1620 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1621 		return IPPROTO_NONE;
1622 	}
1623 
1624 	/*
1625 	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1626 	 * header.
1627 	 */
1628 	fin->fin_dp = (char *)fin->fin_dp + len;
1629 	fin->fin_dlen -= len;
1630 	return ah->ah_next;
1631 }
1632 
1633 
1634 /* ------------------------------------------------------------------------ */
1635 /* Function:    ipf_pr_gre                                                  */
1636 /* Returns:     void                                                        */
1637 /* Parameters:  fin(I) - pointer to packet information                      */
1638 /*                                                                          */
1639 /* Analyse the packet for GRE properties.                                   */
1640 /* ------------------------------------------------------------------------ */
1641 static INLINE void
1642 ipf_pr_gre(fr_info_t *fin)
1643 {
1644 	ipf_main_softc_t *softc = fin->fin_main_soft;
1645 	grehdr_t *gre;
1646 
1647 	ipf_pr_short(fin, sizeof(grehdr_t));
1648 
1649 	if (fin->fin_off != 0) {
1650 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1651 		return;
1652 	}
1653 
1654 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1655 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1656 		return;
1657 	}
1658 
1659 	gre = fin->fin_dp;
1660 	if (GRE_REV(gre->gr_flags) == 1)
1661 		fin->fin_data[0] = gre->gr_call;
1662 }
1663 
1664 
1665 /* ------------------------------------------------------------------------ */
1666 /* Function:    ipf_pr_ipv4hdr                                              */
1667 /* Returns:     void                                                        */
1668 /* Parameters:  fin(I) - pointer to packet information                      */
1669 /*                                                                          */
1670 /* IPv4 Only                                                                */
1671 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1672 /* Check all options present and flag their presence if any exist.          */
1673 /* ------------------------------------------------------------------------ */
1674 static INLINE void
1675 ipf_pr_ipv4hdr(fr_info_t *fin)
1676 {
1677 	u_short optmsk = 0, secmsk = 0, auth = 0;
1678 	int hlen, ol, mv, p, i;
1679 	const struct optlist *op;
1680 	u_char *s, opt;
1681 	u_short off;
1682 	fr_ip_t *fi;
1683 	ip_t *ip;
1684 
1685 	fi = &fin->fin_fi;
1686 	hlen = fin->fin_hlen;
1687 
1688 	ip = fin->fin_ip;
1689 	p = ip->ip_p;
1690 	fi->fi_p = p;
1691 	fin->fin_crc = p;
1692 	fi->fi_tos = ip->ip_tos;
1693 	fin->fin_id = ip->ip_id;
1694 	off = ntohs(ip->ip_off);
1695 
1696 	/* Get both TTL and protocol */
1697 	fi->fi_p = ip->ip_p;
1698 	fi->fi_ttl = ip->ip_ttl;
1699 
1700 	/* Zero out bits not used in IPv6 address */
1701 	fi->fi_src.i6[1] = 0;
1702 	fi->fi_src.i6[2] = 0;
1703 	fi->fi_src.i6[3] = 0;
1704 	fi->fi_dst.i6[1] = 0;
1705 	fi->fi_dst.i6[2] = 0;
1706 	fi->fi_dst.i6[3] = 0;
1707 
1708 	fi->fi_saddr = ip->ip_src.s_addr;
1709 	fin->fin_crc += fi->fi_saddr;
1710 	fi->fi_daddr = ip->ip_dst.s_addr;
1711 	fin->fin_crc += fi->fi_daddr;
1712 	if (IN_CLASSD(fi->fi_daddr))
1713 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1714 
1715 	/*
1716 	 * set packet attribute flags based on the offset and
1717 	 * calculate the byte offset that it represents.
1718 	 */
1719 	off &= IP_MF|IP_OFFMASK;
1720 	if (off != 0) {
1721 		int morefrag = off & IP_MF;
1722 
1723 		fi->fi_flx |= FI_FRAG;
1724 		off &= IP_OFFMASK;
1725 		if (off != 0) {
1726 			fin->fin_flx |= FI_FRAGBODY;
1727 			off <<= 3;
1728 			if ((off + fin->fin_dlen > 65535) ||
1729 			    (fin->fin_dlen == 0) ||
1730 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1731 				/*
1732 				 * The length of the packet, starting at its
1733 				 * offset cannot exceed 65535 (0xffff) as the
1734 				 * length of an IP packet is only 16 bits.
1735 				 *
1736 				 * Any fragment that isn't the last fragment
1737 				 * must have a length greater than 0 and it
1738 				 * must be an even multiple of 8.
1739 				 */
1740 				fi->fi_flx |= FI_BAD;
1741 				DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1742 			}
1743 		}
1744 	}
1745 	fin->fin_off = off;
1746 
1747 	/*
1748 	 * Call per-protocol setup and checking
1749 	 */
1750 	if (p == IPPROTO_AH) {
1751 		/*
1752 		 * Treat AH differently because we expect there to be another
1753 		 * layer 4 header after it.
1754 		 */
1755 		p = ipf_pr_ah(fin);
1756 	}
1757 
1758 	switch (p)
1759 	{
1760 	case IPPROTO_UDP :
1761 		ipf_pr_udp(fin);
1762 		break;
1763 	case IPPROTO_TCP :
1764 		ipf_pr_tcp(fin);
1765 		break;
1766 	case IPPROTO_ICMP :
1767 		ipf_pr_icmp(fin);
1768 		break;
1769 	case IPPROTO_ESP :
1770 		ipf_pr_esp(fin);
1771 		break;
1772 	case IPPROTO_GRE :
1773 		ipf_pr_gre(fin);
1774 		break;
1775 	}
1776 
1777 	ip = fin->fin_ip;
1778 	if (ip == NULL)
1779 		return;
1780 
1781 	/*
1782 	 * If it is a standard IP header (no options), set the flag fields
1783 	 * which relate to options to 0.
1784 	 */
1785 	if (hlen == sizeof(*ip)) {
1786 		fi->fi_optmsk = 0;
1787 		fi->fi_secmsk = 0;
1788 		fi->fi_auth = 0;
1789 		return;
1790 	}
1791 
1792 	/*
1793 	 * So the IP header has some IP options attached.  Walk the entire
1794 	 * list of options present with this packet and set flags to indicate
1795 	 * which ones are here and which ones are not.  For the somewhat out
1796 	 * of date and obscure security classification options, set a flag to
1797 	 * represent which classification is present.
1798 	 */
1799 	fi->fi_flx |= FI_OPTIONS;
1800 
1801 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1802 		opt = *s;
1803 		if (opt == '\0')
1804 			break;
1805 		else if (opt == IPOPT_NOP)
1806 			ol = 1;
1807 		else {
1808 			if (hlen < 2)
1809 				break;
1810 			ol = (int)*(s + 1);
1811 			if (ol < 2 || ol > hlen)
1812 				break;
1813 		}
1814 		for (i = 9, mv = 4; mv >= 0; ) {
1815 			op = ipopts + i;
1816 
1817 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1818 				u_32_t doi;
1819 
1820 				switch (opt)
1821 				{
1822 				case IPOPT_SECURITY :
1823 					if (optmsk & op->ol_bit) {
1824 						fin->fin_flx |= FI_BAD;
1825 						DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1826 					} else {
1827 						doi = ipf_checkripso(s);
1828 						secmsk = doi >> 16;
1829 						auth = doi & 0xffff;
1830 					}
1831 					break;
1832 
1833 				case IPOPT_CIPSO :
1834 
1835 					if (optmsk & op->ol_bit) {
1836 						fin->fin_flx |= FI_BAD;
1837 						DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1838 					} else {
1839 						doi = ipf_checkcipso(fin,
1840 								     s, ol);
1841 						secmsk = doi >> 16;
1842 						auth = doi & 0xffff;
1843 					}
1844 					break;
1845 				}
1846 				optmsk |= op->ol_bit;
1847 			}
1848 
1849 			if (opt < op->ol_val)
1850 				i -= mv;
1851 			else
1852 				i += mv;
1853 			mv--;
1854 		}
1855 		hlen -= ol;
1856 		s += ol;
1857 	}
1858 
1859 	/*
1860 	 *
1861 	 */
1862 	if (auth && !(auth & 0x0100))
1863 		auth &= 0xff00;
1864 	fi->fi_optmsk = optmsk;
1865 	fi->fi_secmsk = secmsk;
1866 	fi->fi_auth = auth;
1867 }
1868 
1869 
1870 /* ------------------------------------------------------------------------ */
1871 /* Function:    ipf_checkripso                                              */
1872 /* Returns:     void                                                        */
1873 /* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1874 /*                                                                          */
1875 /* ------------------------------------------------------------------------ */
1876 static u_32_t
1877 ipf_checkripso(u_char *s)
1878 {
1879 	const struct optlist *sp;
1880 	u_short secmsk = 0, auth = 0;
1881 	u_char sec;
1882 	int j, m;
1883 
1884 	sec = *(s + 2);	/* classification */
1885 	for (j = 3, m = 2; m >= 0; ) {
1886 		sp = secopt + j;
1887 		if (sec == sp->ol_val) {
1888 			secmsk |= sp->ol_bit;
1889 			auth = *(s + 3);
1890 			auth *= 256;
1891 			auth += *(s + 4);
1892 			break;
1893 		}
1894 		if (sec < sp->ol_val)
1895 			j -= m;
1896 		else
1897 			j += m;
1898 		m--;
1899 	}
1900 
1901 	return (secmsk << 16) | auth;
1902 }
1903 
1904 
1905 /* ------------------------------------------------------------------------ */
1906 /* Function:    ipf_checkcipso                                              */
1907 /* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1908 /* Parameters:  fin(IO) - pointer to packet information                     */
1909 /*              s(I)    - pointer to start of CIPSO option                  */
1910 /*              ol(I)   - length of CIPSO option field                      */
1911 /*                                                                          */
1912 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1913 /* header and returns that whilst also storing the highest sensitivity      */
1914 /* value found in the fr_info_t structure.                                  */
1915 /*                                                                          */
1916 /* No attempt is made to extract the category bitmaps as these are defined  */
1917 /* by the user (rather than the protocol) and can be rather numerous on the */
1918 /* end nodes.                                                               */
1919 /* ------------------------------------------------------------------------ */
1920 static u_32_t
1921 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1922 {
1923 	ipf_main_softc_t *softc = fin->fin_main_soft;
1924 	fr_ip_t *fi;
1925 	u_32_t doi;
1926 	u_char *t, tag, tlen, sensitivity;
1927 	int len;
1928 
1929 	if (ol < 6 || ol > 40) {
1930 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1931 		fin->fin_flx |= FI_BAD;
1932 		DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1933 		return 0;
1934 	}
1935 
1936 	fi = &fin->fin_fi;
1937 	fi->fi_sensitivity = 0;
1938 	/*
1939 	 * The DOI field MUST be there.
1940 	 */
1941 	bcopy(s + 2, &doi, sizeof(doi));
1942 
1943 	t = (u_char *)s + 6;
1944 	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1945 		tag = *t;
1946 		tlen = *(t + 1);
1947 		if (tlen > len || tlen < 4 || tlen > 34) {
1948 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1949 			fin->fin_flx |= FI_BAD;
1950 			DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1951 			return 0;
1952 		}
1953 
1954 		sensitivity = 0;
1955 		/*
1956 		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1957 		 * draft (16 July 1992) that has expired.
1958 		 */
1959 		if (tag == 0) {
1960 			fin->fin_flx |= FI_BAD;
1961 			DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1962 			continue;
1963 		} else if (tag == 1) {
1964 			if (*(t + 2) != 0) {
1965 				fin->fin_flx |= FI_BAD;
1966 				DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1967 				continue;
1968 			}
1969 			sensitivity = *(t + 3);
1970 			/* Category bitmap for categories 0-239 */
1971 
1972 		} else if (tag == 4) {
1973 			if (*(t + 2) != 0) {
1974 				fin->fin_flx |= FI_BAD;
1975 				DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1976 				continue;
1977 			}
1978 			sensitivity = *(t + 3);
1979 			/* Enumerated categories, 16bits each, upto 15 */
1980 
1981 		} else if (tag == 5) {
1982 			if (*(t + 2) != 0) {
1983 				fin->fin_flx |= FI_BAD;
1984 				DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
1985 				continue;
1986 			}
1987 			sensitivity = *(t + 3);
1988 			/* Range of categories (2*16bits), up to 7 pairs */
1989 
1990 		} else if (tag > 127) {
1991 			/* Custom defined DOI */
1992 			;
1993 		} else {
1994 			DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
1995 			fin->fin_flx |= FI_BAD;
1996 			continue;
1997 		}
1998 
1999 		if (sensitivity > fi->fi_sensitivity)
2000 			fi->fi_sensitivity = sensitivity;
2001 	}
2002 
2003 	return doi;
2004 }
2005 
2006 
2007 /* ------------------------------------------------------------------------ */
2008 /* Function:    ipf_makefrip                                                */
2009 /* Returns:     int     - 0 == packet ok, -1 == packet freed                */
2010 /* Parameters:  hlen(I) - length of IP packet header                        */
2011 /*              ip(I)   - pointer to the IP header                          */
2012 /*              fin(IO) - pointer to packet information                     */
2013 /*                                                                          */
2014 /* Compact the IP header into a structure which contains just the info.     */
2015 /* which is useful for comparing IP headers with and store this information */
2016 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
2017 /* this function will be called with either an IPv4 or IPv6 packet.         */
2018 /* ------------------------------------------------------------------------ */
2019 int
2020 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
2021 {
2022 	ipf_main_softc_t *softc = fin->fin_main_soft;
2023 	int v;
2024 
2025 	fin->fin_depth = 0;
2026 	fin->fin_hlen = (u_short)hlen;
2027 	fin->fin_ip = ip;
2028 	fin->fin_rule = 0xffffffff;
2029 	fin->fin_group[0] = -1;
2030 	fin->fin_group[1] = '\0';
2031 	fin->fin_dp = (char *)ip + hlen;
2032 
2033 	v = fin->fin_v;
2034 	if (v == 4) {
2035 		fin->fin_plen = ntohs(ip->ip_len);
2036 		fin->fin_dlen = fin->fin_plen - hlen;
2037 		ipf_pr_ipv4hdr(fin);
2038 #ifdef	USE_INET6
2039 	} else if (v == 6) {
2040 		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2041 		fin->fin_dlen = fin->fin_plen;
2042 		fin->fin_plen += hlen;
2043 
2044 		ipf_pr_ipv6hdr(fin);
2045 #endif
2046 	}
2047 	if (fin->fin_ip == NULL) {
2048 		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2049 		return -1;
2050 	}
2051 	return 0;
2052 }
2053 
2054 
2055 /* ------------------------------------------------------------------------ */
2056 /* Function:    ipf_portcheck                                               */
2057 /* Returns:     int - 1 == port matched, 0 == port match failed             */
2058 /* Parameters:  frp(I) - pointer to port check `expression'                 */
2059 /*              pop(I) - port number to evaluate                            */
2060 /*                                                                          */
2061 /* Perform a comparison of a port number against some other(s), using a     */
2062 /* structure with compare information stored in it.                         */
2063 /* ------------------------------------------------------------------------ */
2064 static INLINE int
2065 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2066 {
2067 	int err = 1;
2068 	u_32_t po;
2069 
2070 	po = frp->frp_port;
2071 
2072 	/*
2073 	 * Do opposite test to that required and continue if that succeeds.
2074 	 */
2075 	switch (frp->frp_cmp)
2076 	{
2077 	case FR_EQUAL :
2078 		if (pop != po) /* EQUAL */
2079 			err = 0;
2080 		break;
2081 	case FR_NEQUAL :
2082 		if (pop == po) /* NOTEQUAL */
2083 			err = 0;
2084 		break;
2085 	case FR_LESST :
2086 		if (pop >= po) /* LESSTHAN */
2087 			err = 0;
2088 		break;
2089 	case FR_GREATERT :
2090 		if (pop <= po) /* GREATERTHAN */
2091 			err = 0;
2092 		break;
2093 	case FR_LESSTE :
2094 		if (pop > po) /* LT or EQ */
2095 			err = 0;
2096 		break;
2097 	case FR_GREATERTE :
2098 		if (pop < po) /* GT or EQ */
2099 			err = 0;
2100 		break;
2101 	case FR_OUTRANGE :
2102 		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2103 			err = 0;
2104 		break;
2105 	case FR_INRANGE :
2106 		if (pop <= po || pop >= frp->frp_top) /* In range */
2107 			err = 0;
2108 		break;
2109 	case FR_INCRANGE :
2110 		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2111 			err = 0;
2112 		break;
2113 	default :
2114 		break;
2115 	}
2116 	return err;
2117 }
2118 
2119 
2120 /* ------------------------------------------------------------------------ */
2121 /* Function:    ipf_tcpudpchk                                               */
2122 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
2123 /* Parameters:  fda(I) - pointer to packet information                      */
2124 /*              ft(I)  - pointer to structure with comparison data          */
2125 /*                                                                          */
2126 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2127 /* structure containing information that we want to match against.          */
2128 /* ------------------------------------------------------------------------ */
2129 int
2130 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2131 {
2132 	int err = 1;
2133 
2134 	/*
2135 	 * Both ports should *always* be in the first fragment.
2136 	 * So far, I cannot find any cases where they can not be.
2137 	 *
2138 	 * compare destination ports
2139 	 */
2140 	if (ft->ftu_dcmp)
2141 		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2142 
2143 	/*
2144 	 * compare source ports
2145 	 */
2146 	if (err && ft->ftu_scmp)
2147 		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2148 
2149 	/*
2150 	 * If we don't have all the TCP/UDP header, then how can we
2151 	 * expect to do any sort of match on it ?  If we were looking for
2152 	 * TCP flags, then NO match.  If not, then match (which should
2153 	 * satisfy the "short" class too).
2154 	 */
2155 	if (err && (fi->fi_p == IPPROTO_TCP)) {
2156 		if (fi->fi_flx & FI_SHORT)
2157 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2158 		/*
2159 		 * Match the flags ?  If not, abort this match.
2160 		 */
2161 		if (ft->ftu_tcpfm &&
2162 		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2163 			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2164 				 ft->ftu_tcpfm, ft->ftu_tcpf));
2165 			err = 0;
2166 		}
2167 	}
2168 	return err;
2169 }
2170 
2171 
2172 /* ------------------------------------------------------------------------ */
2173 /* Function:    ipf_check_ipf                                               */
2174 /* Returns:     int - 0 == match, else no match                             */
2175 /* Parameters:  fin(I)     - pointer to packet information                  */
2176 /*              fr(I)      - pointer to filter rule                         */
2177 /*              portcmp(I) - flag indicating whether to attempt matching on */
2178 /*                           TCP/UDP port data.                             */
2179 /*                                                                          */
2180 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2181 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2182 /* this function.                                                           */
2183 /* ------------------------------------------------------------------------ */
2184 static INLINE int
2185 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2186 {
2187 	u_32_t	*ld, *lm, *lip;
2188 	fripf_t *fri;
2189 	fr_ip_t *fi;
2190 	int i;
2191 
2192 	fi = &fin->fin_fi;
2193 	fri = fr->fr_ipf;
2194 	lip = (u_32_t *)fi;
2195 	lm = (u_32_t *)&fri->fri_mip;
2196 	ld = (u_32_t *)&fri->fri_ip;
2197 
2198 	/*
2199 	 * first 32 bits to check coversion:
2200 	 * IP version, TOS, TTL, protocol
2201 	 */
2202 	i = ((*lip & *lm) != *ld);
2203 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2204 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2205 	if (i)
2206 		return 1;
2207 
2208 	/*
2209 	 * Next 32 bits is a constructed bitmask indicating which IP options
2210 	 * are present (if any) in this packet.
2211 	 */
2212 	lip++, lm++, ld++;
2213 	i = ((*lip & *lm) != *ld);
2214 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2215 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2216 	if (i != 0)
2217 		return 1;
2218 
2219 	lip++, lm++, ld++;
2220 	/*
2221 	 * Unrolled loops (4 each, for 32 bits) for address checks.
2222 	 */
2223 	/*
2224 	 * Check the source address.
2225 	 */
2226 	if (fr->fr_satype == FRI_LOOKUP) {
2227 		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2228 				      fi->fi_v, lip, fin->fin_plen);
2229 		if (i == -1)
2230 			return 1;
2231 		lip += 3;
2232 		lm += 3;
2233 		ld += 3;
2234 	} else {
2235 		i = ((*lip & *lm) != *ld);
2236 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2237 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2238 		if (fi->fi_v == 6) {
2239 			lip++, lm++, ld++;
2240 			i |= ((*lip & *lm) != *ld);
2241 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2242 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2243 			lip++, lm++, ld++;
2244 			i |= ((*lip & *lm) != *ld);
2245 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2246 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2247 			lip++, lm++, ld++;
2248 			i |= ((*lip & *lm) != *ld);
2249 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2250 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2251 		} else {
2252 			lip += 3;
2253 			lm += 3;
2254 			ld += 3;
2255 		}
2256 	}
2257 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2258 	if (i != 0)
2259 		return 1;
2260 
2261 	/*
2262 	 * Check the destination address.
2263 	 */
2264 	lip++, lm++, ld++;
2265 	if (fr->fr_datype == FRI_LOOKUP) {
2266 		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2267 				      fi->fi_v, lip, fin->fin_plen);
2268 		if (i == -1)
2269 			return 1;
2270 		lip += 3;
2271 		lm += 3;
2272 		ld += 3;
2273 	} else {
2274 		i = ((*lip & *lm) != *ld);
2275 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2276 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2277 		if (fi->fi_v == 6) {
2278 			lip++, lm++, ld++;
2279 			i |= ((*lip & *lm) != *ld);
2280 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2281 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2282 			lip++, lm++, ld++;
2283 			i |= ((*lip & *lm) != *ld);
2284 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2285 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2286 			lip++, lm++, ld++;
2287 			i |= ((*lip & *lm) != *ld);
2288 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2289 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2290 		} else {
2291 			lip += 3;
2292 			lm += 3;
2293 			ld += 3;
2294 		}
2295 	}
2296 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2297 	if (i != 0)
2298 		return 1;
2299 	/*
2300 	 * IP addresses matched.  The next 32bits contains:
2301 	 * mast of old IP header security & authentication bits.
2302 	 */
2303 	lip++, lm++, ld++;
2304 	i = (*ld - (*lip & *lm));
2305 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2306 
2307 	/*
2308 	 * Next we have 32 bits of packet flags.
2309 	 */
2310 	lip++, lm++, ld++;
2311 	i |= (*ld - (*lip & *lm));
2312 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2313 
2314 	if (i == 0) {
2315 		/*
2316 		 * If a fragment, then only the first has what we're
2317 		 * looking for here...
2318 		 */
2319 		if (portcmp) {
2320 			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2321 				i = 1;
2322 		} else {
2323 			if (fr->fr_dcmp || fr->fr_scmp ||
2324 			    fr->fr_tcpf || fr->fr_tcpfm)
2325 				i = 1;
2326 			if (fr->fr_icmpm || fr->fr_icmp) {
2327 				if (((fi->fi_p != IPPROTO_ICMP) &&
2328 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2329 				    fin->fin_off || (fin->fin_dlen < 2))
2330 					i = 1;
2331 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2332 					 fr->fr_icmp) {
2333 					FR_DEBUG(("i. %#x & %#x != %#x\n",
2334 						 fin->fin_data[0],
2335 						 fr->fr_icmpm, fr->fr_icmp));
2336 					i = 1;
2337 				}
2338 			}
2339 		}
2340 	}
2341 	return i;
2342 }
2343 
2344 
2345 /* ------------------------------------------------------------------------ */
2346 /* Function:    ipf_scanlist                                                */
2347 /* Returns:     int - result flags of scanning filter list                  */
2348 /* Parameters:  fin(I) - pointer to packet information                      */
2349 /*              pass(I) - default result to return for filtering            */
2350 /*                                                                          */
2351 /* Check the input/output list of rules for a match to the current packet.  */
2352 /* If a match is found, the value of fr_flags from the rule becomes the     */
2353 /* return value and fin->fin_fr points to the matched rule.                 */
2354 /*                                                                          */
2355 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
2356 /* When unwinding, it should finish up with fin_depth as 0.                 */
2357 /*                                                                          */
2358 /* Could be per interface, but this gets real nasty when you don't have,    */
2359 /* or can't easily change, the kernel source code to .                      */
2360 /* ------------------------------------------------------------------------ */
2361 int
2362 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2363 {
2364 	ipf_main_softc_t *softc = fin->fin_main_soft;
2365 	int rulen, portcmp, off, skip;
2366 	struct frentry *fr, *fnext;
2367 	u_32_t passt, passo;
2368 
2369 	/*
2370 	 * Do not allow nesting deeper than 16 levels.
2371 	 */
2372 	if (fin->fin_depth >= 16)
2373 		return pass;
2374 
2375 	fr = fin->fin_fr;
2376 
2377 	/*
2378 	 * If there are no rules in this list, return now.
2379 	 */
2380 	if (fr == NULL)
2381 		return pass;
2382 
2383 	skip = 0;
2384 	portcmp = 0;
2385 	fin->fin_depth++;
2386 	fin->fin_fr = NULL;
2387 	off = fin->fin_off;
2388 
2389 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2390 		portcmp = 1;
2391 
2392 	for (rulen = 0; fr; fr = fnext, rulen++) {
2393 		fnext = fr->fr_next;
2394 		if (skip != 0) {
2395 			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2396 			skip--;
2397 			continue;
2398 		}
2399 
2400 		/*
2401 		 * In all checks below, a null (zero) value in the
2402 		 * filter struture is taken to mean a wildcard.
2403 		 *
2404 		 * check that we are working for the right interface
2405 		 */
2406 #ifdef	_KERNEL
2407 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2408 			continue;
2409 #else
2410 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2411 			printf("\n");
2412 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2413 				  FR_ISPASS(pass) ? 'p' :
2414 				  FR_ISACCOUNT(pass) ? 'A' :
2415 				  FR_ISAUTH(pass) ? 'a' :
2416 				  (pass & FR_NOMATCH) ? 'n' :'b'));
2417 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2418 			continue;
2419 		FR_VERBOSE((":i"));
2420 #endif
2421 
2422 		switch (fr->fr_type)
2423 		{
2424 		case FR_T_IPF :
2425 		case FR_T_IPF_BUILTIN :
2426 			if (ipf_check_ipf(fin, fr, portcmp))
2427 				continue;
2428 			break;
2429 #if defined(IPFILTER_BPF)
2430 		case FR_T_BPFOPC :
2431 		case FR_T_BPFOPC_BUILTIN :
2432 		    {
2433 			u_char *mc;
2434 			int wlen;
2435 
2436 			if (*fin->fin_mp == NULL)
2437 				continue;
2438 			if (fin->fin_family != fr->fr_family)
2439 				continue;
2440 			mc = (u_char *)fin->fin_m;
2441 			wlen = fin->fin_dlen + fin->fin_hlen;
2442 			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2443 				continue;
2444 			break;
2445 		    }
2446 #endif
2447 		case FR_T_CALLFUNC_BUILTIN :
2448 		    {
2449 			frentry_t *f;
2450 
2451 			f = (*fr->fr_func)(fin, &pass);
2452 			if (f != NULL)
2453 				fr = f;
2454 			else
2455 				continue;
2456 			break;
2457 		    }
2458 
2459 		case FR_T_IPFEXPR :
2460 		case FR_T_IPFEXPR_BUILTIN :
2461 			if (fin->fin_family != fr->fr_family)
2462 				continue;
2463 			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2464 				continue;
2465 			break;
2466 
2467 		default :
2468 			break;
2469 		}
2470 
2471 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2472 			if (fin->fin_nattag == NULL)
2473 				continue;
2474 			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2475 				continue;
2476 		}
2477 		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2478 
2479 		passt = fr->fr_flags;
2480 
2481 		/*
2482 		 * If the rule is a "call now" rule, then call the function
2483 		 * in the rule, if it exists and use the results from that.
2484 		 * If the function pointer is bad, just make like we ignore
2485 		 * it, except for increasing the hit counter.
2486 		 */
2487 		if ((passt & FR_CALLNOW) != 0) {
2488 			frentry_t *frs;
2489 
2490 			ATOMIC_INC64(fr->fr_hits);
2491 			if ((fr->fr_func == NULL) ||
2492 			    (fr->fr_func == (ipfunc_t)-1))
2493 				continue;
2494 
2495 			frs = fin->fin_fr;
2496 			fin->fin_fr = fr;
2497 			fr = (*fr->fr_func)(fin, &passt);
2498 			if (fr == NULL) {
2499 				fin->fin_fr = frs;
2500 				continue;
2501 			}
2502 			passt = fr->fr_flags;
2503 		}
2504 		fin->fin_fr = fr;
2505 
2506 #ifdef  IPFILTER_LOG
2507 		/*
2508 		 * Just log this packet...
2509 		 */
2510 		if ((passt & FR_LOGMASK) == FR_LOG) {
2511 			if (ipf_log_pkt(fin, passt) == -1) {
2512 				if (passt & FR_LOGORBLOCK) {
2513 					DT(frb_logfail);
2514 					passt &= ~FR_CMDMASK;
2515 					passt |= FR_BLOCK|FR_QUICK;
2516 					fin->fin_reason = FRB_LOGFAIL;
2517 				}
2518 			}
2519 		}
2520 #endif /* IPFILTER_LOG */
2521 
2522 		MUTEX_ENTER(&fr->fr_lock);
2523 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2524 		fr->fr_hits++;
2525 		MUTEX_EXIT(&fr->fr_lock);
2526 		fin->fin_rule = rulen;
2527 
2528 		passo = pass;
2529 		if (FR_ISSKIP(passt)) {
2530 			skip = fr->fr_arg;
2531 			continue;
2532 		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2533 			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2534 			pass = passt;
2535 		}
2536 
2537 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2538 			fin->fin_icode = fr->fr_icode;
2539 
2540 		if (fr->fr_group != -1) {
2541 			(void) strncpy(fin->fin_group,
2542 				       FR_NAME(fr, fr_group),
2543 				       strlen(FR_NAME(fr, fr_group)));
2544 		} else {
2545 			fin->fin_group[0] = '\0';
2546 		}
2547 
2548 		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2549 
2550 		if (fr->fr_grphead != NULL) {
2551 			fin->fin_fr = fr->fr_grphead->fg_start;
2552 			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2553 
2554 			if (FR_ISDECAPS(passt))
2555 				passt = ipf_decaps(fin, pass, fr->fr_icode);
2556 			else
2557 				passt = ipf_scanlist(fin, pass);
2558 
2559 			if (fin->fin_fr == NULL) {
2560 				fin->fin_rule = rulen;
2561 				if (fr->fr_group != -1)
2562 					(void) strncpy(fin->fin_group,
2563 						       fr->fr_names +
2564 						       fr->fr_group,
2565 						       strlen(fr->fr_names +
2566 							      fr->fr_group));
2567 				fin->fin_fr = fr;
2568 				passt = pass;
2569 			}
2570 			pass = passt;
2571 		}
2572 
2573 		if (pass & FR_QUICK) {
2574 			/*
2575 			 * Finally, if we've asked to track state for this
2576 			 * packet, set it up.  Add state for "quick" rules
2577 			 * here so that if the action fails we can consider
2578 			 * the rule to "not match" and keep on processing
2579 			 * filter rules.
2580 			 */
2581 			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2582 			    !(fin->fin_flx & FI_STATE)) {
2583 				int out = fin->fin_out;
2584 
2585 				fin->fin_fr = fr;
2586 				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2587 					LBUMPD(ipf_stats[out], fr_ads);
2588 				} else {
2589 					LBUMPD(ipf_stats[out], fr_bads);
2590 					pass = passo;
2591 					continue;
2592 				}
2593 			}
2594 			break;
2595 		}
2596 	}
2597 	fin->fin_depth--;
2598 	return pass;
2599 }
2600 
2601 
2602 /* ------------------------------------------------------------------------ */
2603 /* Function:    ipf_acctpkt                                                 */
2604 /* Returns:     frentry_t* - always returns NULL                            */
2605 /* Parameters:  fin(I) - pointer to packet information                      */
2606 /*              passp(IO) - pointer to current/new filter decision (unused) */
2607 /*                                                                          */
2608 /* Checks a packet against accounting rules, if there are any for the given */
2609 /* IP protocol version.                                                     */
2610 /*                                                                          */
2611 /* N.B.: this function returns NULL to match the prototype used by other    */
2612 /* functions called from the IPFilter "mainline" in ipf_check().            */
2613 /* ------------------------------------------------------------------------ */
2614 frentry_t *
2615 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2616 {
2617 	ipf_main_softc_t *softc = fin->fin_main_soft;
2618 	char group[FR_GROUPLEN];
2619 	frentry_t *fr, *frsave;
2620 	u_32_t pass, rulen;
2621 
2622 	passp = passp;
2623 	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2624 
2625 	if (fr != NULL) {
2626 		frsave = fin->fin_fr;
2627 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2628 		rulen = fin->fin_rule;
2629 		fin->fin_fr = fr;
2630 		pass = ipf_scanlist(fin, FR_NOMATCH);
2631 		if (FR_ISACCOUNT(pass)) {
2632 			LBUMPD(ipf_stats[0], fr_acct);
2633 		}
2634 		fin->fin_fr = frsave;
2635 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2636 		fin->fin_rule = rulen;
2637 	}
2638 	return NULL;
2639 }
2640 
2641 
2642 /* ------------------------------------------------------------------------ */
2643 /* Function:    ipf_firewall                                                */
2644 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2645 /*                           were found, returns NULL.                      */
2646 /* Parameters:  fin(I) - pointer to packet information                      */
2647 /*              passp(IO) - pointer to current/new filter decision (unused) */
2648 /*                                                                          */
2649 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2650 /* there are any matches.  The first check is to see if a match can be seen */
2651 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2652 /* matching rule is found, take any appropriate actions as defined by the   */
2653 /* rule - except logging.                                                   */
2654 /* ------------------------------------------------------------------------ */
2655 static frentry_t *
2656 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2657 {
2658 	ipf_main_softc_t *softc = fin->fin_main_soft;
2659 	frentry_t *fr;
2660 	u_32_t pass;
2661 	int out;
2662 
2663 	out = fin->fin_out;
2664 	pass = *passp;
2665 
2666 	/*
2667 	 * This rule cache will only affect packets that are not being
2668 	 * statefully filtered.
2669 	 */
2670 	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2671 	if (fin->fin_fr != NULL)
2672 		pass = ipf_scanlist(fin, softc->ipf_pass);
2673 
2674 	if ((pass & FR_NOMATCH)) {
2675 		LBUMPD(ipf_stats[out], fr_nom);
2676 	}
2677 	fr = fin->fin_fr;
2678 
2679 	/*
2680 	 * Apply packets per second rate-limiting to a rule as required.
2681 	 */
2682 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2683 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2684 		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2685 		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2686 		pass |= FR_BLOCK;
2687 		LBUMPD(ipf_stats[out], fr_ppshit);
2688 		fin->fin_reason = FRB_PPSRATE;
2689 	}
2690 
2691 	/*
2692 	 * If we fail to add a packet to the authorization queue, then we
2693 	 * drop the packet later.  However, if it was added then pretend
2694 	 * we've dropped it already.
2695 	 */
2696 	if (FR_ISAUTH(pass)) {
2697 		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2698 			DT1(frb_authnew, fr_info_t *, fin);
2699 			fin->fin_m = *fin->fin_mp = NULL;
2700 			fin->fin_reason = FRB_AUTHNEW;
2701 			fin->fin_error = 0;
2702 		} else {
2703 			IPFERROR(1);
2704 			fin->fin_error = ENOSPC;
2705 		}
2706 	}
2707 
2708 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2709 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2710 		(void) (*fr->fr_func)(fin, &pass);
2711 
2712 	/*
2713 	 * If a rule is a pre-auth rule, check again in the list of rules
2714 	 * loaded for authenticated use.  It does not particulary matter
2715 	 * if this search fails because a "preauth" result, from a rule,
2716 	 * is treated as "not a pass", hence the packet is blocked.
2717 	 */
2718 	if (FR_ISPREAUTH(pass)) {
2719 		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2720 	}
2721 
2722 	/*
2723 	 * If the rule has "keep frag" and the packet is actually a fragment,
2724 	 * then create a fragment state entry.
2725 	 */
2726 	if (pass & FR_KEEPFRAG) {
2727 		if (fin->fin_flx & FI_FRAG) {
2728 			if (ipf_frag_new(softc, fin, pass) == -1) {
2729 				LBUMP(ipf_stats[out].fr_bnfr);
2730 			} else {
2731 				LBUMP(ipf_stats[out].fr_nfr);
2732 			}
2733 		} else {
2734 			LBUMP(ipf_stats[out].fr_cfr);
2735 		}
2736 	}
2737 
2738 	fr = fin->fin_fr;
2739 	*passp = pass;
2740 
2741 	return fr;
2742 }
2743 
2744 
2745 /* ------------------------------------------------------------------------ */
2746 /* Function:    ipf_check                                                   */
2747 /* Returns:     int -  0 == packet allowed through,                         */
2748 /*              User space:                                                 */
2749 /*                    -1 == packet blocked                                  */
2750 /*                     1 == packet not matched                              */
2751 /*                    -2 == requires authentication                         */
2752 /*              Kernel:                                                     */
2753 /*                   > 0 == filter error # for packet                       */
2754 /* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2755 /*             hlen(I) - length of header                                   */
2756 /*             ifp(I)  - pointer to interface this packet is on             */
2757 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2758 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2759 /*                       IP packet.                                         */
2760 /* Solaris & HP-UX ONLY :                                                   */
2761 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2762 /*                       interface & direction.                             */
2763 /*                                                                          */
2764 /* ipf_check() is the master function for all IPFilter packet processing.   */
2765 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2766 /* authorisation (or pre-authorisation), presence of related state info.,   */
2767 /* generating log entries, IP packet accounting, routing of packets as      */
2768 /* directed by firewall rules and of course whether or not to allow the     */
2769 /* packet to be further processed by the kernel.                            */
2770 /*                                                                          */
2771 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2772 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2773 /* by "mp" changed to a new buffer.                                         */
2774 /* ------------------------------------------------------------------------ */
2775 int
2776 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out,
2777 #if defined(_KERNEL) && defined(MENTAT)
2778     void *qif,
2779 #endif
2780     mb_t **mp)
2781 {
2782 	/*
2783 	 * The above really sucks, but short of writing a diff
2784 	 */
2785 	ipf_main_softc_t *softc = ctx;
2786 	fr_info_t frinfo;
2787 	fr_info_t *fin = &frinfo;
2788 	u_32_t pass = softc->ipf_pass;
2789 	frentry_t *fr = NULL;
2790 	int v = IP_V(ip);
2791 	mb_t *mc = NULL;
2792 	mb_t *m;
2793 	/*
2794 	 * The first part of ipf_check() deals with making sure that what goes
2795 	 * into the filtering engine makes some sense.  Information about the
2796 	 * the packet is distilled, collected into a fr_info_t structure and
2797 	 * the an attempt to ensure the buffer the packet is in is big enough
2798 	 * to hold all the required packet headers.
2799 	 */
2800 #ifdef	_KERNEL
2801 # ifdef MENTAT
2802 	qpktinfo_t *qpi = qif;
2803 
2804 #  ifdef __sparc
2805 	if ((u_int)ip & 0x3)
2806 		return 2;
2807 #  endif
2808 # else
2809 	SPL_INT(s);
2810 # endif
2811 
2812 	if (softc->ipf_running <= 0) {
2813 		return 0;
2814 	}
2815 
2816 	bzero((char *)fin, sizeof(*fin));
2817 
2818 # ifdef MENTAT
2819 	if (qpi->qpi_flags & QF_BROADCAST)
2820 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2821 	if (qpi->qpi_flags & QF_MULTICAST)
2822 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2823 	m = qpi->qpi_m;
2824 	fin->fin_qfm = m;
2825 	fin->fin_qpi = qpi;
2826 # else /* MENTAT */
2827 
2828 	m = *mp;
2829 
2830 #  if defined(M_MCAST)
2831 	if ((m->m_flags & M_MCAST) != 0)
2832 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2833 #  endif
2834 #  if defined(M_MLOOP)
2835 	if ((m->m_flags & M_MLOOP) != 0)
2836 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2837 #  endif
2838 #  if defined(M_BCAST)
2839 	if ((m->m_flags & M_BCAST) != 0)
2840 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2841 #  endif
2842 #  ifdef M_CANFASTFWD
2843 	/*
2844 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2845 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2846 	 * XXX get a "can-fast-forward" filter rule.
2847 	 */
2848 	m->m_flags &= ~M_CANFASTFWD;
2849 #  endif /* M_CANFASTFWD */
2850 #  if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2851 				   (__FreeBSD_version < 501108))
2852 	/*
2853 	 * disable delayed checksums.
2854 	 */
2855 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2856 		in_delayed_cksum(m);
2857 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2858 	}
2859 #  endif /* CSUM_DELAY_DATA */
2860 # endif /* MENTAT */
2861 #else
2862 	bzero((char *)fin, sizeof(*fin));
2863 	m = *mp;
2864 # if defined(M_MCAST)
2865 	if ((m->m_flags & M_MCAST) != 0)
2866 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2867 # endif
2868 # if defined(M_MLOOP)
2869 	if ((m->m_flags & M_MLOOP) != 0)
2870 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2871 # endif
2872 # if defined(M_BCAST)
2873 	if ((m->m_flags & M_BCAST) != 0)
2874 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2875 # endif
2876 #endif /* _KERNEL */
2877 
2878 	fin->fin_v = v;
2879 	fin->fin_m = m;
2880 	fin->fin_ip = ip;
2881 	fin->fin_mp = mp;
2882 	fin->fin_out = out;
2883 	fin->fin_ifp = ifp;
2884 	fin->fin_error = ENETUNREACH;
2885 	fin->fin_hlen = (u_short)hlen;
2886 	fin->fin_dp = (char *)ip + hlen;
2887 	fin->fin_main_soft = softc;
2888 
2889 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2890 
2891 	SPL_NET(s);
2892 
2893 #ifdef	USE_INET6
2894 	if (v == 6) {
2895 		LBUMP(ipf_stats[out].fr_ipv6);
2896 		/*
2897 		 * Jumbo grams are quite likely too big for internal buffer
2898 		 * structures to handle comfortably, for now, so just drop
2899 		 * them.
2900 		 */
2901 		if (((ip6_t *)ip)->ip6_plen == 0) {
2902 			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2903 			pass = FR_BLOCK|FR_NOMATCH;
2904 			fin->fin_reason = FRB_JUMBO;
2905 			goto finished;
2906 		}
2907 		fin->fin_family = AF_INET6;
2908 	} else
2909 #endif
2910 	{
2911 		fin->fin_family = AF_INET;
2912 	}
2913 
2914 	if (ipf_makefrip(hlen, ip, fin) == -1) {
2915 		DT1(frb_makefrip, fr_info_t *, fin);
2916 		pass = FR_BLOCK|FR_NOMATCH;
2917 		fin->fin_reason = FRB_MAKEFRIP;
2918 		goto finished;
2919 	}
2920 
2921 	/*
2922 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2923 	 * becomes NULL and so we have no packet to free.
2924 	 */
2925 	if (*fin->fin_mp == NULL)
2926 		goto finished;
2927 
2928 	if (!out) {
2929 		if (v == 4) {
2930 			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2931 				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2932 				fin->fin_flx |= FI_BADSRC;
2933 			}
2934 			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2935 				LBUMPD(ipf_stats[0], fr_v4_badttl);
2936 				fin->fin_flx |= FI_LOWTTL;
2937 			}
2938 		}
2939 #ifdef USE_INET6
2940 		else  if (v == 6) {
2941 			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2942 				LBUMPD(ipf_stats[0], fr_v6_badttl);
2943 				fin->fin_flx |= FI_LOWTTL;
2944 			}
2945 		}
2946 #endif
2947 	}
2948 
2949 	if (fin->fin_flx & FI_SHORT) {
2950 		LBUMPD(ipf_stats[out], fr_short);
2951 	}
2952 
2953 	READ_ENTER(&softc->ipf_mutex);
2954 
2955 	if (!out) {
2956 		switch (fin->fin_v)
2957 		{
2958 		case 4 :
2959 			if (ipf_nat_checkin(fin, &pass) == -1) {
2960 				goto filterdone;
2961 			}
2962 			break;
2963 #ifdef USE_INET6
2964 		case 6 :
2965 			if (ipf_nat6_checkin(fin, &pass) == -1) {
2966 				goto filterdone;
2967 			}
2968 			break;
2969 #endif
2970 		default :
2971 			break;
2972 		}
2973 	}
2974 	/*
2975 	 * Check auth now.
2976 	 * If a packet is found in the auth table, then skip checking
2977 	 * the access lists for permission but we do need to consider
2978 	 * the result as if it were from the ACL's.  In addition, being
2979 	 * found in the auth table means it has been seen before, so do
2980 	 * not pass it through accounting (again), lest it be counted twice.
2981 	 */
2982 	fr = ipf_auth_check(fin, &pass);
2983 	if (!out && (fr == NULL))
2984 		(void) ipf_acctpkt(fin, NULL);
2985 
2986 	if (fr == NULL) {
2987 		if ((fin->fin_flx & FI_FRAG) != 0)
2988 			fr = ipf_frag_known(fin, &pass);
2989 
2990 		if (fr == NULL)
2991 			fr = ipf_state_check(fin, &pass);
2992 	}
2993 
2994 	if ((pass & FR_NOMATCH) || (fr == NULL))
2995 		fr = ipf_firewall(fin, &pass);
2996 
2997 	/*
2998 	 * If we've asked to track state for this packet, set it up.
2999 	 * Here rather than ipf_firewall because ipf_checkauth may decide
3000 	 * to return a packet for "keep state"
3001 	 */
3002 	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3003 	    !(fin->fin_flx & FI_STATE)) {
3004 		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3005 			LBUMP(ipf_stats[out].fr_ads);
3006 		} else {
3007 			LBUMP(ipf_stats[out].fr_bads);
3008 			if (FR_ISPASS(pass)) {
3009 				DT(frb_stateadd);
3010 				pass &= ~FR_CMDMASK;
3011 				pass |= FR_BLOCK;
3012 				fin->fin_reason = FRB_STATEADD;
3013 			}
3014 		}
3015 	}
3016 
3017 	fin->fin_fr = fr;
3018 	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3019 		fin->fin_dif = &fr->fr_dif;
3020 		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3021 	}
3022 
3023 	/*
3024 	 * Only count/translate packets which will be passed on, out the
3025 	 * interface.
3026 	 */
3027 	if (out && FR_ISPASS(pass)) {
3028 		(void) ipf_acctpkt(fin, NULL);
3029 
3030 		switch (fin->fin_v)
3031 		{
3032 		case 4 :
3033 			if (ipf_nat_checkout(fin, &pass) == -1) {
3034 				;
3035 			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3036 				if (ipf_updateipid(fin) == -1) {
3037 					DT(frb_updateipid);
3038 					LBUMP(ipf_stats[1].fr_ipud);
3039 					pass &= ~FR_CMDMASK;
3040 					pass |= FR_BLOCK;
3041 					fin->fin_reason = FRB_UPDATEIPID;
3042 				} else {
3043 					LBUMP(ipf_stats[0].fr_ipud);
3044 				}
3045 			}
3046 			break;
3047 #ifdef USE_INET6
3048 		case 6 :
3049 			(void) ipf_nat6_checkout(fin, &pass);
3050 			break;
3051 #endif
3052 		default :
3053 			break;
3054 		}
3055 	}
3056 
3057 filterdone:
3058 #ifdef	IPFILTER_LOG
3059 	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3060 		(void) ipf_dolog(fin, &pass);
3061 	}
3062 #endif
3063 
3064 	/*
3065 	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3066 	 * will work when called from inside of fr_fastroute.  Although
3067 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3068 	 * impact on code execution.
3069 	 */
3070 	fin->fin_flx &= ~FI_STATE;
3071 
3072 #if defined(FASTROUTE_RECURSION)
3073 	/*
3074 	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3075 	 * a packet below can sometimes cause a recursive call into IPFilter.
3076 	 * On those platforms where that does happen, we need to hang onto
3077 	 * the filter rule just in case someone decides to remove or flush it
3078 	 * in the meantime.
3079 	 */
3080 	if (fr != NULL) {
3081 		MUTEX_ENTER(&fr->fr_lock);
3082 		fr->fr_ref++;
3083 		MUTEX_EXIT(&fr->fr_lock);
3084 	}
3085 
3086 	RWLOCK_EXIT(&softc->ipf_mutex);
3087 #endif
3088 
3089 	if ((pass & FR_RETMASK) != 0) {
3090 		/*
3091 		 * Should we return an ICMP packet to indicate error
3092 		 * status passing through the packet filter ?
3093 		 * WARNING: ICMP error packets AND TCP RST packets should
3094 		 * ONLY be sent in repsonse to incoming packets.  Sending
3095 		 * them in response to outbound packets can result in a
3096 		 * panic on some operating systems.
3097 		 */
3098 		if (!out) {
3099 			if (pass & FR_RETICMP) {
3100 				int dst;
3101 
3102 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3103 					dst = 1;
3104 				else
3105 					dst = 0;
3106 				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3107 							 dst);
3108 				LBUMP(ipf_stats[0].fr_ret);
3109 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3110 				   !(fin->fin_flx & FI_SHORT)) {
3111 				if (((fin->fin_flx & FI_OOW) != 0) ||
3112 				    (ipf_send_reset(fin) == 0)) {
3113 					LBUMP(ipf_stats[1].fr_ret);
3114 				}
3115 			}
3116 
3117 			/*
3118 			 * When using return-* with auth rules, the auth code
3119 			 * takes over disposing of this packet.
3120 			 */
3121 			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3122 				DT1(frb_authcapture, fr_info_t *, fin);
3123 				fin->fin_m = *fin->fin_mp = NULL;
3124 				fin->fin_reason = FRB_AUTHCAPTURE;
3125 				m = NULL;
3126 			}
3127 		} else {
3128 			if (pass & FR_RETRST) {
3129 				fin->fin_error = ECONNRESET;
3130 			}
3131 		}
3132 	}
3133 
3134 	/*
3135 	 * After the above so that ICMP unreachables and TCP RSTs get
3136 	 * created properly.
3137 	 */
3138 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3139 		ipf_nat_uncreate(fin);
3140 
3141 	/*
3142 	 * If we didn't drop off the bottom of the list of rules (and thus
3143 	 * the 'current' rule fr is not NULL), then we may have some extra
3144 	 * instructions about what to do with a packet.
3145 	 * Once we're finished return to our caller, freeing the packet if
3146 	 * we are dropping it.
3147 	 */
3148 	if (fr != NULL) {
3149 		frdest_t *fdp;
3150 
3151 		/*
3152 		 * Generate a duplicated packet first because ipf_fastroute
3153 		 * can lead to fin_m being free'd... not good.
3154 		 */
3155 		fdp = fin->fin_dif;
3156 		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3157 		    (fdp->fd_ptr != (void *)-1) && (fin->fin_m != NULL)) {
3158 			mc = M_COPY(fin->fin_m);
3159 			if (mc != NULL)
3160 				ipf_fastroute(mc, &mc, fin, fdp);
3161 		}
3162 
3163 		fdp = fin->fin_tif;
3164 		if (!out && (pass & FR_FASTROUTE)) {
3165 			/*
3166 			 * For fastroute rule, no destination interface defined
3167 			 * so pass NULL as the frdest_t parameter
3168 			 */
3169 			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3170 			m = *mp = NULL;
3171 		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3172 			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3173 			/* this is for to rules: */
3174 			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3175 			m = *mp = NULL;
3176 		}
3177 
3178 #if defined(FASTROUTE_RECURSION)
3179 		(void) ipf_derefrule(softc, &fr);
3180 #endif
3181 	}
3182 #if !defined(FASTROUTE_RECURSION)
3183 	RWLOCK_EXIT(&softc->ipf_mutex);
3184 #endif
3185 
3186 finished:
3187 	if (!FR_ISPASS(pass)) {
3188 		LBUMP(ipf_stats[out].fr_block);
3189 		if (*mp != NULL) {
3190 #ifdef _KERNEL
3191 			FREE_MB_T(*mp);
3192 #endif
3193 			m = *mp = NULL;
3194 		}
3195 	} else {
3196 		LBUMP(ipf_stats[out].fr_pass);
3197 #if defined(_KERNEL) && defined(__sgi)
3198 		if ((fin->fin_hbuf != NULL) &&
3199 		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3200 			COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3201 		}
3202 #endif
3203 	}
3204 
3205 	SPL_X(s);
3206 
3207 #ifdef _KERNEL
3208 	if (FR_ISPASS(pass))
3209 		return 0;
3210 	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3211 	return fin->fin_error;
3212 #else /* _KERNEL */
3213 	if (*mp != NULL)
3214 		(*mp)->mb_ifp = fin->fin_ifp;
3215 	blockreason = fin->fin_reason;
3216 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3217 	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3218 		if ((pass & FR_NOMATCH) != 0)
3219 			return 1;
3220 
3221 	if ((pass & FR_RETMASK) != 0)
3222 		switch (pass & FR_RETMASK)
3223 		{
3224 		case FR_RETRST :
3225 			return 3;
3226 		case FR_RETICMP :
3227 			return 4;
3228 		case FR_FAKEICMP :
3229 			return 5;
3230 		}
3231 
3232 	switch (pass & FR_CMDMASK)
3233 	{
3234 	case FR_PASS :
3235 		return 0;
3236 	case FR_BLOCK :
3237 		return -1;
3238 	case FR_AUTH :
3239 		return -2;
3240 	case FR_ACCOUNT :
3241 		return -3;
3242 	case FR_PREAUTH :
3243 		return -4;
3244 	}
3245 	return 2;
3246 #endif /* _KERNEL */
3247 }
3248 
3249 
3250 #ifdef	IPFILTER_LOG
3251 /* ------------------------------------------------------------------------ */
3252 /* Function:    ipf_dolog                                                   */
3253 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3254 /* Parameters:  fin(I) - pointer to packet information                      */
3255 /*              passp(IO) - pointer to current/new filter decision (unused) */
3256 /*                                                                          */
3257 /* Checks flags set to see how a packet should be logged, if it is to be    */
3258 /* logged.  Adjust statistics based on its success or not.                  */
3259 /* ------------------------------------------------------------------------ */
3260 frentry_t *
3261 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3262 {
3263 	ipf_main_softc_t *softc = fin->fin_main_soft;
3264 	u_32_t pass;
3265 	int out;
3266 
3267 	out = fin->fin_out;
3268 	pass = *passp;
3269 
3270 	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3271 		pass |= FF_LOGNOMATCH;
3272 		LBUMPD(ipf_stats[out], fr_npkl);
3273 		goto logit;
3274 
3275 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3276 	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3277 		if ((pass & FR_LOGMASK) != FR_LOGP)
3278 			pass |= FF_LOGPASS;
3279 		LBUMPD(ipf_stats[out], fr_ppkl);
3280 		goto logit;
3281 
3282 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3283 		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3284 		if ((pass & FR_LOGMASK) != FR_LOGB)
3285 			pass |= FF_LOGBLOCK;
3286 		LBUMPD(ipf_stats[out], fr_bpkl);
3287 
3288 logit:
3289 		if (ipf_log_pkt(fin, pass) == -1) {
3290 			/*
3291 			 * If the "or-block" option has been used then
3292 			 * block the packet if we failed to log it.
3293 			 */
3294 			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3295 				DT1(frb_logfail2, u_int, pass);
3296 				pass &= ~FR_CMDMASK;
3297 				pass |= FR_BLOCK;
3298 				fin->fin_reason = FRB_LOGFAIL2;
3299 			}
3300 		}
3301 		*passp = pass;
3302 	}
3303 
3304 	return fin->fin_fr;
3305 }
3306 #endif /* IPFILTER_LOG */
3307 
3308 
3309 /* ------------------------------------------------------------------------ */
3310 /* Function:    ipf_cksum                                                   */
3311 /* Returns:     u_short - IP header checksum                                */
3312 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3313 /*              len(I)  - length of buffer in bytes                         */
3314 /*                                                                          */
3315 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3316 /*                                                                          */
3317 /* N.B.: addr should be 16bit aligned.                                      */
3318 /* ------------------------------------------------------------------------ */
3319 u_short
3320 ipf_cksum(u_short *addr, int len)
3321 {
3322 	u_32_t sum = 0;
3323 
3324 	for (sum = 0; len > 1; len -= 2)
3325 		sum += *addr++;
3326 
3327 	/* mop up an odd byte, if necessary */
3328 	if (len == 1)
3329 		sum += *(u_char *)addr;
3330 
3331 	/*
3332 	 * add back carry outs from top 16 bits to low 16 bits
3333 	 */
3334 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3335 	sum += (sum >> 16);			/* add carry */
3336 	return (u_short)(~sum);
3337 }
3338 
3339 
3340 /* ------------------------------------------------------------------------ */
3341 /* Function:    fr_cksum                                                    */
3342 /* Returns:     u_short - layer 4 checksum                                  */
3343 /* Parameters:  fin(I)     - pointer to packet information                  */
3344 /*              ip(I)      - pointer to IP header                           */
3345 /*              l4proto(I) - protocol to caclulate checksum for             */
3346 /*              l4hdr(I)   - pointer to layer 4 header                      */
3347 /*                                                                          */
3348 /* Calculates the TCP checksum for the packet held in "m", using the data   */
3349 /* in the IP header "ip" to seed it.                                        */
3350 /*                                                                          */
3351 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3352 /* and the TCP header.  We also assume that data blocks aren't allocated in */
3353 /* odd sizes.                                                               */
3354 /*                                                                          */
3355 /* Expects ip_len and ip_off to be in network byte order when called.       */
3356 /* ------------------------------------------------------------------------ */
3357 u_short
3358 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3359 {
3360 	u_short *sp, slen, sumsave, *csump;
3361 	u_int sum, sum2;
3362 	int hlen;
3363 	int off;
3364 #ifdef	USE_INET6
3365 	ip6_t *ip6;
3366 #endif
3367 
3368 	csump = NULL;
3369 	sumsave = 0;
3370 	sp = NULL;
3371 	slen = 0;
3372 	hlen = 0;
3373 	sum = 0;
3374 
3375 	sum = htons((u_short)l4proto);
3376 	/*
3377 	 * Add up IP Header portion
3378 	 */
3379 #ifdef	USE_INET6
3380 	if (IP_V(ip) == 4) {
3381 #endif
3382 		hlen = IP_HL(ip) << 2;
3383 		off = hlen;
3384 		sp = (u_short *)&ip->ip_src;
3385 		sum += *sp++;	/* ip_src */
3386 		sum += *sp++;
3387 		sum += *sp++;	/* ip_dst */
3388 		sum += *sp++;
3389 #ifdef	USE_INET6
3390 	} else if (IP_V(ip) == 6) {
3391 		ip6 = (ip6_t *)ip;
3392 		hlen = sizeof(*ip6);
3393 		off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3394 		sp = (u_short *)&ip6->ip6_src;
3395 		sum += *sp++;	/* ip6_src */
3396 		sum += *sp++;
3397 		sum += *sp++;
3398 		sum += *sp++;
3399 		sum += *sp++;
3400 		sum += *sp++;
3401 		sum += *sp++;
3402 		sum += *sp++;
3403 		/* This needs to be routing header aware. */
3404 		sum += *sp++;	/* ip6_dst */
3405 		sum += *sp++;
3406 		sum += *sp++;
3407 		sum += *sp++;
3408 		sum += *sp++;
3409 		sum += *sp++;
3410 		sum += *sp++;
3411 		sum += *sp++;
3412 	} else {
3413 		return 0xffff;
3414 	}
3415 #endif
3416 	slen = fin->fin_plen - off;
3417 	sum += htons(slen);
3418 
3419 	switch (l4proto)
3420 	{
3421 	case IPPROTO_UDP :
3422 		csump = &((udphdr_t *)l4hdr)->uh_sum;
3423 		break;
3424 
3425 	case IPPROTO_TCP :
3426 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3427 		break;
3428 	case IPPROTO_ICMP :
3429 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3430 		sum = 0;	/* Pseudo-checksum is not included */
3431 		break;
3432 #ifdef USE_INET6
3433 	case IPPROTO_ICMPV6 :
3434 		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3435 		break;
3436 #endif
3437 	default :
3438 		break;
3439 	}
3440 
3441 	if (csump != NULL) {
3442 		sumsave = *csump;
3443 		*csump = 0;
3444 	}
3445 
3446 	sum2 = ipf_pcksum(fin, off, sum);
3447 	if (csump != NULL)
3448 		*csump = sumsave;
3449 	return sum2;
3450 }
3451 
3452 
3453 /* ------------------------------------------------------------------------ */
3454 /* Function:    ipf_findgroup                                               */
3455 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3456 /* Parameters:  softc(I) - pointer to soft context main structure           */
3457 /*              group(I) - group name to search for                         */
3458 /*              unit(I)  - device to which this group belongs               */
3459 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3460 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3461 /*                         to where to add the next (last) group or where   */
3462 /*                         to delete group from.                            */
3463 /*                                                                          */
3464 /* Search amongst the defined groups for a particular group number.         */
3465 /* ------------------------------------------------------------------------ */
3466 frgroup_t *
3467 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3468     frgroup_t ***fgpp)
3469 {
3470 	frgroup_t *fg, **fgp;
3471 
3472 	/*
3473 	 * Which list of groups to search in is dependent on which list of
3474 	 * rules are being operated on.
3475 	 */
3476 	fgp = &softc->ipf_groups[unit][set];
3477 
3478 	while ((fg = *fgp) != NULL) {
3479 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3480 			break;
3481 		else
3482 			fgp = &fg->fg_next;
3483 	}
3484 	if (fgpp != NULL)
3485 		*fgpp = fgp;
3486 	return fg;
3487 }
3488 
3489 
3490 /* ------------------------------------------------------------------------ */
3491 /* Function:    ipf_group_add                                               */
3492 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3493 /*                            != NULL == pointer to the group               */
3494 /* Parameters:  softc(I) - pointer to soft context main structure           */
3495 /*              num(I)   - group number to add                              */
3496 /*              head(I)  - rule pointer that is using this as the head      */
3497 /*              flags(I) - rule flags which describe the type of rule it is */
3498 /*              unit(I)  - device to which this group will belong to        */
3499 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3500 /* Write Locks: ipf_mutex                                                   */
3501 /*                                                                          */
3502 /* Add a new group head, or if it already exists, increase the reference    */
3503 /* count to it.                                                             */
3504 /* ------------------------------------------------------------------------ */
3505 frgroup_t *
3506 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3507     minor_t unit, int set)
3508 {
3509 	frgroup_t *fg, **fgp;
3510 	u_32_t gflags;
3511 
3512 	if (group == NULL)
3513 		return NULL;
3514 
3515 	if (unit == IPL_LOGIPF && *group == '\0')
3516 		return NULL;
3517 
3518 	fgp = NULL;
3519 	gflags = flags & FR_INOUT;
3520 
3521 	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3522 	if (fg != NULL) {
3523 		if (fg->fg_head == NULL && head != NULL)
3524 			fg->fg_head = head;
3525 		if (fg->fg_flags == 0)
3526 			fg->fg_flags = gflags;
3527 		else if (gflags != fg->fg_flags)
3528 			return NULL;
3529 		fg->fg_ref++;
3530 		return fg;
3531 	}
3532 
3533 	KMALLOC(fg, frgroup_t *);
3534 	if (fg != NULL) {
3535 		fg->fg_head = head;
3536 		fg->fg_start = NULL;
3537 		fg->fg_next = *fgp;
3538 		bcopy(group, fg->fg_name, strlen(group) + 1);
3539 		fg->fg_flags = gflags;
3540 		fg->fg_ref = 1;
3541 		fg->fg_set = &softc->ipf_groups[unit][set];
3542 		*fgp = fg;
3543 	}
3544 	return fg;
3545 }
3546 
3547 
3548 /* ------------------------------------------------------------------------ */
3549 /* Function:    ipf_group_del                                               */
3550 /* Returns:     int      - number of rules deleted                          */
3551 /* Parameters:  softc(I) - pointer to soft context main structure           */
3552 /*              group(I) - group name to delete                             */
3553 /*              fr(I)    - filter rule from which group is referenced       */
3554 /* Write Locks: ipf_mutex                                                   */
3555 /*                                                                          */
3556 /* This function is called whenever a reference to a group is to be dropped */
3557 /* and thus its reference count needs to be lowered and the group free'd if */
3558 /* the reference count reaches zero. Passing in fr is really for the sole   */
3559 /* purpose of knowing when the head rule is being deleted.                  */
3560 /* ------------------------------------------------------------------------ */
3561 void
3562 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3563 {
3564 
3565 	if (group->fg_head == fr)
3566 		group->fg_head = NULL;
3567 
3568 	group->fg_ref--;
3569 	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3570 		ipf_group_free(group);
3571 }
3572 
3573 
3574 /* ------------------------------------------------------------------------ */
3575 /* Function:    ipf_group_free                                              */
3576 /* Returns:     Nil                                                         */
3577 /* Parameters:  group(I) - pointer to filter rule group                     */
3578 /*                                                                          */
3579 /* Remove the group from the list of groups and free it.                    */
3580 /* ------------------------------------------------------------------------ */
3581 static void
3582 ipf_group_free(frgroup_t *group)
3583 {
3584 	frgroup_t **gp;
3585 
3586 	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3587 		if (*gp == group) {
3588 			*gp = group->fg_next;
3589 			break;
3590 		}
3591 	}
3592 	KFREE(group);
3593 }
3594 
3595 
3596 /* ------------------------------------------------------------------------ */
3597 /* Function:    ipf_group_flush                                             */
3598 /* Returns:     int      - number of rules flush from group                 */
3599 /* Parameters:  softc(I) - pointer to soft context main structure           */
3600 /* Parameters:  group(I) - pointer to filter rule group                     */
3601 /*                                                                          */
3602 /* Remove all of the rules that currently are listed under the given group. */
3603 /* ------------------------------------------------------------------------ */
3604 static int
3605 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3606 {
3607 	int gone = 0;
3608 
3609 	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3610 
3611 	return gone;
3612 }
3613 
3614 
3615 /* ------------------------------------------------------------------------ */
3616 /* Function:    ipf_getrulen                                                */
3617 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3618 /* Parameters:  softc(I) - pointer to soft context main structure           */
3619 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3620 /*              flags(I) - which set of rules to find the rule in           */
3621 /*              group(I) - group name                                       */
3622 /*              n(I)     - rule number to find                              */
3623 /*                                                                          */
3624 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3625 /* group # g doesn't exist or there are less than n rules in the group.     */
3626 /* ------------------------------------------------------------------------ */
3627 frentry_t *
3628 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3629 {
3630 	frentry_t *fr;
3631 	frgroup_t *fg;
3632 
3633 	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3634 	if (fg == NULL)
3635 		return NULL;
3636 	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3637 		;
3638 	if (n != 0)
3639 		return NULL;
3640 	return fr;
3641 }
3642 
3643 
3644 /* ------------------------------------------------------------------------ */
3645 /* Function:    ipf_flushlist                                               */
3646 /* Returns:     int - >= 0 - number of flushed rules                        */
3647 /* Parameters:  softc(I)   - pointer to soft context main structure         */
3648 /*              nfreedp(O) - pointer to int where flush count is stored     */
3649 /*              listp(I)   - pointer to list to flush pointer               */
3650 /* Write Locks: ipf_mutex                                                   */
3651 /*                                                                          */
3652 /* Recursively flush rules from the list, descending groups as they are     */
3653 /* encountered.  if a rule is the head of a group and it has lost all its   */
3654 /* group members, then also delete the group reference.  nfreedp is needed  */
3655 /* to store the accumulating count of rules removed, whereas the returned   */
3656 /* value is just the number removed from the current list.  The latter is   */
3657 /* needed to correctly adjust reference counts on rules that define groups. */
3658 /*                                                                          */
3659 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3660 /* ------------------------------------------------------------------------ */
3661 static int
3662 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3663 {
3664 	int freed = 0;
3665 	frentry_t *fp;
3666 
3667 	while ((fp = *listp) != NULL) {
3668 		if ((fp->fr_type & FR_T_BUILTIN) ||
3669 		    !(fp->fr_flags & FR_COPIED)) {
3670 			listp = &fp->fr_next;
3671 			continue;
3672 		}
3673 		*listp = fp->fr_next;
3674 		if (fp->fr_next != NULL)
3675 			fp->fr_next->fr_pnext = fp->fr_pnext;
3676 		fp->fr_pnext = NULL;
3677 
3678 		if (fp->fr_grphead != NULL) {
3679 			freed += ipf_group_flush(softc, fp->fr_grphead);
3680 			fp->fr_names[fp->fr_grhead] = '\0';
3681 		}
3682 
3683 		if (fp->fr_icmpgrp != NULL) {
3684 			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3685 			fp->fr_names[fp->fr_icmphead] = '\0';
3686 		}
3687 
3688 		if (fp->fr_srctrack.ht_max_nodes)
3689 			ipf_rb_ht_flush(&fp->fr_srctrack);
3690 
3691 		fp->fr_next = NULL;
3692 
3693 		ASSERT(fp->fr_ref > 0);
3694 		if (ipf_derefrule(softc, &fp) == 0)
3695 			freed++;
3696 	}
3697 	*nfreedp += freed;
3698 	return freed;
3699 }
3700 
3701 
3702 /* ------------------------------------------------------------------------ */
3703 /* Function:    ipf_flush                                                   */
3704 /* Returns:     int - >= 0 - number of flushed rules                        */
3705 /* Parameters:  softc(I) - pointer to soft context main structure           */
3706 /*              unit(I)  - device for which to flush rules                  */
3707 /*              flags(I) - which set of rules to flush                      */
3708 /*                                                                          */
3709 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3710 /* and IPv6) as defined by the value of flags.                              */
3711 /* ------------------------------------------------------------------------ */
3712 int
3713 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3714 {
3715 	int flushed = 0, set;
3716 
3717 	WRITE_ENTER(&softc->ipf_mutex);
3718 
3719 	set = softc->ipf_active;
3720 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3721 		set = 1 - set;
3722 
3723 	if (flags & FR_OUTQUE) {
3724 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3725 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3726 	}
3727 	if (flags & FR_INQUE) {
3728 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3729 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3730 	}
3731 
3732 	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3733 				    flags & (FR_INQUE|FR_OUTQUE));
3734 
3735 	RWLOCK_EXIT(&softc->ipf_mutex);
3736 
3737 	if (unit == IPL_LOGIPF) {
3738 		int tmp;
3739 
3740 		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3741 		if (tmp >= 0)
3742 			flushed += tmp;
3743 	}
3744 	return flushed;
3745 }
3746 
3747 
3748 /* ------------------------------------------------------------------------ */
3749 /* Function:    ipf_flush_groups                                            */
3750 /* Returns:     int - >= 0 - number of flushed rules                        */
3751 /* Parameters:  softc(I)  - soft context pointerto work with                */
3752 /*              grhead(I) - pointer to the start of the group list to flush */
3753 /*              flags(I)  - which set of rules to flush                     */
3754 /*                                                                          */
3755 /* Walk through all of the groups under the given group head and remove all */
3756 /* of those that match the flags passed in. The for loop here is bit more   */
3757 /* complicated than usual because the removal of a rule with ipf_derefrule  */
3758 /* may end up removing not only the structure pointed to by "fg" but also   */
3759 /* what is fg_next and fg_next after that. So if a filter rule is actually  */
3760 /* removed from the group then it is necessary to start again.              */
3761 /* ------------------------------------------------------------------------ */
3762 static int
3763 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3764 {
3765 	frentry_t *fr, **frp;
3766 	frgroup_t *fg, **fgp;
3767 	int flushed = 0;
3768 	int removed = 0;
3769 
3770 	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3771 		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3772 			fg = fg->fg_next;
3773 		if (fg == NULL)
3774 			break;
3775 		removed = 0;
3776 		frp = &fg->fg_start;
3777 		while ((removed == 0) && ((fr = *frp) != NULL)) {
3778 			if ((fr->fr_flags & flags) == 0) {
3779 				frp = &fr->fr_next;
3780 			} else {
3781 				if (fr->fr_next != NULL)
3782 					fr->fr_next->fr_pnext = fr->fr_pnext;
3783 				*frp = fr->fr_next;
3784 				fr->fr_pnext = NULL;
3785 				fr->fr_next = NULL;
3786 				(void) ipf_derefrule(softc, &fr);
3787 				flushed++;
3788 				removed++;
3789 			}
3790 		}
3791 		if (removed == 0)
3792 			fgp = &fg->fg_next;
3793 	}
3794 	return flushed;
3795 }
3796 
3797 
3798 /* ------------------------------------------------------------------------ */
3799 /* Function:    memstr                                                      */
3800 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3801 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3802 /*              dst(I)  - pointer to byte sequence to search                */
3803 /*              slen(I) - match length                                      */
3804 /*              dlen(I) - length available to search in                     */
3805 /*                                                                          */
3806 /* Search dst for a sequence of bytes matching those at src and extend for  */
3807 /* slen bytes.                                                              */
3808 /* ------------------------------------------------------------------------ */
3809 char *
3810 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3811 {
3812 	char *s = NULL;
3813 
3814 	while (dlen >= slen) {
3815 		if (memcmp(src, dst, slen) == 0) {
3816 			s = dst;
3817 			break;
3818 		}
3819 		dst++;
3820 		dlen--;
3821 	}
3822 	return s;
3823 }
3824 
3825 
3826 /* ------------------------------------------------------------------------ */
3827 /* Function:    ipf_fixskip                                                 */
3828 /* Returns:     Nil                                                         */
3829 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3830 /*              rp(I)        - rule added/removed with skip in it.          */
3831 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3832 /*                             depending on whether a rule was just added   */
3833 /*                             or removed.                                  */
3834 /*                                                                          */
3835 /* Adjust all the rules in a list which would have skip'd past the position */
3836 /* where we are inserting to skip to the right place given the change.      */
3837 /* ------------------------------------------------------------------------ */
3838 void
3839 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3840 {
3841 	int rules, rn;
3842 	frentry_t *fp;
3843 
3844 	rules = 0;
3845 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3846 		rules++;
3847 
3848 	if (!fp)
3849 		return;
3850 
3851 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3852 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3853 			fp->fr_arg += addremove;
3854 }
3855 
3856 
3857 #ifdef	_KERNEL
3858 /* ------------------------------------------------------------------------ */
3859 /* Function:    count4bits                                                  */
3860 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3861 /* Parameters:  ip(I) - 32bit IP address                                    */
3862 /*                                                                          */
3863 /* IPv4 ONLY                                                                */
3864 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3865 /* consecutive 1's is different to that passed, return -1, else return #    */
3866 /* of bits.                                                                 */
3867 /* ------------------------------------------------------------------------ */
3868 int
3869 count4bits(u_32_t ip)
3870 {
3871 	u_32_t	ipn;
3872 	int	cnt = 0, i, j;
3873 
3874 	ip = ipn = ntohl(ip);
3875 	for (i = 32; i; i--, ipn *= 2)
3876 		if (ipn & 0x80000000)
3877 			cnt++;
3878 		else
3879 			break;
3880 	ipn = 0;
3881 	for (i = 32, j = cnt; i; i--, j--) {
3882 		ipn *= 2;
3883 		if (j > 0)
3884 			ipn++;
3885 	}
3886 	if (ipn == ip)
3887 		return cnt;
3888 	return -1;
3889 }
3890 
3891 
3892 /* ------------------------------------------------------------------------ */
3893 /* Function:    count6bits                                                  */
3894 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3895 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3896 /*                                                                          */
3897 /* IPv6 ONLY                                                                */
3898 /* count consecutive 1's in bit mask.                                       */
3899 /* ------------------------------------------------------------------------ */
3900 # ifdef USE_INET6
3901 int
3902 count6bits(u_32_t *msk)
3903 {
3904 	int i = 0, k;
3905 	u_32_t j;
3906 
3907 	for (k = 3; k >= 0; k--)
3908 		if (msk[k] == 0xffffffff)
3909 			i += 32;
3910 		else {
3911 			for (j = msk[k]; j; j <<= 1)
3912 				if (j & 0x80000000)
3913 					i++;
3914 		}
3915 	return i;
3916 }
3917 # endif
3918 #endif /* _KERNEL */
3919 
3920 
3921 /* ------------------------------------------------------------------------ */
3922 /* Function:    ipf_synclist                                                */
3923 /* Returns:     int    - 0 = no failures, else indication of first failure  */
3924 /* Parameters:  fr(I)  - start of filter list to sync interface names for   */
3925 /*              ifp(I) - interface pointer for limiting sync lookups        */
3926 /* Write Locks: ipf_mutex                                                   */
3927 /*                                                                          */
3928 /* Walk through a list of filter rules and resolve any interface names into */
3929 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3930 /* used in the rule.  The interface pointer is used to limit the lookups to */
3931 /* a specific set of matching names if it is non-NULL.                      */
3932 /* Errors can occur when resolving the destination name of to/dup-to fields */
3933 /* when the name points to a pool and that pool doest not exist. If this    */
3934 /* does happen then it is necessary to check if there are any lookup refs   */
3935 /* that need to be dropped before returning with an error.                  */
3936 /* ------------------------------------------------------------------------ */
3937 static int
3938 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3939 {
3940 	frentry_t *frt, *start = fr;
3941 	frdest_t *fdp;
3942 	char *name;
3943 	int error;
3944 	void *ifa;
3945 	int v, i;
3946 
3947 	error = 0;
3948 
3949 	for (; fr; fr = fr->fr_next) {
3950 		if (fr->fr_family == AF_INET)
3951 			v = 4;
3952 		else if (fr->fr_family == AF_INET6)
3953 			v = 6;
3954 		else
3955 			v = 0;
3956 
3957 		/*
3958 		 * Lookup all the interface names that are part of the rule.
3959 		 */
3960 		for (i = 0; i < 4; i++) {
3961 			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3962 				continue;
3963 			if (fr->fr_ifnames[i] == -1)
3964 				continue;
3965 			name = FR_NAME(fr, fr_ifnames[i]);
3966 			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3967 		}
3968 
3969 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3970 			if (fr->fr_satype != FRI_NORMAL &&
3971 			    fr->fr_satype != FRI_LOOKUP) {
3972 				ifa = ipf_resolvenic(softc, fr->fr_names +
3973 						     fr->fr_sifpidx, v);
3974 				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3975 					    &fr->fr_src6, &fr->fr_smsk6);
3976 			}
3977 			if (fr->fr_datype != FRI_NORMAL &&
3978 			    fr->fr_datype != FRI_LOOKUP) {
3979 				ifa = ipf_resolvenic(softc, fr->fr_names +
3980 						     fr->fr_sifpidx, v);
3981 				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3982 					    &fr->fr_dst6, &fr->fr_dmsk6);
3983 			}
3984 		}
3985 
3986 		fdp = &fr->fr_tifs[0];
3987 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3988 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3989 			if (error != 0)
3990 				goto unwind;
3991 		}
3992 
3993 		fdp = &fr->fr_tifs[1];
3994 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3995 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3996 			if (error != 0)
3997 				goto unwind;
3998 		}
3999 
4000 		fdp = &fr->fr_dif;
4001 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4002 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4003 			if (error != 0)
4004 				goto unwind;
4005 		}
4006 
4007 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4008 		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4009 			fr->fr_srcptr = ipf_lookup_res_num(softc,
4010 							   fr->fr_srctype,
4011 							   IPL_LOGIPF,
4012 							   fr->fr_srcnum,
4013 							   &fr->fr_srcfunc);
4014 		}
4015 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4016 		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4017 			fr->fr_dstptr = ipf_lookup_res_num(softc,
4018 							   fr->fr_dsttype,
4019 							   IPL_LOGIPF,
4020 							   fr->fr_dstnum,
4021 							   &fr->fr_dstfunc);
4022 		}
4023 	}
4024 	return 0;
4025 
4026 unwind:
4027 	for (frt = start; frt != fr; fr = fr->fr_next) {
4028 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4029 		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4030 				ipf_lookup_deref(softc, frt->fr_srctype,
4031 						 frt->fr_srcptr);
4032 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4033 		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4034 				ipf_lookup_deref(softc, frt->fr_dsttype,
4035 						 frt->fr_dstptr);
4036 	}
4037 	return error;
4038 }
4039 
4040 
4041 /* ------------------------------------------------------------------------ */
4042 /* Function:    ipf_sync                                                    */
4043 /* Returns:     void                                                        */
4044 /* Parameters:  Nil                                                         */
4045 /*                                                                          */
4046 /* ipf_sync() is called when we suspect that the interface list or          */
4047 /* information about interfaces (like IP#) has changed.  Go through all     */
4048 /* filter rules, NAT entries and the state table and check if anything      */
4049 /* needs to be changed/updated.                                             */
4050 /* ------------------------------------------------------------------------ */
4051 int
4052 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4053 {
4054 	int i;
4055 
4056 # if !SOLARIS
4057 	ipf_nat_sync(softc, ifp);
4058 	ipf_state_sync(softc, ifp);
4059 	ipf_lookup_sync(softc, ifp);
4060 # endif
4061 
4062 	WRITE_ENTER(&softc->ipf_mutex);
4063 	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4064 	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4065 	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4066 	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4067 
4068 	for (i = 0; i < IPL_LOGSIZE; i++) {
4069 		frgroup_t *g;
4070 
4071 		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4072 			(void) ipf_synclist(softc, g->fg_start, ifp);
4073 		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4074 			(void) ipf_synclist(softc, g->fg_start, ifp);
4075 	}
4076 	RWLOCK_EXIT(&softc->ipf_mutex);
4077 
4078 	return 0;
4079 }
4080 
4081 
4082 /*
4083  * In the functions below, bcopy() is called because the pointer being
4084  * copied _from_ in this instance is a pointer to a char buf (which could
4085  * end up being unaligned) and on the kernel's local stack.
4086  */
4087 /* ------------------------------------------------------------------------ */
4088 /* Function:    copyinptr                                                   */
4089 /* Returns:     int - 0 = success, else failure                             */
4090 /* Parameters:  src(I)  - pointer to the source address                     */
4091 /*              dst(I)  - destination address                               */
4092 /*              size(I) - number of bytes to copy                           */
4093 /*                                                                          */
4094 /* Copy a block of data in from user space, given a pointer to the pointer  */
4095 /* to start copying from (src) and a pointer to where to store it (dst).    */
4096 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4097 /* ------------------------------------------------------------------------ */
4098 int
4099 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4100 {
4101 	void *ca;
4102 	int error;
4103 
4104 # if SOLARIS
4105 	error = COPYIN(src, &ca, sizeof(ca));
4106 	if (error != 0)
4107 		return error;
4108 # else
4109 	bcopy(src, (void *)&ca, sizeof(ca));
4110 # endif
4111 	error = COPYIN(ca, dst, size);
4112 	if (error != 0) {
4113 		IPFERROR(3);
4114 		error = EFAULT;
4115 	}
4116 	return error;
4117 }
4118 
4119 
4120 /* ------------------------------------------------------------------------ */
4121 /* Function:    copyoutptr                                                  */
4122 /* Returns:     int - 0 = success, else failure                             */
4123 /* Parameters:  src(I)  - pointer to the source address                     */
4124 /*              dst(I)  - destination address                               */
4125 /*              size(I) - number of bytes to copy                           */
4126 /*                                                                          */
4127 /* Copy a block of data out to user space, given a pointer to the pointer   */
4128 /* to start copying from (src) and a pointer to where to store it (dst).    */
4129 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4130 /* ------------------------------------------------------------------------ */
4131 int
4132 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4133 {
4134 	void *ca;
4135 	int error;
4136 
4137 	bcopy(dst, &ca, sizeof(ca));
4138 	error = COPYOUT(src, ca, size);
4139 	if (error != 0) {
4140 		IPFERROR(4);
4141 		error = EFAULT;
4142 	}
4143 	return error;
4144 }
4145 #ifdef	_KERNEL
4146 #endif
4147 
4148 
4149 /* ------------------------------------------------------------------------ */
4150 /* Function:    ipf_lock                                                    */
4151 /* Returns:     int      - 0 = success, else error                          */
4152 /* Parameters:  data(I)  - pointer to lock value to set                     */
4153 /*              lockp(O) - pointer to location to store old lock value      */
4154 /*                                                                          */
4155 /* Get the new value for the lock integer, set it and return the old value  */
4156 /* in *lockp.                                                               */
4157 /* ------------------------------------------------------------------------ */
4158 int
4159 ipf_lock(void *data, int *lockp)
4160 {
4161 	int arg, err;
4162 
4163 	err = BCOPYIN(data, &arg, sizeof(arg));
4164 	if (err != 0)
4165 		return EFAULT;
4166 	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4167 	if (err != 0)
4168 		return EFAULT;
4169 	*lockp = arg;
4170 	return 0;
4171 }
4172 
4173 
4174 /* ------------------------------------------------------------------------ */
4175 /* Function:    ipf_getstat                                                 */
4176 /* Returns:     Nil                                                         */
4177 /* Parameters:  softc(I) - pointer to soft context main structure           */
4178 /*              fiop(I)  - pointer to ipfilter stats structure              */
4179 /*              rev(I)   - version claim by program doing ioctl             */
4180 /*                                                                          */
4181 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4182 /* structure.                                                               */
4183 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4184 /* program is looking for. This ensure that validation of the version it    */
4185 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4186 /* allow older binaries to work but kernels without it will not.            */
4187 /* ------------------------------------------------------------------------ */
4188 /*ARGSUSED*/
4189 static void
4190 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4191 {
4192 	int i;
4193 
4194 	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4195 	      sizeof(ipf_statistics_t) * 2);
4196 	fiop->f_locks[IPL_LOGSTATE] = -1;
4197 	fiop->f_locks[IPL_LOGNAT] = -1;
4198 	fiop->f_locks[IPL_LOGIPF] = -1;
4199 	fiop->f_locks[IPL_LOGAUTH] = -1;
4200 
4201 	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4202 	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4203 	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4204 	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4205 	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4206 	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4207 	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4208 	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4209 
4210 	fiop->f_ticks = softc->ipf_ticks;
4211 	fiop->f_active = softc->ipf_active;
4212 	fiop->f_froute[0] = softc->ipf_frouteok[0];
4213 	fiop->f_froute[1] = softc->ipf_frouteok[1];
4214 	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4215 	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4216 
4217 	fiop->f_running = softc->ipf_running;
4218 	for (i = 0; i < IPL_LOGSIZE; i++) {
4219 		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4220 		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4221 	}
4222 #ifdef  IPFILTER_LOG
4223 	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4224 	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4225 	fiop->f_logging = 1;
4226 #else
4227 	fiop->f_log_ok = 0;
4228 	fiop->f_log_fail = 0;
4229 	fiop->f_logging = 0;
4230 #endif
4231 	fiop->f_defpass = softc->ipf_pass;
4232 	fiop->f_features = ipf_features;
4233 
4234 #ifdef IPFILTER_COMPAT
4235 	snprintf(fiop->f_version, sizeof(fiop->f_version),
4236 		 "IP Filter: v%d.%d.%d", (rev / 1000000) % 100,
4237 		 (rev / 10000) % 100, (rev / 100) % 100);
4238 #else
4239 	rev = rev;
4240 	(void) strncpy(fiop->f_version, ipfilter_version,
4241 		       sizeof(fiop->f_version));
4242         fiop->f_version[sizeof(fiop->f_version) - 1] = '\0';
4243 #endif
4244 }
4245 
4246 
4247 #ifdef	USE_INET6
4248 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4249 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4250 	-1,			/* 1: UNUSED */
4251 	-1,			/* 2: UNUSED */
4252 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4253 	-1,			/* 4: ICMP_SOURCEQUENCH */
4254 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4255 	-1,			/* 6: UNUSED */
4256 	-1,			/* 7: UNUSED */
4257 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4258 	-1,			/* 9: UNUSED */
4259 	-1,			/* 10: UNUSED */
4260 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4261 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4262 	-1,			/* 13: ICMP_TSTAMP */
4263 	-1,			/* 14: ICMP_TSTAMPREPLY */
4264 	-1,			/* 15: ICMP_IREQ */
4265 	-1,			/* 16: ICMP_IREQREPLY */
4266 	-1,			/* 17: ICMP_MASKREQ */
4267 	-1,			/* 18: ICMP_MASKREPLY */
4268 };
4269 
4270 
4271 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4272 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4273 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4274 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4275 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4276 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4277 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4278 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4279 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4280 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4281 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4282 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4283 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4284 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4285 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4286 };
4287 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4288 #endif
4289 
4290 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4291 
4292 
4293 /* ------------------------------------------------------------------------ */
4294 /* Function:    ipf_matchicmpqueryreply                                     */
4295 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4296 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4297 /*              ic(I)   - ICMP information                                  */
4298 /*              icmp(I) - ICMP packet header                                */
4299 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4300 /*                                                                          */
4301 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4302 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4303 /* else return 0 for no match.                                              */
4304 /* ------------------------------------------------------------------------ */
4305 int
4306 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4307 {
4308 	int ictype;
4309 
4310 	ictype = ic->ici_type;
4311 
4312 	if (v == 4) {
4313 		/*
4314 		 * If we matched its type on the way in, then when going out
4315 		 * it will still be the same type.
4316 		 */
4317 		if ((!rev && (icmp->icmp_type == ictype)) ||
4318 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4319 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4320 				return 1;
4321 			if (icmp->icmp_id == ic->ici_id)
4322 				return 1;
4323 		}
4324 	}
4325 #ifdef	USE_INET6
4326 	else if (v == 6) {
4327 		if ((!rev && (icmp->icmp_type == ictype)) ||
4328 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4329 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4330 				return 1;
4331 			if (icmp->icmp_id == ic->ici_id)
4332 				return 1;
4333 		}
4334 	}
4335 #endif
4336 	return 0;
4337 }
4338 
4339 /* ------------------------------------------------------------------------ */
4340 /* Function:    ipf_rule_compare                                            */
4341 /* Parameters:  fr1(I) - first rule structure to compare                    */
4342 /*              fr2(I) - second rule structure to compare                   */
4343 /* Returns:     int    - 0 == rules are the same, else mismatch             */
4344 /*                                                                          */
4345 /* Compare two rules and return 0 if they match or a number indicating      */
4346 /* which of the individual checks failed.                                   */
4347 /* ------------------------------------------------------------------------ */
4348 static int
4349 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4350 {
4351 	if (fr1->fr_cksum != fr2->fr_cksum)
4352 		return 1;
4353 	if (fr1->fr_size != fr2->fr_size)
4354 		return 2;
4355 	if (fr1->fr_dsize != fr2->fr_dsize)
4356 		return 3;
4357 	if (memcmp(&fr1->fr_func, &fr2->fr_func,
4358 		 fr1->fr_size - offsetof(struct frentry, fr_func)) != 0)
4359 		return 4;
4360 	if (fr1->fr_data && !fr2->fr_data)
4361 		return 5;
4362 	if (!fr1->fr_data && fr2->fr_data)
4363 		return 6;
4364 	if (fr1->fr_data) {
4365 		if (memcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize))
4366 			return 7;
4367 	}
4368 	return 0;
4369 }
4370 
4371 
4372 /* ------------------------------------------------------------------------ */
4373 /* Function:    frrequest                                                   */
4374 /* Returns:     int - 0 == success, > 0 == errno value                      */
4375 /* Parameters:  unit(I)     - device for which this is for                  */
4376 /*              req(I)      - ioctl command (SIOC*)                         */
4377 /*              data(I)     - pointr to ioctl data                          */
4378 /*              set(I)      - 1 or 0 (filter set)                           */
4379 /*              makecopy(I) - flag indicating whether data points to a rule */
4380 /*                            in kernel space & hence doesn't need copying. */
4381 /*                                                                          */
4382 /* This function handles all the requests which operate on the list of      */
4383 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4384 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4385 /* names are resolved here and other sanity checks are made on the content  */
4386 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4387 /* then make sure they are created and initialised before exiting.          */
4388 /* ------------------------------------------------------------------------ */
4389 int
4390 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data,
4391     int set, int makecopy)
4392 {
4393 	int error = 0, in, family, addrem, need_free = 0;
4394 	frentry_t frd, *fp, *f, **fprev, **ftail;
4395 	void *ptr, *uptr;
4396 	u_int *p, *pp;
4397 	frgroup_t *fg;
4398 	char *group;
4399 
4400 	ptr = NULL;
4401 	fg = NULL;
4402 	fp = &frd;
4403 	if (makecopy != 0) {
4404 		bzero(fp, sizeof(frd));
4405 		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4406 		if (error) {
4407 			return error;
4408 		}
4409 		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4410 			IPFERROR(6);
4411 			return EINVAL;
4412 		}
4413 		KMALLOCS(f, frentry_t *, fp->fr_size);
4414 		if (f == NULL) {
4415 			IPFERROR(131);
4416 			return ENOMEM;
4417 		}
4418 		bzero(f, fp->fr_size);
4419 		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4420 				    fp->fr_size);
4421 		if (error) {
4422 			KFREES(f, fp->fr_size);
4423 			return error;
4424 		}
4425 
4426 		fp = f;
4427 		f = NULL;
4428 		fp->fr_next = NULL;
4429 		fp->fr_dnext = NULL;
4430 		fp->fr_pnext = NULL;
4431 		fp->fr_pdnext = NULL;
4432 		fp->fr_grp = NULL;
4433 		fp->fr_grphead = NULL;
4434 		fp->fr_icmpgrp = NULL;
4435 		fp->fr_isc = (void *)-1;
4436 		fp->fr_ptr = NULL;
4437 		fp->fr_ref = 0;
4438 		fp->fr_flags |= FR_COPIED;
4439 	} else {
4440 		fp = (frentry_t *)data;
4441 		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4442 			IPFERROR(7);
4443 			return EINVAL;
4444 		}
4445 		fp->fr_flags &= ~FR_COPIED;
4446 	}
4447 
4448 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4449 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4450 		IPFERROR(8);
4451 		error = EINVAL;
4452 		goto donenolock;
4453 	}
4454 
4455 	family = fp->fr_family;
4456 	uptr = fp->fr_data;
4457 
4458 	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4459 	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4460 		addrem = 0;
4461 	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4462 		addrem = 1;
4463 	else if (req == (ioctlcmd_t)SIOCZRLST)
4464 		addrem = 2;
4465 	else {
4466 		IPFERROR(9);
4467 		error = EINVAL;
4468 		goto donenolock;
4469 	}
4470 
4471 	/*
4472 	 * Only filter rules for IPv4 or IPv6 are accepted.
4473 	 */
4474 	if (family == AF_INET) {
4475 		/*EMPTY*/;
4476 #ifdef	USE_INET6
4477 	} else if (family == AF_INET6) {
4478 		/*EMPTY*/;
4479 #endif
4480 	} else if (family != 0) {
4481 		IPFERROR(10);
4482 		error = EINVAL;
4483 		goto donenolock;
4484 	}
4485 
4486 	/*
4487 	 * If the rule is being loaded from user space, i.e. we had to copy it
4488 	 * into kernel space, then do not trust the function pointer in the
4489 	 * rule.
4490 	 */
4491 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4492 		if (ipf_findfunc(fp->fr_func) == NULL) {
4493 			IPFERROR(11);
4494 			error = ESRCH;
4495 			goto donenolock;
4496 		}
4497 
4498 		if (addrem == 0) {
4499 			error = ipf_funcinit(softc, fp);
4500 			if (error != 0)
4501 				goto donenolock;
4502 		}
4503 	}
4504 	if ((fp->fr_flags & FR_CALLNOW) &&
4505 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4506 		IPFERROR(142);
4507 		error = ESRCH;
4508 		goto donenolock;
4509 	}
4510 	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4511 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4512 		IPFERROR(143);
4513 		error = ESRCH;
4514 		goto donenolock;
4515 	}
4516 
4517 	ptr = NULL;
4518 
4519 	if (FR_ISACCOUNT(fp->fr_flags))
4520 		unit = IPL_LOGCOUNT;
4521 
4522 	/*
4523 	 * Check that each group name in the rule has a start index that
4524 	 * is valid.
4525 	 */
4526 	if (fp->fr_icmphead != -1) {
4527 		if ((fp->fr_icmphead < 0) ||
4528 		    (fp->fr_icmphead >= fp->fr_namelen)) {
4529 			IPFERROR(136);
4530 			error = EINVAL;
4531 			goto donenolock;
4532 		}
4533 		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4534 			fp->fr_names[fp->fr_icmphead] = '\0';
4535 	}
4536 
4537 	if (fp->fr_grhead != -1) {
4538 		if ((fp->fr_grhead < 0) ||
4539 		    (fp->fr_grhead >= fp->fr_namelen)) {
4540 			IPFERROR(137);
4541 			error = EINVAL;
4542 			goto donenolock;
4543 		}
4544 		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4545 			fp->fr_names[fp->fr_grhead] = '\0';
4546 	}
4547 
4548 	if (fp->fr_group != -1) {
4549 		if ((fp->fr_group < 0) ||
4550 		    (fp->fr_group >= fp->fr_namelen)) {
4551 			IPFERROR(138);
4552 			error = EINVAL;
4553 			goto donenolock;
4554 		}
4555 		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4556 			/*
4557 			 * Allow loading rules that are in groups to cause
4558 			 * them to be created if they don't already exit.
4559 			 */
4560 			group = FR_NAME(fp, fr_group);
4561 			if (addrem == 0) {
4562 				fg = ipf_group_add(softc, group, NULL,
4563 						   fp->fr_flags, unit, set);
4564 				if (fg == NULL) {
4565 					IPFERROR(152);
4566 					error = ESRCH;
4567 					goto donenolock;
4568 				}
4569 				fp->fr_grp = fg;
4570 			} else {
4571 				fg = ipf_findgroup(softc, group, unit,
4572 						   set, NULL);
4573 				if (fg == NULL) {
4574 					IPFERROR(12);
4575 					error = ESRCH;
4576 					goto donenolock;
4577 				}
4578 			}
4579 
4580 			if (fg->fg_flags == 0) {
4581 				fg->fg_flags = fp->fr_flags & FR_INOUT;
4582 			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4583 				IPFERROR(13);
4584 				error = ESRCH;
4585 				goto donenolock;
4586 			}
4587 		}
4588 	} else {
4589 		/*
4590 		 * If a rule is going to be part of a group then it does
4591 		 * not matter whether it is an in or out rule, but if it
4592 		 * isn't in a group, then it does...
4593 		 */
4594 		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4595 			IPFERROR(14);
4596 			error = EINVAL;
4597 			goto donenolock;
4598 		}
4599 	}
4600 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4601 
4602 	/*
4603 	 * Work out which rule list this change is being applied to.
4604 	 */
4605 	ftail = NULL;
4606 	fprev = NULL;
4607 	if (unit == IPL_LOGAUTH) {
4608 		if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4609 		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4610 		    (fp->fr_dif.fd_ptr != NULL) ||
4611 		    (fp->fr_flags & FR_FASTROUTE)) {
4612 			IPFERROR(145);
4613 			error = EINVAL;
4614 			goto donenolock;
4615 		}
4616 		fprev = ipf_auth_rulehead(softc);
4617 	} else {
4618 		if (FR_ISACCOUNT(fp->fr_flags))
4619 			fprev = &softc->ipf_acct[in][set];
4620 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4621 			fprev = &softc->ipf_rules[in][set];
4622 	}
4623 	if (fprev == NULL) {
4624 		IPFERROR(15);
4625 		error = ESRCH;
4626 		goto donenolock;
4627 	}
4628 
4629 	if (fg != NULL)
4630 		fprev = &fg->fg_start;
4631 
4632 	/*
4633 	 * Copy in extra data for the rule.
4634 	 */
4635 	if (fp->fr_dsize != 0) {
4636 		if (makecopy != 0) {
4637 			KMALLOCS(ptr, void *, fp->fr_dsize);
4638 			if (ptr == NULL) {
4639 				IPFERROR(16);
4640 				error = ENOMEM;
4641 				goto donenolock;
4642 			}
4643 
4644 			/*
4645 			 * The bcopy case is for when the data is appended
4646 			 * to the rule by ipf_in_compat().
4647 			 */
4648 			if (uptr >= (void *)fp &&
4649 			    uptr < (void *)((char *)fp + fp->fr_size)) {
4650 				bcopy(uptr, ptr, fp->fr_dsize);
4651 				error = 0;
4652 			} else {
4653 				error = COPYIN(uptr, ptr, fp->fr_dsize);
4654 				if (error != 0) {
4655 					IPFERROR(17);
4656 					error = EFAULT;
4657 					goto donenolock;
4658 				}
4659 			}
4660 		} else {
4661 			ptr = uptr;
4662 		}
4663 		fp->fr_data = ptr;
4664 	} else {
4665 		fp->fr_data = NULL;
4666 	}
4667 
4668 	/*
4669 	 * Perform per-rule type sanity checks of their members.
4670 	 * All code after this needs to be aware that allocated memory
4671 	 * may need to be free'd before exiting.
4672 	 */
4673 	switch (fp->fr_type & ~FR_T_BUILTIN)
4674 	{
4675 #if defined(IPFILTER_BPF)
4676 	case FR_T_BPFOPC :
4677 		if (fp->fr_dsize == 0) {
4678 			IPFERROR(19);
4679 			error = EINVAL;
4680 			break;
4681 		}
4682 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4683 			IPFERROR(20);
4684 			error = EINVAL;
4685 			break;
4686 		}
4687 		break;
4688 #endif
4689 	case FR_T_IPF :
4690 		/*
4691 		 * Preparation for error case at the bottom of this function.
4692 		 */
4693 		if (fp->fr_datype == FRI_LOOKUP)
4694 			fp->fr_dstptr = NULL;
4695 		if (fp->fr_satype == FRI_LOOKUP)
4696 			fp->fr_srcptr = NULL;
4697 
4698 		if (fp->fr_dsize != sizeof(fripf_t)) {
4699 			IPFERROR(21);
4700 			error = EINVAL;
4701 			break;
4702 		}
4703 
4704 		/*
4705 		 * Allowing a rule with both "keep state" and "with oow" is
4706 		 * pointless because adding a state entry to the table will
4707 		 * fail with the out of window (oow) flag set.
4708 		 */
4709 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4710 			IPFERROR(22);
4711 			error = EINVAL;
4712 			break;
4713 		}
4714 
4715 		switch (fp->fr_satype)
4716 		{
4717 		case FRI_BROADCAST :
4718 		case FRI_DYNAMIC :
4719 		case FRI_NETWORK :
4720 		case FRI_NETMASKED :
4721 		case FRI_PEERADDR :
4722 			if (fp->fr_sifpidx < 0) {
4723 				IPFERROR(23);
4724 				error = EINVAL;
4725 			}
4726 			break;
4727 		case FRI_LOOKUP :
4728 			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4729 						       &fp->fr_src6,
4730 						       &fp->fr_smsk6);
4731 			if (fp->fr_srcfunc == NULL) {
4732 				IPFERROR(132);
4733 				error = ESRCH;
4734 				break;
4735 			}
4736 			break;
4737 		case FRI_NORMAL :
4738 			break;
4739 		default :
4740 			IPFERROR(133);
4741 			error = EINVAL;
4742 			break;
4743 		}
4744 		if (error != 0)
4745 			break;
4746 
4747 		switch (fp->fr_datype)
4748 		{
4749 		case FRI_BROADCAST :
4750 		case FRI_DYNAMIC :
4751 		case FRI_NETWORK :
4752 		case FRI_NETMASKED :
4753 		case FRI_PEERADDR :
4754 			if (fp->fr_difpidx < 0) {
4755 				IPFERROR(24);
4756 				error = EINVAL;
4757 			}
4758 			break;
4759 		case FRI_LOOKUP :
4760 			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4761 						       &fp->fr_dst6,
4762 						       &fp->fr_dmsk6);
4763 			if (fp->fr_dstfunc == NULL) {
4764 				IPFERROR(134);
4765 				error = ESRCH;
4766 			}
4767 			break;
4768 		case FRI_NORMAL :
4769 			break;
4770 		default :
4771 			IPFERROR(135);
4772 			error = EINVAL;
4773 		}
4774 		break;
4775 
4776 	case FR_T_NONE :
4777 	case FR_T_CALLFUNC :
4778 	case FR_T_COMPIPF :
4779 		break;
4780 
4781 	case FR_T_IPFEXPR :
4782 		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4783 			IPFERROR(25);
4784 			error = EINVAL;
4785 		}
4786 		break;
4787 
4788 	default :
4789 		IPFERROR(26);
4790 		error = EINVAL;
4791 		break;
4792 	}
4793 	if (error != 0)
4794 		goto donenolock;
4795 
4796 	if (fp->fr_tif.fd_name != -1) {
4797 		if ((fp->fr_tif.fd_name < 0) ||
4798 		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4799 			IPFERROR(139);
4800 			error = EINVAL;
4801 			goto donenolock;
4802 		}
4803 	}
4804 
4805 	if (fp->fr_dif.fd_name != -1) {
4806 		if ((fp->fr_dif.fd_name < 0) ||
4807 		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4808 			IPFERROR(140);
4809 			error = EINVAL;
4810 			goto donenolock;
4811 		}
4812 	}
4813 
4814 	if (fp->fr_rif.fd_name != -1) {
4815 		if ((fp->fr_rif.fd_name < 0) ||
4816 		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4817 			IPFERROR(141);
4818 			error = EINVAL;
4819 			goto donenolock;
4820 		}
4821 	}
4822 
4823 	/*
4824 	 * Lookup all the interface names that are part of the rule.
4825 	 */
4826 	error = ipf_synclist(softc, fp, NULL);
4827 	if (error != 0)
4828 		goto donenolock;
4829 	fp->fr_statecnt = 0;
4830 	if (fp->fr_srctrack.ht_max_nodes != 0)
4831 		ipf_rb_ht_init(&fp->fr_srctrack);
4832 
4833 	/*
4834 	 * Look for an existing matching filter rule, but don't include the
4835 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4836 	 * This elminates rules which are indentical being loaded.  Checksum
4837 	 * the constant part of the filter rule to make comparisons quicker
4838 	 * (this meaning no pointers are included).
4839 	 */
4840 	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4841 	     p < pp; p++)
4842 		fp->fr_cksum += *p;
4843 	pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize);
4844 	for (p = (u_int *)fp->fr_data; p < pp; p++)
4845 		fp->fr_cksum += *p;
4846 
4847 	WRITE_ENTER(&softc->ipf_mutex);
4848 
4849 	/*
4850 	 * Now that the filter rule lists are locked, we can walk the
4851 	 * chain of them without fear.
4852 	 */
4853 	ftail = fprev;
4854 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4855 		if (fp->fr_collect <= f->fr_collect) {
4856 			ftail = fprev;
4857 			f = NULL;
4858 			break;
4859 		}
4860 		fprev = ftail;
4861 	}
4862 
4863 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4864 		DT2(rule_cmp, frentry_t *, fp, frentry_t *, f);
4865 		if (ipf_rule_compare(fp, f) == 0)
4866 			break;
4867 	}
4868 
4869 	/*
4870 	 * If zero'ing statistics, copy current to caller and zero.
4871 	 */
4872 	if (addrem == 2) {
4873 		if (f == NULL) {
4874 			IPFERROR(27);
4875 			error = ESRCH;
4876 		} else {
4877 			/*
4878 			 * Copy and reduce lock because of impending copyout.
4879 			 * Well we should, but if we do then the atomicity of
4880 			 * this call and the correctness of fr_hits and
4881 			 * fr_bytes cannot be guaranteed.  As it is, this code
4882 			 * only resets them to 0 if they are successfully
4883 			 * copied out into user space.
4884 			 */
4885 			bcopy((char *)f, (char *)fp, f->fr_size);
4886 			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4887 
4888 			/*
4889 			 * When we copy this rule back out, set the data
4890 			 * pointer to be what it was in user space.
4891 			 */
4892 			fp->fr_data = uptr;
4893 			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4894 
4895 			if (error == 0) {
4896 				if ((f->fr_dsize != 0) && (uptr != NULL)) {
4897 					error = COPYOUT(f->fr_data, uptr,
4898 							f->fr_dsize);
4899 					if (error != 0) {
4900 						IPFERROR(28);
4901 						error = EFAULT;
4902 					}
4903 				}
4904 				if (error == 0) {
4905 					f->fr_hits = 0;
4906 					f->fr_bytes = 0;
4907 				}
4908 			}
4909 		}
4910 
4911 		if (makecopy != 0) {
4912 			if (ptr != NULL) {
4913 				KFREES(ptr, fp->fr_dsize);
4914 			}
4915 			KFREES(fp, fp->fr_size);
4916 		}
4917 		RWLOCK_EXIT(&softc->ipf_mutex);
4918 		return error;
4919 	}
4920 
4921   	if (!f) {
4922 		/*
4923 		 * At the end of this, ftail must point to the place where the
4924 		 * new rule is to be saved/inserted/added.
4925 		 * For SIOCAD*FR, this should be the last rule in the group of
4926 		 * rules that have equal fr_collect fields.
4927 		 * For SIOCIN*FR, ...
4928 		 */
4929 		if (req == (ioctlcmd_t)SIOCADAFR ||
4930 		    req == (ioctlcmd_t)SIOCADIFR) {
4931 
4932 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4933 				if (f->fr_collect > fp->fr_collect)
4934 					break;
4935 				ftail = &f->fr_next;
4936 				fprev = ftail;
4937 			}
4938 			ftail = fprev;
4939 			f = NULL;
4940 			ptr = NULL;
4941 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4942 			   req == (ioctlcmd_t)SIOCINIFR) {
4943 			while ((f = *fprev) != NULL) {
4944 				if (f->fr_collect >= fp->fr_collect)
4945 					break;
4946 				fprev = &f->fr_next;
4947 			}
4948   			ftail = fprev;
4949   			if (fp->fr_hits != 0) {
4950 				while (fp->fr_hits && (f = *ftail)) {
4951 					if (f->fr_collect != fp->fr_collect)
4952 						break;
4953 					fprev = ftail;
4954   					ftail = &f->fr_next;
4955 					fp->fr_hits--;
4956 				}
4957   			}
4958   			f = NULL;
4959   			ptr = NULL;
4960 		}
4961 	}
4962 
4963 	/*
4964 	 * Request to remove a rule.
4965 	 */
4966 	if (addrem == 1) {
4967 		if (!f) {
4968 			IPFERROR(29);
4969 			error = ESRCH;
4970 		} else {
4971 			/*
4972 			 * Do not allow activity from user space to interfere
4973 			 * with rules not loaded that way.
4974 			 */
4975 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4976 				IPFERROR(30);
4977 				error = EPERM;
4978 				goto done;
4979 			}
4980 
4981 			/*
4982 			 * Return EBUSY if the rule is being reference by
4983 			 * something else (eg state information.)
4984 			 */
4985 			if (f->fr_ref > 1) {
4986 				IPFERROR(31);
4987 				error = EBUSY;
4988 				goto done;
4989 			}
4990 #ifdef	IPFILTER_SCAN
4991 			if (f->fr_isctag != -1 &&
4992 			    (f->fr_isc != (struct ipscan *)-1))
4993 				ipf_scan_detachfr(f);
4994 #endif
4995 
4996 			if (unit == IPL_LOGAUTH) {
4997 				error = ipf_auth_precmd(softc, req, f, ftail);
4998 				goto done;
4999 			}
5000 
5001 			ipf_rule_delete(softc, f, unit, set);
5002 
5003 			need_free = makecopy;
5004 		}
5005 	} else {
5006 		/*
5007 		 * Not removing, so we must be adding/inserting a rule.
5008 		 */
5009 		if (f != NULL) {
5010 			IPFERROR(32);
5011 			error = EEXIST;
5012 			goto done;
5013 		}
5014 		if (unit == IPL_LOGAUTH) {
5015 			error = ipf_auth_precmd(softc, req, fp, ftail);
5016 			goto done;
5017 		}
5018 
5019 		MUTEX_NUKE(&fp->fr_lock);
5020 		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5021 		if (fp->fr_die != 0)
5022 			ipf_rule_expire_insert(softc, fp, set);
5023 
5024 		fp->fr_hits = 0;
5025 		if (makecopy != 0)
5026 			fp->fr_ref = 1;
5027 		fp->fr_pnext = ftail;
5028 		fp->fr_next = *ftail;
5029 		if (fp->fr_next != NULL)
5030 			fp->fr_next->fr_pnext = &fp->fr_next;
5031 		*ftail = fp;
5032 		if (addrem == 0)
5033 			ipf_fixskip(ftail, fp, 1);
5034 
5035 		fp->fr_icmpgrp = NULL;
5036 		if (fp->fr_icmphead != -1) {
5037 			group = FR_NAME(fp, fr_icmphead);
5038 			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5039 			fp->fr_icmpgrp = fg;
5040 		}
5041 
5042 		fp->fr_grphead = NULL;
5043 		if (fp->fr_grhead != -1) {
5044 			group = FR_NAME(fp, fr_grhead);
5045 			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5046 					   unit, set);
5047 			fp->fr_grphead = fg;
5048 		}
5049 	}
5050 done:
5051 	RWLOCK_EXIT(&softc->ipf_mutex);
5052 donenolock:
5053 	if (need_free || (error != 0)) {
5054 		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5055 			if ((fp->fr_satype == FRI_LOOKUP) &&
5056 			    (fp->fr_srcptr != NULL))
5057 				ipf_lookup_deref(softc, fp->fr_srctype,
5058 						 fp->fr_srcptr);
5059 			if ((fp->fr_datype == FRI_LOOKUP) &&
5060 			    (fp->fr_dstptr != NULL))
5061 				ipf_lookup_deref(softc, fp->fr_dsttype,
5062 						 fp->fr_dstptr);
5063 		}
5064 		if (fp->fr_grp != NULL) {
5065 			WRITE_ENTER(&softc->ipf_mutex);
5066 			ipf_group_del(softc, fp->fr_grp, fp);
5067 			RWLOCK_EXIT(&softc->ipf_mutex);
5068 		}
5069 		if ((ptr != NULL) && (makecopy != 0)) {
5070 			KFREES(ptr, fp->fr_dsize);
5071 		}
5072 		KFREES(fp, fp->fr_size);
5073 	}
5074 	return (error);
5075 }
5076 
5077 
5078 /* ------------------------------------------------------------------------ */
5079 /* Function:   ipf_rule_delete                                              */
5080 /* Returns:    Nil                                                          */
5081 /* Parameters: softc(I) - pointer to soft context main structure            */
5082 /*             f(I)     - pointer to the rule being deleted                 */
5083 /*             ftail(I) - pointer to the pointer to f                       */
5084 /*             unit(I)  - device for which this is for                      */
5085 /*             set(I)   - 1 or 0 (filter set)                               */
5086 /*                                                                          */
5087 /* This function attempts to do what it can to delete a filter rule: remove */
5088 /* it from any linked lists and remove any groups it is responsible for.    */
5089 /* But in the end, removing a rule can only drop the reference count - we   */
5090 /* must use that as the guide for whether or not it can be freed.           */
5091 /* ------------------------------------------------------------------------ */
5092 static void
5093 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5094 {
5095 
5096 	/*
5097 	 * If fr_pdnext is set, then the rule is on the expire list, so
5098 	 * remove it from there.
5099 	 */
5100 	if (f->fr_pdnext != NULL) {
5101 		*f->fr_pdnext = f->fr_dnext;
5102 		if (f->fr_dnext != NULL)
5103 			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5104 		f->fr_pdnext = NULL;
5105 		f->fr_dnext = NULL;
5106 	}
5107 
5108 	ipf_fixskip(f->fr_pnext, f, -1);
5109 	if (f->fr_pnext != NULL)
5110 		*f->fr_pnext = f->fr_next;
5111 	if (f->fr_next != NULL)
5112 		f->fr_next->fr_pnext = f->fr_pnext;
5113 	f->fr_pnext = NULL;
5114 	f->fr_next = NULL;
5115 
5116 	(void) ipf_derefrule(softc, &f);
5117 }
5118 
5119 /* ------------------------------------------------------------------------ */
5120 /* Function:   ipf_rule_expire_insert                                       */
5121 /* Returns:    Nil                                                          */
5122 /* Parameters: softc(I) - pointer to soft context main structure            */
5123 /*             f(I)     - pointer to rule to be added to expire list        */
5124 /*             set(I)   - 1 or 0 (filter set)                               */
5125 /*                                                                          */
5126 /* If the new rule has a given expiration time, insert it into the list of  */
5127 /* expiring rules with the ones to be removed first added to the front of   */
5128 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5129 /* expiration interval checks.                                              */
5130 /* ------------------------------------------------------------------------ */
5131 static void
5132 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5133 {
5134 	frentry_t *fr;
5135 
5136 	/*
5137 	 */
5138 
5139 	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5140 	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5141 	     fr = fr->fr_dnext) {
5142 		if (f->fr_die < fr->fr_die)
5143 			break;
5144 		if (fr->fr_dnext == NULL) {
5145 			/*
5146 			 * We've got to the last rule and everything
5147 			 * wanted to be expired before this new node,
5148 			 * so we have to tack it on the end...
5149 			 */
5150 			fr->fr_dnext = f;
5151 			f->fr_pdnext = &fr->fr_dnext;
5152 			fr = NULL;
5153 			break;
5154 		}
5155 	}
5156 
5157 	if (softc->ipf_rule_explist[set] == NULL) {
5158 		softc->ipf_rule_explist[set] = f;
5159 		f->fr_pdnext = &softc->ipf_rule_explist[set];
5160 	} else if (fr != NULL) {
5161 		f->fr_dnext = fr;
5162 		f->fr_pdnext = fr->fr_pdnext;
5163 		fr->fr_pdnext = &f->fr_dnext;
5164 	}
5165 }
5166 
5167 
5168 /* ------------------------------------------------------------------------ */
5169 /* Function:   ipf_findlookup                                               */
5170 /* Returns:    NULL = failure, else success                                 */
5171 /* Parameters: softc(I) - pointer to soft context main structure            */
5172 /*             unit(I)  - ipf device we want to find match for              */
5173 /*             fp(I)    - rule for which lookup is for                      */
5174 /*             addrp(I) - pointer to lookup information in address struct   */
5175 /*             maskp(O) - pointer to lookup information for storage         */
5176 /*                                                                          */
5177 /* When using pools and hash tables to store addresses for matching in      */
5178 /* rules, it is necessary to resolve both the object referred to by the     */
5179 /* name or address (and return that pointer) and also provide the means by  */
5180 /* which to determine if an address belongs to that object to make the      */
5181 /* packet matching quicker.                                                 */
5182 /* ------------------------------------------------------------------------ */
5183 static void *
5184 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5185     i6addr_t *addrp, i6addr_t *maskp)
5186 {
5187 	void *ptr = NULL;
5188 
5189 	switch (addrp->iplookupsubtype)
5190 	{
5191 	case 0 :
5192 		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5193 					 addrp->iplookupnum,
5194 					 &maskp->iplookupfunc);
5195 		break;
5196 	case 1 :
5197 		if (addrp->iplookupname < 0)
5198 			break;
5199 		if (addrp->iplookupname >= fr->fr_namelen)
5200 			break;
5201 		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5202 					  fr->fr_names + addrp->iplookupname,
5203 					  &maskp->iplookupfunc);
5204 		break;
5205 	default :
5206 		break;
5207 	}
5208 
5209 	return ptr;
5210 }
5211 
5212 
5213 /* ------------------------------------------------------------------------ */
5214 /* Function:    ipf_funcinit                                                */
5215 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5216 /* Parameters:  softc(I) - pointer to soft context main structure           */
5217 /*              fr(I)    - pointer to filter rule                           */
5218 /*                                                                          */
5219 /* If a rule is a call rule, then check if the function it points to needs  */
5220 /* an init function to be called now the rule has been loaded.              */
5221 /* ------------------------------------------------------------------------ */
5222 static int
5223 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5224 {
5225 	ipfunc_resolve_t *ft;
5226 	int err;
5227 
5228 	IPFERROR(34);
5229 	err = ESRCH;
5230 
5231 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5232 		if (ft->ipfu_addr == fr->fr_func) {
5233 			err = 0;
5234 			if (ft->ipfu_init != NULL)
5235 				err = (*ft->ipfu_init)(softc, fr);
5236 			break;
5237 		}
5238 	return err;
5239 }
5240 
5241 
5242 /* ------------------------------------------------------------------------ */
5243 /* Function:    ipf_funcfini                                                */
5244 /* Returns:     Nil                                                         */
5245 /* Parameters:  softc(I) - pointer to soft context main structure           */
5246 /*              fr(I)    - pointer to filter rule                           */
5247 /*                                                                          */
5248 /* For a given filter rule, call the matching "fini" function if the rule   */
5249 /* is using a known function that would have resulted in the "init" being   */
5250 /* called for ealier.                                                       */
5251 /* ------------------------------------------------------------------------ */
5252 static void
5253 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5254 {
5255 	ipfunc_resolve_t *ft;
5256 
5257 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5258 		if (ft->ipfu_addr == fr->fr_func) {
5259 			if (ft->ipfu_fini != NULL)
5260 				(void) (*ft->ipfu_fini)(softc, fr);
5261 			break;
5262 		}
5263 }
5264 
5265 
5266 /* ------------------------------------------------------------------------ */
5267 /* Function:    ipf_findfunc                                                */
5268 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5269 /* Parameters:  funcptr(I) - function pointer to lookup                     */
5270 /*                                                                          */
5271 /* Look for a function in the table of known functions.                     */
5272 /* ------------------------------------------------------------------------ */
5273 static ipfunc_t
5274 ipf_findfunc(ipfunc_t funcptr)
5275 {
5276 	ipfunc_resolve_t *ft;
5277 
5278 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5279 		if (ft->ipfu_addr == funcptr)
5280 			return funcptr;
5281 	return NULL;
5282 }
5283 
5284 
5285 /* ------------------------------------------------------------------------ */
5286 /* Function:    ipf_resolvefunc                                             */
5287 /* Returns:     int - 0 == success, else error                              */
5288 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5289 /*                                                                          */
5290 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5291 /* This will either be the function name (if the pointer is set) or the     */
5292 /* function pointer if the name is set.  When found, fill in the other one  */
5293 /* so that the entire, complete, structure can be copied back to user space.*/
5294 /* ------------------------------------------------------------------------ */
5295 int
5296 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5297 {
5298 	ipfunc_resolve_t res, *ft;
5299 	int error;
5300 
5301 	error = BCOPYIN(data, &res, sizeof(res));
5302 	if (error != 0) {
5303 		IPFERROR(123);
5304 		return EFAULT;
5305 	}
5306 
5307 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5308 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5309 			if (strncmp(res.ipfu_name, ft->ipfu_name,
5310 				    sizeof(res.ipfu_name)) == 0) {
5311 				res.ipfu_addr = ft->ipfu_addr;
5312 				res.ipfu_init = ft->ipfu_init;
5313 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5314 					IPFERROR(35);
5315 					return EFAULT;
5316 				}
5317 				return 0;
5318 			}
5319 	}
5320 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5321 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5322 			if (ft->ipfu_addr == res.ipfu_addr) {
5323 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5324 					       sizeof(res.ipfu_name));
5325 				res.ipfu_init = ft->ipfu_init;
5326 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5327 					IPFERROR(36);
5328 					return EFAULT;
5329 				}
5330 				return 0;
5331 			}
5332 	}
5333 	IPFERROR(37);
5334 	return ESRCH;
5335 }
5336 
5337 
5338 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5339      !defined(__FreeBSD__)) || \
5340     FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5341     OPENBSD_LT_REV(200006)
5342 /*
5343  * From: NetBSD
5344  * ppsratecheck(): packets (or events) per second limitation.
5345  */
5346 int
5347 ppsratecheck(lasttime, curpps, maxpps)
5348 	struct timeval *lasttime;
5349 	int *curpps;
5350 	int maxpps;	/* maximum pps allowed */
5351 {
5352 	struct timeval tv, delta;
5353 	int rv;
5354 
5355 	GETKTIME(&tv);
5356 
5357 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5358 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5359 	if (delta.tv_usec < 0) {
5360 		delta.tv_sec--;
5361 		delta.tv_usec += 1000000;
5362 	}
5363 
5364 	/*
5365 	 * check for 0,0 is so that the message will be seen at least once.
5366 	 * if more than one second have passed since the last update of
5367 	 * lasttime, reset the counter.
5368 	 *
5369 	 * we do increment *curpps even in *curpps < maxpps case, as some may
5370 	 * try to use *curpps for stat purposes as well.
5371 	 */
5372 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5373 	    delta.tv_sec >= 1) {
5374 		*lasttime = tv;
5375 		*curpps = 0;
5376 		rv = 1;
5377 	} else if (maxpps < 0)
5378 		rv = 1;
5379 	else if (*curpps < maxpps)
5380 		rv = 1;
5381 	else
5382 		rv = 0;
5383 	*curpps = *curpps + 1;
5384 
5385 	return (rv);
5386 }
5387 #endif
5388 
5389 
5390 /* ------------------------------------------------------------------------ */
5391 /* Function:    ipf_derefrule                                               */
5392 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
5393 /* Parameters:  fr(I) - pointer to filter rule                              */
5394 /*                                                                          */
5395 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5396 /* free it and any associated storage space being used by it.               */
5397 /* ------------------------------------------------------------------------ */
5398 int
5399 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5400 {
5401 	frentry_t *fr;
5402 	frdest_t *fdp;
5403 
5404 	fr = *frp;
5405 	*frp = NULL;
5406 
5407 	MUTEX_ENTER(&fr->fr_lock);
5408 	fr->fr_ref--;
5409 	if (fr->fr_ref == 0) {
5410 		MUTEX_EXIT(&fr->fr_lock);
5411 		MUTEX_DESTROY(&fr->fr_lock);
5412 
5413 		ipf_funcfini(softc, fr);
5414 
5415 		fdp = &fr->fr_tif;
5416 		if (fdp->fd_type == FRD_DSTLIST)
5417 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5418 
5419 		fdp = &fr->fr_rif;
5420 		if (fdp->fd_type == FRD_DSTLIST)
5421 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5422 
5423 		fdp = &fr->fr_dif;
5424 		if (fdp->fd_type == FRD_DSTLIST)
5425 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5426 
5427 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5428 		    fr->fr_satype == FRI_LOOKUP)
5429 			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5430 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5431 		    fr->fr_datype == FRI_LOOKUP)
5432 			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5433 
5434 		if (fr->fr_grp != NULL)
5435 			ipf_group_del(softc, fr->fr_grp, fr);
5436 
5437 		if (fr->fr_grphead != NULL)
5438 			ipf_group_del(softc, fr->fr_grphead, fr);
5439 
5440 		if (fr->fr_icmpgrp != NULL)
5441 			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5442 
5443 		if ((fr->fr_flags & FR_COPIED) != 0) {
5444 			if (fr->fr_dsize) {
5445 				KFREES(fr->fr_data, fr->fr_dsize);
5446 			}
5447 			KFREES(fr, fr->fr_size);
5448 			return 0;
5449 		}
5450 		return 1;
5451 	} else {
5452 		MUTEX_EXIT(&fr->fr_lock);
5453 	}
5454 	return -1;
5455 }
5456 
5457 
5458 /* ------------------------------------------------------------------------ */
5459 /* Function:    ipf_grpmapinit                                              */
5460 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5461 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
5462 /*                                                                          */
5463 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5464 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5465 /* ------------------------------------------------------------------------ */
5466 static int
5467 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5468 {
5469 	char name[FR_GROUPLEN];
5470 	iphtable_t *iph;
5471 
5472 	(void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5473 	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5474 	if (iph == NULL) {
5475 		IPFERROR(38);
5476 		return ESRCH;
5477 	}
5478 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5479 		IPFERROR(39);
5480 		return ESRCH;
5481 	}
5482 	iph->iph_ref++;
5483 	fr->fr_ptr = iph;
5484 	return 0;
5485 }
5486 
5487 
5488 /* ------------------------------------------------------------------------ */
5489 /* Function:    ipf_grpmapfini                                              */
5490 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5491 /* Parameters:  softc(I) - pointer to soft context main structure           */
5492 /*              fr(I)    - pointer to rule to release hash table for        */
5493 /*                                                                          */
5494 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5495 /* be called to undo what ipf_grpmapinit caused to be done.                 */
5496 /* ------------------------------------------------------------------------ */
5497 static int
5498 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5499 {
5500 	iphtable_t *iph;
5501 	iph = fr->fr_ptr;
5502 	if (iph != NULL)
5503 		ipf_lookup_deref(softc, IPLT_HASH, iph);
5504 	return 0;
5505 }
5506 
5507 
5508 /* ------------------------------------------------------------------------ */
5509 /* Function:    ipf_srcgrpmap                                               */
5510 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5511 /* Parameters:  fin(I)    - pointer to packet information                   */
5512 /*              passp(IO) - pointer to current/new filter decision (unused) */
5513 /*                                                                          */
5514 /* Look for a rule group head in a hash table, using the source address as  */
5515 /* the key, and descend into that group and continue matching rules against */
5516 /* the packet.                                                              */
5517 /* ------------------------------------------------------------------------ */
5518 frentry_t *
5519 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5520 {
5521 	frgroup_t *fg;
5522 	void *rval;
5523 
5524 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5525 				 &fin->fin_src);
5526 	if (rval == NULL)
5527 		return NULL;
5528 
5529 	fg = rval;
5530 	fin->fin_fr = fg->fg_start;
5531 	(void) ipf_scanlist(fin, *passp);
5532 	return fin->fin_fr;
5533 }
5534 
5535 
5536 /* ------------------------------------------------------------------------ */
5537 /* Function:    ipf_dstgrpmap                                               */
5538 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5539 /* Parameters:  fin(I)    - pointer to packet information                   */
5540 /*              passp(IO) - pointer to current/new filter decision (unused) */
5541 /*                                                                          */
5542 /* Look for a rule group head in a hash table, using the destination        */
5543 /* address as the key, and descend into that group and continue matching    */
5544 /* rules against  the packet.                                               */
5545 /* ------------------------------------------------------------------------ */
5546 frentry_t *
5547 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5548 {
5549 	frgroup_t *fg;
5550 	void *rval;
5551 
5552 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5553 				 &fin->fin_dst);
5554 	if (rval == NULL)
5555 		return NULL;
5556 
5557 	fg = rval;
5558 	fin->fin_fr = fg->fg_start;
5559 	(void) ipf_scanlist(fin, *passp);
5560 	return fin->fin_fr;
5561 }
5562 
5563 /*
5564  * Queue functions
5565  * ===============
5566  * These functions manage objects on queues for efficient timeouts.  There
5567  * are a number of system defined queues as well as user defined timeouts.
5568  * It is expected that a lock is held in the domain in which the queue
5569  * belongs (i.e. either state or NAT) when calling any of these functions
5570  * that prevents ipf_freetimeoutqueue() from being called at the same time
5571  * as any other.
5572  */
5573 
5574 
5575 /* ------------------------------------------------------------------------ */
5576 /* Function:    ipf_addtimeoutqueue                                         */
5577 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5578 /*                               timeout queue with given interval.         */
5579 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5580 /*                           of interface queues.                           */
5581 /*              seconds(I) - timeout value in seconds for this queue.       */
5582 /*                                                                          */
5583 /* This routine first looks for a timeout queue that matches the interval   */
5584 /* being requested.  If it finds one, increments the reference counter and  */
5585 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5586 /* inserts it at the top of the list.                                       */
5587 /*                                                                          */
5588 /* Locking.                                                                 */
5589 /* It is assumed that the caller of this function has an appropriate lock   */
5590 /* held (exclusively) in the domain that encompases 'parent'.               */
5591 /* ------------------------------------------------------------------------ */
5592 ipftq_t *
5593 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5594 {
5595 	ipftq_t *ifq;
5596 	u_int period;
5597 
5598 	period = seconds * IPF_HZ_DIVIDE;
5599 
5600 	MUTEX_ENTER(&softc->ipf_timeoutlock);
5601 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5602 		if (ifq->ifq_ttl == period) {
5603 			/*
5604 			 * Reset the delete flag, if set, so the structure
5605 			 * gets reused rather than freed and reallocated.
5606 			 */
5607 			MUTEX_ENTER(&ifq->ifq_lock);
5608 			ifq->ifq_flags &= ~IFQF_DELETE;
5609 			ifq->ifq_ref++;
5610 			MUTEX_EXIT(&ifq->ifq_lock);
5611 			MUTEX_EXIT(&softc->ipf_timeoutlock);
5612 
5613 			return ifq;
5614 		}
5615 	}
5616 
5617 	KMALLOC(ifq, ipftq_t *);
5618 	if (ifq != NULL) {
5619 		MUTEX_NUKE(&ifq->ifq_lock);
5620 		IPFTQ_INIT(ifq, period, "ipftq mutex");
5621 		ifq->ifq_next = *parent;
5622 		ifq->ifq_pnext = parent;
5623 		ifq->ifq_flags = IFQF_USER;
5624 		ifq->ifq_ref++;
5625 		*parent = ifq;
5626 		softc->ipf_userifqs++;
5627 	}
5628 	MUTEX_EXIT(&softc->ipf_timeoutlock);
5629 	return ifq;
5630 }
5631 
5632 
5633 /* ------------------------------------------------------------------------ */
5634 /* Function:    ipf_deletetimeoutqueue                                      */
5635 /* Returns:     int    - new reference count value of the timeout queue     */
5636 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5637 /* Locks:       ifq->ifq_lock                                               */
5638 /*                                                                          */
5639 /* This routine must be called when we're discarding a pointer to a timeout */
5640 /* queue object, taking care of the reference counter.                      */
5641 /*                                                                          */
5642 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5643 /* check the list of user defined timeout queues and call the free function */
5644 /* below (currently commented out) to stop memory leaking.  It is done this */
5645 /* way because the locking may not be sufficient to safely do a free when   */
5646 /* this function is called.                                                 */
5647 /* ------------------------------------------------------------------------ */
5648 int
5649 ipf_deletetimeoutqueue(ipftq_t *ifq)
5650 {
5651 
5652 	ifq->ifq_ref--;
5653 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5654 		ifq->ifq_flags |= IFQF_DELETE;
5655 	}
5656 
5657 	return ifq->ifq_ref;
5658 }
5659 
5660 
5661 /* ------------------------------------------------------------------------ */
5662 /* Function:    ipf_freetimeoutqueue                                        */
5663 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5664 /* Returns:     Nil                                                         */
5665 /*                                                                          */
5666 /* Locking:                                                                 */
5667 /* It is assumed that the caller of this function has an appropriate lock   */
5668 /* held (exclusively) in the domain that encompases the callers "domain".   */
5669 /* The ifq_lock for this structure should not be held.                      */
5670 /*                                                                          */
5671 /* Remove a user defined timeout queue from the list of queues it is in and */
5672 /* tidy up after this is done.                                              */
5673 /* ------------------------------------------------------------------------ */
5674 void
5675 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5676 {
5677 
5678 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5679 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5680 		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5681 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5682 		       ifq->ifq_ref);
5683 		return;
5684 	}
5685 
5686 	/*
5687 	 * Remove from its position in the list.
5688 	 */
5689 	*ifq->ifq_pnext = ifq->ifq_next;
5690 	if (ifq->ifq_next != NULL)
5691 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5692 	ifq->ifq_next = NULL;
5693 	ifq->ifq_pnext = NULL;
5694 
5695 	MUTEX_DESTROY(&ifq->ifq_lock);
5696 	ATOMIC_DEC(softc->ipf_userifqs);
5697 	KFREE(ifq);
5698 }
5699 
5700 
5701 /* ------------------------------------------------------------------------ */
5702 /* Function:    ipf_deletequeueentry                                        */
5703 /* Returns:     Nil                                                         */
5704 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5705 /*                                                                          */
5706 /* Remove a tail queue entry from its queue and make it an orphan.          */
5707 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5708 /* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5709 /* the correct lock(s) may not be held that would make it safe to do so.    */
5710 /* ------------------------------------------------------------------------ */
5711 void
5712 ipf_deletequeueentry(ipftqent_t *tqe)
5713 {
5714 	ipftq_t *ifq;
5715 
5716 	ifq = tqe->tqe_ifq;
5717 
5718 	MUTEX_ENTER(&ifq->ifq_lock);
5719 
5720 	if (tqe->tqe_pnext != NULL) {
5721 		*tqe->tqe_pnext = tqe->tqe_next;
5722 		if (tqe->tqe_next != NULL)
5723 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5724 		else    /* we must be the tail anyway */
5725 			ifq->ifq_tail = tqe->tqe_pnext;
5726 
5727 		tqe->tqe_pnext = NULL;
5728 		tqe->tqe_ifq = NULL;
5729 	}
5730 
5731 	(void) ipf_deletetimeoutqueue(ifq);
5732 	ASSERT(ifq->ifq_ref > 0);
5733 
5734 	MUTEX_EXIT(&ifq->ifq_lock);
5735 }
5736 
5737 
5738 /* ------------------------------------------------------------------------ */
5739 /* Function:    ipf_queuefront                                              */
5740 /* Returns:     Nil                                                         */
5741 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5742 /*                                                                          */
5743 /* Move a queue entry to the front of the queue, if it isn't already there. */
5744 /* ------------------------------------------------------------------------ */
5745 void
5746 ipf_queuefront(ipftqent_t *tqe)
5747 {
5748 	ipftq_t *ifq;
5749 
5750 	ifq = tqe->tqe_ifq;
5751 	if (ifq == NULL)
5752 		return;
5753 
5754 	MUTEX_ENTER(&ifq->ifq_lock);
5755 	if (ifq->ifq_head != tqe) {
5756 		*tqe->tqe_pnext = tqe->tqe_next;
5757 		if (tqe->tqe_next)
5758 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5759 		else
5760 			ifq->ifq_tail = tqe->tqe_pnext;
5761 
5762 		tqe->tqe_next = ifq->ifq_head;
5763 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5764 		ifq->ifq_head = tqe;
5765 		tqe->tqe_pnext = &ifq->ifq_head;
5766 	}
5767 	MUTEX_EXIT(&ifq->ifq_lock);
5768 }
5769 
5770 
5771 /* ------------------------------------------------------------------------ */
5772 /* Function:    ipf_queueback                                               */
5773 /* Returns:     Nil                                                         */
5774 /* Parameters:  ticks(I) - ipf tick time to use with this call              */
5775 /*              tqe(I)   - pointer to timeout queue entry                   */
5776 /*                                                                          */
5777 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5778 /* We use use ticks to calculate the expiration and mark for when we last   */
5779 /* touched the structure.                                                   */
5780 /* ------------------------------------------------------------------------ */
5781 void
5782 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5783 {
5784 	ipftq_t *ifq;
5785 
5786 	ifq = tqe->tqe_ifq;
5787 	if (ifq == NULL)
5788 		return;
5789 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5790 	tqe->tqe_touched = ticks;
5791 
5792 	MUTEX_ENTER(&ifq->ifq_lock);
5793 	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5794 		/*
5795 		 * Remove from list
5796 		 */
5797 		*tqe->tqe_pnext = tqe->tqe_next;
5798 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5799 
5800 		/*
5801 		 * Make it the last entry.
5802 		 */
5803 		tqe->tqe_next = NULL;
5804 		tqe->tqe_pnext = ifq->ifq_tail;
5805 		*ifq->ifq_tail = tqe;
5806 		ifq->ifq_tail = &tqe->tqe_next;
5807 	}
5808 	MUTEX_EXIT(&ifq->ifq_lock);
5809 }
5810 
5811 
5812 /* ------------------------------------------------------------------------ */
5813 /* Function:    ipf_queueappend                                             */
5814 /* Returns:     Nil                                                         */
5815 /* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5816 /*              tqe(I)    - pointer to timeout queue entry                  */
5817 /*              ifq(I)    - pointer to timeout queue                        */
5818 /*              parent(I) - owing object pointer                            */
5819 /*                                                                          */
5820 /* Add a new item to this queue and put it on the very end.                 */
5821 /* We use use ticks to calculate the expiration and mark for when we last   */
5822 /* touched the structure.                                                   */
5823 /* ------------------------------------------------------------------------ */
5824 void
5825 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5826 {
5827 
5828 	MUTEX_ENTER(&ifq->ifq_lock);
5829 	tqe->tqe_parent = parent;
5830 	tqe->tqe_pnext = ifq->ifq_tail;
5831 	*ifq->ifq_tail = tqe;
5832 	ifq->ifq_tail = &tqe->tqe_next;
5833 	tqe->tqe_next = NULL;
5834 	tqe->tqe_ifq = ifq;
5835 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5836 	tqe->tqe_touched = ticks;
5837 	ifq->ifq_ref++;
5838 	MUTEX_EXIT(&ifq->ifq_lock);
5839 }
5840 
5841 
5842 /* ------------------------------------------------------------------------ */
5843 /* Function:    ipf_movequeue                                               */
5844 /* Returns:     Nil                                                         */
5845 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5846 /*              oifp(I) - old timeout queue entry was on                    */
5847 /*              nifp(I) - new timeout queue to put entry on                 */
5848 /*                                                                          */
5849 /* Move a queue entry from one timeout queue to another timeout queue.      */
5850 /* If it notices that the current entry is already last and does not need   */
5851 /* to move queue, the return.                                               */
5852 /* ------------------------------------------------------------------------ */
5853 void
5854 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5855 {
5856 
5857 	/*
5858 	 * If the queue hasn't changed and we last touched this entry at the
5859 	 * same ipf time, then we're not going to achieve anything by either
5860 	 * changing the ttl or moving it on the queue.
5861 	 */
5862 	if (oifq == nifq && tqe->tqe_touched == ticks)
5863 		return;
5864 
5865 	/*
5866 	 * For any of this to be outside the lock, there is a risk that two
5867 	 * packets entering simultaneously, with one changing to a different
5868 	 * queue and one not, could end up with things in a bizarre state.
5869 	 */
5870 	MUTEX_ENTER(&oifq->ifq_lock);
5871 
5872 	tqe->tqe_touched = ticks;
5873 	tqe->tqe_die = ticks + nifq->ifq_ttl;
5874 	/*
5875 	 * Is the operation here going to be a no-op ?
5876 	 */
5877 	if (oifq == nifq) {
5878 		if ((tqe->tqe_next == NULL) ||
5879 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5880 			MUTEX_EXIT(&oifq->ifq_lock);
5881 			return;
5882 		}
5883 	}
5884 
5885 	/*
5886 	 * Remove from the old queue
5887 	 */
5888 	*tqe->tqe_pnext = tqe->tqe_next;
5889 	if (tqe->tqe_next)
5890 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5891 	else
5892 		oifq->ifq_tail = tqe->tqe_pnext;
5893 	tqe->tqe_next = NULL;
5894 
5895 	/*
5896 	 * If we're moving from one queue to another, release the
5897 	 * lock on the old queue and get a lock on the new queue.
5898 	 * For user defined queues, if we're moving off it, call
5899 	 * delete in case it can now be freed.
5900 	 */
5901 	if (oifq != nifq) {
5902 		tqe->tqe_ifq = NULL;
5903 
5904 		(void) ipf_deletetimeoutqueue(oifq);
5905 
5906 		MUTEX_EXIT(&oifq->ifq_lock);
5907 
5908 		MUTEX_ENTER(&nifq->ifq_lock);
5909 
5910 		tqe->tqe_ifq = nifq;
5911 		nifq->ifq_ref++;
5912 	}
5913 
5914 	/*
5915 	 * Add to the bottom of the new queue
5916 	 */
5917 	tqe->tqe_pnext = nifq->ifq_tail;
5918 	*nifq->ifq_tail = tqe;
5919 	nifq->ifq_tail = &tqe->tqe_next;
5920 	MUTEX_EXIT(&nifq->ifq_lock);
5921 }
5922 
5923 
5924 /* ------------------------------------------------------------------------ */
5925 /* Function:    ipf_updateipid                                              */
5926 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5927 /* Parameters:  fin(I) - pointer to packet information                      */
5928 /*                                                                          */
5929 /* When we are doing NAT, change the IP of every packet to represent a      */
5930 /* single sequence of packets coming from the host, hiding any host         */
5931 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5932 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5933 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5934 /* has no match in the cache, return an error.                              */
5935 /* ------------------------------------------------------------------------ */
5936 static int
5937 ipf_updateipid(fr_info_t *fin)
5938 {
5939 	u_short id, ido, sums;
5940 	u_32_t sumd, sum;
5941 	ip_t *ip;
5942 
5943 	if (fin->fin_off != 0) {
5944 		sum = ipf_frag_ipidknown(fin);
5945 		if (sum == 0xffffffff)
5946 			return -1;
5947 		sum &= 0xffff;
5948 		id = (u_short)sum;
5949 	} else {
5950 		id = ipf_nextipid(fin);
5951 		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5952 			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
5953 	}
5954 
5955 	ip = fin->fin_ip;
5956 	ido = ntohs(ip->ip_id);
5957 	if (id == ido)
5958 		return 0;
5959 	ip->ip_id = htons(id);
5960 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5961 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5962 	sum += sumd;
5963 	sum = (sum >> 16) + (sum & 0xffff);
5964 	sum = (sum >> 16) + (sum & 0xffff);
5965 	sums = ~(u_short)sum;
5966 	ip->ip_sum = htons(sums);
5967 	return 0;
5968 }
5969 
5970 
5971 #ifdef	NEED_FRGETIFNAME
5972 /* ------------------------------------------------------------------------ */
5973 /* Function:    ipf_getifname                                               */
5974 /* Returns:     char *    - pointer to interface name                       */
5975 /* Parameters:  ifp(I)    - pointer to network interface                    */
5976 /*              buffer(O) - pointer to where to store interface name        */
5977 /*                                                                          */
5978 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5979 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5980 /* as a NULL pointer then return a pointer to a static array.               */
5981 /* ------------------------------------------------------------------------ */
5982 char *
5983 ipf_getifname(ifp, buffer)
5984 	struct ifnet *ifp;
5985 	char *buffer;
5986 {
5987 	static char namebuf[LIFNAMSIZ];
5988 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5989      defined(__sgi) || defined(linux) || defined(_AIX51) || \
5990      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5991 	int unit, space;
5992 	char temp[20];
5993 	char *s;
5994 # endif
5995 
5996 	if (buffer == NULL)
5997 		buffer = namebuf;
5998 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5999 	buffer[LIFNAMSIZ - 1] = '\0';
6000 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6001      defined(__sgi) || defined(_AIX51) || \
6002      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6003 	for (s = buffer; *s; s++)
6004 		;
6005 	unit = ifp->if_unit;
6006 	space = LIFNAMSIZ - (s - buffer);
6007 	if ((space > 0) && (unit >= 0)) {
6008 		snprintf(temp, sizeof(temp), "%d", unit);
6009 		(void) strncpy(s, temp, space);
6010 		s[space - 1] = '\0';
6011 	}
6012 # endif
6013 	return buffer;
6014 }
6015 #endif
6016 
6017 
6018 /* ------------------------------------------------------------------------ */
6019 /* Function:    ipf_ioctlswitch                                             */
6020 /* Returns:     int     - -1 continue processing, else ioctl return value   */
6021 /* Parameters:  unit(I) - device unit opened                                */
6022 /*              data(I) - pointer to ioctl data                             */
6023 /*              cmd(I)  - ioctl command                                     */
6024 /*              mode(I) - mode value                                        */
6025 /*              uid(I)  - uid making the ioctl call                         */
6026 /*              ctx(I)  - pointer to context data                           */
6027 /*                                                                          */
6028 /* Based on the value of unit, call the appropriate ioctl handler or return */
6029 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6030 /* for the device in order to execute the ioctl.  A special case is made    */
6031 /* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6032 /* The context data pointer is passed through as this is used as the key    */
6033 /* for locating a matching token for continued access for walking lists,    */
6034 /* etc.                                                                     */
6035 /* ------------------------------------------------------------------------ */
6036 int
6037 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
6038     int mode, int uid, void *ctx)
6039 {
6040 	int error = 0;
6041 
6042 	switch (cmd)
6043 	{
6044 	case SIOCIPFINTERROR :
6045 		error = BCOPYOUT(&softc->ipf_interror, data,
6046 				 sizeof(softc->ipf_interror));
6047 		if (error != 0) {
6048 			IPFERROR(40);
6049 			error = EFAULT;
6050 		}
6051 		return error;
6052 	default :
6053 		break;
6054 	}
6055 
6056 	switch (unit)
6057 	{
6058 	case IPL_LOGIPF :
6059 		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6060 		break;
6061 	case IPL_LOGNAT :
6062 		if (softc->ipf_running > 0) {
6063 			error = ipf_nat_ioctl(softc, data, cmd, mode,
6064 					      uid, ctx);
6065 		} else {
6066 			IPFERROR(42);
6067 			error = EIO;
6068 		}
6069 		break;
6070 	case IPL_LOGSTATE :
6071 		if (softc->ipf_running > 0) {
6072 			error = ipf_state_ioctl(softc, data, cmd, mode,
6073 						uid, ctx);
6074 		} else {
6075 			IPFERROR(43);
6076 			error = EIO;
6077 		}
6078 		break;
6079 	case IPL_LOGAUTH :
6080 		if (softc->ipf_running > 0) {
6081 			error = ipf_auth_ioctl(softc, data, cmd, mode,
6082 					       uid, ctx);
6083 		} else {
6084 			IPFERROR(44);
6085 			error = EIO;
6086 		}
6087 		break;
6088 	case IPL_LOGSYNC :
6089 		if (softc->ipf_running > 0) {
6090 			error = ipf_sync_ioctl(softc, data, cmd, mode,
6091 					       uid, ctx);
6092 		} else {
6093 			error = EIO;
6094 			IPFERROR(45);
6095 		}
6096 		break;
6097 	case IPL_LOGSCAN :
6098 #ifdef IPFILTER_SCAN
6099 		if (softc->ipf_running > 0)
6100 			error = ipf_scan_ioctl(softc, data, cmd, mode,
6101 					       uid, ctx);
6102 		else
6103 #endif
6104 		{
6105 			error = EIO;
6106 			IPFERROR(46);
6107 		}
6108 		break;
6109 	case IPL_LOGLOOKUP :
6110 		if (softc->ipf_running > 0) {
6111 			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6112 						 uid, ctx);
6113 		} else {
6114 			error = EIO;
6115 			IPFERROR(47);
6116 		}
6117 		break;
6118 	default :
6119 		IPFERROR(48);
6120 		error = EIO;
6121 		break;
6122 	}
6123 
6124 	return error;
6125 }
6126 
6127 
6128 /*
6129  * This array defines the expected size of objects coming into the kernel
6130  * for the various recognised object types. The first column is flags (see
6131  * below), 2nd column is current size, 3rd column is the version number of
6132  * when the current size became current.
6133  * Flags:
6134  * 1 = minimum size, not absolute size
6135  */
6136 static	int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6137 	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6138 	{ 1,	sizeof(struct friostat),	5010000 },
6139 	{ 0,	sizeof(struct fr_info),		5010000 },
6140 	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6141 	{ 0,	sizeof(struct ipfrstat),	5010000 },
6142 	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6143 	{ 0,	sizeof(struct natstat),		5010000 },
6144 	{ 0,	sizeof(struct ipstate_save),	5010000 },
6145 	{ 1,	sizeof(struct nat_save),	5010000 },
6146 	{ 0,	sizeof(struct natlookup),	5010000 },
6147 	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6148 	{ 0,	sizeof(struct ips_stat),	5010000 },
6149 	{ 0,	sizeof(struct frauth),		5010000 },
6150 	{ 0,	sizeof(struct ipftune),		4010100 },
6151 	{ 0,	sizeof(struct nat),		5010000 },
6152 	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6153 	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6154 	{ 0,	sizeof(struct ipftable),	4011400 },
6155 	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6156 	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6157 	{ 1,	0,				0	}, /* IPFEXPR */
6158 	{ 0,	0,				0	}, /* PROXYCTL */
6159 	{ 0,	sizeof (struct fripf),		5010000	}
6160 };
6161 
6162 
6163 /* ------------------------------------------------------------------------ */
6164 /* Function:    ipf_inobj                                                   */
6165 /* Returns:     int     - 0 = success, else failure                         */
6166 /* Parameters:  softc(I) - soft context pointerto work with                 */
6167 /*              data(I)  - pointer to ioctl data                            */
6168 /*              objp(O)  - where to store ipfobj structure                  */
6169 /*              ptr(I)   - pointer to data to copy out                      */
6170 /*              type(I)  - type of structure being moved                    */
6171 /*                                                                          */
6172 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6173 /* add things to check for version numbers, sizes, etc, to make it backward */
6174 /* compatible at the ABI for user land.                                     */
6175 /* If objp is not NULL then we assume that the caller wants to see what is  */
6176 /* in the ipfobj_t structure being copied in. As an example, this can tell  */
6177 /* the caller what version of ipfilter the ioctl program was written to.    */
6178 /* ------------------------------------------------------------------------ */
6179 int
6180 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6181     int type)
6182 {
6183 	ipfobj_t obj;
6184 	int error;
6185 	int size;
6186 
6187 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6188 		IPFERROR(49);
6189 		return EINVAL;
6190 	}
6191 
6192 	if (objp == NULL)
6193 		objp = &obj;
6194 	error = BCOPYIN(data, objp, sizeof(*objp));
6195 	if (error != 0) {
6196 		IPFERROR(124);
6197 		return EFAULT;
6198 	}
6199 
6200 	if (objp->ipfo_type != type) {
6201 		IPFERROR(50);
6202 		return EINVAL;
6203 	}
6204 
6205 	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6206 		if ((ipf_objbytes[type][0] & 1) != 0) {
6207 			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6208 				IPFERROR(51);
6209 				return EINVAL;
6210 			}
6211 			size =  ipf_objbytes[type][1];
6212 		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6213 			size =  objp->ipfo_size;
6214 		} else {
6215 			IPFERROR(52);
6216 			return EINVAL;
6217 		}
6218 		error = COPYIN(objp->ipfo_ptr, ptr, size);
6219 		if (error != 0) {
6220 			IPFERROR(55);
6221 			error = EFAULT;
6222 		}
6223 	} else {
6224 #ifdef  IPFILTER_COMPAT
6225 		error = ipf_in_compat(softc, objp, ptr, 0);
6226 #else
6227 		IPFERROR(54);
6228 		error = EINVAL;
6229 #endif
6230 	}
6231 	return error;
6232 }
6233 
6234 
6235 /* ------------------------------------------------------------------------ */
6236 /* Function:    ipf_inobjsz                                                 */
6237 /* Returns:     int     - 0 = success, else failure                         */
6238 /* Parameters:  softc(I) - soft context pointerto work with                 */
6239 /*              data(I)  - pointer to ioctl data                            */
6240 /*              ptr(I)   - pointer to store real data in                    */
6241 /*              type(I)  - type of structure being moved                    */
6242 /*              sz(I)    - size of data to copy                             */
6243 /*                                                                          */
6244 /* As per ipf_inobj, except the size of the object to copy in is passed in  */
6245 /* but it must not be smaller than the size defined for the type and the    */
6246 /* type must allow for varied sized objects.  The extra requirement here is */
6247 /* that sz must match the size of the object being passed in - this is not  */
6248 /* not possible nor required in ipf_inobj().                                */
6249 /* ------------------------------------------------------------------------ */
6250 int
6251 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6252 {
6253 	ipfobj_t obj;
6254 	int error;
6255 
6256 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6257 		IPFERROR(56);
6258 		return EINVAL;
6259 	}
6260 
6261 	error = BCOPYIN(data, &obj, sizeof(obj));
6262 	if (error != 0) {
6263 		IPFERROR(125);
6264 		return EFAULT;
6265 	}
6266 
6267 	if (obj.ipfo_type != type) {
6268 		IPFERROR(58);
6269 		return EINVAL;
6270 	}
6271 
6272 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6273 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6274 		    (sz < ipf_objbytes[type][1])) {
6275 			IPFERROR(57);
6276 			return EINVAL;
6277 		}
6278 		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6279 		if (error != 0) {
6280 			IPFERROR(61);
6281 			error = EFAULT;
6282 		}
6283 	} else {
6284 #ifdef	IPFILTER_COMPAT
6285 		error = ipf_in_compat(softc, &obj, ptr, sz);
6286 #else
6287 		IPFERROR(60);
6288 		error = EINVAL;
6289 #endif
6290 	}
6291 	return error;
6292 }
6293 
6294 
6295 /* ------------------------------------------------------------------------ */
6296 /* Function:    ipf_outobjsz                                                */
6297 /* Returns:     int     - 0 = success, else failure                         */
6298 /* Parameters:  data(I) - pointer to ioctl data                             */
6299 /*              ptr(I)  - pointer to store real data in                     */
6300 /*              type(I) - type of structure being moved                     */
6301 /*              sz(I)   - size of data to copy                              */
6302 /*                                                                          */
6303 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6304 /* but it must not be smaller than the size defined for the type and the    */
6305 /* type must allow for varied sized objects.  The extra requirement here is */
6306 /* that sz must match the size of the object being passed in - this is not  */
6307 /* not possible nor required in ipf_outobj().                               */
6308 /* ------------------------------------------------------------------------ */
6309 int
6310 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6311 {
6312 	ipfobj_t obj;
6313 	int error;
6314 
6315 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6316 		IPFERROR(62);
6317 		return EINVAL;
6318 	}
6319 
6320 	error = BCOPYIN(data, &obj, sizeof(obj));
6321 	if (error != 0) {
6322 		IPFERROR(127);
6323 		return EFAULT;
6324 	}
6325 
6326 	if (obj.ipfo_type != type) {
6327 		IPFERROR(63);
6328 		return EINVAL;
6329 	}
6330 
6331 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6332 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6333 		    (sz < ipf_objbytes[type][1])) {
6334 			IPFERROR(146);
6335 			return EINVAL;
6336 		}
6337 		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6338 		if (error != 0) {
6339 			IPFERROR(66);
6340 			error = EFAULT;
6341 		}
6342 	} else {
6343 #ifdef	IPFILTER_COMPAT
6344 		error = ipf_out_compat(softc, &obj, ptr);
6345 #else
6346 		IPFERROR(65);
6347 		error = EINVAL;
6348 #endif
6349 	}
6350 	return error;
6351 }
6352 
6353 
6354 /* ------------------------------------------------------------------------ */
6355 /* Function:    ipf_outobj                                                  */
6356 /* Returns:     int     - 0 = success, else failure                         */
6357 /* Parameters:  data(I) - pointer to ioctl data                             */
6358 /*              ptr(I)  - pointer to store real data in                     */
6359 /*              type(I) - type of structure being moved                     */
6360 /*                                                                          */
6361 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6362 /* future, we add things to check for version numbers, sizes, etc, to make  */
6363 /* it backward  compatible at the ABI for user land.                        */
6364 /* ------------------------------------------------------------------------ */
6365 int
6366 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6367 {
6368 	ipfobj_t obj;
6369 	int error;
6370 
6371 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6372 		IPFERROR(67);
6373 		return EINVAL;
6374 	}
6375 
6376 	error = BCOPYIN(data, &obj, sizeof(obj));
6377 	if (error != 0) {
6378 		IPFERROR(126);
6379 		return EFAULT;
6380 	}
6381 
6382 	if (obj.ipfo_type != type) {
6383 		IPFERROR(68);
6384 		return EINVAL;
6385 	}
6386 
6387 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6388 		if ((ipf_objbytes[type][0] & 1) != 0) {
6389 			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6390 				IPFERROR(69);
6391 				return EINVAL;
6392 			}
6393 		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6394 			IPFERROR(70);
6395 			return EINVAL;
6396 		}
6397 
6398 		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6399 		if (error != 0) {
6400 			IPFERROR(73);
6401 			error = EFAULT;
6402 		}
6403 	} else {
6404 #ifdef	IPFILTER_COMPAT
6405 		error = ipf_out_compat(softc, &obj, ptr);
6406 #else
6407 		IPFERROR(72);
6408 		error = EINVAL;
6409 #endif
6410 	}
6411 	return error;
6412 }
6413 
6414 
6415 /* ------------------------------------------------------------------------ */
6416 /* Function:    ipf_outobjk                                                 */
6417 /* Returns:     int     - 0 = success, else failure                         */
6418 /* Parameters:  obj(I)  - pointer to data description structure             */
6419 /*              ptr(I)  - pointer to kernel data to copy out                */
6420 /*                                                                          */
6421 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6422 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6423 /* already populated with information and now we just need to use it.       */
6424 /* There is no need for this function to have a "type" parameter as there   */
6425 /* is no point in validating information that comes from the kernel with    */
6426 /* itself.                                                                  */
6427 /* ------------------------------------------------------------------------ */
6428 int
6429 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6430 {
6431 	int type = obj->ipfo_type;
6432 	int error;
6433 
6434 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6435 		IPFERROR(147);
6436 		return EINVAL;
6437 	}
6438 
6439 	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6440 		if ((ipf_objbytes[type][0] & 1) != 0) {
6441 			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6442 				IPFERROR(148);
6443 				return EINVAL;
6444 			}
6445 
6446 		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6447 			IPFERROR(149);
6448 			return EINVAL;
6449 		}
6450 
6451 		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6452 		if (error != 0) {
6453 			IPFERROR(150);
6454 			error = EFAULT;
6455 		}
6456 	} else {
6457 #ifdef  IPFILTER_COMPAT
6458 		error = ipf_out_compat(softc, obj, ptr);
6459 #else
6460 		IPFERROR(151);
6461 		error = EINVAL;
6462 #endif
6463 	}
6464 	return error;
6465 }
6466 
6467 
6468 /* ------------------------------------------------------------------------ */
6469 /* Function:    ipf_checkl4sum                                              */
6470 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6471 /* Parameters:  fin(I) - pointer to packet information                      */
6472 /*                                                                          */
6473 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6474 /* not possible, return without indicating a failure or success but in a    */
6475 /* way that is ditinguishable. This function should only be called by the   */
6476 /* ipf_checkv6sum() for each platform.                                      */
6477 /* ------------------------------------------------------------------------ */
6478 int
6479 ipf_checkl4sum(fr_info_t *fin)
6480 {
6481 	u_short sum, hdrsum, *csump;
6482 	udphdr_t *udp;
6483 	int dosum;
6484 
6485 	/*
6486 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6487 	 * isn't already considered "bad", then validate the checksum.  If
6488 	 * this check fails then considered the packet to be "bad".
6489 	 */
6490 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6491 		return 1;
6492 
6493 	csump = NULL;
6494 	hdrsum = 0;
6495 	dosum = 0;
6496 	sum = 0;
6497 
6498 	switch (fin->fin_p)
6499 	{
6500 	case IPPROTO_TCP :
6501 		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6502 		dosum = 1;
6503 		break;
6504 
6505 	case IPPROTO_UDP :
6506 		udp = fin->fin_dp;
6507 		if (udp->uh_sum != 0) {
6508 			csump = &udp->uh_sum;
6509 			dosum = 1;
6510 		}
6511 		break;
6512 
6513 #ifdef USE_INET6
6514 	case IPPROTO_ICMPV6 :
6515 		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6516 		dosum = 1;
6517 		break;
6518 #endif
6519 
6520 	case IPPROTO_ICMP :
6521 		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6522 		dosum = 1;
6523 		break;
6524 
6525 	default :
6526 		return 1;
6527 		/*NOTREACHED*/
6528 	}
6529 
6530 	if (csump != NULL)
6531 		hdrsum = *csump;
6532 
6533 	if (dosum) {
6534 		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6535 	}
6536 #if !defined(_KERNEL)
6537 	if (sum == hdrsum) {
6538 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6539 	} else {
6540 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6541 	}
6542 #endif
6543 	DT2(l4sums, u_short, hdrsum, u_short, sum);
6544 	if (hdrsum == sum) {
6545 		fin->fin_cksum = FI_CK_SUMOK;
6546 		return 0;
6547 	}
6548 	fin->fin_cksum = FI_CK_BAD;
6549 	return -1;
6550 }
6551 
6552 
6553 /* ------------------------------------------------------------------------ */
6554 /* Function:    ipf_ifpfillv4addr                                           */
6555 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6556 /* Parameters:  atype(I)   - type of network address update to perform      */
6557 /*              sin(I)     - pointer to source of address information       */
6558 /*              mask(I)    - pointer to source of netmask information       */
6559 /*              inp(I)     - pointer to destination address store           */
6560 /*              inpmask(I) - pointer to destination netmask store           */
6561 /*                                                                          */
6562 /* Given a type of network address update (atype) to perform, copy          */
6563 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6564 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6565 /* which case the operation fails.  For all values of atype other than      */
6566 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6567 /* value.                                                                   */
6568 /* ------------------------------------------------------------------------ */
6569 int
6570 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6571     struct in_addr *inp, struct in_addr *inpmask)
6572 {
6573 	if (inpmask != NULL && atype != FRI_NETMASKED)
6574 		inpmask->s_addr = 0xffffffff;
6575 
6576 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6577 		if (atype == FRI_NETMASKED) {
6578 			if (inpmask == NULL)
6579 				return -1;
6580 			inpmask->s_addr = mask->sin_addr.s_addr;
6581 		}
6582 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6583 	} else {
6584 		inp->s_addr = sin->sin_addr.s_addr;
6585 	}
6586 	return 0;
6587 }
6588 
6589 
6590 #ifdef	USE_INET6
6591 /* ------------------------------------------------------------------------ */
6592 /* Function:    ipf_ifpfillv6addr                                           */
6593 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6594 /* Parameters:  atype(I)   - type of network address update to perform      */
6595 /*              sin(I)     - pointer to source of address information       */
6596 /*              mask(I)    - pointer to source of netmask information       */
6597 /*              inp(I)     - pointer to destination address store           */
6598 /*              inpmask(I) - pointer to destination netmask store           */
6599 /*                                                                          */
6600 /* Given a type of network address update (atype) to perform, copy          */
6601 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6602 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6603 /* which case the operation fails.  For all values of atype other than      */
6604 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6605 /* value.                                                                   */
6606 /* ------------------------------------------------------------------------ */
6607 int
6608 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6609     struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6610 {
6611 	i6addr_t *src, *and;
6612 
6613 	src = (i6addr_t *)&sin->sin6_addr;
6614 	and = (i6addr_t *)&mask->sin6_addr;
6615 
6616 	if (inpmask != NULL && atype != FRI_NETMASKED) {
6617 		inpmask->i6[0] = 0xffffffff;
6618 		inpmask->i6[1] = 0xffffffff;
6619 		inpmask->i6[2] = 0xffffffff;
6620 		inpmask->i6[3] = 0xffffffff;
6621 	}
6622 
6623 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6624 		if (atype == FRI_NETMASKED) {
6625 			if (inpmask == NULL)
6626 				return -1;
6627 			inpmask->i6[0] = and->i6[0];
6628 			inpmask->i6[1] = and->i6[1];
6629 			inpmask->i6[2] = and->i6[2];
6630 			inpmask->i6[3] = and->i6[3];
6631 		}
6632 
6633 		inp->i6[0] = src->i6[0] & and->i6[0];
6634 		inp->i6[1] = src->i6[1] & and->i6[1];
6635 		inp->i6[2] = src->i6[2] & and->i6[2];
6636 		inp->i6[3] = src->i6[3] & and->i6[3];
6637 	} else {
6638 		inp->i6[0] = src->i6[0];
6639 		inp->i6[1] = src->i6[1];
6640 		inp->i6[2] = src->i6[2];
6641 		inp->i6[3] = src->i6[3];
6642 	}
6643 	return 0;
6644 }
6645 #endif
6646 
6647 
6648 /* ------------------------------------------------------------------------ */
6649 /* Function:    ipf_matchtag                                                */
6650 /* Returns:     0 == mismatch, 1 == match.                                  */
6651 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6652 /*              tag2(I) - pointer to second tag to compare                  */
6653 /*                                                                          */
6654 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6655 /* considered to be a match or not match, respectively.  The tag is 16      */
6656 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6657 /* compare the ints instead, for speed. tag1 is the master of the           */
6658 /* comparison.  This function should only be called with both tag1 and tag2 */
6659 /* as non-NULL pointers.                                                    */
6660 /* ------------------------------------------------------------------------ */
6661 int
6662 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6663 {
6664 	if (tag1 == tag2)
6665 		return 1;
6666 
6667 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6668 		return 1;
6669 
6670 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6671 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6672 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6673 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6674 		return 1;
6675 	return 0;
6676 }
6677 
6678 
6679 /* ------------------------------------------------------------------------ */
6680 /* Function:    ipf_coalesce                                                */
6681 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6682 /* Parameters:  fin(I) - pointer to packet information                      */
6683 /*                                                                          */
6684 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6685 /* If this call returns a failure then the buffers have also been freed.    */
6686 /* ------------------------------------------------------------------------ */
6687 int
6688 ipf_coalesce(fr_info_t *fin)
6689 {
6690 
6691 	if ((fin->fin_flx & FI_COALESCE) != 0)
6692 		return 1;
6693 
6694 	/*
6695 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6696 	 * return but do not indicate success or failure.
6697 	 */
6698 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6699 		return 0;
6700 
6701 #if defined(_KERNEL)
6702 	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6703 		ipf_main_softc_t *softc = fin->fin_main_soft;
6704 
6705 		DT1(frb_coalesce, fr_info_t *, fin);
6706 		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6707 # ifdef MENTAT
6708 		FREE_MB_T(*fin->fin_mp);
6709 # endif
6710 		fin->fin_reason = FRB_COALESCE;
6711 		*fin->fin_mp = NULL;
6712 		fin->fin_m = NULL;
6713 		return -1;
6714 	}
6715 #else
6716 	fin = fin;	/* LINT */
6717 #endif
6718 	return 1;
6719 }
6720 
6721 
6722 /*
6723  * The following table lists all of the tunable variables that can be
6724  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6725  * in the table below is as follows:
6726  *
6727  * pointer to value, name of value, minimum, maximum, size of the value's
6728  *     container, value attribute flags
6729  *
6730  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6731  * means the value can only be written to when IPFilter is loaded but disabled.
6732  * The obvious implication is if neither of these are set then the value can be
6733  * changed at any time without harm.
6734  */
6735 
6736 
6737 /* ------------------------------------------------------------------------ */
6738 /* Function:    ipf_tune_findbycookie                                       */
6739 /* Returns:     NULL = search failed, else pointer to tune struct           */
6740 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6741 /*              next(O)   - pointer to place to store the cookie for the    */
6742 /*                          "next" tuneable, if it is desired.              */
6743 /*                                                                          */
6744 /* This function is used to walk through all of the existing tunables with  */
6745 /* successive calls.  It searches the known tunables for the one which has  */
6746 /* a matching value for "cookie" - ie its address.  When returning a match, */
6747 /* the next one to be found may be returned inside next.                    */
6748 /* ------------------------------------------------------------------------ */
6749 static ipftuneable_t *
6750 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6751 {
6752 	ipftuneable_t *ta, **tap;
6753 
6754 	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6755 		if (ta == cookie) {
6756 			if (next != NULL) {
6757 				/*
6758 				 * If the next entry in the array has a name
6759 				 * present, then return a pointer to it for
6760 				 * where to go next, else return a pointer to
6761 				 * the dynaminc list as a key to search there
6762 				 * next.  This facilitates a weak linking of
6763 				 * the two "lists" together.
6764 				 */
6765 				if ((ta + 1)->ipft_name != NULL)
6766 					*next = ta + 1;
6767 				else
6768 					*next = ptop;
6769 			}
6770 			return ta;
6771 		}
6772 
6773 	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6774 		if (tap == cookie) {
6775 			if (next != NULL)
6776 				*next = &ta->ipft_next;
6777 			return ta;
6778 		}
6779 
6780 	if (next != NULL)
6781 		*next = NULL;
6782 	return NULL;
6783 }
6784 
6785 
6786 /* ------------------------------------------------------------------------ */
6787 /* Function:    ipf_tune_findbyname                                         */
6788 /* Returns:     NULL = search failed, else pointer to tune struct           */
6789 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6790 /*                                                                          */
6791 /* Search the static array of tuneables and the list of dynamic tuneables   */
6792 /* for an entry with a matching name.  If we can find one, return a pointer */
6793 /* to the matching structure.                                               */
6794 /* ------------------------------------------------------------------------ */
6795 static ipftuneable_t *
6796 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6797 {
6798 	ipftuneable_t *ta;
6799 
6800 	for (ta = top; ta != NULL; ta = ta->ipft_next)
6801 		if (!strcmp(ta->ipft_name, name)) {
6802 			return ta;
6803 		}
6804 
6805 	return NULL;
6806 }
6807 
6808 
6809 /* ------------------------------------------------------------------------ */
6810 /* Function:    ipf_tune_add_array                                          */
6811 /* Returns:     int - 0 == success, else failure                            */
6812 /* Parameters:  newtune - pointer to new tune array to add to tuneables     */
6813 /*                                                                          */
6814 /* Appends tune structures from the array passed in (newtune) to the end of */
6815 /* the current list of "dynamic" tuneable parameters.                       */
6816 /* If any entry to be added is already present (by name) then the operation */
6817 /* is aborted - entries that have been added are removed before returning.  */
6818 /* An entry with no name (NULL) is used as the indication that the end of   */
6819 /* the array has been reached.                                              */
6820 /* ------------------------------------------------------------------------ */
6821 int
6822 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6823 {
6824 	ipftuneable_t *nt, *dt;
6825 	int error = 0;
6826 
6827 	for (nt = newtune; nt->ipft_name != NULL; nt++) {
6828 		error = ipf_tune_add(softc, nt);
6829 		if (error != 0) {
6830 			for (dt = newtune; dt != nt; dt++) {
6831 				(void) ipf_tune_del(softc, dt);
6832 			}
6833 		}
6834 	}
6835 
6836 	return error;
6837 }
6838 
6839 
6840 /* ------------------------------------------------------------------------ */
6841 /* Function:    ipf_tune_array_link                                         */
6842 /* Returns:     0 == success, -1 == failure                                 */
6843 /* Parameters:  softc(I) - soft context pointerto work with                 */
6844 /*              array(I) - pointer to an array of tuneables                 */
6845 /*                                                                          */
6846 /* Given an array of tunables (array), append them to the current list of   */
6847 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
6848 /* the array for being appended to the list, initialise all of the next     */
6849 /* pointers so we don't need to walk parts of it with ++ and others with    */
6850 /* next. The array is expected to have an entry with a NULL name as the     */
6851 /* terminator. Trying to add an array with no non-NULL names will return as */
6852 /* a failure.                                                               */
6853 /* ------------------------------------------------------------------------ */
6854 int
6855 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6856 {
6857 	ipftuneable_t *t, **p;
6858 
6859 	t = array;
6860 	if (t->ipft_name == NULL)
6861 		return -1;
6862 
6863 	for (; t[1].ipft_name != NULL; t++)
6864 		t[0].ipft_next = &t[1];
6865 	t->ipft_next = NULL;
6866 
6867 	/*
6868 	 * Since a pointer to the last entry isn't kept, we need to find it
6869 	 * each time we want to add new variables to the list.
6870 	 */
6871 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6872 		if (t->ipft_name == NULL)
6873 			break;
6874 	*p = array;
6875 
6876 	return 0;
6877 }
6878 
6879 
6880 /* ------------------------------------------------------------------------ */
6881 /* Function:    ipf_tune_array_unlink                                       */
6882 /* Returns:     0 == success, -1 == failure                                 */
6883 /* Parameters:  softc(I) - soft context pointerto work with                 */
6884 /*              array(I) - pointer to an array of tuneables                 */
6885 /*                                                                          */
6886 /* ------------------------------------------------------------------------ */
6887 int
6888 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6889 {
6890 	ipftuneable_t *t, **p;
6891 
6892 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6893 		if (t == array)
6894 			break;
6895 	if (t == NULL)
6896 		return -1;
6897 
6898 	for (; t[1].ipft_name != NULL; t++)
6899 		;
6900 
6901 	*p = t->ipft_next;
6902 
6903 	return 0;
6904 }
6905 
6906 
6907 /* ------------------------------------------------------------------------ */
6908 /* Function:   ipf_tune_array_copy                                          */
6909 /* Returns:    NULL = failure, else pointer to new array                    */
6910 /* Parameters: base(I)     - pointer to structure base                      */
6911 /*             size(I)     - size of the array at template                  */
6912 /*             template(I) - original array to copy                         */
6913 /*                                                                          */
6914 /* Allocate memory for a new set of tuneable values and copy everything     */
6915 /* from template into the new region of memory.  The new region is full of  */
6916 /* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
6917 /*                                                                          */
6918 /* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
6919 /* In the array template, ipftp_offset is the offset (in bytes) of the      */
6920 /* location of the tuneable value inside the structure pointed to by base.  */
6921 /* As ipftp_offset is a union over the pointers to the tuneable values, if  */
6922 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
6923 /* ipftp_void that points to the stored value.                              */
6924 /* ------------------------------------------------------------------------ */
6925 ipftuneable_t *
6926 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template)
6927 {
6928 	ipftuneable_t *copy;
6929 	int i;
6930 
6931 
6932 	KMALLOCS(copy, ipftuneable_t *, size);
6933 	if (copy == NULL) {
6934 		return NULL;
6935 	}
6936 	bcopy(template, copy, size);
6937 
6938 	for (i = 0; copy[i].ipft_name; i++) {
6939 		copy[i].ipft_una.ipftp_offset += (u_long)base;
6940 		copy[i].ipft_next = copy + i + 1;
6941 	}
6942 
6943 	return copy;
6944 }
6945 
6946 
6947 /* ------------------------------------------------------------------------ */
6948 /* Function:    ipf_tune_add                                                */
6949 /* Returns:     int - 0 == success, else failure                            */
6950 /* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
6951 /*                                                                          */
6952 /* Appends tune structures from the array passed in (newtune) to the end of */
6953 /* the current list of "dynamic" tuneable parameters.  Once added, the      */
6954 /* owner of the object is not expected to ever change "ipft_next".          */
6955 /* ------------------------------------------------------------------------ */
6956 int
6957 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6958 {
6959 	ipftuneable_t *ta, **tap;
6960 
6961 	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6962 	if (ta != NULL) {
6963 		IPFERROR(74);
6964 		return EEXIST;
6965 	}
6966 
6967 	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6968 		;
6969 
6970 	newtune->ipft_next = NULL;
6971 	*tap = newtune;
6972 	return 0;
6973 }
6974 
6975 
6976 /* ------------------------------------------------------------------------ */
6977 /* Function:    ipf_tune_del                                                */
6978 /* Returns:     int - 0 == success, else failure                            */
6979 /* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
6980 /*                        current dynamic tuneables                         */
6981 /*                                                                          */
6982 /* Search for the tune structure, by pointer, in the list of those that are */
6983 /* dynamically added at run time.  If found, adjust the list so that this   */
6984 /* structure is no longer part of it.                                       */
6985 /* ------------------------------------------------------------------------ */
6986 int
6987 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6988 {
6989 	ipftuneable_t *ta, **tap;
6990 	int error = 0;
6991 
6992 	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
6993 	     tap = &ta->ipft_next) {
6994 		if (ta == oldtune) {
6995 			*tap = oldtune->ipft_next;
6996 			oldtune->ipft_next = NULL;
6997 			break;
6998 		}
6999 	}
7000 
7001 	if (ta == NULL) {
7002 		error = ESRCH;
7003 		IPFERROR(75);
7004 	}
7005 	return error;
7006 }
7007 
7008 
7009 /* ------------------------------------------------------------------------ */
7010 /* Function:    ipf_tune_del_array                                          */
7011 /* Returns:     int - 0 == success, else failure                            */
7012 /* Parameters:  oldtune - pointer to tuneables array                        */
7013 /*                                                                          */
7014 /* Remove each tuneable entry in the array from the list of "dynamic"       */
7015 /* tunables.  If one entry should fail to be found, an error will be        */
7016 /* returned and no further ones removed.                                    */
7017 /* An entry with a NULL name is used as the indicator of the last entry in  */
7018 /* the array.                                                               */
7019 /* ------------------------------------------------------------------------ */
7020 int
7021 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7022 {
7023 	ipftuneable_t *ot;
7024 	int error = 0;
7025 
7026 	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7027 		error = ipf_tune_del(softc, ot);
7028 		if (error != 0)
7029 			break;
7030 	}
7031 
7032 	return error;
7033 
7034 }
7035 
7036 
7037 /* ------------------------------------------------------------------------ */
7038 /* Function:    ipf_tune                                                    */
7039 /* Returns:     int - 0 == success, else failure                            */
7040 /* Parameters:  cmd(I)  - ioctl command number                              */
7041 /*              data(I) - pointer to ioctl data structure                   */
7042 /*                                                                          */
7043 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7044 /* three ioctls provide the means to access and control global variables    */
7045 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7046 /* changed without rebooting, reloading or recompiling.  The initialisation */
7047 /* and 'destruction' routines of the various components of ipfilter are all */
7048 /* each responsible for handling their own values being too big.            */
7049 /* ------------------------------------------------------------------------ */
7050 int
7051 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
7052 {
7053 	ipftuneable_t *ta;
7054 	ipftune_t tu;
7055 	void *cookie;
7056 	int error;
7057 
7058 	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7059 	if (error != 0)
7060 		return error;
7061 
7062 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7063 	cookie = tu.ipft_cookie;
7064 	ta = NULL;
7065 
7066 	switch (cmd)
7067 	{
7068 	case SIOCIPFGETNEXT :
7069 		/*
7070 		 * If cookie is non-NULL, assume it to be a pointer to the last
7071 		 * entry we looked at, so find it (if possible) and return a
7072 		 * pointer to the next one after it.  The last entry in the
7073 		 * the table is a NULL entry, so when we get to it, set cookie
7074 		 * to NULL and return that, indicating end of list, erstwhile
7075 		 * if we come in with cookie set to NULL, we are starting anew
7076 		 * at the front of the list.
7077 		 */
7078 		if (cookie != NULL) {
7079 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7080 						   cookie, &tu.ipft_cookie);
7081 		} else {
7082 			ta = softc->ipf_tuners;
7083 			tu.ipft_cookie = ta + 1;
7084 		}
7085 		if (ta != NULL) {
7086 			/*
7087 			 * Entry found, but does the data pointed to by that
7088 			 * row fit in what we can return?
7089 			 */
7090 			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7091 				IPFERROR(76);
7092 				return EINVAL;
7093 			}
7094 
7095 			tu.ipft_vlong = 0;
7096 			if (ta->ipft_sz == sizeof(u_long))
7097 				tu.ipft_vlong = *ta->ipft_plong;
7098 			else if (ta->ipft_sz == sizeof(u_int))
7099 				tu.ipft_vint = *ta->ipft_pint;
7100 			else if (ta->ipft_sz == sizeof(u_short))
7101 				tu.ipft_vshort = *ta->ipft_pshort;
7102 			else if (ta->ipft_sz == sizeof(u_char))
7103 				tu.ipft_vchar = *ta->ipft_pchar;
7104 
7105 			tu.ipft_sz = ta->ipft_sz;
7106 			tu.ipft_min = ta->ipft_min;
7107 			tu.ipft_max = ta->ipft_max;
7108 			tu.ipft_flags = ta->ipft_flags;
7109 			bcopy(ta->ipft_name, tu.ipft_name,
7110 			      MIN(sizeof(tu.ipft_name),
7111 				  strlen(ta->ipft_name) + 1));
7112 		}
7113 		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7114 		break;
7115 
7116 	case SIOCIPFGET :
7117 	case SIOCIPFSET :
7118 		/*
7119 		 * Search by name or by cookie value for a particular entry
7120 		 * in the tuning paramter table.
7121 		 */
7122 		IPFERROR(77);
7123 		error = ESRCH;
7124 		if (cookie != NULL) {
7125 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7126 						   cookie, NULL);
7127 			if (ta != NULL)
7128 				error = 0;
7129 		} else if (tu.ipft_name[0] != '\0') {
7130 			ta = ipf_tune_findbyname(softc->ipf_tuners,
7131 						 tu.ipft_name);
7132 			if (ta != NULL)
7133 				error = 0;
7134 		}
7135 		if (error != 0)
7136 			break;
7137 
7138 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7139 			/*
7140 			 * Fetch the tuning parameters for a particular value
7141 			 */
7142 			tu.ipft_vlong = 0;
7143 			if (ta->ipft_sz == sizeof(u_long))
7144 				tu.ipft_vlong = *ta->ipft_plong;
7145 			else if (ta->ipft_sz == sizeof(u_int))
7146 				tu.ipft_vint = *ta->ipft_pint;
7147 			else if (ta->ipft_sz == sizeof(u_short))
7148 				tu.ipft_vshort = *ta->ipft_pshort;
7149 			else if (ta->ipft_sz == sizeof(u_char))
7150 				tu.ipft_vchar = *ta->ipft_pchar;
7151 			tu.ipft_cookie = ta;
7152 			tu.ipft_sz = ta->ipft_sz;
7153 			tu.ipft_min = ta->ipft_min;
7154 			tu.ipft_max = ta->ipft_max;
7155 			tu.ipft_flags = ta->ipft_flags;
7156 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7157 
7158 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7159 			/*
7160 			 * Set an internal parameter.  The hard part here is
7161 			 * getting the new value safely and correctly out of
7162 			 * the kernel (given we only know its size, not type.)
7163 			 */
7164 			u_long in;
7165 
7166 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7167 			    (softc->ipf_running > 0)) {
7168 				IPFERROR(78);
7169 				error = EBUSY;
7170 				break;
7171 			}
7172 
7173 			in = tu.ipft_vlong;
7174 			if (in < ta->ipft_min || in > ta->ipft_max) {
7175 				IPFERROR(79);
7176 				error = EINVAL;
7177 				break;
7178 			}
7179 
7180 			if (ta->ipft_func != NULL) {
7181 				SPL_INT(s);
7182 
7183 				SPL_NET(s);
7184 				error = (*ta->ipft_func)(softc, ta,
7185 							 &tu.ipft_un);
7186 				SPL_X(s);
7187 
7188 			} else if (ta->ipft_sz == sizeof(u_long)) {
7189 				tu.ipft_vlong = *ta->ipft_plong;
7190 				*ta->ipft_plong = in;
7191 
7192 			} else if (ta->ipft_sz == sizeof(u_int)) {
7193 				tu.ipft_vint = *ta->ipft_pint;
7194 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7195 
7196 			} else if (ta->ipft_sz == sizeof(u_short)) {
7197 				tu.ipft_vshort = *ta->ipft_pshort;
7198 				*ta->ipft_pshort = (u_short)(in & 0xffff);
7199 
7200 			} else if (ta->ipft_sz == sizeof(u_char)) {
7201 				tu.ipft_vchar = *ta->ipft_pchar;
7202 				*ta->ipft_pchar = (u_char)(in & 0xff);
7203 			}
7204 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7205 		}
7206 		break;
7207 
7208 	default :
7209 		IPFERROR(80);
7210 		error = EINVAL;
7211 		break;
7212 	}
7213 
7214 	return error;
7215 }
7216 
7217 
7218 /* ------------------------------------------------------------------------ */
7219 /* Function:    ipf_zerostats                                               */
7220 /* Returns:     int - 0 = success, else failure                             */
7221 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
7222 /*                                                                          */
7223 /* Copies the current statistics out to userspace and then zero's the       */
7224 /* current ones in the kernel. The lock is only held across the bzero() as  */
7225 /* the copyout may result in paging (ie network activity.)                  */
7226 /* ------------------------------------------------------------------------ */
7227 int
7228 ipf_zerostats(ipf_main_softc_t *softc, void *data)
7229 {
7230 	friostat_t fio;
7231 	ipfobj_t obj;
7232 	int error;
7233 
7234 	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7235 	if (error != 0)
7236 		return error;
7237 	ipf_getstat(softc, &fio, obj.ipfo_rev);
7238 	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7239 	if (error != 0)
7240 		return error;
7241 
7242 	WRITE_ENTER(&softc->ipf_mutex);
7243 	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7244 	RWLOCK_EXIT(&softc->ipf_mutex);
7245 
7246 	return 0;
7247 }
7248 
7249 
7250 /* ------------------------------------------------------------------------ */
7251 /* Function:    ipf_resolvedest                                             */
7252 /* Returns:     Nil                                                         */
7253 /* Parameters:  softc(I) - pointer to soft context main structure           */
7254 /*              base(I)  - where strings are stored                         */
7255 /*              fdp(IO)  - pointer to destination information to resolve    */
7256 /*              v(I)     - IP protocol version to match                     */
7257 /*                                                                          */
7258 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7259 /* if a matching name can be found for the particular IP protocol version   */
7260 /* then store the interface pointer in the frdest struct.  If no match is   */
7261 /* found, then set the interface pointer to be -1 as NULL is considered to  */
7262 /* indicate there is no information at all in the structure.                */
7263 /* ------------------------------------------------------------------------ */
7264 int
7265 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7266 {
7267 	int errval = 0;
7268 	void *ifp;
7269 
7270 	ifp = NULL;
7271 
7272 	if (fdp->fd_name != -1) {
7273 		if (fdp->fd_type == FRD_DSTLIST) {
7274 			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7275 						  IPLT_DSTLIST,
7276 						  base + fdp->fd_name,
7277 						  NULL);
7278 			if (ifp == NULL) {
7279 				IPFERROR(144);
7280 				errval = ESRCH;
7281 			}
7282 		} else {
7283 			ifp = GETIFP(base + fdp->fd_name, v);
7284 			if (ifp == NULL)
7285 				ifp = (void *)-1;
7286 			if ((ifp != NULL) && (ifp != (void *)-1))
7287 				fdp->fd_local = ipf_deliverlocal(softc, v, ifp,
7288 								 &fdp->fd_ip6);
7289 		}
7290 	}
7291 	fdp->fd_ptr = ifp;
7292 
7293 	return errval;
7294 }
7295 
7296 
7297 /* ------------------------------------------------------------------------ */
7298 /* Function:    ipf_resolvenic                                              */
7299 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7300 /*                      pointer to interface structure for NIC              */
7301 /* Parameters:  softc(I)- pointer to soft context main structure            */
7302 /*              name(I) - complete interface name                           */
7303 /*              v(I)    - IP protocol version                               */
7304 /*                                                                          */
7305 /* Look for a network interface structure that firstly has a matching name  */
7306 /* to that passed in and that is also being used for that IP protocol       */
7307 /* version (necessary on some platforms where there are separate listings   */
7308 /* for both IPv4 and IPv6 on the same physical NIC.                         */
7309 /*                                                                          */
7310 /* ------------------------------------------------------------------------ */
7311 void *
7312 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7313 {
7314 	void *nic;
7315 
7316 	softc = softc;	/* gcc -Wextra */
7317 	if (name[0] == '\0')
7318 		return NULL;
7319 
7320 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7321 		return NULL;
7322 	}
7323 
7324 	nic = GETIFP(name, v);
7325 	if (nic == NULL)
7326 		nic = (void *)-1;
7327 	return nic;
7328 }
7329 
7330 
7331 /* ------------------------------------------------------------------------ */
7332 /* Function:    ipf_token_expire                                            */
7333 /* Returns:     None.                                                       */
7334 /* Parameters:  softc(I) - pointer to soft context main structure           */
7335 /*                                                                          */
7336 /* This function is run every ipf tick to see if there are any tokens that  */
7337 /* have been held for too long and need to be freed up.                     */
7338 /* ------------------------------------------------------------------------ */
7339 void
7340 ipf_token_expire(ipf_main_softc_t *softc)
7341 {
7342 	ipftoken_t *it;
7343 
7344 	WRITE_ENTER(&softc->ipf_tokens);
7345 	while ((it = softc->ipf_token_head) != NULL) {
7346 		if (it->ipt_die > softc->ipf_ticks)
7347 			break;
7348 
7349 		ipf_token_deref(softc, it);
7350 	}
7351 	RWLOCK_EXIT(&softc->ipf_tokens);
7352 }
7353 
7354 
7355 /* ------------------------------------------------------------------------ */
7356 /* Function:    ipf_token_flush                                             */
7357 /* Returns:     None.                                                       */
7358 /* Parameters:  softc(I) - pointer to soft context main structure           */
7359 /*                                                                          */
7360 /* Loop through all of the existing tokens and call deref to see if they    */
7361 /* can be freed. Normally a function like this might just loop on           */
7362 /* ipf_token_head but there is a chance that a token might have a ref count */
7363 /* of greater than one and in that case the the reference would drop twice  */
7364 /* by code that is only entitled to drop it once.                           */
7365 /* ------------------------------------------------------------------------ */
7366 static void
7367 ipf_token_flush(ipf_main_softc_t *softc)
7368 {
7369 	ipftoken_t *it, *next;
7370 
7371 	WRITE_ENTER(&softc->ipf_tokens);
7372 	for (it = softc->ipf_token_head; it != NULL; it = next) {
7373 		next = it->ipt_next;
7374 		(void) ipf_token_deref(softc, it);
7375 	}
7376 	RWLOCK_EXIT(&softc->ipf_tokens);
7377 }
7378 
7379 
7380 /* ------------------------------------------------------------------------ */
7381 /* Function:    ipf_token_del                                               */
7382 /* Returns:     int     - 0 = success, else error                           */
7383 /* Parameters:  softc(I)- pointer to soft context main structure            */
7384 /*              type(I) - the token type to match                           */
7385 /*              uid(I)  - uid owning the token                              */
7386 /*              ptr(I)  - context pointer for the token                     */
7387 /*                                                                          */
7388 /* This function looks for a a token in the current list that matches up    */
7389 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7390 /* call ipf_token_dewref() to remove it from the list. In the event that    */
7391 /* the token has a reference held elsewhere, setting ipt_complete to 2      */
7392 /* enables debugging to distinguish between the two paths that ultimately   */
7393 /* lead to a token to be deleted.                                           */
7394 /* ------------------------------------------------------------------------ */
7395 int
7396 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7397 {
7398 	ipftoken_t *it;
7399 	int error;
7400 
7401 	IPFERROR(82);
7402 	error = ESRCH;
7403 
7404 	WRITE_ENTER(&softc->ipf_tokens);
7405 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7406 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7407 		    uid == it->ipt_uid) {
7408 			it->ipt_complete = 2;
7409 			ipf_token_deref(softc, it);
7410 			error = 0;
7411 			break;
7412 		}
7413 	}
7414 	RWLOCK_EXIT(&softc->ipf_tokens);
7415 
7416 	return error;
7417 }
7418 
7419 
7420 /* ------------------------------------------------------------------------ */
7421 /* Function:    ipf_token_mark_complete                                     */
7422 /* Returns:     None.                                                       */
7423 /* Parameters:  token(I) - pointer to token structure                       */
7424 /*                                                                          */
7425 /* Mark a token as being ineligable for being found with ipf_token_find.    */
7426 /* ------------------------------------------------------------------------ */
7427 void
7428 ipf_token_mark_complete(ipftoken_t *token)
7429 {
7430 	if (token->ipt_complete == 0)
7431 		token->ipt_complete = 1;
7432 }
7433 
7434 
7435 /* ------------------------------------------------------------------------ */
7436 /* Function:    ipf_token_find                                               */
7437 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7438 /* Parameters:  softc(I)- pointer to soft context main structure            */
7439 /*              type(I) - the token type to match                           */
7440 /*              uid(I)  - uid owning the token                              */
7441 /*              ptr(I)  - context pointer for the token                     */
7442 /*                                                                          */
7443 /* This function looks for a live token in the list of current tokens that  */
7444 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7445 /* allocated.  If one is found then it is moved to the top of the list of   */
7446 /* currently active tokens.                                                 */
7447 /* ------------------------------------------------------------------------ */
7448 ipftoken_t *
7449 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7450 {
7451 	ipftoken_t *it, *new;
7452 
7453 	KMALLOC(new, ipftoken_t *);
7454 	if (new != NULL)
7455 		bzero((char *)new, sizeof(*new));
7456 
7457 	WRITE_ENTER(&softc->ipf_tokens);
7458 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7459 		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7460 		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7461 			break;
7462 	}
7463 
7464 	if (it == NULL) {
7465 		it = new;
7466 		new = NULL;
7467 		if (it == NULL) {
7468 			RWLOCK_EXIT(&softc->ipf_tokens);
7469 			return NULL;
7470 		}
7471 		it->ipt_ctx = ptr;
7472 		it->ipt_uid = uid;
7473 		it->ipt_type = type;
7474 		it->ipt_ref = 1;
7475 	} else {
7476 		if (new != NULL) {
7477 			KFREE(new);
7478 			new = NULL;
7479 		}
7480 
7481 		if (it->ipt_complete > 0)
7482 			it = NULL;
7483 		else
7484 			ipf_token_unlink(softc, it);
7485 	}
7486 
7487 	if (it != NULL) {
7488 		it->ipt_pnext = softc->ipf_token_tail;
7489 		*softc->ipf_token_tail = it;
7490 		softc->ipf_token_tail = &it->ipt_next;
7491 		it->ipt_next = NULL;
7492 		it->ipt_ref++;
7493 
7494 		it->ipt_die = softc->ipf_ticks + 20;
7495 	}
7496 
7497 	RWLOCK_EXIT(&softc->ipf_tokens);
7498 
7499 	return it;
7500 }
7501 
7502 
7503 /* ------------------------------------------------------------------------ */
7504 /* Function:    ipf_token_unlink                                            */
7505 /* Returns:     None.                                                       */
7506 /* Parameters:  softc(I) - pointer to soft context main structure           */
7507 /*              token(I) - pointer to token structure                       */
7508 /* Write Locks: ipf_tokens                                                  */
7509 /*                                                                          */
7510 /* This function unlinks a token structure from the linked list of tokens   */
7511 /* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7512 /* but the tail does due to the linked list implementation.                 */
7513 /* ------------------------------------------------------------------------ */
7514 static void
7515 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7516 {
7517 
7518 	if (softc->ipf_token_tail == &token->ipt_next)
7519 		softc->ipf_token_tail = token->ipt_pnext;
7520 
7521 	*token->ipt_pnext = token->ipt_next;
7522 	if (token->ipt_next != NULL)
7523 		token->ipt_next->ipt_pnext = token->ipt_pnext;
7524 	token->ipt_next = NULL;
7525 	token->ipt_pnext = NULL;
7526 }
7527 
7528 
7529 /* ------------------------------------------------------------------------ */
7530 /* Function:    ipf_token_deref                                             */
7531 /* Returns:     int      - 0 == token freed, else reference count           */
7532 /* Parameters:  softc(I) - pointer to soft context main structure           */
7533 /*              token(I) - pointer to token structure                       */
7534 /* Write Locks: ipf_tokens                                                  */
7535 /*                                                                          */
7536 /* Drop the reference count on the token structure and if it drops to zero, */
7537 /* call the dereference function for the token type because it is then      */
7538 /* possible to free the token data structure.                               */
7539 /* ------------------------------------------------------------------------ */
7540 int
7541 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7542 {
7543 	void *data, **datap;
7544 
7545 	ASSERT(token->ipt_ref > 0);
7546 	token->ipt_ref--;
7547 	if (token->ipt_ref > 0)
7548 		return token->ipt_ref;
7549 
7550 	data = token->ipt_data;
7551 	datap = &data;
7552 
7553 	if ((data != NULL) && (data != (void *)-1)) {
7554 		switch (token->ipt_type)
7555 		{
7556 		case IPFGENITER_IPF :
7557 			(void) ipf_derefrule(softc, (frentry_t **)datap);
7558 			break;
7559 		case IPFGENITER_IPNAT :
7560 			WRITE_ENTER(&softc->ipf_nat);
7561 			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7562 			RWLOCK_EXIT(&softc->ipf_nat);
7563 			break;
7564 		case IPFGENITER_NAT :
7565 			ipf_nat_deref(softc, (nat_t **)datap);
7566 			break;
7567 		case IPFGENITER_STATE :
7568 			ipf_state_deref(softc, (ipstate_t **)datap);
7569 			break;
7570 		case IPFGENITER_FRAG :
7571 			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7572 			break;
7573 		case IPFGENITER_NATFRAG :
7574 			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7575 			break;
7576 		case IPFGENITER_HOSTMAP :
7577 			WRITE_ENTER(&softc->ipf_nat);
7578 			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7579 			RWLOCK_EXIT(&softc->ipf_nat);
7580 			break;
7581 		default :
7582 			ipf_lookup_iterderef(softc, token->ipt_type, data);
7583 			break;
7584 		}
7585 	}
7586 
7587 	ipf_token_unlink(softc, token);
7588 	KFREE(token);
7589 	return 0;
7590 }
7591 
7592 
7593 /* ------------------------------------------------------------------------ */
7594 /* Function:    ipf_nextrule                                                */
7595 /* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7596 /* Parameters:  softc(I)    - pointer to soft context main structure        */
7597 /*              fr(I)       - pointer to filter rule                        */
7598 /*              out(I)      - 1 == out rules, 0 == input rules              */
7599 /*                                                                          */
7600 /* Starting with "fr", find the next rule to visit. This includes visiting  */
7601 /* the list of rule groups if either fr is NULL (empty list) or it is the   */
7602 /* last rule in the list. When walking rule lists, it is either input or    */
7603 /* output rules that are returned, never both.                              */
7604 /* ------------------------------------------------------------------------ */
7605 static frentry_t *
7606 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit,
7607     frentry_t *fr, int out)
7608 {
7609 	frentry_t *next;
7610 	frgroup_t *fg;
7611 
7612 	if (fr != NULL && fr->fr_group != -1) {
7613 		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7614 				   unit, active, NULL);
7615 		if (fg != NULL)
7616 			fg = fg->fg_next;
7617 	} else {
7618 		fg = softc->ipf_groups[unit][active];
7619 	}
7620 
7621 	while (fg != NULL) {
7622 		next = fg->fg_start;
7623 		while (next != NULL) {
7624 			if (out) {
7625 				if (next->fr_flags & FR_OUTQUE)
7626 					return next;
7627 			} else if (next->fr_flags & FR_INQUE) {
7628 				return next;
7629 			}
7630 			next = next->fr_next;
7631 		}
7632 		if (next == NULL)
7633 			fg = fg->fg_next;
7634 	}
7635 
7636 	return NULL;
7637 }
7638 
7639 /* ------------------------------------------------------------------------ */
7640 /* Function:    ipf_getnextrule                                             */
7641 /* Returns:     int - 0 = success, else error                               */
7642 /* Parameters:  softc(I)- pointer to soft context main structure            */
7643 /*              t(I)   - pointer to destination information to resolve      */
7644 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7645 /*                                                                          */
7646 /* This function's first job is to bring in the ipfruleiter_t structure via */
7647 /* the ipfobj_t structure to determine what should be the next rule to      */
7648 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7649 /* find the 'next rule'.  This may include searching rule group lists or    */
7650 /* just be as simple as looking at the 'next' field in the rule structure.  */
7651 /* When we have found the rule to return, increase its reference count and  */
7652 /* if we used an existing rule to get here, decrease its reference count.   */
7653 /* ------------------------------------------------------------------------ */
7654 int
7655 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7656 {
7657 	frentry_t *fr, *next, zero;
7658 	ipfruleiter_t it;
7659 	int error, out;
7660 	frgroup_t *fg;
7661 	ipfobj_t obj;
7662 	int predict;
7663 	char *dst;
7664 	int unit;
7665 
7666 	if (t == NULL || ptr == NULL) {
7667 		IPFERROR(84);
7668 		return EFAULT;
7669 	}
7670 
7671 	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7672 	if (error != 0)
7673 		return error;
7674 
7675 	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7676 		IPFERROR(85);
7677 		return EINVAL;
7678 	}
7679 	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7680 		IPFERROR(86);
7681 		return EINVAL;
7682 	}
7683 	if (it.iri_nrules == 0) {
7684 		IPFERROR(87);
7685 		return ENOSPC;
7686 	}
7687 	if (it.iri_rule == NULL) {
7688 		IPFERROR(88);
7689 		return EFAULT;
7690 	}
7691 
7692 	fg = NULL;
7693 	fr = t->ipt_data;
7694 	if ((it.iri_inout & F_OUT) != 0)
7695 		out = 1;
7696 	else
7697 		out = 0;
7698 	if ((it.iri_inout & F_ACIN) != 0)
7699 		unit = IPL_LOGCOUNT;
7700 	else
7701 		unit = IPL_LOGIPF;
7702 
7703 	READ_ENTER(&softc->ipf_mutex);
7704 	if (fr == NULL) {
7705 		if (*it.iri_group == '\0') {
7706 			if (unit == IPL_LOGCOUNT) {
7707 				next = softc->ipf_acct[out][it.iri_active];
7708 			} else {
7709 				next = softc->ipf_rules[out][it.iri_active];
7710 			}
7711 			if (next == NULL)
7712 				next = ipf_nextrule(softc, it.iri_active,
7713 						    unit, NULL, out);
7714 		} else {
7715 			fg = ipf_findgroup(softc, it.iri_group, unit,
7716 					   it.iri_active, NULL);
7717 			if (fg != NULL)
7718 				next = fg->fg_start;
7719 			else
7720 				next = NULL;
7721 		}
7722 	} else {
7723 		next = fr->fr_next;
7724 		if (next == NULL)
7725 			next = ipf_nextrule(softc, it.iri_active, unit,
7726 					    fr, out);
7727 	}
7728 
7729 	if (next != NULL && next->fr_next != NULL)
7730 		predict = 1;
7731 	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7732 		predict = 1;
7733 	else
7734 		predict = 0;
7735 
7736 	if (fr != NULL)
7737 		(void) ipf_derefrule(softc, &fr);
7738 
7739 	obj.ipfo_type = IPFOBJ_FRENTRY;
7740 	dst = (char *)it.iri_rule;
7741 
7742 	if (next != NULL) {
7743 		obj.ipfo_size = next->fr_size;
7744 		MUTEX_ENTER(&next->fr_lock);
7745 		next->fr_ref++;
7746 		MUTEX_EXIT(&next->fr_lock);
7747 		t->ipt_data = next;
7748 	} else {
7749 		obj.ipfo_size = sizeof(frentry_t);
7750 		bzero(&zero, sizeof(zero));
7751 		next = &zero;
7752 		t->ipt_data = NULL;
7753 	}
7754 	it.iri_rule = predict ? next : NULL;
7755 	if (predict == 0)
7756 		ipf_token_mark_complete(t);
7757 
7758 	RWLOCK_EXIT(&softc->ipf_mutex);
7759 
7760 	obj.ipfo_ptr = dst;
7761 	error = ipf_outobjk(softc, &obj, next);
7762 	if (error == 0 && t->ipt_data != NULL) {
7763 		dst += obj.ipfo_size;
7764 		if (next->fr_data != NULL) {
7765 			ipfobj_t dobj;
7766 
7767 			if (next->fr_type == FR_T_IPFEXPR)
7768 				dobj.ipfo_type = IPFOBJ_IPFEXPR;
7769 			else
7770 				dobj.ipfo_type = IPFOBJ_FRIPF;
7771 			dobj.ipfo_size = next->fr_dsize;
7772 			dobj.ipfo_rev = obj.ipfo_rev;
7773 			dobj.ipfo_ptr = dst;
7774 			error = ipf_outobjk(softc, &dobj, next->fr_data);
7775 		}
7776 	}
7777 
7778 	if ((fr != NULL) && (next == &zero))
7779 		(void) ipf_derefrule(softc, &fr);
7780 
7781 	return error;
7782 }
7783 
7784 
7785 /* ------------------------------------------------------------------------ */
7786 /* Function:    ipf_frruleiter                                              */
7787 /* Returns:     int - 0 = success, else error                               */
7788 /* Parameters:  softc(I)- pointer to soft context main structure            */
7789 /*              data(I) - the token type to match                           */
7790 /*              uid(I)  - uid owning the token                              */
7791 /*              ptr(I)  - context pointer for the token                     */
7792 /*                                                                          */
7793 /* This function serves as a stepping stone between ipf_ipf_ioctl and       */
7794 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7795 /* the process doing the ioctl and use that to ask for the next rule.       */
7796 /* ------------------------------------------------------------------------ */
7797 static int
7798 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7799 {
7800 	ipftoken_t *token;
7801 	ipfruleiter_t it;
7802 	ipfobj_t obj;
7803 	int error;
7804 
7805 	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7806 	if (token != NULL) {
7807 		error = ipf_getnextrule(softc, token, data);
7808 		WRITE_ENTER(&softc->ipf_tokens);
7809 		ipf_token_deref(softc, token);
7810 		RWLOCK_EXIT(&softc->ipf_tokens);
7811 	} else {
7812 		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7813 		if (error != 0)
7814 			return error;
7815 		it.iri_rule = NULL;
7816 		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7817 	}
7818 
7819 	return error;
7820 }
7821 
7822 
7823 /* ------------------------------------------------------------------------ */
7824 /* Function:    ipf_geniter                                                 */
7825 /* Returns:     int - 0 = success, else error                               */
7826 /* Parameters:  softc(I) - pointer to soft context main structure           */
7827 /*              token(I) - pointer to ipftoken_t structure                  */
7828 /*              itp(I)   - pointer to iterator data                         */
7829 /*                                                                          */
7830 /* Decide which iterator function to call using information passed through  */
7831 /* the ipfgeniter_t structure at itp.                                       */
7832 /* ------------------------------------------------------------------------ */
7833 static int
7834 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7835 {
7836 	int error;
7837 
7838 	switch (itp->igi_type)
7839 	{
7840 	case IPFGENITER_FRAG :
7841 		error = ipf_frag_pkt_next(softc, token, itp);
7842 		break;
7843 	default :
7844 		IPFERROR(92);
7845 		error = EINVAL;
7846 		break;
7847 	}
7848 
7849 	return error;
7850 }
7851 
7852 
7853 /* ------------------------------------------------------------------------ */
7854 /* Function:    ipf_genericiter                                             */
7855 /* Returns:     int - 0 = success, else error                               */
7856 /* Parameters:  softc(I)- pointer to soft context main structure            */
7857 /*              data(I) - the token type to match                           */
7858 /*              uid(I)  - uid owning the token                              */
7859 /*              ptr(I)  - context pointer for the token                     */
7860 /*                                                                          */
7861 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
7862 /* ------------------------------------------------------------------------ */
7863 int
7864 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7865 {
7866 	ipftoken_t *token;
7867 	ipfgeniter_t iter;
7868 	int error;
7869 
7870 	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7871 	if (error != 0)
7872 		return error;
7873 
7874 	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7875 	if (token != NULL) {
7876 		token->ipt_subtype = iter.igi_type;
7877 		error = ipf_geniter(softc, token, &iter);
7878 		WRITE_ENTER(&softc->ipf_tokens);
7879 		ipf_token_deref(softc, token);
7880 		RWLOCK_EXIT(&softc->ipf_tokens);
7881 	} else {
7882 		IPFERROR(93);
7883 		error = 0;
7884 	}
7885 
7886 	return error;
7887 }
7888 
7889 
7890 /* ------------------------------------------------------------------------ */
7891 /* Function:    ipf_ipf_ioctl                                               */
7892 /* Returns:     int - 0 = success, else error                               */
7893 /* Parameters:  softc(I)- pointer to soft context main structure           */
7894 /*              data(I) - the token type to match                           */
7895 /*              cmd(I)  - the ioctl command number                          */
7896 /*              mode(I) - mode flags for the ioctl                          */
7897 /*              uid(I)  - uid owning the token                              */
7898 /*              ptr(I)  - context pointer for the token                     */
7899 /*                                                                          */
7900 /* This function handles all of the ioctl command that are actually isssued */
7901 /* to the /dev/ipl device.                                                  */
7902 /* ------------------------------------------------------------------------ */
7903 int
7904 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode,
7905     int uid, void *ctx)
7906 {
7907 	friostat_t fio;
7908 	int error, tmp;
7909 	ipfobj_t obj;
7910 	SPL_INT(s);
7911 
7912 	switch (cmd)
7913 	{
7914 	case SIOCFRENB :
7915 		if (!(mode & FWRITE)) {
7916 			IPFERROR(94);
7917 			error = EPERM;
7918 		} else {
7919 			error = BCOPYIN(data, &tmp, sizeof(tmp));
7920 			if (error != 0) {
7921 				IPFERROR(95);
7922 				error = EFAULT;
7923 				break;
7924 			}
7925 
7926 			WRITE_ENTER(&softc->ipf_global);
7927 			if (tmp) {
7928 				if (softc->ipf_running > 0)
7929 					error = 0;
7930 				else
7931 					error = ipfattach(softc);
7932 				if (error == 0)
7933 					softc->ipf_running = 1;
7934 				else
7935 					(void) ipfdetach(softc);
7936 			} else {
7937 				if (softc->ipf_running == 1)
7938 					error = ipfdetach(softc);
7939 				else
7940 					error = 0;
7941 				if (error == 0)
7942 					softc->ipf_running = -1;
7943 			}
7944 			RWLOCK_EXIT(&softc->ipf_global);
7945 		}
7946 		break;
7947 
7948 	case SIOCIPFSET :
7949 		if (!(mode & FWRITE)) {
7950 			IPFERROR(96);
7951 			error = EPERM;
7952 			break;
7953 		}
7954 		/* FALLTHRU */
7955 	case SIOCIPFGETNEXT :
7956 	case SIOCIPFGET :
7957 		error = ipf_ipftune(softc, cmd, (void *)data);
7958 		break;
7959 
7960 	case SIOCSETFF :
7961 		if (!(mode & FWRITE)) {
7962 			IPFERROR(97);
7963 			error = EPERM;
7964 		} else {
7965 			error = BCOPYIN(data, &softc->ipf_flags,
7966 					sizeof(softc->ipf_flags));
7967 			if (error != 0) {
7968 				IPFERROR(98);
7969 				error = EFAULT;
7970 			}
7971 		}
7972 		break;
7973 
7974 	case SIOCGETFF :
7975 		error = BCOPYOUT(&softc->ipf_flags, data,
7976 				 sizeof(softc->ipf_flags));
7977 		if (error != 0) {
7978 			IPFERROR(99);
7979 			error = EFAULT;
7980 		}
7981 		break;
7982 
7983 	case SIOCFUNCL :
7984 		error = ipf_resolvefunc(softc, (void *)data);
7985 		break;
7986 
7987 	case SIOCINAFR :
7988 	case SIOCRMAFR :
7989 	case SIOCADAFR :
7990 	case SIOCZRLST :
7991 		if (!(mode & FWRITE)) {
7992 			IPFERROR(100);
7993 			error = EPERM;
7994 		} else {
7995 			error = frrequest(softc, IPL_LOGIPF, cmd, data,
7996 					  softc->ipf_active, 1);
7997 		}
7998 		break;
7999 
8000 	case SIOCINIFR :
8001 	case SIOCRMIFR :
8002 	case SIOCADIFR :
8003 		if (!(mode & FWRITE)) {
8004 			IPFERROR(101);
8005 			error = EPERM;
8006 		} else {
8007 			error = frrequest(softc, IPL_LOGIPF, cmd, data,
8008 					  1 - softc->ipf_active, 1);
8009 		}
8010 		break;
8011 
8012 	case SIOCSWAPA :
8013 		if (!(mode & FWRITE)) {
8014 			IPFERROR(102);
8015 			error = EPERM;
8016 		} else {
8017 			WRITE_ENTER(&softc->ipf_mutex);
8018 			error = BCOPYOUT(&softc->ipf_active, data,
8019 					 sizeof(softc->ipf_active));
8020 			if (error != 0) {
8021 				IPFERROR(103);
8022 				error = EFAULT;
8023 			} else {
8024 				softc->ipf_active = 1 - softc->ipf_active;
8025 			}
8026 			RWLOCK_EXIT(&softc->ipf_mutex);
8027 		}
8028 		break;
8029 
8030 	case SIOCGETFS :
8031 		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8032 				  IPFOBJ_IPFSTAT);
8033 		if (error != 0)
8034 			break;
8035 		ipf_getstat(softc, &fio, obj.ipfo_rev);
8036 		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8037 		break;
8038 
8039 	case SIOCFRZST :
8040 		if (!(mode & FWRITE)) {
8041 			IPFERROR(104);
8042 			error = EPERM;
8043 		} else
8044 			error = ipf_zerostats(softc, data);
8045 		break;
8046 
8047 	case SIOCIPFFL :
8048 		if (!(mode & FWRITE)) {
8049 			IPFERROR(105);
8050 			error = EPERM;
8051 		} else {
8052 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8053 			if (!error) {
8054 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8055 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8056 				if (error != 0) {
8057 					IPFERROR(106);
8058 					error = EFAULT;
8059 				}
8060 			} else {
8061 				IPFERROR(107);
8062 				error = EFAULT;
8063 			}
8064 		}
8065 		break;
8066 
8067 #ifdef USE_INET6
8068 	case SIOCIPFL6 :
8069 		if (!(mode & FWRITE)) {
8070 			IPFERROR(108);
8071 			error = EPERM;
8072 		} else {
8073 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8074 			if (!error) {
8075 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8076 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8077 				if (error != 0) {
8078 					IPFERROR(109);
8079 					error = EFAULT;
8080 				}
8081 			} else {
8082 				IPFERROR(110);
8083 				error = EFAULT;
8084 			}
8085 		}
8086 		break;
8087 #endif
8088 
8089 	case SIOCSTLCK :
8090 		if (!(mode & FWRITE)) {
8091 			IPFERROR(122);
8092 			error = EPERM;
8093 		} else {
8094 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8095 			if (error == 0) {
8096 				ipf_state_setlock(softc->ipf_state_soft, tmp);
8097 				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8098 				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8099 				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8100 			} else {
8101 				IPFERROR(111);
8102 				error = EFAULT;
8103 			}
8104 		}
8105 		break;
8106 
8107 #ifdef	IPFILTER_LOG
8108 	case SIOCIPFFB :
8109 		if (!(mode & FWRITE)) {
8110 			IPFERROR(112);
8111 			error = EPERM;
8112 		} else {
8113 			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8114 			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8115 			if (error) {
8116 				IPFERROR(113);
8117 				error = EFAULT;
8118 			}
8119 		}
8120 		break;
8121 #endif /* IPFILTER_LOG */
8122 
8123 	case SIOCFRSYN :
8124 		if (!(mode & FWRITE)) {
8125 			IPFERROR(114);
8126 			error = EPERM;
8127 		} else {
8128 			WRITE_ENTER(&softc->ipf_global);
8129 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8130 			error = ipfsync();
8131 #else
8132 			ipf_sync(softc, NULL);
8133 			error = 0;
8134 #endif
8135 			RWLOCK_EXIT(&softc->ipf_global);
8136 
8137 		}
8138 		break;
8139 
8140 	case SIOCGFRST :
8141 		error = ipf_outobj(softc, (void *)data,
8142 				   ipf_frag_stats(softc->ipf_frag_soft),
8143 				   IPFOBJ_FRAGSTAT);
8144 		break;
8145 
8146 #ifdef	IPFILTER_LOG
8147 	case FIONREAD :
8148 		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8149 		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8150 		break;
8151 #endif
8152 
8153 	case SIOCIPFITER :
8154 		SPL_SCHED(s);
8155 		error = ipf_frruleiter(softc, data, uid, ctx);
8156 		SPL_X(s);
8157 		break;
8158 
8159 	case SIOCGENITER :
8160 		SPL_SCHED(s);
8161 		error = ipf_genericiter(softc, data, uid, ctx);
8162 		SPL_X(s);
8163 		break;
8164 
8165 	case SIOCIPFDELTOK :
8166 		error = BCOPYIN(data, &tmp, sizeof(tmp));
8167 		if (error == 0) {
8168 			SPL_SCHED(s);
8169 			error = ipf_token_del(softc, tmp, uid, ctx);
8170 			SPL_X(s);
8171 		}
8172 		break;
8173 
8174 	default :
8175 		IPFERROR(115);
8176 		error = EINVAL;
8177 		break;
8178 	}
8179 
8180 	return error;
8181 }
8182 
8183 
8184 /* ------------------------------------------------------------------------ */
8185 /* Function:    ipf_decaps                                                  */
8186 /* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8187 /*                           flags indicating packet filtering decision.    */
8188 /* Parameters:  fin(I)     - pointer to packet information                  */
8189 /*              pass(I)    - IP protocol version to match                   */
8190 /*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8191 /*                                                                          */
8192 /* This function is called for packets that are wrapt up in other packets,  */
8193 /* for example, an IP packet that is the entire data segment for another IP */
8194 /* packet.  If the basic constraints for this are satisfied, change the     */
8195 /* buffer to point to the start of the inner packet and start processing    */
8196 /* rules belonging to the head group this rule specifies.                   */
8197 /* ------------------------------------------------------------------------ */
8198 u_32_t
8199 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8200 {
8201 	fr_info_t fin2, *fino = NULL;
8202 	int elen, hlen, nh;
8203 	grehdr_t gre;
8204 	ip_t *ip;
8205 	mb_t *m;
8206 
8207 	if ((fin->fin_flx & FI_COALESCE) == 0)
8208 		if (ipf_coalesce(fin) == -1)
8209 			goto cantdecaps;
8210 
8211 	m = fin->fin_m;
8212 	hlen = fin->fin_hlen;
8213 
8214 	switch (fin->fin_p)
8215 	{
8216 	case IPPROTO_UDP :
8217 		/*
8218 		 * In this case, the specific protocol being decapsulated
8219 		 * inside UDP frames comes from the rule.
8220 		 */
8221 		nh = fin->fin_fr->fr_icode;
8222 		break;
8223 
8224 	case IPPROTO_GRE :	/* 47 */
8225 		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8226 		hlen += sizeof(grehdr_t);
8227 		if (gre.gr_R|gre.gr_s)
8228 			goto cantdecaps;
8229 		if (gre.gr_C)
8230 			hlen += 4;
8231 		if (gre.gr_K)
8232 			hlen += 4;
8233 		if (gre.gr_S)
8234 			hlen += 4;
8235 
8236 		nh = IPPROTO_IP;
8237 
8238 		/*
8239 		 * If the routing options flag is set, validate that it is
8240 		 * there and bounce over it.
8241 		 */
8242 #if 0
8243 		/* This is really heavy weight and lots of room for error, */
8244 		/* so for now, put it off and get the simple stuff right.  */
8245 		if (gre.gr_R) {
8246 			u_char off, len, *s;
8247 			u_short af;
8248 			int end;
8249 
8250 			end = 0;
8251 			s = fin->fin_dp;
8252 			s += hlen;
8253 			aplen = fin->fin_plen - hlen;
8254 			while (aplen > 3) {
8255 				af = (s[0] << 8) | s[1];
8256 				off = s[2];
8257 				len = s[3];
8258 				aplen -= 4;
8259 				s += 4;
8260 				if (af == 0 && len == 0) {
8261 					end = 1;
8262 					break;
8263 				}
8264 				if (aplen < len)
8265 					break;
8266 				s += len;
8267 				aplen -= len;
8268 			}
8269 			if (end != 1)
8270 				goto cantdecaps;
8271 			hlen = s - (u_char *)fin->fin_dp;
8272 		}
8273 #endif
8274 		break;
8275 
8276 #ifdef IPPROTO_IPIP
8277 	case IPPROTO_IPIP :	/* 4 */
8278 #endif
8279 		nh = IPPROTO_IP;
8280 		break;
8281 
8282 	default :	/* Includes ESP, AH is special for IPv4 */
8283 		goto cantdecaps;
8284 	}
8285 
8286 	switch (nh)
8287 	{
8288 	case IPPROTO_IP :
8289 	case IPPROTO_IPV6 :
8290 		break;
8291 	default :
8292 		goto cantdecaps;
8293 	}
8294 
8295 	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8296 	fino = fin;
8297 	fin = &fin2;
8298 	elen = hlen;
8299 #if defined(MENTAT) && defined(_KERNEL)
8300 	m->b_rptr += elen;
8301 #else
8302 	m->m_data += elen;
8303 	m->m_len -= elen;
8304 #endif
8305 	fin->fin_plen -= elen;
8306 
8307 	ip = (ip_t *)((char *)fin->fin_ip + elen);
8308 
8309 	/*
8310 	 * Make sure we have at least enough data for the network layer
8311 	 * header.
8312 	 */
8313 	if (IP_V(ip) == 4)
8314 		hlen = IP_HL(ip) << 2;
8315 #ifdef USE_INET6
8316 	else if (IP_V(ip) == 6)
8317 		hlen = sizeof(ip6_t);
8318 #endif
8319 	else
8320 		goto cantdecaps2;
8321 
8322 	if (fin->fin_plen < hlen)
8323 		goto cantdecaps2;
8324 
8325 	fin->fin_dp = (char *)ip + hlen;
8326 
8327 	if (IP_V(ip) == 4) {
8328 		/*
8329 		 * Perform IPv4 header checksum validation.
8330 		 */
8331 		if (ipf_cksum((u_short *)ip, hlen))
8332 			goto cantdecaps2;
8333 	}
8334 
8335 	if (ipf_makefrip(hlen, ip, fin) == -1) {
8336 cantdecaps2:
8337 		if (m != NULL) {
8338 #if defined(MENTAT) && defined(_KERNEL)
8339 			m->b_rptr -= elen;
8340 #else
8341 			m->m_data -= elen;
8342 			m->m_len += elen;
8343 #endif
8344 		}
8345 cantdecaps:
8346 		DT1(frb_decapfrip, fr_info_t *, fin);
8347 		pass &= ~FR_CMDMASK;
8348 		pass |= FR_BLOCK|FR_QUICK;
8349 		fin->fin_reason = FRB_DECAPFRIP;
8350 		return -1;
8351 	}
8352 
8353 	pass = ipf_scanlist(fin, pass);
8354 
8355 	/*
8356 	 * Copy the packet filter "result" fields out of the fr_info_t struct
8357 	 * that is local to the decapsulation processing and back into the
8358 	 * one we were called with.
8359 	 */
8360 	fino->fin_flx = fin->fin_flx;
8361 	fino->fin_rev = fin->fin_rev;
8362 	fino->fin_icode = fin->fin_icode;
8363 	fino->fin_rule = fin->fin_rule;
8364 	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8365 	fino->fin_fr = fin->fin_fr;
8366 	fino->fin_error = fin->fin_error;
8367 	fino->fin_mp = fin->fin_mp;
8368 	fino->fin_m = fin->fin_m;
8369 	m = fin->fin_m;
8370 	if (m != NULL) {
8371 #if defined(MENTAT) && defined(_KERNEL)
8372 		m->b_rptr -= elen;
8373 #else
8374 		m->m_data -= elen;
8375 		m->m_len += elen;
8376 #endif
8377 	}
8378 	return pass;
8379 }
8380 
8381 
8382 /* ------------------------------------------------------------------------ */
8383 /* Function:    ipf_matcharray_load                                         */
8384 /* Returns:     int         - 0 = success, else error                       */
8385 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8386 /*              data(I)     - pointer to ioctl data                         */
8387 /*              objp(I)     - ipfobj_t structure to load data into          */
8388 /*              arrayptr(I) - pointer to location to store array pointer    */
8389 /*                                                                          */
8390 /* This function loads in a mathing array through the ipfobj_t struct that  */
8391 /* describes it.  Sanity checking and array size limitations are enforced   */
8392 /* in this function to prevent userspace from trying to load in something   */
8393 /* that is insanely big.  Once the size of the array is known, the memory   */
8394 /* required is malloc'd and returned through changing *arrayptr.  The       */
8395 /* contents of the array are verified before returning.  Only in the event  */
8396 /* of a successful call is the caller required to free up the malloc area.  */
8397 /* ------------------------------------------------------------------------ */
8398 int
8399 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp,
8400     int **arrayptr)
8401 {
8402 	int arraysize, *array, error;
8403 
8404 	*arrayptr = NULL;
8405 
8406 	error = BCOPYIN(data, objp, sizeof(*objp));
8407 	if (error != 0) {
8408 		IPFERROR(116);
8409 		return EFAULT;
8410 	}
8411 
8412 	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8413 		IPFERROR(117);
8414 		return EINVAL;
8415 	}
8416 
8417 	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8418 	    (objp->ipfo_size > 1024)) {
8419 		IPFERROR(118);
8420 		return EINVAL;
8421 	}
8422 
8423 	arraysize = objp->ipfo_size * sizeof(*array);
8424 	KMALLOCS(array, int *, arraysize);
8425 	if (array == NULL) {
8426 		IPFERROR(119);
8427 		return ENOMEM;
8428 	}
8429 
8430 	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8431 	if (error != 0) {
8432 		KFREES(array, arraysize);
8433 		IPFERROR(120);
8434 		return EFAULT;
8435 	}
8436 
8437 	if (ipf_matcharray_verify(array, arraysize) != 0) {
8438 		KFREES(array, arraysize);
8439 		IPFERROR(121);
8440 		return EINVAL;
8441 	}
8442 
8443 	*arrayptr = array;
8444 	return 0;
8445 }
8446 
8447 
8448 /* ------------------------------------------------------------------------ */
8449 /* Function:    ipf_matcharray_verify                                       */
8450 /* Returns:     Nil                                                         */
8451 /* Parameters:  array(I)     - pointer to matching array                    */
8452 /*              arraysize(I) - number of elements in the array              */
8453 /*                                                                          */
8454 /* Verify the contents of a matching array by stepping through each element */
8455 /* in it.  The actual commands in the array are not verified for            */
8456 /* correctness, only that all of the sizes are correctly within limits.     */
8457 /* ------------------------------------------------------------------------ */
8458 int
8459 ipf_matcharray_verify(int *array, int arraysize)
8460 {
8461 	int i, nelem, maxidx;
8462 	ipfexp_t *e;
8463 
8464 	nelem = arraysize / sizeof(*array);
8465 
8466 	/*
8467 	 * Currently, it makes no sense to have an array less than 6
8468 	 * elements long - the initial size at the from, a single operation
8469 	 * (minimum 4 in length) and a trailer, for a total of 6.
8470 	 */
8471 	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8472 		return -1;
8473 	}
8474 
8475 	/*
8476 	 * Verify the size of data pointed to by array with how long
8477 	 * the array claims to be itself.
8478 	 */
8479 	if (array[0] * sizeof(*array) != arraysize) {
8480 		return -1;
8481 	}
8482 
8483 	maxidx = nelem - 1;
8484 	/*
8485 	 * The last opcode in this array should be an IPF_EXP_END.
8486 	 */
8487 	if (array[maxidx] != IPF_EXP_END) {
8488 		return -1;
8489 	}
8490 
8491 	for (i = 1; i < maxidx; ) {
8492 		e = (ipfexp_t *)(array + i);
8493 
8494 		/*
8495 		 * The length of the bits to check must be at least 1
8496 		 * (or else there is nothing to comapre with!) and it
8497 		 * cannot exceed the length of the data present.
8498 		 */
8499 		if ((e->ipfe_size < 1 ) ||
8500 		    (e->ipfe_size + i > maxidx)) {
8501 			return -1;
8502 		}
8503 		i += e->ipfe_size;
8504 	}
8505 	return 0;
8506 }
8507 
8508 
8509 /* ------------------------------------------------------------------------ */
8510 /* Function:    ipf_fr_matcharray                                           */
8511 /* Returns:     int      - 0 = match failed, else positive match            */
8512 /* Parameters:  fin(I)   - pointer to packet information                    */
8513 /*              array(I) - pointer to matching array                        */
8514 /*                                                                          */
8515 /* This function is used to apply a matching array against a packet and     */
8516 /* return an indication of whether or not the packet successfully matches   */
8517 /* all of the commands in it.                                               */
8518 /* ------------------------------------------------------------------------ */
8519 static int
8520 ipf_fr_matcharray(fr_info_t *fin, int *array)
8521 {
8522 	int i, n, *x, rv, p;
8523 	ipfexp_t *e;
8524 
8525 	rv = 0;
8526 	n = array[0];
8527 	x = array + 1;
8528 
8529 	for (; n > 0; x += 3 + x[3], rv = 0) {
8530 		e = (ipfexp_t *)x;
8531 		if (e->ipfe_cmd == IPF_EXP_END)
8532 			break;
8533 		n -= e->ipfe_size;
8534 
8535 		/*
8536 		 * The upper 16 bits currently store the protocol value.
8537 		 * This is currently used with TCP and UDP port compares and
8538 		 * allows "tcp.port = 80" without requiring an explicit
8539 		 " "ip.pr = tcp" first.
8540 		 */
8541 		p = e->ipfe_cmd >> 16;
8542 		if ((p != 0) && (p != fin->fin_p))
8543 			break;
8544 
8545 		switch (e->ipfe_cmd)
8546 		{
8547 		case IPF_EXP_IP_PR :
8548 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8549 				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8550 			}
8551 			break;
8552 
8553 		case IPF_EXP_IP_SRCADDR :
8554 			if (fin->fin_v != 4)
8555 				break;
8556 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8557 				rv |= ((fin->fin_saddr &
8558 					e->ipfe_arg0[i * 2 + 1]) ==
8559 				       e->ipfe_arg0[i * 2]);
8560 			}
8561 			break;
8562 
8563 		case IPF_EXP_IP_DSTADDR :
8564 			if (fin->fin_v != 4)
8565 				break;
8566 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8567 				rv |= ((fin->fin_daddr &
8568 					e->ipfe_arg0[i * 2 + 1]) ==
8569 				       e->ipfe_arg0[i * 2]);
8570 			}
8571 			break;
8572 
8573 		case IPF_EXP_IP_ADDR :
8574 			if (fin->fin_v != 4)
8575 				break;
8576 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8577 				rv |= ((fin->fin_saddr &
8578 					e->ipfe_arg0[i * 2 + 1]) ==
8579 				       e->ipfe_arg0[i * 2]) ||
8580 				      ((fin->fin_daddr &
8581 					e->ipfe_arg0[i * 2 + 1]) ==
8582 				       e->ipfe_arg0[i * 2]);
8583 			}
8584 			break;
8585 
8586 #ifdef USE_INET6
8587 		case IPF_EXP_IP6_SRCADDR :
8588 			if (fin->fin_v != 6)
8589 				break;
8590 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8591 				rv |= IP6_MASKEQ(&fin->fin_src6,
8592 						 &e->ipfe_arg0[i * 8 + 4],
8593 						 &e->ipfe_arg0[i * 8]);
8594 			}
8595 			break;
8596 
8597 		case IPF_EXP_IP6_DSTADDR :
8598 			if (fin->fin_v != 6)
8599 				break;
8600 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8601 				rv |= IP6_MASKEQ(&fin->fin_dst6,
8602 						 &e->ipfe_arg0[i * 8 + 4],
8603 						 &e->ipfe_arg0[i * 8]);
8604 			}
8605 			break;
8606 
8607 		case IPF_EXP_IP6_ADDR :
8608 			if (fin->fin_v != 6)
8609 				break;
8610 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8611 				rv |= IP6_MASKEQ(&fin->fin_src6,
8612 						 &e->ipfe_arg0[i * 8 + 4],
8613 						 &e->ipfe_arg0[i * 8]) ||
8614 				      IP6_MASKEQ(&fin->fin_dst6,
8615 						 &e->ipfe_arg0[i * 8 + 4],
8616 						 &e->ipfe_arg0[i * 8]);
8617 			}
8618 			break;
8619 #endif
8620 
8621 		case IPF_EXP_UDP_PORT :
8622 		case IPF_EXP_TCP_PORT :
8623 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8624 				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8625 				      (fin->fin_dport == e->ipfe_arg0[i]);
8626 			}
8627 			break;
8628 
8629 		case IPF_EXP_UDP_SPORT :
8630 		case IPF_EXP_TCP_SPORT :
8631 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8632 				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8633 			}
8634 			break;
8635 
8636 		case IPF_EXP_UDP_DPORT :
8637 		case IPF_EXP_TCP_DPORT :
8638 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8639 				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8640 			}
8641 			break;
8642 
8643 		case IPF_EXP_TCP_FLAGS :
8644 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8645 				rv |= ((fin->fin_tcpf &
8646 					e->ipfe_arg0[i * 2 + 1]) ==
8647 				       e->ipfe_arg0[i * 2]);
8648 			}
8649 			break;
8650 		}
8651 		rv ^= e->ipfe_not;
8652 
8653 		if (rv == 0)
8654 			break;
8655 	}
8656 
8657 	return rv;
8658 }
8659 
8660 
8661 /* ------------------------------------------------------------------------ */
8662 /* Function:    ipf_queueflush                                              */
8663 /* Returns:     int - number of entries flushed (0 = none)                  */
8664 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8665 /*              deletefn(I) - function to call to delete entry              */
8666 /*              ipfqs(I)    - top of the list of ipf internal queues        */
8667 /*              userqs(I)   - top of the list of user defined timeouts      */
8668 /*                                                                          */
8669 /* This fucntion gets called when the state/NAT hash tables fill up and we  */
8670 /* need to try a bit harder to free up some space.  The algorithm used here */
8671 /* split into two parts but both halves have the same goal: to reduce the   */
8672 /* number of connections considered to be "active" to the low watermark.    */
8673 /* There are two steps in doing this:                                       */
8674 /* 1) Remove any TCP connections that are already considered to be "closed" */
8675 /*    but have not yet been removed from the state table.  The two states   */
8676 /*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8677 /*    candidates for this style of removal.  If freeing up entries in       */
8678 /*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8679 /*    we do not go on to step 2.                                            */
8680 /*                                                                          */
8681 /* 2) Look for the oldest entries on each timeout queue and free them if    */
8682 /*    they are within the given window we are considering.  Where the       */
8683 /*    window starts and the steps taken to increase its size depend upon    */
8684 /*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8685 /*    last 30 seconds is not touched.                                       */
8686 /*                                              touched                     */
8687 /*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8688 /*           |          |        |           |     |     |                  */
8689 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8690 /*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8691 /*                                                                          */
8692 /* Points to note:                                                          */
8693 /* - tqe_die is the time, in the future, when entries die.                  */
8694 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8695 /*   ticks.                                                                 */
8696 /* - tqe_touched is when the entry was last used by NAT/state               */
8697 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8698 /*   ipf_ticks any given timeout queue and vice versa.                      */
8699 /* - both tqe_die and tqe_touched increase over time                        */
8700 /* - timeout queues are sorted with the highest value of tqe_die at the     */
8701 /*   bottom and therefore the smallest values of each are at the top        */
8702 /* - the pointer passed in as ipfqs should point to an array of timeout     */
8703 /*   queues representing each of the TCP states                             */
8704 /*                                                                          */
8705 /* We start by setting up a maximum range to scan for things to move of     */
8706 /* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8707 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8708 /* we start again with a new value for "iend" and "istart".  This is        */
8709 /* continued until we either finish the scan of 30 second intervals or the  */
8710 /* low water mark is reached.                                               */
8711 /* ------------------------------------------------------------------------ */
8712 int
8713 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8714     ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8715 {
8716 	u_long interval, istart, iend;
8717 	ipftq_t *ifq, *ifqnext;
8718 	ipftqent_t *tqe, *tqn;
8719 	int removed = 0;
8720 
8721 	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8722 		tqn = tqe->tqe_next;
8723 		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8724 			removed++;
8725 	}
8726 	if ((*activep * 100 / size) > low) {
8727 		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8728 		     ((tqe = tqn) != NULL); ) {
8729 			tqn = tqe->tqe_next;
8730 			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8731 				removed++;
8732 		}
8733 	}
8734 
8735 	if ((*activep * 100 / size) <= low) {
8736 		return removed;
8737 	}
8738 
8739 	/*
8740 	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8741 	 *       used then the operations are upgraded to floating point
8742 	 *       and kernels don't like floating point...
8743 	 */
8744 	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8745 		istart = IPF_TTLVAL(86400 * 4);
8746 		interval = IPF_TTLVAL(43200);
8747 	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8748 		istart = IPF_TTLVAL(43200);
8749 		interval = IPF_TTLVAL(1800);
8750 	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8751 		istart = IPF_TTLVAL(1800);
8752 		interval = IPF_TTLVAL(30);
8753 	} else {
8754 		return 0;
8755 	}
8756 	if (istart > softc->ipf_ticks) {
8757 		if (softc->ipf_ticks - interval < interval)
8758 			istart = interval;
8759 		else
8760 			istart = (softc->ipf_ticks / interval) * interval;
8761 	}
8762 
8763 	iend = softc->ipf_ticks - interval;
8764 
8765 	while ((*activep * 100 / size) > low) {
8766 		u_long try;
8767 
8768 		try = softc->ipf_ticks - istart;
8769 
8770 		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8771 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8772 				if (try < tqe->tqe_touched)
8773 					break;
8774 				tqn = tqe->tqe_next;
8775 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8776 					removed++;
8777 			}
8778 		}
8779 
8780 		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8781 			ifqnext = ifq->ifq_next;
8782 
8783 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8784 				if (try < tqe->tqe_touched)
8785 					break;
8786 				tqn = tqe->tqe_next;
8787 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8788 					removed++;
8789 			}
8790 		}
8791 
8792 		if (try >= iend) {
8793 			if (interval == IPF_TTLVAL(43200)) {
8794 				interval = IPF_TTLVAL(1800);
8795 			} else if (interval == IPF_TTLVAL(1800)) {
8796 				interval = IPF_TTLVAL(30);
8797 			} else {
8798 				break;
8799 			}
8800 			if (interval >= softc->ipf_ticks)
8801 				break;
8802 
8803 			iend = softc->ipf_ticks - interval;
8804 		}
8805 		istart -= interval;
8806 	}
8807 
8808 	return removed;
8809 }
8810 
8811 
8812 /* ------------------------------------------------------------------------ */
8813 /* Function:    ipf_deliverlocal                                            */
8814 /* Returns:     int - 1 = local address, 0 = non-local address              */
8815 /* Parameters:  softc(I)     - pointer to soft context main structure       */
8816 /*              ipversion(I) - IP protocol version (4 or 6)                 */
8817 /*              ifp(I)       - network interface pointer                    */
8818 /*              ipaddr(I)    - IPv4/6 destination address                   */
8819 /*                                                                          */
8820 /* This fucntion is used to determine in the address "ipaddr" belongs to    */
8821 /* the network interface represented by ifp.                                */
8822 /* ------------------------------------------------------------------------ */
8823 int
8824 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8825     i6addr_t *ipaddr)
8826 {
8827 	i6addr_t addr;
8828 	int islocal = 0;
8829 
8830 	if (ipversion == 4) {
8831 		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8832 			if (addr.in4.s_addr == ipaddr->in4.s_addr)
8833 				islocal = 1;
8834 		}
8835 
8836 #ifdef USE_INET6
8837 	} else if (ipversion == 6) {
8838 		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8839 			if (IP6_EQ(&addr, ipaddr))
8840 				islocal = 1;
8841 		}
8842 #endif
8843 	}
8844 
8845 	return islocal;
8846 }
8847 
8848 
8849 /* ------------------------------------------------------------------------ */
8850 /* Function:    ipf_settimeout                                              */
8851 /* Returns:     int - 0 = success, -1 = failure                             */
8852 /* Parameters:  softc(I) - pointer to soft context main structure           */
8853 /*              t(I)     - pointer to tuneable array entry                  */
8854 /*              p(I)     - pointer to values passed in to apply             */
8855 /*                                                                          */
8856 /* This function is called to set the timeout values for each distinct      */
8857 /* queue timeout that is available.  When called, it calls into both the    */
8858 /* state and NAT code, telling them to update their timeout queues.         */
8859 /* ------------------------------------------------------------------------ */
8860 static int
8861 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8862     ipftuneval_t *p)
8863 {
8864 
8865 	/*
8866 	 * ipf_interror should be set by the functions called here, not
8867 	 * by this function - it's just a middle man.
8868 	 */
8869 	if (ipf_state_settimeout(softc, t, p) == -1)
8870 		return -1;
8871 	if (ipf_nat_settimeout(softc, t, p) == -1)
8872 		return -1;
8873 	return 0;
8874 }
8875 
8876 
8877 /* ------------------------------------------------------------------------ */
8878 /* Function:    ipf_apply_timeout                                           */
8879 /* Returns:     int - 0 = success, -1 = failure                             */
8880 /* Parameters:  head(I)    - pointer to tuneable array entry                */
8881 /*              seconds(I) - pointer to values passed in to apply           */
8882 /*                                                                          */
8883 /* This function applies a timeout of "seconds" to the timeout queue that   */
8884 /* is pointed to by "head".  All entries on this list have an expiration    */
8885 /* set to be the current tick value of ipf plus the ttl.  Given that this   */
8886 /* function should only be called when the delta is non-zero, the task is   */
8887 /* to walk the entire list and apply the change.  The sort order will not   */
8888 /* change.  The only catch is that this is O(n) across the list, so if the  */
8889 /* queue has lots of entries (10s of thousands or 100s of thousands), it    */
8890 /* could take a relatively long time to work through them all.              */
8891 /* ------------------------------------------------------------------------ */
8892 void
8893 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8894 {
8895 	u_int oldtimeout, newtimeout;
8896 	ipftqent_t *tqe;
8897 	int delta;
8898 
8899 	MUTEX_ENTER(&head->ifq_lock);
8900 	oldtimeout = head->ifq_ttl;
8901 	newtimeout = IPF_TTLVAL(seconds);
8902 	delta = oldtimeout - newtimeout;
8903 
8904 	head->ifq_ttl = newtimeout;
8905 
8906 	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8907 		tqe->tqe_die += delta;
8908 	}
8909 	MUTEX_EXIT(&head->ifq_lock);
8910 }
8911 
8912 
8913 /* ------------------------------------------------------------------------ */
8914 /* Function:   ipf_settimeout_tcp                                           */
8915 /* Returns:    int - 0 = successfully applied, -1 = failed                  */
8916 /* Parameters: t(I)   - pointer to tuneable to change                       */
8917 /*             p(I)   - pointer to new timeout information                  */
8918 /*             tab(I) - pointer to table of TCP queues                      */
8919 /*                                                                          */
8920 /* This function applies the new timeout (p) to the TCP tunable (t) and     */
8921 /* updates all of the entries on the relevant timeout queue by calling      */
8922 /* ipf_apply_timeout().                                                     */
8923 /* ------------------------------------------------------------------------ */
8924 int
8925 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8926 {
8927 	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8928 	    !strcmp(t->ipft_name, "tcp_established")) {
8929 		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8930 	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8931 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8932 	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8933 		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8934 	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8935 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8936 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8937 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8938 	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
8939 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8940 	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8941 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8942 	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
8943 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8944 	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8945 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8946 	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8947 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8948 	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
8949 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8950 	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8951 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8952 	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8953 		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8954 	} else {
8955 		/*
8956 		 * ipf_interror isn't set here because it should be set
8957 		 * by whatever called this function.
8958 		 */
8959 		return -1;
8960 	}
8961 	return 0;
8962 }
8963 
8964 
8965 /* ------------------------------------------------------------------------ */
8966 /* Function:   ipf_main_soft_create                                         */
8967 /* Returns:    NULL = failure, else success                                 */
8968 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8969 /*                                                                          */
8970 /* Create the foundation soft context structure. In circumstances where it  */
8971 /* is not required to dynamically allocate the context, a pointer can be    */
8972 /* passed in (rather than NULL) to a structure to be initialised.           */
8973 /* The main thing of interest is that a number of locks are initialised     */
8974 /* here instead of in the where might be expected - in the relevant create  */
8975 /* function elsewhere.  This is done because the current locking design has */
8976 /* some areas where these locks are used outside of their module.           */
8977 /* Possibly the most important exercise that is done here is setting of all */
8978 /* the timeout values, allowing them to be changed before init().           */
8979 /* ------------------------------------------------------------------------ */
8980 void *
8981 ipf_main_soft_create(void *arg)
8982 {
8983 	ipf_main_softc_t *softc;
8984 
8985 	if (arg == NULL) {
8986 		KMALLOC(softc, ipf_main_softc_t *);
8987 		if (softc == NULL)
8988 			return NULL;
8989 	} else {
8990 		softc = arg;
8991 	}
8992 
8993 	bzero((char *)softc, sizeof(*softc));
8994 
8995 	/*
8996 	 * This serves as a flag as to whether or not the softc should be
8997 	 * free'd when _destroy is called.
8998 	 */
8999 	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9000 
9001 	softc->ipf_tuners = ipf_tune_array_copy(softc,
9002 						sizeof(ipf_main_tuneables),
9003 						ipf_main_tuneables);
9004 	if (softc->ipf_tuners == NULL) {
9005 		ipf_main_soft_destroy(softc);
9006 		return NULL;
9007 	}
9008 
9009 	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9010 	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9011 	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9012 	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9013 	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9014 	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9015 	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9016 	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9017 	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9018 
9019 	softc->ipf_token_head = NULL;
9020 	softc->ipf_token_tail = &softc->ipf_token_head;
9021 
9022 	softc->ipf_tcpidletimeout = FIVE_DAYS;
9023 	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9024 	softc->ipf_tcplastack = IPF_TTLVAL(30);
9025 	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9026 	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9027 	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9028 	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9029 	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9030 	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9031 	softc->ipf_udptimeout = IPF_TTLVAL(120);
9032 	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9033 	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9034 	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9035 	softc->ipf_iptimeout = IPF_TTLVAL(60);
9036 
9037 #if defined(IPFILTER_DEFAULT_BLOCK)
9038 	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9039 #else
9040 	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9041 #endif
9042 	softc->ipf_minttl = 4;
9043 	softc->ipf_icmpminfragmtu = 68;
9044 	softc->ipf_flags = IPF_LOGGING;
9045 
9046 	return softc;
9047 }
9048 
9049 /* ------------------------------------------------------------------------ */
9050 /* Function:   ipf_main_soft_init                                           */
9051 /* Returns:    0 = success, -1 = failure                                    */
9052 /* Parameters: softc(I) - pointer to soft context main structure            */
9053 /*                                                                          */
9054 /* A null-op function that exists as a placeholder so that the flow in      */
9055 /* other functions is obvious.                                              */
9056 /* ------------------------------------------------------------------------ */
9057 /*ARGSUSED*/
9058 int
9059 ipf_main_soft_init(ipf_main_softc_t *softc)
9060 {
9061 	return 0;
9062 }
9063 
9064 
9065 /* ------------------------------------------------------------------------ */
9066 /* Function:   ipf_main_soft_destroy                                        */
9067 /* Returns:    void                                                         */
9068 /* Parameters: softc(I) - pointer to soft context main structure            */
9069 /*                                                                          */
9070 /* Undo everything that we did in ipf_main_soft_create.                     */
9071 /*                                                                          */
9072 /* The most important check that needs to be made here is whether or not    */
9073 /* the structure was allocated by ipf_main_soft_create() by checking what   */
9074 /* value is stored in ipf_dynamic_main.                                     */
9075 /* ------------------------------------------------------------------------ */
9076 /*ARGSUSED*/
9077 void
9078 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9079 {
9080 
9081 	RW_DESTROY(&softc->ipf_frag);
9082 	RW_DESTROY(&softc->ipf_poolrw);
9083 	RW_DESTROY(&softc->ipf_nat);
9084 	RW_DESTROY(&softc->ipf_state);
9085 	RW_DESTROY(&softc->ipf_tokens);
9086 	RW_DESTROY(&softc->ipf_mutex);
9087 	RW_DESTROY(&softc->ipf_global);
9088 	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9089 	MUTEX_DESTROY(&softc->ipf_rw);
9090 
9091 	if (softc->ipf_tuners != NULL) {
9092 		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9093 	}
9094 	if (softc->ipf_dynamic_softc == 1) {
9095 		KFREE(softc);
9096 	}
9097 }
9098 
9099 
9100 /* ------------------------------------------------------------------------ */
9101 /* Function:   ipf_main_soft_fini                                           */
9102 /* Returns:    0 = success, -1 = failure                                    */
9103 /* Parameters: softc(I) - pointer to soft context main structure            */
9104 /*                                                                          */
9105 /* Clean out the rules which have been added since _init was last called,   */
9106 /* the only dynamic part of the mainline.                                   */
9107 /* ------------------------------------------------------------------------ */
9108 int
9109 ipf_main_soft_fini(ipf_main_softc_t *softc)
9110 {
9111 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9112 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9113 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9114 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9115 
9116 	return 0;
9117 }
9118 
9119 
9120 /* ------------------------------------------------------------------------ */
9121 /* Function:   ipf_main_load                                                */
9122 /* Returns:    0 = success, -1 = failure                                    */
9123 /* Parameters: none                                                         */
9124 /*                                                                          */
9125 /* Handle global initialisation that needs to be done for the base part of  */
9126 /* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9127 /* arrays that get used by the state/NAT code.                              */
9128 /* ------------------------------------------------------------------------ */
9129 int
9130 ipf_main_load(void)
9131 {
9132 	int i;
9133 
9134 	/* fill icmp reply type table */
9135 	for (i = 0; i <= ICMP_MAXTYPE; i++)
9136 		icmpreplytype4[i] = -1;
9137 	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9138 	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9139 	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9140 	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9141 
9142 #ifdef  USE_INET6
9143 	/* fill icmp reply type table */
9144 	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9145 		icmpreplytype6[i] = -1;
9146 	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9147 	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9148 	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9149 	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9150 	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9151 #endif
9152 
9153 	return 0;
9154 }
9155 
9156 
9157 /* ------------------------------------------------------------------------ */
9158 /* Function:   ipf_main_unload                                              */
9159 /* Returns:    0 = success, -1 = failure                                    */
9160 /* Parameters: none                                                         */
9161 /*                                                                          */
9162 /* A null-op function that exists as a placeholder so that the flow in      */
9163 /* other functions is obvious.                                              */
9164 /* ------------------------------------------------------------------------ */
9165 int
9166 ipf_main_unload(void)
9167 {
9168 	return 0;
9169 }
9170 
9171 
9172 /* ------------------------------------------------------------------------ */
9173 /* Function:   ipf_load_all                                                 */
9174 /* Returns:    0 = success, -1 = failure                                    */
9175 /* Parameters: none                                                         */
9176 /*                                                                          */
9177 /* Work through all of the subsystems inside IPFilter and call the load     */
9178 /* function for each in an order that won't lead to a crash :)              */
9179 /* ------------------------------------------------------------------------ */
9180 int
9181 ipf_load_all(void)
9182 {
9183 	if (ipf_main_load() == -1)
9184 		return -1;
9185 
9186 	if (ipf_state_main_load() == -1)
9187 		return -1;
9188 
9189 	if (ipf_nat_main_load() == -1)
9190 		return -1;
9191 
9192 	if (ipf_frag_main_load() == -1)
9193 		return -1;
9194 
9195 	if (ipf_auth_main_load() == -1)
9196 		return -1;
9197 
9198 	if (ipf_proxy_main_load() == -1)
9199 		return -1;
9200 
9201 	return 0;
9202 }
9203 
9204 
9205 /* ------------------------------------------------------------------------ */
9206 /* Function:   ipf_unload_all                                               */
9207 /* Returns:    0 = success, -1 = failure                                    */
9208 /* Parameters: none                                                         */
9209 /*                                                                          */
9210 /* Work through all of the subsystems inside IPFilter and call the unload   */
9211 /* function for each in an order that won't lead to a crash :)              */
9212 /* ------------------------------------------------------------------------ */
9213 int
9214 ipf_unload_all(void)
9215 {
9216 	if (ipf_proxy_main_unload() == -1)
9217 		return -1;
9218 
9219 	if (ipf_auth_main_unload() == -1)
9220 		return -1;
9221 
9222 	if (ipf_frag_main_unload() == -1)
9223 		return -1;
9224 
9225 	if (ipf_nat_main_unload() == -1)
9226 		return -1;
9227 
9228 	if (ipf_state_main_unload() == -1)
9229 		return -1;
9230 
9231 	if (ipf_main_unload() == -1)
9232 		return -1;
9233 
9234 	return 0;
9235 }
9236 
9237 
9238 /* ------------------------------------------------------------------------ */
9239 /* Function:   ipf_create_all                                               */
9240 /* Returns:    NULL = failure, else success                                 */
9241 /* Parameters: arg(I) - pointer to soft context main structure              */
9242 /*                                                                          */
9243 /* Work through all of the subsystems inside IPFilter and call the create   */
9244 /* function for each in an order that won't lead to a crash :)              */
9245 /* ------------------------------------------------------------------------ */
9246 ipf_main_softc_t *
9247 ipf_create_all(void *arg)
9248 {
9249 	ipf_main_softc_t *softc;
9250 
9251 	softc = ipf_main_soft_create(arg);
9252 	if (softc == NULL)
9253 		return NULL;
9254 
9255 #ifdef IPFILTER_LOG
9256 	softc->ipf_log_soft = ipf_log_soft_create(softc);
9257 	if (softc->ipf_log_soft == NULL) {
9258 		ipf_destroy_all(softc);
9259 		return NULL;
9260 	}
9261 #endif
9262 
9263 	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9264 	if (softc->ipf_lookup_soft == NULL) {
9265 		ipf_destroy_all(softc);
9266 		return NULL;
9267 	}
9268 
9269 	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9270 	if (softc->ipf_sync_soft == NULL) {
9271 		ipf_destroy_all(softc);
9272 		return NULL;
9273 	}
9274 
9275 	softc->ipf_state_soft = ipf_state_soft_create(softc);
9276 	if (softc->ipf_state_soft == NULL) {
9277 		ipf_destroy_all(softc);
9278 		return NULL;
9279 	}
9280 
9281 	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9282 	if (softc->ipf_nat_soft == NULL) {
9283 		ipf_destroy_all(softc);
9284 		return NULL;
9285 	}
9286 
9287 	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9288 	if (softc->ipf_frag_soft == NULL) {
9289 		ipf_destroy_all(softc);
9290 		return NULL;
9291 	}
9292 
9293 	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9294 	if (softc->ipf_auth_soft == NULL) {
9295 		ipf_destroy_all(softc);
9296 		return NULL;
9297 	}
9298 
9299 	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9300 	if (softc->ipf_proxy_soft == NULL) {
9301 		ipf_destroy_all(softc);
9302 		return NULL;
9303 	}
9304 
9305 	return softc;
9306 }
9307 
9308 
9309 /* ------------------------------------------------------------------------ */
9310 /* Function:   ipf_destroy_all                                              */
9311 /* Returns:    void                                                         */
9312 /* Parameters: softc(I) - pointer to soft context main structure            */
9313 /*                                                                          */
9314 /* Work through all of the subsystems inside IPFilter and call the destroy  */
9315 /* function for each in an order that won't lead to a crash :)              */
9316 /*                                                                          */
9317 /* Every one of these functions is expected to succeed, so there is no      */
9318 /* checking of return values.                                               */
9319 /* ------------------------------------------------------------------------ */
9320 void
9321 ipf_destroy_all(ipf_main_softc_t *softc)
9322 {
9323 
9324 	if (softc->ipf_state_soft != NULL) {
9325 		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9326 		softc->ipf_state_soft = NULL;
9327 	}
9328 
9329 	if (softc->ipf_nat_soft != NULL) {
9330 		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9331 		softc->ipf_nat_soft = NULL;
9332 	}
9333 
9334 	if (softc->ipf_frag_soft != NULL) {
9335 		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9336 		softc->ipf_frag_soft = NULL;
9337 	}
9338 
9339 	if (softc->ipf_auth_soft != NULL) {
9340 		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9341 		softc->ipf_auth_soft = NULL;
9342 	}
9343 
9344 	if (softc->ipf_proxy_soft != NULL) {
9345 		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9346 		softc->ipf_proxy_soft = NULL;
9347 	}
9348 
9349 	if (softc->ipf_sync_soft != NULL) {
9350 		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9351 		softc->ipf_sync_soft = NULL;
9352 	}
9353 
9354 	if (softc->ipf_lookup_soft != NULL) {
9355 		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9356 		softc->ipf_lookup_soft = NULL;
9357 	}
9358 
9359 #ifdef IPFILTER_LOG
9360 	if (softc->ipf_log_soft != NULL) {
9361 		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9362 		softc->ipf_log_soft = NULL;
9363 	}
9364 #endif
9365 
9366 	ipf_main_soft_destroy(softc);
9367 }
9368 
9369 
9370 /* ------------------------------------------------------------------------ */
9371 /* Function:   ipf_init_all                                                 */
9372 /* Returns:    0 = success, -1 = failure                                    */
9373 /* Parameters: softc(I) - pointer to soft context main structure            */
9374 /*                                                                          */
9375 /* Work through all of the subsystems inside IPFilter and call the init     */
9376 /* function for each in an order that won't lead to a crash :)              */
9377 /* ------------------------------------------------------------------------ */
9378 int
9379 ipf_init_all(ipf_main_softc_t *softc)
9380 {
9381 
9382 	if (ipf_main_soft_init(softc) == -1)
9383 		return -1;
9384 
9385 #ifdef IPFILTER_LOG
9386 	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9387 		return -1;
9388 #endif
9389 
9390 	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9391 		return -1;
9392 
9393 	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9394 		return -1;
9395 
9396 	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9397 		return -1;
9398 
9399 	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9400 		return -1;
9401 
9402 	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9403 		return -1;
9404 
9405 	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9406 		return -1;
9407 
9408 	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9409 		return -1;
9410 
9411 	return 0;
9412 }
9413 
9414 
9415 /* ------------------------------------------------------------------------ */
9416 /* Function:   ipf_fini_all                                                 */
9417 /* Returns:    0 = success, -1 = failure                                    */
9418 /* Parameters: softc(I) - pointer to soft context main structure            */
9419 /*                                                                          */
9420 /* Work through all of the subsystems inside IPFilter and call the fini     */
9421 /* function for each in an order that won't lead to a crash :)              */
9422 /* ------------------------------------------------------------------------ */
9423 int
9424 ipf_fini_all(ipf_main_softc_t *softc)
9425 {
9426 
9427 	ipf_token_flush(softc);
9428 
9429 	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9430 		return -1;
9431 
9432 	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9433 		return -1;
9434 
9435 	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9436 		return -1;
9437 
9438 	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9439 		return -1;
9440 
9441 	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9442 		return -1;
9443 
9444 	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9445 		return -1;
9446 
9447 	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9448 		return -1;
9449 
9450 #ifdef IPFILTER_LOG
9451 	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9452 		return -1;
9453 #endif
9454 
9455 	if (ipf_main_soft_fini(softc) == -1)
9456 		return -1;
9457 
9458 	return 0;
9459 }
9460 
9461 
9462 /* ------------------------------------------------------------------------ */
9463 /* Function:    ipf_rule_expire                                             */
9464 /* Returns:     Nil                                                         */
9465 /* Parameters:  softc(I) - pointer to soft context main structure           */
9466 /*                                                                          */
9467 /* At present this function exists just to support temporary addition of    */
9468 /* firewall rules. Both inactive and active lists are scanned for items to  */
9469 /* purge, as by rights, the expiration is computed as soon as the rule is   */
9470 /* loaded in.                                                               */
9471 /* ------------------------------------------------------------------------ */
9472 void
9473 ipf_rule_expire(ipf_main_softc_t *softc)
9474 {
9475 	frentry_t *fr;
9476 
9477 	if ((softc->ipf_rule_explist[0] == NULL) &&
9478 	    (softc->ipf_rule_explist[1] == NULL))
9479 		return;
9480 
9481 	WRITE_ENTER(&softc->ipf_mutex);
9482 
9483 	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9484 		/*
9485 		 * Because the list is kept sorted on insertion, the fist
9486 		 * one that dies in the future means no more work to do.
9487 		 */
9488 		if (fr->fr_die > softc->ipf_ticks)
9489 			break;
9490 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9491 	}
9492 
9493 	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9494 		/*
9495 		 * Because the list is kept sorted on insertion, the fist
9496 		 * one that dies in the future means no more work to do.
9497 		 */
9498 		if (fr->fr_die > softc->ipf_ticks)
9499 			break;
9500 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9501 	}
9502 
9503 	RWLOCK_EXIT(&softc->ipf_mutex);
9504 }
9505 
9506 
9507 static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *);
9508 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9509 				 i6addr_t *);
9510 
9511 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9512 
9513 
9514 /* ------------------------------------------------------------------------ */
9515 /* Function:    ipf_ht_node_cmp                                             */
9516 /* Returns:     int   - 0 == nodes are the same, ..                         */
9517 /* Parameters:  k1(I) - pointer to first key to compare                     */
9518 /*              k2(I) - pointer to second key to compare                    */
9519 /*                                                                          */
9520 /* The "key" for the node is a combination of two fields: the address       */
9521 /* family and the address itself.                                           */
9522 /*                                                                          */
9523 /* Because we're not actually interpreting the address data, it isn't       */
9524 /* necessary to convert them to/from network/host byte order. The mask is   */
9525 /* just used to remove bits that aren't significant - it doesn't matter     */
9526 /* where they are, as long as they're always in the same place.             */
9527 /*                                                                          */
9528 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9529 /* this is where individual ones will differ the most - but not true for    */
9530 /* for /48's, etc.                                                          */
9531 /* ------------------------------------------------------------------------ */
9532 static int
9533 ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2)
9534 {
9535 	int i;
9536 
9537 	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9538 	if (i != 0)
9539 		return i;
9540 
9541 	if (k1->hn_addr.adf_family == AF_INET)
9542 		return (k2->hn_addr.adf_addr.in4.s_addr -
9543 			k1->hn_addr.adf_addr.in4.s_addr);
9544 
9545 	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9546 	if (i != 0)
9547 		return i;
9548 	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9549 	if (i != 0)
9550 		return i;
9551 	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9552 	if (i != 0)
9553 		return i;
9554 	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9555 	return i;
9556 }
9557 
9558 
9559 /* ------------------------------------------------------------------------ */
9560 /* Function:    ipf_ht_node_make_key                                        */
9561 /* Returns:     Nil                                                         */
9562 /* parameters:  htp(I)    - pointer to address tracking structure           */
9563 /*              key(I)    - where to store masked address for lookup        */
9564 /*              family(I) - protocol family of address                      */
9565 /*              addr(I)   - pointer to network address                      */
9566 /*                                                                          */
9567 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9568 /* copy the address passed in into the key structure whilst masking out the */
9569 /* bits that we don't want.                                                 */
9570 /*                                                                          */
9571 /* Because the parser will set ht_netmask to 128 if there is no protocol    */
9572 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9573 /* have to be wary of that and not allow 32-128 to happen.                  */
9574 /* ------------------------------------------------------------------------ */
9575 static void
9576 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9577     i6addr_t *addr)
9578 {
9579 	key->hn_addr.adf_family = family;
9580 	if (family == AF_INET) {
9581 		u_32_t mask;
9582 		int bits;
9583 
9584 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9585 		bits = htp->ht_netmask;
9586 		if (bits >= 32) {
9587 			mask = 0xffffffff;
9588 		} else {
9589 			mask = htonl(0xffffffff << (32 - bits));
9590 		}
9591 		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9592 #ifdef USE_INET6
9593 	} else {
9594 		int bits = htp->ht_netmask;
9595 
9596 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9597 		if (bits > 96) {
9598 			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9599 					     htonl(0xffffffff << (128 - bits));
9600 			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9601 			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9602 			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9603 		} else if (bits > 64) {
9604 			key->hn_addr.adf_addr.i6[3] = 0;
9605 			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9606 					     htonl(0xffffffff << (96 - bits));
9607 			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9608 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9609 		} else if (bits > 32) {
9610 			key->hn_addr.adf_addr.i6[3] = 0;
9611 			key->hn_addr.adf_addr.i6[2] = 0;
9612 			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9613 					     htonl(0xffffffff << (64 - bits));
9614 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9615 		} else {
9616 			key->hn_addr.adf_addr.i6[3] = 0;
9617 			key->hn_addr.adf_addr.i6[2] = 0;
9618 			key->hn_addr.adf_addr.i6[1] = 0;
9619 			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9620 					     htonl(0xffffffff << (32 - bits));
9621 		}
9622 #endif
9623 	}
9624 }
9625 
9626 
9627 /* ------------------------------------------------------------------------ */
9628 /* Function:    ipf_ht_node_add                                             */
9629 /* Returns:     int       - 0 == success,  -1 == failure                    */
9630 /* Parameters:  softc(I)  - pointer to soft context main structure          */
9631 /*              htp(I)    - pointer to address tracking structure           */
9632 /*              family(I) - protocol family of address                      */
9633 /*              addr(I)   - pointer to network address                      */
9634 /*                                                                          */
9635 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9636 /*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9637 /*                                                                          */
9638 /* After preparing the key with the address information to find, look in    */
9639 /* the red-black tree to see if the address is known. A successful call to  */
9640 /* this function can mean one of two things: a new node was added to the    */
9641 /* tree or a matching node exists and we're able to bump up its activity.   */
9642 /* ------------------------------------------------------------------------ */
9643 int
9644 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9645     i6addr_t *addr)
9646 {
9647 	host_node_t *h;
9648 	host_node_t k;
9649 
9650 	ipf_ht_node_make_key(htp, &k, family, addr);
9651 
9652 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9653 	if (h == NULL) {
9654 		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9655 			return -1;
9656 		KMALLOC(h, host_node_t *);
9657 		if (h == NULL) {
9658 			DT(ipf_rb_no_mem);
9659 			LBUMP(ipf_rb_no_mem);
9660 			return -1;
9661 		}
9662 
9663 		/*
9664 		 * If there was a macro to initialise the RB node then that
9665 		 * would get used here, but there isn't...
9666 		 */
9667 		bzero((char *)h, sizeof(*h));
9668 		h->hn_addr = k.hn_addr;
9669 		h->hn_addr.adf_family = k.hn_addr.adf_family;
9670 		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9671 		htp->ht_cur_nodes++;
9672 	} else {
9673 		if ((htp->ht_max_per_node != 0) &&
9674 		    (h->hn_active >= htp->ht_max_per_node)) {
9675 			DT(ipf_rb_node_max);
9676 			LBUMP(ipf_rb_node_max);
9677 			return -1;
9678 		}
9679 	}
9680 
9681 	h->hn_active++;
9682 
9683 	return 0;
9684 }
9685 
9686 
9687 /* ------------------------------------------------------------------------ */
9688 /* Function:    ipf_ht_node_del                                             */
9689 /* Returns:     int       - 0 == success,  -1 == failure                    */
9690 /* parameters:  htp(I)    - pointer to address tracking structure           */
9691 /*              family(I) - protocol family of address                      */
9692 /*              addr(I)   - pointer to network address                      */
9693 /*                                                                          */
9694 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9695 /*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9696 /*                                                                          */
9697 /* Try and find the address passed in amongst the leaves on this tree to    */
9698 /* be friend. If found then drop the active account for that node drops by  */
9699 /* one. If that count reaches 0, it is time to free it all up.              */
9700 /* ------------------------------------------------------------------------ */
9701 int
9702 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9703 {
9704 	host_node_t *h;
9705 	host_node_t k;
9706 
9707 	ipf_ht_node_make_key(htp, &k, family, addr);
9708 
9709 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9710 	if (h == NULL) {
9711 		return -1;
9712 	} else {
9713 		h->hn_active--;
9714 		if (h->hn_active == 0) {
9715 			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9716 			htp->ht_cur_nodes--;
9717 			KFREE(h);
9718 		}
9719 	}
9720 
9721 	return 0;
9722 }
9723 
9724 
9725 /* ------------------------------------------------------------------------ */
9726 /* Function:    ipf_rb_ht_init                                              */
9727 /* Returns:     Nil                                                         */
9728 /* Parameters:  head(I) - pointer to host tracking structure                */
9729 /*                                                                          */
9730 /* Initialise the host tracking structure to be ready for use above.        */
9731 /* ------------------------------------------------------------------------ */
9732 void
9733 ipf_rb_ht_init(host_track_t *head)
9734 {
9735 	memset(head, 0, sizeof(*head));
9736 	RBI_INIT(ipf_rb, &head->ht_root);
9737 }
9738 
9739 
9740 /* ------------------------------------------------------------------------ */
9741 /* Function:    ipf_rb_ht_freenode                                          */
9742 /* Returns:     Nil                                                         */
9743 /* Parameters:  head(I) - pointer to host tracking structure                */
9744 /*              arg(I)  - additional argument from walk caller              */
9745 /*                                                                          */
9746 /* Free an actual host_node_t structure.                                    */
9747 /* ------------------------------------------------------------------------ */
9748 void
9749 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9750 {
9751 	KFREE(node);
9752 }
9753 
9754 
9755 /* ------------------------------------------------------------------------ */
9756 /* Function:    ipf_rb_ht_flush                                             */
9757 /* Returns:     Nil                                                         */
9758 /* Parameters:  head(I) - pointer to host tracking structure                */
9759 /*                                                                          */
9760 /* Remove all of the nodes in the tree tracking hosts by calling a walker   */
9761 /* and free'ing each one.                                                   */
9762 /* ------------------------------------------------------------------------ */
9763 void
9764 ipf_rb_ht_flush(host_track_t *head)
9765 {
9766 	/* XXX - May use node members after freeing the node. */
9767 	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9768 }
9769 
9770 
9771 /* ------------------------------------------------------------------------ */
9772 /* Function:    ipf_slowtimer                                               */
9773 /* Returns:     Nil                                                         */
9774 /* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
9775 /*                                                                          */
9776 /* Slowly expire held state for fragments.  Timeouts are set * in           */
9777 /* expectation of this being called twice per second.                       */
9778 /* ------------------------------------------------------------------------ */
9779 void
9780 ipf_slowtimer(ipf_main_softc_t *softc)
9781 {
9782 
9783 	ipf_token_expire(softc);
9784 	ipf_frag_expire(softc);
9785 	ipf_state_expire(softc);
9786 	ipf_nat_expire(softc);
9787 	ipf_auth_expire(softc);
9788 	ipf_lookup_expire(softc);
9789 	ipf_rule_expire(softc);
9790 	ipf_sync_expire(softc);
9791 	softc->ipf_ticks++;
9792 #   if defined(__OpenBSD__)
9793 	timeout_add(&ipf_slowtimer_ch, hz/2);
9794 #   endif
9795 }
9796 
9797 
9798 /* ------------------------------------------------------------------------ */
9799 /* Function:    ipf_inet_mask_add                                           */
9800 /* Returns:     Nil                                                         */
9801 /* Parameters:  bits(I) - pointer to nat context information                */
9802 /*              mtab(I) - pointer to mask hash table structure              */
9803 /*                                                                          */
9804 /* When called, bits represents the mask of a new NAT rule that has just    */
9805 /* been added. This function inserts a bitmask into the array of masks to   */
9806 /* search when searching for a matching NAT rule for a packet.              */
9807 /* Prevention of duplicate masks is achieved by checking the use count for  */
9808 /* a given netmask.                                                         */
9809 /* ------------------------------------------------------------------------ */
9810 void
9811 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9812 {
9813 	u_32_t mask;
9814 	int i, j;
9815 
9816 	mtab->imt4_masks[bits]++;
9817 	if (mtab->imt4_masks[bits] > 1)
9818 		return;
9819 
9820 	if (bits == 0)
9821 		mask = 0;
9822 	else
9823 		mask = 0xffffffff << (32 - bits);
9824 
9825 	for (i = 0; i < 33; i++) {
9826 		if (ntohl(mtab->imt4_active[i]) < mask) {
9827 			for (j = 32; j > i; j--)
9828 				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9829 			mtab->imt4_active[i] = htonl(mask);
9830 			break;
9831 		}
9832 	}
9833 	mtab->imt4_max++;
9834 }
9835 
9836 
9837 /* ------------------------------------------------------------------------ */
9838 /* Function:    ipf_inet_mask_del                                           */
9839 /* Returns:     Nil                                                         */
9840 /* Parameters:  bits(I) - number of bits set in the netmask                 */
9841 /*              mtab(I) - pointer to mask hash table structure              */
9842 /*                                                                          */
9843 /* Remove the 32bit bitmask represented by "bits" from the collection of    */
9844 /* netmasks stored inside of mtab.                                          */
9845 /* ------------------------------------------------------------------------ */
9846 void
9847 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9848 {
9849 	u_32_t mask;
9850 	int i, j;
9851 
9852 	mtab->imt4_masks[bits]--;
9853 	if (mtab->imt4_masks[bits] > 0)
9854 		return;
9855 
9856 	mask = htonl(0xffffffff << (32 - bits));
9857 	for (i = 0; i < 33; i++) {
9858 		if (mtab->imt4_active[i] == mask) {
9859 			for (j = i + 1; j < 33; j++)
9860 				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9861 			break;
9862 		}
9863 	}
9864 	mtab->imt4_max--;
9865 	ASSERT(mtab->imt4_max >= 0);
9866 }
9867 
9868 
9869 #ifdef USE_INET6
9870 /* ------------------------------------------------------------------------ */
9871 /* Function:    ipf_inet6_mask_add                                          */
9872 /* Returns:     Nil                                                         */
9873 /* Parameters:  bits(I) - number of bits set in mask                        */
9874 /*              mask(I) - pointer to mask to add                            */
9875 /*              mtab(I) - pointer to mask hash table structure              */
9876 /*                                                                          */
9877 /* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
9878 /* has just been added. This function inserts a bitmask into the array of   */
9879 /* masks to search when searching for a matching NAT rule for a packet.     */
9880 /* Prevention of duplicate masks is achieved by checking the use count for  */
9881 /* a given netmask.                                                         */
9882 /* ------------------------------------------------------------------------ */
9883 void
9884 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9885 {
9886 	i6addr_t zero;
9887 	int i, j;
9888 
9889 	mtab->imt6_masks[bits]++;
9890 	if (mtab->imt6_masks[bits] > 1)
9891 		return;
9892 
9893 	if (bits == 0) {
9894 		mask = &zero;
9895 		zero.i6[0] = 0;
9896 		zero.i6[1] = 0;
9897 		zero.i6[2] = 0;
9898 		zero.i6[3] = 0;
9899 	}
9900 
9901 	for (i = 0; i < 129; i++) {
9902 		if (IP6_LT(&mtab->imt6_active[i], mask)) {
9903 			for (j = 128; j > i; j--)
9904 				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9905 			mtab->imt6_active[i] = *mask;
9906 			break;
9907 		}
9908 	}
9909 	mtab->imt6_max++;
9910 }
9911 
9912 
9913 /* ------------------------------------------------------------------------ */
9914 /* Function:    ipf_inet6_mask_del                                          */
9915 /* Returns:     Nil                                                         */
9916 /* Parameters:  bits(I) - number of bits set in mask                        */
9917 /*              mask(I) - pointer to mask to remove                         */
9918 /*              mtab(I) - pointer to mask hash table structure              */
9919 /*                                                                          */
9920 /* Remove the 128bit bitmask represented by "bits" from the collection of   */
9921 /* netmasks stored inside of mtab.                                          */
9922 /* ------------------------------------------------------------------------ */
9923 void
9924 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9925 {
9926 	i6addr_t zero;
9927 	int i, j;
9928 
9929 	mtab->imt6_masks[bits]--;
9930 	if (mtab->imt6_masks[bits] > 0)
9931 		return;
9932 
9933 	if (bits == 0)
9934 		mask = &zero;
9935 	zero.i6[0] = 0;
9936 	zero.i6[1] = 0;
9937 	zero.i6[2] = 0;
9938 	zero.i6[3] = 0;
9939 
9940 	for (i = 0; i < 129; i++) {
9941 		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9942 			for (j = i + 1; j < 129; j++) {
9943 				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9944 				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9945 					break;
9946 			}
9947 			break;
9948 		}
9949 	}
9950 	mtab->imt6_max--;
9951 	ASSERT(mtab->imt6_max >= 0);
9952 }
9953 #endif
9954