1 /* $NetBSD: fil.c,v 1.22 2018/02/04 08:19:42 mrg Exp $ */ 2 3 /* 4 * Copyright (C) 2012 by Darren Reed. 5 * 6 * See the IPFILTER.LICENCE file for details on licencing. 7 * 8 * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $ 9 * 10 */ 11 #if defined(KERNEL) || defined(_KERNEL) 12 # undef KERNEL 13 # undef _KERNEL 14 # define KERNEL 1 15 # define _KERNEL 1 16 #endif 17 #include <sys/errno.h> 18 #include <sys/types.h> 19 #include <sys/param.h> 20 #include <sys/time.h> 21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 22 (__FreeBSD_version >= 220000) 23 # if (__FreeBSD_version >= 400000) 24 # if !defined(IPFILTER_LKM) 25 # include "opt_inet6.h" 26 # endif 27 # if (__FreeBSD_version == 400019) 28 # define CSUM_DELAY_DATA 29 # endif 30 # endif 31 # include <sys/filio.h> 32 #else 33 # include <sys/ioctl.h> 34 #endif 35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun) 36 # include <sys/filio.h> 37 #endif 38 #if !defined(_AIX51) 39 # include <sys/fcntl.h> 40 #endif 41 #if defined(_KERNEL) 42 # include <sys/systm.h> 43 # include <sys/file.h> 44 #else 45 # include <stdio.h> 46 # include <string.h> 47 # include <stdlib.h> 48 # include <stddef.h> 49 # include <sys/file.h> 50 # define _KERNEL 51 # ifdef __OpenBSD__ 52 struct file; 53 # endif 54 # include <sys/uio.h> 55 # undef _KERNEL 56 #endif 57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 58 !defined(linux) 59 # include <sys/mbuf.h> 60 #else 61 # if !defined(linux) 62 # include <sys/byteorder.h> 63 # endif 64 # if (SOLARIS2 < 5) && defined(sun) 65 # include <sys/dditypes.h> 66 # endif 67 #endif 68 #ifdef __hpux 69 # define _NET_ROUTE_INCLUDED 70 #endif 71 #if !defined(linux) 72 # include <sys/protosw.h> 73 #endif 74 #include <sys/socket.h> 75 #include <net/if.h> 76 #ifdef sun 77 # include <net/af.h> 78 #endif 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/ip.h> 82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 83 # include <sys/hashing.h> 84 # include <netinet/in_var.h> 85 #endif 86 #include <netinet/tcp.h> 87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 88 # include <netinet/udp.h> 89 # include <netinet/ip_icmp.h> 90 #endif 91 #ifdef __hpux 92 # undef _NET_ROUTE_INCLUDED 93 #endif 94 #ifdef __osf__ 95 # undef _RADIX_H_ 96 #endif 97 #include "netinet/ip_compat.h" 98 #ifdef USE_INET6 99 # include <netinet/icmp6.h> 100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux) 101 # include <netinet6/in6_var.h> 102 # endif 103 #endif 104 #include "netinet/ip_fil.h" 105 #include "netinet/ip_nat.h" 106 #include "netinet/ip_frag.h" 107 #include "netinet/ip_state.h" 108 #include "netinet/ip_proxy.h" 109 #include "netinet/ip_auth.h" 110 #ifdef IPFILTER_SCAN 111 # include "netinet/ip_scan.h" 112 #endif 113 #include "netinet/ip_sync.h" 114 #include "netinet/ip_lookup.h" 115 #include "netinet/ip_pool.h" 116 #include "netinet/ip_htable.h" 117 #ifdef IPFILTER_COMPILED 118 # include "netinet/ip_rules.h" 119 #endif 120 #if defined(IPFILTER_BPF) && defined(_KERNEL) 121 # include <net/bpf.h> 122 #endif 123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 124 # include <sys/malloc.h> 125 #endif 126 #include "netinet/ipl.h" 127 128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000) 129 # include <sys/callout.h> 130 extern struct callout ipf_slowtimer_ch; 131 #endif 132 #if defined(__OpenBSD__) 133 # include <sys/timeout.h> 134 extern struct timeout ipf_slowtimer_ch; 135 #endif 136 /* END OF INCLUDES */ 137 138 #if !defined(lint) 139 #if defined(__NetBSD__) 140 #include <sys/cdefs.h> 141 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.22 2018/02/04 08:19:42 mrg Exp $"); 142 #else 143 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 144 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $"; 145 #endif 146 #endif 147 148 #ifndef _KERNEL 149 # include "ipf.h" 150 # include "ipt.h" 151 extern int opts; 152 extern int blockreason; 153 #endif /* _KERNEL */ 154 155 #define LBUMP(x) softc->x++ 156 #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0) 157 158 static INLINE int ipf_check_ipf(fr_info_t *, frentry_t *, int); 159 static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int); 160 static u_32_t ipf_checkripso(u_char *); 161 static u_32_t ipf_decaps(fr_info_t *, u_32_t, int); 162 #ifdef IPFILTER_LOG 163 static frentry_t *ipf_dolog(fr_info_t *, u_32_t *); 164 #endif 165 static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **); 166 static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int); 167 static ipfunc_t ipf_findfunc(ipfunc_t); 168 static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *, 169 i6addr_t *, i6addr_t *); 170 static frentry_t *ipf_firewall(fr_info_t *, u_32_t *); 171 static int ipf_fr_matcharray(fr_info_t *, int *); 172 static int ipf_frruleiter(ipf_main_softc_t *, void *, int, void *); 173 static void ipf_funcfini(ipf_main_softc_t *, frentry_t *);; 174 static int ipf_funcinit(ipf_main_softc_t *, frentry_t *); 175 static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *, 176 ipfgeniter_t *); 177 static void ipf_getstat(ipf_main_softc_t *, 178 struct friostat *, int); 179 static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *); 180 static void ipf_group_free(frgroup_t *); 181 static int ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *); 182 static int ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *); 183 static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int, 184 frentry_t *, int); 185 static int ipf_portcheck(frpcmp_t *, u_32_t); 186 static INLINE int ipf_pr_ah(fr_info_t *); 187 static INLINE void ipf_pr_esp(fr_info_t *); 188 static INLINE void ipf_pr_gre(fr_info_t *); 189 static INLINE void ipf_pr_udp(fr_info_t *); 190 static INLINE void ipf_pr_tcp(fr_info_t *); 191 static INLINE void ipf_pr_icmp(fr_info_t *); 192 static INLINE void ipf_pr_ipv4hdr(fr_info_t *); 193 static INLINE void ipf_pr_short(fr_info_t *, int); 194 static INLINE int ipf_pr_tcpcommon(fr_info_t *); 195 static INLINE int ipf_pr_udpcommon(fr_info_t *); 196 static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f, 197 int, int); 198 static void ipf_rule_expire_insert(ipf_main_softc_t *, 199 frentry_t *, int); 200 static int ipf_synclist(ipf_main_softc_t *, frentry_t *, void *); 201 static void ipf_token_flush(ipf_main_softc_t *); 202 static void ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *); 203 static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *, const char *); 204 static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *, 205 void **); 206 static int ipf_updateipid(fr_info_t *); 207 static int ipf_settimeout(struct ipf_main_softc_s *, 208 struct ipftuneable *, ipftuneval_t *); 209 210 211 /* 212 * bit values for identifying presence of individual IP options 213 * All of these tables should be ordered by increasing key value on the left 214 * hand side to allow for binary searching of the array and include a trailer 215 * with a 0 for the bitmask for linear searches to easily find the end with. 216 */ 217 static const struct optlist ipopts[20] = { 218 { IPOPT_NOP, 0x000001 }, 219 { IPOPT_RR, 0x000002 }, 220 { IPOPT_ZSU, 0x000004 }, 221 { IPOPT_MTUP, 0x000008 }, 222 { IPOPT_MTUR, 0x000010 }, 223 { IPOPT_ENCODE, 0x000020 }, 224 { IPOPT_TS, 0x000040 }, 225 { IPOPT_TR, 0x000080 }, 226 { IPOPT_SECURITY, 0x000100 }, 227 { IPOPT_LSRR, 0x000200 }, 228 { IPOPT_E_SEC, 0x000400 }, 229 { IPOPT_CIPSO, 0x000800 }, 230 { IPOPT_SATID, 0x001000 }, 231 { IPOPT_SSRR, 0x002000 }, 232 { IPOPT_ADDEXT, 0x004000 }, 233 { IPOPT_VISA, 0x008000 }, 234 { IPOPT_IMITD, 0x010000 }, 235 { IPOPT_EIP, 0x020000 }, 236 { IPOPT_FINN, 0x040000 }, 237 { 0, 0x000000 } 238 }; 239 240 #ifdef USE_INET6 241 static const struct optlist ip6exthdr[] = { 242 { IPPROTO_HOPOPTS, 0x000001 }, 243 { IPPROTO_IPV6, 0x000002 }, 244 { IPPROTO_ROUTING, 0x000004 }, 245 { IPPROTO_FRAGMENT, 0x000008 }, 246 { IPPROTO_ESP, 0x000010 }, 247 { IPPROTO_AH, 0x000020 }, 248 { IPPROTO_NONE, 0x000040 }, 249 { IPPROTO_DSTOPTS, 0x000080 }, 250 { IPPROTO_MOBILITY, 0x000100 }, 251 { 0, 0 } 252 }; 253 #endif 254 255 /* 256 * bit values for identifying presence of individual IP security options 257 */ 258 static const struct optlist secopt[8] = { 259 { IPSO_CLASS_RES4, 0x01 }, 260 { IPSO_CLASS_TOPS, 0x02 }, 261 { IPSO_CLASS_SECR, 0x04 }, 262 { IPSO_CLASS_RES3, 0x08 }, 263 { IPSO_CLASS_CONF, 0x10 }, 264 { IPSO_CLASS_UNCL, 0x20 }, 265 { IPSO_CLASS_RES2, 0x40 }, 266 { IPSO_CLASS_RES1, 0x80 } 267 }; 268 269 char ipfilter_version[] = IPL_VERSION; 270 271 int ipf_features = 0 272 #ifdef IPFILTER_LKM 273 | IPF_FEAT_LKM 274 #endif 275 #ifdef IPFILTER_LOG 276 | IPF_FEAT_LOG 277 #endif 278 | IPF_FEAT_LOOKUP 279 #ifdef IPFILTER_BPF 280 | IPF_FEAT_BPF 281 #endif 282 #ifdef IPFILTER_COMPILED 283 | IPF_FEAT_COMPILED 284 #endif 285 #ifdef IPFILTER_CKSUM 286 | IPF_FEAT_CKSUM 287 #endif 288 | IPF_FEAT_SYNC 289 #ifdef IPFILTER_SCAN 290 | IPF_FEAT_SCAN 291 #endif 292 #ifdef USE_INET6 293 | IPF_FEAT_IPV6 294 #endif 295 ; 296 297 298 /* 299 * Table of functions available for use with call rules. 300 */ 301 static ipfunc_resolve_t ipf_availfuncs[] = { 302 { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini }, 303 { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini }, 304 { "", NULL, NULL, NULL } 305 }; 306 307 static ipftuneable_t ipf_main_tuneables[] = { 308 { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) }, 309 "ipf_flags", 0, 0xffffffff, 310 stsizeof(ipf_main_softc_t, ipf_flags), 311 0, NULL, NULL }, 312 { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) }, 313 "active", 0, 0, 314 stsizeof(ipf_main_softc_t, ipf_active), 315 IPFT_RDONLY, NULL, NULL }, 316 { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) }, 317 "control_forwarding", 0, 1, 318 stsizeof(ipf_main_softc_t, ipf_control_forwarding), 319 0, NULL, NULL }, 320 { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) }, 321 "update_ipid", 0, 1, 322 stsizeof(ipf_main_softc_t, ipf_update_ipid), 323 0, NULL, NULL }, 324 { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) }, 325 "chksrc", 0, 1, 326 stsizeof(ipf_main_softc_t, ipf_chksrc), 327 0, NULL, NULL }, 328 { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) }, 329 "min_ttl", 0, 1, 330 stsizeof(ipf_main_softc_t, ipf_minttl), 331 0, NULL, NULL }, 332 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) }, 333 "icmp_minfragmtu", 0, 1, 334 stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu), 335 0, NULL, NULL }, 336 { { (void *)offsetof(ipf_main_softc_t, ipf_pass) }, 337 "default_pass", 0, 0xffffffff, 338 stsizeof(ipf_main_softc_t, ipf_pass), 339 0, NULL, NULL }, 340 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) }, 341 "tcp_idle_timeout", 1, 0x7fffffff, 342 stsizeof(ipf_main_softc_t, ipf_tcpidletimeout), 343 0, NULL, ipf_settimeout }, 344 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) }, 345 "tcp_close_wait", 1, 0x7fffffff, 346 stsizeof(ipf_main_softc_t, ipf_tcpclosewait), 347 0, NULL, ipf_settimeout }, 348 { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) }, 349 "tcp_last_ack", 1, 0x7fffffff, 350 stsizeof(ipf_main_softc_t, ipf_tcplastack), 351 0, NULL, ipf_settimeout }, 352 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) }, 353 "tcp_timeout", 1, 0x7fffffff, 354 stsizeof(ipf_main_softc_t, ipf_tcptimeout), 355 0, NULL, ipf_settimeout }, 356 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) }, 357 "tcp_syn_sent", 1, 0x7fffffff, 358 stsizeof(ipf_main_softc_t, ipf_tcpsynsent), 359 0, NULL, ipf_settimeout }, 360 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) }, 361 "tcp_syn_received", 1, 0x7fffffff, 362 stsizeof(ipf_main_softc_t, ipf_tcpsynrecv), 363 0, NULL, ipf_settimeout }, 364 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) }, 365 "tcp_closed", 1, 0x7fffffff, 366 stsizeof(ipf_main_softc_t, ipf_tcpclosed), 367 0, NULL, ipf_settimeout }, 368 { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) }, 369 "tcp_half_closed", 1, 0x7fffffff, 370 stsizeof(ipf_main_softc_t, ipf_tcphalfclosed), 371 0, NULL, ipf_settimeout }, 372 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) }, 373 "tcp_time_wait", 1, 0x7fffffff, 374 stsizeof(ipf_main_softc_t, ipf_tcptimewait), 375 0, NULL, ipf_settimeout }, 376 { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) }, 377 "udp_timeout", 1, 0x7fffffff, 378 stsizeof(ipf_main_softc_t, ipf_udptimeout), 379 0, NULL, ipf_settimeout }, 380 { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) }, 381 "udp_ack_timeout", 1, 0x7fffffff, 382 stsizeof(ipf_main_softc_t, ipf_udpacktimeout), 383 0, NULL, ipf_settimeout }, 384 { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) }, 385 "icmp_timeout", 1, 0x7fffffff, 386 stsizeof(ipf_main_softc_t, ipf_icmptimeout), 387 0, NULL, ipf_settimeout }, 388 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) }, 389 "icmp_ack_timeout", 1, 0x7fffffff, 390 stsizeof(ipf_main_softc_t, ipf_icmpacktimeout), 391 0, NULL, ipf_settimeout }, 392 { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) }, 393 "ip_timeout", 1, 0x7fffffff, 394 stsizeof(ipf_main_softc_t, ipf_iptimeout), 395 0, NULL, ipf_settimeout }, 396 #if defined(INSTANCES) && defined(_KERNEL) 397 { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) }, 398 "intercept_loopback", 0, 1, 399 stsizeof(ipf_main_softc_t, ipf_get_loopback), 400 0, NULL, ipf_set_loopback }, 401 #endif 402 { { 0 }, 403 NULL, 0, 0, 404 0, 405 0, NULL, NULL } 406 }; 407 408 409 /* 410 * The next section of code is a a collection of small routines that set 411 * fields in the fr_info_t structure passed based on properties of the 412 * current packet. There are different routines for the same protocol 413 * for each of IPv4 and IPv6. Adding a new protocol, for which there 414 * will "special" inspection for setup, is now more easily done by adding 415 * a new routine and expanding the ipf_pr_ipinit*() function rather than by 416 * adding more code to a growing switch statement. 417 */ 418 #ifdef USE_INET6 419 static INLINE int ipf_pr_ah6(fr_info_t *); 420 static INLINE void ipf_pr_esp6(fr_info_t *); 421 static INLINE void ipf_pr_gre6(fr_info_t *); 422 static INLINE void ipf_pr_udp6(fr_info_t *); 423 static INLINE void ipf_pr_tcp6(fr_info_t *); 424 static INLINE void ipf_pr_icmp6(fr_info_t *); 425 static INLINE void ipf_pr_ipv6hdr(fr_info_t *); 426 static INLINE void ipf_pr_short6(fr_info_t *, int); 427 static INLINE int ipf_pr_hopopts6(fr_info_t *); 428 static INLINE int ipf_pr_mobility6(fr_info_t *); 429 static INLINE int ipf_pr_routing6(fr_info_t *); 430 static INLINE int ipf_pr_dstopts6(fr_info_t *); 431 static INLINE int ipf_pr_fragment6(fr_info_t *); 432 static INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int); 433 434 435 /* ------------------------------------------------------------------------ */ 436 /* Function: ipf_pr_short6 */ 437 /* Returns: void */ 438 /* Parameters: fin(I) - pointer to packet information */ 439 /* xmin(I) - minimum header size */ 440 /* */ 441 /* IPv6 Only */ 442 /* This is function enforces the 'is a packet too short to be legit' rule */ 443 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 444 /* for ipf_pr_short() for more details. */ 445 /* ------------------------------------------------------------------------ */ 446 static INLINE void 447 ipf_pr_short6(fr_info_t *fin, int xmin) 448 { 449 450 if (fin->fin_dlen < xmin) 451 fin->fin_flx |= FI_SHORT; 452 } 453 454 455 /* ------------------------------------------------------------------------ */ 456 /* Function: ipf_pr_ipv6hdr */ 457 /* Returns: void */ 458 /* Parameters: fin(I) - pointer to packet information */ 459 /* */ 460 /* IPv6 Only */ 461 /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 462 /* per-protocol analyzer if it exists. In validating the packet, a protocol*/ 463 /* analyzer may pullup or free the packet itself so we need to be vigiliant */ 464 /* of that possibility arising. */ 465 /* ------------------------------------------------------------------------ */ 466 static INLINE void 467 ipf_pr_ipv6hdr(fr_info_t *fin) 468 { 469 ip6_t *ip6 = (ip6_t *)fin->fin_ip; 470 int p, go = 1, i, hdrcount; 471 fr_ip_t *fi = &fin->fin_fi; 472 473 fin->fin_off = 0; 474 475 fi->fi_tos = 0; 476 fi->fi_optmsk = 0; 477 fi->fi_secmsk = 0; 478 fi->fi_auth = 0; 479 480 p = ip6->ip6_nxt; 481 fin->fin_crc = p; 482 fi->fi_ttl = ip6->ip6_hlim; 483 fi->fi_src.in6 = ip6->ip6_src; 484 fin->fin_crc += fi->fi_src.i6[0]; 485 fin->fin_crc += fi->fi_src.i6[1]; 486 fin->fin_crc += fi->fi_src.i6[2]; 487 fin->fin_crc += fi->fi_src.i6[3]; 488 fi->fi_dst.in6 = ip6->ip6_dst; 489 fin->fin_crc += fi->fi_dst.i6[0]; 490 fin->fin_crc += fi->fi_dst.i6[1]; 491 fin->fin_crc += fi->fi_dst.i6[2]; 492 fin->fin_crc += fi->fi_dst.i6[3]; 493 fin->fin_id = 0; 494 if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6)) 495 fin->fin_flx |= FI_MULTICAST|FI_MBCAST; 496 497 hdrcount = 0; 498 while (go && !(fin->fin_flx & FI_SHORT)) { 499 switch (p) 500 { 501 case IPPROTO_UDP : 502 ipf_pr_udp6(fin); 503 go = 0; 504 break; 505 506 case IPPROTO_TCP : 507 ipf_pr_tcp6(fin); 508 go = 0; 509 break; 510 511 case IPPROTO_ICMPV6 : 512 ipf_pr_icmp6(fin); 513 go = 0; 514 break; 515 516 case IPPROTO_GRE : 517 ipf_pr_gre6(fin); 518 go = 0; 519 break; 520 521 case IPPROTO_HOPOPTS : 522 p = ipf_pr_hopopts6(fin); 523 break; 524 525 case IPPROTO_MOBILITY : 526 p = ipf_pr_mobility6(fin); 527 break; 528 529 case IPPROTO_DSTOPTS : 530 p = ipf_pr_dstopts6(fin); 531 break; 532 533 case IPPROTO_ROUTING : 534 p = ipf_pr_routing6(fin); 535 break; 536 537 case IPPROTO_AH : 538 p = ipf_pr_ah6(fin); 539 break; 540 541 case IPPROTO_ESP : 542 ipf_pr_esp6(fin); 543 go = 0; 544 break; 545 546 case IPPROTO_IPV6 : 547 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 548 if (ip6exthdr[i].ol_val == p) { 549 fin->fin_flx |= ip6exthdr[i].ol_bit; 550 break; 551 } 552 go = 0; 553 break; 554 555 case IPPROTO_NONE : 556 go = 0; 557 break; 558 559 case IPPROTO_FRAGMENT : 560 p = ipf_pr_fragment6(fin); 561 /* 562 * Given that the only fragments we want to let through 563 * (where fin_off != 0) are those where the non-first 564 * fragments only have data, we can safely stop looking 565 * at headers if this is a non-leading fragment. 566 */ 567 if (fin->fin_off != 0) 568 go = 0; 569 break; 570 571 default : 572 go = 0; 573 break; 574 } 575 hdrcount++; 576 577 /* 578 * It is important to note that at this point, for the 579 * extension headers (go != 0), the entire header may not have 580 * been pulled up when the code gets to this point. This is 581 * only done for "go != 0" because the other header handlers 582 * will all pullup their complete header. The other indicator 583 * of an incomplete packet is that this was just an extension 584 * header. 585 */ 586 if ((go != 0) && (p != IPPROTO_NONE) && 587 (ipf_pr_pullup(fin, 0) == -1)) { 588 p = IPPROTO_NONE; 589 break; 590 } 591 } 592 593 /* 594 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup 595 * and destroy whatever packet was here. The caller of this function 596 * expects us to return if there is a problem with ipf_pullup. 597 */ 598 if (fin->fin_m == NULL) { 599 ipf_main_softc_t *softc = fin->fin_main_soft; 600 601 LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad); 602 return; 603 } 604 605 fi->fi_p = p; 606 607 /* 608 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6(). 609 * "go != 0" imples the above loop hasn't arrived at a layer 4 header. 610 */ 611 if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) { 612 ipf_main_softc_t *softc = fin->fin_main_soft; 613 614 fin->fin_flx |= FI_BAD; 615 DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go); 616 LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag); 617 LBUMP(ipf_stats[fin->fin_out].fr_v6_bad); 618 } 619 } 620 621 622 /* ------------------------------------------------------------------------ */ 623 /* Function: ipf_pr_ipv6exthdr */ 624 /* Returns: struct ip6_ext * - pointer to the start of the next header */ 625 /* or NULL if there is a prolblem. */ 626 /* Parameters: fin(I) - pointer to packet information */ 627 /* multiple(I) - flag indicating yes/no if multiple occurances */ 628 /* of this extension header are allowed. */ 629 /* proto(I) - protocol number for this extension header */ 630 /* */ 631 /* IPv6 Only */ 632 /* This function embodies a number of common checks that all IPv6 extension */ 633 /* headers must be subjected to. For example, making sure the packet is */ 634 /* big enough for it to be in, checking if it is repeated and setting a */ 635 /* flag to indicate its presence. */ 636 /* ------------------------------------------------------------------------ */ 637 static INLINE struct ip6_ext * 638 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto) 639 { 640 ipf_main_softc_t *softc = fin->fin_main_soft; 641 struct ip6_ext *hdr; 642 u_short shift; 643 int i; 644 645 fin->fin_flx |= FI_V6EXTHDR; 646 647 /* 8 is default length of extension hdr */ 648 if ((fin->fin_dlen - 8) < 0) { 649 fin->fin_flx |= FI_SHORT; 650 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short); 651 return NULL; 652 } 653 654 if (ipf_pr_pullup(fin, 8) == -1) { 655 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup); 656 return NULL; 657 } 658 659 hdr = fin->fin_dp; 660 switch (proto) 661 { 662 case IPPROTO_FRAGMENT : 663 shift = 8; 664 break; 665 default : 666 shift = 8 + (hdr->ip6e_len << 3); 667 break; 668 } 669 670 if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 671 fin->fin_flx |= FI_BAD; 672 DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen); 673 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen); 674 return NULL; 675 } 676 677 fin->fin_dp = (char *)fin->fin_dp + shift; 678 fin->fin_dlen -= shift; 679 680 /* 681 * If we have seen a fragment header, do not set any flags to indicate 682 * the presence of this extension header as it has no impact on the 683 * end result until after it has been defragmented. 684 */ 685 if (fin->fin_flx & FI_FRAG) 686 return hdr; 687 688 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 689 if (ip6exthdr[i].ol_val == proto) { 690 /* 691 * Most IPv6 extension headers are only allowed once. 692 */ 693 if ((multiple == 0) && 694 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) { 695 fin->fin_flx |= FI_BAD; 696 DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit)); 697 } else 698 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 699 break; 700 } 701 702 return hdr; 703 } 704 705 706 /* ------------------------------------------------------------------------ */ 707 /* Function: ipf_pr_hopopts6 */ 708 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 709 /* Parameters: fin(I) - pointer to packet information */ 710 /* */ 711 /* IPv6 Only */ 712 /* This is function checks pending hop by hop options extension header */ 713 /* ------------------------------------------------------------------------ */ 714 static INLINE int 715 ipf_pr_hopopts6(fr_info_t *fin) 716 { 717 struct ip6_ext *hdr; 718 719 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 720 if (hdr == NULL) 721 return IPPROTO_NONE; 722 return hdr->ip6e_nxt; 723 } 724 725 726 /* ------------------------------------------------------------------------ */ 727 /* Function: ipf_pr_mobility6 */ 728 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 729 /* Parameters: fin(I) - pointer to packet information */ 730 /* */ 731 /* IPv6 Only */ 732 /* This is function checks the IPv6 mobility extension header */ 733 /* ------------------------------------------------------------------------ */ 734 static INLINE int 735 ipf_pr_mobility6(fr_info_t *fin) 736 { 737 struct ip6_ext *hdr; 738 739 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY); 740 if (hdr == NULL) 741 return IPPROTO_NONE; 742 return hdr->ip6e_nxt; 743 } 744 745 746 /* ------------------------------------------------------------------------ */ 747 /* Function: ipf_pr_routing6 */ 748 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 749 /* Parameters: fin(I) - pointer to packet information */ 750 /* */ 751 /* IPv6 Only */ 752 /* This is function checks pending routing extension header */ 753 /* ------------------------------------------------------------------------ */ 754 static INLINE int 755 ipf_pr_routing6(fr_info_t *fin) 756 { 757 struct ip6_routing *hdr; 758 759 hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING); 760 if (hdr == NULL) 761 return IPPROTO_NONE; 762 763 switch (hdr->ip6r_type) 764 { 765 case 0 : 766 /* 767 * Nasty extension header length? 768 */ 769 if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) || 770 (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) { 771 ipf_main_softc_t *softc = fin->fin_main_soft; 772 773 fin->fin_flx |= FI_BAD; 774 DT1(ipf_fi_bad_routing6, fr_info_t *, fin); 775 LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad); 776 return IPPROTO_NONE; 777 } 778 break; 779 780 default : 781 break; 782 } 783 784 return hdr->ip6r_nxt; 785 } 786 787 788 /* ------------------------------------------------------------------------ */ 789 /* Function: ipf_pr_fragment6 */ 790 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 791 /* Parameters: fin(I) - pointer to packet information */ 792 /* */ 793 /* IPv6 Only */ 794 /* Examine the IPv6 fragment header and extract fragment offset information.*/ 795 /* */ 796 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */ 797 /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */ 798 /* packets with a fragment header can fit into. They are as follows: */ 799 /* */ 800 /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */ 801 /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */ 802 /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */ 803 /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */ 804 /* 5. [IPV6][0-n EH][FH][data] */ 805 /* */ 806 /* IPV6 = IPv6 header, FH = Fragment Header, */ 807 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */ 808 /* */ 809 /* Packets that match 1, 2, 3 will be dropped as the only reasonable */ 810 /* scenario in which they happen is in extreme circumstances that are most */ 811 /* likely to be an indication of an attack rather than normal traffic. */ 812 /* A type 3 packet may be sent by an attacked after a type 4 packet. There */ 813 /* are two rules that can be used to guard against type 3 packets: L4 */ 814 /* headers must always be in a packet that has the offset field set to 0 */ 815 /* and no packet is allowed to overlay that where offset = 0. */ 816 /* ------------------------------------------------------------------------ */ 817 static INLINE int 818 ipf_pr_fragment6(fr_info_t *fin) 819 { 820 ipf_main_softc_t *softc = fin->fin_main_soft; 821 struct ip6_frag *frag; 822 823 fin->fin_flx |= FI_FRAG; 824 825 frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT); 826 if (frag == NULL) { 827 LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad); 828 return IPPROTO_NONE; 829 } 830 831 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) { 832 /* 833 * Any fragment that isn't the last fragment must have its 834 * length as a multiple of 8. 835 */ 836 if ((fin->fin_plen & 7) != 0) { 837 fin->fin_flx |= FI_BAD; 838 DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7)); 839 } 840 } 841 842 fin->fin_fraghdr = frag; 843 fin->fin_id = frag->ip6f_ident; 844 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK); 845 if (fin->fin_off != 0) 846 fin->fin_flx |= FI_FRAGBODY; 847 848 /* 849 * Jumbograms aren't handled, so the max. length is 64k 850 */ 851 if ((fin->fin_off << 3) + fin->fin_dlen > 65535) { 852 fin->fin_flx |= FI_BAD; 853 DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen)); 854 } 855 856 /* 857 * We don't know where the transport layer header (or whatever is next 858 * is), as it could be behind destination options (amongst others) so 859 * return the fragment header as the type of packet this is. Note that 860 * this effectively disables the fragment cache for > 1 protocol at a 861 * time. 862 */ 863 return frag->ip6f_nxt; 864 } 865 866 867 /* ------------------------------------------------------------------------ */ 868 /* Function: ipf_pr_dstopts6 */ 869 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 870 /* Parameters: fin(I) - pointer to packet information */ 871 /* */ 872 /* IPv6 Only */ 873 /* This is function checks pending destination options extension header */ 874 /* ------------------------------------------------------------------------ */ 875 static INLINE int 876 ipf_pr_dstopts6(fr_info_t *fin) 877 { 878 ipf_main_softc_t *softc = fin->fin_main_soft; 879 struct ip6_ext *hdr; 880 881 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS); 882 if (hdr == NULL) { 883 LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad); 884 return IPPROTO_NONE; 885 } 886 return hdr->ip6e_nxt; 887 } 888 889 890 /* ------------------------------------------------------------------------ */ 891 /* Function: ipf_pr_icmp6 */ 892 /* Returns: void */ 893 /* Parameters: fin(I) - pointer to packet information */ 894 /* */ 895 /* IPv6 Only */ 896 /* This routine is mainly concerned with determining the minimum valid size */ 897 /* for an ICMPv6 packet. */ 898 /* ------------------------------------------------------------------------ */ 899 static INLINE void 900 ipf_pr_icmp6(fr_info_t *fin) 901 { 902 int minicmpsz = sizeof(struct icmp6_hdr); 903 struct icmp6_hdr *icmp6; 904 905 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) { 906 ipf_main_softc_t *softc = fin->fin_main_soft; 907 908 LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup); 909 return; 910 } 911 912 if (fin->fin_dlen > 1) { 913 ip6_t *ip6; 914 915 icmp6 = fin->fin_dp; 916 917 fin->fin_data[0] = *(u_short *)icmp6; 918 919 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) 920 fin->fin_flx |= FI_ICMPQUERY; 921 922 switch (icmp6->icmp6_type) 923 { 924 case ICMP6_ECHO_REPLY : 925 case ICMP6_ECHO_REQUEST : 926 if (fin->fin_dlen >= 6) 927 fin->fin_data[1] = icmp6->icmp6_id; 928 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 929 break; 930 931 case ICMP6_DST_UNREACH : 932 case ICMP6_PACKET_TOO_BIG : 933 case ICMP6_TIME_EXCEEDED : 934 case ICMP6_PARAM_PROB : 935 fin->fin_flx |= FI_ICMPERR; 936 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 937 if (fin->fin_plen < ICMP6ERR_IPICMPHLEN) 938 break; 939 940 if (M_LEN(fin->fin_m) < fin->fin_plen) { 941 if (ipf_coalesce(fin) != 1) 942 return; 943 } 944 945 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1) 946 return; 947 948 /* 949 * If the destination of this packet doesn't match the 950 * source of the original packet then this packet is 951 * not correct. 952 */ 953 icmp6 = fin->fin_dp; 954 ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN); 955 if (IP6_NEQ(&fin->fin_fi.fi_dst, 956 &ip6->ip6_src)) { 957 fin->fin_flx |= FI_BAD; 958 DT1(ipf_fi_bad_icmp6, fr_info_t *, fin); 959 } 960 break; 961 default : 962 break; 963 } 964 } 965 966 ipf_pr_short6(fin, minicmpsz); 967 if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) { 968 u_char p = fin->fin_p; 969 970 fin->fin_p = IPPROTO_ICMPV6; 971 ipf_checkv6sum(fin); 972 fin->fin_p = p; 973 } 974 } 975 976 977 /* ------------------------------------------------------------------------ */ 978 /* Function: ipf_pr_udp6 */ 979 /* Returns: void */ 980 /* Parameters: fin(I) - pointer to packet information */ 981 /* */ 982 /* IPv6 Only */ 983 /* Analyse the packet for IPv6/UDP properties. */ 984 /* Is not expected to be called for fragmented packets. */ 985 /* ------------------------------------------------------------------------ */ 986 static INLINE void 987 ipf_pr_udp6(fr_info_t *fin) 988 { 989 990 if (ipf_pr_udpcommon(fin) == 0) { 991 u_char p = fin->fin_p; 992 993 fin->fin_p = IPPROTO_UDP; 994 ipf_checkv6sum(fin); 995 fin->fin_p = p; 996 } 997 } 998 999 1000 /* ------------------------------------------------------------------------ */ 1001 /* Function: ipf_pr_tcp6 */ 1002 /* Returns: void */ 1003 /* Parameters: fin(I) - pointer to packet information */ 1004 /* */ 1005 /* IPv6 Only */ 1006 /* Analyse the packet for IPv6/TCP properties. */ 1007 /* Is not expected to be called for fragmented packets. */ 1008 /* ------------------------------------------------------------------------ */ 1009 static INLINE void 1010 ipf_pr_tcp6(fr_info_t *fin) 1011 { 1012 1013 if (ipf_pr_tcpcommon(fin) == 0) { 1014 u_char p = fin->fin_p; 1015 1016 fin->fin_p = IPPROTO_TCP; 1017 ipf_checkv6sum(fin); 1018 fin->fin_p = p; 1019 } 1020 } 1021 1022 1023 /* ------------------------------------------------------------------------ */ 1024 /* Function: ipf_pr_esp6 */ 1025 /* Returns: void */ 1026 /* Parameters: fin(I) - pointer to packet information */ 1027 /* */ 1028 /* IPv6 Only */ 1029 /* Analyse the packet for ESP properties. */ 1030 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1031 /* even though the newer ESP packets must also have a sequence number that */ 1032 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1033 /* simple packet header. */ 1034 /* ------------------------------------------------------------------------ */ 1035 static INLINE void 1036 ipf_pr_esp6(fr_info_t *fin) 1037 { 1038 1039 if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) { 1040 ipf_main_softc_t *softc = fin->fin_main_soft; 1041 1042 LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup); 1043 return; 1044 } 1045 } 1046 1047 1048 /* ------------------------------------------------------------------------ */ 1049 /* Function: ipf_pr_ah6 */ 1050 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 1051 /* Parameters: fin(I) - pointer to packet information */ 1052 /* */ 1053 /* IPv6 Only */ 1054 /* Analyse the packet for AH properties. */ 1055 /* The minimum length is taken to be the combination of all fields in the */ 1056 /* header being present and no authentication data (null algorithm used.) */ 1057 /* ------------------------------------------------------------------------ */ 1058 static INLINE int 1059 ipf_pr_ah6(fr_info_t *fin) 1060 { 1061 authhdr_t *ah; 1062 1063 fin->fin_flx |= FI_AH; 1064 1065 ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 1066 if (ah == NULL) { 1067 ipf_main_softc_t *softc = fin->fin_main_soft; 1068 1069 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad); 1070 return IPPROTO_NONE; 1071 } 1072 1073 ipf_pr_short6(fin, sizeof(*ah)); 1074 1075 /* 1076 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup 1077 * enough data to satisfy ah_next (the very first one.) 1078 */ 1079 return ah->ah_next; 1080 } 1081 1082 1083 /* ------------------------------------------------------------------------ */ 1084 /* Function: ipf_pr_gre6 */ 1085 /* Returns: void */ 1086 /* Parameters: fin(I) - pointer to packet information */ 1087 /* */ 1088 /* Analyse the packet for GRE properties. */ 1089 /* ------------------------------------------------------------------------ */ 1090 static INLINE void 1091 ipf_pr_gre6(fr_info_t *fin) 1092 { 1093 grehdr_t *gre; 1094 1095 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { 1096 ipf_main_softc_t *softc = fin->fin_main_soft; 1097 1098 LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup); 1099 return; 1100 } 1101 1102 gre = fin->fin_dp; 1103 if (GRE_REV(gre->gr_flags) == 1) 1104 fin->fin_data[0] = gre->gr_call; 1105 } 1106 #endif /* USE_INET6 */ 1107 1108 1109 /* ------------------------------------------------------------------------ */ 1110 /* Function: ipf_pr_pullup */ 1111 /* Returns: int - 0 == pullup succeeded, -1 == failure */ 1112 /* Parameters: fin(I) - pointer to packet information */ 1113 /* plen(I) - length (excluding L3 header) to pullup */ 1114 /* */ 1115 /* Short inline function to cut down on code duplication to perform a call */ 1116 /* to ipf_pullup to ensure there is the required amount of data, */ 1117 /* consecutively in the packet buffer. */ 1118 /* */ 1119 /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */ 1120 /* points to the first byte after the complete layer 3 header, which will */ 1121 /* include all of the known extension headers for IPv6 or options for IPv4. */ 1122 /* */ 1123 /* Since fr_pullup() expects the total length of bytes to be pulled up, it */ 1124 /* is necessary to add those we can already assume to be pulled up (fin_dp */ 1125 /* - fin_ip) to what is passed through. */ 1126 /* ------------------------------------------------------------------------ */ 1127 int 1128 ipf_pr_pullup(fr_info_t *fin, int plen) 1129 { 1130 ipf_main_softc_t *softc = fin->fin_main_soft; 1131 1132 if (fin->fin_m != NULL) { 1133 if (fin->fin_dp != NULL) 1134 plen += (char *)fin->fin_dp - 1135 ((char *)fin->fin_ip + fin->fin_hlen); 1136 plen += fin->fin_hlen; 1137 if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) { 1138 #if defined(_KERNEL) 1139 if (ipf_pullup(fin->fin_m, fin, plen) == NULL) { 1140 DT(ipf_pullup_fail); 1141 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); 1142 return -1; 1143 } 1144 LBUMP(ipf_stats[fin->fin_out].fr_pull[0]); 1145 #else 1146 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); 1147 /* 1148 * Fake ipf_pullup failing 1149 */ 1150 fin->fin_reason = FRB_PULLUP; 1151 *fin->fin_mp = NULL; 1152 fin->fin_m = NULL; 1153 fin->fin_ip = NULL; 1154 return -1; 1155 #endif 1156 } 1157 } 1158 return 0; 1159 } 1160 1161 1162 /* ------------------------------------------------------------------------ */ 1163 /* Function: ipf_pr_short */ 1164 /* Returns: void */ 1165 /* Parameters: fin(I) - pointer to packet information */ 1166 /* xmin(I) - minimum header size */ 1167 /* */ 1168 /* Check if a packet is "short" as defined by xmin. The rule we are */ 1169 /* applying here is that the packet must not be fragmented within the layer */ 1170 /* 4 header. That is, it must not be a fragment that has its offset set to */ 1171 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 1172 /* entire layer 4 header must be present (min). */ 1173 /* ------------------------------------------------------------------------ */ 1174 static INLINE void 1175 ipf_pr_short(fr_info_t *fin, int xmin) 1176 { 1177 1178 if (fin->fin_off == 0) { 1179 if (fin->fin_dlen < xmin) 1180 fin->fin_flx |= FI_SHORT; 1181 } else if (fin->fin_off < xmin) { 1182 fin->fin_flx |= FI_SHORT; 1183 } 1184 } 1185 1186 1187 /* ------------------------------------------------------------------------ */ 1188 /* Function: ipf_pr_icmp */ 1189 /* Returns: void */ 1190 /* Parameters: fin(I) - pointer to packet information */ 1191 /* */ 1192 /* IPv4 Only */ 1193 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 1194 /* except extrememly bad packets, both type and code will be present. */ 1195 /* The expected minimum size of an ICMP packet is very much dependent on */ 1196 /* the type of it. */ 1197 /* */ 1198 /* XXX - other ICMP sanity checks? */ 1199 /* ------------------------------------------------------------------------ */ 1200 static INLINE void 1201 ipf_pr_icmp(fr_info_t *fin) 1202 { 1203 ipf_main_softc_t *softc = fin->fin_main_soft; 1204 int minicmpsz = sizeof(struct icmp); 1205 icmphdr_t *icmp; 1206 ip_t *oip; 1207 1208 ipf_pr_short(fin, ICMPERR_ICMPHLEN); 1209 1210 if (fin->fin_off != 0) { 1211 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag); 1212 return; 1213 } 1214 1215 if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) { 1216 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup); 1217 return; 1218 } 1219 1220 icmp = fin->fin_dp; 1221 1222 fin->fin_data[0] = *(u_short *)icmp; 1223 fin->fin_data[1] = icmp->icmp_id; 1224 1225 switch (icmp->icmp_type) 1226 { 1227 case ICMP_ECHOREPLY : 1228 case ICMP_ECHO : 1229 /* Router discovery messaes - RFC 1256 */ 1230 case ICMP_ROUTERADVERT : 1231 case ICMP_ROUTERSOLICIT : 1232 fin->fin_flx |= FI_ICMPQUERY; 1233 minicmpsz = ICMP_MINLEN; 1234 break; 1235 /* 1236 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 1237 * 3 * timestamp(3 * 4) 1238 */ 1239 case ICMP_TSTAMP : 1240 case ICMP_TSTAMPREPLY : 1241 fin->fin_flx |= FI_ICMPQUERY; 1242 minicmpsz = 20; 1243 break; 1244 /* 1245 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 1246 * mask(4) 1247 */ 1248 case ICMP_IREQ : 1249 case ICMP_IREQREPLY : 1250 case ICMP_MASKREQ : 1251 case ICMP_MASKREPLY : 1252 fin->fin_flx |= FI_ICMPQUERY; 1253 minicmpsz = 12; 1254 break; 1255 /* 1256 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 1257 */ 1258 case ICMP_UNREACH : 1259 #ifdef icmp_nextmtu 1260 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 1261 if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) { 1262 fin->fin_flx |= FI_BAD; 1263 DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu); 1264 } 1265 } 1266 #endif 1267 case ICMP_SOURCEQUENCH : 1268 case ICMP_REDIRECT : 1269 case ICMP_TIMXCEED : 1270 case ICMP_PARAMPROB : 1271 fin->fin_flx |= FI_ICMPERR; 1272 if (ipf_coalesce(fin) != 1) { 1273 LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce); 1274 return; 1275 } 1276 1277 /* 1278 * ICMP error packets should not be generated for IP 1279 * packets that are a fragment that isn't the first 1280 * fragment. 1281 */ 1282 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1283 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) { 1284 fin->fin_flx |= FI_BAD; 1285 DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK)); 1286 } 1287 1288 /* 1289 * If the destination of this packet doesn't match the 1290 * source of the original packet then this packet is 1291 * not correct. 1292 */ 1293 if (oip->ip_src.s_addr != fin->fin_daddr) { 1294 fin->fin_flx |= FI_BAD; 1295 DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin); 1296 } 1297 break; 1298 default : 1299 break; 1300 } 1301 1302 ipf_pr_short(fin, minicmpsz); 1303 1304 ipf_checkv4sum(fin); 1305 } 1306 1307 1308 /* ------------------------------------------------------------------------ */ 1309 /* Function: ipf_pr_tcpcommon */ 1310 /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */ 1311 /* Parameters: fin(I) - pointer to packet information */ 1312 /* */ 1313 /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1314 /* and make some checks with how they interact with other fields. */ 1315 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1316 /* valid and mark the packet as bad if not. */ 1317 /* ------------------------------------------------------------------------ */ 1318 static INLINE int 1319 ipf_pr_tcpcommon(fr_info_t *fin) 1320 { 1321 ipf_main_softc_t *softc = fin->fin_main_soft; 1322 int flags, tlen; 1323 tcphdr_t *tcp; 1324 1325 fin->fin_flx |= FI_TCPUDP; 1326 if (fin->fin_off != 0) { 1327 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag); 1328 return 0; 1329 } 1330 1331 if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) { 1332 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); 1333 return -1; 1334 } 1335 1336 tcp = fin->fin_dp; 1337 if (fin->fin_dlen > 3) { 1338 fin->fin_sport = ntohs(tcp->th_sport); 1339 fin->fin_dport = ntohs(tcp->th_dport); 1340 } 1341 1342 if ((fin->fin_flx & FI_SHORT) != 0) { 1343 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short); 1344 return 1; 1345 } 1346 1347 /* 1348 * Use of the TCP data offset *must* result in a value that is at 1349 * least the same size as the TCP header. 1350 */ 1351 tlen = TCP_OFF(tcp) << 2; 1352 if (tlen < sizeof(tcphdr_t)) { 1353 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small); 1354 fin->fin_flx |= FI_BAD; 1355 DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t)); 1356 return 1; 1357 } 1358 1359 flags = tcp->th_flags; 1360 fin->fin_tcpf = tcp->th_flags; 1361 1362 /* 1363 * If the urgent flag is set, then the urgent pointer must 1364 * also be set and vice versa. Good TCP packets do not have 1365 * just one of these set. 1366 */ 1367 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1368 fin->fin_flx |= FI_BAD; 1369 DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp); 1370 #if 0 1371 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1372 /* 1373 * Ignore this case (#if 0) as it shows up in "real" 1374 * traffic with bogus values in the urgent pointer field. 1375 */ 1376 fin->fin_flx |= FI_BAD; 1377 DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp); 1378 #endif 1379 } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1380 ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1381 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1382 fin->fin_flx |= FI_BAD; 1383 DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin); 1384 #if 1 1385 } else if (((flags & TH_SYN) != 0) && 1386 ((flags & (TH_URG|TH_PUSH)) != 0)) { 1387 /* 1388 * SYN with URG and PUSH set is not for normal TCP but it is 1389 * possible(?) with T/TCP...but who uses T/TCP? 1390 */ 1391 fin->fin_flx |= FI_BAD; 1392 DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin); 1393 #endif 1394 } else if (!(flags & TH_ACK)) { 1395 /* 1396 * If the ack bit isn't set, then either the SYN or 1397 * RST bit must be set. If the SYN bit is set, then 1398 * we expect the ACK field to be 0. If the ACK is 1399 * not set and if URG, PSH or FIN are set, consdier 1400 * that to indicate a bad TCP packet. 1401 */ 1402 if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1403 /* 1404 * Cisco PIX sets the ACK field to a random value. 1405 * In light of this, do not set FI_BAD until a patch 1406 * is available from Cisco to ensure that 1407 * interoperability between existing systems is 1408 * achieved. 1409 */ 1410 /*fin->fin_flx |= FI_BAD*/; 1411 /*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/ 1412 } else if (!(flags & (TH_RST|TH_SYN))) { 1413 fin->fin_flx |= FI_BAD; 1414 DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin); 1415 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1416 fin->fin_flx |= FI_BAD; 1417 DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin); 1418 } 1419 } 1420 if (fin->fin_flx & FI_BAD) { 1421 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags); 1422 return 1; 1423 } 1424 1425 /* 1426 * At this point, it's not exactly clear what is to be gained by 1427 * marking up which TCP options are and are not present. The one we 1428 * are most interested in is the TCP window scale. This is only in 1429 * a SYN packet [RFC1323] so we don't need this here...? 1430 * Now if we were to analyse the header for passive fingerprinting, 1431 * then that might add some weight to adding this... 1432 */ 1433 if (tlen == sizeof(tcphdr_t)) { 1434 return 0; 1435 } 1436 1437 if (ipf_pr_pullup(fin, tlen) == -1) { 1438 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); 1439 return -1; 1440 } 1441 1442 #if 0 1443 tcp = fin->fin_dp; 1444 ip = fin->fin_ip; 1445 s = (u_char *)(tcp + 1); 1446 off = IP_HL(ip) << 2; 1447 # ifdef _KERNEL 1448 if (fin->fin_mp != NULL) { 1449 mb_t *m = *fin->fin_mp; 1450 1451 if (off + tlen > M_LEN(m)) 1452 return; 1453 } 1454 # endif 1455 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1456 opt = *s; 1457 if (opt == '\0') 1458 break; 1459 else if (opt == TCPOPT_NOP) 1460 ol = 1; 1461 else { 1462 if (tlen < 2) 1463 break; 1464 ol = (int)*(s + 1); 1465 if (ol < 2 || ol > tlen) 1466 break; 1467 } 1468 1469 for (i = 9, mv = 4; mv >= 0; ) { 1470 op = ipopts + i; 1471 if (opt == (u_char)op->ol_val) { 1472 optmsk |= op->ol_bit; 1473 break; 1474 } 1475 } 1476 tlen -= ol; 1477 s += ol; 1478 } 1479 #endif /* 0 */ 1480 1481 return 0; 1482 } 1483 1484 1485 1486 /* ------------------------------------------------------------------------ */ 1487 /* Function: ipf_pr_udpcommon */ 1488 /* Returns: int - 0 = header ok, 1 = bad packet */ 1489 /* Parameters: fin(I) - pointer to packet information */ 1490 /* */ 1491 /* Extract the UDP source and destination ports, if present. If compiled */ 1492 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1493 /* ------------------------------------------------------------------------ */ 1494 static INLINE int 1495 ipf_pr_udpcommon(fr_info_t *fin) 1496 { 1497 udphdr_t *udp; 1498 1499 fin->fin_flx |= FI_TCPUDP; 1500 1501 if (!fin->fin_off && (fin->fin_dlen > 3)) { 1502 if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) { 1503 ipf_main_softc_t *softc = fin->fin_main_soft; 1504 1505 fin->fin_flx |= FI_SHORT; 1506 LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup); 1507 return 1; 1508 } 1509 1510 udp = fin->fin_dp; 1511 1512 fin->fin_sport = ntohs(udp->uh_sport); 1513 fin->fin_dport = ntohs(udp->uh_dport); 1514 } 1515 1516 return 0; 1517 } 1518 1519 1520 /* ------------------------------------------------------------------------ */ 1521 /* Function: ipf_pr_tcp */ 1522 /* Returns: void */ 1523 /* Parameters: fin(I) - pointer to packet information */ 1524 /* */ 1525 /* IPv4 Only */ 1526 /* Analyse the packet for IPv4/TCP properties. */ 1527 /* ------------------------------------------------------------------------ */ 1528 static INLINE void 1529 ipf_pr_tcp(fr_info_t *fin) 1530 { 1531 1532 ipf_pr_short(fin, sizeof(tcphdr_t)); 1533 1534 if (ipf_pr_tcpcommon(fin) == 0) 1535 ipf_checkv4sum(fin); 1536 } 1537 1538 1539 /* ------------------------------------------------------------------------ */ 1540 /* Function: ipf_pr_udp */ 1541 /* Returns: void */ 1542 /* Parameters: fin(I) - pointer to packet information */ 1543 /* */ 1544 /* IPv4 Only */ 1545 /* Analyse the packet for IPv4/UDP properties. */ 1546 /* ------------------------------------------------------------------------ */ 1547 static INLINE void 1548 ipf_pr_udp(fr_info_t *fin) 1549 { 1550 1551 ipf_pr_short(fin, sizeof(udphdr_t)); 1552 1553 if (ipf_pr_udpcommon(fin) == 0) 1554 ipf_checkv4sum(fin); 1555 } 1556 1557 1558 /* ------------------------------------------------------------------------ */ 1559 /* Function: ipf_pr_esp */ 1560 /* Returns: void */ 1561 /* Parameters: fin(I) - pointer to packet information */ 1562 /* */ 1563 /* Analyse the packet for ESP properties. */ 1564 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1565 /* even though the newer ESP packets must also have a sequence number that */ 1566 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1567 /* simple packet header. */ 1568 /* ------------------------------------------------------------------------ */ 1569 static INLINE void 1570 ipf_pr_esp(fr_info_t *fin) 1571 { 1572 1573 if (fin->fin_off == 0) { 1574 ipf_pr_short(fin, 8); 1575 if (ipf_pr_pullup(fin, 8) == -1) { 1576 ipf_main_softc_t *softc = fin->fin_main_soft; 1577 1578 LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup); 1579 } 1580 } 1581 } 1582 1583 1584 /* ------------------------------------------------------------------------ */ 1585 /* Function: ipf_pr_ah */ 1586 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 1587 /* Parameters: fin(I) - pointer to packet information */ 1588 /* */ 1589 /* Analyse the packet for AH properties. */ 1590 /* The minimum length is taken to be the combination of all fields in the */ 1591 /* header being present and no authentication data (null algorithm used.) */ 1592 /* ------------------------------------------------------------------------ */ 1593 static INLINE int 1594 ipf_pr_ah(fr_info_t *fin) 1595 { 1596 ipf_main_softc_t *softc = fin->fin_main_soft; 1597 authhdr_t *ah; 1598 int len; 1599 1600 fin->fin_flx |= FI_AH; 1601 ipf_pr_short(fin, sizeof(*ah)); 1602 1603 if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) { 1604 LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad); 1605 return IPPROTO_NONE; 1606 } 1607 1608 if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) { 1609 DT(fr_v4_ah_pullup_1); 1610 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); 1611 return IPPROTO_NONE; 1612 } 1613 1614 ah = (authhdr_t *)fin->fin_dp; 1615 1616 len = (ah->ah_plen + 2) << 2; 1617 ipf_pr_short(fin, len); 1618 if (ipf_pr_pullup(fin, len) == -1) { 1619 DT(fr_v4_ah_pullup_2); 1620 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); 1621 return IPPROTO_NONE; 1622 } 1623 1624 /* 1625 * Adjust fin_dp and fin_dlen for skipping over the authentication 1626 * header. 1627 */ 1628 fin->fin_dp = (char *)fin->fin_dp + len; 1629 fin->fin_dlen -= len; 1630 return ah->ah_next; 1631 } 1632 1633 1634 /* ------------------------------------------------------------------------ */ 1635 /* Function: ipf_pr_gre */ 1636 /* Returns: void */ 1637 /* Parameters: fin(I) - pointer to packet information */ 1638 /* */ 1639 /* Analyse the packet for GRE properties. */ 1640 /* ------------------------------------------------------------------------ */ 1641 static INLINE void 1642 ipf_pr_gre(fr_info_t *fin) 1643 { 1644 ipf_main_softc_t *softc = fin->fin_main_soft; 1645 grehdr_t *gre; 1646 1647 ipf_pr_short(fin, sizeof(grehdr_t)); 1648 1649 if (fin->fin_off != 0) { 1650 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag); 1651 return; 1652 } 1653 1654 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { 1655 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup); 1656 return; 1657 } 1658 1659 gre = fin->fin_dp; 1660 if (GRE_REV(gre->gr_flags) == 1) 1661 fin->fin_data[0] = gre->gr_call; 1662 } 1663 1664 1665 /* ------------------------------------------------------------------------ */ 1666 /* Function: ipf_pr_ipv4hdr */ 1667 /* Returns: void */ 1668 /* Parameters: fin(I) - pointer to packet information */ 1669 /* */ 1670 /* IPv4 Only */ 1671 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1672 /* Check all options present and flag their presence if any exist. */ 1673 /* ------------------------------------------------------------------------ */ 1674 static INLINE void 1675 ipf_pr_ipv4hdr(fr_info_t *fin) 1676 { 1677 u_short optmsk = 0, secmsk = 0, auth = 0; 1678 int hlen, ol, mv, p, i; 1679 const struct optlist *op; 1680 u_char *s, opt; 1681 u_short off; 1682 fr_ip_t *fi; 1683 ip_t *ip; 1684 1685 fi = &fin->fin_fi; 1686 hlen = fin->fin_hlen; 1687 1688 ip = fin->fin_ip; 1689 p = ip->ip_p; 1690 fi->fi_p = p; 1691 fin->fin_crc = p; 1692 fi->fi_tos = ip->ip_tos; 1693 fin->fin_id = ip->ip_id; 1694 off = ntohs(ip->ip_off); 1695 1696 /* Get both TTL and protocol */ 1697 fi->fi_p = ip->ip_p; 1698 fi->fi_ttl = ip->ip_ttl; 1699 1700 /* Zero out bits not used in IPv6 address */ 1701 fi->fi_src.i6[1] = 0; 1702 fi->fi_src.i6[2] = 0; 1703 fi->fi_src.i6[3] = 0; 1704 fi->fi_dst.i6[1] = 0; 1705 fi->fi_dst.i6[2] = 0; 1706 fi->fi_dst.i6[3] = 0; 1707 1708 fi->fi_saddr = ip->ip_src.s_addr; 1709 fin->fin_crc += fi->fi_saddr; 1710 fi->fi_daddr = ip->ip_dst.s_addr; 1711 fin->fin_crc += fi->fi_daddr; 1712 if (IN_CLASSD(fi->fi_daddr)) 1713 fin->fin_flx |= FI_MULTICAST|FI_MBCAST; 1714 1715 /* 1716 * set packet attribute flags based on the offset and 1717 * calculate the byte offset that it represents. 1718 */ 1719 off &= IP_MF|IP_OFFMASK; 1720 if (off != 0) { 1721 int morefrag = off & IP_MF; 1722 1723 fi->fi_flx |= FI_FRAG; 1724 off &= IP_OFFMASK; 1725 if (off != 0) { 1726 fin->fin_flx |= FI_FRAGBODY; 1727 off <<= 3; 1728 if ((off + fin->fin_dlen > 65535) || 1729 (fin->fin_dlen == 0) || 1730 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) { 1731 /* 1732 * The length of the packet, starting at its 1733 * offset cannot exceed 65535 (0xffff) as the 1734 * length of an IP packet is only 16 bits. 1735 * 1736 * Any fragment that isn't the last fragment 1737 * must have a length greater than 0 and it 1738 * must be an even multiple of 8. 1739 */ 1740 fi->fi_flx |= FI_BAD; 1741 DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin); 1742 } 1743 } 1744 } 1745 fin->fin_off = off; 1746 1747 /* 1748 * Call per-protocol setup and checking 1749 */ 1750 if (p == IPPROTO_AH) { 1751 /* 1752 * Treat AH differently because we expect there to be another 1753 * layer 4 header after it. 1754 */ 1755 p = ipf_pr_ah(fin); 1756 } 1757 1758 switch (p) 1759 { 1760 case IPPROTO_UDP : 1761 ipf_pr_udp(fin); 1762 break; 1763 case IPPROTO_TCP : 1764 ipf_pr_tcp(fin); 1765 break; 1766 case IPPROTO_ICMP : 1767 ipf_pr_icmp(fin); 1768 break; 1769 case IPPROTO_ESP : 1770 ipf_pr_esp(fin); 1771 break; 1772 case IPPROTO_GRE : 1773 ipf_pr_gre(fin); 1774 break; 1775 } 1776 1777 ip = fin->fin_ip; 1778 if (ip == NULL) 1779 return; 1780 1781 /* 1782 * If it is a standard IP header (no options), set the flag fields 1783 * which relate to options to 0. 1784 */ 1785 if (hlen == sizeof(*ip)) { 1786 fi->fi_optmsk = 0; 1787 fi->fi_secmsk = 0; 1788 fi->fi_auth = 0; 1789 return; 1790 } 1791 1792 /* 1793 * So the IP header has some IP options attached. Walk the entire 1794 * list of options present with this packet and set flags to indicate 1795 * which ones are here and which ones are not. For the somewhat out 1796 * of date and obscure security classification options, set a flag to 1797 * represent which classification is present. 1798 */ 1799 fi->fi_flx |= FI_OPTIONS; 1800 1801 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1802 opt = *s; 1803 if (opt == '\0') 1804 break; 1805 else if (opt == IPOPT_NOP) 1806 ol = 1; 1807 else { 1808 if (hlen < 2) 1809 break; 1810 ol = (int)*(s + 1); 1811 if (ol < 2 || ol > hlen) 1812 break; 1813 } 1814 for (i = 9, mv = 4; mv >= 0; ) { 1815 op = ipopts + i; 1816 1817 if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1818 u_32_t doi; 1819 1820 switch (opt) 1821 { 1822 case IPOPT_SECURITY : 1823 if (optmsk & op->ol_bit) { 1824 fin->fin_flx |= FI_BAD; 1825 DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit)); 1826 } else { 1827 doi = ipf_checkripso(s); 1828 secmsk = doi >> 16; 1829 auth = doi & 0xffff; 1830 } 1831 break; 1832 1833 case IPOPT_CIPSO : 1834 1835 if (optmsk & op->ol_bit) { 1836 fin->fin_flx |= FI_BAD; 1837 DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit)); 1838 } else { 1839 doi = ipf_checkcipso(fin, 1840 s, ol); 1841 secmsk = doi >> 16; 1842 auth = doi & 0xffff; 1843 } 1844 break; 1845 } 1846 optmsk |= op->ol_bit; 1847 } 1848 1849 if (opt < op->ol_val) 1850 i -= mv; 1851 else 1852 i += mv; 1853 mv--; 1854 } 1855 hlen -= ol; 1856 s += ol; 1857 } 1858 1859 /* 1860 * 1861 */ 1862 if (auth && !(auth & 0x0100)) 1863 auth &= 0xff00; 1864 fi->fi_optmsk = optmsk; 1865 fi->fi_secmsk = secmsk; 1866 fi->fi_auth = auth; 1867 } 1868 1869 1870 /* ------------------------------------------------------------------------ */ 1871 /* Function: ipf_checkripso */ 1872 /* Returns: void */ 1873 /* Parameters: s(I) - pointer to start of RIPSO option */ 1874 /* */ 1875 /* ------------------------------------------------------------------------ */ 1876 static u_32_t 1877 ipf_checkripso(u_char *s) 1878 { 1879 const struct optlist *sp; 1880 u_short secmsk = 0, auth = 0; 1881 u_char sec; 1882 int j, m; 1883 1884 sec = *(s + 2); /* classification */ 1885 for (j = 3, m = 2; m >= 0; ) { 1886 sp = secopt + j; 1887 if (sec == sp->ol_val) { 1888 secmsk |= sp->ol_bit; 1889 auth = *(s + 3); 1890 auth *= 256; 1891 auth += *(s + 4); 1892 break; 1893 } 1894 if (sec < sp->ol_val) 1895 j -= m; 1896 else 1897 j += m; 1898 m--; 1899 } 1900 1901 return (secmsk << 16) | auth; 1902 } 1903 1904 1905 /* ------------------------------------------------------------------------ */ 1906 /* Function: ipf_checkcipso */ 1907 /* Returns: u_32_t - 0 = failure, else the doi from the header */ 1908 /* Parameters: fin(IO) - pointer to packet information */ 1909 /* s(I) - pointer to start of CIPSO option */ 1910 /* ol(I) - length of CIPSO option field */ 1911 /* */ 1912 /* This function returns the domain of integrity (DOI) field from the CIPSO */ 1913 /* header and returns that whilst also storing the highest sensitivity */ 1914 /* value found in the fr_info_t structure. */ 1915 /* */ 1916 /* No attempt is made to extract the category bitmaps as these are defined */ 1917 /* by the user (rather than the protocol) and can be rather numerous on the */ 1918 /* end nodes. */ 1919 /* ------------------------------------------------------------------------ */ 1920 static u_32_t 1921 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol) 1922 { 1923 ipf_main_softc_t *softc = fin->fin_main_soft; 1924 fr_ip_t *fi; 1925 u_32_t doi; 1926 u_char *t, tag, tlen, sensitivity; 1927 int len; 1928 1929 if (ol < 6 || ol > 40) { 1930 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad); 1931 fin->fin_flx |= FI_BAD; 1932 DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol); 1933 return 0; 1934 } 1935 1936 fi = &fin->fin_fi; 1937 fi->fi_sensitivity = 0; 1938 /* 1939 * The DOI field MUST be there. 1940 */ 1941 bcopy(s + 2, &doi, sizeof(doi)); 1942 1943 t = (u_char *)s + 6; 1944 for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) { 1945 tag = *t; 1946 tlen = *(t + 1); 1947 if (tlen > len || tlen < 4 || tlen > 34) { 1948 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen); 1949 fin->fin_flx |= FI_BAD; 1950 DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen); 1951 return 0; 1952 } 1953 1954 sensitivity = 0; 1955 /* 1956 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet 1957 * draft (16 July 1992) that has expired. 1958 */ 1959 if (tag == 0) { 1960 fin->fin_flx |= FI_BAD; 1961 DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag); 1962 continue; 1963 } else if (tag == 1) { 1964 if (*(t + 2) != 0) { 1965 fin->fin_flx |= FI_BAD; 1966 DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2)); 1967 continue; 1968 } 1969 sensitivity = *(t + 3); 1970 /* Category bitmap for categories 0-239 */ 1971 1972 } else if (tag == 4) { 1973 if (*(t + 2) != 0) { 1974 fin->fin_flx |= FI_BAD; 1975 DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2)); 1976 continue; 1977 } 1978 sensitivity = *(t + 3); 1979 /* Enumerated categories, 16bits each, upto 15 */ 1980 1981 } else if (tag == 5) { 1982 if (*(t + 2) != 0) { 1983 fin->fin_flx |= FI_BAD; 1984 DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2)); 1985 continue; 1986 } 1987 sensitivity = *(t + 3); 1988 /* Range of categories (2*16bits), up to 7 pairs */ 1989 1990 } else if (tag > 127) { 1991 /* Custom defined DOI */ 1992 ; 1993 } else { 1994 DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag); 1995 fin->fin_flx |= FI_BAD; 1996 continue; 1997 } 1998 1999 if (sensitivity > fi->fi_sensitivity) 2000 fi->fi_sensitivity = sensitivity; 2001 } 2002 2003 return doi; 2004 } 2005 2006 2007 /* ------------------------------------------------------------------------ */ 2008 /* Function: ipf_makefrip */ 2009 /* Returns: int - 0 == packet ok, -1 == packet freed */ 2010 /* Parameters: hlen(I) - length of IP packet header */ 2011 /* ip(I) - pointer to the IP header */ 2012 /* fin(IO) - pointer to packet information */ 2013 /* */ 2014 /* Compact the IP header into a structure which contains just the info. */ 2015 /* which is useful for comparing IP headers with and store this information */ 2016 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 2017 /* this function will be called with either an IPv4 or IPv6 packet. */ 2018 /* ------------------------------------------------------------------------ */ 2019 int 2020 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin) 2021 { 2022 ipf_main_softc_t *softc = fin->fin_main_soft; 2023 int v; 2024 2025 fin->fin_depth = 0; 2026 fin->fin_hlen = (u_short)hlen; 2027 fin->fin_ip = ip; 2028 fin->fin_rule = 0xffffffff; 2029 fin->fin_group[0] = -1; 2030 fin->fin_group[1] = '\0'; 2031 fin->fin_dp = (char *)ip + hlen; 2032 2033 v = fin->fin_v; 2034 if (v == 4) { 2035 fin->fin_plen = ntohs(ip->ip_len); 2036 fin->fin_dlen = fin->fin_plen - hlen; 2037 ipf_pr_ipv4hdr(fin); 2038 #ifdef USE_INET6 2039 } else if (v == 6) { 2040 fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen); 2041 fin->fin_dlen = fin->fin_plen; 2042 fin->fin_plen += hlen; 2043 2044 ipf_pr_ipv6hdr(fin); 2045 #endif 2046 } 2047 if (fin->fin_ip == NULL) { 2048 LBUMP(ipf_stats[fin->fin_out].fr_ip_freed); 2049 return -1; 2050 } 2051 return 0; 2052 } 2053 2054 2055 /* ------------------------------------------------------------------------ */ 2056 /* Function: ipf_portcheck */ 2057 /* Returns: int - 1 == port matched, 0 == port match failed */ 2058 /* Parameters: frp(I) - pointer to port check `expression' */ 2059 /* pop(I) - port number to evaluate */ 2060 /* */ 2061 /* Perform a comparison of a port number against some other(s), using a */ 2062 /* structure with compare information stored in it. */ 2063 /* ------------------------------------------------------------------------ */ 2064 static INLINE int 2065 ipf_portcheck(frpcmp_t *frp, u_32_t pop) 2066 { 2067 int err = 1; 2068 u_32_t po; 2069 2070 po = frp->frp_port; 2071 2072 /* 2073 * Do opposite test to that required and continue if that succeeds. 2074 */ 2075 switch (frp->frp_cmp) 2076 { 2077 case FR_EQUAL : 2078 if (pop != po) /* EQUAL */ 2079 err = 0; 2080 break; 2081 case FR_NEQUAL : 2082 if (pop == po) /* NOTEQUAL */ 2083 err = 0; 2084 break; 2085 case FR_LESST : 2086 if (pop >= po) /* LESSTHAN */ 2087 err = 0; 2088 break; 2089 case FR_GREATERT : 2090 if (pop <= po) /* GREATERTHAN */ 2091 err = 0; 2092 break; 2093 case FR_LESSTE : 2094 if (pop > po) /* LT or EQ */ 2095 err = 0; 2096 break; 2097 case FR_GREATERTE : 2098 if (pop < po) /* GT or EQ */ 2099 err = 0; 2100 break; 2101 case FR_OUTRANGE : 2102 if (pop >= po && pop <= frp->frp_top) /* Out of range */ 2103 err = 0; 2104 break; 2105 case FR_INRANGE : 2106 if (pop <= po || pop >= frp->frp_top) /* In range */ 2107 err = 0; 2108 break; 2109 case FR_INCRANGE : 2110 if (pop < po || pop > frp->frp_top) /* Inclusive range */ 2111 err = 0; 2112 break; 2113 default : 2114 break; 2115 } 2116 return err; 2117 } 2118 2119 2120 /* ------------------------------------------------------------------------ */ 2121 /* Function: ipf_tcpudpchk */ 2122 /* Returns: int - 1 == protocol matched, 0 == check failed */ 2123 /* Parameters: fda(I) - pointer to packet information */ 2124 /* ft(I) - pointer to structure with comparison data */ 2125 /* */ 2126 /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 2127 /* structure containing information that we want to match against. */ 2128 /* ------------------------------------------------------------------------ */ 2129 int 2130 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft) 2131 { 2132 int err = 1; 2133 2134 /* 2135 * Both ports should *always* be in the first fragment. 2136 * So far, I cannot find any cases where they can not be. 2137 * 2138 * compare destination ports 2139 */ 2140 if (ft->ftu_dcmp) 2141 err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]); 2142 2143 /* 2144 * compare source ports 2145 */ 2146 if (err && ft->ftu_scmp) 2147 err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]); 2148 2149 /* 2150 * If we don't have all the TCP/UDP header, then how can we 2151 * expect to do any sort of match on it ? If we were looking for 2152 * TCP flags, then NO match. If not, then match (which should 2153 * satisfy the "short" class too). 2154 */ 2155 if (err && (fi->fi_p == IPPROTO_TCP)) { 2156 if (fi->fi_flx & FI_SHORT) 2157 return !(ft->ftu_tcpf | ft->ftu_tcpfm); 2158 /* 2159 * Match the flags ? If not, abort this match. 2160 */ 2161 if (ft->ftu_tcpfm && 2162 ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) { 2163 FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf, 2164 ft->ftu_tcpfm, ft->ftu_tcpf)); 2165 err = 0; 2166 } 2167 } 2168 return err; 2169 } 2170 2171 2172 /* ------------------------------------------------------------------------ */ 2173 /* Function: ipf_check_ipf */ 2174 /* Returns: int - 0 == match, else no match */ 2175 /* Parameters: fin(I) - pointer to packet information */ 2176 /* fr(I) - pointer to filter rule */ 2177 /* portcmp(I) - flag indicating whether to attempt matching on */ 2178 /* TCP/UDP port data. */ 2179 /* */ 2180 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 2181 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 2182 /* this function. */ 2183 /* ------------------------------------------------------------------------ */ 2184 static INLINE int 2185 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp) 2186 { 2187 u_32_t *ld, *lm, *lip; 2188 fripf_t *fri; 2189 fr_ip_t *fi; 2190 int i; 2191 2192 fi = &fin->fin_fi; 2193 fri = fr->fr_ipf; 2194 lip = (u_32_t *)fi; 2195 lm = (u_32_t *)&fri->fri_mip; 2196 ld = (u_32_t *)&fri->fri_ip; 2197 2198 /* 2199 * first 32 bits to check coversion: 2200 * IP version, TOS, TTL, protocol 2201 */ 2202 i = ((*lip & *lm) != *ld); 2203 FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 2204 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2205 if (i) 2206 return 1; 2207 2208 /* 2209 * Next 32 bits is a constructed bitmask indicating which IP options 2210 * are present (if any) in this packet. 2211 */ 2212 lip++, lm++, ld++; 2213 i = ((*lip & *lm) != *ld); 2214 FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 2215 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2216 if (i != 0) 2217 return 1; 2218 2219 lip++, lm++, ld++; 2220 /* 2221 * Unrolled loops (4 each, for 32 bits) for address checks. 2222 */ 2223 /* 2224 * Check the source address. 2225 */ 2226 if (fr->fr_satype == FRI_LOOKUP) { 2227 i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr, 2228 fi->fi_v, lip, fin->fin_plen); 2229 if (i == -1) 2230 return 1; 2231 lip += 3; 2232 lm += 3; 2233 ld += 3; 2234 } else { 2235 i = ((*lip & *lm) != *ld); 2236 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 2237 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2238 if (fi->fi_v == 6) { 2239 lip++, lm++, ld++; 2240 i |= ((*lip & *lm) != *ld); 2241 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 2242 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2243 lip++, lm++, ld++; 2244 i |= ((*lip & *lm) != *ld); 2245 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 2246 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2247 lip++, lm++, ld++; 2248 i |= ((*lip & *lm) != *ld); 2249 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 2250 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2251 } else { 2252 lip += 3; 2253 lm += 3; 2254 ld += 3; 2255 } 2256 } 2257 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 2258 if (i != 0) 2259 return 1; 2260 2261 /* 2262 * Check the destination address. 2263 */ 2264 lip++, lm++, ld++; 2265 if (fr->fr_datype == FRI_LOOKUP) { 2266 i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr, 2267 fi->fi_v, lip, fin->fin_plen); 2268 if (i == -1) 2269 return 1; 2270 lip += 3; 2271 lm += 3; 2272 ld += 3; 2273 } else { 2274 i = ((*lip & *lm) != *ld); 2275 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 2276 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2277 if (fi->fi_v == 6) { 2278 lip++, lm++, ld++; 2279 i |= ((*lip & *lm) != *ld); 2280 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 2281 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2282 lip++, lm++, ld++; 2283 i |= ((*lip & *lm) != *ld); 2284 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 2285 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2286 lip++, lm++, ld++; 2287 i |= ((*lip & *lm) != *ld); 2288 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 2289 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2290 } else { 2291 lip += 3; 2292 lm += 3; 2293 ld += 3; 2294 } 2295 } 2296 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 2297 if (i != 0) 2298 return 1; 2299 /* 2300 * IP addresses matched. The next 32bits contains: 2301 * mast of old IP header security & authentication bits. 2302 */ 2303 lip++, lm++, ld++; 2304 i = (*ld - (*lip & *lm)); 2305 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); 2306 2307 /* 2308 * Next we have 32 bits of packet flags. 2309 */ 2310 lip++, lm++, ld++; 2311 i |= (*ld - (*lip & *lm)); 2312 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); 2313 2314 if (i == 0) { 2315 /* 2316 * If a fragment, then only the first has what we're 2317 * looking for here... 2318 */ 2319 if (portcmp) { 2320 if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc)) 2321 i = 1; 2322 } else { 2323 if (fr->fr_dcmp || fr->fr_scmp || 2324 fr->fr_tcpf || fr->fr_tcpfm) 2325 i = 1; 2326 if (fr->fr_icmpm || fr->fr_icmp) { 2327 if (((fi->fi_p != IPPROTO_ICMP) && 2328 (fi->fi_p != IPPROTO_ICMPV6)) || 2329 fin->fin_off || (fin->fin_dlen < 2)) 2330 i = 1; 2331 else if ((fin->fin_data[0] & fr->fr_icmpm) != 2332 fr->fr_icmp) { 2333 FR_DEBUG(("i. %#x & %#x != %#x\n", 2334 fin->fin_data[0], 2335 fr->fr_icmpm, fr->fr_icmp)); 2336 i = 1; 2337 } 2338 } 2339 } 2340 } 2341 return i; 2342 } 2343 2344 2345 /* ------------------------------------------------------------------------ */ 2346 /* Function: ipf_scanlist */ 2347 /* Returns: int - result flags of scanning filter list */ 2348 /* Parameters: fin(I) - pointer to packet information */ 2349 /* pass(I) - default result to return for filtering */ 2350 /* */ 2351 /* Check the input/output list of rules for a match to the current packet. */ 2352 /* If a match is found, the value of fr_flags from the rule becomes the */ 2353 /* return value and fin->fin_fr points to the matched rule. */ 2354 /* */ 2355 /* This function may be called recusively upto 16 times (limit inbuilt.) */ 2356 /* When unwinding, it should finish up with fin_depth as 0. */ 2357 /* */ 2358 /* Could be per interface, but this gets real nasty when you don't have, */ 2359 /* or can't easily change, the kernel source code to . */ 2360 /* ------------------------------------------------------------------------ */ 2361 int 2362 ipf_scanlist(fr_info_t *fin, u_32_t pass) 2363 { 2364 ipf_main_softc_t *softc = fin->fin_main_soft; 2365 int rulen, portcmp, off, skip; 2366 struct frentry *fr, *fnext; 2367 u_32_t passt, passo; 2368 2369 /* 2370 * Do not allow nesting deeper than 16 levels. 2371 */ 2372 if (fin->fin_depth >= 16) 2373 return pass; 2374 2375 fr = fin->fin_fr; 2376 2377 /* 2378 * If there are no rules in this list, return now. 2379 */ 2380 if (fr == NULL) 2381 return pass; 2382 2383 skip = 0; 2384 portcmp = 0; 2385 fin->fin_depth++; 2386 fin->fin_fr = NULL; 2387 off = fin->fin_off; 2388 2389 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 2390 portcmp = 1; 2391 2392 for (rulen = 0; fr; fr = fnext, rulen++) { 2393 fnext = fr->fr_next; 2394 if (skip != 0) { 2395 FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags)); 2396 skip--; 2397 continue; 2398 } 2399 2400 /* 2401 * In all checks below, a null (zero) value in the 2402 * filter struture is taken to mean a wildcard. 2403 * 2404 * check that we are working for the right interface 2405 */ 2406 #ifdef _KERNEL 2407 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 2408 continue; 2409 #else 2410 if (opts & (OPT_VERBOSE|OPT_DEBUG)) 2411 printf("\n"); 2412 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 2413 FR_ISPASS(pass) ? 'p' : 2414 FR_ISACCOUNT(pass) ? 'A' : 2415 FR_ISAUTH(pass) ? 'a' : 2416 (pass & FR_NOMATCH) ? 'n' :'b')); 2417 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 2418 continue; 2419 FR_VERBOSE((":i")); 2420 #endif 2421 2422 switch (fr->fr_type) 2423 { 2424 case FR_T_IPF : 2425 case FR_T_IPF_BUILTIN : 2426 if (ipf_check_ipf(fin, fr, portcmp)) 2427 continue; 2428 break; 2429 #if defined(IPFILTER_BPF) 2430 case FR_T_BPFOPC : 2431 case FR_T_BPFOPC_BUILTIN : 2432 { 2433 u_char *mc; 2434 int wlen; 2435 2436 if (*fin->fin_mp == NULL) 2437 continue; 2438 if (fin->fin_family != fr->fr_family) 2439 continue; 2440 mc = (u_char *)fin->fin_m; 2441 wlen = fin->fin_dlen + fin->fin_hlen; 2442 if (!bpf_filter(fr->fr_data, mc, wlen, 0)) 2443 continue; 2444 break; 2445 } 2446 #endif 2447 case FR_T_CALLFUNC_BUILTIN : 2448 { 2449 frentry_t *f; 2450 2451 f = (*fr->fr_func)(fin, &pass); 2452 if (f != NULL) 2453 fr = f; 2454 else 2455 continue; 2456 break; 2457 } 2458 2459 case FR_T_IPFEXPR : 2460 case FR_T_IPFEXPR_BUILTIN : 2461 if (fin->fin_family != fr->fr_family) 2462 continue; 2463 if (ipf_fr_matcharray(fin, fr->fr_data) == 0) 2464 continue; 2465 break; 2466 2467 default : 2468 break; 2469 } 2470 2471 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 2472 if (fin->fin_nattag == NULL) 2473 continue; 2474 if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 2475 continue; 2476 } 2477 FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen)); 2478 2479 passt = fr->fr_flags; 2480 2481 /* 2482 * If the rule is a "call now" rule, then call the function 2483 * in the rule, if it exists and use the results from that. 2484 * If the function pointer is bad, just make like we ignore 2485 * it, except for increasing the hit counter. 2486 */ 2487 if ((passt & FR_CALLNOW) != 0) { 2488 frentry_t *frs; 2489 2490 ATOMIC_INC64(fr->fr_hits); 2491 if ((fr->fr_func == NULL) || 2492 (fr->fr_func == (ipfunc_t)-1)) 2493 continue; 2494 2495 frs = fin->fin_fr; 2496 fin->fin_fr = fr; 2497 fr = (*fr->fr_func)(fin, &passt); 2498 if (fr == NULL) { 2499 fin->fin_fr = frs; 2500 continue; 2501 } 2502 passt = fr->fr_flags; 2503 } 2504 fin->fin_fr = fr; 2505 2506 #ifdef IPFILTER_LOG 2507 /* 2508 * Just log this packet... 2509 */ 2510 if ((passt & FR_LOGMASK) == FR_LOG) { 2511 if (ipf_log_pkt(fin, passt) == -1) { 2512 if (passt & FR_LOGORBLOCK) { 2513 DT(frb_logfail); 2514 passt &= ~FR_CMDMASK; 2515 passt |= FR_BLOCK|FR_QUICK; 2516 fin->fin_reason = FRB_LOGFAIL; 2517 } 2518 } 2519 } 2520 #endif /* IPFILTER_LOG */ 2521 2522 MUTEX_ENTER(&fr->fr_lock); 2523 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2524 fr->fr_hits++; 2525 MUTEX_EXIT(&fr->fr_lock); 2526 fin->fin_rule = rulen; 2527 2528 passo = pass; 2529 if (FR_ISSKIP(passt)) { 2530 skip = fr->fr_arg; 2531 continue; 2532 } else if (((passt & FR_LOGMASK) != FR_LOG) && 2533 ((passt & FR_LOGMASK) != FR_DECAPSULATE)) { 2534 pass = passt; 2535 } 2536 2537 if (passt & (FR_RETICMP|FR_FAKEICMP)) 2538 fin->fin_icode = fr->fr_icode; 2539 2540 if (fr->fr_group != -1) { 2541 (void) strncpy(fin->fin_group, 2542 FR_NAME(fr, fr_group), 2543 strlen(FR_NAME(fr, fr_group))); 2544 } else { 2545 fin->fin_group[0] = '\0'; 2546 } 2547 2548 FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt)); 2549 2550 if (fr->fr_grphead != NULL) { 2551 fin->fin_fr = fr->fr_grphead->fg_start; 2552 FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead))); 2553 2554 if (FR_ISDECAPS(passt)) 2555 passt = ipf_decaps(fin, pass, fr->fr_icode); 2556 else 2557 passt = ipf_scanlist(fin, pass); 2558 2559 if (fin->fin_fr == NULL) { 2560 fin->fin_rule = rulen; 2561 if (fr->fr_group != -1) 2562 (void) strncpy(fin->fin_group, 2563 fr->fr_names + 2564 fr->fr_group, 2565 strlen(fr->fr_names + 2566 fr->fr_group)); 2567 fin->fin_fr = fr; 2568 passt = pass; 2569 } 2570 pass = passt; 2571 } 2572 2573 if (pass & FR_QUICK) { 2574 /* 2575 * Finally, if we've asked to track state for this 2576 * packet, set it up. Add state for "quick" rules 2577 * here so that if the action fails we can consider 2578 * the rule to "not match" and keep on processing 2579 * filter rules. 2580 */ 2581 if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) && 2582 !(fin->fin_flx & FI_STATE)) { 2583 int out = fin->fin_out; 2584 2585 fin->fin_fr = fr; 2586 if (ipf_state_add(softc, fin, NULL, 0) == 0) { 2587 LBUMPD(ipf_stats[out], fr_ads); 2588 } else { 2589 LBUMPD(ipf_stats[out], fr_bads); 2590 pass = passo; 2591 continue; 2592 } 2593 } 2594 break; 2595 } 2596 } 2597 fin->fin_depth--; 2598 return pass; 2599 } 2600 2601 2602 /* ------------------------------------------------------------------------ */ 2603 /* Function: ipf_acctpkt */ 2604 /* Returns: frentry_t* - always returns NULL */ 2605 /* Parameters: fin(I) - pointer to packet information */ 2606 /* passp(IO) - pointer to current/new filter decision (unused) */ 2607 /* */ 2608 /* Checks a packet against accounting rules, if there are any for the given */ 2609 /* IP protocol version. */ 2610 /* */ 2611 /* N.B.: this function returns NULL to match the prototype used by other */ 2612 /* functions called from the IPFilter "mainline" in ipf_check(). */ 2613 /* ------------------------------------------------------------------------ */ 2614 frentry_t * 2615 ipf_acctpkt(fr_info_t *fin, u_32_t *passp) 2616 { 2617 ipf_main_softc_t *softc = fin->fin_main_soft; 2618 char group[FR_GROUPLEN]; 2619 frentry_t *fr, *frsave; 2620 u_32_t pass, rulen; 2621 2622 passp = passp; 2623 fr = softc->ipf_acct[fin->fin_out][softc->ipf_active]; 2624 2625 if (fr != NULL) { 2626 frsave = fin->fin_fr; 2627 bcopy(fin->fin_group, group, FR_GROUPLEN); 2628 rulen = fin->fin_rule; 2629 fin->fin_fr = fr; 2630 pass = ipf_scanlist(fin, FR_NOMATCH); 2631 if (FR_ISACCOUNT(pass)) { 2632 LBUMPD(ipf_stats[0], fr_acct); 2633 } 2634 fin->fin_fr = frsave; 2635 bcopy(group, fin->fin_group, FR_GROUPLEN); 2636 fin->fin_rule = rulen; 2637 } 2638 return NULL; 2639 } 2640 2641 2642 /* ------------------------------------------------------------------------ */ 2643 /* Function: ipf_firewall */ 2644 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2645 /* were found, returns NULL. */ 2646 /* Parameters: fin(I) - pointer to packet information */ 2647 /* passp(IO) - pointer to current/new filter decision (unused) */ 2648 /* */ 2649 /* Applies an appropriate set of firewall rules to the packet, to see if */ 2650 /* there are any matches. The first check is to see if a match can be seen */ 2651 /* in the cache. If not, then search an appropriate list of rules. Once a */ 2652 /* matching rule is found, take any appropriate actions as defined by the */ 2653 /* rule - except logging. */ 2654 /* ------------------------------------------------------------------------ */ 2655 static frentry_t * 2656 ipf_firewall(fr_info_t *fin, u_32_t *passp) 2657 { 2658 ipf_main_softc_t *softc = fin->fin_main_soft; 2659 frentry_t *fr; 2660 u_32_t pass; 2661 int out; 2662 2663 out = fin->fin_out; 2664 pass = *passp; 2665 2666 /* 2667 * This rule cache will only affect packets that are not being 2668 * statefully filtered. 2669 */ 2670 fin->fin_fr = softc->ipf_rules[out][softc->ipf_active]; 2671 if (fin->fin_fr != NULL) 2672 pass = ipf_scanlist(fin, softc->ipf_pass); 2673 2674 if ((pass & FR_NOMATCH)) { 2675 LBUMPD(ipf_stats[out], fr_nom); 2676 } 2677 fr = fin->fin_fr; 2678 2679 /* 2680 * Apply packets per second rate-limiting to a rule as required. 2681 */ 2682 if ((fr != NULL) && (fr->fr_pps != 0) && 2683 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2684 DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr); 2685 pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST); 2686 pass |= FR_BLOCK; 2687 LBUMPD(ipf_stats[out], fr_ppshit); 2688 fin->fin_reason = FRB_PPSRATE; 2689 } 2690 2691 /* 2692 * If we fail to add a packet to the authorization queue, then we 2693 * drop the packet later. However, if it was added then pretend 2694 * we've dropped it already. 2695 */ 2696 if (FR_ISAUTH(pass)) { 2697 if (ipf_auth_new(fin->fin_m, fin) != 0) { 2698 DT1(frb_authnew, fr_info_t *, fin); 2699 fin->fin_m = *fin->fin_mp = NULL; 2700 fin->fin_reason = FRB_AUTHNEW; 2701 fin->fin_error = 0; 2702 } else { 2703 IPFERROR(1); 2704 fin->fin_error = ENOSPC; 2705 } 2706 } 2707 2708 if ((fr != NULL) && (fr->fr_func != NULL) && 2709 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2710 (void) (*fr->fr_func)(fin, &pass); 2711 2712 /* 2713 * If a rule is a pre-auth rule, check again in the list of rules 2714 * loaded for authenticated use. It does not particulary matter 2715 * if this search fails because a "preauth" result, from a rule, 2716 * is treated as "not a pass", hence the packet is blocked. 2717 */ 2718 if (FR_ISPREAUTH(pass)) { 2719 pass = ipf_auth_pre_scanlist(softc, fin, pass); 2720 } 2721 2722 /* 2723 * If the rule has "keep frag" and the packet is actually a fragment, 2724 * then create a fragment state entry. 2725 */ 2726 if (pass & FR_KEEPFRAG) { 2727 if (fin->fin_flx & FI_FRAG) { 2728 if (ipf_frag_new(softc, fin, pass) == -1) { 2729 LBUMP(ipf_stats[out].fr_bnfr); 2730 } else { 2731 LBUMP(ipf_stats[out].fr_nfr); 2732 } 2733 } else { 2734 LBUMP(ipf_stats[out].fr_cfr); 2735 } 2736 } 2737 2738 fr = fin->fin_fr; 2739 *passp = pass; 2740 2741 return fr; 2742 } 2743 2744 2745 /* ------------------------------------------------------------------------ */ 2746 /* Function: ipf_check */ 2747 /* Returns: int - 0 == packet allowed through, */ 2748 /* User space: */ 2749 /* -1 == packet blocked */ 2750 /* 1 == packet not matched */ 2751 /* -2 == requires authentication */ 2752 /* Kernel: */ 2753 /* > 0 == filter error # for packet */ 2754 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2755 /* hlen(I) - length of header */ 2756 /* ifp(I) - pointer to interface this packet is on */ 2757 /* out(I) - 0 == packet going in, 1 == packet going out */ 2758 /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2759 /* IP packet. */ 2760 /* Solaris & HP-UX ONLY : */ 2761 /* qpi(I) - pointer to STREAMS queue information for this */ 2762 /* interface & direction. */ 2763 /* */ 2764 /* ipf_check() is the master function for all IPFilter packet processing. */ 2765 /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2766 /* authorisation (or pre-authorisation), presence of related state info., */ 2767 /* generating log entries, IP packet accounting, routing of packets as */ 2768 /* directed by firewall rules and of course whether or not to allow the */ 2769 /* packet to be further processed by the kernel. */ 2770 /* */ 2771 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2772 /* freed. Packets passed may be returned with the pointer pointed to by */ 2773 /* by "mp" changed to a new buffer. */ 2774 /* ------------------------------------------------------------------------ */ 2775 int 2776 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out, 2777 #if defined(_KERNEL) && defined(MENTAT) 2778 void *qif, 2779 #endif 2780 mb_t **mp) 2781 { 2782 /* 2783 * The above really sucks, but short of writing a diff 2784 */ 2785 ipf_main_softc_t *softc = ctx; 2786 fr_info_t frinfo; 2787 fr_info_t *fin = &frinfo; 2788 u_32_t pass = softc->ipf_pass; 2789 frentry_t *fr = NULL; 2790 int v = IP_V(ip); 2791 mb_t *mc = NULL; 2792 mb_t *m; 2793 /* 2794 * The first part of ipf_check() deals with making sure that what goes 2795 * into the filtering engine makes some sense. Information about the 2796 * the packet is distilled, collected into a fr_info_t structure and 2797 * the an attempt to ensure the buffer the packet is in is big enough 2798 * to hold all the required packet headers. 2799 */ 2800 #ifdef _KERNEL 2801 # ifdef MENTAT 2802 qpktinfo_t *qpi = qif; 2803 2804 # ifdef __sparc 2805 if ((u_int)ip & 0x3) 2806 return 2; 2807 # endif 2808 # else 2809 SPL_INT(s); 2810 # endif 2811 2812 if (softc->ipf_running <= 0) { 2813 return 0; 2814 } 2815 2816 bzero((char *)fin, sizeof(*fin)); 2817 2818 # ifdef MENTAT 2819 if (qpi->qpi_flags & QF_BROADCAST) 2820 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2821 if (qpi->qpi_flags & QF_MULTICAST) 2822 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2823 m = qpi->qpi_m; 2824 fin->fin_qfm = m; 2825 fin->fin_qpi = qpi; 2826 # else /* MENTAT */ 2827 2828 m = *mp; 2829 2830 # if defined(M_MCAST) 2831 if ((m->m_flags & M_MCAST) != 0) 2832 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2833 # endif 2834 # if defined(M_MLOOP) 2835 if ((m->m_flags & M_MLOOP) != 0) 2836 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2837 # endif 2838 # if defined(M_BCAST) 2839 if ((m->m_flags & M_BCAST) != 0) 2840 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2841 # endif 2842 # ifdef M_CANFASTFWD 2843 /* 2844 * XXX For now, IP Filter and fast-forwarding of cached flows 2845 * XXX are mutually exclusive. Eventually, IP Filter should 2846 * XXX get a "can-fast-forward" filter rule. 2847 */ 2848 m->m_flags &= ~M_CANFASTFWD; 2849 # endif /* M_CANFASTFWD */ 2850 # if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \ 2851 (__FreeBSD_version < 501108)) 2852 /* 2853 * disable delayed checksums. 2854 */ 2855 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2856 in_delayed_cksum(m); 2857 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2858 } 2859 # endif /* CSUM_DELAY_DATA */ 2860 # endif /* MENTAT */ 2861 #else 2862 bzero((char *)fin, sizeof(*fin)); 2863 m = *mp; 2864 # if defined(M_MCAST) 2865 if ((m->m_flags & M_MCAST) != 0) 2866 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2867 # endif 2868 # if defined(M_MLOOP) 2869 if ((m->m_flags & M_MLOOP) != 0) 2870 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2871 # endif 2872 # if defined(M_BCAST) 2873 if ((m->m_flags & M_BCAST) != 0) 2874 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2875 # endif 2876 #endif /* _KERNEL */ 2877 2878 fin->fin_v = v; 2879 fin->fin_m = m; 2880 fin->fin_ip = ip; 2881 fin->fin_mp = mp; 2882 fin->fin_out = out; 2883 fin->fin_ifp = ifp; 2884 fin->fin_error = ENETUNREACH; 2885 fin->fin_hlen = (u_short)hlen; 2886 fin->fin_dp = (char *)ip + hlen; 2887 fin->fin_main_soft = softc; 2888 2889 fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2890 2891 SPL_NET(s); 2892 2893 #ifdef USE_INET6 2894 if (v == 6) { 2895 LBUMP(ipf_stats[out].fr_ipv6); 2896 /* 2897 * Jumbo grams are quite likely too big for internal buffer 2898 * structures to handle comfortably, for now, so just drop 2899 * them. 2900 */ 2901 if (((ip6_t *)ip)->ip6_plen == 0) { 2902 DT1(frb_jumbo, ip6_t *, (ip6_t *)ip); 2903 pass = FR_BLOCK|FR_NOMATCH; 2904 fin->fin_reason = FRB_JUMBO; 2905 goto finished; 2906 } 2907 fin->fin_family = AF_INET6; 2908 } else 2909 #endif 2910 { 2911 fin->fin_family = AF_INET; 2912 } 2913 2914 if (ipf_makefrip(hlen, ip, fin) == -1) { 2915 DT1(frb_makefrip, fr_info_t *, fin); 2916 pass = FR_BLOCK|FR_NOMATCH; 2917 fin->fin_reason = FRB_MAKEFRIP; 2918 goto finished; 2919 } 2920 2921 /* 2922 * For at least IPv6 packets, if a m_pullup() fails then this pointer 2923 * becomes NULL and so we have no packet to free. 2924 */ 2925 if (*fin->fin_mp == NULL) 2926 goto finished; 2927 2928 if (!out) { 2929 if (v == 4) { 2930 if (softc->ipf_chksrc && !ipf_verifysrc(fin)) { 2931 LBUMPD(ipf_stats[0], fr_v4_badsrc); 2932 fin->fin_flx |= FI_BADSRC; 2933 } 2934 if (fin->fin_ip->ip_ttl < softc->ipf_minttl) { 2935 LBUMPD(ipf_stats[0], fr_v4_badttl); 2936 fin->fin_flx |= FI_LOWTTL; 2937 } 2938 } 2939 #ifdef USE_INET6 2940 else if (v == 6) { 2941 if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) { 2942 LBUMPD(ipf_stats[0], fr_v6_badttl); 2943 fin->fin_flx |= FI_LOWTTL; 2944 } 2945 } 2946 #endif 2947 } 2948 2949 if (fin->fin_flx & FI_SHORT) { 2950 LBUMPD(ipf_stats[out], fr_short); 2951 } 2952 2953 READ_ENTER(&softc->ipf_mutex); 2954 2955 if (!out) { 2956 switch (fin->fin_v) 2957 { 2958 case 4 : 2959 if (ipf_nat_checkin(fin, &pass) == -1) { 2960 goto filterdone; 2961 } 2962 break; 2963 #ifdef USE_INET6 2964 case 6 : 2965 if (ipf_nat6_checkin(fin, &pass) == -1) { 2966 goto filterdone; 2967 } 2968 break; 2969 #endif 2970 default : 2971 break; 2972 } 2973 } 2974 /* 2975 * Check auth now. 2976 * If a packet is found in the auth table, then skip checking 2977 * the access lists for permission but we do need to consider 2978 * the result as if it were from the ACL's. In addition, being 2979 * found in the auth table means it has been seen before, so do 2980 * not pass it through accounting (again), lest it be counted twice. 2981 */ 2982 fr = ipf_auth_check(fin, &pass); 2983 if (!out && (fr == NULL)) 2984 (void) ipf_acctpkt(fin, NULL); 2985 2986 if (fr == NULL) { 2987 if ((fin->fin_flx & FI_FRAG) != 0) 2988 fr = ipf_frag_known(fin, &pass); 2989 2990 if (fr == NULL) 2991 fr = ipf_state_check(fin, &pass); 2992 } 2993 2994 if ((pass & FR_NOMATCH) || (fr == NULL)) 2995 fr = ipf_firewall(fin, &pass); 2996 2997 /* 2998 * If we've asked to track state for this packet, set it up. 2999 * Here rather than ipf_firewall because ipf_checkauth may decide 3000 * to return a packet for "keep state" 3001 */ 3002 if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) && 3003 !(fin->fin_flx & FI_STATE)) { 3004 if (ipf_state_add(softc, fin, NULL, 0) == 0) { 3005 LBUMP(ipf_stats[out].fr_ads); 3006 } else { 3007 LBUMP(ipf_stats[out].fr_bads); 3008 if (FR_ISPASS(pass)) { 3009 DT(frb_stateadd); 3010 pass &= ~FR_CMDMASK; 3011 pass |= FR_BLOCK; 3012 fin->fin_reason = FRB_STATEADD; 3013 } 3014 } 3015 } 3016 3017 fin->fin_fr = fr; 3018 if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) { 3019 fin->fin_dif = &fr->fr_dif; 3020 fin->fin_tif = &fr->fr_tifs[fin->fin_rev]; 3021 } 3022 3023 /* 3024 * Only count/translate packets which will be passed on, out the 3025 * interface. 3026 */ 3027 if (out && FR_ISPASS(pass)) { 3028 (void) ipf_acctpkt(fin, NULL); 3029 3030 switch (fin->fin_v) 3031 { 3032 case 4 : 3033 if (ipf_nat_checkout(fin, &pass) == -1) { 3034 ; 3035 } else if ((softc->ipf_update_ipid != 0) && (v == 4)) { 3036 if (ipf_updateipid(fin) == -1) { 3037 DT(frb_updateipid); 3038 LBUMP(ipf_stats[1].fr_ipud); 3039 pass &= ~FR_CMDMASK; 3040 pass |= FR_BLOCK; 3041 fin->fin_reason = FRB_UPDATEIPID; 3042 } else { 3043 LBUMP(ipf_stats[0].fr_ipud); 3044 } 3045 } 3046 break; 3047 #ifdef USE_INET6 3048 case 6 : 3049 (void) ipf_nat6_checkout(fin, &pass); 3050 break; 3051 #endif 3052 default : 3053 break; 3054 } 3055 } 3056 3057 filterdone: 3058 #ifdef IPFILTER_LOG 3059 if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 3060 (void) ipf_dolog(fin, &pass); 3061 } 3062 #endif 3063 3064 /* 3065 * The FI_STATE flag is cleared here so that calling ipf_state_check 3066 * will work when called from inside of fr_fastroute. Although 3067 * there is a similar flag, FI_NATED, for NAT, it does have the same 3068 * impact on code execution. 3069 */ 3070 fin->fin_flx &= ~FI_STATE; 3071 3072 #if defined(FASTROUTE_RECURSION) 3073 /* 3074 * Up the reference on fr_lock and exit ipf_mutex. The generation of 3075 * a packet below can sometimes cause a recursive call into IPFilter. 3076 * On those platforms where that does happen, we need to hang onto 3077 * the filter rule just in case someone decides to remove or flush it 3078 * in the meantime. 3079 */ 3080 if (fr != NULL) { 3081 MUTEX_ENTER(&fr->fr_lock); 3082 fr->fr_ref++; 3083 MUTEX_EXIT(&fr->fr_lock); 3084 } 3085 3086 RWLOCK_EXIT(&softc->ipf_mutex); 3087 #endif 3088 3089 if ((pass & FR_RETMASK) != 0) { 3090 /* 3091 * Should we return an ICMP packet to indicate error 3092 * status passing through the packet filter ? 3093 * WARNING: ICMP error packets AND TCP RST packets should 3094 * ONLY be sent in repsonse to incoming packets. Sending 3095 * them in response to outbound packets can result in a 3096 * panic on some operating systems. 3097 */ 3098 if (!out) { 3099 if (pass & FR_RETICMP) { 3100 int dst; 3101 3102 if ((pass & FR_RETMASK) == FR_FAKEICMP) 3103 dst = 1; 3104 else 3105 dst = 0; 3106 (void) ipf_send_icmp_err(ICMP_UNREACH, fin, 3107 dst); 3108 LBUMP(ipf_stats[0].fr_ret); 3109 } else if (((pass & FR_RETMASK) == FR_RETRST) && 3110 !(fin->fin_flx & FI_SHORT)) { 3111 if (((fin->fin_flx & FI_OOW) != 0) || 3112 (ipf_send_reset(fin) == 0)) { 3113 LBUMP(ipf_stats[1].fr_ret); 3114 } 3115 } 3116 3117 /* 3118 * When using return-* with auth rules, the auth code 3119 * takes over disposing of this packet. 3120 */ 3121 if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) { 3122 DT1(frb_authcapture, fr_info_t *, fin); 3123 fin->fin_m = *fin->fin_mp = NULL; 3124 fin->fin_reason = FRB_AUTHCAPTURE; 3125 m = NULL; 3126 } 3127 } else { 3128 if (pass & FR_RETRST) { 3129 fin->fin_error = ECONNRESET; 3130 } 3131 } 3132 } 3133 3134 /* 3135 * After the above so that ICMP unreachables and TCP RSTs get 3136 * created properly. 3137 */ 3138 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) 3139 ipf_nat_uncreate(fin); 3140 3141 /* 3142 * If we didn't drop off the bottom of the list of rules (and thus 3143 * the 'current' rule fr is not NULL), then we may have some extra 3144 * instructions about what to do with a packet. 3145 * Once we're finished return to our caller, freeing the packet if 3146 * we are dropping it. 3147 */ 3148 if (fr != NULL) { 3149 frdest_t *fdp; 3150 3151 /* 3152 * Generate a duplicated packet first because ipf_fastroute 3153 * can lead to fin_m being free'd... not good. 3154 */ 3155 fdp = fin->fin_dif; 3156 if ((fdp != NULL) && (fdp->fd_ptr != NULL) && 3157 (fdp->fd_ptr != (void *)-1) && (fin->fin_m != NULL)) { 3158 mc = M_COPY(fin->fin_m); 3159 if (mc != NULL) 3160 ipf_fastroute(mc, &mc, fin, fdp); 3161 } 3162 3163 fdp = fin->fin_tif; 3164 if (!out && (pass & FR_FASTROUTE)) { 3165 /* 3166 * For fastroute rule, no destination interface defined 3167 * so pass NULL as the frdest_t parameter 3168 */ 3169 (void) ipf_fastroute(fin->fin_m, mp, fin, NULL); 3170 m = *mp = NULL; 3171 } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) && 3172 (fdp->fd_ptr != (struct ifnet *)-1)) { 3173 /* this is for to rules: */ 3174 ipf_fastroute(fin->fin_m, mp, fin, fdp); 3175 m = *mp = NULL; 3176 } 3177 3178 #if defined(FASTROUTE_RECURSION) 3179 (void) ipf_derefrule(softc, &fr); 3180 #endif 3181 } 3182 #if !defined(FASTROUTE_RECURSION) 3183 RWLOCK_EXIT(&softc->ipf_mutex); 3184 #endif 3185 3186 finished: 3187 if (!FR_ISPASS(pass)) { 3188 LBUMP(ipf_stats[out].fr_block); 3189 if (*mp != NULL) { 3190 #ifdef _KERNEL 3191 FREE_MB_T(*mp); 3192 #endif 3193 m = *mp = NULL; 3194 } 3195 } else { 3196 LBUMP(ipf_stats[out].fr_pass); 3197 #if defined(_KERNEL) && defined(__sgi) 3198 if ((fin->fin_hbuf != NULL) && 3199 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 3200 COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf); 3201 } 3202 #endif 3203 } 3204 3205 SPL_X(s); 3206 3207 #ifdef _KERNEL 3208 if (FR_ISPASS(pass)) 3209 return 0; 3210 LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]); 3211 return fin->fin_error; 3212 #else /* _KERNEL */ 3213 if (*mp != NULL) 3214 (*mp)->mb_ifp = fin->fin_ifp; 3215 blockreason = fin->fin_reason; 3216 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 3217 /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/ 3218 if ((pass & FR_NOMATCH) != 0) 3219 return 1; 3220 3221 if ((pass & FR_RETMASK) != 0) 3222 switch (pass & FR_RETMASK) 3223 { 3224 case FR_RETRST : 3225 return 3; 3226 case FR_RETICMP : 3227 return 4; 3228 case FR_FAKEICMP : 3229 return 5; 3230 } 3231 3232 switch (pass & FR_CMDMASK) 3233 { 3234 case FR_PASS : 3235 return 0; 3236 case FR_BLOCK : 3237 return -1; 3238 case FR_AUTH : 3239 return -2; 3240 case FR_ACCOUNT : 3241 return -3; 3242 case FR_PREAUTH : 3243 return -4; 3244 } 3245 return 2; 3246 #endif /* _KERNEL */ 3247 } 3248 3249 3250 #ifdef IPFILTER_LOG 3251 /* ------------------------------------------------------------------------ */ 3252 /* Function: ipf_dolog */ 3253 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 3254 /* Parameters: fin(I) - pointer to packet information */ 3255 /* passp(IO) - pointer to current/new filter decision (unused) */ 3256 /* */ 3257 /* Checks flags set to see how a packet should be logged, if it is to be */ 3258 /* logged. Adjust statistics based on its success or not. */ 3259 /* ------------------------------------------------------------------------ */ 3260 frentry_t * 3261 ipf_dolog(fr_info_t *fin, u_32_t *passp) 3262 { 3263 ipf_main_softc_t *softc = fin->fin_main_soft; 3264 u_32_t pass; 3265 int out; 3266 3267 out = fin->fin_out; 3268 pass = *passp; 3269 3270 if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 3271 pass |= FF_LOGNOMATCH; 3272 LBUMPD(ipf_stats[out], fr_npkl); 3273 goto logit; 3274 3275 } else if (((pass & FR_LOGMASK) == FR_LOGP) || 3276 (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) { 3277 if ((pass & FR_LOGMASK) != FR_LOGP) 3278 pass |= FF_LOGPASS; 3279 LBUMPD(ipf_stats[out], fr_ppkl); 3280 goto logit; 3281 3282 } else if (((pass & FR_LOGMASK) == FR_LOGB) || 3283 (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) { 3284 if ((pass & FR_LOGMASK) != FR_LOGB) 3285 pass |= FF_LOGBLOCK; 3286 LBUMPD(ipf_stats[out], fr_bpkl); 3287 3288 logit: 3289 if (ipf_log_pkt(fin, pass) == -1) { 3290 /* 3291 * If the "or-block" option has been used then 3292 * block the packet if we failed to log it. 3293 */ 3294 if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) { 3295 DT1(frb_logfail2, u_int, pass); 3296 pass &= ~FR_CMDMASK; 3297 pass |= FR_BLOCK; 3298 fin->fin_reason = FRB_LOGFAIL2; 3299 } 3300 } 3301 *passp = pass; 3302 } 3303 3304 return fin->fin_fr; 3305 } 3306 #endif /* IPFILTER_LOG */ 3307 3308 3309 /* ------------------------------------------------------------------------ */ 3310 /* Function: ipf_cksum */ 3311 /* Returns: u_short - IP header checksum */ 3312 /* Parameters: addr(I) - pointer to start of buffer to checksum */ 3313 /* len(I) - length of buffer in bytes */ 3314 /* */ 3315 /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 3316 /* */ 3317 /* N.B.: addr should be 16bit aligned. */ 3318 /* ------------------------------------------------------------------------ */ 3319 u_short 3320 ipf_cksum(u_short *addr, int len) 3321 { 3322 u_32_t sum = 0; 3323 3324 for (sum = 0; len > 1; len -= 2) 3325 sum += *addr++; 3326 3327 /* mop up an odd byte, if necessary */ 3328 if (len == 1) 3329 sum += *(u_char *)addr; 3330 3331 /* 3332 * add back carry outs from top 16 bits to low 16 bits 3333 */ 3334 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 3335 sum += (sum >> 16); /* add carry */ 3336 return (u_short)(~sum); 3337 } 3338 3339 3340 /* ------------------------------------------------------------------------ */ 3341 /* Function: fr_cksum */ 3342 /* Returns: u_short - layer 4 checksum */ 3343 /* Parameters: fin(I) - pointer to packet information */ 3344 /* ip(I) - pointer to IP header */ 3345 /* l4proto(I) - protocol to caclulate checksum for */ 3346 /* l4hdr(I) - pointer to layer 4 header */ 3347 /* */ 3348 /* Calculates the TCP checksum for the packet held in "m", using the data */ 3349 /* in the IP header "ip" to seed it. */ 3350 /* */ 3351 /* NB: This function assumes we've pullup'd enough for all of the IP header */ 3352 /* and the TCP header. We also assume that data blocks aren't allocated in */ 3353 /* odd sizes. */ 3354 /* */ 3355 /* Expects ip_len and ip_off to be in network byte order when called. */ 3356 /* ------------------------------------------------------------------------ */ 3357 u_short 3358 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr) 3359 { 3360 u_short *sp, slen, sumsave, *csump; 3361 u_int sum, sum2; 3362 int hlen; 3363 int off; 3364 #ifdef USE_INET6 3365 ip6_t *ip6; 3366 #endif 3367 3368 csump = NULL; 3369 sumsave = 0; 3370 sp = NULL; 3371 slen = 0; 3372 hlen = 0; 3373 sum = 0; 3374 3375 sum = htons((u_short)l4proto); 3376 /* 3377 * Add up IP Header portion 3378 */ 3379 #ifdef USE_INET6 3380 if (IP_V(ip) == 4) { 3381 #endif 3382 hlen = IP_HL(ip) << 2; 3383 off = hlen; 3384 sp = (u_short *)&ip->ip_src; 3385 sum += *sp++; /* ip_src */ 3386 sum += *sp++; 3387 sum += *sp++; /* ip_dst */ 3388 sum += *sp++; 3389 #ifdef USE_INET6 3390 } else if (IP_V(ip) == 6) { 3391 ip6 = (ip6_t *)ip; 3392 hlen = sizeof(*ip6); 3393 off = ((char *)fin->fin_dp - (char *)fin->fin_ip); 3394 sp = (u_short *)&ip6->ip6_src; 3395 sum += *sp++; /* ip6_src */ 3396 sum += *sp++; 3397 sum += *sp++; 3398 sum += *sp++; 3399 sum += *sp++; 3400 sum += *sp++; 3401 sum += *sp++; 3402 sum += *sp++; 3403 /* This needs to be routing header aware. */ 3404 sum += *sp++; /* ip6_dst */ 3405 sum += *sp++; 3406 sum += *sp++; 3407 sum += *sp++; 3408 sum += *sp++; 3409 sum += *sp++; 3410 sum += *sp++; 3411 sum += *sp++; 3412 } else { 3413 return 0xffff; 3414 } 3415 #endif 3416 slen = fin->fin_plen - off; 3417 sum += htons(slen); 3418 3419 switch (l4proto) 3420 { 3421 case IPPROTO_UDP : 3422 csump = &((udphdr_t *)l4hdr)->uh_sum; 3423 break; 3424 3425 case IPPROTO_TCP : 3426 csump = &((tcphdr_t *)l4hdr)->th_sum; 3427 break; 3428 case IPPROTO_ICMP : 3429 csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 3430 sum = 0; /* Pseudo-checksum is not included */ 3431 break; 3432 #ifdef USE_INET6 3433 case IPPROTO_ICMPV6 : 3434 csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum; 3435 break; 3436 #endif 3437 default : 3438 break; 3439 } 3440 3441 if (csump != NULL) { 3442 sumsave = *csump; 3443 *csump = 0; 3444 } 3445 3446 sum2 = ipf_pcksum(fin, off, sum); 3447 if (csump != NULL) 3448 *csump = sumsave; 3449 return sum2; 3450 } 3451 3452 3453 /* ------------------------------------------------------------------------ */ 3454 /* Function: ipf_findgroup */ 3455 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3456 /* Parameters: softc(I) - pointer to soft context main structure */ 3457 /* group(I) - group name to search for */ 3458 /* unit(I) - device to which this group belongs */ 3459 /* set(I) - which set of rules (inactive/inactive) this is */ 3460 /* fgpp(O) - pointer to place to store pointer to the pointer */ 3461 /* to where to add the next (last) group or where */ 3462 /* to delete group from. */ 3463 /* */ 3464 /* Search amongst the defined groups for a particular group number. */ 3465 /* ------------------------------------------------------------------------ */ 3466 frgroup_t * 3467 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set, 3468 frgroup_t ***fgpp) 3469 { 3470 frgroup_t *fg, **fgp; 3471 3472 /* 3473 * Which list of groups to search in is dependent on which list of 3474 * rules are being operated on. 3475 */ 3476 fgp = &softc->ipf_groups[unit][set]; 3477 3478 while ((fg = *fgp) != NULL) { 3479 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3480 break; 3481 else 3482 fgp = &fg->fg_next; 3483 } 3484 if (fgpp != NULL) 3485 *fgpp = fgp; 3486 return fg; 3487 } 3488 3489 3490 /* ------------------------------------------------------------------------ */ 3491 /* Function: ipf_group_add */ 3492 /* Returns: frgroup_t * - NULL == did not create group, */ 3493 /* != NULL == pointer to the group */ 3494 /* Parameters: softc(I) - pointer to soft context main structure */ 3495 /* num(I) - group number to add */ 3496 /* head(I) - rule pointer that is using this as the head */ 3497 /* flags(I) - rule flags which describe the type of rule it is */ 3498 /* unit(I) - device to which this group will belong to */ 3499 /* set(I) - which set of rules (inactive/inactive) this is */ 3500 /* Write Locks: ipf_mutex */ 3501 /* */ 3502 /* Add a new group head, or if it already exists, increase the reference */ 3503 /* count to it. */ 3504 /* ------------------------------------------------------------------------ */ 3505 frgroup_t * 3506 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags, 3507 minor_t unit, int set) 3508 { 3509 frgroup_t *fg, **fgp; 3510 u_32_t gflags; 3511 3512 if (group == NULL) 3513 return NULL; 3514 3515 if (unit == IPL_LOGIPF && *group == '\0') 3516 return NULL; 3517 3518 fgp = NULL; 3519 gflags = flags & FR_INOUT; 3520 3521 fg = ipf_findgroup(softc, group, unit, set, &fgp); 3522 if (fg != NULL) { 3523 if (fg->fg_head == NULL && head != NULL) 3524 fg->fg_head = head; 3525 if (fg->fg_flags == 0) 3526 fg->fg_flags = gflags; 3527 else if (gflags != fg->fg_flags) 3528 return NULL; 3529 fg->fg_ref++; 3530 return fg; 3531 } 3532 3533 KMALLOC(fg, frgroup_t *); 3534 if (fg != NULL) { 3535 fg->fg_head = head; 3536 fg->fg_start = NULL; 3537 fg->fg_next = *fgp; 3538 bcopy(group, fg->fg_name, strlen(group) + 1); 3539 fg->fg_flags = gflags; 3540 fg->fg_ref = 1; 3541 fg->fg_set = &softc->ipf_groups[unit][set]; 3542 *fgp = fg; 3543 } 3544 return fg; 3545 } 3546 3547 3548 /* ------------------------------------------------------------------------ */ 3549 /* Function: ipf_group_del */ 3550 /* Returns: int - number of rules deleted */ 3551 /* Parameters: softc(I) - pointer to soft context main structure */ 3552 /* group(I) - group name to delete */ 3553 /* fr(I) - filter rule from which group is referenced */ 3554 /* Write Locks: ipf_mutex */ 3555 /* */ 3556 /* This function is called whenever a reference to a group is to be dropped */ 3557 /* and thus its reference count needs to be lowered and the group free'd if */ 3558 /* the reference count reaches zero. Passing in fr is really for the sole */ 3559 /* purpose of knowing when the head rule is being deleted. */ 3560 /* ------------------------------------------------------------------------ */ 3561 void 3562 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr) 3563 { 3564 3565 if (group->fg_head == fr) 3566 group->fg_head = NULL; 3567 3568 group->fg_ref--; 3569 if ((group->fg_ref == 0) && (group->fg_start == NULL)) 3570 ipf_group_free(group); 3571 } 3572 3573 3574 /* ------------------------------------------------------------------------ */ 3575 /* Function: ipf_group_free */ 3576 /* Returns: Nil */ 3577 /* Parameters: group(I) - pointer to filter rule group */ 3578 /* */ 3579 /* Remove the group from the list of groups and free it. */ 3580 /* ------------------------------------------------------------------------ */ 3581 static void 3582 ipf_group_free(frgroup_t *group) 3583 { 3584 frgroup_t **gp; 3585 3586 for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) { 3587 if (*gp == group) { 3588 *gp = group->fg_next; 3589 break; 3590 } 3591 } 3592 KFREE(group); 3593 } 3594 3595 3596 /* ------------------------------------------------------------------------ */ 3597 /* Function: ipf_group_flush */ 3598 /* Returns: int - number of rules flush from group */ 3599 /* Parameters: softc(I) - pointer to soft context main structure */ 3600 /* Parameters: group(I) - pointer to filter rule group */ 3601 /* */ 3602 /* Remove all of the rules that currently are listed under the given group. */ 3603 /* ------------------------------------------------------------------------ */ 3604 static int 3605 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group) 3606 { 3607 int gone = 0; 3608 3609 (void) ipf_flushlist(softc, &gone, &group->fg_start); 3610 3611 return gone; 3612 } 3613 3614 3615 /* ------------------------------------------------------------------------ */ 3616 /* Function: ipf_getrulen */ 3617 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3618 /* Parameters: softc(I) - pointer to soft context main structure */ 3619 /* Parameters: unit(I) - device for which to count the rule's number */ 3620 /* flags(I) - which set of rules to find the rule in */ 3621 /* group(I) - group name */ 3622 /* n(I) - rule number to find */ 3623 /* */ 3624 /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3625 /* group # g doesn't exist or there are less than n rules in the group. */ 3626 /* ------------------------------------------------------------------------ */ 3627 frentry_t * 3628 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n) 3629 { 3630 frentry_t *fr; 3631 frgroup_t *fg; 3632 3633 fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL); 3634 if (fg == NULL) 3635 return NULL; 3636 for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--) 3637 ; 3638 if (n != 0) 3639 return NULL; 3640 return fr; 3641 } 3642 3643 3644 /* ------------------------------------------------------------------------ */ 3645 /* Function: ipf_flushlist */ 3646 /* Returns: int - >= 0 - number of flushed rules */ 3647 /* Parameters: softc(I) - pointer to soft context main structure */ 3648 /* nfreedp(O) - pointer to int where flush count is stored */ 3649 /* listp(I) - pointer to list to flush pointer */ 3650 /* Write Locks: ipf_mutex */ 3651 /* */ 3652 /* Recursively flush rules from the list, descending groups as they are */ 3653 /* encountered. if a rule is the head of a group and it has lost all its */ 3654 /* group members, then also delete the group reference. nfreedp is needed */ 3655 /* to store the accumulating count of rules removed, whereas the returned */ 3656 /* value is just the number removed from the current list. The latter is */ 3657 /* needed to correctly adjust reference counts on rules that define groups. */ 3658 /* */ 3659 /* NOTE: Rules not loaded from user space cannot be flushed. */ 3660 /* ------------------------------------------------------------------------ */ 3661 static int 3662 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp) 3663 { 3664 int freed = 0; 3665 frentry_t *fp; 3666 3667 while ((fp = *listp) != NULL) { 3668 if ((fp->fr_type & FR_T_BUILTIN) || 3669 !(fp->fr_flags & FR_COPIED)) { 3670 listp = &fp->fr_next; 3671 continue; 3672 } 3673 *listp = fp->fr_next; 3674 if (fp->fr_next != NULL) 3675 fp->fr_next->fr_pnext = fp->fr_pnext; 3676 fp->fr_pnext = NULL; 3677 3678 if (fp->fr_grphead != NULL) { 3679 freed += ipf_group_flush(softc, fp->fr_grphead); 3680 fp->fr_names[fp->fr_grhead] = '\0'; 3681 } 3682 3683 if (fp->fr_icmpgrp != NULL) { 3684 freed += ipf_group_flush(softc, fp->fr_icmpgrp); 3685 fp->fr_names[fp->fr_icmphead] = '\0'; 3686 } 3687 3688 if (fp->fr_srctrack.ht_max_nodes) 3689 ipf_rb_ht_flush(&fp->fr_srctrack); 3690 3691 fp->fr_next = NULL; 3692 3693 ASSERT(fp->fr_ref > 0); 3694 if (ipf_derefrule(softc, &fp) == 0) 3695 freed++; 3696 } 3697 *nfreedp += freed; 3698 return freed; 3699 } 3700 3701 3702 /* ------------------------------------------------------------------------ */ 3703 /* Function: ipf_flush */ 3704 /* Returns: int - >= 0 - number of flushed rules */ 3705 /* Parameters: softc(I) - pointer to soft context main structure */ 3706 /* unit(I) - device for which to flush rules */ 3707 /* flags(I) - which set of rules to flush */ 3708 /* */ 3709 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3710 /* and IPv6) as defined by the value of flags. */ 3711 /* ------------------------------------------------------------------------ */ 3712 int 3713 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags) 3714 { 3715 int flushed = 0, set; 3716 3717 WRITE_ENTER(&softc->ipf_mutex); 3718 3719 set = softc->ipf_active; 3720 if ((flags & FR_INACTIVE) == FR_INACTIVE) 3721 set = 1 - set; 3722 3723 if (flags & FR_OUTQUE) { 3724 ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]); 3725 ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]); 3726 } 3727 if (flags & FR_INQUE) { 3728 ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]); 3729 ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]); 3730 } 3731 3732 flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set], 3733 flags & (FR_INQUE|FR_OUTQUE)); 3734 3735 RWLOCK_EXIT(&softc->ipf_mutex); 3736 3737 if (unit == IPL_LOGIPF) { 3738 int tmp; 3739 3740 tmp = ipf_flush(softc, IPL_LOGCOUNT, flags); 3741 if (tmp >= 0) 3742 flushed += tmp; 3743 } 3744 return flushed; 3745 } 3746 3747 3748 /* ------------------------------------------------------------------------ */ 3749 /* Function: ipf_flush_groups */ 3750 /* Returns: int - >= 0 - number of flushed rules */ 3751 /* Parameters: softc(I) - soft context pointerto work with */ 3752 /* grhead(I) - pointer to the start of the group list to flush */ 3753 /* flags(I) - which set of rules to flush */ 3754 /* */ 3755 /* Walk through all of the groups under the given group head and remove all */ 3756 /* of those that match the flags passed in. The for loop here is bit more */ 3757 /* complicated than usual because the removal of a rule with ipf_derefrule */ 3758 /* may end up removing not only the structure pointed to by "fg" but also */ 3759 /* what is fg_next and fg_next after that. So if a filter rule is actually */ 3760 /* removed from the group then it is necessary to start again. */ 3761 /* ------------------------------------------------------------------------ */ 3762 static int 3763 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags) 3764 { 3765 frentry_t *fr, **frp; 3766 frgroup_t *fg, **fgp; 3767 int flushed = 0; 3768 int removed = 0; 3769 3770 for (fgp = grhead; (fg = *fgp) != NULL; ) { 3771 while ((fg != NULL) && ((fg->fg_flags & flags) == 0)) 3772 fg = fg->fg_next; 3773 if (fg == NULL) 3774 break; 3775 removed = 0; 3776 frp = &fg->fg_start; 3777 while ((removed == 0) && ((fr = *frp) != NULL)) { 3778 if ((fr->fr_flags & flags) == 0) { 3779 frp = &fr->fr_next; 3780 } else { 3781 if (fr->fr_next != NULL) 3782 fr->fr_next->fr_pnext = fr->fr_pnext; 3783 *frp = fr->fr_next; 3784 fr->fr_pnext = NULL; 3785 fr->fr_next = NULL; 3786 (void) ipf_derefrule(softc, &fr); 3787 flushed++; 3788 removed++; 3789 } 3790 } 3791 if (removed == 0) 3792 fgp = &fg->fg_next; 3793 } 3794 return flushed; 3795 } 3796 3797 3798 /* ------------------------------------------------------------------------ */ 3799 /* Function: memstr */ 3800 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3801 /* Parameters: src(I) - pointer to byte sequence to match */ 3802 /* dst(I) - pointer to byte sequence to search */ 3803 /* slen(I) - match length */ 3804 /* dlen(I) - length available to search in */ 3805 /* */ 3806 /* Search dst for a sequence of bytes matching those at src and extend for */ 3807 /* slen bytes. */ 3808 /* ------------------------------------------------------------------------ */ 3809 char * 3810 memstr(const char *src, char *dst, size_t slen, size_t dlen) 3811 { 3812 char *s = NULL; 3813 3814 while (dlen >= slen) { 3815 if (memcmp(src, dst, slen) == 0) { 3816 s = dst; 3817 break; 3818 } 3819 dst++; 3820 dlen--; 3821 } 3822 return s; 3823 } 3824 3825 3826 /* ------------------------------------------------------------------------ */ 3827 /* Function: ipf_fixskip */ 3828 /* Returns: Nil */ 3829 /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3830 /* rp(I) - rule added/removed with skip in it. */ 3831 /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3832 /* depending on whether a rule was just added */ 3833 /* or removed. */ 3834 /* */ 3835 /* Adjust all the rules in a list which would have skip'd past the position */ 3836 /* where we are inserting to skip to the right place given the change. */ 3837 /* ------------------------------------------------------------------------ */ 3838 void 3839 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove) 3840 { 3841 int rules, rn; 3842 frentry_t *fp; 3843 3844 rules = 0; 3845 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3846 rules++; 3847 3848 if (!fp) 3849 return; 3850 3851 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3852 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3853 fp->fr_arg += addremove; 3854 } 3855 3856 3857 #ifdef _KERNEL 3858 /* ------------------------------------------------------------------------ */ 3859 /* Function: count4bits */ 3860 /* Returns: int - >= 0 - number of consecutive bits in input */ 3861 /* Parameters: ip(I) - 32bit IP address */ 3862 /* */ 3863 /* IPv4 ONLY */ 3864 /* count consecutive 1's in bit mask. If the mask generated by counting */ 3865 /* consecutive 1's is different to that passed, return -1, else return # */ 3866 /* of bits. */ 3867 /* ------------------------------------------------------------------------ */ 3868 int 3869 count4bits(u_32_t ip) 3870 { 3871 u_32_t ipn; 3872 int cnt = 0, i, j; 3873 3874 ip = ipn = ntohl(ip); 3875 for (i = 32; i; i--, ipn *= 2) 3876 if (ipn & 0x80000000) 3877 cnt++; 3878 else 3879 break; 3880 ipn = 0; 3881 for (i = 32, j = cnt; i; i--, j--) { 3882 ipn *= 2; 3883 if (j > 0) 3884 ipn++; 3885 } 3886 if (ipn == ip) 3887 return cnt; 3888 return -1; 3889 } 3890 3891 3892 /* ------------------------------------------------------------------------ */ 3893 /* Function: count6bits */ 3894 /* Returns: int - >= 0 - number of consecutive bits in input */ 3895 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3896 /* */ 3897 /* IPv6 ONLY */ 3898 /* count consecutive 1's in bit mask. */ 3899 /* ------------------------------------------------------------------------ */ 3900 # ifdef USE_INET6 3901 int 3902 count6bits(u_32_t *msk) 3903 { 3904 int i = 0, k; 3905 u_32_t j; 3906 3907 for (k = 3; k >= 0; k--) 3908 if (msk[k] == 0xffffffff) 3909 i += 32; 3910 else { 3911 for (j = msk[k]; j; j <<= 1) 3912 if (j & 0x80000000) 3913 i++; 3914 } 3915 return i; 3916 } 3917 # endif 3918 #endif /* _KERNEL */ 3919 3920 3921 /* ------------------------------------------------------------------------ */ 3922 /* Function: ipf_synclist */ 3923 /* Returns: int - 0 = no failures, else indication of first failure */ 3924 /* Parameters: fr(I) - start of filter list to sync interface names for */ 3925 /* ifp(I) - interface pointer for limiting sync lookups */ 3926 /* Write Locks: ipf_mutex */ 3927 /* */ 3928 /* Walk through a list of filter rules and resolve any interface names into */ 3929 /* pointers. Where dynamic addresses are used, also update the IP address */ 3930 /* used in the rule. The interface pointer is used to limit the lookups to */ 3931 /* a specific set of matching names if it is non-NULL. */ 3932 /* Errors can occur when resolving the destination name of to/dup-to fields */ 3933 /* when the name points to a pool and that pool doest not exist. If this */ 3934 /* does happen then it is necessary to check if there are any lookup refs */ 3935 /* that need to be dropped before returning with an error. */ 3936 /* ------------------------------------------------------------------------ */ 3937 static int 3938 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp) 3939 { 3940 frentry_t *frt, *start = fr; 3941 frdest_t *fdp; 3942 char *name; 3943 int error; 3944 void *ifa; 3945 int v, i; 3946 3947 error = 0; 3948 3949 for (; fr; fr = fr->fr_next) { 3950 if (fr->fr_family == AF_INET) 3951 v = 4; 3952 else if (fr->fr_family == AF_INET6) 3953 v = 6; 3954 else 3955 v = 0; 3956 3957 /* 3958 * Lookup all the interface names that are part of the rule. 3959 */ 3960 for (i = 0; i < 4; i++) { 3961 if ((ifp != NULL) && (fr->fr_ifas[i] != ifp)) 3962 continue; 3963 if (fr->fr_ifnames[i] == -1) 3964 continue; 3965 name = FR_NAME(fr, fr_ifnames[i]); 3966 fr->fr_ifas[i] = ipf_resolvenic(softc, name, v); 3967 } 3968 3969 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { 3970 if (fr->fr_satype != FRI_NORMAL && 3971 fr->fr_satype != FRI_LOOKUP) { 3972 ifa = ipf_resolvenic(softc, fr->fr_names + 3973 fr->fr_sifpidx, v); 3974 ipf_ifpaddr(softc, v, fr->fr_satype, ifa, 3975 &fr->fr_src6, &fr->fr_smsk6); 3976 } 3977 if (fr->fr_datype != FRI_NORMAL && 3978 fr->fr_datype != FRI_LOOKUP) { 3979 ifa = ipf_resolvenic(softc, fr->fr_names + 3980 fr->fr_sifpidx, v); 3981 ipf_ifpaddr(softc, v, fr->fr_datype, ifa, 3982 &fr->fr_dst6, &fr->fr_dmsk6); 3983 } 3984 } 3985 3986 fdp = &fr->fr_tifs[0]; 3987 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 3988 error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 3989 if (error != 0) 3990 goto unwind; 3991 } 3992 3993 fdp = &fr->fr_tifs[1]; 3994 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 3995 error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 3996 if (error != 0) 3997 goto unwind; 3998 } 3999 4000 fdp = &fr->fr_dif; 4001 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 4002 error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 4003 if (error != 0) 4004 goto unwind; 4005 } 4006 4007 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 4008 (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) { 4009 fr->fr_srcptr = ipf_lookup_res_num(softc, 4010 fr->fr_srctype, 4011 IPL_LOGIPF, 4012 fr->fr_srcnum, 4013 &fr->fr_srcfunc); 4014 } 4015 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 4016 (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) { 4017 fr->fr_dstptr = ipf_lookup_res_num(softc, 4018 fr->fr_dsttype, 4019 IPL_LOGIPF, 4020 fr->fr_dstnum, 4021 &fr->fr_dstfunc); 4022 } 4023 } 4024 return 0; 4025 4026 unwind: 4027 for (frt = start; frt != fr; fr = fr->fr_next) { 4028 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 4029 (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL)) 4030 ipf_lookup_deref(softc, frt->fr_srctype, 4031 frt->fr_srcptr); 4032 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 4033 (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL)) 4034 ipf_lookup_deref(softc, frt->fr_dsttype, 4035 frt->fr_dstptr); 4036 } 4037 return error; 4038 } 4039 4040 4041 /* ------------------------------------------------------------------------ */ 4042 /* Function: ipf_sync */ 4043 /* Returns: void */ 4044 /* Parameters: Nil */ 4045 /* */ 4046 /* ipf_sync() is called when we suspect that the interface list or */ 4047 /* information about interfaces (like IP#) has changed. Go through all */ 4048 /* filter rules, NAT entries and the state table and check if anything */ 4049 /* needs to be changed/updated. */ 4050 /* ------------------------------------------------------------------------ */ 4051 int 4052 ipf_sync(ipf_main_softc_t *softc, void *ifp) 4053 { 4054 int i; 4055 4056 # if !SOLARIS 4057 ipf_nat_sync(softc, ifp); 4058 ipf_state_sync(softc, ifp); 4059 ipf_lookup_sync(softc, ifp); 4060 # endif 4061 4062 WRITE_ENTER(&softc->ipf_mutex); 4063 (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp); 4064 (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp); 4065 (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp); 4066 (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp); 4067 4068 for (i = 0; i < IPL_LOGSIZE; i++) { 4069 frgroup_t *g; 4070 4071 for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next) 4072 (void) ipf_synclist(softc, g->fg_start, ifp); 4073 for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next) 4074 (void) ipf_synclist(softc, g->fg_start, ifp); 4075 } 4076 RWLOCK_EXIT(&softc->ipf_mutex); 4077 4078 return 0; 4079 } 4080 4081 4082 /* 4083 * In the functions below, bcopy() is called because the pointer being 4084 * copied _from_ in this instance is a pointer to a char buf (which could 4085 * end up being unaligned) and on the kernel's local stack. 4086 */ 4087 /* ------------------------------------------------------------------------ */ 4088 /* Function: copyinptr */ 4089 /* Returns: int - 0 = success, else failure */ 4090 /* Parameters: src(I) - pointer to the source address */ 4091 /* dst(I) - destination address */ 4092 /* size(I) - number of bytes to copy */ 4093 /* */ 4094 /* Copy a block of data in from user space, given a pointer to the pointer */ 4095 /* to start copying from (src) and a pointer to where to store it (dst). */ 4096 /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 4097 /* ------------------------------------------------------------------------ */ 4098 int 4099 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size) 4100 { 4101 void *ca; 4102 int error; 4103 4104 # if SOLARIS 4105 error = COPYIN(src, &ca, sizeof(ca)); 4106 if (error != 0) 4107 return error; 4108 # else 4109 bcopy(src, (void *)&ca, sizeof(ca)); 4110 # endif 4111 error = COPYIN(ca, dst, size); 4112 if (error != 0) { 4113 IPFERROR(3); 4114 error = EFAULT; 4115 } 4116 return error; 4117 } 4118 4119 4120 /* ------------------------------------------------------------------------ */ 4121 /* Function: copyoutptr */ 4122 /* Returns: int - 0 = success, else failure */ 4123 /* Parameters: src(I) - pointer to the source address */ 4124 /* dst(I) - destination address */ 4125 /* size(I) - number of bytes to copy */ 4126 /* */ 4127 /* Copy a block of data out to user space, given a pointer to the pointer */ 4128 /* to start copying from (src) and a pointer to where to store it (dst). */ 4129 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 4130 /* ------------------------------------------------------------------------ */ 4131 int 4132 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size) 4133 { 4134 void *ca; 4135 int error; 4136 4137 bcopy(dst, &ca, sizeof(ca)); 4138 error = COPYOUT(src, ca, size); 4139 if (error != 0) { 4140 IPFERROR(4); 4141 error = EFAULT; 4142 } 4143 return error; 4144 } 4145 #ifdef _KERNEL 4146 #endif 4147 4148 4149 /* ------------------------------------------------------------------------ */ 4150 /* Function: ipf_lock */ 4151 /* Returns: int - 0 = success, else error */ 4152 /* Parameters: data(I) - pointer to lock value to set */ 4153 /* lockp(O) - pointer to location to store old lock value */ 4154 /* */ 4155 /* Get the new value for the lock integer, set it and return the old value */ 4156 /* in *lockp. */ 4157 /* ------------------------------------------------------------------------ */ 4158 int 4159 ipf_lock(void *data, int *lockp) 4160 { 4161 int arg, err; 4162 4163 err = BCOPYIN(data, &arg, sizeof(arg)); 4164 if (err != 0) 4165 return EFAULT; 4166 err = BCOPYOUT(lockp, data, sizeof(*lockp)); 4167 if (err != 0) 4168 return EFAULT; 4169 *lockp = arg; 4170 return 0; 4171 } 4172 4173 4174 /* ------------------------------------------------------------------------ */ 4175 /* Function: ipf_getstat */ 4176 /* Returns: Nil */ 4177 /* Parameters: softc(I) - pointer to soft context main structure */ 4178 /* fiop(I) - pointer to ipfilter stats structure */ 4179 /* rev(I) - version claim by program doing ioctl */ 4180 /* */ 4181 /* Stores a copy of current pointers, counters, etc, in the friostat */ 4182 /* structure. */ 4183 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */ 4184 /* program is looking for. This ensure that validation of the version it */ 4185 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */ 4186 /* allow older binaries to work but kernels without it will not. */ 4187 /* ------------------------------------------------------------------------ */ 4188 /*ARGSUSED*/ 4189 static void 4190 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev) 4191 { 4192 int i; 4193 4194 bcopy((char *)softc->ipf_stats, (char *)fiop->f_st, 4195 sizeof(ipf_statistics_t) * 2); 4196 fiop->f_locks[IPL_LOGSTATE] = -1; 4197 fiop->f_locks[IPL_LOGNAT] = -1; 4198 fiop->f_locks[IPL_LOGIPF] = -1; 4199 fiop->f_locks[IPL_LOGAUTH] = -1; 4200 4201 fiop->f_ipf[0][0] = softc->ipf_rules[0][0]; 4202 fiop->f_acct[0][0] = softc->ipf_acct[0][0]; 4203 fiop->f_ipf[0][1] = softc->ipf_rules[0][1]; 4204 fiop->f_acct[0][1] = softc->ipf_acct[0][1]; 4205 fiop->f_ipf[1][0] = softc->ipf_rules[1][0]; 4206 fiop->f_acct[1][0] = softc->ipf_acct[1][0]; 4207 fiop->f_ipf[1][1] = softc->ipf_rules[1][1]; 4208 fiop->f_acct[1][1] = softc->ipf_acct[1][1]; 4209 4210 fiop->f_ticks = softc->ipf_ticks; 4211 fiop->f_active = softc->ipf_active; 4212 fiop->f_froute[0] = softc->ipf_frouteok[0]; 4213 fiop->f_froute[1] = softc->ipf_frouteok[1]; 4214 fiop->f_rb_no_mem = softc->ipf_rb_no_mem; 4215 fiop->f_rb_node_max = softc->ipf_rb_node_max; 4216 4217 fiop->f_running = softc->ipf_running; 4218 for (i = 0; i < IPL_LOGSIZE; i++) { 4219 fiop->f_groups[i][0] = softc->ipf_groups[i][0]; 4220 fiop->f_groups[i][1] = softc->ipf_groups[i][1]; 4221 } 4222 #ifdef IPFILTER_LOG 4223 fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF); 4224 fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF); 4225 fiop->f_logging = 1; 4226 #else 4227 fiop->f_log_ok = 0; 4228 fiop->f_log_fail = 0; 4229 fiop->f_logging = 0; 4230 #endif 4231 fiop->f_defpass = softc->ipf_pass; 4232 fiop->f_features = ipf_features; 4233 4234 #ifdef IPFILTER_COMPAT 4235 snprintf(fiop->f_version, sizeof(fiop->f_version), 4236 "IP Filter: v%d.%d.%d", (rev / 1000000) % 100, 4237 (rev / 10000) % 100, (rev / 100) % 100); 4238 #else 4239 rev = rev; 4240 (void) strncpy(fiop->f_version, ipfilter_version, 4241 sizeof(fiop->f_version)); 4242 fiop->f_version[sizeof(fiop->f_version) - 1] = '\0'; 4243 #endif 4244 } 4245 4246 4247 #ifdef USE_INET6 4248 int icmptoicmp6types[ICMP_MAXTYPE+1] = { 4249 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 4250 -1, /* 1: UNUSED */ 4251 -1, /* 2: UNUSED */ 4252 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 4253 -1, /* 4: ICMP_SOURCEQUENCH */ 4254 ND_REDIRECT, /* 5: ICMP_REDIRECT */ 4255 -1, /* 6: UNUSED */ 4256 -1, /* 7: UNUSED */ 4257 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 4258 -1, /* 9: UNUSED */ 4259 -1, /* 10: UNUSED */ 4260 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 4261 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 4262 -1, /* 13: ICMP_TSTAMP */ 4263 -1, /* 14: ICMP_TSTAMPREPLY */ 4264 -1, /* 15: ICMP_IREQ */ 4265 -1, /* 16: ICMP_IREQREPLY */ 4266 -1, /* 17: ICMP_MASKREQ */ 4267 -1, /* 18: ICMP_MASKREPLY */ 4268 }; 4269 4270 4271 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 4272 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 4273 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 4274 -1, /* 2: ICMP_UNREACH_PROTOCOL */ 4275 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 4276 -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 4277 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 4278 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 4279 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 4280 -1, /* 8: ICMP_UNREACH_ISOLATED */ 4281 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 4282 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 4283 -1, /* 11: ICMP_UNREACH_TOSNET */ 4284 -1, /* 12: ICMP_UNREACH_TOSHOST */ 4285 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 4286 }; 4287 int icmpreplytype6[ICMP6_MAXTYPE + 1]; 4288 #endif 4289 4290 int icmpreplytype4[ICMP_MAXTYPE + 1]; 4291 4292 4293 /* ------------------------------------------------------------------------ */ 4294 /* Function: ipf_matchicmpqueryreply */ 4295 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 4296 /* Parameters: v(I) - IP protocol version (4 or 6) */ 4297 /* ic(I) - ICMP information */ 4298 /* icmp(I) - ICMP packet header */ 4299 /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 4300 /* */ 4301 /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 4302 /* reply to one as described by what's in ic. If it is a match, return 1, */ 4303 /* else return 0 for no match. */ 4304 /* ------------------------------------------------------------------------ */ 4305 int 4306 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev) 4307 { 4308 int ictype; 4309 4310 ictype = ic->ici_type; 4311 4312 if (v == 4) { 4313 /* 4314 * If we matched its type on the way in, then when going out 4315 * it will still be the same type. 4316 */ 4317 if ((!rev && (icmp->icmp_type == ictype)) || 4318 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4319 if (icmp->icmp_type != ICMP_ECHOREPLY) 4320 return 1; 4321 if (icmp->icmp_id == ic->ici_id) 4322 return 1; 4323 } 4324 } 4325 #ifdef USE_INET6 4326 else if (v == 6) { 4327 if ((!rev && (icmp->icmp_type == ictype)) || 4328 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4329 if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4330 return 1; 4331 if (icmp->icmp_id == ic->ici_id) 4332 return 1; 4333 } 4334 } 4335 #endif 4336 return 0; 4337 } 4338 4339 /* ------------------------------------------------------------------------ */ 4340 /* Function: ipf_rule_compare */ 4341 /* Parameters: fr1(I) - first rule structure to compare */ 4342 /* fr2(I) - second rule structure to compare */ 4343 /* Returns: int - 0 == rules are the same, else mismatch */ 4344 /* */ 4345 /* Compare two rules and return 0 if they match or a number indicating */ 4346 /* which of the individual checks failed. */ 4347 /* ------------------------------------------------------------------------ */ 4348 static int 4349 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2) 4350 { 4351 if (fr1->fr_cksum != fr2->fr_cksum) 4352 return 1; 4353 if (fr1->fr_size != fr2->fr_size) 4354 return 2; 4355 if (fr1->fr_dsize != fr2->fr_dsize) 4356 return 3; 4357 if (memcmp(&fr1->fr_func, &fr2->fr_func, 4358 fr1->fr_size - offsetof(struct frentry, fr_func)) != 0) 4359 return 4; 4360 if (fr1->fr_data && !fr2->fr_data) 4361 return 5; 4362 if (!fr1->fr_data && fr2->fr_data) 4363 return 6; 4364 if (fr1->fr_data) { 4365 if (memcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize)) 4366 return 7; 4367 } 4368 return 0; 4369 } 4370 4371 4372 /* ------------------------------------------------------------------------ */ 4373 /* Function: frrequest */ 4374 /* Returns: int - 0 == success, > 0 == errno value */ 4375 /* Parameters: unit(I) - device for which this is for */ 4376 /* req(I) - ioctl command (SIOC*) */ 4377 /* data(I) - pointr to ioctl data */ 4378 /* set(I) - 1 or 0 (filter set) */ 4379 /* makecopy(I) - flag indicating whether data points to a rule */ 4380 /* in kernel space & hence doesn't need copying. */ 4381 /* */ 4382 /* This function handles all the requests which operate on the list of */ 4383 /* filter rules. This includes adding, deleting, insertion. It is also */ 4384 /* responsible for creating groups when a "head" rule is loaded. Interface */ 4385 /* names are resolved here and other sanity checks are made on the content */ 4386 /* of the rule structure being loaded. If a rule has user defined timeouts */ 4387 /* then make sure they are created and initialised before exiting. */ 4388 /* ------------------------------------------------------------------------ */ 4389 int 4390 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data, 4391 int set, int makecopy) 4392 { 4393 int error = 0, in, family, addrem, need_free = 0; 4394 frentry_t frd, *fp, *f, **fprev, **ftail; 4395 void *ptr, *uptr; 4396 u_int *p, *pp; 4397 frgroup_t *fg; 4398 char *group; 4399 4400 ptr = NULL; 4401 fg = NULL; 4402 fp = &frd; 4403 if (makecopy != 0) { 4404 bzero(fp, sizeof(frd)); 4405 error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY); 4406 if (error) { 4407 return error; 4408 } 4409 if ((fp->fr_type & FR_T_BUILTIN) != 0) { 4410 IPFERROR(6); 4411 return EINVAL; 4412 } 4413 KMALLOCS(f, frentry_t *, fp->fr_size); 4414 if (f == NULL) { 4415 IPFERROR(131); 4416 return ENOMEM; 4417 } 4418 bzero(f, fp->fr_size); 4419 error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY, 4420 fp->fr_size); 4421 if (error) { 4422 KFREES(f, fp->fr_size); 4423 return error; 4424 } 4425 4426 fp = f; 4427 f = NULL; 4428 fp->fr_next = NULL; 4429 fp->fr_dnext = NULL; 4430 fp->fr_pnext = NULL; 4431 fp->fr_pdnext = NULL; 4432 fp->fr_grp = NULL; 4433 fp->fr_grphead = NULL; 4434 fp->fr_icmpgrp = NULL; 4435 fp->fr_isc = (void *)-1; 4436 fp->fr_ptr = NULL; 4437 fp->fr_ref = 0; 4438 fp->fr_flags |= FR_COPIED; 4439 } else { 4440 fp = (frentry_t *)data; 4441 if ((fp->fr_type & FR_T_BUILTIN) == 0) { 4442 IPFERROR(7); 4443 return EINVAL; 4444 } 4445 fp->fr_flags &= ~FR_COPIED; 4446 } 4447 4448 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4449 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) { 4450 IPFERROR(8); 4451 error = EINVAL; 4452 goto donenolock; 4453 } 4454 4455 family = fp->fr_family; 4456 uptr = fp->fr_data; 4457 4458 if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR || 4459 req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR) 4460 addrem = 0; 4461 else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) 4462 addrem = 1; 4463 else if (req == (ioctlcmd_t)SIOCZRLST) 4464 addrem = 2; 4465 else { 4466 IPFERROR(9); 4467 error = EINVAL; 4468 goto donenolock; 4469 } 4470 4471 /* 4472 * Only filter rules for IPv4 or IPv6 are accepted. 4473 */ 4474 if (family == AF_INET) { 4475 /*EMPTY*/; 4476 #ifdef USE_INET6 4477 } else if (family == AF_INET6) { 4478 /*EMPTY*/; 4479 #endif 4480 } else if (family != 0) { 4481 IPFERROR(10); 4482 error = EINVAL; 4483 goto donenolock; 4484 } 4485 4486 /* 4487 * If the rule is being loaded from user space, i.e. we had to copy it 4488 * into kernel space, then do not trust the function pointer in the 4489 * rule. 4490 */ 4491 if ((makecopy == 1) && (fp->fr_func != NULL)) { 4492 if (ipf_findfunc(fp->fr_func) == NULL) { 4493 IPFERROR(11); 4494 error = ESRCH; 4495 goto donenolock; 4496 } 4497 4498 if (addrem == 0) { 4499 error = ipf_funcinit(softc, fp); 4500 if (error != 0) 4501 goto donenolock; 4502 } 4503 } 4504 if ((fp->fr_flags & FR_CALLNOW) && 4505 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { 4506 IPFERROR(142); 4507 error = ESRCH; 4508 goto donenolock; 4509 } 4510 if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) && 4511 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { 4512 IPFERROR(143); 4513 error = ESRCH; 4514 goto donenolock; 4515 } 4516 4517 ptr = NULL; 4518 4519 if (FR_ISACCOUNT(fp->fr_flags)) 4520 unit = IPL_LOGCOUNT; 4521 4522 /* 4523 * Check that each group name in the rule has a start index that 4524 * is valid. 4525 */ 4526 if (fp->fr_icmphead != -1) { 4527 if ((fp->fr_icmphead < 0) || 4528 (fp->fr_icmphead >= fp->fr_namelen)) { 4529 IPFERROR(136); 4530 error = EINVAL; 4531 goto donenolock; 4532 } 4533 if (!strcmp(FR_NAME(fp, fr_icmphead), "0")) 4534 fp->fr_names[fp->fr_icmphead] = '\0'; 4535 } 4536 4537 if (fp->fr_grhead != -1) { 4538 if ((fp->fr_grhead < 0) || 4539 (fp->fr_grhead >= fp->fr_namelen)) { 4540 IPFERROR(137); 4541 error = EINVAL; 4542 goto donenolock; 4543 } 4544 if (!strcmp(FR_NAME(fp, fr_grhead), "0")) 4545 fp->fr_names[fp->fr_grhead] = '\0'; 4546 } 4547 4548 if (fp->fr_group != -1) { 4549 if ((fp->fr_group < 0) || 4550 (fp->fr_group >= fp->fr_namelen)) { 4551 IPFERROR(138); 4552 error = EINVAL; 4553 goto donenolock; 4554 } 4555 if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) { 4556 /* 4557 * Allow loading rules that are in groups to cause 4558 * them to be created if they don't already exit. 4559 */ 4560 group = FR_NAME(fp, fr_group); 4561 if (addrem == 0) { 4562 fg = ipf_group_add(softc, group, NULL, 4563 fp->fr_flags, unit, set); 4564 if (fg == NULL) { 4565 IPFERROR(152); 4566 error = ESRCH; 4567 goto donenolock; 4568 } 4569 fp->fr_grp = fg; 4570 } else { 4571 fg = ipf_findgroup(softc, group, unit, 4572 set, NULL); 4573 if (fg == NULL) { 4574 IPFERROR(12); 4575 error = ESRCH; 4576 goto donenolock; 4577 } 4578 } 4579 4580 if (fg->fg_flags == 0) { 4581 fg->fg_flags = fp->fr_flags & FR_INOUT; 4582 } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) { 4583 IPFERROR(13); 4584 error = ESRCH; 4585 goto donenolock; 4586 } 4587 } 4588 } else { 4589 /* 4590 * If a rule is going to be part of a group then it does 4591 * not matter whether it is an in or out rule, but if it 4592 * isn't in a group, then it does... 4593 */ 4594 if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) { 4595 IPFERROR(14); 4596 error = EINVAL; 4597 goto donenolock; 4598 } 4599 } 4600 in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4601 4602 /* 4603 * Work out which rule list this change is being applied to. 4604 */ 4605 ftail = NULL; 4606 fprev = NULL; 4607 if (unit == IPL_LOGAUTH) { 4608 if ((fp->fr_tifs[0].fd_ptr != NULL) || 4609 (fp->fr_tifs[1].fd_ptr != NULL) || 4610 (fp->fr_dif.fd_ptr != NULL) || 4611 (fp->fr_flags & FR_FASTROUTE)) { 4612 IPFERROR(145); 4613 error = EINVAL; 4614 goto donenolock; 4615 } 4616 fprev = ipf_auth_rulehead(softc); 4617 } else { 4618 if (FR_ISACCOUNT(fp->fr_flags)) 4619 fprev = &softc->ipf_acct[in][set]; 4620 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4621 fprev = &softc->ipf_rules[in][set]; 4622 } 4623 if (fprev == NULL) { 4624 IPFERROR(15); 4625 error = ESRCH; 4626 goto donenolock; 4627 } 4628 4629 if (fg != NULL) 4630 fprev = &fg->fg_start; 4631 4632 /* 4633 * Copy in extra data for the rule. 4634 */ 4635 if (fp->fr_dsize != 0) { 4636 if (makecopy != 0) { 4637 KMALLOCS(ptr, void *, fp->fr_dsize); 4638 if (ptr == NULL) { 4639 IPFERROR(16); 4640 error = ENOMEM; 4641 goto donenolock; 4642 } 4643 4644 /* 4645 * The bcopy case is for when the data is appended 4646 * to the rule by ipf_in_compat(). 4647 */ 4648 if (uptr >= (void *)fp && 4649 uptr < (void *)((char *)fp + fp->fr_size)) { 4650 bcopy(uptr, ptr, fp->fr_dsize); 4651 error = 0; 4652 } else { 4653 error = COPYIN(uptr, ptr, fp->fr_dsize); 4654 if (error != 0) { 4655 IPFERROR(17); 4656 error = EFAULT; 4657 goto donenolock; 4658 } 4659 } 4660 } else { 4661 ptr = uptr; 4662 } 4663 fp->fr_data = ptr; 4664 } else { 4665 fp->fr_data = NULL; 4666 } 4667 4668 /* 4669 * Perform per-rule type sanity checks of their members. 4670 * All code after this needs to be aware that allocated memory 4671 * may need to be free'd before exiting. 4672 */ 4673 switch (fp->fr_type & ~FR_T_BUILTIN) 4674 { 4675 #if defined(IPFILTER_BPF) 4676 case FR_T_BPFOPC : 4677 if (fp->fr_dsize == 0) { 4678 IPFERROR(19); 4679 error = EINVAL; 4680 break; 4681 } 4682 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4683 IPFERROR(20); 4684 error = EINVAL; 4685 break; 4686 } 4687 break; 4688 #endif 4689 case FR_T_IPF : 4690 /* 4691 * Preparation for error case at the bottom of this function. 4692 */ 4693 if (fp->fr_datype == FRI_LOOKUP) 4694 fp->fr_dstptr = NULL; 4695 if (fp->fr_satype == FRI_LOOKUP) 4696 fp->fr_srcptr = NULL; 4697 4698 if (fp->fr_dsize != sizeof(fripf_t)) { 4699 IPFERROR(21); 4700 error = EINVAL; 4701 break; 4702 } 4703 4704 /* 4705 * Allowing a rule with both "keep state" and "with oow" is 4706 * pointless because adding a state entry to the table will 4707 * fail with the out of window (oow) flag set. 4708 */ 4709 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) { 4710 IPFERROR(22); 4711 error = EINVAL; 4712 break; 4713 } 4714 4715 switch (fp->fr_satype) 4716 { 4717 case FRI_BROADCAST : 4718 case FRI_DYNAMIC : 4719 case FRI_NETWORK : 4720 case FRI_NETMASKED : 4721 case FRI_PEERADDR : 4722 if (fp->fr_sifpidx < 0) { 4723 IPFERROR(23); 4724 error = EINVAL; 4725 } 4726 break; 4727 case FRI_LOOKUP : 4728 fp->fr_srcptr = ipf_findlookup(softc, unit, fp, 4729 &fp->fr_src6, 4730 &fp->fr_smsk6); 4731 if (fp->fr_srcfunc == NULL) { 4732 IPFERROR(132); 4733 error = ESRCH; 4734 break; 4735 } 4736 break; 4737 case FRI_NORMAL : 4738 break; 4739 default : 4740 IPFERROR(133); 4741 error = EINVAL; 4742 break; 4743 } 4744 if (error != 0) 4745 break; 4746 4747 switch (fp->fr_datype) 4748 { 4749 case FRI_BROADCAST : 4750 case FRI_DYNAMIC : 4751 case FRI_NETWORK : 4752 case FRI_NETMASKED : 4753 case FRI_PEERADDR : 4754 if (fp->fr_difpidx < 0) { 4755 IPFERROR(24); 4756 error = EINVAL; 4757 } 4758 break; 4759 case FRI_LOOKUP : 4760 fp->fr_dstptr = ipf_findlookup(softc, unit, fp, 4761 &fp->fr_dst6, 4762 &fp->fr_dmsk6); 4763 if (fp->fr_dstfunc == NULL) { 4764 IPFERROR(134); 4765 error = ESRCH; 4766 } 4767 break; 4768 case FRI_NORMAL : 4769 break; 4770 default : 4771 IPFERROR(135); 4772 error = EINVAL; 4773 } 4774 break; 4775 4776 case FR_T_NONE : 4777 case FR_T_CALLFUNC : 4778 case FR_T_COMPIPF : 4779 break; 4780 4781 case FR_T_IPFEXPR : 4782 if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) { 4783 IPFERROR(25); 4784 error = EINVAL; 4785 } 4786 break; 4787 4788 default : 4789 IPFERROR(26); 4790 error = EINVAL; 4791 break; 4792 } 4793 if (error != 0) 4794 goto donenolock; 4795 4796 if (fp->fr_tif.fd_name != -1) { 4797 if ((fp->fr_tif.fd_name < 0) || 4798 (fp->fr_tif.fd_name >= fp->fr_namelen)) { 4799 IPFERROR(139); 4800 error = EINVAL; 4801 goto donenolock; 4802 } 4803 } 4804 4805 if (fp->fr_dif.fd_name != -1) { 4806 if ((fp->fr_dif.fd_name < 0) || 4807 (fp->fr_dif.fd_name >= fp->fr_namelen)) { 4808 IPFERROR(140); 4809 error = EINVAL; 4810 goto donenolock; 4811 } 4812 } 4813 4814 if (fp->fr_rif.fd_name != -1) { 4815 if ((fp->fr_rif.fd_name < 0) || 4816 (fp->fr_rif.fd_name >= fp->fr_namelen)) { 4817 IPFERROR(141); 4818 error = EINVAL; 4819 goto donenolock; 4820 } 4821 } 4822 4823 /* 4824 * Lookup all the interface names that are part of the rule. 4825 */ 4826 error = ipf_synclist(softc, fp, NULL); 4827 if (error != 0) 4828 goto donenolock; 4829 fp->fr_statecnt = 0; 4830 if (fp->fr_srctrack.ht_max_nodes != 0) 4831 ipf_rb_ht_init(&fp->fr_srctrack); 4832 4833 /* 4834 * Look for an existing matching filter rule, but don't include the 4835 * next or interface pointer in the comparison (fr_next, fr_ifa). 4836 * This elminates rules which are indentical being loaded. Checksum 4837 * the constant part of the filter rule to make comparisons quicker 4838 * (this meaning no pointers are included). 4839 */ 4840 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4841 p < pp; p++) 4842 fp->fr_cksum += *p; 4843 pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize); 4844 for (p = (u_int *)fp->fr_data; p < pp; p++) 4845 fp->fr_cksum += *p; 4846 4847 WRITE_ENTER(&softc->ipf_mutex); 4848 4849 /* 4850 * Now that the filter rule lists are locked, we can walk the 4851 * chain of them without fear. 4852 */ 4853 ftail = fprev; 4854 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4855 if (fp->fr_collect <= f->fr_collect) { 4856 ftail = fprev; 4857 f = NULL; 4858 break; 4859 } 4860 fprev = ftail; 4861 } 4862 4863 for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4864 DT2(rule_cmp, frentry_t *, fp, frentry_t *, f); 4865 if (ipf_rule_compare(fp, f) == 0) 4866 break; 4867 } 4868 4869 /* 4870 * If zero'ing statistics, copy current to caller and zero. 4871 */ 4872 if (addrem == 2) { 4873 if (f == NULL) { 4874 IPFERROR(27); 4875 error = ESRCH; 4876 } else { 4877 /* 4878 * Copy and reduce lock because of impending copyout. 4879 * Well we should, but if we do then the atomicity of 4880 * this call and the correctness of fr_hits and 4881 * fr_bytes cannot be guaranteed. As it is, this code 4882 * only resets them to 0 if they are successfully 4883 * copied out into user space. 4884 */ 4885 bcopy((char *)f, (char *)fp, f->fr_size); 4886 /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */ 4887 4888 /* 4889 * When we copy this rule back out, set the data 4890 * pointer to be what it was in user space. 4891 */ 4892 fp->fr_data = uptr; 4893 error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY); 4894 4895 if (error == 0) { 4896 if ((f->fr_dsize != 0) && (uptr != NULL)) { 4897 error = COPYOUT(f->fr_data, uptr, 4898 f->fr_dsize); 4899 if (error != 0) { 4900 IPFERROR(28); 4901 error = EFAULT; 4902 } 4903 } 4904 if (error == 0) { 4905 f->fr_hits = 0; 4906 f->fr_bytes = 0; 4907 } 4908 } 4909 } 4910 4911 if (makecopy != 0) { 4912 if (ptr != NULL) { 4913 KFREES(ptr, fp->fr_dsize); 4914 } 4915 KFREES(fp, fp->fr_size); 4916 } 4917 RWLOCK_EXIT(&softc->ipf_mutex); 4918 return error; 4919 } 4920 4921 if (!f) { 4922 /* 4923 * At the end of this, ftail must point to the place where the 4924 * new rule is to be saved/inserted/added. 4925 * For SIOCAD*FR, this should be the last rule in the group of 4926 * rules that have equal fr_collect fields. 4927 * For SIOCIN*FR, ... 4928 */ 4929 if (req == (ioctlcmd_t)SIOCADAFR || 4930 req == (ioctlcmd_t)SIOCADIFR) { 4931 4932 for (ftail = fprev; (f = *ftail) != NULL; ) { 4933 if (f->fr_collect > fp->fr_collect) 4934 break; 4935 ftail = &f->fr_next; 4936 fprev = ftail; 4937 } 4938 ftail = fprev; 4939 f = NULL; 4940 ptr = NULL; 4941 } else if (req == (ioctlcmd_t)SIOCINAFR || 4942 req == (ioctlcmd_t)SIOCINIFR) { 4943 while ((f = *fprev) != NULL) { 4944 if (f->fr_collect >= fp->fr_collect) 4945 break; 4946 fprev = &f->fr_next; 4947 } 4948 ftail = fprev; 4949 if (fp->fr_hits != 0) { 4950 while (fp->fr_hits && (f = *ftail)) { 4951 if (f->fr_collect != fp->fr_collect) 4952 break; 4953 fprev = ftail; 4954 ftail = &f->fr_next; 4955 fp->fr_hits--; 4956 } 4957 } 4958 f = NULL; 4959 ptr = NULL; 4960 } 4961 } 4962 4963 /* 4964 * Request to remove a rule. 4965 */ 4966 if (addrem == 1) { 4967 if (!f) { 4968 IPFERROR(29); 4969 error = ESRCH; 4970 } else { 4971 /* 4972 * Do not allow activity from user space to interfere 4973 * with rules not loaded that way. 4974 */ 4975 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4976 IPFERROR(30); 4977 error = EPERM; 4978 goto done; 4979 } 4980 4981 /* 4982 * Return EBUSY if the rule is being reference by 4983 * something else (eg state information.) 4984 */ 4985 if (f->fr_ref > 1) { 4986 IPFERROR(31); 4987 error = EBUSY; 4988 goto done; 4989 } 4990 #ifdef IPFILTER_SCAN 4991 if (f->fr_isctag != -1 && 4992 (f->fr_isc != (struct ipscan *)-1)) 4993 ipf_scan_detachfr(f); 4994 #endif 4995 4996 if (unit == IPL_LOGAUTH) { 4997 error = ipf_auth_precmd(softc, req, f, ftail); 4998 goto done; 4999 } 5000 5001 ipf_rule_delete(softc, f, unit, set); 5002 5003 need_free = makecopy; 5004 } 5005 } else { 5006 /* 5007 * Not removing, so we must be adding/inserting a rule. 5008 */ 5009 if (f != NULL) { 5010 IPFERROR(32); 5011 error = EEXIST; 5012 goto done; 5013 } 5014 if (unit == IPL_LOGAUTH) { 5015 error = ipf_auth_precmd(softc, req, fp, ftail); 5016 goto done; 5017 } 5018 5019 MUTEX_NUKE(&fp->fr_lock); 5020 MUTEX_INIT(&fp->fr_lock, "filter rule lock"); 5021 if (fp->fr_die != 0) 5022 ipf_rule_expire_insert(softc, fp, set); 5023 5024 fp->fr_hits = 0; 5025 if (makecopy != 0) 5026 fp->fr_ref = 1; 5027 fp->fr_pnext = ftail; 5028 fp->fr_next = *ftail; 5029 if (fp->fr_next != NULL) 5030 fp->fr_next->fr_pnext = &fp->fr_next; 5031 *ftail = fp; 5032 if (addrem == 0) 5033 ipf_fixskip(ftail, fp, 1); 5034 5035 fp->fr_icmpgrp = NULL; 5036 if (fp->fr_icmphead != -1) { 5037 group = FR_NAME(fp, fr_icmphead); 5038 fg = ipf_group_add(softc, group, fp, 0, unit, set); 5039 fp->fr_icmpgrp = fg; 5040 } 5041 5042 fp->fr_grphead = NULL; 5043 if (fp->fr_grhead != -1) { 5044 group = FR_NAME(fp, fr_grhead); 5045 fg = ipf_group_add(softc, group, fp, fp->fr_flags, 5046 unit, set); 5047 fp->fr_grphead = fg; 5048 } 5049 } 5050 done: 5051 RWLOCK_EXIT(&softc->ipf_mutex); 5052 donenolock: 5053 if (need_free || (error != 0)) { 5054 if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { 5055 if ((fp->fr_satype == FRI_LOOKUP) && 5056 (fp->fr_srcptr != NULL)) 5057 ipf_lookup_deref(softc, fp->fr_srctype, 5058 fp->fr_srcptr); 5059 if ((fp->fr_datype == FRI_LOOKUP) && 5060 (fp->fr_dstptr != NULL)) 5061 ipf_lookup_deref(softc, fp->fr_dsttype, 5062 fp->fr_dstptr); 5063 } 5064 if (fp->fr_grp != NULL) { 5065 WRITE_ENTER(&softc->ipf_mutex); 5066 ipf_group_del(softc, fp->fr_grp, fp); 5067 RWLOCK_EXIT(&softc->ipf_mutex); 5068 } 5069 if ((ptr != NULL) && (makecopy != 0)) { 5070 KFREES(ptr, fp->fr_dsize); 5071 } 5072 KFREES(fp, fp->fr_size); 5073 } 5074 return (error); 5075 } 5076 5077 5078 /* ------------------------------------------------------------------------ */ 5079 /* Function: ipf_rule_delete */ 5080 /* Returns: Nil */ 5081 /* Parameters: softc(I) - pointer to soft context main structure */ 5082 /* f(I) - pointer to the rule being deleted */ 5083 /* ftail(I) - pointer to the pointer to f */ 5084 /* unit(I) - device for which this is for */ 5085 /* set(I) - 1 or 0 (filter set) */ 5086 /* */ 5087 /* This function attempts to do what it can to delete a filter rule: remove */ 5088 /* it from any linked lists and remove any groups it is responsible for. */ 5089 /* But in the end, removing a rule can only drop the reference count - we */ 5090 /* must use that as the guide for whether or not it can be freed. */ 5091 /* ------------------------------------------------------------------------ */ 5092 static void 5093 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set) 5094 { 5095 5096 /* 5097 * If fr_pdnext is set, then the rule is on the expire list, so 5098 * remove it from there. 5099 */ 5100 if (f->fr_pdnext != NULL) { 5101 *f->fr_pdnext = f->fr_dnext; 5102 if (f->fr_dnext != NULL) 5103 f->fr_dnext->fr_pdnext = f->fr_pdnext; 5104 f->fr_pdnext = NULL; 5105 f->fr_dnext = NULL; 5106 } 5107 5108 ipf_fixskip(f->fr_pnext, f, -1); 5109 if (f->fr_pnext != NULL) 5110 *f->fr_pnext = f->fr_next; 5111 if (f->fr_next != NULL) 5112 f->fr_next->fr_pnext = f->fr_pnext; 5113 f->fr_pnext = NULL; 5114 f->fr_next = NULL; 5115 5116 (void) ipf_derefrule(softc, &f); 5117 } 5118 5119 /* ------------------------------------------------------------------------ */ 5120 /* Function: ipf_rule_expire_insert */ 5121 /* Returns: Nil */ 5122 /* Parameters: softc(I) - pointer to soft context main structure */ 5123 /* f(I) - pointer to rule to be added to expire list */ 5124 /* set(I) - 1 or 0 (filter set) */ 5125 /* */ 5126 /* If the new rule has a given expiration time, insert it into the list of */ 5127 /* expiring rules with the ones to be removed first added to the front of */ 5128 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */ 5129 /* expiration interval checks. */ 5130 /* ------------------------------------------------------------------------ */ 5131 static void 5132 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set) 5133 { 5134 frentry_t *fr; 5135 5136 /* 5137 */ 5138 5139 f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die); 5140 for (fr = softc->ipf_rule_explist[set]; fr != NULL; 5141 fr = fr->fr_dnext) { 5142 if (f->fr_die < fr->fr_die) 5143 break; 5144 if (fr->fr_dnext == NULL) { 5145 /* 5146 * We've got to the last rule and everything 5147 * wanted to be expired before this new node, 5148 * so we have to tack it on the end... 5149 */ 5150 fr->fr_dnext = f; 5151 f->fr_pdnext = &fr->fr_dnext; 5152 fr = NULL; 5153 break; 5154 } 5155 } 5156 5157 if (softc->ipf_rule_explist[set] == NULL) { 5158 softc->ipf_rule_explist[set] = f; 5159 f->fr_pdnext = &softc->ipf_rule_explist[set]; 5160 } else if (fr != NULL) { 5161 f->fr_dnext = fr; 5162 f->fr_pdnext = fr->fr_pdnext; 5163 fr->fr_pdnext = &f->fr_dnext; 5164 } 5165 } 5166 5167 5168 /* ------------------------------------------------------------------------ */ 5169 /* Function: ipf_findlookup */ 5170 /* Returns: NULL = failure, else success */ 5171 /* Parameters: softc(I) - pointer to soft context main structure */ 5172 /* unit(I) - ipf device we want to find match for */ 5173 /* fp(I) - rule for which lookup is for */ 5174 /* addrp(I) - pointer to lookup information in address struct */ 5175 /* maskp(O) - pointer to lookup information for storage */ 5176 /* */ 5177 /* When using pools and hash tables to store addresses for matching in */ 5178 /* rules, it is necessary to resolve both the object referred to by the */ 5179 /* name or address (and return that pointer) and also provide the means by */ 5180 /* which to determine if an address belongs to that object to make the */ 5181 /* packet matching quicker. */ 5182 /* ------------------------------------------------------------------------ */ 5183 static void * 5184 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr, 5185 i6addr_t *addrp, i6addr_t *maskp) 5186 { 5187 void *ptr = NULL; 5188 5189 switch (addrp->iplookupsubtype) 5190 { 5191 case 0 : 5192 ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype, 5193 addrp->iplookupnum, 5194 &maskp->iplookupfunc); 5195 break; 5196 case 1 : 5197 if (addrp->iplookupname < 0) 5198 break; 5199 if (addrp->iplookupname >= fr->fr_namelen) 5200 break; 5201 ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype, 5202 fr->fr_names + addrp->iplookupname, 5203 &maskp->iplookupfunc); 5204 break; 5205 default : 5206 break; 5207 } 5208 5209 return ptr; 5210 } 5211 5212 5213 /* ------------------------------------------------------------------------ */ 5214 /* Function: ipf_funcinit */ 5215 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 5216 /* Parameters: softc(I) - pointer to soft context main structure */ 5217 /* fr(I) - pointer to filter rule */ 5218 /* */ 5219 /* If a rule is a call rule, then check if the function it points to needs */ 5220 /* an init function to be called now the rule has been loaded. */ 5221 /* ------------------------------------------------------------------------ */ 5222 static int 5223 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr) 5224 { 5225 ipfunc_resolve_t *ft; 5226 int err; 5227 5228 IPFERROR(34); 5229 err = ESRCH; 5230 5231 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5232 if (ft->ipfu_addr == fr->fr_func) { 5233 err = 0; 5234 if (ft->ipfu_init != NULL) 5235 err = (*ft->ipfu_init)(softc, fr); 5236 break; 5237 } 5238 return err; 5239 } 5240 5241 5242 /* ------------------------------------------------------------------------ */ 5243 /* Function: ipf_funcfini */ 5244 /* Returns: Nil */ 5245 /* Parameters: softc(I) - pointer to soft context main structure */ 5246 /* fr(I) - pointer to filter rule */ 5247 /* */ 5248 /* For a given filter rule, call the matching "fini" function if the rule */ 5249 /* is using a known function that would have resulted in the "init" being */ 5250 /* called for ealier. */ 5251 /* ------------------------------------------------------------------------ */ 5252 static void 5253 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr) 5254 { 5255 ipfunc_resolve_t *ft; 5256 5257 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5258 if (ft->ipfu_addr == fr->fr_func) { 5259 if (ft->ipfu_fini != NULL) 5260 (void) (*ft->ipfu_fini)(softc, fr); 5261 break; 5262 } 5263 } 5264 5265 5266 /* ------------------------------------------------------------------------ */ 5267 /* Function: ipf_findfunc */ 5268 /* Returns: ipfunc_t - pointer to function if found, else NULL */ 5269 /* Parameters: funcptr(I) - function pointer to lookup */ 5270 /* */ 5271 /* Look for a function in the table of known functions. */ 5272 /* ------------------------------------------------------------------------ */ 5273 static ipfunc_t 5274 ipf_findfunc(ipfunc_t funcptr) 5275 { 5276 ipfunc_resolve_t *ft; 5277 5278 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5279 if (ft->ipfu_addr == funcptr) 5280 return funcptr; 5281 return NULL; 5282 } 5283 5284 5285 /* ------------------------------------------------------------------------ */ 5286 /* Function: ipf_resolvefunc */ 5287 /* Returns: int - 0 == success, else error */ 5288 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 5289 /* */ 5290 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 5291 /* This will either be the function name (if the pointer is set) or the */ 5292 /* function pointer if the name is set. When found, fill in the other one */ 5293 /* so that the entire, complete, structure can be copied back to user space.*/ 5294 /* ------------------------------------------------------------------------ */ 5295 int 5296 ipf_resolvefunc(ipf_main_softc_t *softc, void *data) 5297 { 5298 ipfunc_resolve_t res, *ft; 5299 int error; 5300 5301 error = BCOPYIN(data, &res, sizeof(res)); 5302 if (error != 0) { 5303 IPFERROR(123); 5304 return EFAULT; 5305 } 5306 5307 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 5308 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5309 if (strncmp(res.ipfu_name, ft->ipfu_name, 5310 sizeof(res.ipfu_name)) == 0) { 5311 res.ipfu_addr = ft->ipfu_addr; 5312 res.ipfu_init = ft->ipfu_init; 5313 if (COPYOUT(&res, data, sizeof(res)) != 0) { 5314 IPFERROR(35); 5315 return EFAULT; 5316 } 5317 return 0; 5318 } 5319 } 5320 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 5321 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5322 if (ft->ipfu_addr == res.ipfu_addr) { 5323 (void) strncpy(res.ipfu_name, ft->ipfu_name, 5324 sizeof(res.ipfu_name)); 5325 res.ipfu_init = ft->ipfu_init; 5326 if (COPYOUT(&res, data, sizeof(res)) != 0) { 5327 IPFERROR(36); 5328 return EFAULT; 5329 } 5330 return 0; 5331 } 5332 } 5333 IPFERROR(37); 5334 return ESRCH; 5335 } 5336 5337 5338 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \ 5339 !defined(__FreeBSD__)) || \ 5340 FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \ 5341 OPENBSD_LT_REV(200006) 5342 /* 5343 * From: NetBSD 5344 * ppsratecheck(): packets (or events) per second limitation. 5345 */ 5346 int 5347 ppsratecheck(lasttime, curpps, maxpps) 5348 struct timeval *lasttime; 5349 int *curpps; 5350 int maxpps; /* maximum pps allowed */ 5351 { 5352 struct timeval tv, delta; 5353 int rv; 5354 5355 GETKTIME(&tv); 5356 5357 delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 5358 delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 5359 if (delta.tv_usec < 0) { 5360 delta.tv_sec--; 5361 delta.tv_usec += 1000000; 5362 } 5363 5364 /* 5365 * check for 0,0 is so that the message will be seen at least once. 5366 * if more than one second have passed since the last update of 5367 * lasttime, reset the counter. 5368 * 5369 * we do increment *curpps even in *curpps < maxpps case, as some may 5370 * try to use *curpps for stat purposes as well. 5371 */ 5372 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 5373 delta.tv_sec >= 1) { 5374 *lasttime = tv; 5375 *curpps = 0; 5376 rv = 1; 5377 } else if (maxpps < 0) 5378 rv = 1; 5379 else if (*curpps < maxpps) 5380 rv = 1; 5381 else 5382 rv = 0; 5383 *curpps = *curpps + 1; 5384 5385 return (rv); 5386 } 5387 #endif 5388 5389 5390 /* ------------------------------------------------------------------------ */ 5391 /* Function: ipf_derefrule */ 5392 /* Returns: int - 0 == rule freed up, else rule not freed */ 5393 /* Parameters: fr(I) - pointer to filter rule */ 5394 /* */ 5395 /* Decrement the reference counter to a rule by one. If it reaches zero, */ 5396 /* free it and any associated storage space being used by it. */ 5397 /* ------------------------------------------------------------------------ */ 5398 int 5399 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp) 5400 { 5401 frentry_t *fr; 5402 frdest_t *fdp; 5403 5404 fr = *frp; 5405 *frp = NULL; 5406 5407 MUTEX_ENTER(&fr->fr_lock); 5408 fr->fr_ref--; 5409 if (fr->fr_ref == 0) { 5410 MUTEX_EXIT(&fr->fr_lock); 5411 MUTEX_DESTROY(&fr->fr_lock); 5412 5413 ipf_funcfini(softc, fr); 5414 5415 fdp = &fr->fr_tif; 5416 if (fdp->fd_type == FRD_DSTLIST) 5417 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5418 5419 fdp = &fr->fr_rif; 5420 if (fdp->fd_type == FRD_DSTLIST) 5421 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5422 5423 fdp = &fr->fr_dif; 5424 if (fdp->fd_type == FRD_DSTLIST) 5425 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5426 5427 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && 5428 fr->fr_satype == FRI_LOOKUP) 5429 ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr); 5430 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && 5431 fr->fr_datype == FRI_LOOKUP) 5432 ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr); 5433 5434 if (fr->fr_grp != NULL) 5435 ipf_group_del(softc, fr->fr_grp, fr); 5436 5437 if (fr->fr_grphead != NULL) 5438 ipf_group_del(softc, fr->fr_grphead, fr); 5439 5440 if (fr->fr_icmpgrp != NULL) 5441 ipf_group_del(softc, fr->fr_icmpgrp, fr); 5442 5443 if ((fr->fr_flags & FR_COPIED) != 0) { 5444 if (fr->fr_dsize) { 5445 KFREES(fr->fr_data, fr->fr_dsize); 5446 } 5447 KFREES(fr, fr->fr_size); 5448 return 0; 5449 } 5450 return 1; 5451 } else { 5452 MUTEX_EXIT(&fr->fr_lock); 5453 } 5454 return -1; 5455 } 5456 5457 5458 /* ------------------------------------------------------------------------ */ 5459 /* Function: ipf_grpmapinit */ 5460 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 5461 /* Parameters: fr(I) - pointer to rule to find hash table for */ 5462 /* */ 5463 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 5464 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */ 5465 /* ------------------------------------------------------------------------ */ 5466 static int 5467 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr) 5468 { 5469 char name[FR_GROUPLEN]; 5470 iphtable_t *iph; 5471 5472 (void) snprintf(name, sizeof(name), "%d", fr->fr_arg); 5473 iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name); 5474 if (iph == NULL) { 5475 IPFERROR(38); 5476 return ESRCH; 5477 } 5478 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) { 5479 IPFERROR(39); 5480 return ESRCH; 5481 } 5482 iph->iph_ref++; 5483 fr->fr_ptr = iph; 5484 return 0; 5485 } 5486 5487 5488 /* ------------------------------------------------------------------------ */ 5489 /* Function: ipf_grpmapfini */ 5490 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 5491 /* Parameters: softc(I) - pointer to soft context main structure */ 5492 /* fr(I) - pointer to rule to release hash table for */ 5493 /* */ 5494 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */ 5495 /* be called to undo what ipf_grpmapinit caused to be done. */ 5496 /* ------------------------------------------------------------------------ */ 5497 static int 5498 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr) 5499 { 5500 iphtable_t *iph; 5501 iph = fr->fr_ptr; 5502 if (iph != NULL) 5503 ipf_lookup_deref(softc, IPLT_HASH, iph); 5504 return 0; 5505 } 5506 5507 5508 /* ------------------------------------------------------------------------ */ 5509 /* Function: ipf_srcgrpmap */ 5510 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5511 /* Parameters: fin(I) - pointer to packet information */ 5512 /* passp(IO) - pointer to current/new filter decision (unused) */ 5513 /* */ 5514 /* Look for a rule group head in a hash table, using the source address as */ 5515 /* the key, and descend into that group and continue matching rules against */ 5516 /* the packet. */ 5517 /* ------------------------------------------------------------------------ */ 5518 frentry_t * 5519 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp) 5520 { 5521 frgroup_t *fg; 5522 void *rval; 5523 5524 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, 5525 &fin->fin_src); 5526 if (rval == NULL) 5527 return NULL; 5528 5529 fg = rval; 5530 fin->fin_fr = fg->fg_start; 5531 (void) ipf_scanlist(fin, *passp); 5532 return fin->fin_fr; 5533 } 5534 5535 5536 /* ------------------------------------------------------------------------ */ 5537 /* Function: ipf_dstgrpmap */ 5538 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5539 /* Parameters: fin(I) - pointer to packet information */ 5540 /* passp(IO) - pointer to current/new filter decision (unused) */ 5541 /* */ 5542 /* Look for a rule group head in a hash table, using the destination */ 5543 /* address as the key, and descend into that group and continue matching */ 5544 /* rules against the packet. */ 5545 /* ------------------------------------------------------------------------ */ 5546 frentry_t * 5547 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp) 5548 { 5549 frgroup_t *fg; 5550 void *rval; 5551 5552 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, 5553 &fin->fin_dst); 5554 if (rval == NULL) 5555 return NULL; 5556 5557 fg = rval; 5558 fin->fin_fr = fg->fg_start; 5559 (void) ipf_scanlist(fin, *passp); 5560 return fin->fin_fr; 5561 } 5562 5563 /* 5564 * Queue functions 5565 * =============== 5566 * These functions manage objects on queues for efficient timeouts. There 5567 * are a number of system defined queues as well as user defined timeouts. 5568 * It is expected that a lock is held in the domain in which the queue 5569 * belongs (i.e. either state or NAT) when calling any of these functions 5570 * that prevents ipf_freetimeoutqueue() from being called at the same time 5571 * as any other. 5572 */ 5573 5574 5575 /* ------------------------------------------------------------------------ */ 5576 /* Function: ipf_addtimeoutqueue */ 5577 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 5578 /* timeout queue with given interval. */ 5579 /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 5580 /* of interface queues. */ 5581 /* seconds(I) - timeout value in seconds for this queue. */ 5582 /* */ 5583 /* This routine first looks for a timeout queue that matches the interval */ 5584 /* being requested. If it finds one, increments the reference counter and */ 5585 /* returns a pointer to it. If none are found, it allocates a new one and */ 5586 /* inserts it at the top of the list. */ 5587 /* */ 5588 /* Locking. */ 5589 /* It is assumed that the caller of this function has an appropriate lock */ 5590 /* held (exclusively) in the domain that encompases 'parent'. */ 5591 /* ------------------------------------------------------------------------ */ 5592 ipftq_t * 5593 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds) 5594 { 5595 ipftq_t *ifq; 5596 u_int period; 5597 5598 period = seconds * IPF_HZ_DIVIDE; 5599 5600 MUTEX_ENTER(&softc->ipf_timeoutlock); 5601 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 5602 if (ifq->ifq_ttl == period) { 5603 /* 5604 * Reset the delete flag, if set, so the structure 5605 * gets reused rather than freed and reallocated. 5606 */ 5607 MUTEX_ENTER(&ifq->ifq_lock); 5608 ifq->ifq_flags &= ~IFQF_DELETE; 5609 ifq->ifq_ref++; 5610 MUTEX_EXIT(&ifq->ifq_lock); 5611 MUTEX_EXIT(&softc->ipf_timeoutlock); 5612 5613 return ifq; 5614 } 5615 } 5616 5617 KMALLOC(ifq, ipftq_t *); 5618 if (ifq != NULL) { 5619 MUTEX_NUKE(&ifq->ifq_lock); 5620 IPFTQ_INIT(ifq, period, "ipftq mutex"); 5621 ifq->ifq_next = *parent; 5622 ifq->ifq_pnext = parent; 5623 ifq->ifq_flags = IFQF_USER; 5624 ifq->ifq_ref++; 5625 *parent = ifq; 5626 softc->ipf_userifqs++; 5627 } 5628 MUTEX_EXIT(&softc->ipf_timeoutlock); 5629 return ifq; 5630 } 5631 5632 5633 /* ------------------------------------------------------------------------ */ 5634 /* Function: ipf_deletetimeoutqueue */ 5635 /* Returns: int - new reference count value of the timeout queue */ 5636 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5637 /* Locks: ifq->ifq_lock */ 5638 /* */ 5639 /* This routine must be called when we're discarding a pointer to a timeout */ 5640 /* queue object, taking care of the reference counter. */ 5641 /* */ 5642 /* Now that this just sets a DELETE flag, it requires the expire code to */ 5643 /* check the list of user defined timeout queues and call the free function */ 5644 /* below (currently commented out) to stop memory leaking. It is done this */ 5645 /* way because the locking may not be sufficient to safely do a free when */ 5646 /* this function is called. */ 5647 /* ------------------------------------------------------------------------ */ 5648 int 5649 ipf_deletetimeoutqueue(ipftq_t *ifq) 5650 { 5651 5652 ifq->ifq_ref--; 5653 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 5654 ifq->ifq_flags |= IFQF_DELETE; 5655 } 5656 5657 return ifq->ifq_ref; 5658 } 5659 5660 5661 /* ------------------------------------------------------------------------ */ 5662 /* Function: ipf_freetimeoutqueue */ 5663 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5664 /* Returns: Nil */ 5665 /* */ 5666 /* Locking: */ 5667 /* It is assumed that the caller of this function has an appropriate lock */ 5668 /* held (exclusively) in the domain that encompases the callers "domain". */ 5669 /* The ifq_lock for this structure should not be held. */ 5670 /* */ 5671 /* Remove a user defined timeout queue from the list of queues it is in and */ 5672 /* tidy up after this is done. */ 5673 /* ------------------------------------------------------------------------ */ 5674 void 5675 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq) 5676 { 5677 5678 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 5679 ((ifq->ifq_flags & IFQF_USER) == 0)) { 5680 printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 5681 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 5682 ifq->ifq_ref); 5683 return; 5684 } 5685 5686 /* 5687 * Remove from its position in the list. 5688 */ 5689 *ifq->ifq_pnext = ifq->ifq_next; 5690 if (ifq->ifq_next != NULL) 5691 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 5692 ifq->ifq_next = NULL; 5693 ifq->ifq_pnext = NULL; 5694 5695 MUTEX_DESTROY(&ifq->ifq_lock); 5696 ATOMIC_DEC(softc->ipf_userifqs); 5697 KFREE(ifq); 5698 } 5699 5700 5701 /* ------------------------------------------------------------------------ */ 5702 /* Function: ipf_deletequeueentry */ 5703 /* Returns: Nil */ 5704 /* Parameters: tqe(I) - timeout queue entry to delete */ 5705 /* */ 5706 /* Remove a tail queue entry from its queue and make it an orphan. */ 5707 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */ 5708 /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */ 5709 /* the correct lock(s) may not be held that would make it safe to do so. */ 5710 /* ------------------------------------------------------------------------ */ 5711 void 5712 ipf_deletequeueentry(ipftqent_t *tqe) 5713 { 5714 ipftq_t *ifq; 5715 5716 ifq = tqe->tqe_ifq; 5717 5718 MUTEX_ENTER(&ifq->ifq_lock); 5719 5720 if (tqe->tqe_pnext != NULL) { 5721 *tqe->tqe_pnext = tqe->tqe_next; 5722 if (tqe->tqe_next != NULL) 5723 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5724 else /* we must be the tail anyway */ 5725 ifq->ifq_tail = tqe->tqe_pnext; 5726 5727 tqe->tqe_pnext = NULL; 5728 tqe->tqe_ifq = NULL; 5729 } 5730 5731 (void) ipf_deletetimeoutqueue(ifq); 5732 ASSERT(ifq->ifq_ref > 0); 5733 5734 MUTEX_EXIT(&ifq->ifq_lock); 5735 } 5736 5737 5738 /* ------------------------------------------------------------------------ */ 5739 /* Function: ipf_queuefront */ 5740 /* Returns: Nil */ 5741 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5742 /* */ 5743 /* Move a queue entry to the front of the queue, if it isn't already there. */ 5744 /* ------------------------------------------------------------------------ */ 5745 void 5746 ipf_queuefront(ipftqent_t *tqe) 5747 { 5748 ipftq_t *ifq; 5749 5750 ifq = tqe->tqe_ifq; 5751 if (ifq == NULL) 5752 return; 5753 5754 MUTEX_ENTER(&ifq->ifq_lock); 5755 if (ifq->ifq_head != tqe) { 5756 *tqe->tqe_pnext = tqe->tqe_next; 5757 if (tqe->tqe_next) 5758 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5759 else 5760 ifq->ifq_tail = tqe->tqe_pnext; 5761 5762 tqe->tqe_next = ifq->ifq_head; 5763 ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5764 ifq->ifq_head = tqe; 5765 tqe->tqe_pnext = &ifq->ifq_head; 5766 } 5767 MUTEX_EXIT(&ifq->ifq_lock); 5768 } 5769 5770 5771 /* ------------------------------------------------------------------------ */ 5772 /* Function: ipf_queueback */ 5773 /* Returns: Nil */ 5774 /* Parameters: ticks(I) - ipf tick time to use with this call */ 5775 /* tqe(I) - pointer to timeout queue entry */ 5776 /* */ 5777 /* Move a queue entry to the back of the queue, if it isn't already there. */ 5778 /* We use use ticks to calculate the expiration and mark for when we last */ 5779 /* touched the structure. */ 5780 /* ------------------------------------------------------------------------ */ 5781 void 5782 ipf_queueback(u_long ticks, ipftqent_t *tqe) 5783 { 5784 ipftq_t *ifq; 5785 5786 ifq = tqe->tqe_ifq; 5787 if (ifq == NULL) 5788 return; 5789 tqe->tqe_die = ticks + ifq->ifq_ttl; 5790 tqe->tqe_touched = ticks; 5791 5792 MUTEX_ENTER(&ifq->ifq_lock); 5793 if (tqe->tqe_next != NULL) { /* at the end already ? */ 5794 /* 5795 * Remove from list 5796 */ 5797 *tqe->tqe_pnext = tqe->tqe_next; 5798 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5799 5800 /* 5801 * Make it the last entry. 5802 */ 5803 tqe->tqe_next = NULL; 5804 tqe->tqe_pnext = ifq->ifq_tail; 5805 *ifq->ifq_tail = tqe; 5806 ifq->ifq_tail = &tqe->tqe_next; 5807 } 5808 MUTEX_EXIT(&ifq->ifq_lock); 5809 } 5810 5811 5812 /* ------------------------------------------------------------------------ */ 5813 /* Function: ipf_queueappend */ 5814 /* Returns: Nil */ 5815 /* Parameters: ticks(I) - ipf tick time to use with this call */ 5816 /* tqe(I) - pointer to timeout queue entry */ 5817 /* ifq(I) - pointer to timeout queue */ 5818 /* parent(I) - owing object pointer */ 5819 /* */ 5820 /* Add a new item to this queue and put it on the very end. */ 5821 /* We use use ticks to calculate the expiration and mark for when we last */ 5822 /* touched the structure. */ 5823 /* ------------------------------------------------------------------------ */ 5824 void 5825 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent) 5826 { 5827 5828 MUTEX_ENTER(&ifq->ifq_lock); 5829 tqe->tqe_parent = parent; 5830 tqe->tqe_pnext = ifq->ifq_tail; 5831 *ifq->ifq_tail = tqe; 5832 ifq->ifq_tail = &tqe->tqe_next; 5833 tqe->tqe_next = NULL; 5834 tqe->tqe_ifq = ifq; 5835 tqe->tqe_die = ticks + ifq->ifq_ttl; 5836 tqe->tqe_touched = ticks; 5837 ifq->ifq_ref++; 5838 MUTEX_EXIT(&ifq->ifq_lock); 5839 } 5840 5841 5842 /* ------------------------------------------------------------------------ */ 5843 /* Function: ipf_movequeue */ 5844 /* Returns: Nil */ 5845 /* Parameters: tq(I) - pointer to timeout queue information */ 5846 /* oifp(I) - old timeout queue entry was on */ 5847 /* nifp(I) - new timeout queue to put entry on */ 5848 /* */ 5849 /* Move a queue entry from one timeout queue to another timeout queue. */ 5850 /* If it notices that the current entry is already last and does not need */ 5851 /* to move queue, the return. */ 5852 /* ------------------------------------------------------------------------ */ 5853 void 5854 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq) 5855 { 5856 5857 /* 5858 * If the queue hasn't changed and we last touched this entry at the 5859 * same ipf time, then we're not going to achieve anything by either 5860 * changing the ttl or moving it on the queue. 5861 */ 5862 if (oifq == nifq && tqe->tqe_touched == ticks) 5863 return; 5864 5865 /* 5866 * For any of this to be outside the lock, there is a risk that two 5867 * packets entering simultaneously, with one changing to a different 5868 * queue and one not, could end up with things in a bizarre state. 5869 */ 5870 MUTEX_ENTER(&oifq->ifq_lock); 5871 5872 tqe->tqe_touched = ticks; 5873 tqe->tqe_die = ticks + nifq->ifq_ttl; 5874 /* 5875 * Is the operation here going to be a no-op ? 5876 */ 5877 if (oifq == nifq) { 5878 if ((tqe->tqe_next == NULL) || 5879 (tqe->tqe_next->tqe_die == tqe->tqe_die)) { 5880 MUTEX_EXIT(&oifq->ifq_lock); 5881 return; 5882 } 5883 } 5884 5885 /* 5886 * Remove from the old queue 5887 */ 5888 *tqe->tqe_pnext = tqe->tqe_next; 5889 if (tqe->tqe_next) 5890 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5891 else 5892 oifq->ifq_tail = tqe->tqe_pnext; 5893 tqe->tqe_next = NULL; 5894 5895 /* 5896 * If we're moving from one queue to another, release the 5897 * lock on the old queue and get a lock on the new queue. 5898 * For user defined queues, if we're moving off it, call 5899 * delete in case it can now be freed. 5900 */ 5901 if (oifq != nifq) { 5902 tqe->tqe_ifq = NULL; 5903 5904 (void) ipf_deletetimeoutqueue(oifq); 5905 5906 MUTEX_EXIT(&oifq->ifq_lock); 5907 5908 MUTEX_ENTER(&nifq->ifq_lock); 5909 5910 tqe->tqe_ifq = nifq; 5911 nifq->ifq_ref++; 5912 } 5913 5914 /* 5915 * Add to the bottom of the new queue 5916 */ 5917 tqe->tqe_pnext = nifq->ifq_tail; 5918 *nifq->ifq_tail = tqe; 5919 nifq->ifq_tail = &tqe->tqe_next; 5920 MUTEX_EXIT(&nifq->ifq_lock); 5921 } 5922 5923 5924 /* ------------------------------------------------------------------------ */ 5925 /* Function: ipf_updateipid */ 5926 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ 5927 /* Parameters: fin(I) - pointer to packet information */ 5928 /* */ 5929 /* When we are doing NAT, change the IP of every packet to represent a */ 5930 /* single sequence of packets coming from the host, hiding any host */ 5931 /* specific sequencing that might otherwise be revealed. If the packet is */ 5932 /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5933 /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5934 /* has no match in the cache, return an error. */ 5935 /* ------------------------------------------------------------------------ */ 5936 static int 5937 ipf_updateipid(fr_info_t *fin) 5938 { 5939 u_short id, ido, sums; 5940 u_32_t sumd, sum; 5941 ip_t *ip; 5942 5943 if (fin->fin_off != 0) { 5944 sum = ipf_frag_ipidknown(fin); 5945 if (sum == 0xffffffff) 5946 return -1; 5947 sum &= 0xffff; 5948 id = (u_short)sum; 5949 } else { 5950 id = ipf_nextipid(fin); 5951 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5952 (void) ipf_frag_ipidnew(fin, (u_32_t)id); 5953 } 5954 5955 ip = fin->fin_ip; 5956 ido = ntohs(ip->ip_id); 5957 if (id == ido) 5958 return 0; 5959 ip->ip_id = htons(id); 5960 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5961 sum = (~ntohs(ip->ip_sum)) & 0xffff; 5962 sum += sumd; 5963 sum = (sum >> 16) + (sum & 0xffff); 5964 sum = (sum >> 16) + (sum & 0xffff); 5965 sums = ~(u_short)sum; 5966 ip->ip_sum = htons(sums); 5967 return 0; 5968 } 5969 5970 5971 #ifdef NEED_FRGETIFNAME 5972 /* ------------------------------------------------------------------------ */ 5973 /* Function: ipf_getifname */ 5974 /* Returns: char * - pointer to interface name */ 5975 /* Parameters: ifp(I) - pointer to network interface */ 5976 /* buffer(O) - pointer to where to store interface name */ 5977 /* */ 5978 /* Constructs an interface name in the buffer passed. The buffer passed is */ 5979 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 5980 /* as a NULL pointer then return a pointer to a static array. */ 5981 /* ------------------------------------------------------------------------ */ 5982 char * 5983 ipf_getifname(ifp, buffer) 5984 struct ifnet *ifp; 5985 char *buffer; 5986 { 5987 static char namebuf[LIFNAMSIZ]; 5988 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5989 defined(__sgi) || defined(linux) || defined(_AIX51) || \ 5990 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5991 int unit, space; 5992 char temp[20]; 5993 char *s; 5994 # endif 5995 5996 if (buffer == NULL) 5997 buffer = namebuf; 5998 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 5999 buffer[LIFNAMSIZ - 1] = '\0'; 6000 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 6001 defined(__sgi) || defined(_AIX51) || \ 6002 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 6003 for (s = buffer; *s; s++) 6004 ; 6005 unit = ifp->if_unit; 6006 space = LIFNAMSIZ - (s - buffer); 6007 if ((space > 0) && (unit >= 0)) { 6008 snprintf(temp, sizeof(temp), "%d", unit); 6009 (void) strncpy(s, temp, space); 6010 s[space - 1] = '\0'; 6011 } 6012 # endif 6013 return buffer; 6014 } 6015 #endif 6016 6017 6018 /* ------------------------------------------------------------------------ */ 6019 /* Function: ipf_ioctlswitch */ 6020 /* Returns: int - -1 continue processing, else ioctl return value */ 6021 /* Parameters: unit(I) - device unit opened */ 6022 /* data(I) - pointer to ioctl data */ 6023 /* cmd(I) - ioctl command */ 6024 /* mode(I) - mode value */ 6025 /* uid(I) - uid making the ioctl call */ 6026 /* ctx(I) - pointer to context data */ 6027 /* */ 6028 /* Based on the value of unit, call the appropriate ioctl handler or return */ 6029 /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 6030 /* for the device in order to execute the ioctl. A special case is made */ 6031 /* SIOCIPFINTERROR so that the same code isn't required in every handler. */ 6032 /* The context data pointer is passed through as this is used as the key */ 6033 /* for locating a matching token for continued access for walking lists, */ 6034 /* etc. */ 6035 /* ------------------------------------------------------------------------ */ 6036 int 6037 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd, 6038 int mode, int uid, void *ctx) 6039 { 6040 int error = 0; 6041 6042 switch (cmd) 6043 { 6044 case SIOCIPFINTERROR : 6045 error = BCOPYOUT(&softc->ipf_interror, data, 6046 sizeof(softc->ipf_interror)); 6047 if (error != 0) { 6048 IPFERROR(40); 6049 error = EFAULT; 6050 } 6051 return error; 6052 default : 6053 break; 6054 } 6055 6056 switch (unit) 6057 { 6058 case IPL_LOGIPF : 6059 error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx); 6060 break; 6061 case IPL_LOGNAT : 6062 if (softc->ipf_running > 0) { 6063 error = ipf_nat_ioctl(softc, data, cmd, mode, 6064 uid, ctx); 6065 } else { 6066 IPFERROR(42); 6067 error = EIO; 6068 } 6069 break; 6070 case IPL_LOGSTATE : 6071 if (softc->ipf_running > 0) { 6072 error = ipf_state_ioctl(softc, data, cmd, mode, 6073 uid, ctx); 6074 } else { 6075 IPFERROR(43); 6076 error = EIO; 6077 } 6078 break; 6079 case IPL_LOGAUTH : 6080 if (softc->ipf_running > 0) { 6081 error = ipf_auth_ioctl(softc, data, cmd, mode, 6082 uid, ctx); 6083 } else { 6084 IPFERROR(44); 6085 error = EIO; 6086 } 6087 break; 6088 case IPL_LOGSYNC : 6089 if (softc->ipf_running > 0) { 6090 error = ipf_sync_ioctl(softc, data, cmd, mode, 6091 uid, ctx); 6092 } else { 6093 error = EIO; 6094 IPFERROR(45); 6095 } 6096 break; 6097 case IPL_LOGSCAN : 6098 #ifdef IPFILTER_SCAN 6099 if (softc->ipf_running > 0) 6100 error = ipf_scan_ioctl(softc, data, cmd, mode, 6101 uid, ctx); 6102 else 6103 #endif 6104 { 6105 error = EIO; 6106 IPFERROR(46); 6107 } 6108 break; 6109 case IPL_LOGLOOKUP : 6110 if (softc->ipf_running > 0) { 6111 error = ipf_lookup_ioctl(softc, data, cmd, mode, 6112 uid, ctx); 6113 } else { 6114 error = EIO; 6115 IPFERROR(47); 6116 } 6117 break; 6118 default : 6119 IPFERROR(48); 6120 error = EIO; 6121 break; 6122 } 6123 6124 return error; 6125 } 6126 6127 6128 /* 6129 * This array defines the expected size of objects coming into the kernel 6130 * for the various recognised object types. The first column is flags (see 6131 * below), 2nd column is current size, 3rd column is the version number of 6132 * when the current size became current. 6133 * Flags: 6134 * 1 = minimum size, not absolute size 6135 */ 6136 static int ipf_objbytes[IPFOBJ_COUNT][3] = { 6137 { 1, sizeof(struct frentry), 5010000 }, /* 0 */ 6138 { 1, sizeof(struct friostat), 5010000 }, 6139 { 0, sizeof(struct fr_info), 5010000 }, 6140 { 0, sizeof(struct ipf_authstat), 4010100 }, 6141 { 0, sizeof(struct ipfrstat), 5010000 }, 6142 { 1, sizeof(struct ipnat), 5010000 }, /* 5 */ 6143 { 0, sizeof(struct natstat), 5010000 }, 6144 { 0, sizeof(struct ipstate_save), 5010000 }, 6145 { 1, sizeof(struct nat_save), 5010000 }, 6146 { 0, sizeof(struct natlookup), 5010000 }, 6147 { 1, sizeof(struct ipstate), 5010000 }, /* 10 */ 6148 { 0, sizeof(struct ips_stat), 5010000 }, 6149 { 0, sizeof(struct frauth), 5010000 }, 6150 { 0, sizeof(struct ipftune), 4010100 }, 6151 { 0, sizeof(struct nat), 5010000 }, 6152 { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */ 6153 { 0, sizeof(struct ipfgeniter), 4011400 }, 6154 { 0, sizeof(struct ipftable), 4011400 }, 6155 { 0, sizeof(struct ipflookupiter), 4011400 }, 6156 { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES }, 6157 { 1, 0, 0 }, /* IPFEXPR */ 6158 { 0, 0, 0 }, /* PROXYCTL */ 6159 { 0, sizeof (struct fripf), 5010000 } 6160 }; 6161 6162 6163 /* ------------------------------------------------------------------------ */ 6164 /* Function: ipf_inobj */ 6165 /* Returns: int - 0 = success, else failure */ 6166 /* Parameters: softc(I) - soft context pointerto work with */ 6167 /* data(I) - pointer to ioctl data */ 6168 /* objp(O) - where to store ipfobj structure */ 6169 /* ptr(I) - pointer to data to copy out */ 6170 /* type(I) - type of structure being moved */ 6171 /* */ 6172 /* Copy in the contents of what the ipfobj_t points to. In future, we */ 6173 /* add things to check for version numbers, sizes, etc, to make it backward */ 6174 /* compatible at the ABI for user land. */ 6175 /* If objp is not NULL then we assume that the caller wants to see what is */ 6176 /* in the ipfobj_t structure being copied in. As an example, this can tell */ 6177 /* the caller what version of ipfilter the ioctl program was written to. */ 6178 /* ------------------------------------------------------------------------ */ 6179 int 6180 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr, 6181 int type) 6182 { 6183 ipfobj_t obj; 6184 int error; 6185 int size; 6186 6187 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6188 IPFERROR(49); 6189 return EINVAL; 6190 } 6191 6192 if (objp == NULL) 6193 objp = &obj; 6194 error = BCOPYIN(data, objp, sizeof(*objp)); 6195 if (error != 0) { 6196 IPFERROR(124); 6197 return EFAULT; 6198 } 6199 6200 if (objp->ipfo_type != type) { 6201 IPFERROR(50); 6202 return EINVAL; 6203 } 6204 6205 if (objp->ipfo_rev >= ipf_objbytes[type][2]) { 6206 if ((ipf_objbytes[type][0] & 1) != 0) { 6207 if (objp->ipfo_size < ipf_objbytes[type][1]) { 6208 IPFERROR(51); 6209 return EINVAL; 6210 } 6211 size = ipf_objbytes[type][1]; 6212 } else if (objp->ipfo_size == ipf_objbytes[type][1]) { 6213 size = objp->ipfo_size; 6214 } else { 6215 IPFERROR(52); 6216 return EINVAL; 6217 } 6218 error = COPYIN(objp->ipfo_ptr, ptr, size); 6219 if (error != 0) { 6220 IPFERROR(55); 6221 error = EFAULT; 6222 } 6223 } else { 6224 #ifdef IPFILTER_COMPAT 6225 error = ipf_in_compat(softc, objp, ptr, 0); 6226 #else 6227 IPFERROR(54); 6228 error = EINVAL; 6229 #endif 6230 } 6231 return error; 6232 } 6233 6234 6235 /* ------------------------------------------------------------------------ */ 6236 /* Function: ipf_inobjsz */ 6237 /* Returns: int - 0 = success, else failure */ 6238 /* Parameters: softc(I) - soft context pointerto work with */ 6239 /* data(I) - pointer to ioctl data */ 6240 /* ptr(I) - pointer to store real data in */ 6241 /* type(I) - type of structure being moved */ 6242 /* sz(I) - size of data to copy */ 6243 /* */ 6244 /* As per ipf_inobj, except the size of the object to copy in is passed in */ 6245 /* but it must not be smaller than the size defined for the type and the */ 6246 /* type must allow for varied sized objects. The extra requirement here is */ 6247 /* that sz must match the size of the object being passed in - this is not */ 6248 /* not possible nor required in ipf_inobj(). */ 6249 /* ------------------------------------------------------------------------ */ 6250 int 6251 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz) 6252 { 6253 ipfobj_t obj; 6254 int error; 6255 6256 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6257 IPFERROR(56); 6258 return EINVAL; 6259 } 6260 6261 error = BCOPYIN(data, &obj, sizeof(obj)); 6262 if (error != 0) { 6263 IPFERROR(125); 6264 return EFAULT; 6265 } 6266 6267 if (obj.ipfo_type != type) { 6268 IPFERROR(58); 6269 return EINVAL; 6270 } 6271 6272 if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6273 if (((ipf_objbytes[type][0] & 1) == 0) || 6274 (sz < ipf_objbytes[type][1])) { 6275 IPFERROR(57); 6276 return EINVAL; 6277 } 6278 error = COPYIN(obj.ipfo_ptr, ptr, sz); 6279 if (error != 0) { 6280 IPFERROR(61); 6281 error = EFAULT; 6282 } 6283 } else { 6284 #ifdef IPFILTER_COMPAT 6285 error = ipf_in_compat(softc, &obj, ptr, sz); 6286 #else 6287 IPFERROR(60); 6288 error = EINVAL; 6289 #endif 6290 } 6291 return error; 6292 } 6293 6294 6295 /* ------------------------------------------------------------------------ */ 6296 /* Function: ipf_outobjsz */ 6297 /* Returns: int - 0 = success, else failure */ 6298 /* Parameters: data(I) - pointer to ioctl data */ 6299 /* ptr(I) - pointer to store real data in */ 6300 /* type(I) - type of structure being moved */ 6301 /* sz(I) - size of data to copy */ 6302 /* */ 6303 /* As per ipf_outobj, except the size of the object to copy out is passed in*/ 6304 /* but it must not be smaller than the size defined for the type and the */ 6305 /* type must allow for varied sized objects. The extra requirement here is */ 6306 /* that sz must match the size of the object being passed in - this is not */ 6307 /* not possible nor required in ipf_outobj(). */ 6308 /* ------------------------------------------------------------------------ */ 6309 int 6310 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz) 6311 { 6312 ipfobj_t obj; 6313 int error; 6314 6315 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6316 IPFERROR(62); 6317 return EINVAL; 6318 } 6319 6320 error = BCOPYIN(data, &obj, sizeof(obj)); 6321 if (error != 0) { 6322 IPFERROR(127); 6323 return EFAULT; 6324 } 6325 6326 if (obj.ipfo_type != type) { 6327 IPFERROR(63); 6328 return EINVAL; 6329 } 6330 6331 if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6332 if (((ipf_objbytes[type][0] & 1) == 0) || 6333 (sz < ipf_objbytes[type][1])) { 6334 IPFERROR(146); 6335 return EINVAL; 6336 } 6337 error = COPYOUT(ptr, obj.ipfo_ptr, sz); 6338 if (error != 0) { 6339 IPFERROR(66); 6340 error = EFAULT; 6341 } 6342 } else { 6343 #ifdef IPFILTER_COMPAT 6344 error = ipf_out_compat(softc, &obj, ptr); 6345 #else 6346 IPFERROR(65); 6347 error = EINVAL; 6348 #endif 6349 } 6350 return error; 6351 } 6352 6353 6354 /* ------------------------------------------------------------------------ */ 6355 /* Function: ipf_outobj */ 6356 /* Returns: int - 0 = success, else failure */ 6357 /* Parameters: data(I) - pointer to ioctl data */ 6358 /* ptr(I) - pointer to store real data in */ 6359 /* type(I) - type of structure being moved */ 6360 /* */ 6361 /* Copy out the contents of what ptr is to where ipfobj points to. In */ 6362 /* future, we add things to check for version numbers, sizes, etc, to make */ 6363 /* it backward compatible at the ABI for user land. */ 6364 /* ------------------------------------------------------------------------ */ 6365 int 6366 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type) 6367 { 6368 ipfobj_t obj; 6369 int error; 6370 6371 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6372 IPFERROR(67); 6373 return EINVAL; 6374 } 6375 6376 error = BCOPYIN(data, &obj, sizeof(obj)); 6377 if (error != 0) { 6378 IPFERROR(126); 6379 return EFAULT; 6380 } 6381 6382 if (obj.ipfo_type != type) { 6383 IPFERROR(68); 6384 return EINVAL; 6385 } 6386 6387 if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6388 if ((ipf_objbytes[type][0] & 1) != 0) { 6389 if (obj.ipfo_size < ipf_objbytes[type][1]) { 6390 IPFERROR(69); 6391 return EINVAL; 6392 } 6393 } else if (obj.ipfo_size != ipf_objbytes[type][1]) { 6394 IPFERROR(70); 6395 return EINVAL; 6396 } 6397 6398 error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size); 6399 if (error != 0) { 6400 IPFERROR(73); 6401 error = EFAULT; 6402 } 6403 } else { 6404 #ifdef IPFILTER_COMPAT 6405 error = ipf_out_compat(softc, &obj, ptr); 6406 #else 6407 IPFERROR(72); 6408 error = EINVAL; 6409 #endif 6410 } 6411 return error; 6412 } 6413 6414 6415 /* ------------------------------------------------------------------------ */ 6416 /* Function: ipf_outobjk */ 6417 /* Returns: int - 0 = success, else failure */ 6418 /* Parameters: obj(I) - pointer to data description structure */ 6419 /* ptr(I) - pointer to kernel data to copy out */ 6420 /* */ 6421 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/ 6422 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */ 6423 /* already populated with information and now we just need to use it. */ 6424 /* There is no need for this function to have a "type" parameter as there */ 6425 /* is no point in validating information that comes from the kernel with */ 6426 /* itself. */ 6427 /* ------------------------------------------------------------------------ */ 6428 int 6429 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr) 6430 { 6431 int type = obj->ipfo_type; 6432 int error; 6433 6434 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6435 IPFERROR(147); 6436 return EINVAL; 6437 } 6438 6439 if (obj->ipfo_rev >= ipf_objbytes[type][2]) { 6440 if ((ipf_objbytes[type][0] & 1) != 0) { 6441 if (obj->ipfo_size < ipf_objbytes[type][1]) { 6442 IPFERROR(148); 6443 return EINVAL; 6444 } 6445 6446 } else if (obj->ipfo_size != ipf_objbytes[type][1]) { 6447 IPFERROR(149); 6448 return EINVAL; 6449 } 6450 6451 error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size); 6452 if (error != 0) { 6453 IPFERROR(150); 6454 error = EFAULT; 6455 } 6456 } else { 6457 #ifdef IPFILTER_COMPAT 6458 error = ipf_out_compat(softc, obj, ptr); 6459 #else 6460 IPFERROR(151); 6461 error = EINVAL; 6462 #endif 6463 } 6464 return error; 6465 } 6466 6467 6468 /* ------------------------------------------------------------------------ */ 6469 /* Function: ipf_checkl4sum */ 6470 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 6471 /* Parameters: fin(I) - pointer to packet information */ 6472 /* */ 6473 /* If possible, calculate the layer 4 checksum for the packet. If this is */ 6474 /* not possible, return without indicating a failure or success but in a */ 6475 /* way that is ditinguishable. This function should only be called by the */ 6476 /* ipf_checkv6sum() for each platform. */ 6477 /* ------------------------------------------------------------------------ */ 6478 int 6479 ipf_checkl4sum(fr_info_t *fin) 6480 { 6481 u_short sum, hdrsum, *csump; 6482 udphdr_t *udp; 6483 int dosum; 6484 6485 /* 6486 * If the TCP packet isn't a fragment, isn't too short and otherwise 6487 * isn't already considered "bad", then validate the checksum. If 6488 * this check fails then considered the packet to be "bad". 6489 */ 6490 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 6491 return 1; 6492 6493 csump = NULL; 6494 hdrsum = 0; 6495 dosum = 0; 6496 sum = 0; 6497 6498 switch (fin->fin_p) 6499 { 6500 case IPPROTO_TCP : 6501 csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 6502 dosum = 1; 6503 break; 6504 6505 case IPPROTO_UDP : 6506 udp = fin->fin_dp; 6507 if (udp->uh_sum != 0) { 6508 csump = &udp->uh_sum; 6509 dosum = 1; 6510 } 6511 break; 6512 6513 #ifdef USE_INET6 6514 case IPPROTO_ICMPV6 : 6515 csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum; 6516 dosum = 1; 6517 break; 6518 #endif 6519 6520 case IPPROTO_ICMP : 6521 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 6522 dosum = 1; 6523 break; 6524 6525 default : 6526 return 1; 6527 /*NOTREACHED*/ 6528 } 6529 6530 if (csump != NULL) 6531 hdrsum = *csump; 6532 6533 if (dosum) { 6534 sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp); 6535 } 6536 #if !defined(_KERNEL) 6537 if (sum == hdrsum) { 6538 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 6539 } else { 6540 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 6541 } 6542 #endif 6543 DT2(l4sums, u_short, hdrsum, u_short, sum); 6544 if (hdrsum == sum) { 6545 fin->fin_cksum = FI_CK_SUMOK; 6546 return 0; 6547 } 6548 fin->fin_cksum = FI_CK_BAD; 6549 return -1; 6550 } 6551 6552 6553 /* ------------------------------------------------------------------------ */ 6554 /* Function: ipf_ifpfillv4addr */ 6555 /* Returns: int - 0 = address update, -1 = address not updated */ 6556 /* Parameters: atype(I) - type of network address update to perform */ 6557 /* sin(I) - pointer to source of address information */ 6558 /* mask(I) - pointer to source of netmask information */ 6559 /* inp(I) - pointer to destination address store */ 6560 /* inpmask(I) - pointer to destination netmask store */ 6561 /* */ 6562 /* Given a type of network address update (atype) to perform, copy */ 6563 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6564 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6565 /* which case the operation fails. For all values of atype other than */ 6566 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6567 /* value. */ 6568 /* ------------------------------------------------------------------------ */ 6569 int 6570 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask, 6571 struct in_addr *inp, struct in_addr *inpmask) 6572 { 6573 if (inpmask != NULL && atype != FRI_NETMASKED) 6574 inpmask->s_addr = 0xffffffff; 6575 6576 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6577 if (atype == FRI_NETMASKED) { 6578 if (inpmask == NULL) 6579 return -1; 6580 inpmask->s_addr = mask->sin_addr.s_addr; 6581 } 6582 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 6583 } else { 6584 inp->s_addr = sin->sin_addr.s_addr; 6585 } 6586 return 0; 6587 } 6588 6589 6590 #ifdef USE_INET6 6591 /* ------------------------------------------------------------------------ */ 6592 /* Function: ipf_ifpfillv6addr */ 6593 /* Returns: int - 0 = address update, -1 = address not updated */ 6594 /* Parameters: atype(I) - type of network address update to perform */ 6595 /* sin(I) - pointer to source of address information */ 6596 /* mask(I) - pointer to source of netmask information */ 6597 /* inp(I) - pointer to destination address store */ 6598 /* inpmask(I) - pointer to destination netmask store */ 6599 /* */ 6600 /* Given a type of network address update (atype) to perform, copy */ 6601 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6602 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6603 /* which case the operation fails. For all values of atype other than */ 6604 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6605 /* value. */ 6606 /* ------------------------------------------------------------------------ */ 6607 int 6608 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin, 6609 struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask) 6610 { 6611 i6addr_t *src, *and; 6612 6613 src = (i6addr_t *)&sin->sin6_addr; 6614 and = (i6addr_t *)&mask->sin6_addr; 6615 6616 if (inpmask != NULL && atype != FRI_NETMASKED) { 6617 inpmask->i6[0] = 0xffffffff; 6618 inpmask->i6[1] = 0xffffffff; 6619 inpmask->i6[2] = 0xffffffff; 6620 inpmask->i6[3] = 0xffffffff; 6621 } 6622 6623 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6624 if (atype == FRI_NETMASKED) { 6625 if (inpmask == NULL) 6626 return -1; 6627 inpmask->i6[0] = and->i6[0]; 6628 inpmask->i6[1] = and->i6[1]; 6629 inpmask->i6[2] = and->i6[2]; 6630 inpmask->i6[3] = and->i6[3]; 6631 } 6632 6633 inp->i6[0] = src->i6[0] & and->i6[0]; 6634 inp->i6[1] = src->i6[1] & and->i6[1]; 6635 inp->i6[2] = src->i6[2] & and->i6[2]; 6636 inp->i6[3] = src->i6[3] & and->i6[3]; 6637 } else { 6638 inp->i6[0] = src->i6[0]; 6639 inp->i6[1] = src->i6[1]; 6640 inp->i6[2] = src->i6[2]; 6641 inp->i6[3] = src->i6[3]; 6642 } 6643 return 0; 6644 } 6645 #endif 6646 6647 6648 /* ------------------------------------------------------------------------ */ 6649 /* Function: ipf_matchtag */ 6650 /* Returns: 0 == mismatch, 1 == match. */ 6651 /* Parameters: tag1(I) - pointer to first tag to compare */ 6652 /* tag2(I) - pointer to second tag to compare */ 6653 /* */ 6654 /* Returns true (non-zero) or false(0) if the two tag structures can be */ 6655 /* considered to be a match or not match, respectively. The tag is 16 */ 6656 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 6657 /* compare the ints instead, for speed. tag1 is the master of the */ 6658 /* comparison. This function should only be called with both tag1 and tag2 */ 6659 /* as non-NULL pointers. */ 6660 /* ------------------------------------------------------------------------ */ 6661 int 6662 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2) 6663 { 6664 if (tag1 == tag2) 6665 return 1; 6666 6667 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 6668 return 1; 6669 6670 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 6671 (tag1->ipt_num[1] == tag2->ipt_num[1]) && 6672 (tag1->ipt_num[2] == tag2->ipt_num[2]) && 6673 (tag1->ipt_num[3] == tag2->ipt_num[3])) 6674 return 1; 6675 return 0; 6676 } 6677 6678 6679 /* ------------------------------------------------------------------------ */ 6680 /* Function: ipf_coalesce */ 6681 /* Returns: 1 == success, -1 == failure, 0 == no change */ 6682 /* Parameters: fin(I) - pointer to packet information */ 6683 /* */ 6684 /* Attempt to get all of the packet data into a single, contiguous buffer. */ 6685 /* If this call returns a failure then the buffers have also been freed. */ 6686 /* ------------------------------------------------------------------------ */ 6687 int 6688 ipf_coalesce(fr_info_t *fin) 6689 { 6690 6691 if ((fin->fin_flx & FI_COALESCE) != 0) 6692 return 1; 6693 6694 /* 6695 * If the mbuf pointers indicate that there is no mbuf to work with, 6696 * return but do not indicate success or failure. 6697 */ 6698 if (fin->fin_m == NULL || fin->fin_mp == NULL) 6699 return 0; 6700 6701 #if defined(_KERNEL) 6702 if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 6703 ipf_main_softc_t *softc = fin->fin_main_soft; 6704 6705 DT1(frb_coalesce, fr_info_t *, fin); 6706 LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces); 6707 # ifdef MENTAT 6708 FREE_MB_T(*fin->fin_mp); 6709 # endif 6710 fin->fin_reason = FRB_COALESCE; 6711 *fin->fin_mp = NULL; 6712 fin->fin_m = NULL; 6713 return -1; 6714 } 6715 #else 6716 fin = fin; /* LINT */ 6717 #endif 6718 return 1; 6719 } 6720 6721 6722 /* 6723 * The following table lists all of the tunable variables that can be 6724 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row 6725 * in the table below is as follows: 6726 * 6727 * pointer to value, name of value, minimum, maximum, size of the value's 6728 * container, value attribute flags 6729 * 6730 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 6731 * means the value can only be written to when IPFilter is loaded but disabled. 6732 * The obvious implication is if neither of these are set then the value can be 6733 * changed at any time without harm. 6734 */ 6735 6736 6737 /* ------------------------------------------------------------------------ */ 6738 /* Function: ipf_tune_findbycookie */ 6739 /* Returns: NULL = search failed, else pointer to tune struct */ 6740 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6741 /* next(O) - pointer to place to store the cookie for the */ 6742 /* "next" tuneable, if it is desired. */ 6743 /* */ 6744 /* This function is used to walk through all of the existing tunables with */ 6745 /* successive calls. It searches the known tunables for the one which has */ 6746 /* a matching value for "cookie" - ie its address. When returning a match, */ 6747 /* the next one to be found may be returned inside next. */ 6748 /* ------------------------------------------------------------------------ */ 6749 static ipftuneable_t * 6750 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next) 6751 { 6752 ipftuneable_t *ta, **tap; 6753 6754 for (ta = *ptop; ta->ipft_name != NULL; ta++) 6755 if (ta == cookie) { 6756 if (next != NULL) { 6757 /* 6758 * If the next entry in the array has a name 6759 * present, then return a pointer to it for 6760 * where to go next, else return a pointer to 6761 * the dynaminc list as a key to search there 6762 * next. This facilitates a weak linking of 6763 * the two "lists" together. 6764 */ 6765 if ((ta + 1)->ipft_name != NULL) 6766 *next = ta + 1; 6767 else 6768 *next = ptop; 6769 } 6770 return ta; 6771 } 6772 6773 for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next) 6774 if (tap == cookie) { 6775 if (next != NULL) 6776 *next = &ta->ipft_next; 6777 return ta; 6778 } 6779 6780 if (next != NULL) 6781 *next = NULL; 6782 return NULL; 6783 } 6784 6785 6786 /* ------------------------------------------------------------------------ */ 6787 /* Function: ipf_tune_findbyname */ 6788 /* Returns: NULL = search failed, else pointer to tune struct */ 6789 /* Parameters: name(I) - name of the tuneable entry to find. */ 6790 /* */ 6791 /* Search the static array of tuneables and the list of dynamic tuneables */ 6792 /* for an entry with a matching name. If we can find one, return a pointer */ 6793 /* to the matching structure. */ 6794 /* ------------------------------------------------------------------------ */ 6795 static ipftuneable_t * 6796 ipf_tune_findbyname(ipftuneable_t *top, const char *name) 6797 { 6798 ipftuneable_t *ta; 6799 6800 for (ta = top; ta != NULL; ta = ta->ipft_next) 6801 if (!strcmp(ta->ipft_name, name)) { 6802 return ta; 6803 } 6804 6805 return NULL; 6806 } 6807 6808 6809 /* ------------------------------------------------------------------------ */ 6810 /* Function: ipf_tune_add_array */ 6811 /* Returns: int - 0 == success, else failure */ 6812 /* Parameters: newtune - pointer to new tune array to add to tuneables */ 6813 /* */ 6814 /* Appends tune structures from the array passed in (newtune) to the end of */ 6815 /* the current list of "dynamic" tuneable parameters. */ 6816 /* If any entry to be added is already present (by name) then the operation */ 6817 /* is aborted - entries that have been added are removed before returning. */ 6818 /* An entry with no name (NULL) is used as the indication that the end of */ 6819 /* the array has been reached. */ 6820 /* ------------------------------------------------------------------------ */ 6821 int 6822 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune) 6823 { 6824 ipftuneable_t *nt, *dt; 6825 int error = 0; 6826 6827 for (nt = newtune; nt->ipft_name != NULL; nt++) { 6828 error = ipf_tune_add(softc, nt); 6829 if (error != 0) { 6830 for (dt = newtune; dt != nt; dt++) { 6831 (void) ipf_tune_del(softc, dt); 6832 } 6833 } 6834 } 6835 6836 return error; 6837 } 6838 6839 6840 /* ------------------------------------------------------------------------ */ 6841 /* Function: ipf_tune_array_link */ 6842 /* Returns: 0 == success, -1 == failure */ 6843 /* Parameters: softc(I) - soft context pointerto work with */ 6844 /* array(I) - pointer to an array of tuneables */ 6845 /* */ 6846 /* Given an array of tunables (array), append them to the current list of */ 6847 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */ 6848 /* the array for being appended to the list, initialise all of the next */ 6849 /* pointers so we don't need to walk parts of it with ++ and others with */ 6850 /* next. The array is expected to have an entry with a NULL name as the */ 6851 /* terminator. Trying to add an array with no non-NULL names will return as */ 6852 /* a failure. */ 6853 /* ------------------------------------------------------------------------ */ 6854 int 6855 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array) 6856 { 6857 ipftuneable_t *t, **p; 6858 6859 t = array; 6860 if (t->ipft_name == NULL) 6861 return -1; 6862 6863 for (; t[1].ipft_name != NULL; t++) 6864 t[0].ipft_next = &t[1]; 6865 t->ipft_next = NULL; 6866 6867 /* 6868 * Since a pointer to the last entry isn't kept, we need to find it 6869 * each time we want to add new variables to the list. 6870 */ 6871 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) 6872 if (t->ipft_name == NULL) 6873 break; 6874 *p = array; 6875 6876 return 0; 6877 } 6878 6879 6880 /* ------------------------------------------------------------------------ */ 6881 /* Function: ipf_tune_array_unlink */ 6882 /* Returns: 0 == success, -1 == failure */ 6883 /* Parameters: softc(I) - soft context pointerto work with */ 6884 /* array(I) - pointer to an array of tuneables */ 6885 /* */ 6886 /* ------------------------------------------------------------------------ */ 6887 int 6888 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array) 6889 { 6890 ipftuneable_t *t, **p; 6891 6892 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) 6893 if (t == array) 6894 break; 6895 if (t == NULL) 6896 return -1; 6897 6898 for (; t[1].ipft_name != NULL; t++) 6899 ; 6900 6901 *p = t->ipft_next; 6902 6903 return 0; 6904 } 6905 6906 6907 /* ------------------------------------------------------------------------ */ 6908 /* Function: ipf_tune_array_copy */ 6909 /* Returns: NULL = failure, else pointer to new array */ 6910 /* Parameters: base(I) - pointer to structure base */ 6911 /* size(I) - size of the array at template */ 6912 /* template(I) - original array to copy */ 6913 /* */ 6914 /* Allocate memory for a new set of tuneable values and copy everything */ 6915 /* from template into the new region of memory. The new region is full of */ 6916 /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */ 6917 /* */ 6918 /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */ 6919 /* In the array template, ipftp_offset is the offset (in bytes) of the */ 6920 /* location of the tuneable value inside the structure pointed to by base. */ 6921 /* As ipftp_offset is a union over the pointers to the tuneable values, if */ 6922 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */ 6923 /* ipftp_void that points to the stored value. */ 6924 /* ------------------------------------------------------------------------ */ 6925 ipftuneable_t * 6926 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template) 6927 { 6928 ipftuneable_t *copy; 6929 int i; 6930 6931 6932 KMALLOCS(copy, ipftuneable_t *, size); 6933 if (copy == NULL) { 6934 return NULL; 6935 } 6936 bcopy(template, copy, size); 6937 6938 for (i = 0; copy[i].ipft_name; i++) { 6939 copy[i].ipft_una.ipftp_offset += (u_long)base; 6940 copy[i].ipft_next = copy + i + 1; 6941 } 6942 6943 return copy; 6944 } 6945 6946 6947 /* ------------------------------------------------------------------------ */ 6948 /* Function: ipf_tune_add */ 6949 /* Returns: int - 0 == success, else failure */ 6950 /* Parameters: newtune - pointer to new tune entry to add to tuneables */ 6951 /* */ 6952 /* Appends tune structures from the array passed in (newtune) to the end of */ 6953 /* the current list of "dynamic" tuneable parameters. Once added, the */ 6954 /* owner of the object is not expected to ever change "ipft_next". */ 6955 /* ------------------------------------------------------------------------ */ 6956 int 6957 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune) 6958 { 6959 ipftuneable_t *ta, **tap; 6960 6961 ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name); 6962 if (ta != NULL) { 6963 IPFERROR(74); 6964 return EEXIST; 6965 } 6966 6967 for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next) 6968 ; 6969 6970 newtune->ipft_next = NULL; 6971 *tap = newtune; 6972 return 0; 6973 } 6974 6975 6976 /* ------------------------------------------------------------------------ */ 6977 /* Function: ipf_tune_del */ 6978 /* Returns: int - 0 == success, else failure */ 6979 /* Parameters: oldtune - pointer to tune entry to remove from the list of */ 6980 /* current dynamic tuneables */ 6981 /* */ 6982 /* Search for the tune structure, by pointer, in the list of those that are */ 6983 /* dynamically added at run time. If found, adjust the list so that this */ 6984 /* structure is no longer part of it. */ 6985 /* ------------------------------------------------------------------------ */ 6986 int 6987 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune) 6988 { 6989 ipftuneable_t *ta, **tap; 6990 int error = 0; 6991 6992 for (tap = &softc->ipf_tuners; (ta = *tap) != NULL; 6993 tap = &ta->ipft_next) { 6994 if (ta == oldtune) { 6995 *tap = oldtune->ipft_next; 6996 oldtune->ipft_next = NULL; 6997 break; 6998 } 6999 } 7000 7001 if (ta == NULL) { 7002 error = ESRCH; 7003 IPFERROR(75); 7004 } 7005 return error; 7006 } 7007 7008 7009 /* ------------------------------------------------------------------------ */ 7010 /* Function: ipf_tune_del_array */ 7011 /* Returns: int - 0 == success, else failure */ 7012 /* Parameters: oldtune - pointer to tuneables array */ 7013 /* */ 7014 /* Remove each tuneable entry in the array from the list of "dynamic" */ 7015 /* tunables. If one entry should fail to be found, an error will be */ 7016 /* returned and no further ones removed. */ 7017 /* An entry with a NULL name is used as the indicator of the last entry in */ 7018 /* the array. */ 7019 /* ------------------------------------------------------------------------ */ 7020 int 7021 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune) 7022 { 7023 ipftuneable_t *ot; 7024 int error = 0; 7025 7026 for (ot = oldtune; ot->ipft_name != NULL; ot++) { 7027 error = ipf_tune_del(softc, ot); 7028 if (error != 0) 7029 break; 7030 } 7031 7032 return error; 7033 7034 } 7035 7036 7037 /* ------------------------------------------------------------------------ */ 7038 /* Function: ipf_tune */ 7039 /* Returns: int - 0 == success, else failure */ 7040 /* Parameters: cmd(I) - ioctl command number */ 7041 /* data(I) - pointer to ioctl data structure */ 7042 /* */ 7043 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 7044 /* three ioctls provide the means to access and control global variables */ 7045 /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 7046 /* changed without rebooting, reloading or recompiling. The initialisation */ 7047 /* and 'destruction' routines of the various components of ipfilter are all */ 7048 /* each responsible for handling their own values being too big. */ 7049 /* ------------------------------------------------------------------------ */ 7050 int 7051 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data) 7052 { 7053 ipftuneable_t *ta; 7054 ipftune_t tu; 7055 void *cookie; 7056 int error; 7057 7058 error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE); 7059 if (error != 0) 7060 return error; 7061 7062 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 7063 cookie = tu.ipft_cookie; 7064 ta = NULL; 7065 7066 switch (cmd) 7067 { 7068 case SIOCIPFGETNEXT : 7069 /* 7070 * If cookie is non-NULL, assume it to be a pointer to the last 7071 * entry we looked at, so find it (if possible) and return a 7072 * pointer to the next one after it. The last entry in the 7073 * the table is a NULL entry, so when we get to it, set cookie 7074 * to NULL and return that, indicating end of list, erstwhile 7075 * if we come in with cookie set to NULL, we are starting anew 7076 * at the front of the list. 7077 */ 7078 if (cookie != NULL) { 7079 ta = ipf_tune_findbycookie(&softc->ipf_tuners, 7080 cookie, &tu.ipft_cookie); 7081 } else { 7082 ta = softc->ipf_tuners; 7083 tu.ipft_cookie = ta + 1; 7084 } 7085 if (ta != NULL) { 7086 /* 7087 * Entry found, but does the data pointed to by that 7088 * row fit in what we can return? 7089 */ 7090 if (ta->ipft_sz > sizeof(tu.ipft_un)) { 7091 IPFERROR(76); 7092 return EINVAL; 7093 } 7094 7095 tu.ipft_vlong = 0; 7096 if (ta->ipft_sz == sizeof(u_long)) 7097 tu.ipft_vlong = *ta->ipft_plong; 7098 else if (ta->ipft_sz == sizeof(u_int)) 7099 tu.ipft_vint = *ta->ipft_pint; 7100 else if (ta->ipft_sz == sizeof(u_short)) 7101 tu.ipft_vshort = *ta->ipft_pshort; 7102 else if (ta->ipft_sz == sizeof(u_char)) 7103 tu.ipft_vchar = *ta->ipft_pchar; 7104 7105 tu.ipft_sz = ta->ipft_sz; 7106 tu.ipft_min = ta->ipft_min; 7107 tu.ipft_max = ta->ipft_max; 7108 tu.ipft_flags = ta->ipft_flags; 7109 bcopy(ta->ipft_name, tu.ipft_name, 7110 MIN(sizeof(tu.ipft_name), 7111 strlen(ta->ipft_name) + 1)); 7112 } 7113 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7114 break; 7115 7116 case SIOCIPFGET : 7117 case SIOCIPFSET : 7118 /* 7119 * Search by name or by cookie value for a particular entry 7120 * in the tuning paramter table. 7121 */ 7122 IPFERROR(77); 7123 error = ESRCH; 7124 if (cookie != NULL) { 7125 ta = ipf_tune_findbycookie(&softc->ipf_tuners, 7126 cookie, NULL); 7127 if (ta != NULL) 7128 error = 0; 7129 } else if (tu.ipft_name[0] != '\0') { 7130 ta = ipf_tune_findbyname(softc->ipf_tuners, 7131 tu.ipft_name); 7132 if (ta != NULL) 7133 error = 0; 7134 } 7135 if (error != 0) 7136 break; 7137 7138 if (cmd == (ioctlcmd_t)SIOCIPFGET) { 7139 /* 7140 * Fetch the tuning parameters for a particular value 7141 */ 7142 tu.ipft_vlong = 0; 7143 if (ta->ipft_sz == sizeof(u_long)) 7144 tu.ipft_vlong = *ta->ipft_plong; 7145 else if (ta->ipft_sz == sizeof(u_int)) 7146 tu.ipft_vint = *ta->ipft_pint; 7147 else if (ta->ipft_sz == sizeof(u_short)) 7148 tu.ipft_vshort = *ta->ipft_pshort; 7149 else if (ta->ipft_sz == sizeof(u_char)) 7150 tu.ipft_vchar = *ta->ipft_pchar; 7151 tu.ipft_cookie = ta; 7152 tu.ipft_sz = ta->ipft_sz; 7153 tu.ipft_min = ta->ipft_min; 7154 tu.ipft_max = ta->ipft_max; 7155 tu.ipft_flags = ta->ipft_flags; 7156 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7157 7158 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 7159 /* 7160 * Set an internal parameter. The hard part here is 7161 * getting the new value safely and correctly out of 7162 * the kernel (given we only know its size, not type.) 7163 */ 7164 u_long in; 7165 7166 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 7167 (softc->ipf_running > 0)) { 7168 IPFERROR(78); 7169 error = EBUSY; 7170 break; 7171 } 7172 7173 in = tu.ipft_vlong; 7174 if (in < ta->ipft_min || in > ta->ipft_max) { 7175 IPFERROR(79); 7176 error = EINVAL; 7177 break; 7178 } 7179 7180 if (ta->ipft_func != NULL) { 7181 SPL_INT(s); 7182 7183 SPL_NET(s); 7184 error = (*ta->ipft_func)(softc, ta, 7185 &tu.ipft_un); 7186 SPL_X(s); 7187 7188 } else if (ta->ipft_sz == sizeof(u_long)) { 7189 tu.ipft_vlong = *ta->ipft_plong; 7190 *ta->ipft_plong = in; 7191 7192 } else if (ta->ipft_sz == sizeof(u_int)) { 7193 tu.ipft_vint = *ta->ipft_pint; 7194 *ta->ipft_pint = (u_int)(in & 0xffffffff); 7195 7196 } else if (ta->ipft_sz == sizeof(u_short)) { 7197 tu.ipft_vshort = *ta->ipft_pshort; 7198 *ta->ipft_pshort = (u_short)(in & 0xffff); 7199 7200 } else if (ta->ipft_sz == sizeof(u_char)) { 7201 tu.ipft_vchar = *ta->ipft_pchar; 7202 *ta->ipft_pchar = (u_char)(in & 0xff); 7203 } 7204 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7205 } 7206 break; 7207 7208 default : 7209 IPFERROR(80); 7210 error = EINVAL; 7211 break; 7212 } 7213 7214 return error; 7215 } 7216 7217 7218 /* ------------------------------------------------------------------------ */ 7219 /* Function: ipf_zerostats */ 7220 /* Returns: int - 0 = success, else failure */ 7221 /* Parameters: data(O) - pointer to pointer for copying data back to */ 7222 /* */ 7223 /* Copies the current statistics out to userspace and then zero's the */ 7224 /* current ones in the kernel. The lock is only held across the bzero() as */ 7225 /* the copyout may result in paging (ie network activity.) */ 7226 /* ------------------------------------------------------------------------ */ 7227 int 7228 ipf_zerostats(ipf_main_softc_t *softc, void *data) 7229 { 7230 friostat_t fio; 7231 ipfobj_t obj; 7232 int error; 7233 7234 error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT); 7235 if (error != 0) 7236 return error; 7237 ipf_getstat(softc, &fio, obj.ipfo_rev); 7238 error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT); 7239 if (error != 0) 7240 return error; 7241 7242 WRITE_ENTER(&softc->ipf_mutex); 7243 bzero(&softc->ipf_stats, sizeof(softc->ipf_stats)); 7244 RWLOCK_EXIT(&softc->ipf_mutex); 7245 7246 return 0; 7247 } 7248 7249 7250 /* ------------------------------------------------------------------------ */ 7251 /* Function: ipf_resolvedest */ 7252 /* Returns: Nil */ 7253 /* Parameters: softc(I) - pointer to soft context main structure */ 7254 /* base(I) - where strings are stored */ 7255 /* fdp(IO) - pointer to destination information to resolve */ 7256 /* v(I) - IP protocol version to match */ 7257 /* */ 7258 /* Looks up an interface name in the frdest structure pointed to by fdp and */ 7259 /* if a matching name can be found for the particular IP protocol version */ 7260 /* then store the interface pointer in the frdest struct. If no match is */ 7261 /* found, then set the interface pointer to be -1 as NULL is considered to */ 7262 /* indicate there is no information at all in the structure. */ 7263 /* ------------------------------------------------------------------------ */ 7264 int 7265 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v) 7266 { 7267 int errval = 0; 7268 void *ifp; 7269 7270 ifp = NULL; 7271 7272 if (fdp->fd_name != -1) { 7273 if (fdp->fd_type == FRD_DSTLIST) { 7274 ifp = ipf_lookup_res_name(softc, IPL_LOGIPF, 7275 IPLT_DSTLIST, 7276 base + fdp->fd_name, 7277 NULL); 7278 if (ifp == NULL) { 7279 IPFERROR(144); 7280 errval = ESRCH; 7281 } 7282 } else { 7283 ifp = GETIFP(base + fdp->fd_name, v); 7284 if (ifp == NULL) 7285 ifp = (void *)-1; 7286 if ((ifp != NULL) && (ifp != (void *)-1)) 7287 fdp->fd_local = ipf_deliverlocal(softc, v, ifp, 7288 &fdp->fd_ip6); 7289 } 7290 } 7291 fdp->fd_ptr = ifp; 7292 7293 return errval; 7294 } 7295 7296 7297 /* ------------------------------------------------------------------------ */ 7298 /* Function: ipf_resolvenic */ 7299 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 7300 /* pointer to interface structure for NIC */ 7301 /* Parameters: softc(I)- pointer to soft context main structure */ 7302 /* name(I) - complete interface name */ 7303 /* v(I) - IP protocol version */ 7304 /* */ 7305 /* Look for a network interface structure that firstly has a matching name */ 7306 /* to that passed in and that is also being used for that IP protocol */ 7307 /* version (necessary on some platforms where there are separate listings */ 7308 /* for both IPv4 and IPv6 on the same physical NIC. */ 7309 /* */ 7310 /* ------------------------------------------------------------------------ */ 7311 void * 7312 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v) 7313 { 7314 void *nic; 7315 7316 softc = softc; /* gcc -Wextra */ 7317 if (name[0] == '\0') 7318 return NULL; 7319 7320 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 7321 return NULL; 7322 } 7323 7324 nic = GETIFP(name, v); 7325 if (nic == NULL) 7326 nic = (void *)-1; 7327 return nic; 7328 } 7329 7330 7331 /* ------------------------------------------------------------------------ */ 7332 /* Function: ipf_token_expire */ 7333 /* Returns: None. */ 7334 /* Parameters: softc(I) - pointer to soft context main structure */ 7335 /* */ 7336 /* This function is run every ipf tick to see if there are any tokens that */ 7337 /* have been held for too long and need to be freed up. */ 7338 /* ------------------------------------------------------------------------ */ 7339 void 7340 ipf_token_expire(ipf_main_softc_t *softc) 7341 { 7342 ipftoken_t *it; 7343 7344 WRITE_ENTER(&softc->ipf_tokens); 7345 while ((it = softc->ipf_token_head) != NULL) { 7346 if (it->ipt_die > softc->ipf_ticks) 7347 break; 7348 7349 ipf_token_deref(softc, it); 7350 } 7351 RWLOCK_EXIT(&softc->ipf_tokens); 7352 } 7353 7354 7355 /* ------------------------------------------------------------------------ */ 7356 /* Function: ipf_token_flush */ 7357 /* Returns: None. */ 7358 /* Parameters: softc(I) - pointer to soft context main structure */ 7359 /* */ 7360 /* Loop through all of the existing tokens and call deref to see if they */ 7361 /* can be freed. Normally a function like this might just loop on */ 7362 /* ipf_token_head but there is a chance that a token might have a ref count */ 7363 /* of greater than one and in that case the the reference would drop twice */ 7364 /* by code that is only entitled to drop it once. */ 7365 /* ------------------------------------------------------------------------ */ 7366 static void 7367 ipf_token_flush(ipf_main_softc_t *softc) 7368 { 7369 ipftoken_t *it, *next; 7370 7371 WRITE_ENTER(&softc->ipf_tokens); 7372 for (it = softc->ipf_token_head; it != NULL; it = next) { 7373 next = it->ipt_next; 7374 (void) ipf_token_deref(softc, it); 7375 } 7376 RWLOCK_EXIT(&softc->ipf_tokens); 7377 } 7378 7379 7380 /* ------------------------------------------------------------------------ */ 7381 /* Function: ipf_token_del */ 7382 /* Returns: int - 0 = success, else error */ 7383 /* Parameters: softc(I)- pointer to soft context main structure */ 7384 /* type(I) - the token type to match */ 7385 /* uid(I) - uid owning the token */ 7386 /* ptr(I) - context pointer for the token */ 7387 /* */ 7388 /* This function looks for a a token in the current list that matches up */ 7389 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ 7390 /* call ipf_token_dewref() to remove it from the list. In the event that */ 7391 /* the token has a reference held elsewhere, setting ipt_complete to 2 */ 7392 /* enables debugging to distinguish between the two paths that ultimately */ 7393 /* lead to a token to be deleted. */ 7394 /* ------------------------------------------------------------------------ */ 7395 int 7396 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr) 7397 { 7398 ipftoken_t *it; 7399 int error; 7400 7401 IPFERROR(82); 7402 error = ESRCH; 7403 7404 WRITE_ENTER(&softc->ipf_tokens); 7405 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { 7406 if (ptr == it->ipt_ctx && type == it->ipt_type && 7407 uid == it->ipt_uid) { 7408 it->ipt_complete = 2; 7409 ipf_token_deref(softc, it); 7410 error = 0; 7411 break; 7412 } 7413 } 7414 RWLOCK_EXIT(&softc->ipf_tokens); 7415 7416 return error; 7417 } 7418 7419 7420 /* ------------------------------------------------------------------------ */ 7421 /* Function: ipf_token_mark_complete */ 7422 /* Returns: None. */ 7423 /* Parameters: token(I) - pointer to token structure */ 7424 /* */ 7425 /* Mark a token as being ineligable for being found with ipf_token_find. */ 7426 /* ------------------------------------------------------------------------ */ 7427 void 7428 ipf_token_mark_complete(ipftoken_t *token) 7429 { 7430 if (token->ipt_complete == 0) 7431 token->ipt_complete = 1; 7432 } 7433 7434 7435 /* ------------------------------------------------------------------------ */ 7436 /* Function: ipf_token_find */ 7437 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ 7438 /* Parameters: softc(I)- pointer to soft context main structure */ 7439 /* type(I) - the token type to match */ 7440 /* uid(I) - uid owning the token */ 7441 /* ptr(I) - context pointer for the token */ 7442 /* */ 7443 /* This function looks for a live token in the list of current tokens that */ 7444 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ 7445 /* allocated. If one is found then it is moved to the top of the list of */ 7446 /* currently active tokens. */ 7447 /* ------------------------------------------------------------------------ */ 7448 ipftoken_t * 7449 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr) 7450 { 7451 ipftoken_t *it, *new; 7452 7453 KMALLOC(new, ipftoken_t *); 7454 if (new != NULL) 7455 bzero((char *)new, sizeof(*new)); 7456 7457 WRITE_ENTER(&softc->ipf_tokens); 7458 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { 7459 if ((ptr == it->ipt_ctx) && (type == it->ipt_type) && 7460 (uid == it->ipt_uid) && (it->ipt_complete < 2)) 7461 break; 7462 } 7463 7464 if (it == NULL) { 7465 it = new; 7466 new = NULL; 7467 if (it == NULL) { 7468 RWLOCK_EXIT(&softc->ipf_tokens); 7469 return NULL; 7470 } 7471 it->ipt_ctx = ptr; 7472 it->ipt_uid = uid; 7473 it->ipt_type = type; 7474 it->ipt_ref = 1; 7475 } else { 7476 if (new != NULL) { 7477 KFREE(new); 7478 new = NULL; 7479 } 7480 7481 if (it->ipt_complete > 0) 7482 it = NULL; 7483 else 7484 ipf_token_unlink(softc, it); 7485 } 7486 7487 if (it != NULL) { 7488 it->ipt_pnext = softc->ipf_token_tail; 7489 *softc->ipf_token_tail = it; 7490 softc->ipf_token_tail = &it->ipt_next; 7491 it->ipt_next = NULL; 7492 it->ipt_ref++; 7493 7494 it->ipt_die = softc->ipf_ticks + 20; 7495 } 7496 7497 RWLOCK_EXIT(&softc->ipf_tokens); 7498 7499 return it; 7500 } 7501 7502 7503 /* ------------------------------------------------------------------------ */ 7504 /* Function: ipf_token_unlink */ 7505 /* Returns: None. */ 7506 /* Parameters: softc(I) - pointer to soft context main structure */ 7507 /* token(I) - pointer to token structure */ 7508 /* Write Locks: ipf_tokens */ 7509 /* */ 7510 /* This function unlinks a token structure from the linked list of tokens */ 7511 /* that "own" it. The head pointer never needs to be explicitly adjusted */ 7512 /* but the tail does due to the linked list implementation. */ 7513 /* ------------------------------------------------------------------------ */ 7514 static void 7515 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token) 7516 { 7517 7518 if (softc->ipf_token_tail == &token->ipt_next) 7519 softc->ipf_token_tail = token->ipt_pnext; 7520 7521 *token->ipt_pnext = token->ipt_next; 7522 if (token->ipt_next != NULL) 7523 token->ipt_next->ipt_pnext = token->ipt_pnext; 7524 token->ipt_next = NULL; 7525 token->ipt_pnext = NULL; 7526 } 7527 7528 7529 /* ------------------------------------------------------------------------ */ 7530 /* Function: ipf_token_deref */ 7531 /* Returns: int - 0 == token freed, else reference count */ 7532 /* Parameters: softc(I) - pointer to soft context main structure */ 7533 /* token(I) - pointer to token structure */ 7534 /* Write Locks: ipf_tokens */ 7535 /* */ 7536 /* Drop the reference count on the token structure and if it drops to zero, */ 7537 /* call the dereference function for the token type because it is then */ 7538 /* possible to free the token data structure. */ 7539 /* ------------------------------------------------------------------------ */ 7540 int 7541 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token) 7542 { 7543 void *data, **datap; 7544 7545 ASSERT(token->ipt_ref > 0); 7546 token->ipt_ref--; 7547 if (token->ipt_ref > 0) 7548 return token->ipt_ref; 7549 7550 data = token->ipt_data; 7551 datap = &data; 7552 7553 if ((data != NULL) && (data != (void *)-1)) { 7554 switch (token->ipt_type) 7555 { 7556 case IPFGENITER_IPF : 7557 (void) ipf_derefrule(softc, (frentry_t **)datap); 7558 break; 7559 case IPFGENITER_IPNAT : 7560 WRITE_ENTER(&softc->ipf_nat); 7561 ipf_nat_rule_deref(softc, (ipnat_t **)datap); 7562 RWLOCK_EXIT(&softc->ipf_nat); 7563 break; 7564 case IPFGENITER_NAT : 7565 ipf_nat_deref(softc, (nat_t **)datap); 7566 break; 7567 case IPFGENITER_STATE : 7568 ipf_state_deref(softc, (ipstate_t **)datap); 7569 break; 7570 case IPFGENITER_FRAG : 7571 ipf_frag_pkt_deref(softc, (ipfr_t **)datap); 7572 break; 7573 case IPFGENITER_NATFRAG : 7574 ipf_frag_nat_deref(softc, (ipfr_t **)datap); 7575 break; 7576 case IPFGENITER_HOSTMAP : 7577 WRITE_ENTER(&softc->ipf_nat); 7578 ipf_nat_hostmapdel(softc, (hostmap_t **)datap); 7579 RWLOCK_EXIT(&softc->ipf_nat); 7580 break; 7581 default : 7582 ipf_lookup_iterderef(softc, token->ipt_type, data); 7583 break; 7584 } 7585 } 7586 7587 ipf_token_unlink(softc, token); 7588 KFREE(token); 7589 return 0; 7590 } 7591 7592 7593 /* ------------------------------------------------------------------------ */ 7594 /* Function: ipf_nextrule */ 7595 /* Returns: frentry_t * - NULL == no more rules, else pointer to next */ 7596 /* Parameters: softc(I) - pointer to soft context main structure */ 7597 /* fr(I) - pointer to filter rule */ 7598 /* out(I) - 1 == out rules, 0 == input rules */ 7599 /* */ 7600 /* Starting with "fr", find the next rule to visit. This includes visiting */ 7601 /* the list of rule groups if either fr is NULL (empty list) or it is the */ 7602 /* last rule in the list. When walking rule lists, it is either input or */ 7603 /* output rules that are returned, never both. */ 7604 /* ------------------------------------------------------------------------ */ 7605 static frentry_t * 7606 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit, 7607 frentry_t *fr, int out) 7608 { 7609 frentry_t *next; 7610 frgroup_t *fg; 7611 7612 if (fr != NULL && fr->fr_group != -1) { 7613 fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group, 7614 unit, active, NULL); 7615 if (fg != NULL) 7616 fg = fg->fg_next; 7617 } else { 7618 fg = softc->ipf_groups[unit][active]; 7619 } 7620 7621 while (fg != NULL) { 7622 next = fg->fg_start; 7623 while (next != NULL) { 7624 if (out) { 7625 if (next->fr_flags & FR_OUTQUE) 7626 return next; 7627 } else if (next->fr_flags & FR_INQUE) { 7628 return next; 7629 } 7630 next = next->fr_next; 7631 } 7632 if (next == NULL) 7633 fg = fg->fg_next; 7634 } 7635 7636 return NULL; 7637 } 7638 7639 /* ------------------------------------------------------------------------ */ 7640 /* Function: ipf_getnextrule */ 7641 /* Returns: int - 0 = success, else error */ 7642 /* Parameters: softc(I)- pointer to soft context main structure */ 7643 /* t(I) - pointer to destination information to resolve */ 7644 /* ptr(I) - pointer to ipfobj_t to copyin from user space */ 7645 /* */ 7646 /* This function's first job is to bring in the ipfruleiter_t structure via */ 7647 /* the ipfobj_t structure to determine what should be the next rule to */ 7648 /* return. Once the ipfruleiter_t has been brought in, it then tries to */ 7649 /* find the 'next rule'. This may include searching rule group lists or */ 7650 /* just be as simple as looking at the 'next' field in the rule structure. */ 7651 /* When we have found the rule to return, increase its reference count and */ 7652 /* if we used an existing rule to get here, decrease its reference count. */ 7653 /* ------------------------------------------------------------------------ */ 7654 int 7655 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr) 7656 { 7657 frentry_t *fr, *next, zero; 7658 ipfruleiter_t it; 7659 int error, out; 7660 frgroup_t *fg; 7661 ipfobj_t obj; 7662 int predict; 7663 char *dst; 7664 int unit; 7665 7666 if (t == NULL || ptr == NULL) { 7667 IPFERROR(84); 7668 return EFAULT; 7669 } 7670 7671 error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER); 7672 if (error != 0) 7673 return error; 7674 7675 if ((it.iri_inout < 0) || (it.iri_inout > 3)) { 7676 IPFERROR(85); 7677 return EINVAL; 7678 } 7679 if ((it.iri_active != 0) && (it.iri_active != 1)) { 7680 IPFERROR(86); 7681 return EINVAL; 7682 } 7683 if (it.iri_nrules == 0) { 7684 IPFERROR(87); 7685 return ENOSPC; 7686 } 7687 if (it.iri_rule == NULL) { 7688 IPFERROR(88); 7689 return EFAULT; 7690 } 7691 7692 fg = NULL; 7693 fr = t->ipt_data; 7694 if ((it.iri_inout & F_OUT) != 0) 7695 out = 1; 7696 else 7697 out = 0; 7698 if ((it.iri_inout & F_ACIN) != 0) 7699 unit = IPL_LOGCOUNT; 7700 else 7701 unit = IPL_LOGIPF; 7702 7703 READ_ENTER(&softc->ipf_mutex); 7704 if (fr == NULL) { 7705 if (*it.iri_group == '\0') { 7706 if (unit == IPL_LOGCOUNT) { 7707 next = softc->ipf_acct[out][it.iri_active]; 7708 } else { 7709 next = softc->ipf_rules[out][it.iri_active]; 7710 } 7711 if (next == NULL) 7712 next = ipf_nextrule(softc, it.iri_active, 7713 unit, NULL, out); 7714 } else { 7715 fg = ipf_findgroup(softc, it.iri_group, unit, 7716 it.iri_active, NULL); 7717 if (fg != NULL) 7718 next = fg->fg_start; 7719 else 7720 next = NULL; 7721 } 7722 } else { 7723 next = fr->fr_next; 7724 if (next == NULL) 7725 next = ipf_nextrule(softc, it.iri_active, unit, 7726 fr, out); 7727 } 7728 7729 if (next != NULL && next->fr_next != NULL) 7730 predict = 1; 7731 else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL) 7732 predict = 1; 7733 else 7734 predict = 0; 7735 7736 if (fr != NULL) 7737 (void) ipf_derefrule(softc, &fr); 7738 7739 obj.ipfo_type = IPFOBJ_FRENTRY; 7740 dst = (char *)it.iri_rule; 7741 7742 if (next != NULL) { 7743 obj.ipfo_size = next->fr_size; 7744 MUTEX_ENTER(&next->fr_lock); 7745 next->fr_ref++; 7746 MUTEX_EXIT(&next->fr_lock); 7747 t->ipt_data = next; 7748 } else { 7749 obj.ipfo_size = sizeof(frentry_t); 7750 bzero(&zero, sizeof(zero)); 7751 next = &zero; 7752 t->ipt_data = NULL; 7753 } 7754 it.iri_rule = predict ? next : NULL; 7755 if (predict == 0) 7756 ipf_token_mark_complete(t); 7757 7758 RWLOCK_EXIT(&softc->ipf_mutex); 7759 7760 obj.ipfo_ptr = dst; 7761 error = ipf_outobjk(softc, &obj, next); 7762 if (error == 0 && t->ipt_data != NULL) { 7763 dst += obj.ipfo_size; 7764 if (next->fr_data != NULL) { 7765 ipfobj_t dobj; 7766 7767 if (next->fr_type == FR_T_IPFEXPR) 7768 dobj.ipfo_type = IPFOBJ_IPFEXPR; 7769 else 7770 dobj.ipfo_type = IPFOBJ_FRIPF; 7771 dobj.ipfo_size = next->fr_dsize; 7772 dobj.ipfo_rev = obj.ipfo_rev; 7773 dobj.ipfo_ptr = dst; 7774 error = ipf_outobjk(softc, &dobj, next->fr_data); 7775 } 7776 } 7777 7778 if ((fr != NULL) && (next == &zero)) 7779 (void) ipf_derefrule(softc, &fr); 7780 7781 return error; 7782 } 7783 7784 7785 /* ------------------------------------------------------------------------ */ 7786 /* Function: ipf_frruleiter */ 7787 /* Returns: int - 0 = success, else error */ 7788 /* Parameters: softc(I)- pointer to soft context main structure */ 7789 /* data(I) - the token type to match */ 7790 /* uid(I) - uid owning the token */ 7791 /* ptr(I) - context pointer for the token */ 7792 /* */ 7793 /* This function serves as a stepping stone between ipf_ipf_ioctl and */ 7794 /* ipf_getnextrule. It's role is to find the right token in the kernel for */ 7795 /* the process doing the ioctl and use that to ask for the next rule. */ 7796 /* ------------------------------------------------------------------------ */ 7797 static int 7798 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx) 7799 { 7800 ipftoken_t *token; 7801 ipfruleiter_t it; 7802 ipfobj_t obj; 7803 int error; 7804 7805 token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx); 7806 if (token != NULL) { 7807 error = ipf_getnextrule(softc, token, data); 7808 WRITE_ENTER(&softc->ipf_tokens); 7809 ipf_token_deref(softc, token); 7810 RWLOCK_EXIT(&softc->ipf_tokens); 7811 } else { 7812 error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER); 7813 if (error != 0) 7814 return error; 7815 it.iri_rule = NULL; 7816 error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER); 7817 } 7818 7819 return error; 7820 } 7821 7822 7823 /* ------------------------------------------------------------------------ */ 7824 /* Function: ipf_geniter */ 7825 /* Returns: int - 0 = success, else error */ 7826 /* Parameters: softc(I) - pointer to soft context main structure */ 7827 /* token(I) - pointer to ipftoken_t structure */ 7828 /* itp(I) - pointer to iterator data */ 7829 /* */ 7830 /* Decide which iterator function to call using information passed through */ 7831 /* the ipfgeniter_t structure at itp. */ 7832 /* ------------------------------------------------------------------------ */ 7833 static int 7834 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp) 7835 { 7836 int error; 7837 7838 switch (itp->igi_type) 7839 { 7840 case IPFGENITER_FRAG : 7841 error = ipf_frag_pkt_next(softc, token, itp); 7842 break; 7843 default : 7844 IPFERROR(92); 7845 error = EINVAL; 7846 break; 7847 } 7848 7849 return error; 7850 } 7851 7852 7853 /* ------------------------------------------------------------------------ */ 7854 /* Function: ipf_genericiter */ 7855 /* Returns: int - 0 = success, else error */ 7856 /* Parameters: softc(I)- pointer to soft context main structure */ 7857 /* data(I) - the token type to match */ 7858 /* uid(I) - uid owning the token */ 7859 /* ptr(I) - context pointer for the token */ 7860 /* */ 7861 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */ 7862 /* ------------------------------------------------------------------------ */ 7863 int 7864 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx) 7865 { 7866 ipftoken_t *token; 7867 ipfgeniter_t iter; 7868 int error; 7869 7870 error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER); 7871 if (error != 0) 7872 return error; 7873 7874 token = ipf_token_find(softc, iter.igi_type, uid, ctx); 7875 if (token != NULL) { 7876 token->ipt_subtype = iter.igi_type; 7877 error = ipf_geniter(softc, token, &iter); 7878 WRITE_ENTER(&softc->ipf_tokens); 7879 ipf_token_deref(softc, token); 7880 RWLOCK_EXIT(&softc->ipf_tokens); 7881 } else { 7882 IPFERROR(93); 7883 error = 0; 7884 } 7885 7886 return error; 7887 } 7888 7889 7890 /* ------------------------------------------------------------------------ */ 7891 /* Function: ipf_ipf_ioctl */ 7892 /* Returns: int - 0 = success, else error */ 7893 /* Parameters: softc(I)- pointer to soft context main structure */ 7894 /* data(I) - the token type to match */ 7895 /* cmd(I) - the ioctl command number */ 7896 /* mode(I) - mode flags for the ioctl */ 7897 /* uid(I) - uid owning the token */ 7898 /* ptr(I) - context pointer for the token */ 7899 /* */ 7900 /* This function handles all of the ioctl command that are actually isssued */ 7901 /* to the /dev/ipl device. */ 7902 /* ------------------------------------------------------------------------ */ 7903 int 7904 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode, 7905 int uid, void *ctx) 7906 { 7907 friostat_t fio; 7908 int error, tmp; 7909 ipfobj_t obj; 7910 SPL_INT(s); 7911 7912 switch (cmd) 7913 { 7914 case SIOCFRENB : 7915 if (!(mode & FWRITE)) { 7916 IPFERROR(94); 7917 error = EPERM; 7918 } else { 7919 error = BCOPYIN(data, &tmp, sizeof(tmp)); 7920 if (error != 0) { 7921 IPFERROR(95); 7922 error = EFAULT; 7923 break; 7924 } 7925 7926 WRITE_ENTER(&softc->ipf_global); 7927 if (tmp) { 7928 if (softc->ipf_running > 0) 7929 error = 0; 7930 else 7931 error = ipfattach(softc); 7932 if (error == 0) 7933 softc->ipf_running = 1; 7934 else 7935 (void) ipfdetach(softc); 7936 } else { 7937 if (softc->ipf_running == 1) 7938 error = ipfdetach(softc); 7939 else 7940 error = 0; 7941 if (error == 0) 7942 softc->ipf_running = -1; 7943 } 7944 RWLOCK_EXIT(&softc->ipf_global); 7945 } 7946 break; 7947 7948 case SIOCIPFSET : 7949 if (!(mode & FWRITE)) { 7950 IPFERROR(96); 7951 error = EPERM; 7952 break; 7953 } 7954 /* FALLTHRU */ 7955 case SIOCIPFGETNEXT : 7956 case SIOCIPFGET : 7957 error = ipf_ipftune(softc, cmd, (void *)data); 7958 break; 7959 7960 case SIOCSETFF : 7961 if (!(mode & FWRITE)) { 7962 IPFERROR(97); 7963 error = EPERM; 7964 } else { 7965 error = BCOPYIN(data, &softc->ipf_flags, 7966 sizeof(softc->ipf_flags)); 7967 if (error != 0) { 7968 IPFERROR(98); 7969 error = EFAULT; 7970 } 7971 } 7972 break; 7973 7974 case SIOCGETFF : 7975 error = BCOPYOUT(&softc->ipf_flags, data, 7976 sizeof(softc->ipf_flags)); 7977 if (error != 0) { 7978 IPFERROR(99); 7979 error = EFAULT; 7980 } 7981 break; 7982 7983 case SIOCFUNCL : 7984 error = ipf_resolvefunc(softc, (void *)data); 7985 break; 7986 7987 case SIOCINAFR : 7988 case SIOCRMAFR : 7989 case SIOCADAFR : 7990 case SIOCZRLST : 7991 if (!(mode & FWRITE)) { 7992 IPFERROR(100); 7993 error = EPERM; 7994 } else { 7995 error = frrequest(softc, IPL_LOGIPF, cmd, data, 7996 softc->ipf_active, 1); 7997 } 7998 break; 7999 8000 case SIOCINIFR : 8001 case SIOCRMIFR : 8002 case SIOCADIFR : 8003 if (!(mode & FWRITE)) { 8004 IPFERROR(101); 8005 error = EPERM; 8006 } else { 8007 error = frrequest(softc, IPL_LOGIPF, cmd, data, 8008 1 - softc->ipf_active, 1); 8009 } 8010 break; 8011 8012 case SIOCSWAPA : 8013 if (!(mode & FWRITE)) { 8014 IPFERROR(102); 8015 error = EPERM; 8016 } else { 8017 WRITE_ENTER(&softc->ipf_mutex); 8018 error = BCOPYOUT(&softc->ipf_active, data, 8019 sizeof(softc->ipf_active)); 8020 if (error != 0) { 8021 IPFERROR(103); 8022 error = EFAULT; 8023 } else { 8024 softc->ipf_active = 1 - softc->ipf_active; 8025 } 8026 RWLOCK_EXIT(&softc->ipf_mutex); 8027 } 8028 break; 8029 8030 case SIOCGETFS : 8031 error = ipf_inobj(softc, (void *)data, &obj, &fio, 8032 IPFOBJ_IPFSTAT); 8033 if (error != 0) 8034 break; 8035 ipf_getstat(softc, &fio, obj.ipfo_rev); 8036 error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT); 8037 break; 8038 8039 case SIOCFRZST : 8040 if (!(mode & FWRITE)) { 8041 IPFERROR(104); 8042 error = EPERM; 8043 } else 8044 error = ipf_zerostats(softc, data); 8045 break; 8046 8047 case SIOCIPFFL : 8048 if (!(mode & FWRITE)) { 8049 IPFERROR(105); 8050 error = EPERM; 8051 } else { 8052 error = BCOPYIN(data, &tmp, sizeof(tmp)); 8053 if (!error) { 8054 tmp = ipf_flush(softc, IPL_LOGIPF, tmp); 8055 error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8056 if (error != 0) { 8057 IPFERROR(106); 8058 error = EFAULT; 8059 } 8060 } else { 8061 IPFERROR(107); 8062 error = EFAULT; 8063 } 8064 } 8065 break; 8066 8067 #ifdef USE_INET6 8068 case SIOCIPFL6 : 8069 if (!(mode & FWRITE)) { 8070 IPFERROR(108); 8071 error = EPERM; 8072 } else { 8073 error = BCOPYIN(data, &tmp, sizeof(tmp)); 8074 if (!error) { 8075 tmp = ipf_flush(softc, IPL_LOGIPF, tmp); 8076 error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8077 if (error != 0) { 8078 IPFERROR(109); 8079 error = EFAULT; 8080 } 8081 } else { 8082 IPFERROR(110); 8083 error = EFAULT; 8084 } 8085 } 8086 break; 8087 #endif 8088 8089 case SIOCSTLCK : 8090 if (!(mode & FWRITE)) { 8091 IPFERROR(122); 8092 error = EPERM; 8093 } else { 8094 error = BCOPYIN(data, &tmp, sizeof(tmp)); 8095 if (error == 0) { 8096 ipf_state_setlock(softc->ipf_state_soft, tmp); 8097 ipf_nat_setlock(softc->ipf_nat_soft, tmp); 8098 ipf_frag_setlock(softc->ipf_frag_soft, tmp); 8099 ipf_auth_setlock(softc->ipf_auth_soft, tmp); 8100 } else { 8101 IPFERROR(111); 8102 error = EFAULT; 8103 } 8104 } 8105 break; 8106 8107 #ifdef IPFILTER_LOG 8108 case SIOCIPFFB : 8109 if (!(mode & FWRITE)) { 8110 IPFERROR(112); 8111 error = EPERM; 8112 } else { 8113 tmp = ipf_log_clear(softc, IPL_LOGIPF); 8114 error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8115 if (error) { 8116 IPFERROR(113); 8117 error = EFAULT; 8118 } 8119 } 8120 break; 8121 #endif /* IPFILTER_LOG */ 8122 8123 case SIOCFRSYN : 8124 if (!(mode & FWRITE)) { 8125 IPFERROR(114); 8126 error = EPERM; 8127 } else { 8128 WRITE_ENTER(&softc->ipf_global); 8129 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES) 8130 error = ipfsync(); 8131 #else 8132 ipf_sync(softc, NULL); 8133 error = 0; 8134 #endif 8135 RWLOCK_EXIT(&softc->ipf_global); 8136 8137 } 8138 break; 8139 8140 case SIOCGFRST : 8141 error = ipf_outobj(softc, (void *)data, 8142 ipf_frag_stats(softc->ipf_frag_soft), 8143 IPFOBJ_FRAGSTAT); 8144 break; 8145 8146 #ifdef IPFILTER_LOG 8147 case FIONREAD : 8148 tmp = ipf_log_bytesused(softc, IPL_LOGIPF); 8149 error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8150 break; 8151 #endif 8152 8153 case SIOCIPFITER : 8154 SPL_SCHED(s); 8155 error = ipf_frruleiter(softc, data, uid, ctx); 8156 SPL_X(s); 8157 break; 8158 8159 case SIOCGENITER : 8160 SPL_SCHED(s); 8161 error = ipf_genericiter(softc, data, uid, ctx); 8162 SPL_X(s); 8163 break; 8164 8165 case SIOCIPFDELTOK : 8166 error = BCOPYIN(data, &tmp, sizeof(tmp)); 8167 if (error == 0) { 8168 SPL_SCHED(s); 8169 error = ipf_token_del(softc, tmp, uid, ctx); 8170 SPL_X(s); 8171 } 8172 break; 8173 8174 default : 8175 IPFERROR(115); 8176 error = EINVAL; 8177 break; 8178 } 8179 8180 return error; 8181 } 8182 8183 8184 /* ------------------------------------------------------------------------ */ 8185 /* Function: ipf_decaps */ 8186 /* Returns: int - -1 == decapsulation failed, else bit mask of */ 8187 /* flags indicating packet filtering decision. */ 8188 /* Parameters: fin(I) - pointer to packet information */ 8189 /* pass(I) - IP protocol version to match */ 8190 /* l5proto(I) - layer 5 protocol to decode UDP data as. */ 8191 /* */ 8192 /* This function is called for packets that are wrapt up in other packets, */ 8193 /* for example, an IP packet that is the entire data segment for another IP */ 8194 /* packet. If the basic constraints for this are satisfied, change the */ 8195 /* buffer to point to the start of the inner packet and start processing */ 8196 /* rules belonging to the head group this rule specifies. */ 8197 /* ------------------------------------------------------------------------ */ 8198 u_32_t 8199 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto) 8200 { 8201 fr_info_t fin2, *fino = NULL; 8202 int elen, hlen, nh; 8203 grehdr_t gre; 8204 ip_t *ip; 8205 mb_t *m; 8206 8207 if ((fin->fin_flx & FI_COALESCE) == 0) 8208 if (ipf_coalesce(fin) == -1) 8209 goto cantdecaps; 8210 8211 m = fin->fin_m; 8212 hlen = fin->fin_hlen; 8213 8214 switch (fin->fin_p) 8215 { 8216 case IPPROTO_UDP : 8217 /* 8218 * In this case, the specific protocol being decapsulated 8219 * inside UDP frames comes from the rule. 8220 */ 8221 nh = fin->fin_fr->fr_icode; 8222 break; 8223 8224 case IPPROTO_GRE : /* 47 */ 8225 bcopy(fin->fin_dp, (char *)&gre, sizeof(gre)); 8226 hlen += sizeof(grehdr_t); 8227 if (gre.gr_R|gre.gr_s) 8228 goto cantdecaps; 8229 if (gre.gr_C) 8230 hlen += 4; 8231 if (gre.gr_K) 8232 hlen += 4; 8233 if (gre.gr_S) 8234 hlen += 4; 8235 8236 nh = IPPROTO_IP; 8237 8238 /* 8239 * If the routing options flag is set, validate that it is 8240 * there and bounce over it. 8241 */ 8242 #if 0 8243 /* This is really heavy weight and lots of room for error, */ 8244 /* so for now, put it off and get the simple stuff right. */ 8245 if (gre.gr_R) { 8246 u_char off, len, *s; 8247 u_short af; 8248 int end; 8249 8250 end = 0; 8251 s = fin->fin_dp; 8252 s += hlen; 8253 aplen = fin->fin_plen - hlen; 8254 while (aplen > 3) { 8255 af = (s[0] << 8) | s[1]; 8256 off = s[2]; 8257 len = s[3]; 8258 aplen -= 4; 8259 s += 4; 8260 if (af == 0 && len == 0) { 8261 end = 1; 8262 break; 8263 } 8264 if (aplen < len) 8265 break; 8266 s += len; 8267 aplen -= len; 8268 } 8269 if (end != 1) 8270 goto cantdecaps; 8271 hlen = s - (u_char *)fin->fin_dp; 8272 } 8273 #endif 8274 break; 8275 8276 #ifdef IPPROTO_IPIP 8277 case IPPROTO_IPIP : /* 4 */ 8278 #endif 8279 nh = IPPROTO_IP; 8280 break; 8281 8282 default : /* Includes ESP, AH is special for IPv4 */ 8283 goto cantdecaps; 8284 } 8285 8286 switch (nh) 8287 { 8288 case IPPROTO_IP : 8289 case IPPROTO_IPV6 : 8290 break; 8291 default : 8292 goto cantdecaps; 8293 } 8294 8295 bcopy((char *)fin, (char *)&fin2, sizeof(fin2)); 8296 fino = fin; 8297 fin = &fin2; 8298 elen = hlen; 8299 #if defined(MENTAT) && defined(_KERNEL) 8300 m->b_rptr += elen; 8301 #else 8302 m->m_data += elen; 8303 m->m_len -= elen; 8304 #endif 8305 fin->fin_plen -= elen; 8306 8307 ip = (ip_t *)((char *)fin->fin_ip + elen); 8308 8309 /* 8310 * Make sure we have at least enough data for the network layer 8311 * header. 8312 */ 8313 if (IP_V(ip) == 4) 8314 hlen = IP_HL(ip) << 2; 8315 #ifdef USE_INET6 8316 else if (IP_V(ip) == 6) 8317 hlen = sizeof(ip6_t); 8318 #endif 8319 else 8320 goto cantdecaps2; 8321 8322 if (fin->fin_plen < hlen) 8323 goto cantdecaps2; 8324 8325 fin->fin_dp = (char *)ip + hlen; 8326 8327 if (IP_V(ip) == 4) { 8328 /* 8329 * Perform IPv4 header checksum validation. 8330 */ 8331 if (ipf_cksum((u_short *)ip, hlen)) 8332 goto cantdecaps2; 8333 } 8334 8335 if (ipf_makefrip(hlen, ip, fin) == -1) { 8336 cantdecaps2: 8337 if (m != NULL) { 8338 #if defined(MENTAT) && defined(_KERNEL) 8339 m->b_rptr -= elen; 8340 #else 8341 m->m_data -= elen; 8342 m->m_len += elen; 8343 #endif 8344 } 8345 cantdecaps: 8346 DT1(frb_decapfrip, fr_info_t *, fin); 8347 pass &= ~FR_CMDMASK; 8348 pass |= FR_BLOCK|FR_QUICK; 8349 fin->fin_reason = FRB_DECAPFRIP; 8350 return -1; 8351 } 8352 8353 pass = ipf_scanlist(fin, pass); 8354 8355 /* 8356 * Copy the packet filter "result" fields out of the fr_info_t struct 8357 * that is local to the decapsulation processing and back into the 8358 * one we were called with. 8359 */ 8360 fino->fin_flx = fin->fin_flx; 8361 fino->fin_rev = fin->fin_rev; 8362 fino->fin_icode = fin->fin_icode; 8363 fino->fin_rule = fin->fin_rule; 8364 (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN); 8365 fino->fin_fr = fin->fin_fr; 8366 fino->fin_error = fin->fin_error; 8367 fino->fin_mp = fin->fin_mp; 8368 fino->fin_m = fin->fin_m; 8369 m = fin->fin_m; 8370 if (m != NULL) { 8371 #if defined(MENTAT) && defined(_KERNEL) 8372 m->b_rptr -= elen; 8373 #else 8374 m->m_data -= elen; 8375 m->m_len += elen; 8376 #endif 8377 } 8378 return pass; 8379 } 8380 8381 8382 /* ------------------------------------------------------------------------ */ 8383 /* Function: ipf_matcharray_load */ 8384 /* Returns: int - 0 = success, else error */ 8385 /* Parameters: softc(I) - pointer to soft context main structure */ 8386 /* data(I) - pointer to ioctl data */ 8387 /* objp(I) - ipfobj_t structure to load data into */ 8388 /* arrayptr(I) - pointer to location to store array pointer */ 8389 /* */ 8390 /* This function loads in a mathing array through the ipfobj_t struct that */ 8391 /* describes it. Sanity checking and array size limitations are enforced */ 8392 /* in this function to prevent userspace from trying to load in something */ 8393 /* that is insanely big. Once the size of the array is known, the memory */ 8394 /* required is malloc'd and returned through changing *arrayptr. The */ 8395 /* contents of the array are verified before returning. Only in the event */ 8396 /* of a successful call is the caller required to free up the malloc area. */ 8397 /* ------------------------------------------------------------------------ */ 8398 int 8399 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, 8400 int **arrayptr) 8401 { 8402 int arraysize, *array, error; 8403 8404 *arrayptr = NULL; 8405 8406 error = BCOPYIN(data, objp, sizeof(*objp)); 8407 if (error != 0) { 8408 IPFERROR(116); 8409 return EFAULT; 8410 } 8411 8412 if (objp->ipfo_type != IPFOBJ_IPFEXPR) { 8413 IPFERROR(117); 8414 return EINVAL; 8415 } 8416 8417 if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) || 8418 (objp->ipfo_size > 1024)) { 8419 IPFERROR(118); 8420 return EINVAL; 8421 } 8422 8423 arraysize = objp->ipfo_size * sizeof(*array); 8424 KMALLOCS(array, int *, arraysize); 8425 if (array == NULL) { 8426 IPFERROR(119); 8427 return ENOMEM; 8428 } 8429 8430 error = COPYIN(objp->ipfo_ptr, array, arraysize); 8431 if (error != 0) { 8432 KFREES(array, arraysize); 8433 IPFERROR(120); 8434 return EFAULT; 8435 } 8436 8437 if (ipf_matcharray_verify(array, arraysize) != 0) { 8438 KFREES(array, arraysize); 8439 IPFERROR(121); 8440 return EINVAL; 8441 } 8442 8443 *arrayptr = array; 8444 return 0; 8445 } 8446 8447 8448 /* ------------------------------------------------------------------------ */ 8449 /* Function: ipf_matcharray_verify */ 8450 /* Returns: Nil */ 8451 /* Parameters: array(I) - pointer to matching array */ 8452 /* arraysize(I) - number of elements in the array */ 8453 /* */ 8454 /* Verify the contents of a matching array by stepping through each element */ 8455 /* in it. The actual commands in the array are not verified for */ 8456 /* correctness, only that all of the sizes are correctly within limits. */ 8457 /* ------------------------------------------------------------------------ */ 8458 int 8459 ipf_matcharray_verify(int *array, int arraysize) 8460 { 8461 int i, nelem, maxidx; 8462 ipfexp_t *e; 8463 8464 nelem = arraysize / sizeof(*array); 8465 8466 /* 8467 * Currently, it makes no sense to have an array less than 6 8468 * elements long - the initial size at the from, a single operation 8469 * (minimum 4 in length) and a trailer, for a total of 6. 8470 */ 8471 if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) { 8472 return -1; 8473 } 8474 8475 /* 8476 * Verify the size of data pointed to by array with how long 8477 * the array claims to be itself. 8478 */ 8479 if (array[0] * sizeof(*array) != arraysize) { 8480 return -1; 8481 } 8482 8483 maxidx = nelem - 1; 8484 /* 8485 * The last opcode in this array should be an IPF_EXP_END. 8486 */ 8487 if (array[maxidx] != IPF_EXP_END) { 8488 return -1; 8489 } 8490 8491 for (i = 1; i < maxidx; ) { 8492 e = (ipfexp_t *)(array + i); 8493 8494 /* 8495 * The length of the bits to check must be at least 1 8496 * (or else there is nothing to comapre with!) and it 8497 * cannot exceed the length of the data present. 8498 */ 8499 if ((e->ipfe_size < 1 ) || 8500 (e->ipfe_size + i > maxidx)) { 8501 return -1; 8502 } 8503 i += e->ipfe_size; 8504 } 8505 return 0; 8506 } 8507 8508 8509 /* ------------------------------------------------------------------------ */ 8510 /* Function: ipf_fr_matcharray */ 8511 /* Returns: int - 0 = match failed, else positive match */ 8512 /* Parameters: fin(I) - pointer to packet information */ 8513 /* array(I) - pointer to matching array */ 8514 /* */ 8515 /* This function is used to apply a matching array against a packet and */ 8516 /* return an indication of whether or not the packet successfully matches */ 8517 /* all of the commands in it. */ 8518 /* ------------------------------------------------------------------------ */ 8519 static int 8520 ipf_fr_matcharray(fr_info_t *fin, int *array) 8521 { 8522 int i, n, *x, rv, p; 8523 ipfexp_t *e; 8524 8525 rv = 0; 8526 n = array[0]; 8527 x = array + 1; 8528 8529 for (; n > 0; x += 3 + x[3], rv = 0) { 8530 e = (ipfexp_t *)x; 8531 if (e->ipfe_cmd == IPF_EXP_END) 8532 break; 8533 n -= e->ipfe_size; 8534 8535 /* 8536 * The upper 16 bits currently store the protocol value. 8537 * This is currently used with TCP and UDP port compares and 8538 * allows "tcp.port = 80" without requiring an explicit 8539 " "ip.pr = tcp" first. 8540 */ 8541 p = e->ipfe_cmd >> 16; 8542 if ((p != 0) && (p != fin->fin_p)) 8543 break; 8544 8545 switch (e->ipfe_cmd) 8546 { 8547 case IPF_EXP_IP_PR : 8548 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8549 rv |= (fin->fin_p == e->ipfe_arg0[i]); 8550 } 8551 break; 8552 8553 case IPF_EXP_IP_SRCADDR : 8554 if (fin->fin_v != 4) 8555 break; 8556 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8557 rv |= ((fin->fin_saddr & 8558 e->ipfe_arg0[i * 2 + 1]) == 8559 e->ipfe_arg0[i * 2]); 8560 } 8561 break; 8562 8563 case IPF_EXP_IP_DSTADDR : 8564 if (fin->fin_v != 4) 8565 break; 8566 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8567 rv |= ((fin->fin_daddr & 8568 e->ipfe_arg0[i * 2 + 1]) == 8569 e->ipfe_arg0[i * 2]); 8570 } 8571 break; 8572 8573 case IPF_EXP_IP_ADDR : 8574 if (fin->fin_v != 4) 8575 break; 8576 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8577 rv |= ((fin->fin_saddr & 8578 e->ipfe_arg0[i * 2 + 1]) == 8579 e->ipfe_arg0[i * 2]) || 8580 ((fin->fin_daddr & 8581 e->ipfe_arg0[i * 2 + 1]) == 8582 e->ipfe_arg0[i * 2]); 8583 } 8584 break; 8585 8586 #ifdef USE_INET6 8587 case IPF_EXP_IP6_SRCADDR : 8588 if (fin->fin_v != 6) 8589 break; 8590 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8591 rv |= IP6_MASKEQ(&fin->fin_src6, 8592 &e->ipfe_arg0[i * 8 + 4], 8593 &e->ipfe_arg0[i * 8]); 8594 } 8595 break; 8596 8597 case IPF_EXP_IP6_DSTADDR : 8598 if (fin->fin_v != 6) 8599 break; 8600 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8601 rv |= IP6_MASKEQ(&fin->fin_dst6, 8602 &e->ipfe_arg0[i * 8 + 4], 8603 &e->ipfe_arg0[i * 8]); 8604 } 8605 break; 8606 8607 case IPF_EXP_IP6_ADDR : 8608 if (fin->fin_v != 6) 8609 break; 8610 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8611 rv |= IP6_MASKEQ(&fin->fin_src6, 8612 &e->ipfe_arg0[i * 8 + 4], 8613 &e->ipfe_arg0[i * 8]) || 8614 IP6_MASKEQ(&fin->fin_dst6, 8615 &e->ipfe_arg0[i * 8 + 4], 8616 &e->ipfe_arg0[i * 8]); 8617 } 8618 break; 8619 #endif 8620 8621 case IPF_EXP_UDP_PORT : 8622 case IPF_EXP_TCP_PORT : 8623 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8624 rv |= (fin->fin_sport == e->ipfe_arg0[i]) || 8625 (fin->fin_dport == e->ipfe_arg0[i]); 8626 } 8627 break; 8628 8629 case IPF_EXP_UDP_SPORT : 8630 case IPF_EXP_TCP_SPORT : 8631 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8632 rv |= (fin->fin_sport == e->ipfe_arg0[i]); 8633 } 8634 break; 8635 8636 case IPF_EXP_UDP_DPORT : 8637 case IPF_EXP_TCP_DPORT : 8638 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8639 rv |= (fin->fin_dport == e->ipfe_arg0[i]); 8640 } 8641 break; 8642 8643 case IPF_EXP_TCP_FLAGS : 8644 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8645 rv |= ((fin->fin_tcpf & 8646 e->ipfe_arg0[i * 2 + 1]) == 8647 e->ipfe_arg0[i * 2]); 8648 } 8649 break; 8650 } 8651 rv ^= e->ipfe_not; 8652 8653 if (rv == 0) 8654 break; 8655 } 8656 8657 return rv; 8658 } 8659 8660 8661 /* ------------------------------------------------------------------------ */ 8662 /* Function: ipf_queueflush */ 8663 /* Returns: int - number of entries flushed (0 = none) */ 8664 /* Parameters: softc(I) - pointer to soft context main structure */ 8665 /* deletefn(I) - function to call to delete entry */ 8666 /* ipfqs(I) - top of the list of ipf internal queues */ 8667 /* userqs(I) - top of the list of user defined timeouts */ 8668 /* */ 8669 /* This fucntion gets called when the state/NAT hash tables fill up and we */ 8670 /* need to try a bit harder to free up some space. The algorithm used here */ 8671 /* split into two parts but both halves have the same goal: to reduce the */ 8672 /* number of connections considered to be "active" to the low watermark. */ 8673 /* There are two steps in doing this: */ 8674 /* 1) Remove any TCP connections that are already considered to be "closed" */ 8675 /* but have not yet been removed from the state table. The two states */ 8676 /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */ 8677 /* candidates for this style of removal. If freeing up entries in */ 8678 /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */ 8679 /* we do not go on to step 2. */ 8680 /* */ 8681 /* 2) Look for the oldest entries on each timeout queue and free them if */ 8682 /* they are within the given window we are considering. Where the */ 8683 /* window starts and the steps taken to increase its size depend upon */ 8684 /* how long ipf has been running (ipf_ticks.) Anything modified in the */ 8685 /* last 30 seconds is not touched. */ 8686 /* touched */ 8687 /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */ 8688 /* | | | | | | */ 8689 /* future <--+----------+--------+-----------+-----+-----+-----------> past */ 8690 /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */ 8691 /* */ 8692 /* Points to note: */ 8693 /* - tqe_die is the time, in the future, when entries die. */ 8694 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */ 8695 /* ticks. */ 8696 /* - tqe_touched is when the entry was last used by NAT/state */ 8697 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */ 8698 /* ipf_ticks any given timeout queue and vice versa. */ 8699 /* - both tqe_die and tqe_touched increase over time */ 8700 /* - timeout queues are sorted with the highest value of tqe_die at the */ 8701 /* bottom and therefore the smallest values of each are at the top */ 8702 /* - the pointer passed in as ipfqs should point to an array of timeout */ 8703 /* queues representing each of the TCP states */ 8704 /* */ 8705 /* We start by setting up a maximum range to scan for things to move of */ 8706 /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */ 8707 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */ 8708 /* we start again with a new value for "iend" and "istart". This is */ 8709 /* continued until we either finish the scan of 30 second intervals or the */ 8710 /* low water mark is reached. */ 8711 /* ------------------------------------------------------------------------ */ 8712 int 8713 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn, 8714 ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low) 8715 { 8716 u_long interval, istart, iend; 8717 ipftq_t *ifq, *ifqnext; 8718 ipftqent_t *tqe, *tqn; 8719 int removed = 0; 8720 8721 for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) { 8722 tqn = tqe->tqe_next; 8723 if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8724 removed++; 8725 } 8726 if ((*activep * 100 / size) > low) { 8727 for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head; 8728 ((tqe = tqn) != NULL); ) { 8729 tqn = tqe->tqe_next; 8730 if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8731 removed++; 8732 } 8733 } 8734 8735 if ((*activep * 100 / size) <= low) { 8736 return removed; 8737 } 8738 8739 /* 8740 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is 8741 * used then the operations are upgraded to floating point 8742 * and kernels don't like floating point... 8743 */ 8744 if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) { 8745 istart = IPF_TTLVAL(86400 * 4); 8746 interval = IPF_TTLVAL(43200); 8747 } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) { 8748 istart = IPF_TTLVAL(43200); 8749 interval = IPF_TTLVAL(1800); 8750 } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) { 8751 istart = IPF_TTLVAL(1800); 8752 interval = IPF_TTLVAL(30); 8753 } else { 8754 return 0; 8755 } 8756 if (istart > softc->ipf_ticks) { 8757 if (softc->ipf_ticks - interval < interval) 8758 istart = interval; 8759 else 8760 istart = (softc->ipf_ticks / interval) * interval; 8761 } 8762 8763 iend = softc->ipf_ticks - interval; 8764 8765 while ((*activep * 100 / size) > low) { 8766 u_long try; 8767 8768 try = softc->ipf_ticks - istart; 8769 8770 for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) { 8771 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { 8772 if (try < tqe->tqe_touched) 8773 break; 8774 tqn = tqe->tqe_next; 8775 if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8776 removed++; 8777 } 8778 } 8779 8780 for (ifq = userqs; ifq != NULL; ifq = ifqnext) { 8781 ifqnext = ifq->ifq_next; 8782 8783 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { 8784 if (try < tqe->tqe_touched) 8785 break; 8786 tqn = tqe->tqe_next; 8787 if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8788 removed++; 8789 } 8790 } 8791 8792 if (try >= iend) { 8793 if (interval == IPF_TTLVAL(43200)) { 8794 interval = IPF_TTLVAL(1800); 8795 } else if (interval == IPF_TTLVAL(1800)) { 8796 interval = IPF_TTLVAL(30); 8797 } else { 8798 break; 8799 } 8800 if (interval >= softc->ipf_ticks) 8801 break; 8802 8803 iend = softc->ipf_ticks - interval; 8804 } 8805 istart -= interval; 8806 } 8807 8808 return removed; 8809 } 8810 8811 8812 /* ------------------------------------------------------------------------ */ 8813 /* Function: ipf_deliverlocal */ 8814 /* Returns: int - 1 = local address, 0 = non-local address */ 8815 /* Parameters: softc(I) - pointer to soft context main structure */ 8816 /* ipversion(I) - IP protocol version (4 or 6) */ 8817 /* ifp(I) - network interface pointer */ 8818 /* ipaddr(I) - IPv4/6 destination address */ 8819 /* */ 8820 /* This fucntion is used to determine in the address "ipaddr" belongs to */ 8821 /* the network interface represented by ifp. */ 8822 /* ------------------------------------------------------------------------ */ 8823 int 8824 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp, 8825 i6addr_t *ipaddr) 8826 { 8827 i6addr_t addr; 8828 int islocal = 0; 8829 8830 if (ipversion == 4) { 8831 if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) { 8832 if (addr.in4.s_addr == ipaddr->in4.s_addr) 8833 islocal = 1; 8834 } 8835 8836 #ifdef USE_INET6 8837 } else if (ipversion == 6) { 8838 if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) { 8839 if (IP6_EQ(&addr, ipaddr)) 8840 islocal = 1; 8841 } 8842 #endif 8843 } 8844 8845 return islocal; 8846 } 8847 8848 8849 /* ------------------------------------------------------------------------ */ 8850 /* Function: ipf_settimeout */ 8851 /* Returns: int - 0 = success, -1 = failure */ 8852 /* Parameters: softc(I) - pointer to soft context main structure */ 8853 /* t(I) - pointer to tuneable array entry */ 8854 /* p(I) - pointer to values passed in to apply */ 8855 /* */ 8856 /* This function is called to set the timeout values for each distinct */ 8857 /* queue timeout that is available. When called, it calls into both the */ 8858 /* state and NAT code, telling them to update their timeout queues. */ 8859 /* ------------------------------------------------------------------------ */ 8860 static int 8861 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t, 8862 ipftuneval_t *p) 8863 { 8864 8865 /* 8866 * ipf_interror should be set by the functions called here, not 8867 * by this function - it's just a middle man. 8868 */ 8869 if (ipf_state_settimeout(softc, t, p) == -1) 8870 return -1; 8871 if (ipf_nat_settimeout(softc, t, p) == -1) 8872 return -1; 8873 return 0; 8874 } 8875 8876 8877 /* ------------------------------------------------------------------------ */ 8878 /* Function: ipf_apply_timeout */ 8879 /* Returns: int - 0 = success, -1 = failure */ 8880 /* Parameters: head(I) - pointer to tuneable array entry */ 8881 /* seconds(I) - pointer to values passed in to apply */ 8882 /* */ 8883 /* This function applies a timeout of "seconds" to the timeout queue that */ 8884 /* is pointed to by "head". All entries on this list have an expiration */ 8885 /* set to be the current tick value of ipf plus the ttl. Given that this */ 8886 /* function should only be called when the delta is non-zero, the task is */ 8887 /* to walk the entire list and apply the change. The sort order will not */ 8888 /* change. The only catch is that this is O(n) across the list, so if the */ 8889 /* queue has lots of entries (10s of thousands or 100s of thousands), it */ 8890 /* could take a relatively long time to work through them all. */ 8891 /* ------------------------------------------------------------------------ */ 8892 void 8893 ipf_apply_timeout(ipftq_t *head, u_int seconds) 8894 { 8895 u_int oldtimeout, newtimeout; 8896 ipftqent_t *tqe; 8897 int delta; 8898 8899 MUTEX_ENTER(&head->ifq_lock); 8900 oldtimeout = head->ifq_ttl; 8901 newtimeout = IPF_TTLVAL(seconds); 8902 delta = oldtimeout - newtimeout; 8903 8904 head->ifq_ttl = newtimeout; 8905 8906 for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) { 8907 tqe->tqe_die += delta; 8908 } 8909 MUTEX_EXIT(&head->ifq_lock); 8910 } 8911 8912 8913 /* ------------------------------------------------------------------------ */ 8914 /* Function: ipf_settimeout_tcp */ 8915 /* Returns: int - 0 = successfully applied, -1 = failed */ 8916 /* Parameters: t(I) - pointer to tuneable to change */ 8917 /* p(I) - pointer to new timeout information */ 8918 /* tab(I) - pointer to table of TCP queues */ 8919 /* */ 8920 /* This function applies the new timeout (p) to the TCP tunable (t) and */ 8921 /* updates all of the entries on the relevant timeout queue by calling */ 8922 /* ipf_apply_timeout(). */ 8923 /* ------------------------------------------------------------------------ */ 8924 int 8925 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab) 8926 { 8927 if (!strcmp(t->ipft_name, "tcp_idle_timeout") || 8928 !strcmp(t->ipft_name, "tcp_established")) { 8929 ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int); 8930 } else if (!strcmp(t->ipft_name, "tcp_close_wait")) { 8931 ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int); 8932 } else if (!strcmp(t->ipft_name, "tcp_last_ack")) { 8933 ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int); 8934 } else if (!strcmp(t->ipft_name, "tcp_timeout")) { 8935 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); 8936 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); 8937 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); 8938 } else if (!strcmp(t->ipft_name, "tcp_listen")) { 8939 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); 8940 } else if (!strcmp(t->ipft_name, "tcp_half_established")) { 8941 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); 8942 } else if (!strcmp(t->ipft_name, "tcp_closing")) { 8943 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); 8944 } else if (!strcmp(t->ipft_name, "tcp_syn_received")) { 8945 ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int); 8946 } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) { 8947 ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int); 8948 } else if (!strcmp(t->ipft_name, "tcp_closed")) { 8949 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); 8950 } else if (!strcmp(t->ipft_name, "tcp_half_closed")) { 8951 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); 8952 } else if (!strcmp(t->ipft_name, "tcp_time_wait")) { 8953 ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int); 8954 } else { 8955 /* 8956 * ipf_interror isn't set here because it should be set 8957 * by whatever called this function. 8958 */ 8959 return -1; 8960 } 8961 return 0; 8962 } 8963 8964 8965 /* ------------------------------------------------------------------------ */ 8966 /* Function: ipf_main_soft_create */ 8967 /* Returns: NULL = failure, else success */ 8968 /* Parameters: arg(I) - pointer to soft context structure if already allocd */ 8969 /* */ 8970 /* Create the foundation soft context structure. In circumstances where it */ 8971 /* is not required to dynamically allocate the context, a pointer can be */ 8972 /* passed in (rather than NULL) to a structure to be initialised. */ 8973 /* The main thing of interest is that a number of locks are initialised */ 8974 /* here instead of in the where might be expected - in the relevant create */ 8975 /* function elsewhere. This is done because the current locking design has */ 8976 /* some areas where these locks are used outside of their module. */ 8977 /* Possibly the most important exercise that is done here is setting of all */ 8978 /* the timeout values, allowing them to be changed before init(). */ 8979 /* ------------------------------------------------------------------------ */ 8980 void * 8981 ipf_main_soft_create(void *arg) 8982 { 8983 ipf_main_softc_t *softc; 8984 8985 if (arg == NULL) { 8986 KMALLOC(softc, ipf_main_softc_t *); 8987 if (softc == NULL) 8988 return NULL; 8989 } else { 8990 softc = arg; 8991 } 8992 8993 bzero((char *)softc, sizeof(*softc)); 8994 8995 /* 8996 * This serves as a flag as to whether or not the softc should be 8997 * free'd when _destroy is called. 8998 */ 8999 softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0; 9000 9001 softc->ipf_tuners = ipf_tune_array_copy(softc, 9002 sizeof(ipf_main_tuneables), 9003 ipf_main_tuneables); 9004 if (softc->ipf_tuners == NULL) { 9005 ipf_main_soft_destroy(softc); 9006 return NULL; 9007 } 9008 9009 MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex"); 9010 MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock"); 9011 RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex"); 9012 RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock"); 9013 RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock"); 9014 RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock"); 9015 RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock"); 9016 RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock"); 9017 RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock"); 9018 9019 softc->ipf_token_head = NULL; 9020 softc->ipf_token_tail = &softc->ipf_token_head; 9021 9022 softc->ipf_tcpidletimeout = FIVE_DAYS; 9023 softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL); 9024 softc->ipf_tcplastack = IPF_TTLVAL(30); 9025 softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL); 9026 softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL); 9027 softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL); 9028 softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL); 9029 softc->ipf_tcpclosed = IPF_TTLVAL(30); 9030 softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600); 9031 softc->ipf_udptimeout = IPF_TTLVAL(120); 9032 softc->ipf_udpacktimeout = IPF_TTLVAL(12); 9033 softc->ipf_icmptimeout = IPF_TTLVAL(60); 9034 softc->ipf_icmpacktimeout = IPF_TTLVAL(6); 9035 softc->ipf_iptimeout = IPF_TTLVAL(60); 9036 9037 #if defined(IPFILTER_DEFAULT_BLOCK) 9038 softc->ipf_pass = FR_BLOCK|FR_NOMATCH; 9039 #else 9040 softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH; 9041 #endif 9042 softc->ipf_minttl = 4; 9043 softc->ipf_icmpminfragmtu = 68; 9044 softc->ipf_flags = IPF_LOGGING; 9045 9046 return softc; 9047 } 9048 9049 /* ------------------------------------------------------------------------ */ 9050 /* Function: ipf_main_soft_init */ 9051 /* Returns: 0 = success, -1 = failure */ 9052 /* Parameters: softc(I) - pointer to soft context main structure */ 9053 /* */ 9054 /* A null-op function that exists as a placeholder so that the flow in */ 9055 /* other functions is obvious. */ 9056 /* ------------------------------------------------------------------------ */ 9057 /*ARGSUSED*/ 9058 int 9059 ipf_main_soft_init(ipf_main_softc_t *softc) 9060 { 9061 return 0; 9062 } 9063 9064 9065 /* ------------------------------------------------------------------------ */ 9066 /* Function: ipf_main_soft_destroy */ 9067 /* Returns: void */ 9068 /* Parameters: softc(I) - pointer to soft context main structure */ 9069 /* */ 9070 /* Undo everything that we did in ipf_main_soft_create. */ 9071 /* */ 9072 /* The most important check that needs to be made here is whether or not */ 9073 /* the structure was allocated by ipf_main_soft_create() by checking what */ 9074 /* value is stored in ipf_dynamic_main. */ 9075 /* ------------------------------------------------------------------------ */ 9076 /*ARGSUSED*/ 9077 void 9078 ipf_main_soft_destroy(ipf_main_softc_t *softc) 9079 { 9080 9081 RW_DESTROY(&softc->ipf_frag); 9082 RW_DESTROY(&softc->ipf_poolrw); 9083 RW_DESTROY(&softc->ipf_nat); 9084 RW_DESTROY(&softc->ipf_state); 9085 RW_DESTROY(&softc->ipf_tokens); 9086 RW_DESTROY(&softc->ipf_mutex); 9087 RW_DESTROY(&softc->ipf_global); 9088 MUTEX_DESTROY(&softc->ipf_timeoutlock); 9089 MUTEX_DESTROY(&softc->ipf_rw); 9090 9091 if (softc->ipf_tuners != NULL) { 9092 KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables)); 9093 } 9094 if (softc->ipf_dynamic_softc == 1) { 9095 KFREE(softc); 9096 } 9097 } 9098 9099 9100 /* ------------------------------------------------------------------------ */ 9101 /* Function: ipf_main_soft_fini */ 9102 /* Returns: 0 = success, -1 = failure */ 9103 /* Parameters: softc(I) - pointer to soft context main structure */ 9104 /* */ 9105 /* Clean out the rules which have been added since _init was last called, */ 9106 /* the only dynamic part of the mainline. */ 9107 /* ------------------------------------------------------------------------ */ 9108 int 9109 ipf_main_soft_fini(ipf_main_softc_t *softc) 9110 { 9111 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE); 9112 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE); 9113 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE); 9114 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE); 9115 9116 return 0; 9117 } 9118 9119 9120 /* ------------------------------------------------------------------------ */ 9121 /* Function: ipf_main_load */ 9122 /* Returns: 0 = success, -1 = failure */ 9123 /* Parameters: none */ 9124 /* */ 9125 /* Handle global initialisation that needs to be done for the base part of */ 9126 /* IPFilter. At present this just amounts to initialising some ICMP lookup */ 9127 /* arrays that get used by the state/NAT code. */ 9128 /* ------------------------------------------------------------------------ */ 9129 int 9130 ipf_main_load(void) 9131 { 9132 int i; 9133 9134 /* fill icmp reply type table */ 9135 for (i = 0; i <= ICMP_MAXTYPE; i++) 9136 icmpreplytype4[i] = -1; 9137 icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY; 9138 icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY; 9139 icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY; 9140 icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY; 9141 9142 #ifdef USE_INET6 9143 /* fill icmp reply type table */ 9144 for (i = 0; i <= ICMP6_MAXTYPE; i++) 9145 icmpreplytype6[i] = -1; 9146 icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY; 9147 icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT; 9148 icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY; 9149 icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT; 9150 icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT; 9151 #endif 9152 9153 return 0; 9154 } 9155 9156 9157 /* ------------------------------------------------------------------------ */ 9158 /* Function: ipf_main_unload */ 9159 /* Returns: 0 = success, -1 = failure */ 9160 /* Parameters: none */ 9161 /* */ 9162 /* A null-op function that exists as a placeholder so that the flow in */ 9163 /* other functions is obvious. */ 9164 /* ------------------------------------------------------------------------ */ 9165 int 9166 ipf_main_unload(void) 9167 { 9168 return 0; 9169 } 9170 9171 9172 /* ------------------------------------------------------------------------ */ 9173 /* Function: ipf_load_all */ 9174 /* Returns: 0 = success, -1 = failure */ 9175 /* Parameters: none */ 9176 /* */ 9177 /* Work through all of the subsystems inside IPFilter and call the load */ 9178 /* function for each in an order that won't lead to a crash :) */ 9179 /* ------------------------------------------------------------------------ */ 9180 int 9181 ipf_load_all(void) 9182 { 9183 if (ipf_main_load() == -1) 9184 return -1; 9185 9186 if (ipf_state_main_load() == -1) 9187 return -1; 9188 9189 if (ipf_nat_main_load() == -1) 9190 return -1; 9191 9192 if (ipf_frag_main_load() == -1) 9193 return -1; 9194 9195 if (ipf_auth_main_load() == -1) 9196 return -1; 9197 9198 if (ipf_proxy_main_load() == -1) 9199 return -1; 9200 9201 return 0; 9202 } 9203 9204 9205 /* ------------------------------------------------------------------------ */ 9206 /* Function: ipf_unload_all */ 9207 /* Returns: 0 = success, -1 = failure */ 9208 /* Parameters: none */ 9209 /* */ 9210 /* Work through all of the subsystems inside IPFilter and call the unload */ 9211 /* function for each in an order that won't lead to a crash :) */ 9212 /* ------------------------------------------------------------------------ */ 9213 int 9214 ipf_unload_all(void) 9215 { 9216 if (ipf_proxy_main_unload() == -1) 9217 return -1; 9218 9219 if (ipf_auth_main_unload() == -1) 9220 return -1; 9221 9222 if (ipf_frag_main_unload() == -1) 9223 return -1; 9224 9225 if (ipf_nat_main_unload() == -1) 9226 return -1; 9227 9228 if (ipf_state_main_unload() == -1) 9229 return -1; 9230 9231 if (ipf_main_unload() == -1) 9232 return -1; 9233 9234 return 0; 9235 } 9236 9237 9238 /* ------------------------------------------------------------------------ */ 9239 /* Function: ipf_create_all */ 9240 /* Returns: NULL = failure, else success */ 9241 /* Parameters: arg(I) - pointer to soft context main structure */ 9242 /* */ 9243 /* Work through all of the subsystems inside IPFilter and call the create */ 9244 /* function for each in an order that won't lead to a crash :) */ 9245 /* ------------------------------------------------------------------------ */ 9246 ipf_main_softc_t * 9247 ipf_create_all(void *arg) 9248 { 9249 ipf_main_softc_t *softc; 9250 9251 softc = ipf_main_soft_create(arg); 9252 if (softc == NULL) 9253 return NULL; 9254 9255 #ifdef IPFILTER_LOG 9256 softc->ipf_log_soft = ipf_log_soft_create(softc); 9257 if (softc->ipf_log_soft == NULL) { 9258 ipf_destroy_all(softc); 9259 return NULL; 9260 } 9261 #endif 9262 9263 softc->ipf_lookup_soft = ipf_lookup_soft_create(softc); 9264 if (softc->ipf_lookup_soft == NULL) { 9265 ipf_destroy_all(softc); 9266 return NULL; 9267 } 9268 9269 softc->ipf_sync_soft = ipf_sync_soft_create(softc); 9270 if (softc->ipf_sync_soft == NULL) { 9271 ipf_destroy_all(softc); 9272 return NULL; 9273 } 9274 9275 softc->ipf_state_soft = ipf_state_soft_create(softc); 9276 if (softc->ipf_state_soft == NULL) { 9277 ipf_destroy_all(softc); 9278 return NULL; 9279 } 9280 9281 softc->ipf_nat_soft = ipf_nat_soft_create(softc); 9282 if (softc->ipf_nat_soft == NULL) { 9283 ipf_destroy_all(softc); 9284 return NULL; 9285 } 9286 9287 softc->ipf_frag_soft = ipf_frag_soft_create(softc); 9288 if (softc->ipf_frag_soft == NULL) { 9289 ipf_destroy_all(softc); 9290 return NULL; 9291 } 9292 9293 softc->ipf_auth_soft = ipf_auth_soft_create(softc); 9294 if (softc->ipf_auth_soft == NULL) { 9295 ipf_destroy_all(softc); 9296 return NULL; 9297 } 9298 9299 softc->ipf_proxy_soft = ipf_proxy_soft_create(softc); 9300 if (softc->ipf_proxy_soft == NULL) { 9301 ipf_destroy_all(softc); 9302 return NULL; 9303 } 9304 9305 return softc; 9306 } 9307 9308 9309 /* ------------------------------------------------------------------------ */ 9310 /* Function: ipf_destroy_all */ 9311 /* Returns: void */ 9312 /* Parameters: softc(I) - pointer to soft context main structure */ 9313 /* */ 9314 /* Work through all of the subsystems inside IPFilter and call the destroy */ 9315 /* function for each in an order that won't lead to a crash :) */ 9316 /* */ 9317 /* Every one of these functions is expected to succeed, so there is no */ 9318 /* checking of return values. */ 9319 /* ------------------------------------------------------------------------ */ 9320 void 9321 ipf_destroy_all(ipf_main_softc_t *softc) 9322 { 9323 9324 if (softc->ipf_state_soft != NULL) { 9325 ipf_state_soft_destroy(softc, softc->ipf_state_soft); 9326 softc->ipf_state_soft = NULL; 9327 } 9328 9329 if (softc->ipf_nat_soft != NULL) { 9330 ipf_nat_soft_destroy(softc, softc->ipf_nat_soft); 9331 softc->ipf_nat_soft = NULL; 9332 } 9333 9334 if (softc->ipf_frag_soft != NULL) { 9335 ipf_frag_soft_destroy(softc, softc->ipf_frag_soft); 9336 softc->ipf_frag_soft = NULL; 9337 } 9338 9339 if (softc->ipf_auth_soft != NULL) { 9340 ipf_auth_soft_destroy(softc, softc->ipf_auth_soft); 9341 softc->ipf_auth_soft = NULL; 9342 } 9343 9344 if (softc->ipf_proxy_soft != NULL) { 9345 ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft); 9346 softc->ipf_proxy_soft = NULL; 9347 } 9348 9349 if (softc->ipf_sync_soft != NULL) { 9350 ipf_sync_soft_destroy(softc, softc->ipf_sync_soft); 9351 softc->ipf_sync_soft = NULL; 9352 } 9353 9354 if (softc->ipf_lookup_soft != NULL) { 9355 ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft); 9356 softc->ipf_lookup_soft = NULL; 9357 } 9358 9359 #ifdef IPFILTER_LOG 9360 if (softc->ipf_log_soft != NULL) { 9361 ipf_log_soft_destroy(softc, softc->ipf_log_soft); 9362 softc->ipf_log_soft = NULL; 9363 } 9364 #endif 9365 9366 ipf_main_soft_destroy(softc); 9367 } 9368 9369 9370 /* ------------------------------------------------------------------------ */ 9371 /* Function: ipf_init_all */ 9372 /* Returns: 0 = success, -1 = failure */ 9373 /* Parameters: softc(I) - pointer to soft context main structure */ 9374 /* */ 9375 /* Work through all of the subsystems inside IPFilter and call the init */ 9376 /* function for each in an order that won't lead to a crash :) */ 9377 /* ------------------------------------------------------------------------ */ 9378 int 9379 ipf_init_all(ipf_main_softc_t *softc) 9380 { 9381 9382 if (ipf_main_soft_init(softc) == -1) 9383 return -1; 9384 9385 #ifdef IPFILTER_LOG 9386 if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1) 9387 return -1; 9388 #endif 9389 9390 if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1) 9391 return -1; 9392 9393 if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1) 9394 return -1; 9395 9396 if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1) 9397 return -1; 9398 9399 if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1) 9400 return -1; 9401 9402 if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1) 9403 return -1; 9404 9405 if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1) 9406 return -1; 9407 9408 if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1) 9409 return -1; 9410 9411 return 0; 9412 } 9413 9414 9415 /* ------------------------------------------------------------------------ */ 9416 /* Function: ipf_fini_all */ 9417 /* Returns: 0 = success, -1 = failure */ 9418 /* Parameters: softc(I) - pointer to soft context main structure */ 9419 /* */ 9420 /* Work through all of the subsystems inside IPFilter and call the fini */ 9421 /* function for each in an order that won't lead to a crash :) */ 9422 /* ------------------------------------------------------------------------ */ 9423 int 9424 ipf_fini_all(ipf_main_softc_t *softc) 9425 { 9426 9427 ipf_token_flush(softc); 9428 9429 if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1) 9430 return -1; 9431 9432 if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1) 9433 return -1; 9434 9435 if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1) 9436 return -1; 9437 9438 if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1) 9439 return -1; 9440 9441 if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1) 9442 return -1; 9443 9444 if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1) 9445 return -1; 9446 9447 if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1) 9448 return -1; 9449 9450 #ifdef IPFILTER_LOG 9451 if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1) 9452 return -1; 9453 #endif 9454 9455 if (ipf_main_soft_fini(softc) == -1) 9456 return -1; 9457 9458 return 0; 9459 } 9460 9461 9462 /* ------------------------------------------------------------------------ */ 9463 /* Function: ipf_rule_expire */ 9464 /* Returns: Nil */ 9465 /* Parameters: softc(I) - pointer to soft context main structure */ 9466 /* */ 9467 /* At present this function exists just to support temporary addition of */ 9468 /* firewall rules. Both inactive and active lists are scanned for items to */ 9469 /* purge, as by rights, the expiration is computed as soon as the rule is */ 9470 /* loaded in. */ 9471 /* ------------------------------------------------------------------------ */ 9472 void 9473 ipf_rule_expire(ipf_main_softc_t *softc) 9474 { 9475 frentry_t *fr; 9476 9477 if ((softc->ipf_rule_explist[0] == NULL) && 9478 (softc->ipf_rule_explist[1] == NULL)) 9479 return; 9480 9481 WRITE_ENTER(&softc->ipf_mutex); 9482 9483 while ((fr = softc->ipf_rule_explist[0]) != NULL) { 9484 /* 9485 * Because the list is kept sorted on insertion, the fist 9486 * one that dies in the future means no more work to do. 9487 */ 9488 if (fr->fr_die > softc->ipf_ticks) 9489 break; 9490 ipf_rule_delete(softc, fr, IPL_LOGIPF, 0); 9491 } 9492 9493 while ((fr = softc->ipf_rule_explist[1]) != NULL) { 9494 /* 9495 * Because the list is kept sorted on insertion, the fist 9496 * one that dies in the future means no more work to do. 9497 */ 9498 if (fr->fr_die > softc->ipf_ticks) 9499 break; 9500 ipf_rule_delete(softc, fr, IPL_LOGIPF, 1); 9501 } 9502 9503 RWLOCK_EXIT(&softc->ipf_mutex); 9504 } 9505 9506 9507 static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *); 9508 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int, 9509 i6addr_t *); 9510 9511 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp) 9512 9513 9514 /* ------------------------------------------------------------------------ */ 9515 /* Function: ipf_ht_node_cmp */ 9516 /* Returns: int - 0 == nodes are the same, .. */ 9517 /* Parameters: k1(I) - pointer to first key to compare */ 9518 /* k2(I) - pointer to second key to compare */ 9519 /* */ 9520 /* The "key" for the node is a combination of two fields: the address */ 9521 /* family and the address itself. */ 9522 /* */ 9523 /* Because we're not actually interpreting the address data, it isn't */ 9524 /* necessary to convert them to/from network/host byte order. The mask is */ 9525 /* just used to remove bits that aren't significant - it doesn't matter */ 9526 /* where they are, as long as they're always in the same place. */ 9527 /* */ 9528 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */ 9529 /* this is where individual ones will differ the most - but not true for */ 9530 /* for /48's, etc. */ 9531 /* ------------------------------------------------------------------------ */ 9532 static int 9533 ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2) 9534 { 9535 int i; 9536 9537 i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family); 9538 if (i != 0) 9539 return i; 9540 9541 if (k1->hn_addr.adf_family == AF_INET) 9542 return (k2->hn_addr.adf_addr.in4.s_addr - 9543 k1->hn_addr.adf_addr.in4.s_addr); 9544 9545 i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3]; 9546 if (i != 0) 9547 return i; 9548 i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2]; 9549 if (i != 0) 9550 return i; 9551 i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1]; 9552 if (i != 0) 9553 return i; 9554 i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0]; 9555 return i; 9556 } 9557 9558 9559 /* ------------------------------------------------------------------------ */ 9560 /* Function: ipf_ht_node_make_key */ 9561 /* Returns: Nil */ 9562 /* parameters: htp(I) - pointer to address tracking structure */ 9563 /* key(I) - where to store masked address for lookup */ 9564 /* family(I) - protocol family of address */ 9565 /* addr(I) - pointer to network address */ 9566 /* */ 9567 /* Using the "netmask" (number of bits) stored parent host tracking struct, */ 9568 /* copy the address passed in into the key structure whilst masking out the */ 9569 /* bits that we don't want. */ 9570 /* */ 9571 /* Because the parser will set ht_netmask to 128 if there is no protocol */ 9572 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */ 9573 /* have to be wary of that and not allow 32-128 to happen. */ 9574 /* ------------------------------------------------------------------------ */ 9575 static void 9576 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family, 9577 i6addr_t *addr) 9578 { 9579 key->hn_addr.adf_family = family; 9580 if (family == AF_INET) { 9581 u_32_t mask; 9582 int bits; 9583 9584 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4); 9585 bits = htp->ht_netmask; 9586 if (bits >= 32) { 9587 mask = 0xffffffff; 9588 } else { 9589 mask = htonl(0xffffffff << (32 - bits)); 9590 } 9591 key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask; 9592 #ifdef USE_INET6 9593 } else { 9594 int bits = htp->ht_netmask; 9595 9596 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6); 9597 if (bits > 96) { 9598 key->hn_addr.adf_addr.i6[3] = addr->i6[3] & 9599 htonl(0xffffffff << (128 - bits)); 9600 key->hn_addr.adf_addr.i6[2] = addr->i6[2]; 9601 key->hn_addr.adf_addr.i6[1] = addr->i6[2]; 9602 key->hn_addr.adf_addr.i6[0] = addr->i6[2]; 9603 } else if (bits > 64) { 9604 key->hn_addr.adf_addr.i6[3] = 0; 9605 key->hn_addr.adf_addr.i6[2] = addr->i6[2] & 9606 htonl(0xffffffff << (96 - bits)); 9607 key->hn_addr.adf_addr.i6[1] = addr->i6[1]; 9608 key->hn_addr.adf_addr.i6[0] = addr->i6[0]; 9609 } else if (bits > 32) { 9610 key->hn_addr.adf_addr.i6[3] = 0; 9611 key->hn_addr.adf_addr.i6[2] = 0; 9612 key->hn_addr.adf_addr.i6[1] = addr->i6[1] & 9613 htonl(0xffffffff << (64 - bits)); 9614 key->hn_addr.adf_addr.i6[0] = addr->i6[0]; 9615 } else { 9616 key->hn_addr.adf_addr.i6[3] = 0; 9617 key->hn_addr.adf_addr.i6[2] = 0; 9618 key->hn_addr.adf_addr.i6[1] = 0; 9619 key->hn_addr.adf_addr.i6[0] = addr->i6[0] & 9620 htonl(0xffffffff << (32 - bits)); 9621 } 9622 #endif 9623 } 9624 } 9625 9626 9627 /* ------------------------------------------------------------------------ */ 9628 /* Function: ipf_ht_node_add */ 9629 /* Returns: int - 0 == success, -1 == failure */ 9630 /* Parameters: softc(I) - pointer to soft context main structure */ 9631 /* htp(I) - pointer to address tracking structure */ 9632 /* family(I) - protocol family of address */ 9633 /* addr(I) - pointer to network address */ 9634 /* */ 9635 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ 9636 /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */ 9637 /* */ 9638 /* After preparing the key with the address information to find, look in */ 9639 /* the red-black tree to see if the address is known. A successful call to */ 9640 /* this function can mean one of two things: a new node was added to the */ 9641 /* tree or a matching node exists and we're able to bump up its activity. */ 9642 /* ------------------------------------------------------------------------ */ 9643 int 9644 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family, 9645 i6addr_t *addr) 9646 { 9647 host_node_t *h; 9648 host_node_t k; 9649 9650 ipf_ht_node_make_key(htp, &k, family, addr); 9651 9652 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); 9653 if (h == NULL) { 9654 if (htp->ht_cur_nodes >= htp->ht_max_nodes) 9655 return -1; 9656 KMALLOC(h, host_node_t *); 9657 if (h == NULL) { 9658 DT(ipf_rb_no_mem); 9659 LBUMP(ipf_rb_no_mem); 9660 return -1; 9661 } 9662 9663 /* 9664 * If there was a macro to initialise the RB node then that 9665 * would get used here, but there isn't... 9666 */ 9667 bzero((char *)h, sizeof(*h)); 9668 h->hn_addr = k.hn_addr; 9669 h->hn_addr.adf_family = k.hn_addr.adf_family; 9670 RBI_INSERT(ipf_rb, &htp->ht_root, h); 9671 htp->ht_cur_nodes++; 9672 } else { 9673 if ((htp->ht_max_per_node != 0) && 9674 (h->hn_active >= htp->ht_max_per_node)) { 9675 DT(ipf_rb_node_max); 9676 LBUMP(ipf_rb_node_max); 9677 return -1; 9678 } 9679 } 9680 9681 h->hn_active++; 9682 9683 return 0; 9684 } 9685 9686 9687 /* ------------------------------------------------------------------------ */ 9688 /* Function: ipf_ht_node_del */ 9689 /* Returns: int - 0 == success, -1 == failure */ 9690 /* parameters: htp(I) - pointer to address tracking structure */ 9691 /* family(I) - protocol family of address */ 9692 /* addr(I) - pointer to network address */ 9693 /* */ 9694 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ 9695 /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */ 9696 /* */ 9697 /* Try and find the address passed in amongst the leaves on this tree to */ 9698 /* be friend. If found then drop the active account for that node drops by */ 9699 /* one. If that count reaches 0, it is time to free it all up. */ 9700 /* ------------------------------------------------------------------------ */ 9701 int 9702 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr) 9703 { 9704 host_node_t *h; 9705 host_node_t k; 9706 9707 ipf_ht_node_make_key(htp, &k, family, addr); 9708 9709 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); 9710 if (h == NULL) { 9711 return -1; 9712 } else { 9713 h->hn_active--; 9714 if (h->hn_active == 0) { 9715 (void) RBI_DELETE(ipf_rb, &htp->ht_root, h); 9716 htp->ht_cur_nodes--; 9717 KFREE(h); 9718 } 9719 } 9720 9721 return 0; 9722 } 9723 9724 9725 /* ------------------------------------------------------------------------ */ 9726 /* Function: ipf_rb_ht_init */ 9727 /* Returns: Nil */ 9728 /* Parameters: head(I) - pointer to host tracking structure */ 9729 /* */ 9730 /* Initialise the host tracking structure to be ready for use above. */ 9731 /* ------------------------------------------------------------------------ */ 9732 void 9733 ipf_rb_ht_init(host_track_t *head) 9734 { 9735 memset(head, 0, sizeof(*head)); 9736 RBI_INIT(ipf_rb, &head->ht_root); 9737 } 9738 9739 9740 /* ------------------------------------------------------------------------ */ 9741 /* Function: ipf_rb_ht_freenode */ 9742 /* Returns: Nil */ 9743 /* Parameters: head(I) - pointer to host tracking structure */ 9744 /* arg(I) - additional argument from walk caller */ 9745 /* */ 9746 /* Free an actual host_node_t structure. */ 9747 /* ------------------------------------------------------------------------ */ 9748 void 9749 ipf_rb_ht_freenode(host_node_t *node, void *arg) 9750 { 9751 KFREE(node); 9752 } 9753 9754 9755 /* ------------------------------------------------------------------------ */ 9756 /* Function: ipf_rb_ht_flush */ 9757 /* Returns: Nil */ 9758 /* Parameters: head(I) - pointer to host tracking structure */ 9759 /* */ 9760 /* Remove all of the nodes in the tree tracking hosts by calling a walker */ 9761 /* and free'ing each one. */ 9762 /* ------------------------------------------------------------------------ */ 9763 void 9764 ipf_rb_ht_flush(host_track_t *head) 9765 { 9766 /* XXX - May use node members after freeing the node. */ 9767 RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL); 9768 } 9769 9770 9771 /* ------------------------------------------------------------------------ */ 9772 /* Function: ipf_slowtimer */ 9773 /* Returns: Nil */ 9774 /* Parameters: ptr(I) - pointer to main ipf soft context structure */ 9775 /* */ 9776 /* Slowly expire held state for fragments. Timeouts are set * in */ 9777 /* expectation of this being called twice per second. */ 9778 /* ------------------------------------------------------------------------ */ 9779 void 9780 ipf_slowtimer(ipf_main_softc_t *softc) 9781 { 9782 9783 ipf_token_expire(softc); 9784 ipf_frag_expire(softc); 9785 ipf_state_expire(softc); 9786 ipf_nat_expire(softc); 9787 ipf_auth_expire(softc); 9788 ipf_lookup_expire(softc); 9789 ipf_rule_expire(softc); 9790 ipf_sync_expire(softc); 9791 softc->ipf_ticks++; 9792 # if defined(__OpenBSD__) 9793 timeout_add(&ipf_slowtimer_ch, hz/2); 9794 # endif 9795 } 9796 9797 9798 /* ------------------------------------------------------------------------ */ 9799 /* Function: ipf_inet_mask_add */ 9800 /* Returns: Nil */ 9801 /* Parameters: bits(I) - pointer to nat context information */ 9802 /* mtab(I) - pointer to mask hash table structure */ 9803 /* */ 9804 /* When called, bits represents the mask of a new NAT rule that has just */ 9805 /* been added. This function inserts a bitmask into the array of masks to */ 9806 /* search when searching for a matching NAT rule for a packet. */ 9807 /* Prevention of duplicate masks is achieved by checking the use count for */ 9808 /* a given netmask. */ 9809 /* ------------------------------------------------------------------------ */ 9810 void 9811 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab) 9812 { 9813 u_32_t mask; 9814 int i, j; 9815 9816 mtab->imt4_masks[bits]++; 9817 if (mtab->imt4_masks[bits] > 1) 9818 return; 9819 9820 if (bits == 0) 9821 mask = 0; 9822 else 9823 mask = 0xffffffff << (32 - bits); 9824 9825 for (i = 0; i < 33; i++) { 9826 if (ntohl(mtab->imt4_active[i]) < mask) { 9827 for (j = 32; j > i; j--) 9828 mtab->imt4_active[j] = mtab->imt4_active[j - 1]; 9829 mtab->imt4_active[i] = htonl(mask); 9830 break; 9831 } 9832 } 9833 mtab->imt4_max++; 9834 } 9835 9836 9837 /* ------------------------------------------------------------------------ */ 9838 /* Function: ipf_inet_mask_del */ 9839 /* Returns: Nil */ 9840 /* Parameters: bits(I) - number of bits set in the netmask */ 9841 /* mtab(I) - pointer to mask hash table structure */ 9842 /* */ 9843 /* Remove the 32bit bitmask represented by "bits" from the collection of */ 9844 /* netmasks stored inside of mtab. */ 9845 /* ------------------------------------------------------------------------ */ 9846 void 9847 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab) 9848 { 9849 u_32_t mask; 9850 int i, j; 9851 9852 mtab->imt4_masks[bits]--; 9853 if (mtab->imt4_masks[bits] > 0) 9854 return; 9855 9856 mask = htonl(0xffffffff << (32 - bits)); 9857 for (i = 0; i < 33; i++) { 9858 if (mtab->imt4_active[i] == mask) { 9859 for (j = i + 1; j < 33; j++) 9860 mtab->imt4_active[j - 1] = mtab->imt4_active[j]; 9861 break; 9862 } 9863 } 9864 mtab->imt4_max--; 9865 ASSERT(mtab->imt4_max >= 0); 9866 } 9867 9868 9869 #ifdef USE_INET6 9870 /* ------------------------------------------------------------------------ */ 9871 /* Function: ipf_inet6_mask_add */ 9872 /* Returns: Nil */ 9873 /* Parameters: bits(I) - number of bits set in mask */ 9874 /* mask(I) - pointer to mask to add */ 9875 /* mtab(I) - pointer to mask hash table structure */ 9876 /* */ 9877 /* When called, bitcount represents the mask of a IPv6 NAT map rule that */ 9878 /* has just been added. This function inserts a bitmask into the array of */ 9879 /* masks to search when searching for a matching NAT rule for a packet. */ 9880 /* Prevention of duplicate masks is achieved by checking the use count for */ 9881 /* a given netmask. */ 9882 /* ------------------------------------------------------------------------ */ 9883 void 9884 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab) 9885 { 9886 i6addr_t zero; 9887 int i, j; 9888 9889 mtab->imt6_masks[bits]++; 9890 if (mtab->imt6_masks[bits] > 1) 9891 return; 9892 9893 if (bits == 0) { 9894 mask = &zero; 9895 zero.i6[0] = 0; 9896 zero.i6[1] = 0; 9897 zero.i6[2] = 0; 9898 zero.i6[3] = 0; 9899 } 9900 9901 for (i = 0; i < 129; i++) { 9902 if (IP6_LT(&mtab->imt6_active[i], mask)) { 9903 for (j = 128; j > i; j--) 9904 mtab->imt6_active[j] = mtab->imt6_active[j - 1]; 9905 mtab->imt6_active[i] = *mask; 9906 break; 9907 } 9908 } 9909 mtab->imt6_max++; 9910 } 9911 9912 9913 /* ------------------------------------------------------------------------ */ 9914 /* Function: ipf_inet6_mask_del */ 9915 /* Returns: Nil */ 9916 /* Parameters: bits(I) - number of bits set in mask */ 9917 /* mask(I) - pointer to mask to remove */ 9918 /* mtab(I) - pointer to mask hash table structure */ 9919 /* */ 9920 /* Remove the 128bit bitmask represented by "bits" from the collection of */ 9921 /* netmasks stored inside of mtab. */ 9922 /* ------------------------------------------------------------------------ */ 9923 void 9924 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab) 9925 { 9926 i6addr_t zero; 9927 int i, j; 9928 9929 mtab->imt6_masks[bits]--; 9930 if (mtab->imt6_masks[bits] > 0) 9931 return; 9932 9933 if (bits == 0) 9934 mask = &zero; 9935 zero.i6[0] = 0; 9936 zero.i6[1] = 0; 9937 zero.i6[2] = 0; 9938 zero.i6[3] = 0; 9939 9940 for (i = 0; i < 129; i++) { 9941 if (IP6_EQ(&mtab->imt6_active[i], mask)) { 9942 for (j = i + 1; j < 129; j++) { 9943 mtab->imt6_active[j - 1] = mtab->imt6_active[j]; 9944 if (IP6_EQ(&mtab->imt6_active[j - 1], &zero)) 9945 break; 9946 } 9947 break; 9948 } 9949 } 9950 mtab->imt6_max--; 9951 ASSERT(mtab->imt6_max >= 0); 9952 } 9953 #endif 9954