xref: /netbsd-src/sys/external/bsd/ipf/netinet/fil.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: fil.c,v 1.24 2018/07/11 05:25:46 maxv Exp $	*/
2 
3 /*
4  * Copyright (C) 2012 by Darren Reed.
5  *
6  * See the IPFILTER.LICENCE file for details on licencing.
7  *
8  * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $
9  *
10  */
11 #if defined(KERNEL) || defined(_KERNEL)
12 # undef KERNEL
13 # undef _KERNEL
14 # define        KERNEL	1
15 # define        _KERNEL	1
16 #endif
17 #include <sys/errno.h>
18 #include <sys/types.h>
19 #include <sys/param.h>
20 #include <sys/time.h>
21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
22     (__FreeBSD_version >= 220000)
23 # if (__FreeBSD_version >= 400000)
24 #  if !defined(IPFILTER_LKM)
25 #   include "opt_inet6.h"
26 #  endif
27 #  if (__FreeBSD_version == 400019)
28 #   define CSUM_DELAY_DATA
29 #  endif
30 # endif
31 # include <sys/filio.h>
32 #else
33 # include <sys/ioctl.h>
34 #endif
35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
36 # include <sys/filio.h>
37 #endif
38 #if !defined(_AIX51)
39 # include <sys/fcntl.h>
40 #endif
41 #if defined(_KERNEL)
42 # include <sys/systm.h>
43 # include <sys/file.h>
44 #else
45 # include <stdio.h>
46 # include <string.h>
47 # include <stdlib.h>
48 # include <stddef.h>
49 # include <sys/file.h>
50 # define _KERNEL
51 # ifdef __OpenBSD__
52 struct file;
53 # endif
54 # include <sys/uio.h>
55 # undef _KERNEL
56 #endif
57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
58     !defined(linux)
59 # include <sys/mbuf.h>
60 #else
61 # if !defined(linux)
62 #  include <sys/byteorder.h>
63 # endif
64 # if (SOLARIS2 < 5) && defined(sun)
65 #  include <sys/dditypes.h>
66 # endif
67 #endif
68 #ifdef __hpux
69 # define _NET_ROUTE_INCLUDED
70 #endif
71 #if !defined(linux)
72 # include <sys/protosw.h>
73 #endif
74 #include <sys/socket.h>
75 #include <net/if.h>
76 #ifdef sun
77 # include <net/af.h>
78 #endif
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
83 # include <sys/hashing.h>
84 # include <netinet/in_var.h>
85 #endif
86 #include <netinet/tcp.h>
87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
88 # include <netinet/udp.h>
89 # include <netinet/ip_icmp.h>
90 #endif
91 #ifdef __hpux
92 # undef _NET_ROUTE_INCLUDED
93 #endif
94 #ifdef __osf__
95 # undef _RADIX_H_
96 #endif
97 #include "netinet/ip_compat.h"
98 #ifdef	USE_INET6
99 # include <netinet/icmp6.h>
100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
101 #  include <netinet6/in6_var.h>
102 # endif
103 #endif
104 #include "netinet/ip_fil.h"
105 #include "netinet/ip_nat.h"
106 #include "netinet/ip_frag.h"
107 #include "netinet/ip_state.h"
108 #include "netinet/ip_proxy.h"
109 #include "netinet/ip_auth.h"
110 #ifdef IPFILTER_SCAN
111 # include "netinet/ip_scan.h"
112 #endif
113 #include "netinet/ip_sync.h"
114 #include "netinet/ip_lookup.h"
115 #include "netinet/ip_pool.h"
116 #include "netinet/ip_htable.h"
117 #ifdef IPFILTER_COMPILED
118 # include "netinet/ip_rules.h"
119 #endif
120 #if defined(IPFILTER_BPF) && defined(_KERNEL)
121 # include <net/bpf.h>
122 #endif
123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
124 # include <sys/malloc.h>
125 #endif
126 #include "netinet/ipl.h"
127 
128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
129 # include <sys/callout.h>
130 extern struct callout ipf_slowtimer_ch;
131 #endif
132 #if defined(__OpenBSD__)
133 # include <sys/timeout.h>
134 extern struct timeout ipf_slowtimer_ch;
135 #endif
136 #if defined(__NetBSD__)
137 #include <netinet/in_offload.h>
138 #endif
139 /* END OF INCLUDES */
140 
141 #if !defined(lint)
142 #if defined(__NetBSD__)
143 #include <sys/cdefs.h>
144 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.24 2018/07/11 05:25:46 maxv Exp $");
145 #else
146 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
147 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $";
148 #endif
149 #endif
150 
151 #ifndef	_KERNEL
152 # include "ipf.h"
153 # include "ipt.h"
154 extern	int	opts;
155 extern	int	blockreason;
156 #endif /* _KERNEL */
157 
158 #define	LBUMP(x)	softc->x++
159 #define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
160 
161 static	INLINE int	ipf_check_ipf(fr_info_t *, frentry_t *, int);
162 static	u_32_t		ipf_checkcipso(fr_info_t *, u_char *, int);
163 static	u_32_t		ipf_checkripso(u_char *);
164 static	u_32_t		ipf_decaps(fr_info_t *, u_32_t, int);
165 #ifdef	IPFILTER_LOG
166 static	frentry_t	*ipf_dolog(fr_info_t *, u_32_t *);
167 #endif
168 static	int		ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
169 static	int		ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int);
170 static	ipfunc_t	ipf_findfunc(ipfunc_t);
171 static	void		*ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
172 					i6addr_t *, i6addr_t *);
173 static	frentry_t	*ipf_firewall(fr_info_t *, u_32_t *);
174 static	int		ipf_fr_matcharray(fr_info_t *, int *);
175 static	int		ipf_frruleiter(ipf_main_softc_t *, void *, int, void *);
176 static	void		ipf_funcfini(ipf_main_softc_t *, frentry_t *);;
177 static	int		ipf_funcinit(ipf_main_softc_t *, frentry_t *);
178 static	int		ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
179 				    ipfgeniter_t *);
180 static	void		ipf_getstat(ipf_main_softc_t *,
181 				    struct friostat *, int);
182 static	int		ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
183 static	void		ipf_group_free(frgroup_t *);
184 static	int		ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *);
185 static	int		ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *);
186 static	frentry_t	*ipf_nextrule(ipf_main_softc_t *, int, int,
187 					frentry_t *, int);
188 static	int		ipf_portcheck(frpcmp_t *, u_32_t);
189 static	INLINE int	ipf_pr_ah(fr_info_t *);
190 static	INLINE void	ipf_pr_esp(fr_info_t *);
191 static	INLINE void	ipf_pr_gre(fr_info_t *);
192 static	INLINE void	ipf_pr_udp(fr_info_t *);
193 static	INLINE void	ipf_pr_tcp(fr_info_t *);
194 static	INLINE void	ipf_pr_icmp(fr_info_t *);
195 static	INLINE void	ipf_pr_ipv4hdr(fr_info_t *);
196 static	INLINE void	ipf_pr_short(fr_info_t *, int);
197 static	INLINE int	ipf_pr_tcpcommon(fr_info_t *);
198 static	INLINE int	ipf_pr_udpcommon(fr_info_t *);
199 static	void		ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
200 					int, int);
201 static	void		ipf_rule_expire_insert(ipf_main_softc_t *,
202 					       frentry_t *, int);
203 static	int		ipf_synclist(ipf_main_softc_t *, frentry_t *, void *);
204 static	void		ipf_token_flush(ipf_main_softc_t *);
205 static	void		ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *);
206 static	ipftuneable_t	*ipf_tune_findbyname(ipftuneable_t *, const char *);
207 static	ipftuneable_t	*ipf_tune_findbycookie(ipftuneable_t **, void *,
208 					       void **);
209 static	int		ipf_updateipid(fr_info_t *);
210 static	int		ipf_settimeout(struct ipf_main_softc_s *,
211 				       struct ipftuneable *, ipftuneval_t *);
212 
213 
214 /*
215  * bit values for identifying presence of individual IP options
216  * All of these tables should be ordered by increasing key value on the left
217  * hand side to allow for binary searching of the array and include a trailer
218  * with a 0 for the bitmask for linear searches to easily find the end with.
219  */
220 static const	struct	optlist	ipopts[20] = {
221 	{ IPOPT_NOP,	0x000001 },
222 	{ IPOPT_RR,	0x000002 },
223 	{ IPOPT_ZSU,	0x000004 },
224 	{ IPOPT_MTUP,	0x000008 },
225 	{ IPOPT_MTUR,	0x000010 },
226 	{ IPOPT_ENCODE,	0x000020 },
227 	{ IPOPT_TS,	0x000040 },
228 	{ IPOPT_TR,	0x000080 },
229 	{ IPOPT_SECURITY, 0x000100 },
230 	{ IPOPT_LSRR,	0x000200 },
231 	{ IPOPT_E_SEC,	0x000400 },
232 	{ IPOPT_CIPSO,	0x000800 },
233 	{ IPOPT_SATID,	0x001000 },
234 	{ IPOPT_SSRR,	0x002000 },
235 	{ IPOPT_ADDEXT,	0x004000 },
236 	{ IPOPT_VISA,	0x008000 },
237 	{ IPOPT_IMITD,	0x010000 },
238 	{ IPOPT_EIP,	0x020000 },
239 	{ IPOPT_FINN,	0x040000 },
240 	{ 0,		0x000000 }
241 };
242 
243 #ifdef USE_INET6
244 static const struct optlist ip6exthdr[] = {
245 	{ IPPROTO_HOPOPTS,		0x000001 },
246 	{ IPPROTO_IPV6,			0x000002 },
247 	{ IPPROTO_ROUTING,		0x000004 },
248 	{ IPPROTO_FRAGMENT,		0x000008 },
249 	{ IPPROTO_ESP,			0x000010 },
250 	{ IPPROTO_AH,			0x000020 },
251 	{ IPPROTO_NONE,			0x000040 },
252 	{ IPPROTO_DSTOPTS,		0x000080 },
253 	{ IPPROTO_MOBILITY,		0x000100 },
254 	{ 0,				0 }
255 };
256 #endif
257 
258 /*
259  * bit values for identifying presence of individual IP security options
260  */
261 static const	struct	optlist	secopt[8] = {
262 	{ IPSO_CLASS_RES4,	0x01 },
263 	{ IPSO_CLASS_TOPS,	0x02 },
264 	{ IPSO_CLASS_SECR,	0x04 },
265 	{ IPSO_CLASS_RES3,	0x08 },
266 	{ IPSO_CLASS_CONF,	0x10 },
267 	{ IPSO_CLASS_UNCL,	0x20 },
268 	{ IPSO_CLASS_RES2,	0x40 },
269 	{ IPSO_CLASS_RES1,	0x80 }
270 };
271 
272 char	ipfilter_version[] = IPL_VERSION;
273 
274 int	ipf_features = 0
275 #ifdef	IPFILTER_LKM
276 		| IPF_FEAT_LKM
277 #endif
278 #ifdef	IPFILTER_LOG
279 		| IPF_FEAT_LOG
280 #endif
281 		| IPF_FEAT_LOOKUP
282 #ifdef	IPFILTER_BPF
283 		| IPF_FEAT_BPF
284 #endif
285 #ifdef	IPFILTER_COMPILED
286 		| IPF_FEAT_COMPILED
287 #endif
288 #ifdef	IPFILTER_CKSUM
289 		| IPF_FEAT_CKSUM
290 #endif
291 		| IPF_FEAT_SYNC
292 #ifdef	IPFILTER_SCAN
293 		| IPF_FEAT_SCAN
294 #endif
295 #ifdef	USE_INET6
296 		| IPF_FEAT_IPV6
297 #endif
298 	;
299 
300 
301 /*
302  * Table of functions available for use with call rules.
303  */
304 static ipfunc_resolve_t ipf_availfuncs[] = {
305 	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
306 	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
307 	{ "",	       NULL,	      NULL,	      NULL }
308 };
309 
310 static const ipftuneable_t ipf_main_tuneables[] = {
311 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
312 		"ipf_flags",		0,	0xffffffff,
313 		stsizeof(ipf_main_softc_t, ipf_flags),
314 		0,			NULL,	NULL },
315 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
316 		"active",		0,	0,
317 		stsizeof(ipf_main_softc_t, ipf_active),
318 		IPFT_RDONLY,		NULL,	NULL },
319 	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
320 		"control_forwarding",	0, 1,
321 		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
322 		0,			NULL,	NULL },
323 	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
324 		"update_ipid",		0,	1,
325 		stsizeof(ipf_main_softc_t, ipf_update_ipid),
326 		0,			NULL,	NULL },
327 	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
328 		"chksrc",		0,	1,
329 		stsizeof(ipf_main_softc_t, ipf_chksrc),
330 		0,			NULL,	NULL },
331 	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
332 		"min_ttl",		0,	1,
333 		stsizeof(ipf_main_softc_t, ipf_minttl),
334 		0,			NULL,	NULL },
335 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
336 		"icmp_minfragmtu",	0,	1,
337 		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
338 		0,			NULL,	NULL },
339 	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
340 		"default_pass",		0,	0xffffffff,
341 		stsizeof(ipf_main_softc_t, ipf_pass),
342 		0,			NULL,	NULL },
343 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
344 		"tcp_idle_timeout",	1,	0x7fffffff,
345 		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
346 		0,			NULL,	ipf_settimeout },
347 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
348 		"tcp_close_wait",	1,	0x7fffffff,
349 		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
350 		0,			NULL,	ipf_settimeout },
351 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
352 		"tcp_last_ack",		1,	0x7fffffff,
353 		stsizeof(ipf_main_softc_t, ipf_tcplastack),
354 		0,			NULL,	ipf_settimeout },
355 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
356 		"tcp_timeout",		1,	0x7fffffff,
357 		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
358 		0,			NULL,	ipf_settimeout },
359 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
360 		"tcp_syn_sent",		1,	0x7fffffff,
361 		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
362 		0,			NULL,	ipf_settimeout },
363 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
364 		"tcp_syn_received",	1,	0x7fffffff,
365 		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
366 		0,			NULL,	ipf_settimeout },
367 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
368 		"tcp_closed",		1,	0x7fffffff,
369 		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
370 		0,			NULL,	ipf_settimeout },
371 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
372 		"tcp_half_closed",	1,	0x7fffffff,
373 		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
374 		0,			NULL,	ipf_settimeout },
375 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
376 		"tcp_time_wait",	1,	0x7fffffff,
377 		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
378 		0,			NULL,	ipf_settimeout },
379 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
380 		"udp_timeout",		1,	0x7fffffff,
381 		stsizeof(ipf_main_softc_t, ipf_udptimeout),
382 		0,			NULL,	ipf_settimeout },
383 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
384 		"udp_ack_timeout",	1,	0x7fffffff,
385 		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
386 		0,			NULL,	ipf_settimeout },
387 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
388 		"icmp_timeout",		1,	0x7fffffff,
389 		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
390 		0,			NULL,	ipf_settimeout },
391 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
392 		"icmp_ack_timeout",	1,	0x7fffffff,
393 		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
394 		0,			NULL,	ipf_settimeout },
395 	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
396 		"ip_timeout",		1,	0x7fffffff,
397 		stsizeof(ipf_main_softc_t, ipf_iptimeout),
398 		0,			NULL,	ipf_settimeout },
399 #if defined(INSTANCES) && defined(_KERNEL)
400 	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
401 		"intercept_loopback",	0,	1,
402 		stsizeof(ipf_main_softc_t, ipf_get_loopback),
403 		0,			NULL,	ipf_set_loopback },
404 #endif
405 	{ { 0 },
406 		NULL,			0,	0,
407 		0,
408 		0,			NULL,	NULL }
409 };
410 
411 
412 /*
413  * The next section of code is a a collection of small routines that set
414  * fields in the fr_info_t structure passed based on properties of the
415  * current packet.  There are different routines for the same protocol
416  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
417  * will "special" inspection for setup, is now more easily done by adding
418  * a new routine and expanding the ipf_pr_ipinit*() function rather than by
419  * adding more code to a growing switch statement.
420  */
421 #ifdef USE_INET6
422 static	INLINE int	ipf_pr_ah6(fr_info_t *);
423 static	INLINE void	ipf_pr_esp6(fr_info_t *);
424 static	INLINE void	ipf_pr_gre6(fr_info_t *);
425 static	INLINE void	ipf_pr_udp6(fr_info_t *);
426 static	INLINE void	ipf_pr_tcp6(fr_info_t *);
427 static	INLINE void	ipf_pr_icmp6(fr_info_t *);
428 static	INLINE void	ipf_pr_ipv6hdr(fr_info_t *);
429 static	INLINE void	ipf_pr_short6(fr_info_t *, int);
430 static	INLINE int	ipf_pr_hopopts6(fr_info_t *);
431 static	INLINE int	ipf_pr_mobility6(fr_info_t *);
432 static	INLINE int	ipf_pr_routing6(fr_info_t *);
433 static	INLINE int	ipf_pr_dstopts6(fr_info_t *);
434 static	INLINE int	ipf_pr_fragment6(fr_info_t *);
435 static	INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
436 
437 
438 /* ------------------------------------------------------------------------ */
439 /* Function:    ipf_pr_short6                                               */
440 /* Returns:     void                                                        */
441 /* Parameters:  fin(I)  - pointer to packet information                     */
442 /*              xmin(I) - minimum header size                               */
443 /*                                                                          */
444 /* IPv6 Only                                                                */
445 /* This is function enforces the 'is a packet too short to be legit' rule   */
446 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
447 /* for ipf_pr_short() for more details.                                     */
448 /* ------------------------------------------------------------------------ */
449 static INLINE void
450 ipf_pr_short6(fr_info_t *fin, int xmin)
451 {
452 
453 	if (fin->fin_dlen < xmin)
454 		fin->fin_flx |= FI_SHORT;
455 }
456 
457 
458 /* ------------------------------------------------------------------------ */
459 /* Function:    ipf_pr_ipv6hdr                                              */
460 /* Returns:     void                                                        */
461 /* Parameters:  fin(I) - pointer to packet information                      */
462 /*                                                                          */
463 /* IPv6 Only                                                                */
464 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
465 /* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
466 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
467 /* of that possibility arising.                                             */
468 /* ------------------------------------------------------------------------ */
469 static INLINE void
470 ipf_pr_ipv6hdr(fr_info_t *fin)
471 {
472 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
473 	int p, go = 1, i, hdrcount;
474 	fr_ip_t *fi = &fin->fin_fi;
475 
476 	fin->fin_off = 0;
477 
478 	fi->fi_tos = 0;
479 	fi->fi_optmsk = 0;
480 	fi->fi_secmsk = 0;
481 	fi->fi_auth = 0;
482 
483 	p = ip6->ip6_nxt;
484 	fin->fin_crc = p;
485 	fi->fi_ttl = ip6->ip6_hlim;
486 	fi->fi_src.in6 = ip6->ip6_src;
487 	fin->fin_crc += fi->fi_src.i6[0];
488 	fin->fin_crc += fi->fi_src.i6[1];
489 	fin->fin_crc += fi->fi_src.i6[2];
490 	fin->fin_crc += fi->fi_src.i6[3];
491 	fi->fi_dst.in6 = ip6->ip6_dst;
492 	fin->fin_crc += fi->fi_dst.i6[0];
493 	fin->fin_crc += fi->fi_dst.i6[1];
494 	fin->fin_crc += fi->fi_dst.i6[2];
495 	fin->fin_crc += fi->fi_dst.i6[3];
496 	fin->fin_id = 0;
497 	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
498 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
499 
500 	hdrcount = 0;
501 	while (go && !(fin->fin_flx & FI_SHORT)) {
502 		switch (p)
503 		{
504 		case IPPROTO_UDP :
505 			ipf_pr_udp6(fin);
506 			go = 0;
507 			break;
508 
509 		case IPPROTO_TCP :
510 			ipf_pr_tcp6(fin);
511 			go = 0;
512 			break;
513 
514 		case IPPROTO_ICMPV6 :
515 			ipf_pr_icmp6(fin);
516 			go = 0;
517 			break;
518 
519 		case IPPROTO_GRE :
520 			ipf_pr_gre6(fin);
521 			go = 0;
522 			break;
523 
524 		case IPPROTO_HOPOPTS :
525 			p = ipf_pr_hopopts6(fin);
526 			break;
527 
528 		case IPPROTO_MOBILITY :
529 			p = ipf_pr_mobility6(fin);
530 			break;
531 
532 		case IPPROTO_DSTOPTS :
533 			p = ipf_pr_dstopts6(fin);
534 			break;
535 
536 		case IPPROTO_ROUTING :
537 			p = ipf_pr_routing6(fin);
538 			break;
539 
540 		case IPPROTO_AH :
541 			p = ipf_pr_ah6(fin);
542 			break;
543 
544 		case IPPROTO_ESP :
545 			ipf_pr_esp6(fin);
546 			go = 0;
547 			break;
548 
549 		case IPPROTO_IPV6 :
550 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
551 				if (ip6exthdr[i].ol_val == p) {
552 					fin->fin_flx |= ip6exthdr[i].ol_bit;
553 					break;
554 				}
555 			go = 0;
556 			break;
557 
558 		case IPPROTO_NONE :
559 			go = 0;
560 			break;
561 
562 		case IPPROTO_FRAGMENT :
563 			p = ipf_pr_fragment6(fin);
564 			/*
565 			 * Given that the only fragments we want to let through
566 			 * (where fin_off != 0) are those where the non-first
567 			 * fragments only have data, we can safely stop looking
568 			 * at headers if this is a non-leading fragment.
569 			 */
570 			if (fin->fin_off != 0)
571 				go = 0;
572 			break;
573 
574 		default :
575 			go = 0;
576 			break;
577 		}
578 		hdrcount++;
579 
580 		/*
581 		 * It is important to note that at this point, for the
582 		 * extension headers (go != 0), the entire header may not have
583 		 * been pulled up when the code gets to this point.  This is
584 		 * only done for "go != 0" because the other header handlers
585 		 * will all pullup their complete header.  The other indicator
586 		 * of an incomplete packet is that this was just an extension
587 		 * header.
588 		 */
589 		if ((go != 0) && (p != IPPROTO_NONE) &&
590 		    (ipf_pr_pullup(fin, 0) == -1)) {
591 			p = IPPROTO_NONE;
592 			break;
593 		}
594 	}
595 
596 	/*
597 	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
598 	 * and destroy whatever packet was here.  The caller of this function
599 	 * expects us to return if there is a problem with ipf_pullup.
600 	 */
601 	if (fin->fin_m == NULL) {
602 		ipf_main_softc_t *softc = fin->fin_main_soft;
603 
604 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
605 		return;
606 	}
607 
608 	fi->fi_p = p;
609 
610 	/*
611 	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
612 	 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
613 	 */
614 	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
615 		ipf_main_softc_t *softc = fin->fin_main_soft;
616 
617 		fin->fin_flx |= FI_BAD;
618 		DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
619 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
620 		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
621 	}
622 }
623 
624 
625 /* ------------------------------------------------------------------------ */
626 /* Function:    ipf_pr_ipv6exthdr                                           */
627 /* Returns:     struct ip6_ext * - pointer to the start of the next header  */
628 /*                                 or NULL if there is a prolblem.          */
629 /* Parameters:  fin(I)      - pointer to packet information                 */
630 /*              multiple(I) - flag indicating yes/no if multiple occurances */
631 /*                            of this extension header are allowed.         */
632 /*              proto(I)    - protocol number for this extension header     */
633 /*                                                                          */
634 /* IPv6 Only                                                                */
635 /* This function embodies a number of common checks that all IPv6 extension */
636 /* headers must be subjected to.  For example, making sure the packet is    */
637 /* big enough for it to be in, checking if it is repeated and setting a     */
638 /* flag to indicate its presence.                                           */
639 /* ------------------------------------------------------------------------ */
640 static INLINE struct ip6_ext *
641 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
642 {
643 	ipf_main_softc_t *softc = fin->fin_main_soft;
644 	struct ip6_ext *hdr;
645 	u_short shift;
646 	int i;
647 
648 	fin->fin_flx |= FI_V6EXTHDR;
649 
650 				/* 8 is default length of extension hdr */
651 	if ((fin->fin_dlen - 8) < 0) {
652 		fin->fin_flx |= FI_SHORT;
653 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
654 		return NULL;
655 	}
656 
657 	if (ipf_pr_pullup(fin, 8) == -1) {
658 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
659 		return NULL;
660 	}
661 
662 	hdr = fin->fin_dp;
663 	switch (proto)
664 	{
665 	case IPPROTO_FRAGMENT :
666 		shift = 8;
667 		break;
668 	default :
669 		shift = 8 + (hdr->ip6e_len << 3);
670 		break;
671 	}
672 
673 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
674 		fin->fin_flx |= FI_BAD;
675 		DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
676 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
677 		return NULL;
678 	}
679 
680 	fin->fin_dp = (char *)fin->fin_dp + shift;
681 	fin->fin_dlen -= shift;
682 
683 	/*
684 	 * If we have seen a fragment header, do not set any flags to indicate
685 	 * the presence of this extension header as it has no impact on the
686 	 * end result until after it has been defragmented.
687 	 */
688 	if (fin->fin_flx & FI_FRAG)
689 		return hdr;
690 
691 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
692 		if (ip6exthdr[i].ol_val == proto) {
693 			/*
694 			 * Most IPv6 extension headers are only allowed once.
695 			 */
696 			if ((multiple == 0) &&
697 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
698 				fin->fin_flx |= FI_BAD;
699 				DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
700 			} else
701 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
702 			break;
703 		}
704 
705 	return hdr;
706 }
707 
708 
709 /* ------------------------------------------------------------------------ */
710 /* Function:    ipf_pr_hopopts6                                             */
711 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
712 /* Parameters:  fin(I) - pointer to packet information                      */
713 /*                                                                          */
714 /* IPv6 Only                                                                */
715 /* This is function checks pending hop by hop options extension header      */
716 /* ------------------------------------------------------------------------ */
717 static INLINE int
718 ipf_pr_hopopts6(fr_info_t *fin)
719 {
720 	struct ip6_ext *hdr;
721 
722 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
723 	if (hdr == NULL)
724 		return IPPROTO_NONE;
725 	return hdr->ip6e_nxt;
726 }
727 
728 
729 /* ------------------------------------------------------------------------ */
730 /* Function:    ipf_pr_mobility6                                            */
731 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
732 /* Parameters:  fin(I) - pointer to packet information                      */
733 /*                                                                          */
734 /* IPv6 Only                                                                */
735 /* This is function checks the IPv6 mobility extension header               */
736 /* ------------------------------------------------------------------------ */
737 static INLINE int
738 ipf_pr_mobility6(fr_info_t *fin)
739 {
740 	struct ip6_ext *hdr;
741 
742 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
743 	if (hdr == NULL)
744 		return IPPROTO_NONE;
745 	return hdr->ip6e_nxt;
746 }
747 
748 
749 /* ------------------------------------------------------------------------ */
750 /* Function:    ipf_pr_routing6                                             */
751 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
752 /* Parameters:  fin(I) - pointer to packet information                      */
753 /*                                                                          */
754 /* IPv6 Only                                                                */
755 /* This is function checks pending routing extension header                 */
756 /* ------------------------------------------------------------------------ */
757 static INLINE int
758 ipf_pr_routing6(fr_info_t *fin)
759 {
760 	struct ip6_routing *hdr;
761 
762 	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
763 	if (hdr == NULL)
764 		return IPPROTO_NONE;
765 
766 	switch (hdr->ip6r_type)
767 	{
768 	case 0 :
769 		/*
770 		 * Nasty extension header length?
771 		 */
772 		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
773 		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
774 			ipf_main_softc_t *softc = fin->fin_main_soft;
775 
776 			fin->fin_flx |= FI_BAD;
777 			DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
778 			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
779 			return IPPROTO_NONE;
780 		}
781 		break;
782 
783 	default :
784 		break;
785 	}
786 
787 	return hdr->ip6r_nxt;
788 }
789 
790 
791 /* ------------------------------------------------------------------------ */
792 /* Function:    ipf_pr_fragment6                                            */
793 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
794 /* Parameters:  fin(I) - pointer to packet information                      */
795 /*                                                                          */
796 /* IPv6 Only                                                                */
797 /* Examine the IPv6 fragment header and extract fragment offset information.*/
798 /*                                                                          */
799 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
800 /* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
801 /* packets with a fragment header can fit into.  They are as follows:       */
802 /*                                                                          */
803 /* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
804 /* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
805 /* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
806 /* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
807 /* 5.  [IPV6][0-n EH][FH][data]                                             */
808 /*                                                                          */
809 /* IPV6 = IPv6 header, FH = Fragment Header,                                */
810 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
811 /*                                                                          */
812 /* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
813 /* scenario in which they happen is in extreme circumstances that are most  */
814 /* likely to be an indication of an attack rather than normal traffic.      */
815 /* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
816 /* are two rules that can be used to guard against type 3 packets: L4       */
817 /* headers must always be in a packet that has the offset field set to 0    */
818 /* and no packet is allowed to overlay that where offset = 0.               */
819 /* ------------------------------------------------------------------------ */
820 static INLINE int
821 ipf_pr_fragment6(fr_info_t *fin)
822 {
823 	ipf_main_softc_t *softc = fin->fin_main_soft;
824 	struct ip6_frag *frag;
825 
826 	fin->fin_flx |= FI_FRAG;
827 
828 	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
829 	if (frag == NULL) {
830 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
831 		return IPPROTO_NONE;
832 	}
833 
834 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
835 		/*
836 		 * Any fragment that isn't the last fragment must have its
837 		 * length as a multiple of 8.
838 		 */
839 		if ((fin->fin_plen & 7) != 0) {
840 			fin->fin_flx |= FI_BAD;
841 			DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
842 		}
843 	}
844 
845 	fin->fin_fraghdr = frag;
846 	fin->fin_id = frag->ip6f_ident;
847 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
848 	if (fin->fin_off != 0)
849 		fin->fin_flx |= FI_FRAGBODY;
850 
851 	/*
852 	 * Jumbograms aren't handled, so the max. length is 64k
853 	 */
854 	if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
855 		  fin->fin_flx |= FI_BAD;
856 		  DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
857 	}
858 
859 	/*
860 	 * We don't know where the transport layer header (or whatever is next
861 	 * is), as it could be behind destination options (amongst others) so
862 	 * return the fragment header as the type of packet this is.  Note that
863 	 * this effectively disables the fragment cache for > 1 protocol at a
864 	 * time.
865 	 */
866 	return frag->ip6f_nxt;
867 }
868 
869 
870 /* ------------------------------------------------------------------------ */
871 /* Function:    ipf_pr_dstopts6                                             */
872 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
873 /* Parameters:  fin(I) - pointer to packet information                      */
874 /*                                                                          */
875 /* IPv6 Only                                                                */
876 /* This is function checks pending destination options extension header     */
877 /* ------------------------------------------------------------------------ */
878 static INLINE int
879 ipf_pr_dstopts6(fr_info_t *fin)
880 {
881 	ipf_main_softc_t *softc = fin->fin_main_soft;
882 	struct ip6_ext *hdr;
883 
884 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
885 	if (hdr == NULL) {
886 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
887 		return IPPROTO_NONE;
888 	}
889 	return hdr->ip6e_nxt;
890 }
891 
892 
893 /* ------------------------------------------------------------------------ */
894 /* Function:    ipf_pr_icmp6                                                */
895 /* Returns:     void                                                        */
896 /* Parameters:  fin(I) - pointer to packet information                      */
897 /*                                                                          */
898 /* IPv6 Only                                                                */
899 /* This routine is mainly concerned with determining the minimum valid size */
900 /* for an ICMPv6 packet.                                                    */
901 /* ------------------------------------------------------------------------ */
902 static INLINE void
903 ipf_pr_icmp6(fr_info_t *fin)
904 {
905 	int minicmpsz = sizeof(struct icmp6_hdr);
906 	struct icmp6_hdr *icmp6;
907 
908 	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
909 		ipf_main_softc_t *softc = fin->fin_main_soft;
910 
911 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
912 		return;
913 	}
914 
915 	if (fin->fin_dlen > 1) {
916 		ip6_t *ip6;
917 
918 		icmp6 = fin->fin_dp;
919 
920 		fin->fin_data[0] = *(u_short *)icmp6;
921 
922 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
923 			fin->fin_flx |= FI_ICMPQUERY;
924 
925 		switch (icmp6->icmp6_type)
926 		{
927 		case ICMP6_ECHO_REPLY :
928 		case ICMP6_ECHO_REQUEST :
929 			if (fin->fin_dlen >= 6)
930 				fin->fin_data[1] = icmp6->icmp6_id;
931 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
932 			break;
933 
934 		case ICMP6_DST_UNREACH :
935 		case ICMP6_PACKET_TOO_BIG :
936 		case ICMP6_TIME_EXCEEDED :
937 		case ICMP6_PARAM_PROB :
938 			fin->fin_flx |= FI_ICMPERR;
939 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
940 			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
941 				break;
942 
943 			if (M_LEN(fin->fin_m) < fin->fin_plen) {
944 				if (ipf_coalesce(fin) != 1)
945 					return;
946 			}
947 
948 			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
949 				return;
950 
951 			/*
952 			 * If the destination of this packet doesn't match the
953 			 * source of the original packet then this packet is
954 			 * not correct.
955 			 */
956 			icmp6 = fin->fin_dp;
957 			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
958 			if (IP6_NEQ(&fin->fin_fi.fi_dst,
959 				    &ip6->ip6_src)) {
960 				fin->fin_flx |= FI_BAD;
961 				DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
962 			}
963 			break;
964 		default :
965 			break;
966 		}
967 	}
968 
969 	ipf_pr_short6(fin, minicmpsz);
970 	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
971 		u_char p = fin->fin_p;
972 
973 		fin->fin_p = IPPROTO_ICMPV6;
974 		ipf_checkv6sum(fin);
975 		fin->fin_p = p;
976 	}
977 }
978 
979 
980 /* ------------------------------------------------------------------------ */
981 /* Function:    ipf_pr_udp6                                                 */
982 /* Returns:     void                                                        */
983 /* Parameters:  fin(I) - pointer to packet information                      */
984 /*                                                                          */
985 /* IPv6 Only                                                                */
986 /* Analyse the packet for IPv6/UDP properties.                              */
987 /* Is not expected to be called for fragmented packets.                     */
988 /* ------------------------------------------------------------------------ */
989 static INLINE void
990 ipf_pr_udp6(fr_info_t *fin)
991 {
992 
993 	if (ipf_pr_udpcommon(fin) == 0) {
994 		u_char p = fin->fin_p;
995 
996 		fin->fin_p = IPPROTO_UDP;
997 		ipf_checkv6sum(fin);
998 		fin->fin_p = p;
999 	}
1000 }
1001 
1002 
1003 /* ------------------------------------------------------------------------ */
1004 /* Function:    ipf_pr_tcp6                                                 */
1005 /* Returns:     void                                                        */
1006 /* Parameters:  fin(I) - pointer to packet information                      */
1007 /*                                                                          */
1008 /* IPv6 Only                                                                */
1009 /* Analyse the packet for IPv6/TCP properties.                              */
1010 /* Is not expected to be called for fragmented packets.                     */
1011 /* ------------------------------------------------------------------------ */
1012 static INLINE void
1013 ipf_pr_tcp6(fr_info_t *fin)
1014 {
1015 
1016 	if (ipf_pr_tcpcommon(fin) == 0) {
1017 		u_char p = fin->fin_p;
1018 
1019 		fin->fin_p = IPPROTO_TCP;
1020 		ipf_checkv6sum(fin);
1021 		fin->fin_p = p;
1022 	}
1023 }
1024 
1025 
1026 /* ------------------------------------------------------------------------ */
1027 /* Function:    ipf_pr_esp6                                                 */
1028 /* Returns:     void                                                        */
1029 /* Parameters:  fin(I) - pointer to packet information                      */
1030 /*                                                                          */
1031 /* IPv6 Only                                                                */
1032 /* Analyse the packet for ESP properties.                                   */
1033 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1034 /* even though the newer ESP packets must also have a sequence number that  */
1035 /* is 32bits as well, it is not possible(?) to determine the version from a */
1036 /* simple packet header.                                                    */
1037 /* ------------------------------------------------------------------------ */
1038 static INLINE void
1039 ipf_pr_esp6(fr_info_t *fin)
1040 {
1041 
1042 	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1043 		ipf_main_softc_t *softc = fin->fin_main_soft;
1044 
1045 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1046 		return;
1047 	}
1048 }
1049 
1050 
1051 /* ------------------------------------------------------------------------ */
1052 /* Function:    ipf_pr_ah6                                                  */
1053 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1054 /* Parameters:  fin(I) - pointer to packet information                      */
1055 /*                                                                          */
1056 /* IPv6 Only                                                                */
1057 /* Analyse the packet for AH properties.                                    */
1058 /* The minimum length is taken to be the combination of all fields in the   */
1059 /* header being present and no authentication data (null algorithm used.)   */
1060 /* ------------------------------------------------------------------------ */
1061 static INLINE int
1062 ipf_pr_ah6(fr_info_t *fin)
1063 {
1064 	authhdr_t *ah;
1065 
1066 	fin->fin_flx |= FI_AH;
1067 
1068 	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1069 	if (ah == NULL) {
1070 		ipf_main_softc_t *softc = fin->fin_main_soft;
1071 
1072 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1073 		return IPPROTO_NONE;
1074 	}
1075 
1076 	ipf_pr_short6(fin, sizeof(*ah));
1077 
1078 	/*
1079 	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1080 	 * enough data to satisfy ah_next (the very first one.)
1081 	 */
1082 	return ah->ah_next;
1083 }
1084 
1085 
1086 /* ------------------------------------------------------------------------ */
1087 /* Function:    ipf_pr_gre6                                                 */
1088 /* Returns:     void                                                        */
1089 /* Parameters:  fin(I) - pointer to packet information                      */
1090 /*                                                                          */
1091 /* Analyse the packet for GRE properties.                                   */
1092 /* ------------------------------------------------------------------------ */
1093 static INLINE void
1094 ipf_pr_gre6(fr_info_t *fin)
1095 {
1096 	grehdr_t *gre;
1097 
1098 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1099 		ipf_main_softc_t *softc = fin->fin_main_soft;
1100 
1101 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1102 		return;
1103 	}
1104 
1105 	gre = fin->fin_dp;
1106 	if (GRE_REV(gre->gr_flags) == 1)
1107 		fin->fin_data[0] = gre->gr_call;
1108 }
1109 #endif	/* USE_INET6 */
1110 
1111 
1112 /* ------------------------------------------------------------------------ */
1113 /* Function:    ipf_pr_pullup                                               */
1114 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1115 /* Parameters:  fin(I)  - pointer to packet information                     */
1116 /*              plen(I) - length (excluding L3 header) to pullup            */
1117 /*                                                                          */
1118 /* Short inline function to cut down on code duplication to perform a call  */
1119 /* to ipf_pullup to ensure there is the required amount of data,            */
1120 /* consecutively in the packet buffer.                                      */
1121 /*                                                                          */
1122 /* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1123 /* points to the first byte after the complete layer 3 header, which will   */
1124 /* include all of the known extension headers for IPv6 or options for IPv4. */
1125 /*                                                                          */
1126 /* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1127 /* is necessary to add those we can already assume to be pulled up (fin_dp  */
1128 /* - fin_ip) to what is passed through.                                     */
1129 /* ------------------------------------------------------------------------ */
1130 int
1131 ipf_pr_pullup(fr_info_t *fin, int plen)
1132 {
1133 	ipf_main_softc_t *softc = fin->fin_main_soft;
1134 
1135 	if (fin->fin_m != NULL) {
1136 		if (fin->fin_dp != NULL)
1137 			plen += (char *)fin->fin_dp -
1138 				((char *)fin->fin_ip + fin->fin_hlen);
1139 		plen += fin->fin_hlen;
1140 		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1141 #if defined(_KERNEL)
1142 			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1143 				DT(ipf_pullup_fail);
1144 				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1145 				return -1;
1146 			}
1147 			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1148 #else
1149 			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1150 			/*
1151 			 * Fake ipf_pullup failing
1152 			 */
1153 			fin->fin_reason = FRB_PULLUP;
1154 			*fin->fin_mp = NULL;
1155 			fin->fin_m = NULL;
1156 			fin->fin_ip = NULL;
1157 			return -1;
1158 #endif
1159 		}
1160 	}
1161 	return 0;
1162 }
1163 
1164 
1165 /* ------------------------------------------------------------------------ */
1166 /* Function:    ipf_pr_short                                                */
1167 /* Returns:     void                                                        */
1168 /* Parameters:  fin(I)  - pointer to packet information                     */
1169 /*              xmin(I) - minimum header size                               */
1170 /*                                                                          */
1171 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
1172 /* applying here is that the packet must not be fragmented within the layer */
1173 /* 4 header.  That is, it must not be a fragment that has its offset set to */
1174 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1175 /* entire layer 4 header must be present (min).                             */
1176 /* ------------------------------------------------------------------------ */
1177 static INLINE void
1178 ipf_pr_short(fr_info_t *fin, int xmin)
1179 {
1180 
1181 	if (fin->fin_off == 0) {
1182 		if (fin->fin_dlen < xmin)
1183 			fin->fin_flx |= FI_SHORT;
1184 	} else if (fin->fin_off < xmin) {
1185 		fin->fin_flx |= FI_SHORT;
1186 	}
1187 }
1188 
1189 
1190 /* ------------------------------------------------------------------------ */
1191 /* Function:    ipf_pr_icmp                                                 */
1192 /* Returns:     void                                                        */
1193 /* Parameters:  fin(I) - pointer to packet information                      */
1194 /*                                                                          */
1195 /* IPv4 Only                                                                */
1196 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1197 /* except extrememly bad packets, both type and code will be present.       */
1198 /* The expected minimum size of an ICMP packet is very much dependent on    */
1199 /* the type of it.                                                          */
1200 /*                                                                          */
1201 /* XXX - other ICMP sanity checks?                                          */
1202 /* ------------------------------------------------------------------------ */
1203 static INLINE void
1204 ipf_pr_icmp(fr_info_t *fin)
1205 {
1206 	ipf_main_softc_t *softc = fin->fin_main_soft;
1207 	int minicmpsz = sizeof(struct icmp);
1208 	icmphdr_t *icmp;
1209 	ip_t *oip;
1210 
1211 	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1212 
1213 	if (fin->fin_off != 0) {
1214 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1215 		return;
1216 	}
1217 
1218 	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1219 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1220 		return;
1221 	}
1222 
1223 	icmp = fin->fin_dp;
1224 
1225 	fin->fin_data[0] = *(u_short *)icmp;
1226 	fin->fin_data[1] = icmp->icmp_id;
1227 
1228 	switch (icmp->icmp_type)
1229 	{
1230 	case ICMP_ECHOREPLY :
1231 	case ICMP_ECHO :
1232 	/* Router discovery messaes - RFC 1256 */
1233 	case ICMP_ROUTERADVERT :
1234 	case ICMP_ROUTERSOLICIT :
1235 		fin->fin_flx |= FI_ICMPQUERY;
1236 		minicmpsz = ICMP_MINLEN;
1237 		break;
1238 	/*
1239 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1240 	 * 3 * timestamp(3 * 4)
1241 	 */
1242 	case ICMP_TSTAMP :
1243 	case ICMP_TSTAMPREPLY :
1244 		fin->fin_flx |= FI_ICMPQUERY;
1245 		minicmpsz = 20;
1246 		break;
1247 	/*
1248 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1249 	 * mask(4)
1250 	 */
1251 	case ICMP_IREQ :
1252 	case ICMP_IREQREPLY :
1253 	case ICMP_MASKREQ :
1254 	case ICMP_MASKREPLY :
1255 		fin->fin_flx |= FI_ICMPQUERY;
1256 		minicmpsz = 12;
1257 		break;
1258 	/*
1259 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1260 	 */
1261 	case ICMP_UNREACH :
1262 #ifdef icmp_nextmtu
1263 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1264 			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1265 				fin->fin_flx |= FI_BAD;
1266 				DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1267 			}
1268 		}
1269 #endif
1270 	case ICMP_SOURCEQUENCH :
1271 	case ICMP_REDIRECT :
1272 	case ICMP_TIMXCEED :
1273 	case ICMP_PARAMPROB :
1274 		fin->fin_flx |= FI_ICMPERR;
1275 		if (ipf_coalesce(fin) != 1) {
1276 			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1277 			return;
1278 		}
1279 
1280 		/*
1281 		 * ICMP error packets should not be generated for IP
1282 		 * packets that are a fragment that isn't the first
1283 		 * fragment.
1284 		 */
1285 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1286 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1287 			fin->fin_flx |= FI_BAD;
1288 			DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1289 		}
1290 
1291 		/*
1292 		 * If the destination of this packet doesn't match the
1293 		 * source of the original packet then this packet is
1294 		 * not correct.
1295 		 */
1296 		if (oip->ip_src.s_addr != fin->fin_daddr) {
1297 			fin->fin_flx |= FI_BAD;
1298 			DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1299 		}
1300 		break;
1301 	default :
1302 		break;
1303 	}
1304 
1305 	ipf_pr_short(fin, minicmpsz);
1306 
1307 	ipf_checkv4sum(fin);
1308 }
1309 
1310 
1311 /* ------------------------------------------------------------------------ */
1312 /* Function:    ipf_pr_tcpcommon                                            */
1313 /* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1314 /* Parameters:  fin(I) - pointer to packet information                      */
1315 /*                                                                          */
1316 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1317 /* and make some checks with how they interact with other fields.           */
1318 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1319 /* valid and mark the packet as bad if not.                                 */
1320 /* ------------------------------------------------------------------------ */
1321 static INLINE int
1322 ipf_pr_tcpcommon(fr_info_t *fin)
1323 {
1324 	ipf_main_softc_t *softc = fin->fin_main_soft;
1325 	int flags, tlen;
1326 	tcphdr_t *tcp;
1327 
1328 	fin->fin_flx |= FI_TCPUDP;
1329 	if (fin->fin_off != 0) {
1330 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1331 		return 0;
1332 	}
1333 
1334 	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1335 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1336 		return -1;
1337 	}
1338 
1339 	tcp = fin->fin_dp;
1340 	if (fin->fin_dlen > 3) {
1341 		fin->fin_sport = ntohs(tcp->th_sport);
1342 		fin->fin_dport = ntohs(tcp->th_dport);
1343 	}
1344 
1345 	if ((fin->fin_flx & FI_SHORT) != 0) {
1346 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1347 		return 1;
1348 	}
1349 
1350 	/*
1351 	 * Use of the TCP data offset *must* result in a value that is at
1352 	 * least the same size as the TCP header.
1353 	 */
1354 	tlen = TCP_OFF(tcp) << 2;
1355 	if (tlen < sizeof(tcphdr_t)) {
1356 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1357 		fin->fin_flx |= FI_BAD;
1358 		DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1359 		return 1;
1360 	}
1361 
1362 	flags = tcp->th_flags;
1363 	fin->fin_tcpf = tcp->th_flags;
1364 
1365 	/*
1366 	 * If the urgent flag is set, then the urgent pointer must
1367 	 * also be set and vice versa.  Good TCP packets do not have
1368 	 * just one of these set.
1369 	 */
1370 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1371 		fin->fin_flx |= FI_BAD;
1372 		DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1373 #if 0
1374 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1375 		/*
1376 		 * Ignore this case (#if 0) as it shows up in "real"
1377 		 * traffic with bogus values in the urgent pointer field.
1378 		 */
1379 		fin->fin_flx |= FI_BAD;
1380 		DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1381 #endif
1382 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1383 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1384 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1385 		fin->fin_flx |= FI_BAD;
1386 		DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1387 #if 1
1388 	} else if (((flags & TH_SYN) != 0) &&
1389 		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1390 		/*
1391 		 * SYN with URG and PUSH set is not for normal TCP but it is
1392 		 * possible(?) with T/TCP...but who uses T/TCP?
1393 		 */
1394 		fin->fin_flx |= FI_BAD;
1395 		DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1396 #endif
1397 	} else if (!(flags & TH_ACK)) {
1398 		/*
1399 		 * If the ack bit isn't set, then either the SYN or
1400 		 * RST bit must be set.  If the SYN bit is set, then
1401 		 * we expect the ACK field to be 0.  If the ACK is
1402 		 * not set and if URG, PSH or FIN are set, consdier
1403 		 * that to indicate a bad TCP packet.
1404 		 */
1405 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1406 			/*
1407 			 * Cisco PIX sets the ACK field to a random value.
1408 			 * In light of this, do not set FI_BAD until a patch
1409 			 * is available from Cisco to ensure that
1410 			 * interoperability between existing systems is
1411 			 * achieved.
1412 			 */
1413 			/*fin->fin_flx |= FI_BAD*/;
1414 			/*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1415 		} else if (!(flags & (TH_RST|TH_SYN))) {
1416 			fin->fin_flx |= FI_BAD;
1417 			DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1418 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1419 			fin->fin_flx |= FI_BAD;
1420 			DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1421 		}
1422 	}
1423 	if (fin->fin_flx & FI_BAD) {
1424 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1425 		return 1;
1426 	}
1427 
1428 	/*
1429 	 * At this point, it's not exactly clear what is to be gained by
1430 	 * marking up which TCP options are and are not present.  The one we
1431 	 * are most interested in is the TCP window scale.  This is only in
1432 	 * a SYN packet [RFC1323] so we don't need this here...?
1433 	 * Now if we were to analyse the header for passive fingerprinting,
1434 	 * then that might add some weight to adding this...
1435 	 */
1436 	if (tlen == sizeof(tcphdr_t)) {
1437 		return 0;
1438 	}
1439 
1440 	if (ipf_pr_pullup(fin, tlen) == -1) {
1441 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1442 		return -1;
1443 	}
1444 
1445 #if 0
1446 	tcp = fin->fin_dp;
1447 	ip = fin->fin_ip;
1448 	s = (u_char *)(tcp + 1);
1449 	off = IP_HL(ip) << 2;
1450 # ifdef _KERNEL
1451 	if (fin->fin_mp != NULL) {
1452 		mb_t *m = *fin->fin_mp;
1453 
1454 		if (off + tlen > M_LEN(m))
1455 			return;
1456 	}
1457 # endif
1458 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1459 		opt = *s;
1460 		if (opt == '\0')
1461 			break;
1462 		else if (opt == TCPOPT_NOP)
1463 			ol = 1;
1464 		else {
1465 			if (tlen < 2)
1466 				break;
1467 			ol = (int)*(s + 1);
1468 			if (ol < 2 || ol > tlen)
1469 				break;
1470 		}
1471 
1472 		for (i = 9, mv = 4; mv >= 0; ) {
1473 			op = ipopts + i;
1474 			if (opt == (u_char)op->ol_val) {
1475 				optmsk |= op->ol_bit;
1476 				break;
1477 			}
1478 		}
1479 		tlen -= ol;
1480 		s += ol;
1481 	}
1482 #endif /* 0 */
1483 
1484 	return 0;
1485 }
1486 
1487 
1488 
1489 /* ------------------------------------------------------------------------ */
1490 /* Function:    ipf_pr_udpcommon                                            */
1491 /* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1492 /* Parameters:  fin(I) - pointer to packet information                      */
1493 /*                                                                          */
1494 /* Extract the UDP source and destination ports, if present.  If compiled   */
1495 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1496 /* ------------------------------------------------------------------------ */
1497 static INLINE int
1498 ipf_pr_udpcommon(fr_info_t *fin)
1499 {
1500 	udphdr_t *udp;
1501 
1502 	fin->fin_flx |= FI_TCPUDP;
1503 
1504 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1505 		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1506 			ipf_main_softc_t *softc = fin->fin_main_soft;
1507 
1508 			fin->fin_flx |= FI_SHORT;
1509 			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1510 			return 1;
1511 		}
1512 
1513 		udp = fin->fin_dp;
1514 
1515 		fin->fin_sport = ntohs(udp->uh_sport);
1516 		fin->fin_dport = ntohs(udp->uh_dport);
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 
1523 /* ------------------------------------------------------------------------ */
1524 /* Function:    ipf_pr_tcp                                                  */
1525 /* Returns:     void                                                        */
1526 /* Parameters:  fin(I) - pointer to packet information                      */
1527 /*                                                                          */
1528 /* IPv4 Only                                                                */
1529 /* Analyse the packet for IPv4/TCP properties.                              */
1530 /* ------------------------------------------------------------------------ */
1531 static INLINE void
1532 ipf_pr_tcp(fr_info_t *fin)
1533 {
1534 
1535 	ipf_pr_short(fin, sizeof(tcphdr_t));
1536 
1537 	if (ipf_pr_tcpcommon(fin) == 0)
1538 		ipf_checkv4sum(fin);
1539 }
1540 
1541 
1542 /* ------------------------------------------------------------------------ */
1543 /* Function:    ipf_pr_udp                                                  */
1544 /* Returns:     void                                                        */
1545 /* Parameters:  fin(I) - pointer to packet information                      */
1546 /*                                                                          */
1547 /* IPv4 Only                                                                */
1548 /* Analyse the packet for IPv4/UDP properties.                              */
1549 /* ------------------------------------------------------------------------ */
1550 static INLINE void
1551 ipf_pr_udp(fr_info_t *fin)
1552 {
1553 
1554 	ipf_pr_short(fin, sizeof(udphdr_t));
1555 
1556 	if (ipf_pr_udpcommon(fin) == 0)
1557 		ipf_checkv4sum(fin);
1558 }
1559 
1560 
1561 /* ------------------------------------------------------------------------ */
1562 /* Function:    ipf_pr_esp                                                  */
1563 /* Returns:     void                                                        */
1564 /* Parameters:  fin(I) - pointer to packet information                      */
1565 /*                                                                          */
1566 /* Analyse the packet for ESP properties.                                   */
1567 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1568 /* even though the newer ESP packets must also have a sequence number that  */
1569 /* is 32bits as well, it is not possible(?) to determine the version from a */
1570 /* simple packet header.                                                    */
1571 /* ------------------------------------------------------------------------ */
1572 static INLINE void
1573 ipf_pr_esp(fr_info_t *fin)
1574 {
1575 
1576 	if (fin->fin_off == 0) {
1577 		ipf_pr_short(fin, 8);
1578 		if (ipf_pr_pullup(fin, 8) == -1) {
1579 			ipf_main_softc_t *softc = fin->fin_main_soft;
1580 
1581 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1582 		}
1583 	}
1584 }
1585 
1586 
1587 /* ------------------------------------------------------------------------ */
1588 /* Function:    ipf_pr_ah                                                   */
1589 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1590 /* Parameters:  fin(I) - pointer to packet information                      */
1591 /*                                                                          */
1592 /* Analyse the packet for AH properties.                                    */
1593 /* The minimum length is taken to be the combination of all fields in the   */
1594 /* header being present and no authentication data (null algorithm used.)   */
1595 /* ------------------------------------------------------------------------ */
1596 static INLINE int
1597 ipf_pr_ah(fr_info_t *fin)
1598 {
1599 	ipf_main_softc_t *softc = fin->fin_main_soft;
1600 	authhdr_t *ah;
1601 	int len;
1602 
1603 	fin->fin_flx |= FI_AH;
1604 	ipf_pr_short(fin, sizeof(*ah));
1605 
1606 	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1607 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1608 		return IPPROTO_NONE;
1609 	}
1610 
1611 	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1612 		DT(fr_v4_ah_pullup_1);
1613 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1614 		return IPPROTO_NONE;
1615 	}
1616 
1617 	ah = (authhdr_t *)fin->fin_dp;
1618 
1619 	len = (ah->ah_plen + 2) << 2;
1620 	ipf_pr_short(fin, len);
1621 	if (ipf_pr_pullup(fin, len) == -1) {
1622 		DT(fr_v4_ah_pullup_2);
1623 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1624 		return IPPROTO_NONE;
1625 	}
1626 
1627 	/*
1628 	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1629 	 * header.
1630 	 */
1631 	fin->fin_dp = (char *)fin->fin_dp + len;
1632 	fin->fin_dlen -= len;
1633 	return ah->ah_next;
1634 }
1635 
1636 
1637 /* ------------------------------------------------------------------------ */
1638 /* Function:    ipf_pr_gre                                                  */
1639 /* Returns:     void                                                        */
1640 /* Parameters:  fin(I) - pointer to packet information                      */
1641 /*                                                                          */
1642 /* Analyse the packet for GRE properties.                                   */
1643 /* ------------------------------------------------------------------------ */
1644 static INLINE void
1645 ipf_pr_gre(fr_info_t *fin)
1646 {
1647 	ipf_main_softc_t *softc = fin->fin_main_soft;
1648 	grehdr_t *gre;
1649 
1650 	ipf_pr_short(fin, sizeof(grehdr_t));
1651 
1652 	if (fin->fin_off != 0) {
1653 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1654 		return;
1655 	}
1656 
1657 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1658 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1659 		return;
1660 	}
1661 
1662 	gre = fin->fin_dp;
1663 	if (GRE_REV(gre->gr_flags) == 1)
1664 		fin->fin_data[0] = gre->gr_call;
1665 }
1666 
1667 
1668 /* ------------------------------------------------------------------------ */
1669 /* Function:    ipf_pr_ipv4hdr                                              */
1670 /* Returns:     void                                                        */
1671 /* Parameters:  fin(I) - pointer to packet information                      */
1672 /*                                                                          */
1673 /* IPv4 Only                                                                */
1674 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1675 /* Check all options present and flag their presence if any exist.          */
1676 /* ------------------------------------------------------------------------ */
1677 static INLINE void
1678 ipf_pr_ipv4hdr(fr_info_t *fin)
1679 {
1680 	u_short optmsk = 0, secmsk = 0, auth = 0;
1681 	int hlen, ol, mv, p, i;
1682 	const struct optlist *op;
1683 	u_char *s, opt;
1684 	u_short off;
1685 	fr_ip_t *fi;
1686 	ip_t *ip;
1687 
1688 	fi = &fin->fin_fi;
1689 	hlen = fin->fin_hlen;
1690 
1691 	ip = fin->fin_ip;
1692 	p = ip->ip_p;
1693 	fi->fi_p = p;
1694 	fin->fin_crc = p;
1695 	fi->fi_tos = ip->ip_tos;
1696 	fin->fin_id = ip->ip_id;
1697 	off = ntohs(ip->ip_off);
1698 
1699 	/* Get both TTL and protocol */
1700 	fi->fi_p = ip->ip_p;
1701 	fi->fi_ttl = ip->ip_ttl;
1702 
1703 	/* Zero out bits not used in IPv6 address */
1704 	fi->fi_src.i6[1] = 0;
1705 	fi->fi_src.i6[2] = 0;
1706 	fi->fi_src.i6[3] = 0;
1707 	fi->fi_dst.i6[1] = 0;
1708 	fi->fi_dst.i6[2] = 0;
1709 	fi->fi_dst.i6[3] = 0;
1710 
1711 	fi->fi_saddr = ip->ip_src.s_addr;
1712 	fin->fin_crc += fi->fi_saddr;
1713 	fi->fi_daddr = ip->ip_dst.s_addr;
1714 	fin->fin_crc += fi->fi_daddr;
1715 	if (IN_CLASSD(fi->fi_daddr))
1716 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1717 
1718 	/*
1719 	 * set packet attribute flags based on the offset and
1720 	 * calculate the byte offset that it represents.
1721 	 */
1722 	off &= IP_MF|IP_OFFMASK;
1723 	if (off != 0) {
1724 		int morefrag = off & IP_MF;
1725 
1726 		fi->fi_flx |= FI_FRAG;
1727 		off &= IP_OFFMASK;
1728 		if (off != 0) {
1729 			fin->fin_flx |= FI_FRAGBODY;
1730 			off <<= 3;
1731 			if ((off + fin->fin_dlen > 65535) ||
1732 			    (fin->fin_dlen == 0) ||
1733 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1734 				/*
1735 				 * The length of the packet, starting at its
1736 				 * offset cannot exceed 65535 (0xffff) as the
1737 				 * length of an IP packet is only 16 bits.
1738 				 *
1739 				 * Any fragment that isn't the last fragment
1740 				 * must have a length greater than 0 and it
1741 				 * must be an even multiple of 8.
1742 				 */
1743 				fi->fi_flx |= FI_BAD;
1744 				DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1745 			}
1746 		}
1747 	}
1748 	fin->fin_off = off;
1749 
1750 	/*
1751 	 * Call per-protocol setup and checking
1752 	 */
1753 	if (p == IPPROTO_AH) {
1754 		/*
1755 		 * Treat AH differently because we expect there to be another
1756 		 * layer 4 header after it.
1757 		 */
1758 		p = ipf_pr_ah(fin);
1759 	}
1760 
1761 	switch (p)
1762 	{
1763 	case IPPROTO_UDP :
1764 		ipf_pr_udp(fin);
1765 		break;
1766 	case IPPROTO_TCP :
1767 		ipf_pr_tcp(fin);
1768 		break;
1769 	case IPPROTO_ICMP :
1770 		ipf_pr_icmp(fin);
1771 		break;
1772 	case IPPROTO_ESP :
1773 		ipf_pr_esp(fin);
1774 		break;
1775 	case IPPROTO_GRE :
1776 		ipf_pr_gre(fin);
1777 		break;
1778 	}
1779 
1780 	ip = fin->fin_ip;
1781 	if (ip == NULL)
1782 		return;
1783 
1784 	/*
1785 	 * If it is a standard IP header (no options), set the flag fields
1786 	 * which relate to options to 0.
1787 	 */
1788 	if (hlen == sizeof(*ip)) {
1789 		fi->fi_optmsk = 0;
1790 		fi->fi_secmsk = 0;
1791 		fi->fi_auth = 0;
1792 		return;
1793 	}
1794 
1795 	/*
1796 	 * So the IP header has some IP options attached.  Walk the entire
1797 	 * list of options present with this packet and set flags to indicate
1798 	 * which ones are here and which ones are not.  For the somewhat out
1799 	 * of date and obscure security classification options, set a flag to
1800 	 * represent which classification is present.
1801 	 */
1802 	fi->fi_flx |= FI_OPTIONS;
1803 
1804 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1805 		opt = *s;
1806 		if (opt == '\0')
1807 			break;
1808 		else if (opt == IPOPT_NOP)
1809 			ol = 1;
1810 		else {
1811 			if (hlen < 2)
1812 				break;
1813 			ol = (int)*(s + 1);
1814 			if (ol < 2 || ol > hlen)
1815 				break;
1816 		}
1817 		for (i = 9, mv = 4; mv >= 0; ) {
1818 			op = ipopts + i;
1819 
1820 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1821 				u_32_t doi;
1822 
1823 				switch (opt)
1824 				{
1825 				case IPOPT_SECURITY :
1826 					if (optmsk & op->ol_bit) {
1827 						fin->fin_flx |= FI_BAD;
1828 						DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1829 					} else {
1830 						doi = ipf_checkripso(s);
1831 						secmsk = doi >> 16;
1832 						auth = doi & 0xffff;
1833 					}
1834 					break;
1835 
1836 				case IPOPT_CIPSO :
1837 
1838 					if (optmsk & op->ol_bit) {
1839 						fin->fin_flx |= FI_BAD;
1840 						DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1841 					} else {
1842 						doi = ipf_checkcipso(fin,
1843 								     s, ol);
1844 						secmsk = doi >> 16;
1845 						auth = doi & 0xffff;
1846 					}
1847 					break;
1848 				}
1849 				optmsk |= op->ol_bit;
1850 			}
1851 
1852 			if (opt < op->ol_val)
1853 				i -= mv;
1854 			else
1855 				i += mv;
1856 			mv--;
1857 		}
1858 		hlen -= ol;
1859 		s += ol;
1860 	}
1861 
1862 	/*
1863 	 *
1864 	 */
1865 	if (auth && !(auth & 0x0100))
1866 		auth &= 0xff00;
1867 	fi->fi_optmsk = optmsk;
1868 	fi->fi_secmsk = secmsk;
1869 	fi->fi_auth = auth;
1870 }
1871 
1872 
1873 /* ------------------------------------------------------------------------ */
1874 /* Function:    ipf_checkripso                                              */
1875 /* Returns:     void                                                        */
1876 /* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1877 /*                                                                          */
1878 /* ------------------------------------------------------------------------ */
1879 static u_32_t
1880 ipf_checkripso(u_char *s)
1881 {
1882 	const struct optlist *sp;
1883 	u_short secmsk = 0, auth = 0;
1884 	u_char sec;
1885 	int j, m;
1886 
1887 	sec = *(s + 2);	/* classification */
1888 	for (j = 3, m = 2; m >= 0; ) {
1889 		sp = secopt + j;
1890 		if (sec == sp->ol_val) {
1891 			secmsk |= sp->ol_bit;
1892 			auth = *(s + 3);
1893 			auth *= 256;
1894 			auth += *(s + 4);
1895 			break;
1896 		}
1897 		if (sec < sp->ol_val)
1898 			j -= m;
1899 		else
1900 			j += m;
1901 		m--;
1902 	}
1903 
1904 	return (secmsk << 16) | auth;
1905 }
1906 
1907 
1908 /* ------------------------------------------------------------------------ */
1909 /* Function:    ipf_checkcipso                                              */
1910 /* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1911 /* Parameters:  fin(IO) - pointer to packet information                     */
1912 /*              s(I)    - pointer to start of CIPSO option                  */
1913 /*              ol(I)   - length of CIPSO option field                      */
1914 /*                                                                          */
1915 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1916 /* header and returns that whilst also storing the highest sensitivity      */
1917 /* value found in the fr_info_t structure.                                  */
1918 /*                                                                          */
1919 /* No attempt is made to extract the category bitmaps as these are defined  */
1920 /* by the user (rather than the protocol) and can be rather numerous on the */
1921 /* end nodes.                                                               */
1922 /* ------------------------------------------------------------------------ */
1923 static u_32_t
1924 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1925 {
1926 	ipf_main_softc_t *softc = fin->fin_main_soft;
1927 	fr_ip_t *fi;
1928 	u_32_t doi;
1929 	u_char *t, tag, tlen, sensitivity;
1930 	int len;
1931 
1932 	if (ol < 6 || ol > 40) {
1933 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1934 		fin->fin_flx |= FI_BAD;
1935 		DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1936 		return 0;
1937 	}
1938 
1939 	fi = &fin->fin_fi;
1940 	fi->fi_sensitivity = 0;
1941 	/*
1942 	 * The DOI field MUST be there.
1943 	 */
1944 	bcopy(s + 2, &doi, sizeof(doi));
1945 
1946 	t = (u_char *)s + 6;
1947 	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1948 		tag = *t;
1949 		tlen = *(t + 1);
1950 		if (tlen > len || tlen < 4 || tlen > 34) {
1951 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1952 			fin->fin_flx |= FI_BAD;
1953 			DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1954 			return 0;
1955 		}
1956 
1957 		sensitivity = 0;
1958 		/*
1959 		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1960 		 * draft (16 July 1992) that has expired.
1961 		 */
1962 		if (tag == 0) {
1963 			fin->fin_flx |= FI_BAD;
1964 			DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1965 			continue;
1966 		} else if (tag == 1) {
1967 			if (*(t + 2) != 0) {
1968 				fin->fin_flx |= FI_BAD;
1969 				DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1970 				continue;
1971 			}
1972 			sensitivity = *(t + 3);
1973 			/* Category bitmap for categories 0-239 */
1974 
1975 		} else if (tag == 4) {
1976 			if (*(t + 2) != 0) {
1977 				fin->fin_flx |= FI_BAD;
1978 				DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1979 				continue;
1980 			}
1981 			sensitivity = *(t + 3);
1982 			/* Enumerated categories, 16bits each, upto 15 */
1983 
1984 		} else if (tag == 5) {
1985 			if (*(t + 2) != 0) {
1986 				fin->fin_flx |= FI_BAD;
1987 				DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
1988 				continue;
1989 			}
1990 			sensitivity = *(t + 3);
1991 			/* Range of categories (2*16bits), up to 7 pairs */
1992 
1993 		} else if (tag > 127) {
1994 			/* Custom defined DOI */
1995 			;
1996 		} else {
1997 			DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
1998 			fin->fin_flx |= FI_BAD;
1999 			continue;
2000 		}
2001 
2002 		if (sensitivity > fi->fi_sensitivity)
2003 			fi->fi_sensitivity = sensitivity;
2004 	}
2005 
2006 	return doi;
2007 }
2008 
2009 
2010 /* ------------------------------------------------------------------------ */
2011 /* Function:    ipf_makefrip                                                */
2012 /* Returns:     int     - 0 == packet ok, -1 == packet freed                */
2013 /* Parameters:  hlen(I) - length of IP packet header                        */
2014 /*              ip(I)   - pointer to the IP header                          */
2015 /*              fin(IO) - pointer to packet information                     */
2016 /*                                                                          */
2017 /* Compact the IP header into a structure which contains just the info.     */
2018 /* which is useful for comparing IP headers with and store this information */
2019 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
2020 /* this function will be called with either an IPv4 or IPv6 packet.         */
2021 /* ------------------------------------------------------------------------ */
2022 int
2023 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
2024 {
2025 	ipf_main_softc_t *softc = fin->fin_main_soft;
2026 	int v;
2027 
2028 	fin->fin_depth = 0;
2029 	fin->fin_hlen = (u_short)hlen;
2030 	fin->fin_ip = ip;
2031 	fin->fin_rule = 0xffffffff;
2032 	fin->fin_group[0] = -1;
2033 	fin->fin_group[1] = '\0';
2034 	fin->fin_dp = (char *)ip + hlen;
2035 
2036 	v = fin->fin_v;
2037 	if (v == 4) {
2038 		fin->fin_plen = ntohs(ip->ip_len);
2039 		fin->fin_dlen = fin->fin_plen - hlen;
2040 		ipf_pr_ipv4hdr(fin);
2041 #ifdef	USE_INET6
2042 	} else if (v == 6) {
2043 		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2044 		fin->fin_dlen = fin->fin_plen;
2045 		fin->fin_plen += hlen;
2046 
2047 		ipf_pr_ipv6hdr(fin);
2048 #endif
2049 	}
2050 	if (fin->fin_ip == NULL) {
2051 		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2052 		return -1;
2053 	}
2054 	return 0;
2055 }
2056 
2057 
2058 /* ------------------------------------------------------------------------ */
2059 /* Function:    ipf_portcheck                                               */
2060 /* Returns:     int - 1 == port matched, 0 == port match failed             */
2061 /* Parameters:  frp(I) - pointer to port check `expression'                 */
2062 /*              pop(I) - port number to evaluate                            */
2063 /*                                                                          */
2064 /* Perform a comparison of a port number against some other(s), using a     */
2065 /* structure with compare information stored in it.                         */
2066 /* ------------------------------------------------------------------------ */
2067 static INLINE int
2068 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2069 {
2070 	int err = 1;
2071 	u_32_t po;
2072 
2073 	po = frp->frp_port;
2074 
2075 	/*
2076 	 * Do opposite test to that required and continue if that succeeds.
2077 	 */
2078 	switch (frp->frp_cmp)
2079 	{
2080 	case FR_EQUAL :
2081 		if (pop != po) /* EQUAL */
2082 			err = 0;
2083 		break;
2084 	case FR_NEQUAL :
2085 		if (pop == po) /* NOTEQUAL */
2086 			err = 0;
2087 		break;
2088 	case FR_LESST :
2089 		if (pop >= po) /* LESSTHAN */
2090 			err = 0;
2091 		break;
2092 	case FR_GREATERT :
2093 		if (pop <= po) /* GREATERTHAN */
2094 			err = 0;
2095 		break;
2096 	case FR_LESSTE :
2097 		if (pop > po) /* LT or EQ */
2098 			err = 0;
2099 		break;
2100 	case FR_GREATERTE :
2101 		if (pop < po) /* GT or EQ */
2102 			err = 0;
2103 		break;
2104 	case FR_OUTRANGE :
2105 		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2106 			err = 0;
2107 		break;
2108 	case FR_INRANGE :
2109 		if (pop <= po || pop >= frp->frp_top) /* In range */
2110 			err = 0;
2111 		break;
2112 	case FR_INCRANGE :
2113 		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2114 			err = 0;
2115 		break;
2116 	default :
2117 		break;
2118 	}
2119 	return err;
2120 }
2121 
2122 
2123 /* ------------------------------------------------------------------------ */
2124 /* Function:    ipf_tcpudpchk                                               */
2125 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
2126 /* Parameters:  fda(I) - pointer to packet information                      */
2127 /*              ft(I)  - pointer to structure with comparison data          */
2128 /*                                                                          */
2129 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2130 /* structure containing information that we want to match against.          */
2131 /* ------------------------------------------------------------------------ */
2132 int
2133 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2134 {
2135 	int err = 1;
2136 
2137 	/*
2138 	 * Both ports should *always* be in the first fragment.
2139 	 * So far, I cannot find any cases where they can not be.
2140 	 *
2141 	 * compare destination ports
2142 	 */
2143 	if (ft->ftu_dcmp)
2144 		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2145 
2146 	/*
2147 	 * compare source ports
2148 	 */
2149 	if (err && ft->ftu_scmp)
2150 		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2151 
2152 	/*
2153 	 * If we don't have all the TCP/UDP header, then how can we
2154 	 * expect to do any sort of match on it ?  If we were looking for
2155 	 * TCP flags, then NO match.  If not, then match (which should
2156 	 * satisfy the "short" class too).
2157 	 */
2158 	if (err && (fi->fi_p == IPPROTO_TCP)) {
2159 		if (fi->fi_flx & FI_SHORT)
2160 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2161 		/*
2162 		 * Match the flags ?  If not, abort this match.
2163 		 */
2164 		if (ft->ftu_tcpfm &&
2165 		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2166 			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2167 				 ft->ftu_tcpfm, ft->ftu_tcpf));
2168 			err = 0;
2169 		}
2170 	}
2171 	return err;
2172 }
2173 
2174 
2175 /* ------------------------------------------------------------------------ */
2176 /* Function:    ipf_check_ipf                                               */
2177 /* Returns:     int - 0 == match, else no match                             */
2178 /* Parameters:  fin(I)     - pointer to packet information                  */
2179 /*              fr(I)      - pointer to filter rule                         */
2180 /*              portcmp(I) - flag indicating whether to attempt matching on */
2181 /*                           TCP/UDP port data.                             */
2182 /*                                                                          */
2183 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2184 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2185 /* this function.                                                           */
2186 /* ------------------------------------------------------------------------ */
2187 static INLINE int
2188 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2189 {
2190 	u_32_t	*ld, *lm, *lip;
2191 	fripf_t *fri;
2192 	fr_ip_t *fi;
2193 	int i;
2194 
2195 	fi = &fin->fin_fi;
2196 	fri = fr->fr_ipf;
2197 	lip = (u_32_t *)fi;
2198 	lm = (u_32_t *)&fri->fri_mip;
2199 	ld = (u_32_t *)&fri->fri_ip;
2200 
2201 	/*
2202 	 * first 32 bits to check coversion:
2203 	 * IP version, TOS, TTL, protocol
2204 	 */
2205 	i = ((*lip & *lm) != *ld);
2206 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2207 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2208 	if (i)
2209 		return 1;
2210 
2211 	/*
2212 	 * Next 32 bits is a constructed bitmask indicating which IP options
2213 	 * are present (if any) in this packet.
2214 	 */
2215 	lip++, lm++, ld++;
2216 	i = ((*lip & *lm) != *ld);
2217 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2218 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2219 	if (i != 0)
2220 		return 1;
2221 
2222 	lip++, lm++, ld++;
2223 	/*
2224 	 * Unrolled loops (4 each, for 32 bits) for address checks.
2225 	 */
2226 	/*
2227 	 * Check the source address.
2228 	 */
2229 	if (fr->fr_satype == FRI_LOOKUP) {
2230 		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2231 				      fi->fi_v, lip, fin->fin_plen);
2232 		if (i == -1)
2233 			return 1;
2234 		lip += 3;
2235 		lm += 3;
2236 		ld += 3;
2237 	} else {
2238 		i = ((*lip & *lm) != *ld);
2239 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2240 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2241 		if (fi->fi_v == 6) {
2242 			lip++, lm++, ld++;
2243 			i |= ((*lip & *lm) != *ld);
2244 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2245 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2246 			lip++, lm++, ld++;
2247 			i |= ((*lip & *lm) != *ld);
2248 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2249 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2250 			lip++, lm++, ld++;
2251 			i |= ((*lip & *lm) != *ld);
2252 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2253 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2254 		} else {
2255 			lip += 3;
2256 			lm += 3;
2257 			ld += 3;
2258 		}
2259 	}
2260 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2261 	if (i != 0)
2262 		return 1;
2263 
2264 	/*
2265 	 * Check the destination address.
2266 	 */
2267 	lip++, lm++, ld++;
2268 	if (fr->fr_datype == FRI_LOOKUP) {
2269 		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2270 				      fi->fi_v, lip, fin->fin_plen);
2271 		if (i == -1)
2272 			return 1;
2273 		lip += 3;
2274 		lm += 3;
2275 		ld += 3;
2276 	} else {
2277 		i = ((*lip & *lm) != *ld);
2278 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2279 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2280 		if (fi->fi_v == 6) {
2281 			lip++, lm++, ld++;
2282 			i |= ((*lip & *lm) != *ld);
2283 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2284 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2285 			lip++, lm++, ld++;
2286 			i |= ((*lip & *lm) != *ld);
2287 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2288 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2289 			lip++, lm++, ld++;
2290 			i |= ((*lip & *lm) != *ld);
2291 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2292 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2293 		} else {
2294 			lip += 3;
2295 			lm += 3;
2296 			ld += 3;
2297 		}
2298 	}
2299 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2300 	if (i != 0)
2301 		return 1;
2302 	/*
2303 	 * IP addresses matched.  The next 32bits contains:
2304 	 * mast of old IP header security & authentication bits.
2305 	 */
2306 	lip++, lm++, ld++;
2307 	i = (*ld - (*lip & *lm));
2308 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2309 
2310 	/*
2311 	 * Next we have 32 bits of packet flags.
2312 	 */
2313 	lip++, lm++, ld++;
2314 	i |= (*ld - (*lip & *lm));
2315 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2316 
2317 	if (i == 0) {
2318 		/*
2319 		 * If a fragment, then only the first has what we're
2320 		 * looking for here...
2321 		 */
2322 		if (portcmp) {
2323 			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2324 				i = 1;
2325 		} else {
2326 			if (fr->fr_dcmp || fr->fr_scmp ||
2327 			    fr->fr_tcpf || fr->fr_tcpfm)
2328 				i = 1;
2329 			if (fr->fr_icmpm || fr->fr_icmp) {
2330 				if (((fi->fi_p != IPPROTO_ICMP) &&
2331 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2332 				    fin->fin_off || (fin->fin_dlen < 2))
2333 					i = 1;
2334 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2335 					 fr->fr_icmp) {
2336 					FR_DEBUG(("i. %#x & %#x != %#x\n",
2337 						 fin->fin_data[0],
2338 						 fr->fr_icmpm, fr->fr_icmp));
2339 					i = 1;
2340 				}
2341 			}
2342 		}
2343 	}
2344 	return i;
2345 }
2346 
2347 
2348 /* ------------------------------------------------------------------------ */
2349 /* Function:    ipf_scanlist                                                */
2350 /* Returns:     int - result flags of scanning filter list                  */
2351 /* Parameters:  fin(I) - pointer to packet information                      */
2352 /*              pass(I) - default result to return for filtering            */
2353 /*                                                                          */
2354 /* Check the input/output list of rules for a match to the current packet.  */
2355 /* If a match is found, the value of fr_flags from the rule becomes the     */
2356 /* return value and fin->fin_fr points to the matched rule.                 */
2357 /*                                                                          */
2358 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
2359 /* When unwinding, it should finish up with fin_depth as 0.                 */
2360 /*                                                                          */
2361 /* Could be per interface, but this gets real nasty when you don't have,    */
2362 /* or can't easily change, the kernel source code to .                      */
2363 /* ------------------------------------------------------------------------ */
2364 int
2365 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2366 {
2367 	ipf_main_softc_t *softc = fin->fin_main_soft;
2368 	int rulen, portcmp, off, skip;
2369 	struct frentry *fr, *fnext;
2370 	u_32_t passt, passo;
2371 
2372 	/*
2373 	 * Do not allow nesting deeper than 16 levels.
2374 	 */
2375 	if (fin->fin_depth >= 16)
2376 		return pass;
2377 
2378 	fr = fin->fin_fr;
2379 
2380 	/*
2381 	 * If there are no rules in this list, return now.
2382 	 */
2383 	if (fr == NULL)
2384 		return pass;
2385 
2386 	skip = 0;
2387 	portcmp = 0;
2388 	fin->fin_depth++;
2389 	fin->fin_fr = NULL;
2390 	off = fin->fin_off;
2391 
2392 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2393 		portcmp = 1;
2394 
2395 	for (rulen = 0; fr; fr = fnext, rulen++) {
2396 		fnext = fr->fr_next;
2397 		if (skip != 0) {
2398 			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2399 			skip--;
2400 			continue;
2401 		}
2402 
2403 		/*
2404 		 * In all checks below, a null (zero) value in the
2405 		 * filter struture is taken to mean a wildcard.
2406 		 *
2407 		 * check that we are working for the right interface
2408 		 */
2409 #ifdef	_KERNEL
2410 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2411 			continue;
2412 #else
2413 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2414 			printf("\n");
2415 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2416 				  FR_ISPASS(pass) ? 'p' :
2417 				  FR_ISACCOUNT(pass) ? 'A' :
2418 				  FR_ISAUTH(pass) ? 'a' :
2419 				  (pass & FR_NOMATCH) ? 'n' :'b'));
2420 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2421 			continue;
2422 		FR_VERBOSE((":i"));
2423 #endif
2424 
2425 		switch (fr->fr_type)
2426 		{
2427 		case FR_T_IPF :
2428 		case FR_T_IPF_BUILTIN :
2429 			if (ipf_check_ipf(fin, fr, portcmp))
2430 				continue;
2431 			break;
2432 #if defined(IPFILTER_BPF)
2433 		case FR_T_BPFOPC :
2434 		case FR_T_BPFOPC_BUILTIN :
2435 		    {
2436 			u_char *mc;
2437 			int wlen;
2438 
2439 			if (*fin->fin_mp == NULL)
2440 				continue;
2441 			if (fin->fin_family != fr->fr_family)
2442 				continue;
2443 			mc = (u_char *)fin->fin_m;
2444 			wlen = fin->fin_dlen + fin->fin_hlen;
2445 			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2446 				continue;
2447 			break;
2448 		    }
2449 #endif
2450 		case FR_T_CALLFUNC_BUILTIN :
2451 		    {
2452 			frentry_t *f;
2453 
2454 			f = (*fr->fr_func)(fin, &pass);
2455 			if (f != NULL)
2456 				fr = f;
2457 			else
2458 				continue;
2459 			break;
2460 		    }
2461 
2462 		case FR_T_IPFEXPR :
2463 		case FR_T_IPFEXPR_BUILTIN :
2464 			if (fin->fin_family != fr->fr_family)
2465 				continue;
2466 			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2467 				continue;
2468 			break;
2469 
2470 		default :
2471 			break;
2472 		}
2473 
2474 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2475 			if (fin->fin_nattag == NULL)
2476 				continue;
2477 			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2478 				continue;
2479 		}
2480 		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2481 
2482 		passt = fr->fr_flags;
2483 
2484 		/*
2485 		 * If the rule is a "call now" rule, then call the function
2486 		 * in the rule, if it exists and use the results from that.
2487 		 * If the function pointer is bad, just make like we ignore
2488 		 * it, except for increasing the hit counter.
2489 		 */
2490 		if ((passt & FR_CALLNOW) != 0) {
2491 			frentry_t *frs;
2492 
2493 			ATOMIC_INC64(fr->fr_hits);
2494 			if ((fr->fr_func == NULL) ||
2495 			    (fr->fr_func == (ipfunc_t)-1))
2496 				continue;
2497 
2498 			frs = fin->fin_fr;
2499 			fin->fin_fr = fr;
2500 			fr = (*fr->fr_func)(fin, &passt);
2501 			if (fr == NULL) {
2502 				fin->fin_fr = frs;
2503 				continue;
2504 			}
2505 			passt = fr->fr_flags;
2506 		}
2507 		fin->fin_fr = fr;
2508 
2509 #ifdef  IPFILTER_LOG
2510 		/*
2511 		 * Just log this packet...
2512 		 */
2513 		if ((passt & FR_LOGMASK) == FR_LOG) {
2514 			if (ipf_log_pkt(fin, passt) == -1) {
2515 				if (passt & FR_LOGORBLOCK) {
2516 					DT(frb_logfail);
2517 					passt &= ~FR_CMDMASK;
2518 					passt |= FR_BLOCK|FR_QUICK;
2519 					fin->fin_reason = FRB_LOGFAIL;
2520 				}
2521 			}
2522 		}
2523 #endif /* IPFILTER_LOG */
2524 
2525 		MUTEX_ENTER(&fr->fr_lock);
2526 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2527 		fr->fr_hits++;
2528 		MUTEX_EXIT(&fr->fr_lock);
2529 		fin->fin_rule = rulen;
2530 
2531 		passo = pass;
2532 		if (FR_ISSKIP(passt)) {
2533 			skip = fr->fr_arg;
2534 			continue;
2535 		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2536 			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2537 			pass = passt;
2538 		}
2539 
2540 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2541 			fin->fin_icode = fr->fr_icode;
2542 
2543 		if (fr->fr_group != -1) {
2544 			(void) strncpy(fin->fin_group,
2545 				       FR_NAME(fr, fr_group),
2546 				       strlen(FR_NAME(fr, fr_group)));
2547 		} else {
2548 			fin->fin_group[0] = '\0';
2549 		}
2550 
2551 		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2552 
2553 		if (fr->fr_grphead != NULL) {
2554 			fin->fin_fr = fr->fr_grphead->fg_start;
2555 			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2556 
2557 			if (FR_ISDECAPS(passt))
2558 				passt = ipf_decaps(fin, pass, fr->fr_icode);
2559 			else
2560 				passt = ipf_scanlist(fin, pass);
2561 
2562 			if (fin->fin_fr == NULL) {
2563 				fin->fin_rule = rulen;
2564 				if (fr->fr_group != -1)
2565 					(void) strncpy(fin->fin_group,
2566 						       fr->fr_names +
2567 						       fr->fr_group,
2568 						       strlen(fr->fr_names +
2569 							      fr->fr_group));
2570 				fin->fin_fr = fr;
2571 				passt = pass;
2572 			}
2573 			pass = passt;
2574 		}
2575 
2576 		if (pass & FR_QUICK) {
2577 			/*
2578 			 * Finally, if we've asked to track state for this
2579 			 * packet, set it up.  Add state for "quick" rules
2580 			 * here so that if the action fails we can consider
2581 			 * the rule to "not match" and keep on processing
2582 			 * filter rules.
2583 			 */
2584 			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2585 			    !(fin->fin_flx & FI_STATE)) {
2586 				int out = fin->fin_out;
2587 
2588 				fin->fin_fr = fr;
2589 				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2590 					LBUMPD(ipf_stats[out], fr_ads);
2591 				} else {
2592 					LBUMPD(ipf_stats[out], fr_bads);
2593 					pass = passo;
2594 					continue;
2595 				}
2596 			}
2597 			break;
2598 		}
2599 	}
2600 	fin->fin_depth--;
2601 	return pass;
2602 }
2603 
2604 
2605 /* ------------------------------------------------------------------------ */
2606 /* Function:    ipf_acctpkt                                                 */
2607 /* Returns:     frentry_t* - always returns NULL                            */
2608 /* Parameters:  fin(I) - pointer to packet information                      */
2609 /*              passp(IO) - pointer to current/new filter decision (unused) */
2610 /*                                                                          */
2611 /* Checks a packet against accounting rules, if there are any for the given */
2612 /* IP protocol version.                                                     */
2613 /*                                                                          */
2614 /* N.B.: this function returns NULL to match the prototype used by other    */
2615 /* functions called from the IPFilter "mainline" in ipf_check().            */
2616 /* ------------------------------------------------------------------------ */
2617 frentry_t *
2618 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2619 {
2620 	ipf_main_softc_t *softc = fin->fin_main_soft;
2621 	char group[FR_GROUPLEN];
2622 	frentry_t *fr, *frsave;
2623 	u_32_t pass, rulen;
2624 
2625 	passp = passp;
2626 	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2627 
2628 	if (fr != NULL) {
2629 		frsave = fin->fin_fr;
2630 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2631 		rulen = fin->fin_rule;
2632 		fin->fin_fr = fr;
2633 		pass = ipf_scanlist(fin, FR_NOMATCH);
2634 		if (FR_ISACCOUNT(pass)) {
2635 			LBUMPD(ipf_stats[0], fr_acct);
2636 		}
2637 		fin->fin_fr = frsave;
2638 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2639 		fin->fin_rule = rulen;
2640 	}
2641 	return NULL;
2642 }
2643 
2644 
2645 /* ------------------------------------------------------------------------ */
2646 /* Function:    ipf_firewall                                                */
2647 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2648 /*                           were found, returns NULL.                      */
2649 /* Parameters:  fin(I) - pointer to packet information                      */
2650 /*              passp(IO) - pointer to current/new filter decision (unused) */
2651 /*                                                                          */
2652 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2653 /* there are any matches.  The first check is to see if a match can be seen */
2654 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2655 /* matching rule is found, take any appropriate actions as defined by the   */
2656 /* rule - except logging.                                                   */
2657 /* ------------------------------------------------------------------------ */
2658 static frentry_t *
2659 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2660 {
2661 	ipf_main_softc_t *softc = fin->fin_main_soft;
2662 	frentry_t *fr;
2663 	u_32_t pass;
2664 	int out;
2665 
2666 	out = fin->fin_out;
2667 	pass = *passp;
2668 
2669 	/*
2670 	 * This rule cache will only affect packets that are not being
2671 	 * statefully filtered.
2672 	 */
2673 	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2674 	if (fin->fin_fr != NULL)
2675 		pass = ipf_scanlist(fin, softc->ipf_pass);
2676 
2677 	if ((pass & FR_NOMATCH)) {
2678 		LBUMPD(ipf_stats[out], fr_nom);
2679 	}
2680 	fr = fin->fin_fr;
2681 
2682 	/*
2683 	 * Apply packets per second rate-limiting to a rule as required.
2684 	 */
2685 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2686 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2687 		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2688 		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2689 		pass |= FR_BLOCK;
2690 		LBUMPD(ipf_stats[out], fr_ppshit);
2691 		fin->fin_reason = FRB_PPSRATE;
2692 	}
2693 
2694 	/*
2695 	 * If we fail to add a packet to the authorization queue, then we
2696 	 * drop the packet later.  However, if it was added then pretend
2697 	 * we've dropped it already.
2698 	 */
2699 	if (FR_ISAUTH(pass)) {
2700 		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2701 			DT1(frb_authnew, fr_info_t *, fin);
2702 			fin->fin_m = *fin->fin_mp = NULL;
2703 			fin->fin_reason = FRB_AUTHNEW;
2704 			fin->fin_error = 0;
2705 		} else {
2706 			IPFERROR(1);
2707 			fin->fin_error = ENOSPC;
2708 		}
2709 	}
2710 
2711 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2712 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2713 		(void) (*fr->fr_func)(fin, &pass);
2714 
2715 	/*
2716 	 * If a rule is a pre-auth rule, check again in the list of rules
2717 	 * loaded for authenticated use.  It does not particulary matter
2718 	 * if this search fails because a "preauth" result, from a rule,
2719 	 * is treated as "not a pass", hence the packet is blocked.
2720 	 */
2721 	if (FR_ISPREAUTH(pass)) {
2722 		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2723 	}
2724 
2725 	/*
2726 	 * If the rule has "keep frag" and the packet is actually a fragment,
2727 	 * then create a fragment state entry.
2728 	 */
2729 	if (pass & FR_KEEPFRAG) {
2730 		if (fin->fin_flx & FI_FRAG) {
2731 			if (ipf_frag_new(softc, fin, pass) == -1) {
2732 				LBUMP(ipf_stats[out].fr_bnfr);
2733 			} else {
2734 				LBUMP(ipf_stats[out].fr_nfr);
2735 			}
2736 		} else {
2737 			LBUMP(ipf_stats[out].fr_cfr);
2738 		}
2739 	}
2740 
2741 	fr = fin->fin_fr;
2742 	*passp = pass;
2743 
2744 	return fr;
2745 }
2746 
2747 
2748 /* ------------------------------------------------------------------------ */
2749 /* Function:    ipf_check                                                   */
2750 /* Returns:     int -  0 == packet allowed through,                         */
2751 /*              User space:                                                 */
2752 /*                    -1 == packet blocked                                  */
2753 /*                     1 == packet not matched                              */
2754 /*                    -2 == requires authentication                         */
2755 /*              Kernel:                                                     */
2756 /*                   > 0 == filter error # for packet                       */
2757 /* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2758 /*             hlen(I) - length of header                                   */
2759 /*             ifp(I)  - pointer to interface this packet is on             */
2760 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2761 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2762 /*                       IP packet.                                         */
2763 /* Solaris & HP-UX ONLY :                                                   */
2764 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2765 /*                       interface & direction.                             */
2766 /*                                                                          */
2767 /* ipf_check() is the master function for all IPFilter packet processing.   */
2768 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2769 /* authorisation (or pre-authorisation), presence of related state info.,   */
2770 /* generating log entries, IP packet accounting, routing of packets as      */
2771 /* directed by firewall rules and of course whether or not to allow the     */
2772 /* packet to be further processed by the kernel.                            */
2773 /*                                                                          */
2774 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2775 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2776 /* by "mp" changed to a new buffer.                                         */
2777 /* ------------------------------------------------------------------------ */
2778 int
2779 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out,
2780 #if defined(_KERNEL) && defined(MENTAT)
2781     void *qif,
2782 #endif
2783     mb_t **mp)
2784 {
2785 	/*
2786 	 * The above really sucks, but short of writing a diff
2787 	 */
2788 	ipf_main_softc_t *softc = ctx;
2789 	fr_info_t frinfo;
2790 	fr_info_t *fin = &frinfo;
2791 	u_32_t pass = softc->ipf_pass;
2792 	frentry_t *fr = NULL;
2793 	int v = IP_V(ip);
2794 	mb_t *mc = NULL;
2795 	mb_t *m;
2796 	/*
2797 	 * The first part of ipf_check() deals with making sure that what goes
2798 	 * into the filtering engine makes some sense.  Information about the
2799 	 * the packet is distilled, collected into a fr_info_t structure and
2800 	 * the an attempt to ensure the buffer the packet is in is big enough
2801 	 * to hold all the required packet headers.
2802 	 */
2803 #ifdef	_KERNEL
2804 # ifdef MENTAT
2805 	qpktinfo_t *qpi = qif;
2806 
2807 #  ifdef __sparc
2808 	if ((u_int)ip & 0x3)
2809 		return 2;
2810 #  endif
2811 # else
2812 	SPL_INT(s);
2813 # endif
2814 
2815 	if (softc->ipf_running <= 0) {
2816 		return 0;
2817 	}
2818 
2819 	bzero((char *)fin, sizeof(*fin));
2820 
2821 # ifdef MENTAT
2822 	if (qpi->qpi_flags & QF_BROADCAST)
2823 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2824 	if (qpi->qpi_flags & QF_MULTICAST)
2825 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2826 	m = qpi->qpi_m;
2827 	fin->fin_qfm = m;
2828 	fin->fin_qpi = qpi;
2829 # else /* MENTAT */
2830 
2831 	m = *mp;
2832 
2833 #  if defined(M_MCAST)
2834 	if ((m->m_flags & M_MCAST) != 0)
2835 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2836 #  endif
2837 #  if defined(M_MLOOP)
2838 	if ((m->m_flags & M_MLOOP) != 0)
2839 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2840 #  endif
2841 #  if defined(M_BCAST)
2842 	if ((m->m_flags & M_BCAST) != 0)
2843 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2844 #  endif
2845 #  ifdef M_CANFASTFWD
2846 	/*
2847 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2848 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2849 	 * XXX get a "can-fast-forward" filter rule.
2850 	 */
2851 	m->m_flags &= ~M_CANFASTFWD;
2852 #  endif /* M_CANFASTFWD */
2853 #  if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2854 				   (__FreeBSD_version < 501108))
2855 	/*
2856 	 * disable delayed checksums.
2857 	 */
2858 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2859 		in_undefer_cksum_tcpudp(m);
2860 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2861 	}
2862 #  endif /* CSUM_DELAY_DATA */
2863 # endif /* MENTAT */
2864 #else
2865 	bzero((char *)fin, sizeof(*fin));
2866 	m = *mp;
2867 # if defined(M_MCAST)
2868 	if ((m->m_flags & M_MCAST) != 0)
2869 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2870 # endif
2871 # if defined(M_MLOOP)
2872 	if ((m->m_flags & M_MLOOP) != 0)
2873 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2874 # endif
2875 # if defined(M_BCAST)
2876 	if ((m->m_flags & M_BCAST) != 0)
2877 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2878 # endif
2879 #endif /* _KERNEL */
2880 
2881 	fin->fin_v = v;
2882 	fin->fin_m = m;
2883 	fin->fin_ip = ip;
2884 	fin->fin_mp = mp;
2885 	fin->fin_out = out;
2886 	fin->fin_ifp = ifp;
2887 	fin->fin_error = ENETUNREACH;
2888 	fin->fin_hlen = (u_short)hlen;
2889 	fin->fin_dp = (char *)ip + hlen;
2890 	fin->fin_main_soft = softc;
2891 
2892 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2893 
2894 	SPL_NET(s);
2895 
2896 #ifdef	USE_INET6
2897 	if (v == 6) {
2898 		LBUMP(ipf_stats[out].fr_ipv6);
2899 		/*
2900 		 * Jumbo grams are quite likely too big for internal buffer
2901 		 * structures to handle comfortably, for now, so just drop
2902 		 * them.
2903 		 */
2904 		if (((ip6_t *)ip)->ip6_plen == 0) {
2905 			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2906 			pass = FR_BLOCK|FR_NOMATCH;
2907 			fin->fin_reason = FRB_JUMBO;
2908 			goto finished;
2909 		}
2910 		fin->fin_family = AF_INET6;
2911 	} else
2912 #endif
2913 	{
2914 		fin->fin_family = AF_INET;
2915 	}
2916 
2917 	if (ipf_makefrip(hlen, ip, fin) == -1) {
2918 		DT1(frb_makefrip, fr_info_t *, fin);
2919 		pass = FR_BLOCK|FR_NOMATCH;
2920 		fin->fin_reason = FRB_MAKEFRIP;
2921 		goto finished;
2922 	}
2923 
2924 	/*
2925 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2926 	 * becomes NULL and so we have no packet to free.
2927 	 */
2928 	if (*fin->fin_mp == NULL)
2929 		goto finished;
2930 
2931 	if (!out) {
2932 		if (v == 4) {
2933 			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2934 				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2935 				fin->fin_flx |= FI_BADSRC;
2936 			}
2937 			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2938 				LBUMPD(ipf_stats[0], fr_v4_badttl);
2939 				fin->fin_flx |= FI_LOWTTL;
2940 			}
2941 		}
2942 #ifdef USE_INET6
2943 		else  if (v == 6) {
2944 			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2945 				LBUMPD(ipf_stats[0], fr_v6_badttl);
2946 				fin->fin_flx |= FI_LOWTTL;
2947 			}
2948 		}
2949 #endif
2950 	}
2951 
2952 	if (fin->fin_flx & FI_SHORT) {
2953 		LBUMPD(ipf_stats[out], fr_short);
2954 	}
2955 
2956 	READ_ENTER(&softc->ipf_mutex);
2957 
2958 	if (!out) {
2959 		switch (fin->fin_v)
2960 		{
2961 		case 4 :
2962 			if (ipf_nat_checkin(fin, &pass) == -1) {
2963 				goto filterdone;
2964 			}
2965 			break;
2966 #ifdef USE_INET6
2967 		case 6 :
2968 			if (ipf_nat6_checkin(fin, &pass) == -1) {
2969 				goto filterdone;
2970 			}
2971 			break;
2972 #endif
2973 		default :
2974 			break;
2975 		}
2976 	}
2977 	/*
2978 	 * Check auth now.
2979 	 * If a packet is found in the auth table, then skip checking
2980 	 * the access lists for permission but we do need to consider
2981 	 * the result as if it were from the ACL's.  In addition, being
2982 	 * found in the auth table means it has been seen before, so do
2983 	 * not pass it through accounting (again), lest it be counted twice.
2984 	 */
2985 	fr = ipf_auth_check(fin, &pass);
2986 	if (!out && (fr == NULL))
2987 		(void) ipf_acctpkt(fin, NULL);
2988 
2989 	if (fr == NULL) {
2990 		if ((fin->fin_flx & FI_FRAG) != 0)
2991 			fr = ipf_frag_known(fin, &pass);
2992 
2993 		if (fr == NULL)
2994 			fr = ipf_state_check(fin, &pass);
2995 	}
2996 
2997 	if ((pass & FR_NOMATCH) || (fr == NULL))
2998 		fr = ipf_firewall(fin, &pass);
2999 
3000 	/*
3001 	 * If we've asked to track state for this packet, set it up.
3002 	 * Here rather than ipf_firewall because ipf_checkauth may decide
3003 	 * to return a packet for "keep state"
3004 	 */
3005 	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3006 	    !(fin->fin_flx & FI_STATE)) {
3007 		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3008 			LBUMP(ipf_stats[out].fr_ads);
3009 		} else {
3010 			LBUMP(ipf_stats[out].fr_bads);
3011 			if (FR_ISPASS(pass)) {
3012 				DT(frb_stateadd);
3013 				pass &= ~FR_CMDMASK;
3014 				pass |= FR_BLOCK;
3015 				fin->fin_reason = FRB_STATEADD;
3016 			}
3017 		}
3018 	}
3019 
3020 	fin->fin_fr = fr;
3021 	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3022 		fin->fin_dif = &fr->fr_dif;
3023 		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3024 	}
3025 
3026 	/*
3027 	 * Only count/translate packets which will be passed on, out the
3028 	 * interface.
3029 	 */
3030 	if (out && FR_ISPASS(pass)) {
3031 		(void) ipf_acctpkt(fin, NULL);
3032 
3033 		switch (fin->fin_v)
3034 		{
3035 		case 4 :
3036 			if (ipf_nat_checkout(fin, &pass) == -1) {
3037 				;
3038 			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3039 				if (ipf_updateipid(fin) == -1) {
3040 					DT(frb_updateipid);
3041 					LBUMP(ipf_stats[1].fr_ipud);
3042 					pass &= ~FR_CMDMASK;
3043 					pass |= FR_BLOCK;
3044 					fin->fin_reason = FRB_UPDATEIPID;
3045 				} else {
3046 					LBUMP(ipf_stats[0].fr_ipud);
3047 				}
3048 			}
3049 			break;
3050 #ifdef USE_INET6
3051 		case 6 :
3052 			(void) ipf_nat6_checkout(fin, &pass);
3053 			break;
3054 #endif
3055 		default :
3056 			break;
3057 		}
3058 	}
3059 
3060 filterdone:
3061 #ifdef	IPFILTER_LOG
3062 	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3063 		(void) ipf_dolog(fin, &pass);
3064 	}
3065 #endif
3066 
3067 	/*
3068 	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3069 	 * will work when called from inside of fr_fastroute.  Although
3070 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3071 	 * impact on code execution.
3072 	 */
3073 	fin->fin_flx &= ~FI_STATE;
3074 
3075 #if defined(FASTROUTE_RECURSION)
3076 	/*
3077 	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3078 	 * a packet below can sometimes cause a recursive call into IPFilter.
3079 	 * On those platforms where that does happen, we need to hang onto
3080 	 * the filter rule just in case someone decides to remove or flush it
3081 	 * in the meantime.
3082 	 */
3083 	if (fr != NULL) {
3084 		MUTEX_ENTER(&fr->fr_lock);
3085 		fr->fr_ref++;
3086 		MUTEX_EXIT(&fr->fr_lock);
3087 	}
3088 
3089 	RWLOCK_EXIT(&softc->ipf_mutex);
3090 #endif
3091 
3092 	if ((pass & FR_RETMASK) != 0) {
3093 		/*
3094 		 * Should we return an ICMP packet to indicate error
3095 		 * status passing through the packet filter ?
3096 		 * WARNING: ICMP error packets AND TCP RST packets should
3097 		 * ONLY be sent in repsonse to incoming packets.  Sending
3098 		 * them in response to outbound packets can result in a
3099 		 * panic on some operating systems.
3100 		 */
3101 		if (!out) {
3102 			if (pass & FR_RETICMP) {
3103 				int dst;
3104 
3105 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3106 					dst = 1;
3107 				else
3108 					dst = 0;
3109 				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3110 							 dst);
3111 				LBUMP(ipf_stats[0].fr_ret);
3112 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3113 				   !(fin->fin_flx & FI_SHORT)) {
3114 				if (((fin->fin_flx & FI_OOW) != 0) ||
3115 				    (ipf_send_reset(fin) == 0)) {
3116 					LBUMP(ipf_stats[1].fr_ret);
3117 				}
3118 			}
3119 
3120 			/*
3121 			 * When using return-* with auth rules, the auth code
3122 			 * takes over disposing of this packet.
3123 			 */
3124 			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3125 				DT1(frb_authcapture, fr_info_t *, fin);
3126 				fin->fin_m = *fin->fin_mp = NULL;
3127 				fin->fin_reason = FRB_AUTHCAPTURE;
3128 				m = NULL;
3129 			}
3130 		} else {
3131 			if (pass & FR_RETRST) {
3132 				fin->fin_error = ECONNRESET;
3133 			}
3134 		}
3135 	}
3136 
3137 	/*
3138 	 * After the above so that ICMP unreachables and TCP RSTs get
3139 	 * created properly.
3140 	 */
3141 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3142 		ipf_nat_uncreate(fin);
3143 
3144 	/*
3145 	 * If we didn't drop off the bottom of the list of rules (and thus
3146 	 * the 'current' rule fr is not NULL), then we may have some extra
3147 	 * instructions about what to do with a packet.
3148 	 * Once we're finished return to our caller, freeing the packet if
3149 	 * we are dropping it.
3150 	 */
3151 	if (fr != NULL) {
3152 		frdest_t *fdp;
3153 
3154 		/*
3155 		 * Generate a duplicated packet first because ipf_fastroute
3156 		 * can lead to fin_m being free'd... not good.
3157 		 */
3158 		fdp = fin->fin_dif;
3159 		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3160 		    (fdp->fd_ptr != (void *)-1) && (fin->fin_m != NULL)) {
3161 			mc = M_COPY(fin->fin_m);
3162 			if (mc != NULL)
3163 				ipf_fastroute(mc, &mc, fin, fdp);
3164 		}
3165 
3166 		fdp = fin->fin_tif;
3167 		if (!out && (pass & FR_FASTROUTE)) {
3168 			/*
3169 			 * For fastroute rule, no destination interface defined
3170 			 * so pass NULL as the frdest_t parameter
3171 			 */
3172 			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3173 			m = *mp = NULL;
3174 		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3175 			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3176 			/* this is for to rules: */
3177 			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3178 			m = *mp = NULL;
3179 		}
3180 
3181 #if defined(FASTROUTE_RECURSION)
3182 		(void) ipf_derefrule(softc, &fr);
3183 #endif
3184 	}
3185 #if !defined(FASTROUTE_RECURSION)
3186 	RWLOCK_EXIT(&softc->ipf_mutex);
3187 #endif
3188 
3189 finished:
3190 	if (!FR_ISPASS(pass)) {
3191 		LBUMP(ipf_stats[out].fr_block);
3192 		if (*mp != NULL) {
3193 #ifdef _KERNEL
3194 			FREE_MB_T(*mp);
3195 #endif
3196 			m = *mp = NULL;
3197 		}
3198 	} else {
3199 		LBUMP(ipf_stats[out].fr_pass);
3200 #if defined(_KERNEL) && defined(__sgi)
3201 		if ((fin->fin_hbuf != NULL) &&
3202 		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3203 			COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3204 		}
3205 #endif
3206 	}
3207 
3208 	SPL_X(s);
3209 
3210 #ifdef _KERNEL
3211 	if (FR_ISPASS(pass))
3212 		return 0;
3213 	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3214 	return fin->fin_error;
3215 #else /* _KERNEL */
3216 	if (*mp != NULL)
3217 		(*mp)->mb_ifp = fin->fin_ifp;
3218 	blockreason = fin->fin_reason;
3219 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3220 	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3221 		if ((pass & FR_NOMATCH) != 0)
3222 			return 1;
3223 
3224 	if ((pass & FR_RETMASK) != 0)
3225 		switch (pass & FR_RETMASK)
3226 		{
3227 		case FR_RETRST :
3228 			return 3;
3229 		case FR_RETICMP :
3230 			return 4;
3231 		case FR_FAKEICMP :
3232 			return 5;
3233 		}
3234 
3235 	switch (pass & FR_CMDMASK)
3236 	{
3237 	case FR_PASS :
3238 		return 0;
3239 	case FR_BLOCK :
3240 		return -1;
3241 	case FR_AUTH :
3242 		return -2;
3243 	case FR_ACCOUNT :
3244 		return -3;
3245 	case FR_PREAUTH :
3246 		return -4;
3247 	}
3248 	return 2;
3249 #endif /* _KERNEL */
3250 }
3251 
3252 
3253 #ifdef	IPFILTER_LOG
3254 /* ------------------------------------------------------------------------ */
3255 /* Function:    ipf_dolog                                                   */
3256 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3257 /* Parameters:  fin(I) - pointer to packet information                      */
3258 /*              passp(IO) - pointer to current/new filter decision (unused) */
3259 /*                                                                          */
3260 /* Checks flags set to see how a packet should be logged, if it is to be    */
3261 /* logged.  Adjust statistics based on its success or not.                  */
3262 /* ------------------------------------------------------------------------ */
3263 frentry_t *
3264 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3265 {
3266 	ipf_main_softc_t *softc = fin->fin_main_soft;
3267 	u_32_t pass;
3268 	int out;
3269 
3270 	out = fin->fin_out;
3271 	pass = *passp;
3272 
3273 	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3274 		pass |= FF_LOGNOMATCH;
3275 		LBUMPD(ipf_stats[out], fr_npkl);
3276 		goto logit;
3277 
3278 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3279 	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3280 		if ((pass & FR_LOGMASK) != FR_LOGP)
3281 			pass |= FF_LOGPASS;
3282 		LBUMPD(ipf_stats[out], fr_ppkl);
3283 		goto logit;
3284 
3285 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3286 		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3287 		if ((pass & FR_LOGMASK) != FR_LOGB)
3288 			pass |= FF_LOGBLOCK;
3289 		LBUMPD(ipf_stats[out], fr_bpkl);
3290 
3291 logit:
3292 		if (ipf_log_pkt(fin, pass) == -1) {
3293 			/*
3294 			 * If the "or-block" option has been used then
3295 			 * block the packet if we failed to log it.
3296 			 */
3297 			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3298 				DT1(frb_logfail2, u_int, pass);
3299 				pass &= ~FR_CMDMASK;
3300 				pass |= FR_BLOCK;
3301 				fin->fin_reason = FRB_LOGFAIL2;
3302 			}
3303 		}
3304 		*passp = pass;
3305 	}
3306 
3307 	return fin->fin_fr;
3308 }
3309 #endif /* IPFILTER_LOG */
3310 
3311 
3312 /* ------------------------------------------------------------------------ */
3313 /* Function:    ipf_cksum                                                   */
3314 /* Returns:     u_short - IP header checksum                                */
3315 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3316 /*              len(I)  - length of buffer in bytes                         */
3317 /*                                                                          */
3318 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3319 /*                                                                          */
3320 /* N.B.: addr should be 16bit aligned.                                      */
3321 /* ------------------------------------------------------------------------ */
3322 u_short
3323 ipf_cksum(u_short *addr, int len)
3324 {
3325 	u_32_t sum = 0;
3326 
3327 	for (sum = 0; len > 1; len -= 2)
3328 		sum += *addr++;
3329 
3330 	/* mop up an odd byte, if necessary */
3331 	if (len == 1)
3332 		sum += *(u_char *)addr;
3333 
3334 	/*
3335 	 * add back carry outs from top 16 bits to low 16 bits
3336 	 */
3337 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3338 	sum += (sum >> 16);			/* add carry */
3339 	return (u_short)(~sum);
3340 }
3341 
3342 
3343 /* ------------------------------------------------------------------------ */
3344 /* Function:    fr_cksum                                                    */
3345 /* Returns:     u_short - layer 4 checksum                                  */
3346 /* Parameters:  fin(I)     - pointer to packet information                  */
3347 /*              ip(I)      - pointer to IP header                           */
3348 /*              l4proto(I) - protocol to caclulate checksum for             */
3349 /*              l4hdr(I)   - pointer to layer 4 header                      */
3350 /*                                                                          */
3351 /* Calculates the TCP checksum for the packet held in "m", using the data   */
3352 /* in the IP header "ip" to seed it.                                        */
3353 /*                                                                          */
3354 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3355 /* and the TCP header.  We also assume that data blocks aren't allocated in */
3356 /* odd sizes.                                                               */
3357 /*                                                                          */
3358 /* Expects ip_len and ip_off to be in network byte order when called.       */
3359 /* ------------------------------------------------------------------------ */
3360 u_short
3361 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3362 {
3363 	u_short *sp, slen, sumsave, *csump;
3364 	u_int sum, sum2;
3365 	int hlen;
3366 	int off;
3367 #ifdef	USE_INET6
3368 	ip6_t *ip6;
3369 #endif
3370 
3371 	csump = NULL;
3372 	sumsave = 0;
3373 	sp = NULL;
3374 	slen = 0;
3375 	hlen = 0;
3376 	sum = 0;
3377 
3378 	sum = htons((u_short)l4proto);
3379 	/*
3380 	 * Add up IP Header portion
3381 	 */
3382 #ifdef	USE_INET6
3383 	if (IP_V(ip) == 4) {
3384 #endif
3385 		hlen = IP_HL(ip) << 2;
3386 		off = hlen;
3387 		sp = (u_short *)&ip->ip_src;
3388 		sum += *sp++;	/* ip_src */
3389 		sum += *sp++;
3390 		sum += *sp++;	/* ip_dst */
3391 		sum += *sp++;
3392 #ifdef	USE_INET6
3393 	} else if (IP_V(ip) == 6) {
3394 		ip6 = (ip6_t *)ip;
3395 		hlen = sizeof(*ip6);
3396 		off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3397 		sp = (u_short *)&ip6->ip6_src;
3398 		sum += *sp++;	/* ip6_src */
3399 		sum += *sp++;
3400 		sum += *sp++;
3401 		sum += *sp++;
3402 		sum += *sp++;
3403 		sum += *sp++;
3404 		sum += *sp++;
3405 		sum += *sp++;
3406 		/* This needs to be routing header aware. */
3407 		sum += *sp++;	/* ip6_dst */
3408 		sum += *sp++;
3409 		sum += *sp++;
3410 		sum += *sp++;
3411 		sum += *sp++;
3412 		sum += *sp++;
3413 		sum += *sp++;
3414 		sum += *sp++;
3415 	} else {
3416 		return 0xffff;
3417 	}
3418 #endif
3419 	slen = fin->fin_plen - off;
3420 	sum += htons(slen);
3421 
3422 	switch (l4proto)
3423 	{
3424 	case IPPROTO_UDP :
3425 		csump = &((udphdr_t *)l4hdr)->uh_sum;
3426 		break;
3427 
3428 	case IPPROTO_TCP :
3429 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3430 		break;
3431 	case IPPROTO_ICMP :
3432 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3433 		sum = 0;	/* Pseudo-checksum is not included */
3434 		break;
3435 #ifdef USE_INET6
3436 	case IPPROTO_ICMPV6 :
3437 		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3438 		break;
3439 #endif
3440 	default :
3441 		break;
3442 	}
3443 
3444 	if (csump != NULL) {
3445 		sumsave = *csump;
3446 		*csump = 0;
3447 	}
3448 
3449 	sum2 = ipf_pcksum(fin, off, sum);
3450 	if (csump != NULL)
3451 		*csump = sumsave;
3452 	return sum2;
3453 }
3454 
3455 
3456 /* ------------------------------------------------------------------------ */
3457 /* Function:    ipf_findgroup                                               */
3458 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3459 /* Parameters:  softc(I) - pointer to soft context main structure           */
3460 /*              group(I) - group name to search for                         */
3461 /*              unit(I)  - device to which this group belongs               */
3462 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3463 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3464 /*                         to where to add the next (last) group or where   */
3465 /*                         to delete group from.                            */
3466 /*                                                                          */
3467 /* Search amongst the defined groups for a particular group number.         */
3468 /* ------------------------------------------------------------------------ */
3469 frgroup_t *
3470 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3471     frgroup_t ***fgpp)
3472 {
3473 	frgroup_t *fg, **fgp;
3474 
3475 	/*
3476 	 * Which list of groups to search in is dependent on which list of
3477 	 * rules are being operated on.
3478 	 */
3479 	fgp = &softc->ipf_groups[unit][set];
3480 
3481 	while ((fg = *fgp) != NULL) {
3482 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3483 			break;
3484 		else
3485 			fgp = &fg->fg_next;
3486 	}
3487 	if (fgpp != NULL)
3488 		*fgpp = fgp;
3489 	return fg;
3490 }
3491 
3492 
3493 /* ------------------------------------------------------------------------ */
3494 /* Function:    ipf_group_add                                               */
3495 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3496 /*                            != NULL == pointer to the group               */
3497 /* Parameters:  softc(I) - pointer to soft context main structure           */
3498 /*              num(I)   - group number to add                              */
3499 /*              head(I)  - rule pointer that is using this as the head      */
3500 /*              flags(I) - rule flags which describe the type of rule it is */
3501 /*              unit(I)  - device to which this group will belong to        */
3502 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3503 /* Write Locks: ipf_mutex                                                   */
3504 /*                                                                          */
3505 /* Add a new group head, or if it already exists, increase the reference    */
3506 /* count to it.                                                             */
3507 /* ------------------------------------------------------------------------ */
3508 frgroup_t *
3509 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3510     minor_t unit, int set)
3511 {
3512 	frgroup_t *fg, **fgp;
3513 	u_32_t gflags;
3514 
3515 	if (group == NULL)
3516 		return NULL;
3517 
3518 	if (unit == IPL_LOGIPF && *group == '\0')
3519 		return NULL;
3520 
3521 	fgp = NULL;
3522 	gflags = flags & FR_INOUT;
3523 
3524 	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3525 	if (fg != NULL) {
3526 		if (fg->fg_head == NULL && head != NULL)
3527 			fg->fg_head = head;
3528 		if (fg->fg_flags == 0)
3529 			fg->fg_flags = gflags;
3530 		else if (gflags != fg->fg_flags)
3531 			return NULL;
3532 		fg->fg_ref++;
3533 		return fg;
3534 	}
3535 
3536 	KMALLOC(fg, frgroup_t *);
3537 	if (fg != NULL) {
3538 		fg->fg_head = head;
3539 		fg->fg_start = NULL;
3540 		fg->fg_next = *fgp;
3541 		bcopy(group, fg->fg_name, strlen(group) + 1);
3542 		fg->fg_flags = gflags;
3543 		fg->fg_ref = 1;
3544 		fg->fg_set = &softc->ipf_groups[unit][set];
3545 		*fgp = fg;
3546 	}
3547 	return fg;
3548 }
3549 
3550 
3551 /* ------------------------------------------------------------------------ */
3552 /* Function:    ipf_group_del                                               */
3553 /* Returns:     int      - number of rules deleted                          */
3554 /* Parameters:  softc(I) - pointer to soft context main structure           */
3555 /*              group(I) - group name to delete                             */
3556 /*              fr(I)    - filter rule from which group is referenced       */
3557 /* Write Locks: ipf_mutex                                                   */
3558 /*                                                                          */
3559 /* This function is called whenever a reference to a group is to be dropped */
3560 /* and thus its reference count needs to be lowered and the group free'd if */
3561 /* the reference count reaches zero. Passing in fr is really for the sole   */
3562 /* purpose of knowing when the head rule is being deleted.                  */
3563 /* ------------------------------------------------------------------------ */
3564 void
3565 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3566 {
3567 
3568 	if (group->fg_head == fr)
3569 		group->fg_head = NULL;
3570 
3571 	group->fg_ref--;
3572 	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3573 		ipf_group_free(group);
3574 }
3575 
3576 
3577 /* ------------------------------------------------------------------------ */
3578 /* Function:    ipf_group_free                                              */
3579 /* Returns:     Nil                                                         */
3580 /* Parameters:  group(I) - pointer to filter rule group                     */
3581 /*                                                                          */
3582 /* Remove the group from the list of groups and free it.                    */
3583 /* ------------------------------------------------------------------------ */
3584 static void
3585 ipf_group_free(frgroup_t *group)
3586 {
3587 	frgroup_t **gp;
3588 
3589 	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3590 		if (*gp == group) {
3591 			*gp = group->fg_next;
3592 			break;
3593 		}
3594 	}
3595 	KFREE(group);
3596 }
3597 
3598 
3599 /* ------------------------------------------------------------------------ */
3600 /* Function:    ipf_group_flush                                             */
3601 /* Returns:     int      - number of rules flush from group                 */
3602 /* Parameters:  softc(I) - pointer to soft context main structure           */
3603 /* Parameters:  group(I) - pointer to filter rule group                     */
3604 /*                                                                          */
3605 /* Remove all of the rules that currently are listed under the given group. */
3606 /* ------------------------------------------------------------------------ */
3607 static int
3608 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3609 {
3610 	int gone = 0;
3611 
3612 	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3613 
3614 	return gone;
3615 }
3616 
3617 
3618 /* ------------------------------------------------------------------------ */
3619 /* Function:    ipf_getrulen                                                */
3620 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3621 /* Parameters:  softc(I) - pointer to soft context main structure           */
3622 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3623 /*              flags(I) - which set of rules to find the rule in           */
3624 /*              group(I) - group name                                       */
3625 /*              n(I)     - rule number to find                              */
3626 /*                                                                          */
3627 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3628 /* group # g doesn't exist or there are less than n rules in the group.     */
3629 /* ------------------------------------------------------------------------ */
3630 frentry_t *
3631 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3632 {
3633 	frentry_t *fr;
3634 	frgroup_t *fg;
3635 
3636 	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3637 	if (fg == NULL)
3638 		return NULL;
3639 	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3640 		;
3641 	if (n != 0)
3642 		return NULL;
3643 	return fr;
3644 }
3645 
3646 
3647 /* ------------------------------------------------------------------------ */
3648 /* Function:    ipf_flushlist                                               */
3649 /* Returns:     int - >= 0 - number of flushed rules                        */
3650 /* Parameters:  softc(I)   - pointer to soft context main structure         */
3651 /*              nfreedp(O) - pointer to int where flush count is stored     */
3652 /*              listp(I)   - pointer to list to flush pointer               */
3653 /* Write Locks: ipf_mutex                                                   */
3654 /*                                                                          */
3655 /* Recursively flush rules from the list, descending groups as they are     */
3656 /* encountered.  if a rule is the head of a group and it has lost all its   */
3657 /* group members, then also delete the group reference.  nfreedp is needed  */
3658 /* to store the accumulating count of rules removed, whereas the returned   */
3659 /* value is just the number removed from the current list.  The latter is   */
3660 /* needed to correctly adjust reference counts on rules that define groups. */
3661 /*                                                                          */
3662 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3663 /* ------------------------------------------------------------------------ */
3664 static int
3665 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3666 {
3667 	int freed = 0;
3668 	frentry_t *fp;
3669 
3670 	while ((fp = *listp) != NULL) {
3671 		if ((fp->fr_type & FR_T_BUILTIN) ||
3672 		    !(fp->fr_flags & FR_COPIED)) {
3673 			listp = &fp->fr_next;
3674 			continue;
3675 		}
3676 		*listp = fp->fr_next;
3677 		if (fp->fr_next != NULL)
3678 			fp->fr_next->fr_pnext = fp->fr_pnext;
3679 		fp->fr_pnext = NULL;
3680 
3681 		if (fp->fr_grphead != NULL) {
3682 			freed += ipf_group_flush(softc, fp->fr_grphead);
3683 			fp->fr_names[fp->fr_grhead] = '\0';
3684 		}
3685 
3686 		if (fp->fr_icmpgrp != NULL) {
3687 			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3688 			fp->fr_names[fp->fr_icmphead] = '\0';
3689 		}
3690 
3691 		if (fp->fr_srctrack.ht_max_nodes)
3692 			ipf_rb_ht_flush(&fp->fr_srctrack);
3693 
3694 		fp->fr_next = NULL;
3695 
3696 		ASSERT(fp->fr_ref > 0);
3697 		if (ipf_derefrule(softc, &fp) == 0)
3698 			freed++;
3699 	}
3700 	*nfreedp += freed;
3701 	return freed;
3702 }
3703 
3704 
3705 /* ------------------------------------------------------------------------ */
3706 /* Function:    ipf_flush                                                   */
3707 /* Returns:     int - >= 0 - number of flushed rules                        */
3708 /* Parameters:  softc(I) - pointer to soft context main structure           */
3709 /*              unit(I)  - device for which to flush rules                  */
3710 /*              flags(I) - which set of rules to flush                      */
3711 /*                                                                          */
3712 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3713 /* and IPv6) as defined by the value of flags.                              */
3714 /* ------------------------------------------------------------------------ */
3715 int
3716 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3717 {
3718 	int flushed = 0, set;
3719 
3720 	WRITE_ENTER(&softc->ipf_mutex);
3721 
3722 	set = softc->ipf_active;
3723 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3724 		set = 1 - set;
3725 
3726 	if (flags & FR_OUTQUE) {
3727 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3728 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3729 	}
3730 	if (flags & FR_INQUE) {
3731 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3732 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3733 	}
3734 
3735 	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3736 				    flags & (FR_INQUE|FR_OUTQUE));
3737 
3738 	RWLOCK_EXIT(&softc->ipf_mutex);
3739 
3740 	if (unit == IPL_LOGIPF) {
3741 		int tmp;
3742 
3743 		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3744 		if (tmp >= 0)
3745 			flushed += tmp;
3746 	}
3747 	return flushed;
3748 }
3749 
3750 
3751 /* ------------------------------------------------------------------------ */
3752 /* Function:    ipf_flush_groups                                            */
3753 /* Returns:     int - >= 0 - number of flushed rules                        */
3754 /* Parameters:  softc(I)  - soft context pointerto work with                */
3755 /*              grhead(I) - pointer to the start of the group list to flush */
3756 /*              flags(I)  - which set of rules to flush                     */
3757 /*                                                                          */
3758 /* Walk through all of the groups under the given group head and remove all */
3759 /* of those that match the flags passed in. The for loop here is bit more   */
3760 /* complicated than usual because the removal of a rule with ipf_derefrule  */
3761 /* may end up removing not only the structure pointed to by "fg" but also   */
3762 /* what is fg_next and fg_next after that. So if a filter rule is actually  */
3763 /* removed from the group then it is necessary to start again.              */
3764 /* ------------------------------------------------------------------------ */
3765 static int
3766 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3767 {
3768 	frentry_t *fr, **frp;
3769 	frgroup_t *fg, **fgp;
3770 	int flushed = 0;
3771 	int removed = 0;
3772 
3773 	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3774 		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3775 			fg = fg->fg_next;
3776 		if (fg == NULL)
3777 			break;
3778 		removed = 0;
3779 		frp = &fg->fg_start;
3780 		while ((removed == 0) && ((fr = *frp) != NULL)) {
3781 			if ((fr->fr_flags & flags) == 0) {
3782 				frp = &fr->fr_next;
3783 			} else {
3784 				if (fr->fr_next != NULL)
3785 					fr->fr_next->fr_pnext = fr->fr_pnext;
3786 				*frp = fr->fr_next;
3787 				fr->fr_pnext = NULL;
3788 				fr->fr_next = NULL;
3789 				(void) ipf_derefrule(softc, &fr);
3790 				flushed++;
3791 				removed++;
3792 			}
3793 		}
3794 		if (removed == 0)
3795 			fgp = &fg->fg_next;
3796 	}
3797 	return flushed;
3798 }
3799 
3800 
3801 /* ------------------------------------------------------------------------ */
3802 /* Function:    memstr                                                      */
3803 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3804 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3805 /*              dst(I)  - pointer to byte sequence to search                */
3806 /*              slen(I) - match length                                      */
3807 /*              dlen(I) - length available to search in                     */
3808 /*                                                                          */
3809 /* Search dst for a sequence of bytes matching those at src and extend for  */
3810 /* slen bytes.                                                              */
3811 /* ------------------------------------------------------------------------ */
3812 char *
3813 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3814 {
3815 	char *s = NULL;
3816 
3817 	while (dlen >= slen) {
3818 		if (memcmp(src, dst, slen) == 0) {
3819 			s = dst;
3820 			break;
3821 		}
3822 		dst++;
3823 		dlen--;
3824 	}
3825 	return s;
3826 }
3827 
3828 
3829 /* ------------------------------------------------------------------------ */
3830 /* Function:    ipf_fixskip                                                 */
3831 /* Returns:     Nil                                                         */
3832 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3833 /*              rp(I)        - rule added/removed with skip in it.          */
3834 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3835 /*                             depending on whether a rule was just added   */
3836 /*                             or removed.                                  */
3837 /*                                                                          */
3838 /* Adjust all the rules in a list which would have skip'd past the position */
3839 /* where we are inserting to skip to the right place given the change.      */
3840 /* ------------------------------------------------------------------------ */
3841 void
3842 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3843 {
3844 	int rules, rn;
3845 	frentry_t *fp;
3846 
3847 	rules = 0;
3848 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3849 		rules++;
3850 
3851 	if (!fp)
3852 		return;
3853 
3854 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3855 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3856 			fp->fr_arg += addremove;
3857 }
3858 
3859 
3860 #ifdef	_KERNEL
3861 /* ------------------------------------------------------------------------ */
3862 /* Function:    count4bits                                                  */
3863 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3864 /* Parameters:  ip(I) - 32bit IP address                                    */
3865 /*                                                                          */
3866 /* IPv4 ONLY                                                                */
3867 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3868 /* consecutive 1's is different to that passed, return -1, else return #    */
3869 /* of bits.                                                                 */
3870 /* ------------------------------------------------------------------------ */
3871 int
3872 count4bits(u_32_t ip)
3873 {
3874 	u_32_t	ipn;
3875 	int	cnt = 0, i, j;
3876 
3877 	ip = ipn = ntohl(ip);
3878 	for (i = 32; i; i--, ipn *= 2)
3879 		if (ipn & 0x80000000)
3880 			cnt++;
3881 		else
3882 			break;
3883 	ipn = 0;
3884 	for (i = 32, j = cnt; i; i--, j--) {
3885 		ipn *= 2;
3886 		if (j > 0)
3887 			ipn++;
3888 	}
3889 	if (ipn == ip)
3890 		return cnt;
3891 	return -1;
3892 }
3893 
3894 
3895 /* ------------------------------------------------------------------------ */
3896 /* Function:    count6bits                                                  */
3897 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3898 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3899 /*                                                                          */
3900 /* IPv6 ONLY                                                                */
3901 /* count consecutive 1's in bit mask.                                       */
3902 /* ------------------------------------------------------------------------ */
3903 # ifdef USE_INET6
3904 int
3905 count6bits(u_32_t *msk)
3906 {
3907 	int i = 0, k;
3908 	u_32_t j;
3909 
3910 	for (k = 3; k >= 0; k--)
3911 		if (msk[k] == 0xffffffff)
3912 			i += 32;
3913 		else {
3914 			for (j = msk[k]; j; j <<= 1)
3915 				if (j & 0x80000000)
3916 					i++;
3917 		}
3918 	return i;
3919 }
3920 # endif
3921 #endif /* _KERNEL */
3922 
3923 
3924 /* ------------------------------------------------------------------------ */
3925 /* Function:    ipf_synclist                                                */
3926 /* Returns:     int    - 0 = no failures, else indication of first failure  */
3927 /* Parameters:  fr(I)  - start of filter list to sync interface names for   */
3928 /*              ifp(I) - interface pointer for limiting sync lookups        */
3929 /* Write Locks: ipf_mutex                                                   */
3930 /*                                                                          */
3931 /* Walk through a list of filter rules and resolve any interface names into */
3932 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3933 /* used in the rule.  The interface pointer is used to limit the lookups to */
3934 /* a specific set of matching names if it is non-NULL.                      */
3935 /* Errors can occur when resolving the destination name of to/dup-to fields */
3936 /* when the name points to a pool and that pool doest not exist. If this    */
3937 /* does happen then it is necessary to check if there are any lookup refs   */
3938 /* that need to be dropped before returning with an error.                  */
3939 /* ------------------------------------------------------------------------ */
3940 static int
3941 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3942 {
3943 	frentry_t *frt, *start = fr;
3944 	frdest_t *fdp;
3945 	char *name;
3946 	int error;
3947 	void *ifa;
3948 	int v, i;
3949 
3950 	error = 0;
3951 
3952 	for (; fr; fr = fr->fr_next) {
3953 		if (fr->fr_family == AF_INET)
3954 			v = 4;
3955 		else if (fr->fr_family == AF_INET6)
3956 			v = 6;
3957 		else
3958 			v = 0;
3959 
3960 		/*
3961 		 * Lookup all the interface names that are part of the rule.
3962 		 */
3963 		for (i = 0; i < 4; i++) {
3964 			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3965 				continue;
3966 			if (fr->fr_ifnames[i] == -1)
3967 				continue;
3968 			name = FR_NAME(fr, fr_ifnames[i]);
3969 			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3970 		}
3971 
3972 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3973 			if (fr->fr_satype != FRI_NORMAL &&
3974 			    fr->fr_satype != FRI_LOOKUP) {
3975 				ifa = ipf_resolvenic(softc, fr->fr_names +
3976 						     fr->fr_sifpidx, v);
3977 				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3978 					    &fr->fr_src6, &fr->fr_smsk6);
3979 			}
3980 			if (fr->fr_datype != FRI_NORMAL &&
3981 			    fr->fr_datype != FRI_LOOKUP) {
3982 				ifa = ipf_resolvenic(softc, fr->fr_names +
3983 						     fr->fr_sifpidx, v);
3984 				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3985 					    &fr->fr_dst6, &fr->fr_dmsk6);
3986 			}
3987 		}
3988 
3989 		fdp = &fr->fr_tifs[0];
3990 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3991 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3992 			if (error != 0)
3993 				goto unwind;
3994 		}
3995 
3996 		fdp = &fr->fr_tifs[1];
3997 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3998 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3999 			if (error != 0)
4000 				goto unwind;
4001 		}
4002 
4003 		fdp = &fr->fr_dif;
4004 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4005 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4006 			if (error != 0)
4007 				goto unwind;
4008 		}
4009 
4010 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4011 		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4012 			fr->fr_srcptr = ipf_lookup_res_num(softc,
4013 							   fr->fr_srctype,
4014 							   IPL_LOGIPF,
4015 							   fr->fr_srcnum,
4016 							   &fr->fr_srcfunc);
4017 		}
4018 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4019 		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4020 			fr->fr_dstptr = ipf_lookup_res_num(softc,
4021 							   fr->fr_dsttype,
4022 							   IPL_LOGIPF,
4023 							   fr->fr_dstnum,
4024 							   &fr->fr_dstfunc);
4025 		}
4026 	}
4027 	return 0;
4028 
4029 unwind:
4030 	for (frt = start; frt != fr; fr = fr->fr_next) {
4031 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4032 		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4033 				ipf_lookup_deref(softc, frt->fr_srctype,
4034 						 frt->fr_srcptr);
4035 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4036 		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4037 				ipf_lookup_deref(softc, frt->fr_dsttype,
4038 						 frt->fr_dstptr);
4039 	}
4040 	return error;
4041 }
4042 
4043 
4044 /* ------------------------------------------------------------------------ */
4045 /* Function:    ipf_sync                                                    */
4046 /* Returns:     void                                                        */
4047 /* Parameters:  Nil                                                         */
4048 /*                                                                          */
4049 /* ipf_sync() is called when we suspect that the interface list or          */
4050 /* information about interfaces (like IP#) has changed.  Go through all     */
4051 /* filter rules, NAT entries and the state table and check if anything      */
4052 /* needs to be changed/updated.                                             */
4053 /* ------------------------------------------------------------------------ */
4054 int
4055 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4056 {
4057 	int i;
4058 
4059 # if !SOLARIS
4060 	ipf_nat_sync(softc, ifp);
4061 	ipf_state_sync(softc, ifp);
4062 	ipf_lookup_sync(softc, ifp);
4063 # endif
4064 
4065 	WRITE_ENTER(&softc->ipf_mutex);
4066 	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4067 	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4068 	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4069 	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4070 
4071 	for (i = 0; i < IPL_LOGSIZE; i++) {
4072 		frgroup_t *g;
4073 
4074 		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4075 			(void) ipf_synclist(softc, g->fg_start, ifp);
4076 		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4077 			(void) ipf_synclist(softc, g->fg_start, ifp);
4078 	}
4079 	RWLOCK_EXIT(&softc->ipf_mutex);
4080 
4081 	return 0;
4082 }
4083 
4084 
4085 /*
4086  * In the functions below, bcopy() is called because the pointer being
4087  * copied _from_ in this instance is a pointer to a char buf (which could
4088  * end up being unaligned) and on the kernel's local stack.
4089  */
4090 /* ------------------------------------------------------------------------ */
4091 /* Function:    copyinptr                                                   */
4092 /* Returns:     int - 0 = success, else failure                             */
4093 /* Parameters:  src(I)  - pointer to the source address                     */
4094 /*              dst(I)  - destination address                               */
4095 /*              size(I) - number of bytes to copy                           */
4096 /*                                                                          */
4097 /* Copy a block of data in from user space, given a pointer to the pointer  */
4098 /* to start copying from (src) and a pointer to where to store it (dst).    */
4099 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4100 /* ------------------------------------------------------------------------ */
4101 int
4102 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4103 {
4104 	void *ca;
4105 	int error;
4106 
4107 # if SOLARIS
4108 	error = COPYIN(src, &ca, sizeof(ca));
4109 	if (error != 0)
4110 		return error;
4111 # else
4112 	bcopy(src, (void *)&ca, sizeof(ca));
4113 # endif
4114 	error = COPYIN(ca, dst, size);
4115 	if (error != 0) {
4116 		IPFERROR(3);
4117 		error = EFAULT;
4118 	}
4119 	return error;
4120 }
4121 
4122 
4123 /* ------------------------------------------------------------------------ */
4124 /* Function:    copyoutptr                                                  */
4125 /* Returns:     int - 0 = success, else failure                             */
4126 /* Parameters:  src(I)  - pointer to the source address                     */
4127 /*              dst(I)  - destination address                               */
4128 /*              size(I) - number of bytes to copy                           */
4129 /*                                                                          */
4130 /* Copy a block of data out to user space, given a pointer to the pointer   */
4131 /* to start copying from (src) and a pointer to where to store it (dst).    */
4132 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4133 /* ------------------------------------------------------------------------ */
4134 int
4135 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4136 {
4137 	void *ca;
4138 	int error;
4139 
4140 	bcopy(dst, &ca, sizeof(ca));
4141 	error = COPYOUT(src, ca, size);
4142 	if (error != 0) {
4143 		IPFERROR(4);
4144 		error = EFAULT;
4145 	}
4146 	return error;
4147 }
4148 #ifdef	_KERNEL
4149 #endif
4150 
4151 
4152 /* ------------------------------------------------------------------------ */
4153 /* Function:    ipf_lock                                                    */
4154 /* Returns:     int      - 0 = success, else error                          */
4155 /* Parameters:  data(I)  - pointer to lock value to set                     */
4156 /*              lockp(O) - pointer to location to store old lock value      */
4157 /*                                                                          */
4158 /* Get the new value for the lock integer, set it and return the old value  */
4159 /* in *lockp.                                                               */
4160 /* ------------------------------------------------------------------------ */
4161 int
4162 ipf_lock(void *data, int *lockp)
4163 {
4164 	int arg, err;
4165 
4166 	err = BCOPYIN(data, &arg, sizeof(arg));
4167 	if (err != 0)
4168 		return EFAULT;
4169 	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4170 	if (err != 0)
4171 		return EFAULT;
4172 	*lockp = arg;
4173 	return 0;
4174 }
4175 
4176 
4177 /* ------------------------------------------------------------------------ */
4178 /* Function:    ipf_getstat                                                 */
4179 /* Returns:     Nil                                                         */
4180 /* Parameters:  softc(I) - pointer to soft context main structure           */
4181 /*              fiop(I)  - pointer to ipfilter stats structure              */
4182 /*              rev(I)   - version claim by program doing ioctl             */
4183 /*                                                                          */
4184 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4185 /* structure.                                                               */
4186 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4187 /* program is looking for. This ensure that validation of the version it    */
4188 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4189 /* allow older binaries to work but kernels without it will not.            */
4190 /* ------------------------------------------------------------------------ */
4191 /*ARGSUSED*/
4192 static void
4193 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4194 {
4195 	int i;
4196 
4197 	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4198 	      sizeof(ipf_statistics_t) * 2);
4199 	fiop->f_locks[IPL_LOGSTATE] = -1;
4200 	fiop->f_locks[IPL_LOGNAT] = -1;
4201 	fiop->f_locks[IPL_LOGIPF] = -1;
4202 	fiop->f_locks[IPL_LOGAUTH] = -1;
4203 
4204 	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4205 	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4206 	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4207 	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4208 	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4209 	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4210 	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4211 	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4212 
4213 	fiop->f_ticks = softc->ipf_ticks;
4214 	fiop->f_active = softc->ipf_active;
4215 	fiop->f_froute[0] = softc->ipf_frouteok[0];
4216 	fiop->f_froute[1] = softc->ipf_frouteok[1];
4217 	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4218 	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4219 
4220 	fiop->f_running = softc->ipf_running;
4221 	for (i = 0; i < IPL_LOGSIZE; i++) {
4222 		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4223 		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4224 	}
4225 #ifdef  IPFILTER_LOG
4226 	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4227 	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4228 	fiop->f_logging = 1;
4229 #else
4230 	fiop->f_log_ok = 0;
4231 	fiop->f_log_fail = 0;
4232 	fiop->f_logging = 0;
4233 #endif
4234 	fiop->f_defpass = softc->ipf_pass;
4235 	fiop->f_features = ipf_features;
4236 
4237 #ifdef IPFILTER_COMPAT
4238 	snprintf(fiop->f_version, sizeof(fiop->f_version),
4239 		 "IP Filter: v%d.%d.%d", (rev / 1000000) % 100,
4240 		 (rev / 10000) % 100, (rev / 100) % 100);
4241 #else
4242 	rev = rev;
4243 	(void) strncpy(fiop->f_version, ipfilter_version,
4244 		       sizeof(fiop->f_version));
4245         fiop->f_version[sizeof(fiop->f_version) - 1] = '\0';
4246 #endif
4247 }
4248 
4249 
4250 #ifdef	USE_INET6
4251 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4252 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4253 	-1,			/* 1: UNUSED */
4254 	-1,			/* 2: UNUSED */
4255 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4256 	-1,			/* 4: ICMP_SOURCEQUENCH */
4257 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4258 	-1,			/* 6: UNUSED */
4259 	-1,			/* 7: UNUSED */
4260 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4261 	-1,			/* 9: UNUSED */
4262 	-1,			/* 10: UNUSED */
4263 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4264 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4265 	-1,			/* 13: ICMP_TSTAMP */
4266 	-1,			/* 14: ICMP_TSTAMPREPLY */
4267 	-1,			/* 15: ICMP_IREQ */
4268 	-1,			/* 16: ICMP_IREQREPLY */
4269 	-1,			/* 17: ICMP_MASKREQ */
4270 	-1,			/* 18: ICMP_MASKREPLY */
4271 };
4272 
4273 
4274 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4275 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4276 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4277 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4278 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4279 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4280 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4281 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4282 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4283 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4284 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4285 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4286 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4287 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4288 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4289 };
4290 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4291 #endif
4292 
4293 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4294 
4295 
4296 /* ------------------------------------------------------------------------ */
4297 /* Function:    ipf_matchicmpqueryreply                                     */
4298 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4299 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4300 /*              ic(I)   - ICMP information                                  */
4301 /*              icmp(I) - ICMP packet header                                */
4302 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4303 /*                                                                          */
4304 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4305 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4306 /* else return 0 for no match.                                              */
4307 /* ------------------------------------------------------------------------ */
4308 int
4309 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4310 {
4311 	int ictype;
4312 
4313 	ictype = ic->ici_type;
4314 
4315 	if (v == 4) {
4316 		/*
4317 		 * If we matched its type on the way in, then when going out
4318 		 * it will still be the same type.
4319 		 */
4320 		if ((!rev && (icmp->icmp_type == ictype)) ||
4321 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4322 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4323 				return 1;
4324 			if (icmp->icmp_id == ic->ici_id)
4325 				return 1;
4326 		}
4327 	}
4328 #ifdef	USE_INET6
4329 	else if (v == 6) {
4330 		if ((!rev && (icmp->icmp_type == ictype)) ||
4331 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4332 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4333 				return 1;
4334 			if (icmp->icmp_id == ic->ici_id)
4335 				return 1;
4336 		}
4337 	}
4338 #endif
4339 	return 0;
4340 }
4341 
4342 /* ------------------------------------------------------------------------ */
4343 /* Function:    ipf_rule_compare                                            */
4344 /* Parameters:  fr1(I) - first rule structure to compare                    */
4345 /*              fr2(I) - second rule structure to compare                   */
4346 /* Returns:     int    - 0 == rules are the same, else mismatch             */
4347 /*                                                                          */
4348 /* Compare two rules and return 0 if they match or a number indicating      */
4349 /* which of the individual checks failed.                                   */
4350 /* ------------------------------------------------------------------------ */
4351 static int
4352 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4353 {
4354 	if (fr1->fr_cksum != fr2->fr_cksum)
4355 		return 1;
4356 	if (fr1->fr_size != fr2->fr_size)
4357 		return 2;
4358 	if (fr1->fr_dsize != fr2->fr_dsize)
4359 		return 3;
4360 	if (memcmp(&fr1->fr_func, &fr2->fr_func,
4361 		 fr1->fr_size - offsetof(struct frentry, fr_func)) != 0)
4362 		return 4;
4363 	if (fr1->fr_data && !fr2->fr_data)
4364 		return 5;
4365 	if (!fr1->fr_data && fr2->fr_data)
4366 		return 6;
4367 	if (fr1->fr_data) {
4368 		if (memcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize))
4369 			return 7;
4370 	}
4371 	return 0;
4372 }
4373 
4374 
4375 /* ------------------------------------------------------------------------ */
4376 /* Function:    frrequest                                                   */
4377 /* Returns:     int - 0 == success, > 0 == errno value                      */
4378 /* Parameters:  unit(I)     - device for which this is for                  */
4379 /*              req(I)      - ioctl command (SIOC*)                         */
4380 /*              data(I)     - pointr to ioctl data                          */
4381 /*              set(I)      - 1 or 0 (filter set)                           */
4382 /*              makecopy(I) - flag indicating whether data points to a rule */
4383 /*                            in kernel space & hence doesn't need copying. */
4384 /*                                                                          */
4385 /* This function handles all the requests which operate on the list of      */
4386 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4387 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4388 /* names are resolved here and other sanity checks are made on the content  */
4389 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4390 /* then make sure they are created and initialised before exiting.          */
4391 /* ------------------------------------------------------------------------ */
4392 int
4393 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data,
4394     int set, int makecopy)
4395 {
4396 	int error = 0, in, family, addrem, need_free = 0;
4397 	frentry_t frd, *fp, *f, **fprev, **ftail;
4398 	void *ptr, *uptr;
4399 	u_int *p, *pp;
4400 	frgroup_t *fg;
4401 	char *group;
4402 
4403 	ptr = NULL;
4404 	fg = NULL;
4405 	fp = &frd;
4406 	if (makecopy != 0) {
4407 		bzero(fp, sizeof(frd));
4408 		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4409 		if (error) {
4410 			return error;
4411 		}
4412 		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4413 			IPFERROR(6);
4414 			return EINVAL;
4415 		}
4416 		KMALLOCS(f, frentry_t *, fp->fr_size);
4417 		if (f == NULL) {
4418 			IPFERROR(131);
4419 			return ENOMEM;
4420 		}
4421 		bzero(f, fp->fr_size);
4422 		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4423 				    fp->fr_size);
4424 		if (error) {
4425 			KFREES(f, fp->fr_size);
4426 			return error;
4427 		}
4428 
4429 		fp = f;
4430 		f = NULL;
4431 		fp->fr_next = NULL;
4432 		fp->fr_dnext = NULL;
4433 		fp->fr_pnext = NULL;
4434 		fp->fr_pdnext = NULL;
4435 		fp->fr_grp = NULL;
4436 		fp->fr_grphead = NULL;
4437 		fp->fr_icmpgrp = NULL;
4438 		fp->fr_isc = (void *)-1;
4439 		fp->fr_ptr = NULL;
4440 		fp->fr_ref = 0;
4441 		fp->fr_flags |= FR_COPIED;
4442 	} else {
4443 		fp = (frentry_t *)data;
4444 		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4445 			IPFERROR(7);
4446 			return EINVAL;
4447 		}
4448 		fp->fr_flags &= ~FR_COPIED;
4449 	}
4450 
4451 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4452 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4453 		IPFERROR(8);
4454 		error = EINVAL;
4455 		goto donenolock;
4456 	}
4457 
4458 	family = fp->fr_family;
4459 	uptr = fp->fr_data;
4460 
4461 	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4462 	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4463 		addrem = 0;
4464 	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4465 		addrem = 1;
4466 	else if (req == (ioctlcmd_t)SIOCZRLST)
4467 		addrem = 2;
4468 	else {
4469 		IPFERROR(9);
4470 		error = EINVAL;
4471 		goto donenolock;
4472 	}
4473 
4474 	/*
4475 	 * Only filter rules for IPv4 or IPv6 are accepted.
4476 	 */
4477 	if (family == AF_INET) {
4478 		/*EMPTY*/;
4479 #ifdef	USE_INET6
4480 	} else if (family == AF_INET6) {
4481 		/*EMPTY*/;
4482 #endif
4483 	} else if (family != 0) {
4484 		IPFERROR(10);
4485 		error = EINVAL;
4486 		goto donenolock;
4487 	}
4488 
4489 	/*
4490 	 * If the rule is being loaded from user space, i.e. we had to copy it
4491 	 * into kernel space, then do not trust the function pointer in the
4492 	 * rule.
4493 	 */
4494 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4495 		if (ipf_findfunc(fp->fr_func) == NULL) {
4496 			IPFERROR(11);
4497 			error = ESRCH;
4498 			goto donenolock;
4499 		}
4500 
4501 		if (addrem == 0) {
4502 			error = ipf_funcinit(softc, fp);
4503 			if (error != 0)
4504 				goto donenolock;
4505 		}
4506 	}
4507 	if ((fp->fr_flags & FR_CALLNOW) &&
4508 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4509 		IPFERROR(142);
4510 		error = ESRCH;
4511 		goto donenolock;
4512 	}
4513 	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4514 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4515 		IPFERROR(143);
4516 		error = ESRCH;
4517 		goto donenolock;
4518 	}
4519 
4520 	ptr = NULL;
4521 
4522 	if (FR_ISACCOUNT(fp->fr_flags))
4523 		unit = IPL_LOGCOUNT;
4524 
4525 	/*
4526 	 * Check that each group name in the rule has a start index that
4527 	 * is valid.
4528 	 */
4529 	if (fp->fr_icmphead != -1) {
4530 		if ((fp->fr_icmphead < 0) ||
4531 		    (fp->fr_icmphead >= fp->fr_namelen)) {
4532 			IPFERROR(136);
4533 			error = EINVAL;
4534 			goto donenolock;
4535 		}
4536 		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4537 			fp->fr_names[fp->fr_icmphead] = '\0';
4538 	}
4539 
4540 	if (fp->fr_grhead != -1) {
4541 		if ((fp->fr_grhead < 0) ||
4542 		    (fp->fr_grhead >= fp->fr_namelen)) {
4543 			IPFERROR(137);
4544 			error = EINVAL;
4545 			goto donenolock;
4546 		}
4547 		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4548 			fp->fr_names[fp->fr_grhead] = '\0';
4549 	}
4550 
4551 	if (fp->fr_group != -1) {
4552 		if ((fp->fr_group < 0) ||
4553 		    (fp->fr_group >= fp->fr_namelen)) {
4554 			IPFERROR(138);
4555 			error = EINVAL;
4556 			goto donenolock;
4557 		}
4558 		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4559 			/*
4560 			 * Allow loading rules that are in groups to cause
4561 			 * them to be created if they don't already exit.
4562 			 */
4563 			group = FR_NAME(fp, fr_group);
4564 			if (addrem == 0) {
4565 				fg = ipf_group_add(softc, group, NULL,
4566 						   fp->fr_flags, unit, set);
4567 				if (fg == NULL) {
4568 					IPFERROR(152);
4569 					error = ESRCH;
4570 					goto donenolock;
4571 				}
4572 				fp->fr_grp = fg;
4573 			} else {
4574 				fg = ipf_findgroup(softc, group, unit,
4575 						   set, NULL);
4576 				if (fg == NULL) {
4577 					IPFERROR(12);
4578 					error = ESRCH;
4579 					goto donenolock;
4580 				}
4581 			}
4582 
4583 			if (fg->fg_flags == 0) {
4584 				fg->fg_flags = fp->fr_flags & FR_INOUT;
4585 			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4586 				IPFERROR(13);
4587 				error = ESRCH;
4588 				goto donenolock;
4589 			}
4590 		}
4591 	} else {
4592 		/*
4593 		 * If a rule is going to be part of a group then it does
4594 		 * not matter whether it is an in or out rule, but if it
4595 		 * isn't in a group, then it does...
4596 		 */
4597 		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4598 			IPFERROR(14);
4599 			error = EINVAL;
4600 			goto donenolock;
4601 		}
4602 	}
4603 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4604 
4605 	/*
4606 	 * Work out which rule list this change is being applied to.
4607 	 */
4608 	ftail = NULL;
4609 	fprev = NULL;
4610 	if (unit == IPL_LOGAUTH) {
4611 		if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4612 		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4613 		    (fp->fr_dif.fd_ptr != NULL) ||
4614 		    (fp->fr_flags & FR_FASTROUTE)) {
4615 			IPFERROR(145);
4616 			error = EINVAL;
4617 			goto donenolock;
4618 		}
4619 		fprev = ipf_auth_rulehead(softc);
4620 	} else {
4621 		if (FR_ISACCOUNT(fp->fr_flags))
4622 			fprev = &softc->ipf_acct[in][set];
4623 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4624 			fprev = &softc->ipf_rules[in][set];
4625 	}
4626 	if (fprev == NULL) {
4627 		IPFERROR(15);
4628 		error = ESRCH;
4629 		goto donenolock;
4630 	}
4631 
4632 	if (fg != NULL)
4633 		fprev = &fg->fg_start;
4634 
4635 	/*
4636 	 * Copy in extra data for the rule.
4637 	 */
4638 	if (fp->fr_dsize != 0) {
4639 		if (makecopy != 0) {
4640 			KMALLOCS(ptr, void *, fp->fr_dsize);
4641 			if (ptr == NULL) {
4642 				IPFERROR(16);
4643 				error = ENOMEM;
4644 				goto donenolock;
4645 			}
4646 
4647 			/*
4648 			 * The bcopy case is for when the data is appended
4649 			 * to the rule by ipf_in_compat().
4650 			 */
4651 			if (uptr >= (void *)fp &&
4652 			    uptr < (void *)((char *)fp + fp->fr_size)) {
4653 				bcopy(uptr, ptr, fp->fr_dsize);
4654 				error = 0;
4655 			} else {
4656 				error = COPYIN(uptr, ptr, fp->fr_dsize);
4657 				if (error != 0) {
4658 					IPFERROR(17);
4659 					error = EFAULT;
4660 					goto donenolock;
4661 				}
4662 			}
4663 		} else {
4664 			ptr = uptr;
4665 		}
4666 		fp->fr_data = ptr;
4667 	} else {
4668 		fp->fr_data = NULL;
4669 	}
4670 
4671 	/*
4672 	 * Perform per-rule type sanity checks of their members.
4673 	 * All code after this needs to be aware that allocated memory
4674 	 * may need to be free'd before exiting.
4675 	 */
4676 	switch (fp->fr_type & ~FR_T_BUILTIN)
4677 	{
4678 #if defined(IPFILTER_BPF)
4679 	case FR_T_BPFOPC :
4680 		if (fp->fr_dsize == 0) {
4681 			IPFERROR(19);
4682 			error = EINVAL;
4683 			break;
4684 		}
4685 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4686 			IPFERROR(20);
4687 			error = EINVAL;
4688 			break;
4689 		}
4690 		break;
4691 #endif
4692 	case FR_T_IPF :
4693 		/*
4694 		 * Preparation for error case at the bottom of this function.
4695 		 */
4696 		if (fp->fr_datype == FRI_LOOKUP)
4697 			fp->fr_dstptr = NULL;
4698 		if (fp->fr_satype == FRI_LOOKUP)
4699 			fp->fr_srcptr = NULL;
4700 
4701 		if (fp->fr_dsize != sizeof(fripf_t)) {
4702 			IPFERROR(21);
4703 			error = EINVAL;
4704 			break;
4705 		}
4706 
4707 		/*
4708 		 * Allowing a rule with both "keep state" and "with oow" is
4709 		 * pointless because adding a state entry to the table will
4710 		 * fail with the out of window (oow) flag set.
4711 		 */
4712 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4713 			IPFERROR(22);
4714 			error = EINVAL;
4715 			break;
4716 		}
4717 
4718 		switch (fp->fr_satype)
4719 		{
4720 		case FRI_BROADCAST :
4721 		case FRI_DYNAMIC :
4722 		case FRI_NETWORK :
4723 		case FRI_NETMASKED :
4724 		case FRI_PEERADDR :
4725 			if (fp->fr_sifpidx < 0) {
4726 				IPFERROR(23);
4727 				error = EINVAL;
4728 			}
4729 			break;
4730 		case FRI_LOOKUP :
4731 			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4732 						       &fp->fr_src6,
4733 						       &fp->fr_smsk6);
4734 			if (fp->fr_srcfunc == NULL) {
4735 				IPFERROR(132);
4736 				error = ESRCH;
4737 				break;
4738 			}
4739 			break;
4740 		case FRI_NORMAL :
4741 			break;
4742 		default :
4743 			IPFERROR(133);
4744 			error = EINVAL;
4745 			break;
4746 		}
4747 		if (error != 0)
4748 			break;
4749 
4750 		switch (fp->fr_datype)
4751 		{
4752 		case FRI_BROADCAST :
4753 		case FRI_DYNAMIC :
4754 		case FRI_NETWORK :
4755 		case FRI_NETMASKED :
4756 		case FRI_PEERADDR :
4757 			if (fp->fr_difpidx < 0) {
4758 				IPFERROR(24);
4759 				error = EINVAL;
4760 			}
4761 			break;
4762 		case FRI_LOOKUP :
4763 			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4764 						       &fp->fr_dst6,
4765 						       &fp->fr_dmsk6);
4766 			if (fp->fr_dstfunc == NULL) {
4767 				IPFERROR(134);
4768 				error = ESRCH;
4769 			}
4770 			break;
4771 		case FRI_NORMAL :
4772 			break;
4773 		default :
4774 			IPFERROR(135);
4775 			error = EINVAL;
4776 		}
4777 		break;
4778 
4779 	case FR_T_NONE :
4780 	case FR_T_CALLFUNC :
4781 	case FR_T_COMPIPF :
4782 		break;
4783 
4784 	case FR_T_IPFEXPR :
4785 		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4786 			IPFERROR(25);
4787 			error = EINVAL;
4788 		}
4789 		break;
4790 
4791 	default :
4792 		IPFERROR(26);
4793 		error = EINVAL;
4794 		break;
4795 	}
4796 	if (error != 0)
4797 		goto donenolock;
4798 
4799 	if (fp->fr_tif.fd_name != -1) {
4800 		if ((fp->fr_tif.fd_name < 0) ||
4801 		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4802 			IPFERROR(139);
4803 			error = EINVAL;
4804 			goto donenolock;
4805 		}
4806 	}
4807 
4808 	if (fp->fr_dif.fd_name != -1) {
4809 		if ((fp->fr_dif.fd_name < 0) ||
4810 		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4811 			IPFERROR(140);
4812 			error = EINVAL;
4813 			goto donenolock;
4814 		}
4815 	}
4816 
4817 	if (fp->fr_rif.fd_name != -1) {
4818 		if ((fp->fr_rif.fd_name < 0) ||
4819 		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4820 			IPFERROR(141);
4821 			error = EINVAL;
4822 			goto donenolock;
4823 		}
4824 	}
4825 
4826 	/*
4827 	 * Lookup all the interface names that are part of the rule.
4828 	 */
4829 	error = ipf_synclist(softc, fp, NULL);
4830 	if (error != 0)
4831 		goto donenolock;
4832 	fp->fr_statecnt = 0;
4833 	if (fp->fr_srctrack.ht_max_nodes != 0)
4834 		ipf_rb_ht_init(&fp->fr_srctrack);
4835 
4836 	/*
4837 	 * Look for an existing matching filter rule, but don't include the
4838 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4839 	 * This elminates rules which are indentical being loaded.  Checksum
4840 	 * the constant part of the filter rule to make comparisons quicker
4841 	 * (this meaning no pointers are included).
4842 	 */
4843 	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4844 	     p < pp; p++)
4845 		fp->fr_cksum += *p;
4846 	pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize);
4847 	for (p = (u_int *)fp->fr_data; p < pp; p++)
4848 		fp->fr_cksum += *p;
4849 
4850 	WRITE_ENTER(&softc->ipf_mutex);
4851 
4852 	/*
4853 	 * Now that the filter rule lists are locked, we can walk the
4854 	 * chain of them without fear.
4855 	 */
4856 	ftail = fprev;
4857 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4858 		if (fp->fr_collect <= f->fr_collect) {
4859 			ftail = fprev;
4860 			f = NULL;
4861 			break;
4862 		}
4863 		fprev = ftail;
4864 	}
4865 
4866 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4867 		DT2(rule_cmp, frentry_t *, fp, frentry_t *, f);
4868 		if (ipf_rule_compare(fp, f) == 0)
4869 			break;
4870 	}
4871 
4872 	/*
4873 	 * If zero'ing statistics, copy current to caller and zero.
4874 	 */
4875 	if (addrem == 2) {
4876 		if (f == NULL) {
4877 			IPFERROR(27);
4878 			error = ESRCH;
4879 		} else {
4880 			/*
4881 			 * Copy and reduce lock because of impending copyout.
4882 			 * Well we should, but if we do then the atomicity of
4883 			 * this call and the correctness of fr_hits and
4884 			 * fr_bytes cannot be guaranteed.  As it is, this code
4885 			 * only resets them to 0 if they are successfully
4886 			 * copied out into user space.
4887 			 */
4888 			bcopy((char *)f, (char *)fp, f->fr_size);
4889 			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4890 
4891 			/*
4892 			 * When we copy this rule back out, set the data
4893 			 * pointer to be what it was in user space.
4894 			 */
4895 			fp->fr_data = uptr;
4896 			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4897 
4898 			if (error == 0) {
4899 				if ((f->fr_dsize != 0) && (uptr != NULL)) {
4900 					error = COPYOUT(f->fr_data, uptr,
4901 							f->fr_dsize);
4902 					if (error != 0) {
4903 						IPFERROR(28);
4904 						error = EFAULT;
4905 					}
4906 				}
4907 				if (error == 0) {
4908 					f->fr_hits = 0;
4909 					f->fr_bytes = 0;
4910 				}
4911 			}
4912 		}
4913 
4914 		if (makecopy != 0) {
4915 			if (ptr != NULL) {
4916 				KFREES(ptr, fp->fr_dsize);
4917 			}
4918 			KFREES(fp, fp->fr_size);
4919 		}
4920 		RWLOCK_EXIT(&softc->ipf_mutex);
4921 		return error;
4922 	}
4923 
4924   	if (!f) {
4925 		/*
4926 		 * At the end of this, ftail must point to the place where the
4927 		 * new rule is to be saved/inserted/added.
4928 		 * For SIOCAD*FR, this should be the last rule in the group of
4929 		 * rules that have equal fr_collect fields.
4930 		 * For SIOCIN*FR, ...
4931 		 */
4932 		if (req == (ioctlcmd_t)SIOCADAFR ||
4933 		    req == (ioctlcmd_t)SIOCADIFR) {
4934 
4935 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4936 				if (f->fr_collect > fp->fr_collect)
4937 					break;
4938 				ftail = &f->fr_next;
4939 				fprev = ftail;
4940 			}
4941 			ftail = fprev;
4942 			f = NULL;
4943 			ptr = NULL;
4944 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4945 			   req == (ioctlcmd_t)SIOCINIFR) {
4946 			while ((f = *fprev) != NULL) {
4947 				if (f->fr_collect >= fp->fr_collect)
4948 					break;
4949 				fprev = &f->fr_next;
4950 			}
4951   			ftail = fprev;
4952   			if (fp->fr_hits != 0) {
4953 				while (fp->fr_hits && (f = *ftail)) {
4954 					if (f->fr_collect != fp->fr_collect)
4955 						break;
4956 					fprev = ftail;
4957   					ftail = &f->fr_next;
4958 					fp->fr_hits--;
4959 				}
4960   			}
4961   			f = NULL;
4962   			ptr = NULL;
4963 		}
4964 	}
4965 
4966 	/*
4967 	 * Request to remove a rule.
4968 	 */
4969 	if (addrem == 1) {
4970 		if (!f) {
4971 			IPFERROR(29);
4972 			error = ESRCH;
4973 		} else {
4974 			/*
4975 			 * Do not allow activity from user space to interfere
4976 			 * with rules not loaded that way.
4977 			 */
4978 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4979 				IPFERROR(30);
4980 				error = EPERM;
4981 				goto done;
4982 			}
4983 
4984 			/*
4985 			 * Return EBUSY if the rule is being reference by
4986 			 * something else (eg state information.)
4987 			 */
4988 			if (f->fr_ref > 1) {
4989 				IPFERROR(31);
4990 				error = EBUSY;
4991 				goto done;
4992 			}
4993 #ifdef	IPFILTER_SCAN
4994 			if (f->fr_isctag != -1 &&
4995 			    (f->fr_isc != (struct ipscan *)-1))
4996 				ipf_scan_detachfr(f);
4997 #endif
4998 
4999 			if (unit == IPL_LOGAUTH) {
5000 				error = ipf_auth_precmd(softc, req, f, ftail);
5001 				goto done;
5002 			}
5003 
5004 			ipf_rule_delete(softc, f, unit, set);
5005 
5006 			need_free = makecopy;
5007 		}
5008 	} else {
5009 		/*
5010 		 * Not removing, so we must be adding/inserting a rule.
5011 		 */
5012 		if (f != NULL) {
5013 			IPFERROR(32);
5014 			error = EEXIST;
5015 			goto done;
5016 		}
5017 		if (unit == IPL_LOGAUTH) {
5018 			error = ipf_auth_precmd(softc, req, fp, ftail);
5019 			goto done;
5020 		}
5021 
5022 		MUTEX_NUKE(&fp->fr_lock);
5023 		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5024 		if (fp->fr_die != 0)
5025 			ipf_rule_expire_insert(softc, fp, set);
5026 
5027 		fp->fr_hits = 0;
5028 		if (makecopy != 0)
5029 			fp->fr_ref = 1;
5030 		fp->fr_pnext = ftail;
5031 		fp->fr_next = *ftail;
5032 		if (fp->fr_next != NULL)
5033 			fp->fr_next->fr_pnext = &fp->fr_next;
5034 		*ftail = fp;
5035 		if (addrem == 0)
5036 			ipf_fixskip(ftail, fp, 1);
5037 
5038 		fp->fr_icmpgrp = NULL;
5039 		if (fp->fr_icmphead != -1) {
5040 			group = FR_NAME(fp, fr_icmphead);
5041 			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5042 			fp->fr_icmpgrp = fg;
5043 		}
5044 
5045 		fp->fr_grphead = NULL;
5046 		if (fp->fr_grhead != -1) {
5047 			group = FR_NAME(fp, fr_grhead);
5048 			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5049 					   unit, set);
5050 			fp->fr_grphead = fg;
5051 		}
5052 	}
5053 done:
5054 	RWLOCK_EXIT(&softc->ipf_mutex);
5055 donenolock:
5056 	if (need_free || (error != 0)) {
5057 		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5058 			if ((fp->fr_satype == FRI_LOOKUP) &&
5059 			    (fp->fr_srcptr != NULL))
5060 				ipf_lookup_deref(softc, fp->fr_srctype,
5061 						 fp->fr_srcptr);
5062 			if ((fp->fr_datype == FRI_LOOKUP) &&
5063 			    (fp->fr_dstptr != NULL))
5064 				ipf_lookup_deref(softc, fp->fr_dsttype,
5065 						 fp->fr_dstptr);
5066 		}
5067 		if (fp->fr_grp != NULL) {
5068 			WRITE_ENTER(&softc->ipf_mutex);
5069 			ipf_group_del(softc, fp->fr_grp, fp);
5070 			RWLOCK_EXIT(&softc->ipf_mutex);
5071 		}
5072 		if ((ptr != NULL) && (makecopy != 0)) {
5073 			KFREES(ptr, fp->fr_dsize);
5074 		}
5075 		KFREES(fp, fp->fr_size);
5076 	}
5077 	return (error);
5078 }
5079 
5080 
5081 /* ------------------------------------------------------------------------ */
5082 /* Function:   ipf_rule_delete                                              */
5083 /* Returns:    Nil                                                          */
5084 /* Parameters: softc(I) - pointer to soft context main structure            */
5085 /*             f(I)     - pointer to the rule being deleted                 */
5086 /*             ftail(I) - pointer to the pointer to f                       */
5087 /*             unit(I)  - device for which this is for                      */
5088 /*             set(I)   - 1 or 0 (filter set)                               */
5089 /*                                                                          */
5090 /* This function attempts to do what it can to delete a filter rule: remove */
5091 /* it from any linked lists and remove any groups it is responsible for.    */
5092 /* But in the end, removing a rule can only drop the reference count - we   */
5093 /* must use that as the guide for whether or not it can be freed.           */
5094 /* ------------------------------------------------------------------------ */
5095 static void
5096 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5097 {
5098 
5099 	/*
5100 	 * If fr_pdnext is set, then the rule is on the expire list, so
5101 	 * remove it from there.
5102 	 */
5103 	if (f->fr_pdnext != NULL) {
5104 		*f->fr_pdnext = f->fr_dnext;
5105 		if (f->fr_dnext != NULL)
5106 			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5107 		f->fr_pdnext = NULL;
5108 		f->fr_dnext = NULL;
5109 	}
5110 
5111 	ipf_fixskip(f->fr_pnext, f, -1);
5112 	if (f->fr_pnext != NULL)
5113 		*f->fr_pnext = f->fr_next;
5114 	if (f->fr_next != NULL)
5115 		f->fr_next->fr_pnext = f->fr_pnext;
5116 	f->fr_pnext = NULL;
5117 	f->fr_next = NULL;
5118 
5119 	(void) ipf_derefrule(softc, &f);
5120 }
5121 
5122 /* ------------------------------------------------------------------------ */
5123 /* Function:   ipf_rule_expire_insert                                       */
5124 /* Returns:    Nil                                                          */
5125 /* Parameters: softc(I) - pointer to soft context main structure            */
5126 /*             f(I)     - pointer to rule to be added to expire list        */
5127 /*             set(I)   - 1 or 0 (filter set)                               */
5128 /*                                                                          */
5129 /* If the new rule has a given expiration time, insert it into the list of  */
5130 /* expiring rules with the ones to be removed first added to the front of   */
5131 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5132 /* expiration interval checks.                                              */
5133 /* ------------------------------------------------------------------------ */
5134 static void
5135 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5136 {
5137 	frentry_t *fr;
5138 
5139 	/*
5140 	 */
5141 
5142 	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5143 	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5144 	     fr = fr->fr_dnext) {
5145 		if (f->fr_die < fr->fr_die)
5146 			break;
5147 		if (fr->fr_dnext == NULL) {
5148 			/*
5149 			 * We've got to the last rule and everything
5150 			 * wanted to be expired before this new node,
5151 			 * so we have to tack it on the end...
5152 			 */
5153 			fr->fr_dnext = f;
5154 			f->fr_pdnext = &fr->fr_dnext;
5155 			fr = NULL;
5156 			break;
5157 		}
5158 	}
5159 
5160 	if (softc->ipf_rule_explist[set] == NULL) {
5161 		softc->ipf_rule_explist[set] = f;
5162 		f->fr_pdnext = &softc->ipf_rule_explist[set];
5163 	} else if (fr != NULL) {
5164 		f->fr_dnext = fr;
5165 		f->fr_pdnext = fr->fr_pdnext;
5166 		fr->fr_pdnext = &f->fr_dnext;
5167 	}
5168 }
5169 
5170 
5171 /* ------------------------------------------------------------------------ */
5172 /* Function:   ipf_findlookup                                               */
5173 /* Returns:    NULL = failure, else success                                 */
5174 /* Parameters: softc(I) - pointer to soft context main structure            */
5175 /*             unit(I)  - ipf device we want to find match for              */
5176 /*             fp(I)    - rule for which lookup is for                      */
5177 /*             addrp(I) - pointer to lookup information in address struct   */
5178 /*             maskp(O) - pointer to lookup information for storage         */
5179 /*                                                                          */
5180 /* When using pools and hash tables to store addresses for matching in      */
5181 /* rules, it is necessary to resolve both the object referred to by the     */
5182 /* name or address (and return that pointer) and also provide the means by  */
5183 /* which to determine if an address belongs to that object to make the      */
5184 /* packet matching quicker.                                                 */
5185 /* ------------------------------------------------------------------------ */
5186 static void *
5187 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5188     i6addr_t *addrp, i6addr_t *maskp)
5189 {
5190 	void *ptr = NULL;
5191 
5192 	switch (addrp->iplookupsubtype)
5193 	{
5194 	case 0 :
5195 		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5196 					 addrp->iplookupnum,
5197 					 &maskp->iplookupfunc);
5198 		break;
5199 	case 1 :
5200 		if (addrp->iplookupname < 0)
5201 			break;
5202 		if (addrp->iplookupname >= fr->fr_namelen)
5203 			break;
5204 		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5205 					  fr->fr_names + addrp->iplookupname,
5206 					  &maskp->iplookupfunc);
5207 		break;
5208 	default :
5209 		break;
5210 	}
5211 
5212 	return ptr;
5213 }
5214 
5215 
5216 /* ------------------------------------------------------------------------ */
5217 /* Function:    ipf_funcinit                                                */
5218 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5219 /* Parameters:  softc(I) - pointer to soft context main structure           */
5220 /*              fr(I)    - pointer to filter rule                           */
5221 /*                                                                          */
5222 /* If a rule is a call rule, then check if the function it points to needs  */
5223 /* an init function to be called now the rule has been loaded.              */
5224 /* ------------------------------------------------------------------------ */
5225 static int
5226 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5227 {
5228 	ipfunc_resolve_t *ft;
5229 	int err;
5230 
5231 	IPFERROR(34);
5232 	err = ESRCH;
5233 
5234 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5235 		if (ft->ipfu_addr == fr->fr_func) {
5236 			err = 0;
5237 			if (ft->ipfu_init != NULL)
5238 				err = (*ft->ipfu_init)(softc, fr);
5239 			break;
5240 		}
5241 	return err;
5242 }
5243 
5244 
5245 /* ------------------------------------------------------------------------ */
5246 /* Function:    ipf_funcfini                                                */
5247 /* Returns:     Nil                                                         */
5248 /* Parameters:  softc(I) - pointer to soft context main structure           */
5249 /*              fr(I)    - pointer to filter rule                           */
5250 /*                                                                          */
5251 /* For a given filter rule, call the matching "fini" function if the rule   */
5252 /* is using a known function that would have resulted in the "init" being   */
5253 /* called for ealier.                                                       */
5254 /* ------------------------------------------------------------------------ */
5255 static void
5256 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5257 {
5258 	ipfunc_resolve_t *ft;
5259 
5260 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5261 		if (ft->ipfu_addr == fr->fr_func) {
5262 			if (ft->ipfu_fini != NULL)
5263 				(void) (*ft->ipfu_fini)(softc, fr);
5264 			break;
5265 		}
5266 }
5267 
5268 
5269 /* ------------------------------------------------------------------------ */
5270 /* Function:    ipf_findfunc                                                */
5271 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5272 /* Parameters:  funcptr(I) - function pointer to lookup                     */
5273 /*                                                                          */
5274 /* Look for a function in the table of known functions.                     */
5275 /* ------------------------------------------------------------------------ */
5276 static ipfunc_t
5277 ipf_findfunc(ipfunc_t funcptr)
5278 {
5279 	ipfunc_resolve_t *ft;
5280 
5281 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5282 		if (ft->ipfu_addr == funcptr)
5283 			return funcptr;
5284 	return NULL;
5285 }
5286 
5287 
5288 /* ------------------------------------------------------------------------ */
5289 /* Function:    ipf_resolvefunc                                             */
5290 /* Returns:     int - 0 == success, else error                              */
5291 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5292 /*                                                                          */
5293 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5294 /* This will either be the function name (if the pointer is set) or the     */
5295 /* function pointer if the name is set.  When found, fill in the other one  */
5296 /* so that the entire, complete, structure can be copied back to user space.*/
5297 /* ------------------------------------------------------------------------ */
5298 int
5299 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5300 {
5301 	ipfunc_resolve_t res, *ft;
5302 	int error;
5303 
5304 	error = BCOPYIN(data, &res, sizeof(res));
5305 	if (error != 0) {
5306 		IPFERROR(123);
5307 		return EFAULT;
5308 	}
5309 
5310 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5311 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5312 			if (strncmp(res.ipfu_name, ft->ipfu_name,
5313 				    sizeof(res.ipfu_name)) == 0) {
5314 				res.ipfu_addr = ft->ipfu_addr;
5315 				res.ipfu_init = ft->ipfu_init;
5316 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5317 					IPFERROR(35);
5318 					return EFAULT;
5319 				}
5320 				return 0;
5321 			}
5322 	}
5323 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5324 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5325 			if (ft->ipfu_addr == res.ipfu_addr) {
5326 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5327 					       sizeof(res.ipfu_name));
5328 				res.ipfu_init = ft->ipfu_init;
5329 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5330 					IPFERROR(36);
5331 					return EFAULT;
5332 				}
5333 				return 0;
5334 			}
5335 	}
5336 	IPFERROR(37);
5337 	return ESRCH;
5338 }
5339 
5340 
5341 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5342      !defined(__FreeBSD__)) || \
5343     FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5344     OPENBSD_LT_REV(200006)
5345 /*
5346  * From: NetBSD
5347  * ppsratecheck(): packets (or events) per second limitation.
5348  */
5349 int
5350 ppsratecheck(lasttime, curpps, maxpps)
5351 	struct timeval *lasttime;
5352 	int *curpps;
5353 	int maxpps;	/* maximum pps allowed */
5354 {
5355 	struct timeval tv, delta;
5356 	int rv;
5357 
5358 	GETKTIME(&tv);
5359 
5360 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5361 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5362 	if (delta.tv_usec < 0) {
5363 		delta.tv_sec--;
5364 		delta.tv_usec += 1000000;
5365 	}
5366 
5367 	/*
5368 	 * check for 0,0 is so that the message will be seen at least once.
5369 	 * if more than one second have passed since the last update of
5370 	 * lasttime, reset the counter.
5371 	 *
5372 	 * we do increment *curpps even in *curpps < maxpps case, as some may
5373 	 * try to use *curpps for stat purposes as well.
5374 	 */
5375 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5376 	    delta.tv_sec >= 1) {
5377 		*lasttime = tv;
5378 		*curpps = 0;
5379 		rv = 1;
5380 	} else if (maxpps < 0)
5381 		rv = 1;
5382 	else if (*curpps < maxpps)
5383 		rv = 1;
5384 	else
5385 		rv = 0;
5386 	*curpps = *curpps + 1;
5387 
5388 	return (rv);
5389 }
5390 #endif
5391 
5392 
5393 /* ------------------------------------------------------------------------ */
5394 /* Function:    ipf_derefrule                                               */
5395 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
5396 /* Parameters:  fr(I) - pointer to filter rule                              */
5397 /*                                                                          */
5398 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5399 /* free it and any associated storage space being used by it.               */
5400 /* ------------------------------------------------------------------------ */
5401 int
5402 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5403 {
5404 	frentry_t *fr;
5405 	frdest_t *fdp;
5406 
5407 	fr = *frp;
5408 	*frp = NULL;
5409 
5410 	MUTEX_ENTER(&fr->fr_lock);
5411 	fr->fr_ref--;
5412 	if (fr->fr_ref == 0) {
5413 		MUTEX_EXIT(&fr->fr_lock);
5414 		MUTEX_DESTROY(&fr->fr_lock);
5415 
5416 		ipf_funcfini(softc, fr);
5417 
5418 		fdp = &fr->fr_tif;
5419 		if (fdp->fd_type == FRD_DSTLIST)
5420 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5421 
5422 		fdp = &fr->fr_rif;
5423 		if (fdp->fd_type == FRD_DSTLIST)
5424 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5425 
5426 		fdp = &fr->fr_dif;
5427 		if (fdp->fd_type == FRD_DSTLIST)
5428 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5429 
5430 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5431 		    fr->fr_satype == FRI_LOOKUP)
5432 			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5433 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5434 		    fr->fr_datype == FRI_LOOKUP)
5435 			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5436 
5437 		if (fr->fr_grp != NULL)
5438 			ipf_group_del(softc, fr->fr_grp, fr);
5439 
5440 		if (fr->fr_grphead != NULL)
5441 			ipf_group_del(softc, fr->fr_grphead, fr);
5442 
5443 		if (fr->fr_icmpgrp != NULL)
5444 			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5445 
5446 		if ((fr->fr_flags & FR_COPIED) != 0) {
5447 			if (fr->fr_dsize) {
5448 				KFREES(fr->fr_data, fr->fr_dsize);
5449 			}
5450 			KFREES(fr, fr->fr_size);
5451 			return 0;
5452 		}
5453 		return 1;
5454 	} else {
5455 		MUTEX_EXIT(&fr->fr_lock);
5456 	}
5457 	return -1;
5458 }
5459 
5460 
5461 /* ------------------------------------------------------------------------ */
5462 /* Function:    ipf_grpmapinit                                              */
5463 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5464 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
5465 /*                                                                          */
5466 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5467 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5468 /* ------------------------------------------------------------------------ */
5469 static int
5470 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5471 {
5472 	char name[FR_GROUPLEN];
5473 	iphtable_t *iph;
5474 
5475 	(void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5476 	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5477 	if (iph == NULL) {
5478 		IPFERROR(38);
5479 		return ESRCH;
5480 	}
5481 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5482 		IPFERROR(39);
5483 		return ESRCH;
5484 	}
5485 	iph->iph_ref++;
5486 	fr->fr_ptr = iph;
5487 	return 0;
5488 }
5489 
5490 
5491 /* ------------------------------------------------------------------------ */
5492 /* Function:    ipf_grpmapfini                                              */
5493 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5494 /* Parameters:  softc(I) - pointer to soft context main structure           */
5495 /*              fr(I)    - pointer to rule to release hash table for        */
5496 /*                                                                          */
5497 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5498 /* be called to undo what ipf_grpmapinit caused to be done.                 */
5499 /* ------------------------------------------------------------------------ */
5500 static int
5501 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5502 {
5503 	iphtable_t *iph;
5504 	iph = fr->fr_ptr;
5505 	if (iph != NULL)
5506 		ipf_lookup_deref(softc, IPLT_HASH, iph);
5507 	return 0;
5508 }
5509 
5510 
5511 /* ------------------------------------------------------------------------ */
5512 /* Function:    ipf_srcgrpmap                                               */
5513 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5514 /* Parameters:  fin(I)    - pointer to packet information                   */
5515 /*              passp(IO) - pointer to current/new filter decision (unused) */
5516 /*                                                                          */
5517 /* Look for a rule group head in a hash table, using the source address as  */
5518 /* the key, and descend into that group and continue matching rules against */
5519 /* the packet.                                                              */
5520 /* ------------------------------------------------------------------------ */
5521 frentry_t *
5522 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5523 {
5524 	frgroup_t *fg;
5525 	void *rval;
5526 
5527 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5528 				 &fin->fin_src);
5529 	if (rval == NULL)
5530 		return NULL;
5531 
5532 	fg = rval;
5533 	fin->fin_fr = fg->fg_start;
5534 	(void) ipf_scanlist(fin, *passp);
5535 	return fin->fin_fr;
5536 }
5537 
5538 
5539 /* ------------------------------------------------------------------------ */
5540 /* Function:    ipf_dstgrpmap                                               */
5541 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5542 /* Parameters:  fin(I)    - pointer to packet information                   */
5543 /*              passp(IO) - pointer to current/new filter decision (unused) */
5544 /*                                                                          */
5545 /* Look for a rule group head in a hash table, using the destination        */
5546 /* address as the key, and descend into that group and continue matching    */
5547 /* rules against  the packet.                                               */
5548 /* ------------------------------------------------------------------------ */
5549 frentry_t *
5550 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5551 {
5552 	frgroup_t *fg;
5553 	void *rval;
5554 
5555 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5556 				 &fin->fin_dst);
5557 	if (rval == NULL)
5558 		return NULL;
5559 
5560 	fg = rval;
5561 	fin->fin_fr = fg->fg_start;
5562 	(void) ipf_scanlist(fin, *passp);
5563 	return fin->fin_fr;
5564 }
5565 
5566 /*
5567  * Queue functions
5568  * ===============
5569  * These functions manage objects on queues for efficient timeouts.  There
5570  * are a number of system defined queues as well as user defined timeouts.
5571  * It is expected that a lock is held in the domain in which the queue
5572  * belongs (i.e. either state or NAT) when calling any of these functions
5573  * that prevents ipf_freetimeoutqueue() from being called at the same time
5574  * as any other.
5575  */
5576 
5577 
5578 /* ------------------------------------------------------------------------ */
5579 /* Function:    ipf_addtimeoutqueue                                         */
5580 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5581 /*                               timeout queue with given interval.         */
5582 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5583 /*                           of interface queues.                           */
5584 /*              seconds(I) - timeout value in seconds for this queue.       */
5585 /*                                                                          */
5586 /* This routine first looks for a timeout queue that matches the interval   */
5587 /* being requested.  If it finds one, increments the reference counter and  */
5588 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5589 /* inserts it at the top of the list.                                       */
5590 /*                                                                          */
5591 /* Locking.                                                                 */
5592 /* It is assumed that the caller of this function has an appropriate lock   */
5593 /* held (exclusively) in the domain that encompases 'parent'.               */
5594 /* ------------------------------------------------------------------------ */
5595 ipftq_t *
5596 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5597 {
5598 	ipftq_t *ifq;
5599 	u_int period;
5600 
5601 	period = seconds * IPF_HZ_DIVIDE;
5602 
5603 	MUTEX_ENTER(&softc->ipf_timeoutlock);
5604 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5605 		if (ifq->ifq_ttl == period) {
5606 			/*
5607 			 * Reset the delete flag, if set, so the structure
5608 			 * gets reused rather than freed and reallocated.
5609 			 */
5610 			MUTEX_ENTER(&ifq->ifq_lock);
5611 			ifq->ifq_flags &= ~IFQF_DELETE;
5612 			ifq->ifq_ref++;
5613 			MUTEX_EXIT(&ifq->ifq_lock);
5614 			MUTEX_EXIT(&softc->ipf_timeoutlock);
5615 
5616 			return ifq;
5617 		}
5618 	}
5619 
5620 	KMALLOC(ifq, ipftq_t *);
5621 	if (ifq != NULL) {
5622 		MUTEX_NUKE(&ifq->ifq_lock);
5623 		IPFTQ_INIT(ifq, period, "ipftq mutex");
5624 		ifq->ifq_next = *parent;
5625 		ifq->ifq_pnext = parent;
5626 		ifq->ifq_flags = IFQF_USER;
5627 		ifq->ifq_ref++;
5628 		*parent = ifq;
5629 		softc->ipf_userifqs++;
5630 	}
5631 	MUTEX_EXIT(&softc->ipf_timeoutlock);
5632 	return ifq;
5633 }
5634 
5635 
5636 /* ------------------------------------------------------------------------ */
5637 /* Function:    ipf_deletetimeoutqueue                                      */
5638 /* Returns:     int    - new reference count value of the timeout queue     */
5639 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5640 /* Locks:       ifq->ifq_lock                                               */
5641 /*                                                                          */
5642 /* This routine must be called when we're discarding a pointer to a timeout */
5643 /* queue object, taking care of the reference counter.                      */
5644 /*                                                                          */
5645 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5646 /* check the list of user defined timeout queues and call the free function */
5647 /* below (currently commented out) to stop memory leaking.  It is done this */
5648 /* way because the locking may not be sufficient to safely do a free when   */
5649 /* this function is called.                                                 */
5650 /* ------------------------------------------------------------------------ */
5651 int
5652 ipf_deletetimeoutqueue(ipftq_t *ifq)
5653 {
5654 
5655 	ifq->ifq_ref--;
5656 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5657 		ifq->ifq_flags |= IFQF_DELETE;
5658 	}
5659 
5660 	return ifq->ifq_ref;
5661 }
5662 
5663 
5664 /* ------------------------------------------------------------------------ */
5665 /* Function:    ipf_freetimeoutqueue                                        */
5666 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5667 /* Returns:     Nil                                                         */
5668 /*                                                                          */
5669 /* Locking:                                                                 */
5670 /* It is assumed that the caller of this function has an appropriate lock   */
5671 /* held (exclusively) in the domain that encompases the callers "domain".   */
5672 /* The ifq_lock for this structure should not be held.                      */
5673 /*                                                                          */
5674 /* Remove a user defined timeout queue from the list of queues it is in and */
5675 /* tidy up after this is done.                                              */
5676 /* ------------------------------------------------------------------------ */
5677 void
5678 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5679 {
5680 
5681 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5682 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5683 		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5684 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5685 		       ifq->ifq_ref);
5686 		return;
5687 	}
5688 
5689 	/*
5690 	 * Remove from its position in the list.
5691 	 */
5692 	*ifq->ifq_pnext = ifq->ifq_next;
5693 	if (ifq->ifq_next != NULL)
5694 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5695 	ifq->ifq_next = NULL;
5696 	ifq->ifq_pnext = NULL;
5697 
5698 	MUTEX_DESTROY(&ifq->ifq_lock);
5699 	ATOMIC_DEC(softc->ipf_userifqs);
5700 	KFREE(ifq);
5701 }
5702 
5703 
5704 /* ------------------------------------------------------------------------ */
5705 /* Function:    ipf_deletequeueentry                                        */
5706 /* Returns:     Nil                                                         */
5707 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5708 /*                                                                          */
5709 /* Remove a tail queue entry from its queue and make it an orphan.          */
5710 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5711 /* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5712 /* the correct lock(s) may not be held that would make it safe to do so.    */
5713 /* ------------------------------------------------------------------------ */
5714 void
5715 ipf_deletequeueentry(ipftqent_t *tqe)
5716 {
5717 	ipftq_t *ifq;
5718 
5719 	ifq = tqe->tqe_ifq;
5720 
5721 	MUTEX_ENTER(&ifq->ifq_lock);
5722 
5723 	if (tqe->tqe_pnext != NULL) {
5724 		*tqe->tqe_pnext = tqe->tqe_next;
5725 		if (tqe->tqe_next != NULL)
5726 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5727 		else    /* we must be the tail anyway */
5728 			ifq->ifq_tail = tqe->tqe_pnext;
5729 
5730 		tqe->tqe_pnext = NULL;
5731 		tqe->tqe_ifq = NULL;
5732 	}
5733 
5734 	(void) ipf_deletetimeoutqueue(ifq);
5735 	ASSERT(ifq->ifq_ref > 0);
5736 
5737 	MUTEX_EXIT(&ifq->ifq_lock);
5738 }
5739 
5740 
5741 /* ------------------------------------------------------------------------ */
5742 /* Function:    ipf_queuefront                                              */
5743 /* Returns:     Nil                                                         */
5744 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5745 /*                                                                          */
5746 /* Move a queue entry to the front of the queue, if it isn't already there. */
5747 /* ------------------------------------------------------------------------ */
5748 void
5749 ipf_queuefront(ipftqent_t *tqe)
5750 {
5751 	ipftq_t *ifq;
5752 
5753 	ifq = tqe->tqe_ifq;
5754 	if (ifq == NULL)
5755 		return;
5756 
5757 	MUTEX_ENTER(&ifq->ifq_lock);
5758 	if (ifq->ifq_head != tqe) {
5759 		*tqe->tqe_pnext = tqe->tqe_next;
5760 		if (tqe->tqe_next)
5761 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5762 		else
5763 			ifq->ifq_tail = tqe->tqe_pnext;
5764 
5765 		tqe->tqe_next = ifq->ifq_head;
5766 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5767 		ifq->ifq_head = tqe;
5768 		tqe->tqe_pnext = &ifq->ifq_head;
5769 	}
5770 	MUTEX_EXIT(&ifq->ifq_lock);
5771 }
5772 
5773 
5774 /* ------------------------------------------------------------------------ */
5775 /* Function:    ipf_queueback                                               */
5776 /* Returns:     Nil                                                         */
5777 /* Parameters:  ticks(I) - ipf tick time to use with this call              */
5778 /*              tqe(I)   - pointer to timeout queue entry                   */
5779 /*                                                                          */
5780 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5781 /* We use use ticks to calculate the expiration and mark for when we last   */
5782 /* touched the structure.                                                   */
5783 /* ------------------------------------------------------------------------ */
5784 void
5785 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5786 {
5787 	ipftq_t *ifq;
5788 
5789 	ifq = tqe->tqe_ifq;
5790 	if (ifq == NULL)
5791 		return;
5792 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5793 	tqe->tqe_touched = ticks;
5794 
5795 	MUTEX_ENTER(&ifq->ifq_lock);
5796 	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5797 		/*
5798 		 * Remove from list
5799 		 */
5800 		*tqe->tqe_pnext = tqe->tqe_next;
5801 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5802 
5803 		/*
5804 		 * Make it the last entry.
5805 		 */
5806 		tqe->tqe_next = NULL;
5807 		tqe->tqe_pnext = ifq->ifq_tail;
5808 		*ifq->ifq_tail = tqe;
5809 		ifq->ifq_tail = &tqe->tqe_next;
5810 	}
5811 	MUTEX_EXIT(&ifq->ifq_lock);
5812 }
5813 
5814 
5815 /* ------------------------------------------------------------------------ */
5816 /* Function:    ipf_queueappend                                             */
5817 /* Returns:     Nil                                                         */
5818 /* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5819 /*              tqe(I)    - pointer to timeout queue entry                  */
5820 /*              ifq(I)    - pointer to timeout queue                        */
5821 /*              parent(I) - owing object pointer                            */
5822 /*                                                                          */
5823 /* Add a new item to this queue and put it on the very end.                 */
5824 /* We use use ticks to calculate the expiration and mark for when we last   */
5825 /* touched the structure.                                                   */
5826 /* ------------------------------------------------------------------------ */
5827 void
5828 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5829 {
5830 
5831 	MUTEX_ENTER(&ifq->ifq_lock);
5832 	tqe->tqe_parent = parent;
5833 	tqe->tqe_pnext = ifq->ifq_tail;
5834 	*ifq->ifq_tail = tqe;
5835 	ifq->ifq_tail = &tqe->tqe_next;
5836 	tqe->tqe_next = NULL;
5837 	tqe->tqe_ifq = ifq;
5838 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5839 	tqe->tqe_touched = ticks;
5840 	ifq->ifq_ref++;
5841 	MUTEX_EXIT(&ifq->ifq_lock);
5842 }
5843 
5844 
5845 /* ------------------------------------------------------------------------ */
5846 /* Function:    ipf_movequeue                                               */
5847 /* Returns:     Nil                                                         */
5848 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5849 /*              oifp(I) - old timeout queue entry was on                    */
5850 /*              nifp(I) - new timeout queue to put entry on                 */
5851 /*                                                                          */
5852 /* Move a queue entry from one timeout queue to another timeout queue.      */
5853 /* If it notices that the current entry is already last and does not need   */
5854 /* to move queue, the return.                                               */
5855 /* ------------------------------------------------------------------------ */
5856 void
5857 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5858 {
5859 
5860 	/*
5861 	 * If the queue hasn't changed and we last touched this entry at the
5862 	 * same ipf time, then we're not going to achieve anything by either
5863 	 * changing the ttl or moving it on the queue.
5864 	 */
5865 	if (oifq == nifq && tqe->tqe_touched == ticks)
5866 		return;
5867 
5868 	/*
5869 	 * For any of this to be outside the lock, there is a risk that two
5870 	 * packets entering simultaneously, with one changing to a different
5871 	 * queue and one not, could end up with things in a bizarre state.
5872 	 */
5873 	MUTEX_ENTER(&oifq->ifq_lock);
5874 
5875 	tqe->tqe_touched = ticks;
5876 	tqe->tqe_die = ticks + nifq->ifq_ttl;
5877 	/*
5878 	 * Is the operation here going to be a no-op ?
5879 	 */
5880 	if (oifq == nifq) {
5881 		if ((tqe->tqe_next == NULL) ||
5882 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5883 			MUTEX_EXIT(&oifq->ifq_lock);
5884 			return;
5885 		}
5886 	}
5887 
5888 	/*
5889 	 * Remove from the old queue
5890 	 */
5891 	*tqe->tqe_pnext = tqe->tqe_next;
5892 	if (tqe->tqe_next)
5893 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5894 	else
5895 		oifq->ifq_tail = tqe->tqe_pnext;
5896 	tqe->tqe_next = NULL;
5897 
5898 	/*
5899 	 * If we're moving from one queue to another, release the
5900 	 * lock on the old queue and get a lock on the new queue.
5901 	 * For user defined queues, if we're moving off it, call
5902 	 * delete in case it can now be freed.
5903 	 */
5904 	if (oifq != nifq) {
5905 		tqe->tqe_ifq = NULL;
5906 
5907 		(void) ipf_deletetimeoutqueue(oifq);
5908 
5909 		MUTEX_EXIT(&oifq->ifq_lock);
5910 
5911 		MUTEX_ENTER(&nifq->ifq_lock);
5912 
5913 		tqe->tqe_ifq = nifq;
5914 		nifq->ifq_ref++;
5915 	}
5916 
5917 	/*
5918 	 * Add to the bottom of the new queue
5919 	 */
5920 	tqe->tqe_pnext = nifq->ifq_tail;
5921 	*nifq->ifq_tail = tqe;
5922 	nifq->ifq_tail = &tqe->tqe_next;
5923 	MUTEX_EXIT(&nifq->ifq_lock);
5924 }
5925 
5926 
5927 /* ------------------------------------------------------------------------ */
5928 /* Function:    ipf_updateipid                                              */
5929 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5930 /* Parameters:  fin(I) - pointer to packet information                      */
5931 /*                                                                          */
5932 /* When we are doing NAT, change the IP of every packet to represent a      */
5933 /* single sequence of packets coming from the host, hiding any host         */
5934 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5935 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5936 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5937 /* has no match in the cache, return an error.                              */
5938 /* ------------------------------------------------------------------------ */
5939 static int
5940 ipf_updateipid(fr_info_t *fin)
5941 {
5942 	u_short id, ido, sums;
5943 	u_32_t sumd, sum;
5944 	ip_t *ip;
5945 
5946 	if (fin->fin_off != 0) {
5947 		sum = ipf_frag_ipidknown(fin);
5948 		if (sum == 0xffffffff)
5949 			return -1;
5950 		sum &= 0xffff;
5951 		id = (u_short)sum;
5952 	} else {
5953 		id = ipf_nextipid(fin);
5954 		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5955 			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
5956 	}
5957 
5958 	ip = fin->fin_ip;
5959 	ido = ntohs(ip->ip_id);
5960 	if (id == ido)
5961 		return 0;
5962 	ip->ip_id = htons(id);
5963 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5964 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5965 	sum += sumd;
5966 	sum = (sum >> 16) + (sum & 0xffff);
5967 	sum = (sum >> 16) + (sum & 0xffff);
5968 	sums = ~(u_short)sum;
5969 	ip->ip_sum = htons(sums);
5970 	return 0;
5971 }
5972 
5973 
5974 #ifdef	NEED_FRGETIFNAME
5975 /* ------------------------------------------------------------------------ */
5976 /* Function:    ipf_getifname                                               */
5977 /* Returns:     char *    - pointer to interface name                       */
5978 /* Parameters:  ifp(I)    - pointer to network interface                    */
5979 /*              buffer(O) - pointer to where to store interface name        */
5980 /*                                                                          */
5981 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5982 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5983 /* as a NULL pointer then return a pointer to a static array.               */
5984 /* ------------------------------------------------------------------------ */
5985 char *
5986 ipf_getifname(ifp, buffer)
5987 	struct ifnet *ifp;
5988 	char *buffer;
5989 {
5990 	static char namebuf[LIFNAMSIZ];
5991 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5992      defined(__sgi) || defined(linux) || defined(_AIX51) || \
5993      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5994 	int unit, space;
5995 	char temp[20];
5996 	char *s;
5997 # endif
5998 
5999 	if (buffer == NULL)
6000 		buffer = namebuf;
6001 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6002 	buffer[LIFNAMSIZ - 1] = '\0';
6003 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6004      defined(__sgi) || defined(_AIX51) || \
6005      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6006 	for (s = buffer; *s; s++)
6007 		;
6008 	unit = ifp->if_unit;
6009 	space = LIFNAMSIZ - (s - buffer);
6010 	if ((space > 0) && (unit >= 0)) {
6011 		snprintf(temp, sizeof(temp), "%d", unit);
6012 		(void) strncpy(s, temp, space);
6013 		s[space - 1] = '\0';
6014 	}
6015 # endif
6016 	return buffer;
6017 }
6018 #endif
6019 
6020 
6021 /* ------------------------------------------------------------------------ */
6022 /* Function:    ipf_ioctlswitch                                             */
6023 /* Returns:     int     - -1 continue processing, else ioctl return value   */
6024 /* Parameters:  unit(I) - device unit opened                                */
6025 /*              data(I) - pointer to ioctl data                             */
6026 /*              cmd(I)  - ioctl command                                     */
6027 /*              mode(I) - mode value                                        */
6028 /*              uid(I)  - uid making the ioctl call                         */
6029 /*              ctx(I)  - pointer to context data                           */
6030 /*                                                                          */
6031 /* Based on the value of unit, call the appropriate ioctl handler or return */
6032 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6033 /* for the device in order to execute the ioctl.  A special case is made    */
6034 /* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6035 /* The context data pointer is passed through as this is used as the key    */
6036 /* for locating a matching token for continued access for walking lists,    */
6037 /* etc.                                                                     */
6038 /* ------------------------------------------------------------------------ */
6039 int
6040 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
6041     int mode, int uid, void *ctx)
6042 {
6043 	int error = 0;
6044 
6045 	switch (cmd)
6046 	{
6047 	case SIOCIPFINTERROR :
6048 		error = BCOPYOUT(&softc->ipf_interror, data,
6049 				 sizeof(softc->ipf_interror));
6050 		if (error != 0) {
6051 			IPFERROR(40);
6052 			error = EFAULT;
6053 		}
6054 		return error;
6055 	default :
6056 		break;
6057 	}
6058 
6059 	switch (unit)
6060 	{
6061 	case IPL_LOGIPF :
6062 		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6063 		break;
6064 	case IPL_LOGNAT :
6065 		if (softc->ipf_running > 0) {
6066 			error = ipf_nat_ioctl(softc, data, cmd, mode,
6067 					      uid, ctx);
6068 		} else {
6069 			IPFERROR(42);
6070 			error = EIO;
6071 		}
6072 		break;
6073 	case IPL_LOGSTATE :
6074 		if (softc->ipf_running > 0) {
6075 			error = ipf_state_ioctl(softc, data, cmd, mode,
6076 						uid, ctx);
6077 		} else {
6078 			IPFERROR(43);
6079 			error = EIO;
6080 		}
6081 		break;
6082 	case IPL_LOGAUTH :
6083 		if (softc->ipf_running > 0) {
6084 			error = ipf_auth_ioctl(softc, data, cmd, mode,
6085 					       uid, ctx);
6086 		} else {
6087 			IPFERROR(44);
6088 			error = EIO;
6089 		}
6090 		break;
6091 	case IPL_LOGSYNC :
6092 		if (softc->ipf_running > 0) {
6093 			error = ipf_sync_ioctl(softc, data, cmd, mode,
6094 					       uid, ctx);
6095 		} else {
6096 			error = EIO;
6097 			IPFERROR(45);
6098 		}
6099 		break;
6100 	case IPL_LOGSCAN :
6101 #ifdef IPFILTER_SCAN
6102 		if (softc->ipf_running > 0)
6103 			error = ipf_scan_ioctl(softc, data, cmd, mode,
6104 					       uid, ctx);
6105 		else
6106 #endif
6107 		{
6108 			error = EIO;
6109 			IPFERROR(46);
6110 		}
6111 		break;
6112 	case IPL_LOGLOOKUP :
6113 		if (softc->ipf_running > 0) {
6114 			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6115 						 uid, ctx);
6116 		} else {
6117 			error = EIO;
6118 			IPFERROR(47);
6119 		}
6120 		break;
6121 	default :
6122 		IPFERROR(48);
6123 		error = EIO;
6124 		break;
6125 	}
6126 
6127 	return error;
6128 }
6129 
6130 
6131 /*
6132  * This array defines the expected size of objects coming into the kernel
6133  * for the various recognised object types. The first column is flags (see
6134  * below), 2nd column is current size, 3rd column is the version number of
6135  * when the current size became current.
6136  * Flags:
6137  * 1 = minimum size, not absolute size
6138  */
6139 static	int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6140 	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6141 	{ 1,	sizeof(struct friostat),	5010000 },
6142 	{ 0,	sizeof(struct fr_info),		5010000 },
6143 	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6144 	{ 0,	sizeof(struct ipfrstat),	5010000 },
6145 	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6146 	{ 0,	sizeof(struct natstat),		5010000 },
6147 	{ 0,	sizeof(struct ipstate_save),	5010000 },
6148 	{ 1,	sizeof(struct nat_save),	5010000 },
6149 	{ 0,	sizeof(struct natlookup),	5010000 },
6150 	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6151 	{ 0,	sizeof(struct ips_stat),	5010000 },
6152 	{ 0,	sizeof(struct frauth),		5010000 },
6153 	{ 0,	sizeof(struct ipftune),		4010100 },
6154 	{ 0,	sizeof(struct nat),		5010000 },
6155 	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6156 	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6157 	{ 0,	sizeof(struct ipftable),	4011400 },
6158 	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6159 	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6160 	{ 1,	0,				0	}, /* IPFEXPR */
6161 	{ 0,	0,				0	}, /* PROXYCTL */
6162 	{ 0,	sizeof (struct fripf),		5010000	}
6163 };
6164 
6165 
6166 /* ------------------------------------------------------------------------ */
6167 /* Function:    ipf_inobj                                                   */
6168 /* Returns:     int     - 0 = success, else failure                         */
6169 /* Parameters:  softc(I) - soft context pointerto work with                 */
6170 /*              data(I)  - pointer to ioctl data                            */
6171 /*              objp(O)  - where to store ipfobj structure                  */
6172 /*              ptr(I)   - pointer to data to copy out                      */
6173 /*              type(I)  - type of structure being moved                    */
6174 /*                                                                          */
6175 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6176 /* add things to check for version numbers, sizes, etc, to make it backward */
6177 /* compatible at the ABI for user land.                                     */
6178 /* If objp is not NULL then we assume that the caller wants to see what is  */
6179 /* in the ipfobj_t structure being copied in. As an example, this can tell  */
6180 /* the caller what version of ipfilter the ioctl program was written to.    */
6181 /* ------------------------------------------------------------------------ */
6182 int
6183 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6184     int type)
6185 {
6186 	ipfobj_t obj;
6187 	int error;
6188 	int size;
6189 
6190 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6191 		IPFERROR(49);
6192 		return EINVAL;
6193 	}
6194 
6195 	if (objp == NULL)
6196 		objp = &obj;
6197 	error = BCOPYIN(data, objp, sizeof(*objp));
6198 	if (error != 0) {
6199 		IPFERROR(124);
6200 		return EFAULT;
6201 	}
6202 
6203 	if (objp->ipfo_type != type) {
6204 		IPFERROR(50);
6205 		return EINVAL;
6206 	}
6207 
6208 	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6209 		if ((ipf_objbytes[type][0] & 1) != 0) {
6210 			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6211 				IPFERROR(51);
6212 				return EINVAL;
6213 			}
6214 			size =  ipf_objbytes[type][1];
6215 		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6216 			size =  objp->ipfo_size;
6217 		} else {
6218 			IPFERROR(52);
6219 			return EINVAL;
6220 		}
6221 		error = COPYIN(objp->ipfo_ptr, ptr, size);
6222 		if (error != 0) {
6223 			IPFERROR(55);
6224 			error = EFAULT;
6225 		}
6226 	} else {
6227 #ifdef  IPFILTER_COMPAT
6228 		error = ipf_in_compat(softc, objp, ptr, 0);
6229 #else
6230 		IPFERROR(54);
6231 		error = EINVAL;
6232 #endif
6233 	}
6234 	return error;
6235 }
6236 
6237 
6238 /* ------------------------------------------------------------------------ */
6239 /* Function:    ipf_inobjsz                                                 */
6240 /* Returns:     int     - 0 = success, else failure                         */
6241 /* Parameters:  softc(I) - soft context pointerto work with                 */
6242 /*              data(I)  - pointer to ioctl data                            */
6243 /*              ptr(I)   - pointer to store real data in                    */
6244 /*              type(I)  - type of structure being moved                    */
6245 /*              sz(I)    - size of data to copy                             */
6246 /*                                                                          */
6247 /* As per ipf_inobj, except the size of the object to copy in is passed in  */
6248 /* but it must not be smaller than the size defined for the type and the    */
6249 /* type must allow for varied sized objects.  The extra requirement here is */
6250 /* that sz must match the size of the object being passed in - this is not  */
6251 /* not possible nor required in ipf_inobj().                                */
6252 /* ------------------------------------------------------------------------ */
6253 int
6254 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6255 {
6256 	ipfobj_t obj;
6257 	int error;
6258 
6259 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6260 		IPFERROR(56);
6261 		return EINVAL;
6262 	}
6263 
6264 	error = BCOPYIN(data, &obj, sizeof(obj));
6265 	if (error != 0) {
6266 		IPFERROR(125);
6267 		return EFAULT;
6268 	}
6269 
6270 	if (obj.ipfo_type != type) {
6271 		IPFERROR(58);
6272 		return EINVAL;
6273 	}
6274 
6275 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6276 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6277 		    (sz < ipf_objbytes[type][1])) {
6278 			IPFERROR(57);
6279 			return EINVAL;
6280 		}
6281 		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6282 		if (error != 0) {
6283 			IPFERROR(61);
6284 			error = EFAULT;
6285 		}
6286 	} else {
6287 #ifdef	IPFILTER_COMPAT
6288 		error = ipf_in_compat(softc, &obj, ptr, sz);
6289 #else
6290 		IPFERROR(60);
6291 		error = EINVAL;
6292 #endif
6293 	}
6294 	return error;
6295 }
6296 
6297 
6298 /* ------------------------------------------------------------------------ */
6299 /* Function:    ipf_outobjsz                                                */
6300 /* Returns:     int     - 0 = success, else failure                         */
6301 /* Parameters:  data(I) - pointer to ioctl data                             */
6302 /*              ptr(I)  - pointer to store real data in                     */
6303 /*              type(I) - type of structure being moved                     */
6304 /*              sz(I)   - size of data to copy                              */
6305 /*                                                                          */
6306 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6307 /* but it must not be smaller than the size defined for the type and the    */
6308 /* type must allow for varied sized objects.  The extra requirement here is */
6309 /* that sz must match the size of the object being passed in - this is not  */
6310 /* not possible nor required in ipf_outobj().                               */
6311 /* ------------------------------------------------------------------------ */
6312 int
6313 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6314 {
6315 	ipfobj_t obj;
6316 	int error;
6317 
6318 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6319 		IPFERROR(62);
6320 		return EINVAL;
6321 	}
6322 
6323 	error = BCOPYIN(data, &obj, sizeof(obj));
6324 	if (error != 0) {
6325 		IPFERROR(127);
6326 		return EFAULT;
6327 	}
6328 
6329 	if (obj.ipfo_type != type) {
6330 		IPFERROR(63);
6331 		return EINVAL;
6332 	}
6333 
6334 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6335 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6336 		    (sz < ipf_objbytes[type][1])) {
6337 			IPFERROR(146);
6338 			return EINVAL;
6339 		}
6340 		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6341 		if (error != 0) {
6342 			IPFERROR(66);
6343 			error = EFAULT;
6344 		}
6345 	} else {
6346 #ifdef	IPFILTER_COMPAT
6347 		error = ipf_out_compat(softc, &obj, ptr);
6348 #else
6349 		IPFERROR(65);
6350 		error = EINVAL;
6351 #endif
6352 	}
6353 	return error;
6354 }
6355 
6356 
6357 /* ------------------------------------------------------------------------ */
6358 /* Function:    ipf_outobj                                                  */
6359 /* Returns:     int     - 0 = success, else failure                         */
6360 /* Parameters:  data(I) - pointer to ioctl data                             */
6361 /*              ptr(I)  - pointer to store real data in                     */
6362 /*              type(I) - type of structure being moved                     */
6363 /*                                                                          */
6364 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6365 /* future, we add things to check for version numbers, sizes, etc, to make  */
6366 /* it backward  compatible at the ABI for user land.                        */
6367 /* ------------------------------------------------------------------------ */
6368 int
6369 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6370 {
6371 	ipfobj_t obj;
6372 	int error;
6373 
6374 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6375 		IPFERROR(67);
6376 		return EINVAL;
6377 	}
6378 
6379 	error = BCOPYIN(data, &obj, sizeof(obj));
6380 	if (error != 0) {
6381 		IPFERROR(126);
6382 		return EFAULT;
6383 	}
6384 
6385 	if (obj.ipfo_type != type) {
6386 		IPFERROR(68);
6387 		return EINVAL;
6388 	}
6389 
6390 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6391 		if ((ipf_objbytes[type][0] & 1) != 0) {
6392 			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6393 				IPFERROR(69);
6394 				return EINVAL;
6395 			}
6396 		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6397 			IPFERROR(70);
6398 			return EINVAL;
6399 		}
6400 
6401 		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6402 		if (error != 0) {
6403 			IPFERROR(73);
6404 			error = EFAULT;
6405 		}
6406 	} else {
6407 #ifdef	IPFILTER_COMPAT
6408 		error = ipf_out_compat(softc, &obj, ptr);
6409 #else
6410 		IPFERROR(72);
6411 		error = EINVAL;
6412 #endif
6413 	}
6414 	return error;
6415 }
6416 
6417 
6418 /* ------------------------------------------------------------------------ */
6419 /* Function:    ipf_outobjk                                                 */
6420 /* Returns:     int     - 0 = success, else failure                         */
6421 /* Parameters:  obj(I)  - pointer to data description structure             */
6422 /*              ptr(I)  - pointer to kernel data to copy out                */
6423 /*                                                                          */
6424 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6425 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6426 /* already populated with information and now we just need to use it.       */
6427 /* There is no need for this function to have a "type" parameter as there   */
6428 /* is no point in validating information that comes from the kernel with    */
6429 /* itself.                                                                  */
6430 /* ------------------------------------------------------------------------ */
6431 int
6432 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6433 {
6434 	int type = obj->ipfo_type;
6435 	int error;
6436 
6437 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6438 		IPFERROR(147);
6439 		return EINVAL;
6440 	}
6441 
6442 	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6443 		if ((ipf_objbytes[type][0] & 1) != 0) {
6444 			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6445 				IPFERROR(148);
6446 				return EINVAL;
6447 			}
6448 
6449 		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6450 			IPFERROR(149);
6451 			return EINVAL;
6452 		}
6453 
6454 		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6455 		if (error != 0) {
6456 			IPFERROR(150);
6457 			error = EFAULT;
6458 		}
6459 	} else {
6460 #ifdef  IPFILTER_COMPAT
6461 		error = ipf_out_compat(softc, obj, ptr);
6462 #else
6463 		IPFERROR(151);
6464 		error = EINVAL;
6465 #endif
6466 	}
6467 	return error;
6468 }
6469 
6470 
6471 /* ------------------------------------------------------------------------ */
6472 /* Function:    ipf_checkl4sum                                              */
6473 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6474 /* Parameters:  fin(I) - pointer to packet information                      */
6475 /*                                                                          */
6476 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6477 /* not possible, return without indicating a failure or success but in a    */
6478 /* way that is ditinguishable. This function should only be called by the   */
6479 /* ipf_checkv6sum() for each platform.                                      */
6480 /* ------------------------------------------------------------------------ */
6481 int
6482 ipf_checkl4sum(fr_info_t *fin)
6483 {
6484 	u_short sum, hdrsum, *csump;
6485 	udphdr_t *udp;
6486 	int dosum;
6487 
6488 	/*
6489 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6490 	 * isn't already considered "bad", then validate the checksum.  If
6491 	 * this check fails then considered the packet to be "bad".
6492 	 */
6493 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6494 		return 1;
6495 
6496 	csump = NULL;
6497 	hdrsum = 0;
6498 	dosum = 0;
6499 	sum = 0;
6500 
6501 	switch (fin->fin_p)
6502 	{
6503 	case IPPROTO_TCP :
6504 		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6505 		dosum = 1;
6506 		break;
6507 
6508 	case IPPROTO_UDP :
6509 		udp = fin->fin_dp;
6510 		if (udp->uh_sum != 0) {
6511 			csump = &udp->uh_sum;
6512 			dosum = 1;
6513 		}
6514 		break;
6515 
6516 #ifdef USE_INET6
6517 	case IPPROTO_ICMPV6 :
6518 		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6519 		dosum = 1;
6520 		break;
6521 #endif
6522 
6523 	case IPPROTO_ICMP :
6524 		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6525 		dosum = 1;
6526 		break;
6527 
6528 	default :
6529 		return 1;
6530 		/*NOTREACHED*/
6531 	}
6532 
6533 	if (csump != NULL)
6534 		hdrsum = *csump;
6535 
6536 	if (dosum) {
6537 		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6538 	}
6539 #if !defined(_KERNEL)
6540 	if (sum == hdrsum) {
6541 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6542 	} else {
6543 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6544 	}
6545 #endif
6546 	DT2(l4sums, u_short, hdrsum, u_short, sum);
6547 	if (hdrsum == sum) {
6548 		fin->fin_cksum = FI_CK_SUMOK;
6549 		return 0;
6550 	}
6551 	fin->fin_cksum = FI_CK_BAD;
6552 	return -1;
6553 }
6554 
6555 
6556 /* ------------------------------------------------------------------------ */
6557 /* Function:    ipf_ifpfillv4addr                                           */
6558 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6559 /* Parameters:  atype(I)   - type of network address update to perform      */
6560 /*              sin(I)     - pointer to source of address information       */
6561 /*              mask(I)    - pointer to source of netmask information       */
6562 /*              inp(I)     - pointer to destination address store           */
6563 /*              inpmask(I) - pointer to destination netmask store           */
6564 /*                                                                          */
6565 /* Given a type of network address update (atype) to perform, copy          */
6566 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6567 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6568 /* which case the operation fails.  For all values of atype other than      */
6569 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6570 /* value.                                                                   */
6571 /* ------------------------------------------------------------------------ */
6572 int
6573 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6574     struct in_addr *inp, struct in_addr *inpmask)
6575 {
6576 	if (inpmask != NULL && atype != FRI_NETMASKED)
6577 		inpmask->s_addr = 0xffffffff;
6578 
6579 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6580 		if (atype == FRI_NETMASKED) {
6581 			if (inpmask == NULL)
6582 				return -1;
6583 			inpmask->s_addr = mask->sin_addr.s_addr;
6584 		}
6585 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6586 	} else {
6587 		inp->s_addr = sin->sin_addr.s_addr;
6588 	}
6589 	return 0;
6590 }
6591 
6592 
6593 #ifdef	USE_INET6
6594 /* ------------------------------------------------------------------------ */
6595 /* Function:    ipf_ifpfillv6addr                                           */
6596 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6597 /* Parameters:  atype(I)   - type of network address update to perform      */
6598 /*              sin(I)     - pointer to source of address information       */
6599 /*              mask(I)    - pointer to source of netmask information       */
6600 /*              inp(I)     - pointer to destination address store           */
6601 /*              inpmask(I) - pointer to destination netmask store           */
6602 /*                                                                          */
6603 /* Given a type of network address update (atype) to perform, copy          */
6604 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6605 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6606 /* which case the operation fails.  For all values of atype other than      */
6607 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6608 /* value.                                                                   */
6609 /* ------------------------------------------------------------------------ */
6610 int
6611 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6612     struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6613 {
6614 	i6addr_t *src, *and;
6615 
6616 	src = (i6addr_t *)&sin->sin6_addr;
6617 	and = (i6addr_t *)&mask->sin6_addr;
6618 
6619 	if (inpmask != NULL && atype != FRI_NETMASKED) {
6620 		inpmask->i6[0] = 0xffffffff;
6621 		inpmask->i6[1] = 0xffffffff;
6622 		inpmask->i6[2] = 0xffffffff;
6623 		inpmask->i6[3] = 0xffffffff;
6624 	}
6625 
6626 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6627 		if (atype == FRI_NETMASKED) {
6628 			if (inpmask == NULL)
6629 				return -1;
6630 			inpmask->i6[0] = and->i6[0];
6631 			inpmask->i6[1] = and->i6[1];
6632 			inpmask->i6[2] = and->i6[2];
6633 			inpmask->i6[3] = and->i6[3];
6634 		}
6635 
6636 		inp->i6[0] = src->i6[0] & and->i6[0];
6637 		inp->i6[1] = src->i6[1] & and->i6[1];
6638 		inp->i6[2] = src->i6[2] & and->i6[2];
6639 		inp->i6[3] = src->i6[3] & and->i6[3];
6640 	} else {
6641 		inp->i6[0] = src->i6[0];
6642 		inp->i6[1] = src->i6[1];
6643 		inp->i6[2] = src->i6[2];
6644 		inp->i6[3] = src->i6[3];
6645 	}
6646 	return 0;
6647 }
6648 #endif
6649 
6650 
6651 /* ------------------------------------------------------------------------ */
6652 /* Function:    ipf_matchtag                                                */
6653 /* Returns:     0 == mismatch, 1 == match.                                  */
6654 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6655 /*              tag2(I) - pointer to second tag to compare                  */
6656 /*                                                                          */
6657 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6658 /* considered to be a match or not match, respectively.  The tag is 16      */
6659 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6660 /* compare the ints instead, for speed. tag1 is the master of the           */
6661 /* comparison.  This function should only be called with both tag1 and tag2 */
6662 /* as non-NULL pointers.                                                    */
6663 /* ------------------------------------------------------------------------ */
6664 int
6665 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6666 {
6667 	if (tag1 == tag2)
6668 		return 1;
6669 
6670 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6671 		return 1;
6672 
6673 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6674 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6675 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6676 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6677 		return 1;
6678 	return 0;
6679 }
6680 
6681 
6682 /* ------------------------------------------------------------------------ */
6683 /* Function:    ipf_coalesce                                                */
6684 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6685 /* Parameters:  fin(I) - pointer to packet information                      */
6686 /*                                                                          */
6687 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6688 /* If this call returns a failure then the buffers have also been freed.    */
6689 /* ------------------------------------------------------------------------ */
6690 int
6691 ipf_coalesce(fr_info_t *fin)
6692 {
6693 
6694 	if ((fin->fin_flx & FI_COALESCE) != 0)
6695 		return 1;
6696 
6697 	/*
6698 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6699 	 * return but do not indicate success or failure.
6700 	 */
6701 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6702 		return 0;
6703 
6704 #if defined(_KERNEL)
6705 	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6706 		ipf_main_softc_t *softc = fin->fin_main_soft;
6707 
6708 		DT1(frb_coalesce, fr_info_t *, fin);
6709 		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6710 # ifdef MENTAT
6711 		FREE_MB_T(*fin->fin_mp);
6712 # endif
6713 		fin->fin_reason = FRB_COALESCE;
6714 		*fin->fin_mp = NULL;
6715 		fin->fin_m = NULL;
6716 		return -1;
6717 	}
6718 #else
6719 	fin = fin;	/* LINT */
6720 #endif
6721 	return 1;
6722 }
6723 
6724 
6725 /*
6726  * The following table lists all of the tunable variables that can be
6727  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6728  * in the table below is as follows:
6729  *
6730  * pointer to value, name of value, minimum, maximum, size of the value's
6731  *     container, value attribute flags
6732  *
6733  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6734  * means the value can only be written to when IPFilter is loaded but disabled.
6735  * The obvious implication is if neither of these are set then the value can be
6736  * changed at any time without harm.
6737  */
6738 
6739 
6740 /* ------------------------------------------------------------------------ */
6741 /* Function:    ipf_tune_findbycookie                                       */
6742 /* Returns:     NULL = search failed, else pointer to tune struct           */
6743 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6744 /*              next(O)   - pointer to place to store the cookie for the    */
6745 /*                          "next" tuneable, if it is desired.              */
6746 /*                                                                          */
6747 /* This function is used to walk through all of the existing tunables with  */
6748 /* successive calls.  It searches the known tunables for the one which has  */
6749 /* a matching value for "cookie" - ie its address.  When returning a match, */
6750 /* the next one to be found may be returned inside next.                    */
6751 /* ------------------------------------------------------------------------ */
6752 static ipftuneable_t *
6753 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6754 {
6755 	ipftuneable_t *ta, **tap;
6756 
6757 	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6758 		if (ta == cookie) {
6759 			if (next != NULL) {
6760 				/*
6761 				 * If the next entry in the array has a name
6762 				 * present, then return a pointer to it for
6763 				 * where to go next, else return a pointer to
6764 				 * the dynaminc list as a key to search there
6765 				 * next.  This facilitates a weak linking of
6766 				 * the two "lists" together.
6767 				 */
6768 				if ((ta + 1)->ipft_name != NULL)
6769 					*next = ta + 1;
6770 				else
6771 					*next = ptop;
6772 			}
6773 			return ta;
6774 		}
6775 
6776 	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6777 		if (tap == cookie) {
6778 			if (next != NULL)
6779 				*next = &ta->ipft_next;
6780 			return ta;
6781 		}
6782 
6783 	if (next != NULL)
6784 		*next = NULL;
6785 	return NULL;
6786 }
6787 
6788 
6789 /* ------------------------------------------------------------------------ */
6790 /* Function:    ipf_tune_findbyname                                         */
6791 /* Returns:     NULL = search failed, else pointer to tune struct           */
6792 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6793 /*                                                                          */
6794 /* Search the static array of tuneables and the list of dynamic tuneables   */
6795 /* for an entry with a matching name.  If we can find one, return a pointer */
6796 /* to the matching structure.                                               */
6797 /* ------------------------------------------------------------------------ */
6798 static ipftuneable_t *
6799 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6800 {
6801 	ipftuneable_t *ta;
6802 
6803 	for (ta = top; ta != NULL; ta = ta->ipft_next)
6804 		if (!strcmp(ta->ipft_name, name)) {
6805 			return ta;
6806 		}
6807 
6808 	return NULL;
6809 }
6810 
6811 
6812 /* ------------------------------------------------------------------------ */
6813 /* Function:    ipf_tune_add_array                                          */
6814 /* Returns:     int - 0 == success, else failure                            */
6815 /* Parameters:  newtune - pointer to new tune array to add to tuneables     */
6816 /*                                                                          */
6817 /* Appends tune structures from the array passed in (newtune) to the end of */
6818 /* the current list of "dynamic" tuneable parameters.                       */
6819 /* If any entry to be added is already present (by name) then the operation */
6820 /* is aborted - entries that have been added are removed before returning.  */
6821 /* An entry with no name (NULL) is used as the indication that the end of   */
6822 /* the array has been reached.                                              */
6823 /* ------------------------------------------------------------------------ */
6824 int
6825 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6826 {
6827 	ipftuneable_t *nt, *dt;
6828 	int error = 0;
6829 
6830 	for (nt = newtune; nt->ipft_name != NULL; nt++) {
6831 		error = ipf_tune_add(softc, nt);
6832 		if (error != 0) {
6833 			for (dt = newtune; dt != nt; dt++) {
6834 				(void) ipf_tune_del(softc, dt);
6835 			}
6836 		}
6837 	}
6838 
6839 	return error;
6840 }
6841 
6842 
6843 /* ------------------------------------------------------------------------ */
6844 /* Function:    ipf_tune_array_link                                         */
6845 /* Returns:     0 == success, -1 == failure                                 */
6846 /* Parameters:  softc(I) - soft context pointerto work with                 */
6847 /*              array(I) - pointer to an array of tuneables                 */
6848 /*                                                                          */
6849 /* Given an array of tunables (array), append them to the current list of   */
6850 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
6851 /* the array for being appended to the list, initialise all of the next     */
6852 /* pointers so we don't need to walk parts of it with ++ and others with    */
6853 /* next. The array is expected to have an entry with a NULL name as the     */
6854 /* terminator. Trying to add an array with no non-NULL names will return as */
6855 /* a failure.                                                               */
6856 /* ------------------------------------------------------------------------ */
6857 int
6858 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6859 {
6860 	ipftuneable_t *t, **p;
6861 
6862 	t = array;
6863 	if (t->ipft_name == NULL)
6864 		return -1;
6865 
6866 	for (; t[1].ipft_name != NULL; t++)
6867 		t[0].ipft_next = &t[1];
6868 	t->ipft_next = NULL;
6869 
6870 	/*
6871 	 * Since a pointer to the last entry isn't kept, we need to find it
6872 	 * each time we want to add new variables to the list.
6873 	 */
6874 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6875 		if (t->ipft_name == NULL)
6876 			break;
6877 	*p = array;
6878 
6879 	return 0;
6880 }
6881 
6882 
6883 /* ------------------------------------------------------------------------ */
6884 /* Function:    ipf_tune_array_unlink                                       */
6885 /* Returns:     0 == success, -1 == failure                                 */
6886 /* Parameters:  softc(I) - soft context pointerto work with                 */
6887 /*              array(I) - pointer to an array of tuneables                 */
6888 /*                                                                          */
6889 /* ------------------------------------------------------------------------ */
6890 int
6891 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6892 {
6893 	ipftuneable_t *t, **p;
6894 
6895 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6896 		if (t == array)
6897 			break;
6898 	if (t == NULL)
6899 		return -1;
6900 
6901 	for (; t[1].ipft_name != NULL; t++)
6902 		;
6903 
6904 	*p = t->ipft_next;
6905 
6906 	return 0;
6907 }
6908 
6909 
6910 /* ------------------------------------------------------------------------ */
6911 /* Function:   ipf_tune_array_copy                                          */
6912 /* Returns:    NULL = failure, else pointer to new array                    */
6913 /* Parameters: base(I)     - pointer to structure base                      */
6914 /*             size(I)     - size of the array at template                  */
6915 /*             template(I) - original array to copy                         */
6916 /*                                                                          */
6917 /* Allocate memory for a new set of tuneable values and copy everything     */
6918 /* from template into the new region of memory.  The new region is full of  */
6919 /* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
6920 /*                                                                          */
6921 /* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
6922 /* In the array template, ipftp_offset is the offset (in bytes) of the      */
6923 /* location of the tuneable value inside the structure pointed to by base.  */
6924 /* As ipftp_offset is a union over the pointers to the tuneable values, if  */
6925 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
6926 /* ipftp_void that points to the stored value.                              */
6927 /* ------------------------------------------------------------------------ */
6928 ipftuneable_t *
6929 ipf_tune_array_copy(void *base, size_t size, const ipftuneable_t *template)
6930 {
6931 	ipftuneable_t *copy;
6932 	int i;
6933 
6934 
6935 	KMALLOCS(copy, ipftuneable_t *, size);
6936 	if (copy == NULL) {
6937 		return NULL;
6938 	}
6939 	bcopy(template, copy, size);
6940 
6941 	for (i = 0; copy[i].ipft_name; i++) {
6942 		copy[i].ipft_una.ipftp_offset += (u_long)base;
6943 		copy[i].ipft_next = copy + i + 1;
6944 	}
6945 
6946 	return copy;
6947 }
6948 
6949 
6950 /* ------------------------------------------------------------------------ */
6951 /* Function:    ipf_tune_add                                                */
6952 /* Returns:     int - 0 == success, else failure                            */
6953 /* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
6954 /*                                                                          */
6955 /* Appends tune structures from the array passed in (newtune) to the end of */
6956 /* the current list of "dynamic" tuneable parameters.  Once added, the      */
6957 /* owner of the object is not expected to ever change "ipft_next".          */
6958 /* ------------------------------------------------------------------------ */
6959 int
6960 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6961 {
6962 	ipftuneable_t *ta, **tap;
6963 
6964 	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6965 	if (ta != NULL) {
6966 		IPFERROR(74);
6967 		return EEXIST;
6968 	}
6969 
6970 	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6971 		;
6972 
6973 	newtune->ipft_next = NULL;
6974 	*tap = newtune;
6975 	return 0;
6976 }
6977 
6978 
6979 /* ------------------------------------------------------------------------ */
6980 /* Function:    ipf_tune_del                                                */
6981 /* Returns:     int - 0 == success, else failure                            */
6982 /* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
6983 /*                        current dynamic tuneables                         */
6984 /*                                                                          */
6985 /* Search for the tune structure, by pointer, in the list of those that are */
6986 /* dynamically added at run time.  If found, adjust the list so that this   */
6987 /* structure is no longer part of it.                                       */
6988 /* ------------------------------------------------------------------------ */
6989 int
6990 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6991 {
6992 	ipftuneable_t *ta, **tap;
6993 	int error = 0;
6994 
6995 	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
6996 	     tap = &ta->ipft_next) {
6997 		if (ta == oldtune) {
6998 			*tap = oldtune->ipft_next;
6999 			oldtune->ipft_next = NULL;
7000 			break;
7001 		}
7002 	}
7003 
7004 	if (ta == NULL) {
7005 		error = ESRCH;
7006 		IPFERROR(75);
7007 	}
7008 	return error;
7009 }
7010 
7011 
7012 /* ------------------------------------------------------------------------ */
7013 /* Function:    ipf_tune_del_array                                          */
7014 /* Returns:     int - 0 == success, else failure                            */
7015 /* Parameters:  oldtune - pointer to tuneables array                        */
7016 /*                                                                          */
7017 /* Remove each tuneable entry in the array from the list of "dynamic"       */
7018 /* tunables.  If one entry should fail to be found, an error will be        */
7019 /* returned and no further ones removed.                                    */
7020 /* An entry with a NULL name is used as the indicator of the last entry in  */
7021 /* the array.                                                               */
7022 /* ------------------------------------------------------------------------ */
7023 int
7024 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7025 {
7026 	ipftuneable_t *ot;
7027 	int error = 0;
7028 
7029 	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7030 		error = ipf_tune_del(softc, ot);
7031 		if (error != 0)
7032 			break;
7033 	}
7034 
7035 	return error;
7036 
7037 }
7038 
7039 
7040 /* ------------------------------------------------------------------------ */
7041 /* Function:    ipf_tune                                                    */
7042 /* Returns:     int - 0 == success, else failure                            */
7043 /* Parameters:  cmd(I)  - ioctl command number                              */
7044 /*              data(I) - pointer to ioctl data structure                   */
7045 /*                                                                          */
7046 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7047 /* three ioctls provide the means to access and control global variables    */
7048 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7049 /* changed without rebooting, reloading or recompiling.  The initialisation */
7050 /* and 'destruction' routines of the various components of ipfilter are all */
7051 /* each responsible for handling their own values being too big.            */
7052 /* ------------------------------------------------------------------------ */
7053 int
7054 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
7055 {
7056 	ipftuneable_t *ta;
7057 	ipftune_t tu;
7058 	void *cookie;
7059 	int error;
7060 
7061 	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7062 	if (error != 0)
7063 		return error;
7064 
7065 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7066 	cookie = tu.ipft_cookie;
7067 	ta = NULL;
7068 
7069 	switch (cmd)
7070 	{
7071 	case SIOCIPFGETNEXT :
7072 		/*
7073 		 * If cookie is non-NULL, assume it to be a pointer to the last
7074 		 * entry we looked at, so find it (if possible) and return a
7075 		 * pointer to the next one after it.  The last entry in the
7076 		 * the table is a NULL entry, so when we get to it, set cookie
7077 		 * to NULL and return that, indicating end of list, erstwhile
7078 		 * if we come in with cookie set to NULL, we are starting anew
7079 		 * at the front of the list.
7080 		 */
7081 		if (cookie != NULL) {
7082 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7083 						   cookie, &tu.ipft_cookie);
7084 		} else {
7085 			ta = softc->ipf_tuners;
7086 			tu.ipft_cookie = ta + 1;
7087 		}
7088 		if (ta != NULL) {
7089 			/*
7090 			 * Entry found, but does the data pointed to by that
7091 			 * row fit in what we can return?
7092 			 */
7093 			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7094 				IPFERROR(76);
7095 				return EINVAL;
7096 			}
7097 
7098 			tu.ipft_vlong = 0;
7099 			if (ta->ipft_sz == sizeof(u_long))
7100 				tu.ipft_vlong = *ta->ipft_plong;
7101 			else if (ta->ipft_sz == sizeof(u_int))
7102 				tu.ipft_vint = *ta->ipft_pint;
7103 			else if (ta->ipft_sz == sizeof(u_short))
7104 				tu.ipft_vshort = *ta->ipft_pshort;
7105 			else if (ta->ipft_sz == sizeof(u_char))
7106 				tu.ipft_vchar = *ta->ipft_pchar;
7107 
7108 			tu.ipft_sz = ta->ipft_sz;
7109 			tu.ipft_min = ta->ipft_min;
7110 			tu.ipft_max = ta->ipft_max;
7111 			tu.ipft_flags = ta->ipft_flags;
7112 			bcopy(ta->ipft_name, tu.ipft_name,
7113 			      MIN(sizeof(tu.ipft_name),
7114 				  strlen(ta->ipft_name) + 1));
7115 		}
7116 		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7117 		break;
7118 
7119 	case SIOCIPFGET :
7120 	case SIOCIPFSET :
7121 		/*
7122 		 * Search by name or by cookie value for a particular entry
7123 		 * in the tuning paramter table.
7124 		 */
7125 		IPFERROR(77);
7126 		error = ESRCH;
7127 		if (cookie != NULL) {
7128 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7129 						   cookie, NULL);
7130 			if (ta != NULL)
7131 				error = 0;
7132 		} else if (tu.ipft_name[0] != '\0') {
7133 			ta = ipf_tune_findbyname(softc->ipf_tuners,
7134 						 tu.ipft_name);
7135 			if (ta != NULL)
7136 				error = 0;
7137 		}
7138 		if (error != 0)
7139 			break;
7140 
7141 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7142 			/*
7143 			 * Fetch the tuning parameters for a particular value
7144 			 */
7145 			tu.ipft_vlong = 0;
7146 			if (ta->ipft_sz == sizeof(u_long))
7147 				tu.ipft_vlong = *ta->ipft_plong;
7148 			else if (ta->ipft_sz == sizeof(u_int))
7149 				tu.ipft_vint = *ta->ipft_pint;
7150 			else if (ta->ipft_sz == sizeof(u_short))
7151 				tu.ipft_vshort = *ta->ipft_pshort;
7152 			else if (ta->ipft_sz == sizeof(u_char))
7153 				tu.ipft_vchar = *ta->ipft_pchar;
7154 			tu.ipft_cookie = ta;
7155 			tu.ipft_sz = ta->ipft_sz;
7156 			tu.ipft_min = ta->ipft_min;
7157 			tu.ipft_max = ta->ipft_max;
7158 			tu.ipft_flags = ta->ipft_flags;
7159 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7160 
7161 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7162 			/*
7163 			 * Set an internal parameter.  The hard part here is
7164 			 * getting the new value safely and correctly out of
7165 			 * the kernel (given we only know its size, not type.)
7166 			 */
7167 			u_long in;
7168 
7169 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7170 			    (softc->ipf_running > 0)) {
7171 				IPFERROR(78);
7172 				error = EBUSY;
7173 				break;
7174 			}
7175 
7176 			in = tu.ipft_vlong;
7177 			if (in < ta->ipft_min || in > ta->ipft_max) {
7178 				IPFERROR(79);
7179 				error = EINVAL;
7180 				break;
7181 			}
7182 
7183 			if (ta->ipft_func != NULL) {
7184 				SPL_INT(s);
7185 
7186 				SPL_NET(s);
7187 				error = (*ta->ipft_func)(softc, ta,
7188 							 &tu.ipft_un);
7189 				SPL_X(s);
7190 
7191 			} else if (ta->ipft_sz == sizeof(u_long)) {
7192 				tu.ipft_vlong = *ta->ipft_plong;
7193 				*ta->ipft_plong = in;
7194 
7195 			} else if (ta->ipft_sz == sizeof(u_int)) {
7196 				tu.ipft_vint = *ta->ipft_pint;
7197 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7198 
7199 			} else if (ta->ipft_sz == sizeof(u_short)) {
7200 				tu.ipft_vshort = *ta->ipft_pshort;
7201 				*ta->ipft_pshort = (u_short)(in & 0xffff);
7202 
7203 			} else if (ta->ipft_sz == sizeof(u_char)) {
7204 				tu.ipft_vchar = *ta->ipft_pchar;
7205 				*ta->ipft_pchar = (u_char)(in & 0xff);
7206 			}
7207 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7208 		}
7209 		break;
7210 
7211 	default :
7212 		IPFERROR(80);
7213 		error = EINVAL;
7214 		break;
7215 	}
7216 
7217 	return error;
7218 }
7219 
7220 
7221 /* ------------------------------------------------------------------------ */
7222 /* Function:    ipf_zerostats                                               */
7223 /* Returns:     int - 0 = success, else failure                             */
7224 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
7225 /*                                                                          */
7226 /* Copies the current statistics out to userspace and then zero's the       */
7227 /* current ones in the kernel. The lock is only held across the bzero() as  */
7228 /* the copyout may result in paging (ie network activity.)                  */
7229 /* ------------------------------------------------------------------------ */
7230 int
7231 ipf_zerostats(ipf_main_softc_t *softc, void *data)
7232 {
7233 	friostat_t fio;
7234 	ipfobj_t obj;
7235 	int error;
7236 
7237 	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7238 	if (error != 0)
7239 		return error;
7240 	ipf_getstat(softc, &fio, obj.ipfo_rev);
7241 	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7242 	if (error != 0)
7243 		return error;
7244 
7245 	WRITE_ENTER(&softc->ipf_mutex);
7246 	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7247 	RWLOCK_EXIT(&softc->ipf_mutex);
7248 
7249 	return 0;
7250 }
7251 
7252 
7253 /* ------------------------------------------------------------------------ */
7254 /* Function:    ipf_resolvedest                                             */
7255 /* Returns:     Nil                                                         */
7256 /* Parameters:  softc(I) - pointer to soft context main structure           */
7257 /*              base(I)  - where strings are stored                         */
7258 /*              fdp(IO)  - pointer to destination information to resolve    */
7259 /*              v(I)     - IP protocol version to match                     */
7260 /*                                                                          */
7261 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7262 /* if a matching name can be found for the particular IP protocol version   */
7263 /* then store the interface pointer in the frdest struct.  If no match is   */
7264 /* found, then set the interface pointer to be -1 as NULL is considered to  */
7265 /* indicate there is no information at all in the structure.                */
7266 /* ------------------------------------------------------------------------ */
7267 int
7268 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7269 {
7270 	int errval = 0;
7271 	void *ifp;
7272 
7273 	ifp = NULL;
7274 
7275 	if (fdp->fd_name != -1) {
7276 		if (fdp->fd_type == FRD_DSTLIST) {
7277 			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7278 						  IPLT_DSTLIST,
7279 						  base + fdp->fd_name,
7280 						  NULL);
7281 			if (ifp == NULL) {
7282 				IPFERROR(144);
7283 				errval = ESRCH;
7284 			}
7285 		} else {
7286 			ifp = GETIFP(base + fdp->fd_name, v);
7287 			if (ifp == NULL)
7288 				ifp = (void *)-1;
7289 			if ((ifp != NULL) && (ifp != (void *)-1))
7290 				fdp->fd_local = ipf_deliverlocal(softc, v, ifp,
7291 								 &fdp->fd_ip6);
7292 		}
7293 	}
7294 	fdp->fd_ptr = ifp;
7295 
7296 	return errval;
7297 }
7298 
7299 
7300 /* ------------------------------------------------------------------------ */
7301 /* Function:    ipf_resolvenic                                              */
7302 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7303 /*                      pointer to interface structure for NIC              */
7304 /* Parameters:  softc(I)- pointer to soft context main structure            */
7305 /*              name(I) - complete interface name                           */
7306 /*              v(I)    - IP protocol version                               */
7307 /*                                                                          */
7308 /* Look for a network interface structure that firstly has a matching name  */
7309 /* to that passed in and that is also being used for that IP protocol       */
7310 /* version (necessary on some platforms where there are separate listings   */
7311 /* for both IPv4 and IPv6 on the same physical NIC.                         */
7312 /*                                                                          */
7313 /* ------------------------------------------------------------------------ */
7314 void *
7315 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7316 {
7317 	void *nic;
7318 
7319 	softc = softc;	/* gcc -Wextra */
7320 	if (name[0] == '\0')
7321 		return NULL;
7322 
7323 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7324 		return NULL;
7325 	}
7326 
7327 	nic = GETIFP(name, v);
7328 	if (nic == NULL)
7329 		nic = (void *)-1;
7330 	return nic;
7331 }
7332 
7333 
7334 /* ------------------------------------------------------------------------ */
7335 /* Function:    ipf_token_expire                                            */
7336 /* Returns:     None.                                                       */
7337 /* Parameters:  softc(I) - pointer to soft context main structure           */
7338 /*                                                                          */
7339 /* This function is run every ipf tick to see if there are any tokens that  */
7340 /* have been held for too long and need to be freed up.                     */
7341 /* ------------------------------------------------------------------------ */
7342 void
7343 ipf_token_expire(ipf_main_softc_t *softc)
7344 {
7345 	ipftoken_t *it;
7346 
7347 	WRITE_ENTER(&softc->ipf_tokens);
7348 	while ((it = softc->ipf_token_head) != NULL) {
7349 		if (it->ipt_die > softc->ipf_ticks)
7350 			break;
7351 
7352 		ipf_token_deref(softc, it);
7353 	}
7354 	RWLOCK_EXIT(&softc->ipf_tokens);
7355 }
7356 
7357 
7358 /* ------------------------------------------------------------------------ */
7359 /* Function:    ipf_token_flush                                             */
7360 /* Returns:     None.                                                       */
7361 /* Parameters:  softc(I) - pointer to soft context main structure           */
7362 /*                                                                          */
7363 /* Loop through all of the existing tokens and call deref to see if they    */
7364 /* can be freed. Normally a function like this might just loop on           */
7365 /* ipf_token_head but there is a chance that a token might have a ref count */
7366 /* of greater than one and in that case the the reference would drop twice  */
7367 /* by code that is only entitled to drop it once.                           */
7368 /* ------------------------------------------------------------------------ */
7369 static void
7370 ipf_token_flush(ipf_main_softc_t *softc)
7371 {
7372 	ipftoken_t *it, *next;
7373 
7374 	WRITE_ENTER(&softc->ipf_tokens);
7375 	for (it = softc->ipf_token_head; it != NULL; it = next) {
7376 		next = it->ipt_next;
7377 		(void) ipf_token_deref(softc, it);
7378 	}
7379 	RWLOCK_EXIT(&softc->ipf_tokens);
7380 }
7381 
7382 
7383 /* ------------------------------------------------------------------------ */
7384 /* Function:    ipf_token_del                                               */
7385 /* Returns:     int     - 0 = success, else error                           */
7386 /* Parameters:  softc(I)- pointer to soft context main structure            */
7387 /*              type(I) - the token type to match                           */
7388 /*              uid(I)  - uid owning the token                              */
7389 /*              ptr(I)  - context pointer for the token                     */
7390 /*                                                                          */
7391 /* This function looks for a a token in the current list that matches up    */
7392 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7393 /* call ipf_token_dewref() to remove it from the list. In the event that    */
7394 /* the token has a reference held elsewhere, setting ipt_complete to 2      */
7395 /* enables debugging to distinguish between the two paths that ultimately   */
7396 /* lead to a token to be deleted.                                           */
7397 /* ------------------------------------------------------------------------ */
7398 int
7399 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7400 {
7401 	ipftoken_t *it;
7402 	int error;
7403 
7404 	IPFERROR(82);
7405 	error = ESRCH;
7406 
7407 	WRITE_ENTER(&softc->ipf_tokens);
7408 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7409 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7410 		    uid == it->ipt_uid) {
7411 			it->ipt_complete = 2;
7412 			ipf_token_deref(softc, it);
7413 			error = 0;
7414 			break;
7415 		}
7416 	}
7417 	RWLOCK_EXIT(&softc->ipf_tokens);
7418 
7419 	return error;
7420 }
7421 
7422 
7423 /* ------------------------------------------------------------------------ */
7424 /* Function:    ipf_token_mark_complete                                     */
7425 /* Returns:     None.                                                       */
7426 /* Parameters:  token(I) - pointer to token structure                       */
7427 /*                                                                          */
7428 /* Mark a token as being ineligable for being found with ipf_token_find.    */
7429 /* ------------------------------------------------------------------------ */
7430 void
7431 ipf_token_mark_complete(ipftoken_t *token)
7432 {
7433 	if (token->ipt_complete == 0)
7434 		token->ipt_complete = 1;
7435 }
7436 
7437 
7438 /* ------------------------------------------------------------------------ */
7439 /* Function:    ipf_token_find                                               */
7440 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7441 /* Parameters:  softc(I)- pointer to soft context main structure            */
7442 /*              type(I) - the token type to match                           */
7443 /*              uid(I)  - uid owning the token                              */
7444 /*              ptr(I)  - context pointer for the token                     */
7445 /*                                                                          */
7446 /* This function looks for a live token in the list of current tokens that  */
7447 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7448 /* allocated.  If one is found then it is moved to the top of the list of   */
7449 /* currently active tokens.                                                 */
7450 /* ------------------------------------------------------------------------ */
7451 ipftoken_t *
7452 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7453 {
7454 	ipftoken_t *it, *new;
7455 
7456 	KMALLOC(new, ipftoken_t *);
7457 	if (new != NULL)
7458 		bzero((char *)new, sizeof(*new));
7459 
7460 	WRITE_ENTER(&softc->ipf_tokens);
7461 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7462 		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7463 		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7464 			break;
7465 	}
7466 
7467 	if (it == NULL) {
7468 		it = new;
7469 		new = NULL;
7470 		if (it == NULL) {
7471 			RWLOCK_EXIT(&softc->ipf_tokens);
7472 			return NULL;
7473 		}
7474 		it->ipt_ctx = ptr;
7475 		it->ipt_uid = uid;
7476 		it->ipt_type = type;
7477 		it->ipt_ref = 1;
7478 	} else {
7479 		if (new != NULL) {
7480 			KFREE(new);
7481 			new = NULL;
7482 		}
7483 
7484 		if (it->ipt_complete > 0)
7485 			it = NULL;
7486 		else
7487 			ipf_token_unlink(softc, it);
7488 	}
7489 
7490 	if (it != NULL) {
7491 		it->ipt_pnext = softc->ipf_token_tail;
7492 		*softc->ipf_token_tail = it;
7493 		softc->ipf_token_tail = &it->ipt_next;
7494 		it->ipt_next = NULL;
7495 		it->ipt_ref++;
7496 
7497 		it->ipt_die = softc->ipf_ticks + 20;
7498 	}
7499 
7500 	RWLOCK_EXIT(&softc->ipf_tokens);
7501 
7502 	return it;
7503 }
7504 
7505 
7506 /* ------------------------------------------------------------------------ */
7507 /* Function:    ipf_token_unlink                                            */
7508 /* Returns:     None.                                                       */
7509 /* Parameters:  softc(I) - pointer to soft context main structure           */
7510 /*              token(I) - pointer to token structure                       */
7511 /* Write Locks: ipf_tokens                                                  */
7512 /*                                                                          */
7513 /* This function unlinks a token structure from the linked list of tokens   */
7514 /* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7515 /* but the tail does due to the linked list implementation.                 */
7516 /* ------------------------------------------------------------------------ */
7517 static void
7518 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7519 {
7520 
7521 	if (softc->ipf_token_tail == &token->ipt_next)
7522 		softc->ipf_token_tail = token->ipt_pnext;
7523 
7524 	*token->ipt_pnext = token->ipt_next;
7525 	if (token->ipt_next != NULL)
7526 		token->ipt_next->ipt_pnext = token->ipt_pnext;
7527 	token->ipt_next = NULL;
7528 	token->ipt_pnext = NULL;
7529 }
7530 
7531 
7532 /* ------------------------------------------------------------------------ */
7533 /* Function:    ipf_token_deref                                             */
7534 /* Returns:     int      - 0 == token freed, else reference count           */
7535 /* Parameters:  softc(I) - pointer to soft context main structure           */
7536 /*              token(I) - pointer to token structure                       */
7537 /* Write Locks: ipf_tokens                                                  */
7538 /*                                                                          */
7539 /* Drop the reference count on the token structure and if it drops to zero, */
7540 /* call the dereference function for the token type because it is then      */
7541 /* possible to free the token data structure.                               */
7542 /* ------------------------------------------------------------------------ */
7543 int
7544 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7545 {
7546 	void *data, **datap;
7547 
7548 	ASSERT(token->ipt_ref > 0);
7549 	token->ipt_ref--;
7550 	if (token->ipt_ref > 0)
7551 		return token->ipt_ref;
7552 
7553 	data = token->ipt_data;
7554 	datap = &data;
7555 
7556 	if ((data != NULL) && (data != (void *)-1)) {
7557 		switch (token->ipt_type)
7558 		{
7559 		case IPFGENITER_IPF :
7560 			(void) ipf_derefrule(softc, (frentry_t **)datap);
7561 			break;
7562 		case IPFGENITER_IPNAT :
7563 			WRITE_ENTER(&softc->ipf_nat);
7564 			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7565 			RWLOCK_EXIT(&softc->ipf_nat);
7566 			break;
7567 		case IPFGENITER_NAT :
7568 			ipf_nat_deref(softc, (nat_t **)datap);
7569 			break;
7570 		case IPFGENITER_STATE :
7571 			ipf_state_deref(softc, (ipstate_t **)datap);
7572 			break;
7573 		case IPFGENITER_FRAG :
7574 			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7575 			break;
7576 		case IPFGENITER_NATFRAG :
7577 			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7578 			break;
7579 		case IPFGENITER_HOSTMAP :
7580 			WRITE_ENTER(&softc->ipf_nat);
7581 			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7582 			RWLOCK_EXIT(&softc->ipf_nat);
7583 			break;
7584 		default :
7585 			ipf_lookup_iterderef(softc, token->ipt_type, data);
7586 			break;
7587 		}
7588 	}
7589 
7590 	ipf_token_unlink(softc, token);
7591 	KFREE(token);
7592 	return 0;
7593 }
7594 
7595 
7596 /* ------------------------------------------------------------------------ */
7597 /* Function:    ipf_nextrule                                                */
7598 /* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7599 /* Parameters:  softc(I)    - pointer to soft context main structure        */
7600 /*              fr(I)       - pointer to filter rule                        */
7601 /*              out(I)      - 1 == out rules, 0 == input rules              */
7602 /*                                                                          */
7603 /* Starting with "fr", find the next rule to visit. This includes visiting  */
7604 /* the list of rule groups if either fr is NULL (empty list) or it is the   */
7605 /* last rule in the list. When walking rule lists, it is either input or    */
7606 /* output rules that are returned, never both.                              */
7607 /* ------------------------------------------------------------------------ */
7608 static frentry_t *
7609 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit,
7610     frentry_t *fr, int out)
7611 {
7612 	frentry_t *next;
7613 	frgroup_t *fg;
7614 
7615 	if (fr != NULL && fr->fr_group != -1) {
7616 		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7617 				   unit, active, NULL);
7618 		if (fg != NULL)
7619 			fg = fg->fg_next;
7620 	} else {
7621 		fg = softc->ipf_groups[unit][active];
7622 	}
7623 
7624 	while (fg != NULL) {
7625 		next = fg->fg_start;
7626 		while (next != NULL) {
7627 			if (out) {
7628 				if (next->fr_flags & FR_OUTQUE)
7629 					return next;
7630 			} else if (next->fr_flags & FR_INQUE) {
7631 				return next;
7632 			}
7633 			next = next->fr_next;
7634 		}
7635 		if (next == NULL)
7636 			fg = fg->fg_next;
7637 	}
7638 
7639 	return NULL;
7640 }
7641 
7642 /* ------------------------------------------------------------------------ */
7643 /* Function:    ipf_getnextrule                                             */
7644 /* Returns:     int - 0 = success, else error                               */
7645 /* Parameters:  softc(I)- pointer to soft context main structure            */
7646 /*              t(I)   - pointer to destination information to resolve      */
7647 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7648 /*                                                                          */
7649 /* This function's first job is to bring in the ipfruleiter_t structure via */
7650 /* the ipfobj_t structure to determine what should be the next rule to      */
7651 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7652 /* find the 'next rule'.  This may include searching rule group lists or    */
7653 /* just be as simple as looking at the 'next' field in the rule structure.  */
7654 /* When we have found the rule to return, increase its reference count and  */
7655 /* if we used an existing rule to get here, decrease its reference count.   */
7656 /* ------------------------------------------------------------------------ */
7657 int
7658 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7659 {
7660 	frentry_t *fr, *next, zero;
7661 	ipfruleiter_t it;
7662 	int error, out;
7663 	frgroup_t *fg;
7664 	ipfobj_t obj;
7665 	int predict;
7666 	char *dst;
7667 	int unit;
7668 
7669 	if (t == NULL || ptr == NULL) {
7670 		IPFERROR(84);
7671 		return EFAULT;
7672 	}
7673 
7674 	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7675 	if (error != 0)
7676 		return error;
7677 
7678 	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7679 		IPFERROR(85);
7680 		return EINVAL;
7681 	}
7682 	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7683 		IPFERROR(86);
7684 		return EINVAL;
7685 	}
7686 	if (it.iri_nrules == 0) {
7687 		IPFERROR(87);
7688 		return ENOSPC;
7689 	}
7690 	if (it.iri_rule == NULL) {
7691 		IPFERROR(88);
7692 		return EFAULT;
7693 	}
7694 
7695 	fg = NULL;
7696 	fr = t->ipt_data;
7697 	if ((it.iri_inout & F_OUT) != 0)
7698 		out = 1;
7699 	else
7700 		out = 0;
7701 	if ((it.iri_inout & F_ACIN) != 0)
7702 		unit = IPL_LOGCOUNT;
7703 	else
7704 		unit = IPL_LOGIPF;
7705 
7706 	READ_ENTER(&softc->ipf_mutex);
7707 	if (fr == NULL) {
7708 		if (*it.iri_group == '\0') {
7709 			if (unit == IPL_LOGCOUNT) {
7710 				next = softc->ipf_acct[out][it.iri_active];
7711 			} else {
7712 				next = softc->ipf_rules[out][it.iri_active];
7713 			}
7714 			if (next == NULL)
7715 				next = ipf_nextrule(softc, it.iri_active,
7716 						    unit, NULL, out);
7717 		} else {
7718 			fg = ipf_findgroup(softc, it.iri_group, unit,
7719 					   it.iri_active, NULL);
7720 			if (fg != NULL)
7721 				next = fg->fg_start;
7722 			else
7723 				next = NULL;
7724 		}
7725 	} else {
7726 		next = fr->fr_next;
7727 		if (next == NULL)
7728 			next = ipf_nextrule(softc, it.iri_active, unit,
7729 					    fr, out);
7730 	}
7731 
7732 	if (next != NULL && next->fr_next != NULL)
7733 		predict = 1;
7734 	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7735 		predict = 1;
7736 	else
7737 		predict = 0;
7738 
7739 	if (fr != NULL)
7740 		(void) ipf_derefrule(softc, &fr);
7741 
7742 	obj.ipfo_type = IPFOBJ_FRENTRY;
7743 	dst = (char *)it.iri_rule;
7744 
7745 	if (next != NULL) {
7746 		obj.ipfo_size = next->fr_size;
7747 		MUTEX_ENTER(&next->fr_lock);
7748 		next->fr_ref++;
7749 		MUTEX_EXIT(&next->fr_lock);
7750 		t->ipt_data = next;
7751 	} else {
7752 		obj.ipfo_size = sizeof(frentry_t);
7753 		bzero(&zero, sizeof(zero));
7754 		next = &zero;
7755 		t->ipt_data = NULL;
7756 	}
7757 	it.iri_rule = predict ? next : NULL;
7758 	if (predict == 0)
7759 		ipf_token_mark_complete(t);
7760 
7761 	RWLOCK_EXIT(&softc->ipf_mutex);
7762 
7763 	obj.ipfo_ptr = dst;
7764 	error = ipf_outobjk(softc, &obj, next);
7765 	if (error == 0 && t->ipt_data != NULL) {
7766 		dst += obj.ipfo_size;
7767 		if (next->fr_data != NULL) {
7768 			ipfobj_t dobj;
7769 
7770 			if (next->fr_type == FR_T_IPFEXPR)
7771 				dobj.ipfo_type = IPFOBJ_IPFEXPR;
7772 			else
7773 				dobj.ipfo_type = IPFOBJ_FRIPF;
7774 			dobj.ipfo_size = next->fr_dsize;
7775 			dobj.ipfo_rev = obj.ipfo_rev;
7776 			dobj.ipfo_ptr = dst;
7777 			error = ipf_outobjk(softc, &dobj, next->fr_data);
7778 		}
7779 	}
7780 
7781 	if ((fr != NULL) && (next == &zero))
7782 		(void) ipf_derefrule(softc, &fr);
7783 
7784 	return error;
7785 }
7786 
7787 
7788 /* ------------------------------------------------------------------------ */
7789 /* Function:    ipf_frruleiter                                              */
7790 /* Returns:     int - 0 = success, else error                               */
7791 /* Parameters:  softc(I)- pointer to soft context main structure            */
7792 /*              data(I) - the token type to match                           */
7793 /*              uid(I)  - uid owning the token                              */
7794 /*              ptr(I)  - context pointer for the token                     */
7795 /*                                                                          */
7796 /* This function serves as a stepping stone between ipf_ipf_ioctl and       */
7797 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7798 /* the process doing the ioctl and use that to ask for the next rule.       */
7799 /* ------------------------------------------------------------------------ */
7800 static int
7801 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7802 {
7803 	ipftoken_t *token;
7804 	ipfruleiter_t it;
7805 	ipfobj_t obj;
7806 	int error;
7807 
7808 	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7809 	if (token != NULL) {
7810 		error = ipf_getnextrule(softc, token, data);
7811 		WRITE_ENTER(&softc->ipf_tokens);
7812 		ipf_token_deref(softc, token);
7813 		RWLOCK_EXIT(&softc->ipf_tokens);
7814 	} else {
7815 		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7816 		if (error != 0)
7817 			return error;
7818 		it.iri_rule = NULL;
7819 		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7820 	}
7821 
7822 	return error;
7823 }
7824 
7825 
7826 /* ------------------------------------------------------------------------ */
7827 /* Function:    ipf_geniter                                                 */
7828 /* Returns:     int - 0 = success, else error                               */
7829 /* Parameters:  softc(I) - pointer to soft context main structure           */
7830 /*              token(I) - pointer to ipftoken_t structure                  */
7831 /*              itp(I)   - pointer to iterator data                         */
7832 /*                                                                          */
7833 /* Decide which iterator function to call using information passed through  */
7834 /* the ipfgeniter_t structure at itp.                                       */
7835 /* ------------------------------------------------------------------------ */
7836 static int
7837 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7838 {
7839 	int error;
7840 
7841 	switch (itp->igi_type)
7842 	{
7843 	case IPFGENITER_FRAG :
7844 		error = ipf_frag_pkt_next(softc, token, itp);
7845 		break;
7846 	default :
7847 		IPFERROR(92);
7848 		error = EINVAL;
7849 		break;
7850 	}
7851 
7852 	return error;
7853 }
7854 
7855 
7856 /* ------------------------------------------------------------------------ */
7857 /* Function:    ipf_genericiter                                             */
7858 /* Returns:     int - 0 = success, else error                               */
7859 /* Parameters:  softc(I)- pointer to soft context main structure            */
7860 /*              data(I) - the token type to match                           */
7861 /*              uid(I)  - uid owning the token                              */
7862 /*              ptr(I)  - context pointer for the token                     */
7863 /*                                                                          */
7864 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
7865 /* ------------------------------------------------------------------------ */
7866 int
7867 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7868 {
7869 	ipftoken_t *token;
7870 	ipfgeniter_t iter;
7871 	int error;
7872 
7873 	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7874 	if (error != 0)
7875 		return error;
7876 
7877 	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7878 	if (token != NULL) {
7879 		token->ipt_subtype = iter.igi_type;
7880 		error = ipf_geniter(softc, token, &iter);
7881 		WRITE_ENTER(&softc->ipf_tokens);
7882 		ipf_token_deref(softc, token);
7883 		RWLOCK_EXIT(&softc->ipf_tokens);
7884 	} else {
7885 		IPFERROR(93);
7886 		error = 0;
7887 	}
7888 
7889 	return error;
7890 }
7891 
7892 
7893 /* ------------------------------------------------------------------------ */
7894 /* Function:    ipf_ipf_ioctl                                               */
7895 /* Returns:     int - 0 = success, else error                               */
7896 /* Parameters:  softc(I)- pointer to soft context main structure           */
7897 /*              data(I) - the token type to match                           */
7898 /*              cmd(I)  - the ioctl command number                          */
7899 /*              mode(I) - mode flags for the ioctl                          */
7900 /*              uid(I)  - uid owning the token                              */
7901 /*              ptr(I)  - context pointer for the token                     */
7902 /*                                                                          */
7903 /* This function handles all of the ioctl command that are actually isssued */
7904 /* to the /dev/ipl device.                                                  */
7905 /* ------------------------------------------------------------------------ */
7906 int
7907 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode,
7908     int uid, void *ctx)
7909 {
7910 	friostat_t fio;
7911 	int error, tmp;
7912 	ipfobj_t obj;
7913 	SPL_INT(s);
7914 
7915 	switch (cmd)
7916 	{
7917 	case SIOCFRENB :
7918 		if (!(mode & FWRITE)) {
7919 			IPFERROR(94);
7920 			error = EPERM;
7921 		} else {
7922 			error = BCOPYIN(data, &tmp, sizeof(tmp));
7923 			if (error != 0) {
7924 				IPFERROR(95);
7925 				error = EFAULT;
7926 				break;
7927 			}
7928 
7929 			WRITE_ENTER(&softc->ipf_global);
7930 			if (tmp) {
7931 				if (softc->ipf_running > 0)
7932 					error = 0;
7933 				else
7934 					error = ipfattach(softc);
7935 				if (error == 0)
7936 					softc->ipf_running = 1;
7937 				else
7938 					(void) ipfdetach(softc);
7939 			} else {
7940 				if (softc->ipf_running == 1)
7941 					error = ipfdetach(softc);
7942 				else
7943 					error = 0;
7944 				if (error == 0)
7945 					softc->ipf_running = -1;
7946 			}
7947 			RWLOCK_EXIT(&softc->ipf_global);
7948 		}
7949 		break;
7950 
7951 	case SIOCIPFSET :
7952 		if (!(mode & FWRITE)) {
7953 			IPFERROR(96);
7954 			error = EPERM;
7955 			break;
7956 		}
7957 		/* FALLTHRU */
7958 	case SIOCIPFGETNEXT :
7959 	case SIOCIPFGET :
7960 		error = ipf_ipftune(softc, cmd, (void *)data);
7961 		break;
7962 
7963 	case SIOCSETFF :
7964 		if (!(mode & FWRITE)) {
7965 			IPFERROR(97);
7966 			error = EPERM;
7967 		} else {
7968 			error = BCOPYIN(data, &softc->ipf_flags,
7969 					sizeof(softc->ipf_flags));
7970 			if (error != 0) {
7971 				IPFERROR(98);
7972 				error = EFAULT;
7973 			}
7974 		}
7975 		break;
7976 
7977 	case SIOCGETFF :
7978 		error = BCOPYOUT(&softc->ipf_flags, data,
7979 				 sizeof(softc->ipf_flags));
7980 		if (error != 0) {
7981 			IPFERROR(99);
7982 			error = EFAULT;
7983 		}
7984 		break;
7985 
7986 	case SIOCFUNCL :
7987 		error = ipf_resolvefunc(softc, (void *)data);
7988 		break;
7989 
7990 	case SIOCINAFR :
7991 	case SIOCRMAFR :
7992 	case SIOCADAFR :
7993 	case SIOCZRLST :
7994 		if (!(mode & FWRITE)) {
7995 			IPFERROR(100);
7996 			error = EPERM;
7997 		} else {
7998 			error = frrequest(softc, IPL_LOGIPF, cmd, data,
7999 					  softc->ipf_active, 1);
8000 		}
8001 		break;
8002 
8003 	case SIOCINIFR :
8004 	case SIOCRMIFR :
8005 	case SIOCADIFR :
8006 		if (!(mode & FWRITE)) {
8007 			IPFERROR(101);
8008 			error = EPERM;
8009 		} else {
8010 			error = frrequest(softc, IPL_LOGIPF, cmd, data,
8011 					  1 - softc->ipf_active, 1);
8012 		}
8013 		break;
8014 
8015 	case SIOCSWAPA :
8016 		if (!(mode & FWRITE)) {
8017 			IPFERROR(102);
8018 			error = EPERM;
8019 		} else {
8020 			WRITE_ENTER(&softc->ipf_mutex);
8021 			error = BCOPYOUT(&softc->ipf_active, data,
8022 					 sizeof(softc->ipf_active));
8023 			if (error != 0) {
8024 				IPFERROR(103);
8025 				error = EFAULT;
8026 			} else {
8027 				softc->ipf_active = 1 - softc->ipf_active;
8028 			}
8029 			RWLOCK_EXIT(&softc->ipf_mutex);
8030 		}
8031 		break;
8032 
8033 	case SIOCGETFS :
8034 		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8035 				  IPFOBJ_IPFSTAT);
8036 		if (error != 0)
8037 			break;
8038 		ipf_getstat(softc, &fio, obj.ipfo_rev);
8039 		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8040 		break;
8041 
8042 	case SIOCFRZST :
8043 		if (!(mode & FWRITE)) {
8044 			IPFERROR(104);
8045 			error = EPERM;
8046 		} else
8047 			error = ipf_zerostats(softc, data);
8048 		break;
8049 
8050 	case SIOCIPFFL :
8051 		if (!(mode & FWRITE)) {
8052 			IPFERROR(105);
8053 			error = EPERM;
8054 		} else {
8055 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8056 			if (!error) {
8057 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8058 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8059 				if (error != 0) {
8060 					IPFERROR(106);
8061 					error = EFAULT;
8062 				}
8063 			} else {
8064 				IPFERROR(107);
8065 				error = EFAULT;
8066 			}
8067 		}
8068 		break;
8069 
8070 #ifdef USE_INET6
8071 	case SIOCIPFL6 :
8072 		if (!(mode & FWRITE)) {
8073 			IPFERROR(108);
8074 			error = EPERM;
8075 		} else {
8076 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8077 			if (!error) {
8078 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8079 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8080 				if (error != 0) {
8081 					IPFERROR(109);
8082 					error = EFAULT;
8083 				}
8084 			} else {
8085 				IPFERROR(110);
8086 				error = EFAULT;
8087 			}
8088 		}
8089 		break;
8090 #endif
8091 
8092 	case SIOCSTLCK :
8093 		if (!(mode & FWRITE)) {
8094 			IPFERROR(122);
8095 			error = EPERM;
8096 		} else {
8097 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8098 			if (error == 0) {
8099 				ipf_state_setlock(softc->ipf_state_soft, tmp);
8100 				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8101 				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8102 				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8103 			} else {
8104 				IPFERROR(111);
8105 				error = EFAULT;
8106 			}
8107 		}
8108 		break;
8109 
8110 #ifdef	IPFILTER_LOG
8111 	case SIOCIPFFB :
8112 		if (!(mode & FWRITE)) {
8113 			IPFERROR(112);
8114 			error = EPERM;
8115 		} else {
8116 			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8117 			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8118 			if (error) {
8119 				IPFERROR(113);
8120 				error = EFAULT;
8121 			}
8122 		}
8123 		break;
8124 #endif /* IPFILTER_LOG */
8125 
8126 	case SIOCFRSYN :
8127 		if (!(mode & FWRITE)) {
8128 			IPFERROR(114);
8129 			error = EPERM;
8130 		} else {
8131 			WRITE_ENTER(&softc->ipf_global);
8132 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8133 			error = ipfsync();
8134 #else
8135 			ipf_sync(softc, NULL);
8136 			error = 0;
8137 #endif
8138 			RWLOCK_EXIT(&softc->ipf_global);
8139 
8140 		}
8141 		break;
8142 
8143 	case SIOCGFRST :
8144 		error = ipf_outobj(softc, (void *)data,
8145 				   ipf_frag_stats(softc->ipf_frag_soft),
8146 				   IPFOBJ_FRAGSTAT);
8147 		break;
8148 
8149 #ifdef	IPFILTER_LOG
8150 	case FIONREAD :
8151 		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8152 		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8153 		break;
8154 #endif
8155 
8156 	case SIOCIPFITER :
8157 		SPL_SCHED(s);
8158 		error = ipf_frruleiter(softc, data, uid, ctx);
8159 		SPL_X(s);
8160 		break;
8161 
8162 	case SIOCGENITER :
8163 		SPL_SCHED(s);
8164 		error = ipf_genericiter(softc, data, uid, ctx);
8165 		SPL_X(s);
8166 		break;
8167 
8168 	case SIOCIPFDELTOK :
8169 		error = BCOPYIN(data, &tmp, sizeof(tmp));
8170 		if (error == 0) {
8171 			SPL_SCHED(s);
8172 			error = ipf_token_del(softc, tmp, uid, ctx);
8173 			SPL_X(s);
8174 		}
8175 		break;
8176 
8177 	default :
8178 		IPFERROR(115);
8179 		error = EINVAL;
8180 		break;
8181 	}
8182 
8183 	return error;
8184 }
8185 
8186 
8187 /* ------------------------------------------------------------------------ */
8188 /* Function:    ipf_decaps                                                  */
8189 /* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8190 /*                           flags indicating packet filtering decision.    */
8191 /* Parameters:  fin(I)     - pointer to packet information                  */
8192 /*              pass(I)    - IP protocol version to match                   */
8193 /*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8194 /*                                                                          */
8195 /* This function is called for packets that are wrapt up in other packets,  */
8196 /* for example, an IP packet that is the entire data segment for another IP */
8197 /* packet.  If the basic constraints for this are satisfied, change the     */
8198 /* buffer to point to the start of the inner packet and start processing    */
8199 /* rules belonging to the head group this rule specifies.                   */
8200 /* ------------------------------------------------------------------------ */
8201 u_32_t
8202 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8203 {
8204 	fr_info_t fin2, *fino = NULL;
8205 	int elen, hlen, nh;
8206 	grehdr_t gre;
8207 	ip_t *ip;
8208 	mb_t *m;
8209 
8210 	if ((fin->fin_flx & FI_COALESCE) == 0)
8211 		if (ipf_coalesce(fin) == -1)
8212 			goto cantdecaps;
8213 
8214 	m = fin->fin_m;
8215 	hlen = fin->fin_hlen;
8216 
8217 	switch (fin->fin_p)
8218 	{
8219 	case IPPROTO_UDP :
8220 		/*
8221 		 * In this case, the specific protocol being decapsulated
8222 		 * inside UDP frames comes from the rule.
8223 		 */
8224 		nh = fin->fin_fr->fr_icode;
8225 		break;
8226 
8227 	case IPPROTO_GRE :	/* 47 */
8228 		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8229 		hlen += sizeof(grehdr_t);
8230 		if (gre.gr_R|gre.gr_s)
8231 			goto cantdecaps;
8232 		if (gre.gr_C)
8233 			hlen += 4;
8234 		if (gre.gr_K)
8235 			hlen += 4;
8236 		if (gre.gr_S)
8237 			hlen += 4;
8238 
8239 		nh = IPPROTO_IP;
8240 
8241 		/*
8242 		 * If the routing options flag is set, validate that it is
8243 		 * there and bounce over it.
8244 		 */
8245 #if 0
8246 		/* This is really heavy weight and lots of room for error, */
8247 		/* so for now, put it off and get the simple stuff right.  */
8248 		if (gre.gr_R) {
8249 			u_char off, len, *s;
8250 			u_short af;
8251 			int end;
8252 
8253 			end = 0;
8254 			s = fin->fin_dp;
8255 			s += hlen;
8256 			aplen = fin->fin_plen - hlen;
8257 			while (aplen > 3) {
8258 				af = (s[0] << 8) | s[1];
8259 				off = s[2];
8260 				len = s[3];
8261 				aplen -= 4;
8262 				s += 4;
8263 				if (af == 0 && len == 0) {
8264 					end = 1;
8265 					break;
8266 				}
8267 				if (aplen < len)
8268 					break;
8269 				s += len;
8270 				aplen -= len;
8271 			}
8272 			if (end != 1)
8273 				goto cantdecaps;
8274 			hlen = s - (u_char *)fin->fin_dp;
8275 		}
8276 #endif
8277 		break;
8278 
8279 #ifdef IPPROTO_IPIP
8280 	case IPPROTO_IPIP :	/* 4 */
8281 #endif
8282 		nh = IPPROTO_IP;
8283 		break;
8284 
8285 	default :	/* Includes ESP, AH is special for IPv4 */
8286 		goto cantdecaps;
8287 	}
8288 
8289 	switch (nh)
8290 	{
8291 	case IPPROTO_IP :
8292 	case IPPROTO_IPV6 :
8293 		break;
8294 	default :
8295 		goto cantdecaps;
8296 	}
8297 
8298 	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8299 	fino = fin;
8300 	fin = &fin2;
8301 	elen = hlen;
8302 #if defined(MENTAT) && defined(_KERNEL)
8303 	m->b_rptr += elen;
8304 #else
8305 	m->m_data += elen;
8306 	m->m_len -= elen;
8307 #endif
8308 	fin->fin_plen -= elen;
8309 
8310 	ip = (ip_t *)((char *)fin->fin_ip + elen);
8311 
8312 	/*
8313 	 * Make sure we have at least enough data for the network layer
8314 	 * header.
8315 	 */
8316 	if (IP_V(ip) == 4)
8317 		hlen = IP_HL(ip) << 2;
8318 #ifdef USE_INET6
8319 	else if (IP_V(ip) == 6)
8320 		hlen = sizeof(ip6_t);
8321 #endif
8322 	else
8323 		goto cantdecaps2;
8324 
8325 	if (fin->fin_plen < hlen)
8326 		goto cantdecaps2;
8327 
8328 	fin->fin_dp = (char *)ip + hlen;
8329 
8330 	if (IP_V(ip) == 4) {
8331 		/*
8332 		 * Perform IPv4 header checksum validation.
8333 		 */
8334 		if (ipf_cksum((u_short *)ip, hlen))
8335 			goto cantdecaps2;
8336 	}
8337 
8338 	if (ipf_makefrip(hlen, ip, fin) == -1) {
8339 cantdecaps2:
8340 		if (m != NULL) {
8341 #if defined(MENTAT) && defined(_KERNEL)
8342 			m->b_rptr -= elen;
8343 #else
8344 			m->m_data -= elen;
8345 			m->m_len += elen;
8346 #endif
8347 		}
8348 cantdecaps:
8349 		DT1(frb_decapfrip, fr_info_t *, fin);
8350 		pass &= ~FR_CMDMASK;
8351 		pass |= FR_BLOCK|FR_QUICK;
8352 		fin->fin_reason = FRB_DECAPFRIP;
8353 		return -1;
8354 	}
8355 
8356 	pass = ipf_scanlist(fin, pass);
8357 
8358 	/*
8359 	 * Copy the packet filter "result" fields out of the fr_info_t struct
8360 	 * that is local to the decapsulation processing and back into the
8361 	 * one we were called with.
8362 	 */
8363 	fino->fin_flx = fin->fin_flx;
8364 	fino->fin_rev = fin->fin_rev;
8365 	fino->fin_icode = fin->fin_icode;
8366 	fino->fin_rule = fin->fin_rule;
8367 	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8368 	fino->fin_fr = fin->fin_fr;
8369 	fino->fin_error = fin->fin_error;
8370 	fino->fin_mp = fin->fin_mp;
8371 	fino->fin_m = fin->fin_m;
8372 	m = fin->fin_m;
8373 	if (m != NULL) {
8374 #if defined(MENTAT) && defined(_KERNEL)
8375 		m->b_rptr -= elen;
8376 #else
8377 		m->m_data -= elen;
8378 		m->m_len += elen;
8379 #endif
8380 	}
8381 	return pass;
8382 }
8383 
8384 
8385 /* ------------------------------------------------------------------------ */
8386 /* Function:    ipf_matcharray_load                                         */
8387 /* Returns:     int         - 0 = success, else error                       */
8388 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8389 /*              data(I)     - pointer to ioctl data                         */
8390 /*              objp(I)     - ipfobj_t structure to load data into          */
8391 /*              arrayptr(I) - pointer to location to store array pointer    */
8392 /*                                                                          */
8393 /* This function loads in a mathing array through the ipfobj_t struct that  */
8394 /* describes it.  Sanity checking and array size limitations are enforced   */
8395 /* in this function to prevent userspace from trying to load in something   */
8396 /* that is insanely big.  Once the size of the array is known, the memory   */
8397 /* required is malloc'd and returned through changing *arrayptr.  The       */
8398 /* contents of the array are verified before returning.  Only in the event  */
8399 /* of a successful call is the caller required to free up the malloc area.  */
8400 /* ------------------------------------------------------------------------ */
8401 int
8402 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp,
8403     int **arrayptr)
8404 {
8405 	int arraysize, *array, error;
8406 
8407 	*arrayptr = NULL;
8408 
8409 	error = BCOPYIN(data, objp, sizeof(*objp));
8410 	if (error != 0) {
8411 		IPFERROR(116);
8412 		return EFAULT;
8413 	}
8414 
8415 	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8416 		IPFERROR(117);
8417 		return EINVAL;
8418 	}
8419 
8420 	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8421 	    (objp->ipfo_size > 1024)) {
8422 		IPFERROR(118);
8423 		return EINVAL;
8424 	}
8425 
8426 	arraysize = objp->ipfo_size * sizeof(*array);
8427 	KMALLOCS(array, int *, arraysize);
8428 	if (array == NULL) {
8429 		IPFERROR(119);
8430 		return ENOMEM;
8431 	}
8432 
8433 	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8434 	if (error != 0) {
8435 		KFREES(array, arraysize);
8436 		IPFERROR(120);
8437 		return EFAULT;
8438 	}
8439 
8440 	if (ipf_matcharray_verify(array, arraysize) != 0) {
8441 		KFREES(array, arraysize);
8442 		IPFERROR(121);
8443 		return EINVAL;
8444 	}
8445 
8446 	*arrayptr = array;
8447 	return 0;
8448 }
8449 
8450 
8451 /* ------------------------------------------------------------------------ */
8452 /* Function:    ipf_matcharray_verify                                       */
8453 /* Returns:     Nil                                                         */
8454 /* Parameters:  array(I)     - pointer to matching array                    */
8455 /*              arraysize(I) - number of elements in the array              */
8456 /*                                                                          */
8457 /* Verify the contents of a matching array by stepping through each element */
8458 /* in it.  The actual commands in the array are not verified for            */
8459 /* correctness, only that all of the sizes are correctly within limits.     */
8460 /* ------------------------------------------------------------------------ */
8461 int
8462 ipf_matcharray_verify(int *array, int arraysize)
8463 {
8464 	int i, nelem, maxidx;
8465 	ipfexp_t *e;
8466 
8467 	nelem = arraysize / sizeof(*array);
8468 
8469 	/*
8470 	 * Currently, it makes no sense to have an array less than 6
8471 	 * elements long - the initial size at the from, a single operation
8472 	 * (minimum 4 in length) and a trailer, for a total of 6.
8473 	 */
8474 	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8475 		return -1;
8476 	}
8477 
8478 	/*
8479 	 * Verify the size of data pointed to by array with how long
8480 	 * the array claims to be itself.
8481 	 */
8482 	if (array[0] * sizeof(*array) != arraysize) {
8483 		return -1;
8484 	}
8485 
8486 	maxidx = nelem - 1;
8487 	/*
8488 	 * The last opcode in this array should be an IPF_EXP_END.
8489 	 */
8490 	if (array[maxidx] != IPF_EXP_END) {
8491 		return -1;
8492 	}
8493 
8494 	for (i = 1; i < maxidx; ) {
8495 		e = (ipfexp_t *)(array + i);
8496 
8497 		/*
8498 		 * The length of the bits to check must be at least 1
8499 		 * (or else there is nothing to comapre with!) and it
8500 		 * cannot exceed the length of the data present.
8501 		 */
8502 		if ((e->ipfe_size < 1 ) ||
8503 		    (e->ipfe_size + i > maxidx)) {
8504 			return -1;
8505 		}
8506 		i += e->ipfe_size;
8507 	}
8508 	return 0;
8509 }
8510 
8511 
8512 /* ------------------------------------------------------------------------ */
8513 /* Function:    ipf_fr_matcharray                                           */
8514 /* Returns:     int      - 0 = match failed, else positive match            */
8515 /* Parameters:  fin(I)   - pointer to packet information                    */
8516 /*              array(I) - pointer to matching array                        */
8517 /*                                                                          */
8518 /* This function is used to apply a matching array against a packet and     */
8519 /* return an indication of whether or not the packet successfully matches   */
8520 /* all of the commands in it.                                               */
8521 /* ------------------------------------------------------------------------ */
8522 static int
8523 ipf_fr_matcharray(fr_info_t *fin, int *array)
8524 {
8525 	int i, n, *x, rv, p;
8526 	ipfexp_t *e;
8527 
8528 	rv = 0;
8529 	n = array[0];
8530 	x = array + 1;
8531 
8532 	for (; n > 0; x += 3 + x[3], rv = 0) {
8533 		e = (ipfexp_t *)x;
8534 		if (e->ipfe_cmd == IPF_EXP_END)
8535 			break;
8536 		n -= e->ipfe_size;
8537 
8538 		/*
8539 		 * The upper 16 bits currently store the protocol value.
8540 		 * This is currently used with TCP and UDP port compares and
8541 		 * allows "tcp.port = 80" without requiring an explicit
8542 		 " "ip.pr = tcp" first.
8543 		 */
8544 		p = e->ipfe_cmd >> 16;
8545 		if ((p != 0) && (p != fin->fin_p))
8546 			break;
8547 
8548 		switch (e->ipfe_cmd)
8549 		{
8550 		case IPF_EXP_IP_PR :
8551 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8552 				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8553 			}
8554 			break;
8555 
8556 		case IPF_EXP_IP_SRCADDR :
8557 			if (fin->fin_v != 4)
8558 				break;
8559 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8560 				rv |= ((fin->fin_saddr &
8561 					e->ipfe_arg0[i * 2 + 1]) ==
8562 				       e->ipfe_arg0[i * 2]);
8563 			}
8564 			break;
8565 
8566 		case IPF_EXP_IP_DSTADDR :
8567 			if (fin->fin_v != 4)
8568 				break;
8569 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8570 				rv |= ((fin->fin_daddr &
8571 					e->ipfe_arg0[i * 2 + 1]) ==
8572 				       e->ipfe_arg0[i * 2]);
8573 			}
8574 			break;
8575 
8576 		case IPF_EXP_IP_ADDR :
8577 			if (fin->fin_v != 4)
8578 				break;
8579 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8580 				rv |= ((fin->fin_saddr &
8581 					e->ipfe_arg0[i * 2 + 1]) ==
8582 				       e->ipfe_arg0[i * 2]) ||
8583 				      ((fin->fin_daddr &
8584 					e->ipfe_arg0[i * 2 + 1]) ==
8585 				       e->ipfe_arg0[i * 2]);
8586 			}
8587 			break;
8588 
8589 #ifdef USE_INET6
8590 		case IPF_EXP_IP6_SRCADDR :
8591 			if (fin->fin_v != 6)
8592 				break;
8593 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8594 				rv |= IP6_MASKEQ(&fin->fin_src6,
8595 						 &e->ipfe_arg0[i * 8 + 4],
8596 						 &e->ipfe_arg0[i * 8]);
8597 			}
8598 			break;
8599 
8600 		case IPF_EXP_IP6_DSTADDR :
8601 			if (fin->fin_v != 6)
8602 				break;
8603 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8604 				rv |= IP6_MASKEQ(&fin->fin_dst6,
8605 						 &e->ipfe_arg0[i * 8 + 4],
8606 						 &e->ipfe_arg0[i * 8]);
8607 			}
8608 			break;
8609 
8610 		case IPF_EXP_IP6_ADDR :
8611 			if (fin->fin_v != 6)
8612 				break;
8613 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8614 				rv |= IP6_MASKEQ(&fin->fin_src6,
8615 						 &e->ipfe_arg0[i * 8 + 4],
8616 						 &e->ipfe_arg0[i * 8]) ||
8617 				      IP6_MASKEQ(&fin->fin_dst6,
8618 						 &e->ipfe_arg0[i * 8 + 4],
8619 						 &e->ipfe_arg0[i * 8]);
8620 			}
8621 			break;
8622 #endif
8623 
8624 		case IPF_EXP_UDP_PORT :
8625 		case IPF_EXP_TCP_PORT :
8626 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8627 				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8628 				      (fin->fin_dport == e->ipfe_arg0[i]);
8629 			}
8630 			break;
8631 
8632 		case IPF_EXP_UDP_SPORT :
8633 		case IPF_EXP_TCP_SPORT :
8634 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8635 				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8636 			}
8637 			break;
8638 
8639 		case IPF_EXP_UDP_DPORT :
8640 		case IPF_EXP_TCP_DPORT :
8641 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8642 				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8643 			}
8644 			break;
8645 
8646 		case IPF_EXP_TCP_FLAGS :
8647 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8648 				rv |= ((fin->fin_tcpf &
8649 					e->ipfe_arg0[i * 2 + 1]) ==
8650 				       e->ipfe_arg0[i * 2]);
8651 			}
8652 			break;
8653 		}
8654 		rv ^= e->ipfe_not;
8655 
8656 		if (rv == 0)
8657 			break;
8658 	}
8659 
8660 	return rv;
8661 }
8662 
8663 
8664 /* ------------------------------------------------------------------------ */
8665 /* Function:    ipf_queueflush                                              */
8666 /* Returns:     int - number of entries flushed (0 = none)                  */
8667 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8668 /*              deletefn(I) - function to call to delete entry              */
8669 /*              ipfqs(I)    - top of the list of ipf internal queues        */
8670 /*              userqs(I)   - top of the list of user defined timeouts      */
8671 /*                                                                          */
8672 /* This fucntion gets called when the state/NAT hash tables fill up and we  */
8673 /* need to try a bit harder to free up some space.  The algorithm used here */
8674 /* split into two parts but both halves have the same goal: to reduce the   */
8675 /* number of connections considered to be "active" to the low watermark.    */
8676 /* There are two steps in doing this:                                       */
8677 /* 1) Remove any TCP connections that are already considered to be "closed" */
8678 /*    but have not yet been removed from the state table.  The two states   */
8679 /*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8680 /*    candidates for this style of removal.  If freeing up entries in       */
8681 /*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8682 /*    we do not go on to step 2.                                            */
8683 /*                                                                          */
8684 /* 2) Look for the oldest entries on each timeout queue and free them if    */
8685 /*    they are within the given window we are considering.  Where the       */
8686 /*    window starts and the steps taken to increase its size depend upon    */
8687 /*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8688 /*    last 30 seconds is not touched.                                       */
8689 /*                                              touched                     */
8690 /*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8691 /*           |          |        |           |     |     |                  */
8692 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8693 /*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8694 /*                                                                          */
8695 /* Points to note:                                                          */
8696 /* - tqe_die is the time, in the future, when entries die.                  */
8697 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8698 /*   ticks.                                                                 */
8699 /* - tqe_touched is when the entry was last used by NAT/state               */
8700 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8701 /*   ipf_ticks any given timeout queue and vice versa.                      */
8702 /* - both tqe_die and tqe_touched increase over time                        */
8703 /* - timeout queues are sorted with the highest value of tqe_die at the     */
8704 /*   bottom and therefore the smallest values of each are at the top        */
8705 /* - the pointer passed in as ipfqs should point to an array of timeout     */
8706 /*   queues representing each of the TCP states                             */
8707 /*                                                                          */
8708 /* We start by setting up a maximum range to scan for things to move of     */
8709 /* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8710 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8711 /* we start again with a new value for "iend" and "istart".  This is        */
8712 /* continued until we either finish the scan of 30 second intervals or the  */
8713 /* low water mark is reached.                                               */
8714 /* ------------------------------------------------------------------------ */
8715 int
8716 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8717     ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8718 {
8719 	u_long interval, istart, iend;
8720 	ipftq_t *ifq, *ifqnext;
8721 	ipftqent_t *tqe, *tqn;
8722 	int removed = 0;
8723 
8724 	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8725 		tqn = tqe->tqe_next;
8726 		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8727 			removed++;
8728 	}
8729 	if ((*activep * 100 / size) > low) {
8730 		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8731 		     ((tqe = tqn) != NULL); ) {
8732 			tqn = tqe->tqe_next;
8733 			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8734 				removed++;
8735 		}
8736 	}
8737 
8738 	if ((*activep * 100 / size) <= low) {
8739 		return removed;
8740 	}
8741 
8742 	/*
8743 	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8744 	 *       used then the operations are upgraded to floating point
8745 	 *       and kernels don't like floating point...
8746 	 */
8747 	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8748 		istart = IPF_TTLVAL(86400 * 4);
8749 		interval = IPF_TTLVAL(43200);
8750 	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8751 		istart = IPF_TTLVAL(43200);
8752 		interval = IPF_TTLVAL(1800);
8753 	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8754 		istart = IPF_TTLVAL(1800);
8755 		interval = IPF_TTLVAL(30);
8756 	} else {
8757 		return 0;
8758 	}
8759 	if (istart > softc->ipf_ticks) {
8760 		if (softc->ipf_ticks - interval < interval)
8761 			istart = interval;
8762 		else
8763 			istart = (softc->ipf_ticks / interval) * interval;
8764 	}
8765 
8766 	iend = softc->ipf_ticks - interval;
8767 
8768 	while ((*activep * 100 / size) > low) {
8769 		u_long try;
8770 
8771 		try = softc->ipf_ticks - istart;
8772 
8773 		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8774 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8775 				if (try < tqe->tqe_touched)
8776 					break;
8777 				tqn = tqe->tqe_next;
8778 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8779 					removed++;
8780 			}
8781 		}
8782 
8783 		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8784 			ifqnext = ifq->ifq_next;
8785 
8786 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8787 				if (try < tqe->tqe_touched)
8788 					break;
8789 				tqn = tqe->tqe_next;
8790 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8791 					removed++;
8792 			}
8793 		}
8794 
8795 		if (try >= iend) {
8796 			if (interval == IPF_TTLVAL(43200)) {
8797 				interval = IPF_TTLVAL(1800);
8798 			} else if (interval == IPF_TTLVAL(1800)) {
8799 				interval = IPF_TTLVAL(30);
8800 			} else {
8801 				break;
8802 			}
8803 			if (interval >= softc->ipf_ticks)
8804 				break;
8805 
8806 			iend = softc->ipf_ticks - interval;
8807 		}
8808 		istart -= interval;
8809 	}
8810 
8811 	return removed;
8812 }
8813 
8814 
8815 /* ------------------------------------------------------------------------ */
8816 /* Function:    ipf_deliverlocal                                            */
8817 /* Returns:     int - 1 = local address, 0 = non-local address              */
8818 /* Parameters:  softc(I)     - pointer to soft context main structure       */
8819 /*              ipversion(I) - IP protocol version (4 or 6)                 */
8820 /*              ifp(I)       - network interface pointer                    */
8821 /*              ipaddr(I)    - IPv4/6 destination address                   */
8822 /*                                                                          */
8823 /* This fucntion is used to determine in the address "ipaddr" belongs to    */
8824 /* the network interface represented by ifp.                                */
8825 /* ------------------------------------------------------------------------ */
8826 int
8827 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8828     i6addr_t *ipaddr)
8829 {
8830 	i6addr_t addr;
8831 	int islocal = 0;
8832 
8833 	if (ipversion == 4) {
8834 		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8835 			if (addr.in4.s_addr == ipaddr->in4.s_addr)
8836 				islocal = 1;
8837 		}
8838 
8839 #ifdef USE_INET6
8840 	} else if (ipversion == 6) {
8841 		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8842 			if (IP6_EQ(&addr, ipaddr))
8843 				islocal = 1;
8844 		}
8845 #endif
8846 	}
8847 
8848 	return islocal;
8849 }
8850 
8851 
8852 /* ------------------------------------------------------------------------ */
8853 /* Function:    ipf_settimeout                                              */
8854 /* Returns:     int - 0 = success, -1 = failure                             */
8855 /* Parameters:  softc(I) - pointer to soft context main structure           */
8856 /*              t(I)     - pointer to tuneable array entry                  */
8857 /*              p(I)     - pointer to values passed in to apply             */
8858 /*                                                                          */
8859 /* This function is called to set the timeout values for each distinct      */
8860 /* queue timeout that is available.  When called, it calls into both the    */
8861 /* state and NAT code, telling them to update their timeout queues.         */
8862 /* ------------------------------------------------------------------------ */
8863 static int
8864 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8865     ipftuneval_t *p)
8866 {
8867 
8868 	/*
8869 	 * ipf_interror should be set by the functions called here, not
8870 	 * by this function - it's just a middle man.
8871 	 */
8872 	if (ipf_state_settimeout(softc, t, p) == -1)
8873 		return -1;
8874 	if (ipf_nat_settimeout(softc, t, p) == -1)
8875 		return -1;
8876 	return 0;
8877 }
8878 
8879 
8880 /* ------------------------------------------------------------------------ */
8881 /* Function:    ipf_apply_timeout                                           */
8882 /* Returns:     int - 0 = success, -1 = failure                             */
8883 /* Parameters:  head(I)    - pointer to tuneable array entry                */
8884 /*              seconds(I) - pointer to values passed in to apply           */
8885 /*                                                                          */
8886 /* This function applies a timeout of "seconds" to the timeout queue that   */
8887 /* is pointed to by "head".  All entries on this list have an expiration    */
8888 /* set to be the current tick value of ipf plus the ttl.  Given that this   */
8889 /* function should only be called when the delta is non-zero, the task is   */
8890 /* to walk the entire list and apply the change.  The sort order will not   */
8891 /* change.  The only catch is that this is O(n) across the list, so if the  */
8892 /* queue has lots of entries (10s of thousands or 100s of thousands), it    */
8893 /* could take a relatively long time to work through them all.              */
8894 /* ------------------------------------------------------------------------ */
8895 void
8896 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8897 {
8898 	u_int oldtimeout, newtimeout;
8899 	ipftqent_t *tqe;
8900 	int delta;
8901 
8902 	MUTEX_ENTER(&head->ifq_lock);
8903 	oldtimeout = head->ifq_ttl;
8904 	newtimeout = IPF_TTLVAL(seconds);
8905 	delta = oldtimeout - newtimeout;
8906 
8907 	head->ifq_ttl = newtimeout;
8908 
8909 	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8910 		tqe->tqe_die += delta;
8911 	}
8912 	MUTEX_EXIT(&head->ifq_lock);
8913 }
8914 
8915 
8916 /* ------------------------------------------------------------------------ */
8917 /* Function:   ipf_settimeout_tcp                                           */
8918 /* Returns:    int - 0 = successfully applied, -1 = failed                  */
8919 /* Parameters: t(I)   - pointer to tuneable to change                       */
8920 /*             p(I)   - pointer to new timeout information                  */
8921 /*             tab(I) - pointer to table of TCP queues                      */
8922 /*                                                                          */
8923 /* This function applies the new timeout (p) to the TCP tunable (t) and     */
8924 /* updates all of the entries on the relevant timeout queue by calling      */
8925 /* ipf_apply_timeout().                                                     */
8926 /* ------------------------------------------------------------------------ */
8927 int
8928 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8929 {
8930 	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8931 	    !strcmp(t->ipft_name, "tcp_established")) {
8932 		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8933 	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8934 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8935 	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8936 		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8937 	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8938 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8939 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8940 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8941 	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
8942 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8943 	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8944 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8945 	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
8946 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8947 	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8948 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8949 	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8950 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8951 	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
8952 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8953 	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8954 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8955 	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8956 		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8957 	} else {
8958 		/*
8959 		 * ipf_interror isn't set here because it should be set
8960 		 * by whatever called this function.
8961 		 */
8962 		return -1;
8963 	}
8964 	return 0;
8965 }
8966 
8967 
8968 /* ------------------------------------------------------------------------ */
8969 /* Function:   ipf_main_soft_create                                         */
8970 /* Returns:    NULL = failure, else success                                 */
8971 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8972 /*                                                                          */
8973 /* Create the foundation soft context structure. In circumstances where it  */
8974 /* is not required to dynamically allocate the context, a pointer can be    */
8975 /* passed in (rather than NULL) to a structure to be initialised.           */
8976 /* The main thing of interest is that a number of locks are initialised     */
8977 /* here instead of in the where might be expected - in the relevant create  */
8978 /* function elsewhere.  This is done because the current locking design has */
8979 /* some areas where these locks are used outside of their module.           */
8980 /* Possibly the most important exercise that is done here is setting of all */
8981 /* the timeout values, allowing them to be changed before init().           */
8982 /* ------------------------------------------------------------------------ */
8983 void *
8984 ipf_main_soft_create(void *arg)
8985 {
8986 	ipf_main_softc_t *softc;
8987 
8988 	if (arg == NULL) {
8989 		KMALLOC(softc, ipf_main_softc_t *);
8990 		if (softc == NULL)
8991 			return NULL;
8992 	} else {
8993 		softc = arg;
8994 	}
8995 
8996 	bzero((char *)softc, sizeof(*softc));
8997 
8998 	/*
8999 	 * This serves as a flag as to whether or not the softc should be
9000 	 * free'd when _destroy is called.
9001 	 */
9002 	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9003 
9004 	softc->ipf_tuners = ipf_tune_array_copy(softc,
9005 						sizeof(ipf_main_tuneables),
9006 						ipf_main_tuneables);
9007 	if (softc->ipf_tuners == NULL) {
9008 		ipf_main_soft_destroy(softc);
9009 		return NULL;
9010 	}
9011 
9012 	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9013 	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9014 	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9015 	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9016 	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9017 	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9018 	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9019 	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9020 	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9021 
9022 	softc->ipf_token_head = NULL;
9023 	softc->ipf_token_tail = &softc->ipf_token_head;
9024 
9025 	softc->ipf_tcpidletimeout = FIVE_DAYS;
9026 	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9027 	softc->ipf_tcplastack = IPF_TTLVAL(30);
9028 	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9029 	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9030 	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9031 	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9032 	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9033 	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9034 	softc->ipf_udptimeout = IPF_TTLVAL(120);
9035 	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9036 	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9037 	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9038 	softc->ipf_iptimeout = IPF_TTLVAL(60);
9039 
9040 #if defined(IPFILTER_DEFAULT_BLOCK)
9041 	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9042 #else
9043 	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9044 #endif
9045 	softc->ipf_minttl = 4;
9046 	softc->ipf_icmpminfragmtu = 68;
9047 	softc->ipf_flags = IPF_LOGGING;
9048 
9049 	return softc;
9050 }
9051 
9052 /* ------------------------------------------------------------------------ */
9053 /* Function:   ipf_main_soft_init                                           */
9054 /* Returns:    0 = success, -1 = failure                                    */
9055 /* Parameters: softc(I) - pointer to soft context main structure            */
9056 /*                                                                          */
9057 /* A null-op function that exists as a placeholder so that the flow in      */
9058 /* other functions is obvious.                                              */
9059 /* ------------------------------------------------------------------------ */
9060 /*ARGSUSED*/
9061 int
9062 ipf_main_soft_init(ipf_main_softc_t *softc)
9063 {
9064 	return 0;
9065 }
9066 
9067 
9068 /* ------------------------------------------------------------------------ */
9069 /* Function:   ipf_main_soft_destroy                                        */
9070 /* Returns:    void                                                         */
9071 /* Parameters: softc(I) - pointer to soft context main structure            */
9072 /*                                                                          */
9073 /* Undo everything that we did in ipf_main_soft_create.                     */
9074 /*                                                                          */
9075 /* The most important check that needs to be made here is whether or not    */
9076 /* the structure was allocated by ipf_main_soft_create() by checking what   */
9077 /* value is stored in ipf_dynamic_main.                                     */
9078 /* ------------------------------------------------------------------------ */
9079 /*ARGSUSED*/
9080 void
9081 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9082 {
9083 
9084 	RW_DESTROY(&softc->ipf_frag);
9085 	RW_DESTROY(&softc->ipf_poolrw);
9086 	RW_DESTROY(&softc->ipf_nat);
9087 	RW_DESTROY(&softc->ipf_state);
9088 	RW_DESTROY(&softc->ipf_tokens);
9089 	RW_DESTROY(&softc->ipf_mutex);
9090 	RW_DESTROY(&softc->ipf_global);
9091 	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9092 	MUTEX_DESTROY(&softc->ipf_rw);
9093 
9094 	if (softc->ipf_tuners != NULL) {
9095 		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9096 	}
9097 	if (softc->ipf_dynamic_softc == 1) {
9098 		KFREE(softc);
9099 	}
9100 }
9101 
9102 
9103 /* ------------------------------------------------------------------------ */
9104 /* Function:   ipf_main_soft_fini                                           */
9105 /* Returns:    0 = success, -1 = failure                                    */
9106 /* Parameters: softc(I) - pointer to soft context main structure            */
9107 /*                                                                          */
9108 /* Clean out the rules which have been added since _init was last called,   */
9109 /* the only dynamic part of the mainline.                                   */
9110 /* ------------------------------------------------------------------------ */
9111 int
9112 ipf_main_soft_fini(ipf_main_softc_t *softc)
9113 {
9114 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9115 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9116 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9117 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9118 
9119 	return 0;
9120 }
9121 
9122 
9123 /* ------------------------------------------------------------------------ */
9124 /* Function:   ipf_main_load                                                */
9125 /* Returns:    0 = success, -1 = failure                                    */
9126 /* Parameters: none                                                         */
9127 /*                                                                          */
9128 /* Handle global initialisation that needs to be done for the base part of  */
9129 /* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9130 /* arrays that get used by the state/NAT code.                              */
9131 /* ------------------------------------------------------------------------ */
9132 int
9133 ipf_main_load(void)
9134 {
9135 	int i;
9136 
9137 	/* fill icmp reply type table */
9138 	for (i = 0; i <= ICMP_MAXTYPE; i++)
9139 		icmpreplytype4[i] = -1;
9140 	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9141 	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9142 	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9143 	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9144 
9145 #ifdef  USE_INET6
9146 	/* fill icmp reply type table */
9147 	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9148 		icmpreplytype6[i] = -1;
9149 	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9150 	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9151 	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9152 	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9153 	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9154 #endif
9155 
9156 	return 0;
9157 }
9158 
9159 
9160 /* ------------------------------------------------------------------------ */
9161 /* Function:   ipf_main_unload                                              */
9162 /* Returns:    0 = success, -1 = failure                                    */
9163 /* Parameters: none                                                         */
9164 /*                                                                          */
9165 /* A null-op function that exists as a placeholder so that the flow in      */
9166 /* other functions is obvious.                                              */
9167 /* ------------------------------------------------------------------------ */
9168 int
9169 ipf_main_unload(void)
9170 {
9171 	return 0;
9172 }
9173 
9174 
9175 /* ------------------------------------------------------------------------ */
9176 /* Function:   ipf_load_all                                                 */
9177 /* Returns:    0 = success, -1 = failure                                    */
9178 /* Parameters: none                                                         */
9179 /*                                                                          */
9180 /* Work through all of the subsystems inside IPFilter and call the load     */
9181 /* function for each in an order that won't lead to a crash :)              */
9182 /* ------------------------------------------------------------------------ */
9183 int
9184 ipf_load_all(void)
9185 {
9186 	if (ipf_main_load() == -1)
9187 		return -1;
9188 
9189 	if (ipf_state_main_load() == -1)
9190 		return -1;
9191 
9192 	if (ipf_nat_main_load() == -1)
9193 		return -1;
9194 
9195 	if (ipf_frag_main_load() == -1)
9196 		return -1;
9197 
9198 	if (ipf_auth_main_load() == -1)
9199 		return -1;
9200 
9201 	if (ipf_proxy_main_load() == -1)
9202 		return -1;
9203 
9204 	return 0;
9205 }
9206 
9207 
9208 /* ------------------------------------------------------------------------ */
9209 /* Function:   ipf_unload_all                                               */
9210 /* Returns:    0 = success, -1 = failure                                    */
9211 /* Parameters: none                                                         */
9212 /*                                                                          */
9213 /* Work through all of the subsystems inside IPFilter and call the unload   */
9214 /* function for each in an order that won't lead to a crash :)              */
9215 /* ------------------------------------------------------------------------ */
9216 int
9217 ipf_unload_all(void)
9218 {
9219 	if (ipf_proxy_main_unload() == -1)
9220 		return -1;
9221 
9222 	if (ipf_auth_main_unload() == -1)
9223 		return -1;
9224 
9225 	if (ipf_frag_main_unload() == -1)
9226 		return -1;
9227 
9228 	if (ipf_nat_main_unload() == -1)
9229 		return -1;
9230 
9231 	if (ipf_state_main_unload() == -1)
9232 		return -1;
9233 
9234 	if (ipf_main_unload() == -1)
9235 		return -1;
9236 
9237 	return 0;
9238 }
9239 
9240 
9241 /* ------------------------------------------------------------------------ */
9242 /* Function:   ipf_create_all                                               */
9243 /* Returns:    NULL = failure, else success                                 */
9244 /* Parameters: arg(I) - pointer to soft context main structure              */
9245 /*                                                                          */
9246 /* Work through all of the subsystems inside IPFilter and call the create   */
9247 /* function for each in an order that won't lead to a crash :)              */
9248 /* ------------------------------------------------------------------------ */
9249 ipf_main_softc_t *
9250 ipf_create_all(void *arg)
9251 {
9252 	ipf_main_softc_t *softc;
9253 
9254 	softc = ipf_main_soft_create(arg);
9255 	if (softc == NULL)
9256 		return NULL;
9257 
9258 #ifdef IPFILTER_LOG
9259 	softc->ipf_log_soft = ipf_log_soft_create(softc);
9260 	if (softc->ipf_log_soft == NULL) {
9261 		ipf_destroy_all(softc);
9262 		return NULL;
9263 	}
9264 #endif
9265 
9266 	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9267 	if (softc->ipf_lookup_soft == NULL) {
9268 		ipf_destroy_all(softc);
9269 		return NULL;
9270 	}
9271 
9272 	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9273 	if (softc->ipf_sync_soft == NULL) {
9274 		ipf_destroy_all(softc);
9275 		return NULL;
9276 	}
9277 
9278 	softc->ipf_state_soft = ipf_state_soft_create(softc);
9279 	if (softc->ipf_state_soft == NULL) {
9280 		ipf_destroy_all(softc);
9281 		return NULL;
9282 	}
9283 
9284 	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9285 	if (softc->ipf_nat_soft == NULL) {
9286 		ipf_destroy_all(softc);
9287 		return NULL;
9288 	}
9289 
9290 	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9291 	if (softc->ipf_frag_soft == NULL) {
9292 		ipf_destroy_all(softc);
9293 		return NULL;
9294 	}
9295 
9296 	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9297 	if (softc->ipf_auth_soft == NULL) {
9298 		ipf_destroy_all(softc);
9299 		return NULL;
9300 	}
9301 
9302 	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9303 	if (softc->ipf_proxy_soft == NULL) {
9304 		ipf_destroy_all(softc);
9305 		return NULL;
9306 	}
9307 
9308 	return softc;
9309 }
9310 
9311 
9312 /* ------------------------------------------------------------------------ */
9313 /* Function:   ipf_destroy_all                                              */
9314 /* Returns:    void                                                         */
9315 /* Parameters: softc(I) - pointer to soft context main structure            */
9316 /*                                                                          */
9317 /* Work through all of the subsystems inside IPFilter and call the destroy  */
9318 /* function for each in an order that won't lead to a crash :)              */
9319 /*                                                                          */
9320 /* Every one of these functions is expected to succeed, so there is no      */
9321 /* checking of return values.                                               */
9322 /* ------------------------------------------------------------------------ */
9323 void
9324 ipf_destroy_all(ipf_main_softc_t *softc)
9325 {
9326 
9327 	if (softc->ipf_state_soft != NULL) {
9328 		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9329 		softc->ipf_state_soft = NULL;
9330 	}
9331 
9332 	if (softc->ipf_nat_soft != NULL) {
9333 		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9334 		softc->ipf_nat_soft = NULL;
9335 	}
9336 
9337 	if (softc->ipf_frag_soft != NULL) {
9338 		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9339 		softc->ipf_frag_soft = NULL;
9340 	}
9341 
9342 	if (softc->ipf_auth_soft != NULL) {
9343 		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9344 		softc->ipf_auth_soft = NULL;
9345 	}
9346 
9347 	if (softc->ipf_proxy_soft != NULL) {
9348 		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9349 		softc->ipf_proxy_soft = NULL;
9350 	}
9351 
9352 	if (softc->ipf_sync_soft != NULL) {
9353 		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9354 		softc->ipf_sync_soft = NULL;
9355 	}
9356 
9357 	if (softc->ipf_lookup_soft != NULL) {
9358 		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9359 		softc->ipf_lookup_soft = NULL;
9360 	}
9361 
9362 #ifdef IPFILTER_LOG
9363 	if (softc->ipf_log_soft != NULL) {
9364 		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9365 		softc->ipf_log_soft = NULL;
9366 	}
9367 #endif
9368 
9369 	ipf_main_soft_destroy(softc);
9370 }
9371 
9372 
9373 /* ------------------------------------------------------------------------ */
9374 /* Function:   ipf_init_all                                                 */
9375 /* Returns:    0 = success, -1 = failure                                    */
9376 /* Parameters: softc(I) - pointer to soft context main structure            */
9377 /*                                                                          */
9378 /* Work through all of the subsystems inside IPFilter and call the init     */
9379 /* function for each in an order that won't lead to a crash :)              */
9380 /* ------------------------------------------------------------------------ */
9381 int
9382 ipf_init_all(ipf_main_softc_t *softc)
9383 {
9384 
9385 	if (ipf_main_soft_init(softc) == -1)
9386 		return -1;
9387 
9388 #ifdef IPFILTER_LOG
9389 	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9390 		return -1;
9391 #endif
9392 
9393 	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9394 		return -1;
9395 
9396 	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9397 		return -1;
9398 
9399 	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9400 		return -1;
9401 
9402 	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9403 		return -1;
9404 
9405 	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9406 		return -1;
9407 
9408 	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9409 		return -1;
9410 
9411 	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9412 		return -1;
9413 
9414 	return 0;
9415 }
9416 
9417 
9418 /* ------------------------------------------------------------------------ */
9419 /* Function:   ipf_fini_all                                                 */
9420 /* Returns:    0 = success, -1 = failure                                    */
9421 /* Parameters: softc(I) - pointer to soft context main structure            */
9422 /*                                                                          */
9423 /* Work through all of the subsystems inside IPFilter and call the fini     */
9424 /* function for each in an order that won't lead to a crash :)              */
9425 /* ------------------------------------------------------------------------ */
9426 int
9427 ipf_fini_all(ipf_main_softc_t *softc)
9428 {
9429 
9430 	ipf_token_flush(softc);
9431 
9432 	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9433 		return -1;
9434 
9435 	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9436 		return -1;
9437 
9438 	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9439 		return -1;
9440 
9441 	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9442 		return -1;
9443 
9444 	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9445 		return -1;
9446 
9447 	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9448 		return -1;
9449 
9450 	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9451 		return -1;
9452 
9453 #ifdef IPFILTER_LOG
9454 	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9455 		return -1;
9456 #endif
9457 
9458 	if (ipf_main_soft_fini(softc) == -1)
9459 		return -1;
9460 
9461 	return 0;
9462 }
9463 
9464 
9465 /* ------------------------------------------------------------------------ */
9466 /* Function:    ipf_rule_expire                                             */
9467 /* Returns:     Nil                                                         */
9468 /* Parameters:  softc(I) - pointer to soft context main structure           */
9469 /*                                                                          */
9470 /* At present this function exists just to support temporary addition of    */
9471 /* firewall rules. Both inactive and active lists are scanned for items to  */
9472 /* purge, as by rights, the expiration is computed as soon as the rule is   */
9473 /* loaded in.                                                               */
9474 /* ------------------------------------------------------------------------ */
9475 void
9476 ipf_rule_expire(ipf_main_softc_t *softc)
9477 {
9478 	frentry_t *fr;
9479 
9480 	if ((softc->ipf_rule_explist[0] == NULL) &&
9481 	    (softc->ipf_rule_explist[1] == NULL))
9482 		return;
9483 
9484 	WRITE_ENTER(&softc->ipf_mutex);
9485 
9486 	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9487 		/*
9488 		 * Because the list is kept sorted on insertion, the fist
9489 		 * one that dies in the future means no more work to do.
9490 		 */
9491 		if (fr->fr_die > softc->ipf_ticks)
9492 			break;
9493 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9494 	}
9495 
9496 	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9497 		/*
9498 		 * Because the list is kept sorted on insertion, the fist
9499 		 * one that dies in the future means no more work to do.
9500 		 */
9501 		if (fr->fr_die > softc->ipf_ticks)
9502 			break;
9503 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9504 	}
9505 
9506 	RWLOCK_EXIT(&softc->ipf_mutex);
9507 }
9508 
9509 
9510 static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *);
9511 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9512 				 i6addr_t *);
9513 
9514 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9515 
9516 
9517 /* ------------------------------------------------------------------------ */
9518 /* Function:    ipf_ht_node_cmp                                             */
9519 /* Returns:     int   - 0 == nodes are the same, ..                         */
9520 /* Parameters:  k1(I) - pointer to first key to compare                     */
9521 /*              k2(I) - pointer to second key to compare                    */
9522 /*                                                                          */
9523 /* The "key" for the node is a combination of two fields: the address       */
9524 /* family and the address itself.                                           */
9525 /*                                                                          */
9526 /* Because we're not actually interpreting the address data, it isn't       */
9527 /* necessary to convert them to/from network/host byte order. The mask is   */
9528 /* just used to remove bits that aren't significant - it doesn't matter     */
9529 /* where they are, as long as they're always in the same place.             */
9530 /*                                                                          */
9531 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9532 /* this is where individual ones will differ the most - but not true for    */
9533 /* for /48's, etc.                                                          */
9534 /* ------------------------------------------------------------------------ */
9535 static int
9536 ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2)
9537 {
9538 	int i;
9539 
9540 	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9541 	if (i != 0)
9542 		return i;
9543 
9544 	if (k1->hn_addr.adf_family == AF_INET)
9545 		return (k2->hn_addr.adf_addr.in4.s_addr -
9546 			k1->hn_addr.adf_addr.in4.s_addr);
9547 
9548 	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9549 	if (i != 0)
9550 		return i;
9551 	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9552 	if (i != 0)
9553 		return i;
9554 	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9555 	if (i != 0)
9556 		return i;
9557 	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9558 	return i;
9559 }
9560 
9561 
9562 /* ------------------------------------------------------------------------ */
9563 /* Function:    ipf_ht_node_make_key                                        */
9564 /* Returns:     Nil                                                         */
9565 /* parameters:  htp(I)    - pointer to address tracking structure           */
9566 /*              key(I)    - where to store masked address for lookup        */
9567 /*              family(I) - protocol family of address                      */
9568 /*              addr(I)   - pointer to network address                      */
9569 /*                                                                          */
9570 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9571 /* copy the address passed in into the key structure whilst masking out the */
9572 /* bits that we don't want.                                                 */
9573 /*                                                                          */
9574 /* Because the parser will set ht_netmask to 128 if there is no protocol    */
9575 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9576 /* have to be wary of that and not allow 32-128 to happen.                  */
9577 /* ------------------------------------------------------------------------ */
9578 static void
9579 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9580     i6addr_t *addr)
9581 {
9582 	key->hn_addr.adf_family = family;
9583 	if (family == AF_INET) {
9584 		u_32_t mask;
9585 		int bits;
9586 
9587 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9588 		bits = htp->ht_netmask;
9589 		if (bits >= 32) {
9590 			mask = 0xffffffff;
9591 		} else {
9592 			mask = htonl(0xffffffff << (32 - bits));
9593 		}
9594 		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9595 #ifdef USE_INET6
9596 	} else {
9597 		int bits = htp->ht_netmask;
9598 
9599 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9600 		if (bits > 96) {
9601 			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9602 					     htonl(0xffffffff << (128 - bits));
9603 			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9604 			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9605 			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9606 		} else if (bits > 64) {
9607 			key->hn_addr.adf_addr.i6[3] = 0;
9608 			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9609 					     htonl(0xffffffff << (96 - bits));
9610 			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9611 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9612 		} else if (bits > 32) {
9613 			key->hn_addr.adf_addr.i6[3] = 0;
9614 			key->hn_addr.adf_addr.i6[2] = 0;
9615 			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9616 					     htonl(0xffffffff << (64 - bits));
9617 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9618 		} else {
9619 			key->hn_addr.adf_addr.i6[3] = 0;
9620 			key->hn_addr.adf_addr.i6[2] = 0;
9621 			key->hn_addr.adf_addr.i6[1] = 0;
9622 			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9623 					     htonl(0xffffffff << (32 - bits));
9624 		}
9625 #endif
9626 	}
9627 }
9628 
9629 
9630 /* ------------------------------------------------------------------------ */
9631 /* Function:    ipf_ht_node_add                                             */
9632 /* Returns:     int       - 0 == success,  -1 == failure                    */
9633 /* Parameters:  softc(I)  - pointer to soft context main structure          */
9634 /*              htp(I)    - pointer to address tracking structure           */
9635 /*              family(I) - protocol family of address                      */
9636 /*              addr(I)   - pointer to network address                      */
9637 /*                                                                          */
9638 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9639 /*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9640 /*                                                                          */
9641 /* After preparing the key with the address information to find, look in    */
9642 /* the red-black tree to see if the address is known. A successful call to  */
9643 /* this function can mean one of two things: a new node was added to the    */
9644 /* tree or a matching node exists and we're able to bump up its activity.   */
9645 /* ------------------------------------------------------------------------ */
9646 int
9647 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9648     i6addr_t *addr)
9649 {
9650 	host_node_t *h;
9651 	host_node_t k;
9652 
9653 	ipf_ht_node_make_key(htp, &k, family, addr);
9654 
9655 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9656 	if (h == NULL) {
9657 		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9658 			return -1;
9659 		KMALLOC(h, host_node_t *);
9660 		if (h == NULL) {
9661 			DT(ipf_rb_no_mem);
9662 			LBUMP(ipf_rb_no_mem);
9663 			return -1;
9664 		}
9665 
9666 		/*
9667 		 * If there was a macro to initialise the RB node then that
9668 		 * would get used here, but there isn't...
9669 		 */
9670 		bzero((char *)h, sizeof(*h));
9671 		h->hn_addr = k.hn_addr;
9672 		h->hn_addr.adf_family = k.hn_addr.adf_family;
9673 		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9674 		htp->ht_cur_nodes++;
9675 	} else {
9676 		if ((htp->ht_max_per_node != 0) &&
9677 		    (h->hn_active >= htp->ht_max_per_node)) {
9678 			DT(ipf_rb_node_max);
9679 			LBUMP(ipf_rb_node_max);
9680 			return -1;
9681 		}
9682 	}
9683 
9684 	h->hn_active++;
9685 
9686 	return 0;
9687 }
9688 
9689 
9690 /* ------------------------------------------------------------------------ */
9691 /* Function:    ipf_ht_node_del                                             */
9692 /* Returns:     int       - 0 == success,  -1 == failure                    */
9693 /* parameters:  htp(I)    - pointer to address tracking structure           */
9694 /*              family(I) - protocol family of address                      */
9695 /*              addr(I)   - pointer to network address                      */
9696 /*                                                                          */
9697 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9698 /*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9699 /*                                                                          */
9700 /* Try and find the address passed in amongst the leaves on this tree to    */
9701 /* be friend. If found then drop the active account for that node drops by  */
9702 /* one. If that count reaches 0, it is time to free it all up.              */
9703 /* ------------------------------------------------------------------------ */
9704 int
9705 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9706 {
9707 	host_node_t *h;
9708 	host_node_t k;
9709 
9710 	ipf_ht_node_make_key(htp, &k, family, addr);
9711 
9712 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9713 	if (h == NULL) {
9714 		return -1;
9715 	} else {
9716 		h->hn_active--;
9717 		if (h->hn_active == 0) {
9718 			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9719 			htp->ht_cur_nodes--;
9720 			KFREE(h);
9721 		}
9722 	}
9723 
9724 	return 0;
9725 }
9726 
9727 
9728 /* ------------------------------------------------------------------------ */
9729 /* Function:    ipf_rb_ht_init                                              */
9730 /* Returns:     Nil                                                         */
9731 /* Parameters:  head(I) - pointer to host tracking structure                */
9732 /*                                                                          */
9733 /* Initialise the host tracking structure to be ready for use above.        */
9734 /* ------------------------------------------------------------------------ */
9735 void
9736 ipf_rb_ht_init(host_track_t *head)
9737 {
9738 	memset(head, 0, sizeof(*head));
9739 	RBI_INIT(ipf_rb, &head->ht_root);
9740 }
9741 
9742 
9743 /* ------------------------------------------------------------------------ */
9744 /* Function:    ipf_rb_ht_freenode                                          */
9745 /* Returns:     Nil                                                         */
9746 /* Parameters:  head(I) - pointer to host tracking structure                */
9747 /*              arg(I)  - additional argument from walk caller              */
9748 /*                                                                          */
9749 /* Free an actual host_node_t structure.                                    */
9750 /* ------------------------------------------------------------------------ */
9751 void
9752 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9753 {
9754 	KFREE(node);
9755 }
9756 
9757 
9758 /* ------------------------------------------------------------------------ */
9759 /* Function:    ipf_rb_ht_flush                                             */
9760 /* Returns:     Nil                                                         */
9761 /* Parameters:  head(I) - pointer to host tracking structure                */
9762 /*                                                                          */
9763 /* Remove all of the nodes in the tree tracking hosts by calling a walker   */
9764 /* and free'ing each one.                                                   */
9765 /* ------------------------------------------------------------------------ */
9766 void
9767 ipf_rb_ht_flush(host_track_t *head)
9768 {
9769 	/* XXX - May use node members after freeing the node. */
9770 	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9771 }
9772 
9773 
9774 /* ------------------------------------------------------------------------ */
9775 /* Function:    ipf_slowtimer                                               */
9776 /* Returns:     Nil                                                         */
9777 /* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
9778 /*                                                                          */
9779 /* Slowly expire held state for fragments.  Timeouts are set * in           */
9780 /* expectation of this being called twice per second.                       */
9781 /* ------------------------------------------------------------------------ */
9782 void
9783 ipf_slowtimer(ipf_main_softc_t *softc)
9784 {
9785 
9786 	ipf_token_expire(softc);
9787 	ipf_frag_expire(softc);
9788 	ipf_state_expire(softc);
9789 	ipf_nat_expire(softc);
9790 	ipf_auth_expire(softc);
9791 	ipf_lookup_expire(softc);
9792 	ipf_rule_expire(softc);
9793 	ipf_sync_expire(softc);
9794 	softc->ipf_ticks++;
9795 #   if defined(__OpenBSD__)
9796 	timeout_add(&ipf_slowtimer_ch, hz/2);
9797 #   endif
9798 }
9799 
9800 
9801 /* ------------------------------------------------------------------------ */
9802 /* Function:    ipf_inet_mask_add                                           */
9803 /* Returns:     Nil                                                         */
9804 /* Parameters:  bits(I) - pointer to nat context information                */
9805 /*              mtab(I) - pointer to mask hash table structure              */
9806 /*                                                                          */
9807 /* When called, bits represents the mask of a new NAT rule that has just    */
9808 /* been added. This function inserts a bitmask into the array of masks to   */
9809 /* search when searching for a matching NAT rule for a packet.              */
9810 /* Prevention of duplicate masks is achieved by checking the use count for  */
9811 /* a given netmask.                                                         */
9812 /* ------------------------------------------------------------------------ */
9813 void
9814 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9815 {
9816 	u_32_t mask;
9817 	int i, j;
9818 
9819 	mtab->imt4_masks[bits]++;
9820 	if (mtab->imt4_masks[bits] > 1)
9821 		return;
9822 
9823 	if (bits == 0)
9824 		mask = 0;
9825 	else
9826 		mask = 0xffffffff << (32 - bits);
9827 
9828 	for (i = 0; i < 33; i++) {
9829 		if (ntohl(mtab->imt4_active[i]) < mask) {
9830 			for (j = 32; j > i; j--)
9831 				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9832 			mtab->imt4_active[i] = htonl(mask);
9833 			break;
9834 		}
9835 	}
9836 	mtab->imt4_max++;
9837 }
9838 
9839 
9840 /* ------------------------------------------------------------------------ */
9841 /* Function:    ipf_inet_mask_del                                           */
9842 /* Returns:     Nil                                                         */
9843 /* Parameters:  bits(I) - number of bits set in the netmask                 */
9844 /*              mtab(I) - pointer to mask hash table structure              */
9845 /*                                                                          */
9846 /* Remove the 32bit bitmask represented by "bits" from the collection of    */
9847 /* netmasks stored inside of mtab.                                          */
9848 /* ------------------------------------------------------------------------ */
9849 void
9850 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9851 {
9852 	u_32_t mask;
9853 	int i, j;
9854 
9855 	mtab->imt4_masks[bits]--;
9856 	if (mtab->imt4_masks[bits] > 0)
9857 		return;
9858 
9859 	mask = htonl(0xffffffff << (32 - bits));
9860 	for (i = 0; i < 33; i++) {
9861 		if (mtab->imt4_active[i] == mask) {
9862 			for (j = i + 1; j < 33; j++)
9863 				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9864 			break;
9865 		}
9866 	}
9867 	mtab->imt4_max--;
9868 	ASSERT(mtab->imt4_max >= 0);
9869 }
9870 
9871 
9872 #ifdef USE_INET6
9873 /* ------------------------------------------------------------------------ */
9874 /* Function:    ipf_inet6_mask_add                                          */
9875 /* Returns:     Nil                                                         */
9876 /* Parameters:  bits(I) - number of bits set in mask                        */
9877 /*              mask(I) - pointer to mask to add                            */
9878 /*              mtab(I) - pointer to mask hash table structure              */
9879 /*                                                                          */
9880 /* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
9881 /* has just been added. This function inserts a bitmask into the array of   */
9882 /* masks to search when searching for a matching NAT rule for a packet.     */
9883 /* Prevention of duplicate masks is achieved by checking the use count for  */
9884 /* a given netmask.                                                         */
9885 /* ------------------------------------------------------------------------ */
9886 void
9887 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9888 {
9889 	i6addr_t zero;
9890 	int i, j;
9891 
9892 	mtab->imt6_masks[bits]++;
9893 	if (mtab->imt6_masks[bits] > 1)
9894 		return;
9895 
9896 	if (bits == 0) {
9897 		mask = &zero;
9898 		zero.i6[0] = 0;
9899 		zero.i6[1] = 0;
9900 		zero.i6[2] = 0;
9901 		zero.i6[3] = 0;
9902 	}
9903 
9904 	for (i = 0; i < 129; i++) {
9905 		if (IP6_LT(&mtab->imt6_active[i], mask)) {
9906 			for (j = 128; j > i; j--)
9907 				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9908 			mtab->imt6_active[i] = *mask;
9909 			break;
9910 		}
9911 	}
9912 	mtab->imt6_max++;
9913 }
9914 
9915 
9916 /* ------------------------------------------------------------------------ */
9917 /* Function:    ipf_inet6_mask_del                                          */
9918 /* Returns:     Nil                                                         */
9919 /* Parameters:  bits(I) - number of bits set in mask                        */
9920 /*              mask(I) - pointer to mask to remove                         */
9921 /*              mtab(I) - pointer to mask hash table structure              */
9922 /*                                                                          */
9923 /* Remove the 128bit bitmask represented by "bits" from the collection of   */
9924 /* netmasks stored inside of mtab.                                          */
9925 /* ------------------------------------------------------------------------ */
9926 void
9927 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9928 {
9929 	i6addr_t zero;
9930 	int i, j;
9931 
9932 	mtab->imt6_masks[bits]--;
9933 	if (mtab->imt6_masks[bits] > 0)
9934 		return;
9935 
9936 	if (bits == 0)
9937 		mask = &zero;
9938 	zero.i6[0] = 0;
9939 	zero.i6[1] = 0;
9940 	zero.i6[2] = 0;
9941 	zero.i6[3] = 0;
9942 
9943 	for (i = 0; i < 129; i++) {
9944 		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9945 			for (j = i + 1; j < 129; j++) {
9946 				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9947 				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9948 					break;
9949 			}
9950 			break;
9951 		}
9952 	}
9953 	mtab->imt6_max--;
9954 	ASSERT(mtab->imt6_max >= 0);
9955 }
9956 #endif
9957