1 /* $NetBSD: fil.c,v 1.15 2014/06/16 12:38:32 christos Exp $ */ 2 3 /* 4 * Copyright (C) 2012 by Darren Reed. 5 * 6 * See the IPFILTER.LICENCE file for details on licencing. 7 * 8 * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $ 9 * 10 */ 11 #if defined(KERNEL) || defined(_KERNEL) 12 # undef KERNEL 13 # undef _KERNEL 14 # define KERNEL 1 15 # define _KERNEL 1 16 #endif 17 #include <sys/errno.h> 18 #include <sys/types.h> 19 #include <sys/param.h> 20 #include <sys/time.h> 21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 22 (__FreeBSD_version >= 220000) 23 # if (__FreeBSD_version >= 400000) 24 # if !defined(IPFILTER_LKM) 25 # include "opt_inet6.h" 26 # endif 27 # if (__FreeBSD_version == 400019) 28 # define CSUM_DELAY_DATA 29 # endif 30 # endif 31 # include <sys/filio.h> 32 #else 33 # include <sys/ioctl.h> 34 #endif 35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun) 36 # include <sys/filio.h> 37 #endif 38 #if !defined(_AIX51) 39 # include <sys/fcntl.h> 40 #endif 41 #if defined(_KERNEL) 42 # include <sys/systm.h> 43 # include <sys/file.h> 44 #else 45 # include <stdio.h> 46 # include <string.h> 47 # include <stdlib.h> 48 # include <stddef.h> 49 # include <sys/file.h> 50 # define _KERNEL 51 # ifdef __OpenBSD__ 52 struct file; 53 # endif 54 # include <sys/uio.h> 55 # undef _KERNEL 56 #endif 57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 58 !defined(linux) 59 # include <sys/mbuf.h> 60 #else 61 # if !defined(linux) 62 # include <sys/byteorder.h> 63 # endif 64 # if (SOLARIS2 < 5) && defined(sun) 65 # include <sys/dditypes.h> 66 # endif 67 #endif 68 #ifdef __hpux 69 # define _NET_ROUTE_INCLUDED 70 #endif 71 #if !defined(linux) 72 # include <sys/protosw.h> 73 #endif 74 #include <sys/socket.h> 75 #include <net/if.h> 76 #ifdef sun 77 # include <net/af.h> 78 #endif 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/ip.h> 82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 83 # include <sys/hashing.h> 84 # include <netinet/in_var.h> 85 #endif 86 #include <netinet/tcp.h> 87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 88 # include <netinet/udp.h> 89 # include <netinet/ip_icmp.h> 90 #endif 91 #ifdef __hpux 92 # undef _NET_ROUTE_INCLUDED 93 #endif 94 #ifdef __osf__ 95 # undef _RADIX_H_ 96 #endif 97 #include "netinet/ip_compat.h" 98 #ifdef USE_INET6 99 # include <netinet/icmp6.h> 100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux) 101 # include <netinet6/in6_var.h> 102 # endif 103 #endif 104 #include "netinet/ip_fil.h" 105 #include "netinet/ip_nat.h" 106 #include "netinet/ip_frag.h" 107 #include "netinet/ip_state.h" 108 #include "netinet/ip_proxy.h" 109 #include "netinet/ip_auth.h" 110 #ifdef IPFILTER_SCAN 111 # include "netinet/ip_scan.h" 112 #endif 113 #include "netinet/ip_sync.h" 114 #include "netinet/ip_lookup.h" 115 #include "netinet/ip_pool.h" 116 #include "netinet/ip_htable.h" 117 #ifdef IPFILTER_COMPILED 118 # include "netinet/ip_rules.h" 119 #endif 120 #if defined(IPFILTER_BPF) && defined(_KERNEL) 121 # include <net/bpf.h> 122 #endif 123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 124 # include <sys/malloc.h> 125 #endif 126 #include "netinet/ipl.h" 127 128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000) 129 # include <sys/callout.h> 130 extern struct callout ipf_slowtimer_ch; 131 #endif 132 #if defined(__OpenBSD__) 133 # include <sys/timeout.h> 134 extern struct timeout ipf_slowtimer_ch; 135 #endif 136 /* END OF INCLUDES */ 137 138 #if !defined(lint) 139 #if defined(__NetBSD__) 140 #include <sys/cdefs.h> 141 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.15 2014/06/16 12:38:32 christos Exp $"); 142 #else 143 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 144 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $"; 145 #endif 146 #endif 147 148 #ifndef _KERNEL 149 # include "ipf.h" 150 # include "ipt.h" 151 extern int opts; 152 extern int blockreason; 153 #endif /* _KERNEL */ 154 155 #define LBUMP(x) softc->x++ 156 #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0) 157 158 static INLINE int ipf_check_ipf(fr_info_t *, frentry_t *, int); 159 static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int); 160 static u_32_t ipf_checkripso(u_char *); 161 static u_32_t ipf_decaps(fr_info_t *, u_32_t, int); 162 #ifdef IPFILTER_LOG 163 static frentry_t *ipf_dolog(fr_info_t *, u_32_t *); 164 #endif 165 static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **); 166 static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int); 167 static ipfunc_t ipf_findfunc(ipfunc_t); 168 static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *, 169 i6addr_t *, i6addr_t *); 170 static frentry_t *ipf_firewall(fr_info_t *, u_32_t *); 171 static int ipf_fr_matcharray(fr_info_t *, int *); 172 static int ipf_frruleiter(ipf_main_softc_t *, void *, int, void *); 173 static void ipf_funcfini(ipf_main_softc_t *, frentry_t *);; 174 static int ipf_funcinit(ipf_main_softc_t *, frentry_t *); 175 static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *, 176 ipfgeniter_t *); 177 static void ipf_getstat(ipf_main_softc_t *, 178 struct friostat *, int); 179 static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *); 180 static void ipf_group_free(frgroup_t *); 181 static int ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *); 182 static int ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *); 183 static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int, 184 frentry_t *, int); 185 static int ipf_portcheck(frpcmp_t *, u_32_t); 186 static INLINE int ipf_pr_ah(fr_info_t *); 187 static INLINE void ipf_pr_esp(fr_info_t *); 188 static INLINE void ipf_pr_gre(fr_info_t *); 189 static INLINE void ipf_pr_udp(fr_info_t *); 190 static INLINE void ipf_pr_tcp(fr_info_t *); 191 static INLINE void ipf_pr_icmp(fr_info_t *); 192 static INLINE void ipf_pr_ipv4hdr(fr_info_t *); 193 static INLINE void ipf_pr_short(fr_info_t *, int); 194 static INLINE int ipf_pr_tcpcommon(fr_info_t *); 195 static INLINE int ipf_pr_udpcommon(fr_info_t *); 196 static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f, 197 int, int); 198 static void ipf_rule_expire_insert(ipf_main_softc_t *, 199 frentry_t *, int); 200 static int ipf_synclist(ipf_main_softc_t *, frentry_t *, void *); 201 static void ipf_token_flush(ipf_main_softc_t *); 202 static void ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *); 203 static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *, const char *); 204 static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *, 205 void **); 206 static int ipf_updateipid(fr_info_t *); 207 static int ipf_settimeout(struct ipf_main_softc_s *, 208 struct ipftuneable *, ipftuneval_t *); 209 210 211 /* 212 * bit values for identifying presence of individual IP options 213 * All of these tables should be ordered by increasing key value on the left 214 * hand side to allow for binary searching of the array and include a trailer 215 * with a 0 for the bitmask for linear searches to easily find the end with. 216 */ 217 static const struct optlist ipopts[20] = { 218 { IPOPT_NOP, 0x000001 }, 219 { IPOPT_RR, 0x000002 }, 220 { IPOPT_ZSU, 0x000004 }, 221 { IPOPT_MTUP, 0x000008 }, 222 { IPOPT_MTUR, 0x000010 }, 223 { IPOPT_ENCODE, 0x000020 }, 224 { IPOPT_TS, 0x000040 }, 225 { IPOPT_TR, 0x000080 }, 226 { IPOPT_SECURITY, 0x000100 }, 227 { IPOPT_LSRR, 0x000200 }, 228 { IPOPT_E_SEC, 0x000400 }, 229 { IPOPT_CIPSO, 0x000800 }, 230 { IPOPT_SATID, 0x001000 }, 231 { IPOPT_SSRR, 0x002000 }, 232 { IPOPT_ADDEXT, 0x004000 }, 233 { IPOPT_VISA, 0x008000 }, 234 { IPOPT_IMITD, 0x010000 }, 235 { IPOPT_EIP, 0x020000 }, 236 { IPOPT_FINN, 0x040000 }, 237 { 0, 0x000000 } 238 }; 239 240 #ifdef USE_INET6 241 static struct optlist ip6exthdr[] = { 242 { IPPROTO_HOPOPTS, 0x000001 }, 243 { IPPROTO_IPV6, 0x000002 }, 244 { IPPROTO_ROUTING, 0x000004 }, 245 { IPPROTO_FRAGMENT, 0x000008 }, 246 { IPPROTO_ESP, 0x000010 }, 247 { IPPROTO_AH, 0x000020 }, 248 { IPPROTO_NONE, 0x000040 }, 249 { IPPROTO_DSTOPTS, 0x000080 }, 250 { IPPROTO_MOBILITY, 0x000100 }, 251 { 0, 0 } 252 }; 253 #endif 254 255 /* 256 * bit values for identifying presence of individual IP security options 257 */ 258 static const struct optlist secopt[8] = { 259 { IPSO_CLASS_RES4, 0x01 }, 260 { IPSO_CLASS_TOPS, 0x02 }, 261 { IPSO_CLASS_SECR, 0x04 }, 262 { IPSO_CLASS_RES3, 0x08 }, 263 { IPSO_CLASS_CONF, 0x10 }, 264 { IPSO_CLASS_UNCL, 0x20 }, 265 { IPSO_CLASS_RES2, 0x40 }, 266 { IPSO_CLASS_RES1, 0x80 } 267 }; 268 269 char ipfilter_version[] = IPL_VERSION; 270 271 int ipf_features = 0 272 #ifdef IPFILTER_LKM 273 | IPF_FEAT_LKM 274 #endif 275 #ifdef IPFILTER_LOG 276 | IPF_FEAT_LOG 277 #endif 278 | IPF_FEAT_LOOKUP 279 #ifdef IPFILTER_BPF 280 | IPF_FEAT_BPF 281 #endif 282 #ifdef IPFILTER_COMPILED 283 | IPF_FEAT_COMPILED 284 #endif 285 #ifdef IPFILTER_CKSUM 286 | IPF_FEAT_CKSUM 287 #endif 288 | IPF_FEAT_SYNC 289 #ifdef IPFILTER_SCAN 290 | IPF_FEAT_SCAN 291 #endif 292 #ifdef USE_INET6 293 | IPF_FEAT_IPV6 294 #endif 295 ; 296 297 298 /* 299 * Table of functions available for use with call rules. 300 */ 301 static ipfunc_resolve_t ipf_availfuncs[] = { 302 { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini }, 303 { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini }, 304 { "", NULL, NULL, NULL } 305 }; 306 307 static ipftuneable_t ipf_main_tuneables[] = { 308 { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) }, 309 "ipf_flags", 0, 0xffffffff, 310 stsizeof(ipf_main_softc_t, ipf_flags), 311 0, NULL, NULL }, 312 { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) }, 313 "active", 0, 0, 314 stsizeof(ipf_main_softc_t, ipf_active), 315 IPFT_RDONLY, NULL, NULL }, 316 { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) }, 317 "control_forwarding", 0, 1, 318 stsizeof(ipf_main_softc_t, ipf_control_forwarding), 319 0, NULL, NULL }, 320 { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) }, 321 "update_ipid", 0, 1, 322 stsizeof(ipf_main_softc_t, ipf_update_ipid), 323 0, NULL, NULL }, 324 { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) }, 325 "chksrc", 0, 1, 326 stsizeof(ipf_main_softc_t, ipf_chksrc), 327 0, NULL, NULL }, 328 { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) }, 329 "min_ttl", 0, 1, 330 stsizeof(ipf_main_softc_t, ipf_minttl), 331 0, NULL, NULL }, 332 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) }, 333 "icmp_minfragmtu", 0, 1, 334 stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu), 335 0, NULL, NULL }, 336 { { (void *)offsetof(ipf_main_softc_t, ipf_pass) }, 337 "default_pass", 0, 0xffffffff, 338 stsizeof(ipf_main_softc_t, ipf_pass), 339 0, NULL, NULL }, 340 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) }, 341 "tcp_idle_timeout", 1, 0x7fffffff, 342 stsizeof(ipf_main_softc_t, ipf_tcpidletimeout), 343 0, NULL, ipf_settimeout }, 344 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) }, 345 "tcp_close_wait", 1, 0x7fffffff, 346 stsizeof(ipf_main_softc_t, ipf_tcpclosewait), 347 0, NULL, ipf_settimeout }, 348 { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) }, 349 "tcp_last_ack", 1, 0x7fffffff, 350 stsizeof(ipf_main_softc_t, ipf_tcplastack), 351 0, NULL, ipf_settimeout }, 352 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) }, 353 "tcp_timeout", 1, 0x7fffffff, 354 stsizeof(ipf_main_softc_t, ipf_tcptimeout), 355 0, NULL, ipf_settimeout }, 356 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) }, 357 "tcp_syn_sent", 1, 0x7fffffff, 358 stsizeof(ipf_main_softc_t, ipf_tcpsynsent), 359 0, NULL, ipf_settimeout }, 360 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) }, 361 "tcp_syn_received", 1, 0x7fffffff, 362 stsizeof(ipf_main_softc_t, ipf_tcpsynrecv), 363 0, NULL, ipf_settimeout }, 364 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) }, 365 "tcp_closed", 1, 0x7fffffff, 366 stsizeof(ipf_main_softc_t, ipf_tcpclosed), 367 0, NULL, ipf_settimeout }, 368 { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) }, 369 "tcp_half_closed", 1, 0x7fffffff, 370 stsizeof(ipf_main_softc_t, ipf_tcphalfclosed), 371 0, NULL, ipf_settimeout }, 372 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) }, 373 "tcp_time_wait", 1, 0x7fffffff, 374 stsizeof(ipf_main_softc_t, ipf_tcptimewait), 375 0, NULL, ipf_settimeout }, 376 { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) }, 377 "udp_timeout", 1, 0x7fffffff, 378 stsizeof(ipf_main_softc_t, ipf_udptimeout), 379 0, NULL, ipf_settimeout }, 380 { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) }, 381 "udp_ack_timeout", 1, 0x7fffffff, 382 stsizeof(ipf_main_softc_t, ipf_udpacktimeout), 383 0, NULL, ipf_settimeout }, 384 { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) }, 385 "icmp_timeout", 1, 0x7fffffff, 386 stsizeof(ipf_main_softc_t, ipf_icmptimeout), 387 0, NULL, ipf_settimeout }, 388 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) }, 389 "icmp_ack_timeout", 1, 0x7fffffff, 390 stsizeof(ipf_main_softc_t, ipf_icmpacktimeout), 391 0, NULL, ipf_settimeout }, 392 { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) }, 393 "ip_timeout", 1, 0x7fffffff, 394 stsizeof(ipf_main_softc_t, ipf_iptimeout), 395 0, NULL, ipf_settimeout }, 396 #if defined(INSTANCES) && defined(_KERNEL) 397 { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) }, 398 "intercept_loopback", 0, 1, 399 stsizeof(ipf_main_softc_t, ipf_get_loopback), 400 0, NULL, ipf_set_loopback }, 401 #endif 402 { { 0 }, 403 NULL, 0, 0, 404 0, 405 0, NULL, NULL } 406 }; 407 408 409 /* 410 * The next section of code is a a collection of small routines that set 411 * fields in the fr_info_t structure passed based on properties of the 412 * current packet. There are different routines for the same protocol 413 * for each of IPv4 and IPv6. Adding a new protocol, for which there 414 * will "special" inspection for setup, is now more easily done by adding 415 * a new routine and expanding the ipf_pr_ipinit*() function rather than by 416 * adding more code to a growing switch statement. 417 */ 418 #ifdef USE_INET6 419 static INLINE int ipf_pr_ah6(fr_info_t *); 420 static INLINE void ipf_pr_esp6(fr_info_t *); 421 static INLINE void ipf_pr_gre6(fr_info_t *); 422 static INLINE void ipf_pr_udp6(fr_info_t *); 423 static INLINE void ipf_pr_tcp6(fr_info_t *); 424 static INLINE void ipf_pr_icmp6(fr_info_t *); 425 static INLINE void ipf_pr_ipv6hdr(fr_info_t *); 426 static INLINE void ipf_pr_short6(fr_info_t *, int); 427 static INLINE int ipf_pr_hopopts6(fr_info_t *); 428 static INLINE int ipf_pr_mobility6(fr_info_t *); 429 static INLINE int ipf_pr_routing6(fr_info_t *); 430 static INLINE int ipf_pr_dstopts6(fr_info_t *); 431 static INLINE int ipf_pr_fragment6(fr_info_t *); 432 static INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int); 433 434 435 /* ------------------------------------------------------------------------ */ 436 /* Function: ipf_pr_short6 */ 437 /* Returns: void */ 438 /* Parameters: fin(I) - pointer to packet information */ 439 /* xmin(I) - minimum header size */ 440 /* */ 441 /* IPv6 Only */ 442 /* This is function enforces the 'is a packet too short to be legit' rule */ 443 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 444 /* for ipf_pr_short() for more details. */ 445 /* ------------------------------------------------------------------------ */ 446 static INLINE void 447 ipf_pr_short6(fr_info_t *fin, int xmin) 448 { 449 450 if (fin->fin_dlen < xmin) 451 fin->fin_flx |= FI_SHORT; 452 } 453 454 455 /* ------------------------------------------------------------------------ */ 456 /* Function: ipf_pr_ipv6hdr */ 457 /* Returns: void */ 458 /* Parameters: fin(I) - pointer to packet information */ 459 /* */ 460 /* IPv6 Only */ 461 /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 462 /* per-protocol analyzer if it exists. In validating the packet, a protocol*/ 463 /* analyzer may pullup or free the packet itself so we need to be vigiliant */ 464 /* of that possibility arising. */ 465 /* ------------------------------------------------------------------------ */ 466 static INLINE void 467 ipf_pr_ipv6hdr(fr_info_t *fin) 468 { 469 ip6_t *ip6 = (ip6_t *)fin->fin_ip; 470 int p, go = 1, i, hdrcount; 471 fr_ip_t *fi = &fin->fin_fi; 472 473 fin->fin_off = 0; 474 475 fi->fi_tos = 0; 476 fi->fi_optmsk = 0; 477 fi->fi_secmsk = 0; 478 fi->fi_auth = 0; 479 480 p = ip6->ip6_nxt; 481 fin->fin_crc = p; 482 fi->fi_ttl = ip6->ip6_hlim; 483 fi->fi_src.in6 = ip6->ip6_src; 484 fin->fin_crc += fi->fi_src.i6[0]; 485 fin->fin_crc += fi->fi_src.i6[1]; 486 fin->fin_crc += fi->fi_src.i6[2]; 487 fin->fin_crc += fi->fi_src.i6[3]; 488 fi->fi_dst.in6 = ip6->ip6_dst; 489 fin->fin_crc += fi->fi_dst.i6[0]; 490 fin->fin_crc += fi->fi_dst.i6[1]; 491 fin->fin_crc += fi->fi_dst.i6[2]; 492 fin->fin_crc += fi->fi_dst.i6[3]; 493 fin->fin_id = 0; 494 if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6)) 495 fin->fin_flx |= FI_MULTICAST|FI_MBCAST; 496 497 hdrcount = 0; 498 while (go && !(fin->fin_flx & FI_SHORT)) { 499 switch (p) 500 { 501 case IPPROTO_UDP : 502 ipf_pr_udp6(fin); 503 go = 0; 504 break; 505 506 case IPPROTO_TCP : 507 ipf_pr_tcp6(fin); 508 go = 0; 509 break; 510 511 case IPPROTO_ICMPV6 : 512 ipf_pr_icmp6(fin); 513 go = 0; 514 break; 515 516 case IPPROTO_GRE : 517 ipf_pr_gre6(fin); 518 go = 0; 519 break; 520 521 case IPPROTO_HOPOPTS : 522 p = ipf_pr_hopopts6(fin); 523 break; 524 525 case IPPROTO_MOBILITY : 526 p = ipf_pr_mobility6(fin); 527 break; 528 529 case IPPROTO_DSTOPTS : 530 p = ipf_pr_dstopts6(fin); 531 break; 532 533 case IPPROTO_ROUTING : 534 p = ipf_pr_routing6(fin); 535 break; 536 537 case IPPROTO_AH : 538 p = ipf_pr_ah6(fin); 539 break; 540 541 case IPPROTO_ESP : 542 ipf_pr_esp6(fin); 543 go = 0; 544 break; 545 546 case IPPROTO_IPV6 : 547 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 548 if (ip6exthdr[i].ol_val == p) { 549 fin->fin_flx |= ip6exthdr[i].ol_bit; 550 break; 551 } 552 go = 0; 553 break; 554 555 case IPPROTO_NONE : 556 go = 0; 557 break; 558 559 case IPPROTO_FRAGMENT : 560 p = ipf_pr_fragment6(fin); 561 /* 562 * Given that the only fragments we want to let through 563 * (where fin_off != 0) are those where the non-first 564 * fragments only have data, we can safely stop looking 565 * at headers if this is a non-leading fragment. 566 */ 567 if (fin->fin_off != 0) 568 go = 0; 569 break; 570 571 default : 572 go = 0; 573 break; 574 } 575 hdrcount++; 576 577 /* 578 * It is important to note that at this point, for the 579 * extension headers (go != 0), the entire header may not have 580 * been pulled up when the code gets to this point. This is 581 * only done for "go != 0" because the other header handlers 582 * will all pullup their complete header. The other indicator 583 * of an incomplete packet is that this was just an extension 584 * header. 585 */ 586 if ((go != 0) && (p != IPPROTO_NONE) && 587 (ipf_pr_pullup(fin, 0) == -1)) { 588 p = IPPROTO_NONE; 589 break; 590 } 591 } 592 593 /* 594 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup 595 * and destroy whatever packet was here. The caller of this function 596 * expects us to return if there is a problem with ipf_pullup. 597 */ 598 if (fin->fin_m == NULL) { 599 ipf_main_softc_t *softc = fin->fin_main_soft; 600 601 LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad); 602 return; 603 } 604 605 fi->fi_p = p; 606 607 /* 608 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6(). 609 * "go != 0" imples the above loop hasn't arrived at a layer 4 header. 610 */ 611 if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) { 612 ipf_main_softc_t *softc = fin->fin_main_soft; 613 614 fin->fin_flx |= FI_BAD; 615 LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag); 616 LBUMP(ipf_stats[fin->fin_out].fr_v6_bad); 617 } 618 } 619 620 621 /* ------------------------------------------------------------------------ */ 622 /* Function: ipf_pr_ipv6exthdr */ 623 /* Returns: struct ip6_ext * - pointer to the start of the next header */ 624 /* or NULL if there is a prolblem. */ 625 /* Parameters: fin(I) - pointer to packet information */ 626 /* multiple(I) - flag indicating yes/no if multiple occurances */ 627 /* of this extension header are allowed. */ 628 /* proto(I) - protocol number for this extension header */ 629 /* */ 630 /* IPv6 Only */ 631 /* This function embodies a number of common checks that all IPv6 extension */ 632 /* headers must be subjected to. For example, making sure the packet is */ 633 /* big enough for it to be in, checking if it is repeated and setting a */ 634 /* flag to indicate its presence. */ 635 /* ------------------------------------------------------------------------ */ 636 static INLINE struct ip6_ext * 637 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto) 638 { 639 ipf_main_softc_t *softc = fin->fin_main_soft; 640 struct ip6_ext *hdr; 641 u_short shift; 642 int i; 643 644 fin->fin_flx |= FI_V6EXTHDR; 645 646 /* 8 is default length of extension hdr */ 647 if ((fin->fin_dlen - 8) < 0) { 648 fin->fin_flx |= FI_SHORT; 649 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short); 650 return NULL; 651 } 652 653 if (ipf_pr_pullup(fin, 8) == -1) { 654 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup); 655 return NULL; 656 } 657 658 hdr = fin->fin_dp; 659 switch (proto) 660 { 661 case IPPROTO_FRAGMENT : 662 shift = 8; 663 break; 664 default : 665 shift = 8 + (hdr->ip6e_len << 3); 666 break; 667 } 668 669 if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 670 fin->fin_flx |= FI_BAD; 671 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen); 672 return NULL; 673 } 674 675 fin->fin_dp = (char *)fin->fin_dp + shift; 676 fin->fin_dlen -= shift; 677 678 /* 679 * If we have seen a fragment header, do not set any flags to indicate 680 * the presence of this extension header as it has no impact on the 681 * end result until after it has been defragmented. 682 */ 683 if (fin->fin_flx & FI_FRAG) 684 return hdr; 685 686 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 687 if (ip6exthdr[i].ol_val == proto) { 688 /* 689 * Most IPv6 extension headers are only allowed once. 690 */ 691 if ((multiple == 0) && 692 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) 693 fin->fin_flx |= FI_BAD; 694 else 695 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 696 break; 697 } 698 699 return hdr; 700 } 701 702 703 /* ------------------------------------------------------------------------ */ 704 /* Function: ipf_pr_hopopts6 */ 705 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 706 /* Parameters: fin(I) - pointer to packet information */ 707 /* */ 708 /* IPv6 Only */ 709 /* This is function checks pending hop by hop options extension header */ 710 /* ------------------------------------------------------------------------ */ 711 static INLINE int 712 ipf_pr_hopopts6(fr_info_t *fin) 713 { 714 struct ip6_ext *hdr; 715 716 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 717 if (hdr == NULL) 718 return IPPROTO_NONE; 719 return hdr->ip6e_nxt; 720 } 721 722 723 /* ------------------------------------------------------------------------ */ 724 /* Function: ipf_pr_mobility6 */ 725 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 726 /* Parameters: fin(I) - pointer to packet information */ 727 /* */ 728 /* IPv6 Only */ 729 /* This is function checks the IPv6 mobility extension header */ 730 /* ------------------------------------------------------------------------ */ 731 static INLINE int 732 ipf_pr_mobility6(fr_info_t *fin) 733 { 734 struct ip6_ext *hdr; 735 736 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY); 737 if (hdr == NULL) 738 return IPPROTO_NONE; 739 return hdr->ip6e_nxt; 740 } 741 742 743 /* ------------------------------------------------------------------------ */ 744 /* Function: ipf_pr_routing6 */ 745 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 746 /* Parameters: fin(I) - pointer to packet information */ 747 /* */ 748 /* IPv6 Only */ 749 /* This is function checks pending routing extension header */ 750 /* ------------------------------------------------------------------------ */ 751 static INLINE int 752 ipf_pr_routing6(fr_info_t *fin) 753 { 754 struct ip6_routing *hdr; 755 756 hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING); 757 if (hdr == NULL) 758 return IPPROTO_NONE; 759 760 switch (hdr->ip6r_type) 761 { 762 case 0 : 763 /* 764 * Nasty extension header length? 765 */ 766 if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) || 767 (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) { 768 ipf_main_softc_t *softc = fin->fin_main_soft; 769 770 fin->fin_flx |= FI_BAD; 771 LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad); 772 return IPPROTO_NONE; 773 } 774 break; 775 776 default : 777 break; 778 } 779 780 return hdr->ip6r_nxt; 781 } 782 783 784 /* ------------------------------------------------------------------------ */ 785 /* Function: ipf_pr_fragment6 */ 786 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 787 /* Parameters: fin(I) - pointer to packet information */ 788 /* */ 789 /* IPv6 Only */ 790 /* Examine the IPv6 fragment header and extract fragment offset information.*/ 791 /* */ 792 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */ 793 /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */ 794 /* packets with a fragment header can fit into. They are as follows: */ 795 /* */ 796 /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */ 797 /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */ 798 /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */ 799 /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */ 800 /* 5. [IPV6][0-n EH][FH][data] */ 801 /* */ 802 /* IPV6 = IPv6 header, FH = Fragment Header, */ 803 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */ 804 /* */ 805 /* Packets that match 1, 2, 3 will be dropped as the only reasonable */ 806 /* scenario in which they happen is in extreme circumstances that are most */ 807 /* likely to be an indication of an attack rather than normal traffic. */ 808 /* A type 3 packet may be sent by an attacked after a type 4 packet. There */ 809 /* are two rules that can be used to guard against type 3 packets: L4 */ 810 /* headers must always be in a packet that has the offset field set to 0 */ 811 /* and no packet is allowed to overlay that where offset = 0. */ 812 /* ------------------------------------------------------------------------ */ 813 static INLINE int 814 ipf_pr_fragment6(fr_info_t *fin) 815 { 816 ipf_main_softc_t *softc = fin->fin_main_soft; 817 struct ip6_frag *frag; 818 819 fin->fin_flx |= FI_FRAG; 820 821 frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT); 822 if (frag == NULL) { 823 LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad); 824 return IPPROTO_NONE; 825 } 826 827 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) { 828 /* 829 * Any fragment that isn't the last fragment must have its 830 * length as a multiple of 8. 831 */ 832 if ((fin->fin_plen & 7) != 0) 833 fin->fin_flx |= FI_BAD; 834 } 835 836 fin->fin_fraghdr = frag; 837 fin->fin_id = frag->ip6f_ident; 838 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK); 839 if (fin->fin_off != 0) 840 fin->fin_flx |= FI_FRAGBODY; 841 842 /* 843 * Jumbograms aren't handled, so the max. length is 64k 844 */ 845 if ((fin->fin_off << 3) + fin->fin_dlen > 65535) 846 fin->fin_flx |= FI_BAD; 847 848 /* 849 * We don't know where the transport layer header (or whatever is next 850 * is), as it could be behind destination options (amongst others) so 851 * return the fragment header as the type of packet this is. Note that 852 * this effectively disables the fragment cache for > 1 protocol at a 853 * time. 854 */ 855 return frag->ip6f_nxt; 856 } 857 858 859 /* ------------------------------------------------------------------------ */ 860 /* Function: ipf_pr_dstopts6 */ 861 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 862 /* Parameters: fin(I) - pointer to packet information */ 863 /* */ 864 /* IPv6 Only */ 865 /* This is function checks pending destination options extension header */ 866 /* ------------------------------------------------------------------------ */ 867 static INLINE int 868 ipf_pr_dstopts6(fr_info_t *fin) 869 { 870 ipf_main_softc_t *softc = fin->fin_main_soft; 871 struct ip6_ext *hdr; 872 873 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS); 874 if (hdr == NULL) { 875 LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad); 876 return IPPROTO_NONE; 877 } 878 return hdr->ip6e_nxt; 879 } 880 881 882 /* ------------------------------------------------------------------------ */ 883 /* Function: ipf_pr_icmp6 */ 884 /* Returns: void */ 885 /* Parameters: fin(I) - pointer to packet information */ 886 /* */ 887 /* IPv6 Only */ 888 /* This routine is mainly concerned with determining the minimum valid size */ 889 /* for an ICMPv6 packet. */ 890 /* ------------------------------------------------------------------------ */ 891 static INLINE void 892 ipf_pr_icmp6(fr_info_t *fin) 893 { 894 int minicmpsz = sizeof(struct icmp6_hdr); 895 struct icmp6_hdr *icmp6; 896 897 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) { 898 ipf_main_softc_t *softc = fin->fin_main_soft; 899 900 LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup); 901 return; 902 } 903 904 if (fin->fin_dlen > 1) { 905 ip6_t *ip6; 906 907 icmp6 = fin->fin_dp; 908 909 fin->fin_data[0] = *(u_short *)icmp6; 910 911 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) 912 fin->fin_flx |= FI_ICMPQUERY; 913 914 switch (icmp6->icmp6_type) 915 { 916 case ICMP6_ECHO_REPLY : 917 case ICMP6_ECHO_REQUEST : 918 if (fin->fin_dlen >= 6) 919 fin->fin_data[1] = icmp6->icmp6_id; 920 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 921 break; 922 923 case ICMP6_DST_UNREACH : 924 case ICMP6_PACKET_TOO_BIG : 925 case ICMP6_TIME_EXCEEDED : 926 case ICMP6_PARAM_PROB : 927 fin->fin_flx |= FI_ICMPERR; 928 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 929 if (fin->fin_plen < ICMP6ERR_IPICMPHLEN) 930 break; 931 932 if (M_LEN(fin->fin_m) < fin->fin_plen) { 933 if (ipf_coalesce(fin) != 1) 934 return; 935 } 936 937 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1) 938 return; 939 940 /* 941 * If the destination of this packet doesn't match the 942 * source of the original packet then this packet is 943 * not correct. 944 */ 945 icmp6 = fin->fin_dp; 946 ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN); 947 if (IP6_NEQ(&fin->fin_fi.fi_dst, 948 &ip6->ip6_src)) 949 fin->fin_flx |= FI_BAD; 950 break; 951 default : 952 break; 953 } 954 } 955 956 ipf_pr_short6(fin, minicmpsz); 957 if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) { 958 u_char p = fin->fin_p; 959 960 fin->fin_p = IPPROTO_ICMPV6; 961 ipf_checkv6sum(fin); 962 fin->fin_p = p; 963 } 964 } 965 966 967 /* ------------------------------------------------------------------------ */ 968 /* Function: ipf_pr_udp6 */ 969 /* Returns: void */ 970 /* Parameters: fin(I) - pointer to packet information */ 971 /* */ 972 /* IPv6 Only */ 973 /* Analyse the packet for IPv6/UDP properties. */ 974 /* Is not expected to be called for fragmented packets. */ 975 /* ------------------------------------------------------------------------ */ 976 static INLINE void 977 ipf_pr_udp6(fr_info_t *fin) 978 { 979 980 if (ipf_pr_udpcommon(fin) == 0) { 981 u_char p = fin->fin_p; 982 983 fin->fin_p = IPPROTO_UDP; 984 ipf_checkv6sum(fin); 985 fin->fin_p = p; 986 } 987 } 988 989 990 /* ------------------------------------------------------------------------ */ 991 /* Function: ipf_pr_tcp6 */ 992 /* Returns: void */ 993 /* Parameters: fin(I) - pointer to packet information */ 994 /* */ 995 /* IPv6 Only */ 996 /* Analyse the packet for IPv6/TCP properties. */ 997 /* Is not expected to be called for fragmented packets. */ 998 /* ------------------------------------------------------------------------ */ 999 static INLINE void 1000 ipf_pr_tcp6(fr_info_t *fin) 1001 { 1002 1003 if (ipf_pr_tcpcommon(fin) == 0) { 1004 u_char p = fin->fin_p; 1005 1006 fin->fin_p = IPPROTO_TCP; 1007 ipf_checkv6sum(fin); 1008 fin->fin_p = p; 1009 } 1010 } 1011 1012 1013 /* ------------------------------------------------------------------------ */ 1014 /* Function: ipf_pr_esp6 */ 1015 /* Returns: void */ 1016 /* Parameters: fin(I) - pointer to packet information */ 1017 /* */ 1018 /* IPv6 Only */ 1019 /* Analyse the packet for ESP properties. */ 1020 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1021 /* even though the newer ESP packets must also have a sequence number that */ 1022 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1023 /* simple packet header. */ 1024 /* ------------------------------------------------------------------------ */ 1025 static INLINE void 1026 ipf_pr_esp6(fr_info_t *fin) 1027 { 1028 1029 if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) { 1030 ipf_main_softc_t *softc = fin->fin_main_soft; 1031 1032 LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup); 1033 return; 1034 } 1035 } 1036 1037 1038 /* ------------------------------------------------------------------------ */ 1039 /* Function: ipf_pr_ah6 */ 1040 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 1041 /* Parameters: fin(I) - pointer to packet information */ 1042 /* */ 1043 /* IPv6 Only */ 1044 /* Analyse the packet for AH properties. */ 1045 /* The minimum length is taken to be the combination of all fields in the */ 1046 /* header being present and no authentication data (null algorithm used.) */ 1047 /* ------------------------------------------------------------------------ */ 1048 static INLINE int 1049 ipf_pr_ah6(fr_info_t *fin) 1050 { 1051 authhdr_t *ah; 1052 1053 fin->fin_flx |= FI_AH; 1054 1055 ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 1056 if (ah == NULL) { 1057 ipf_main_softc_t *softc = fin->fin_main_soft; 1058 1059 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad); 1060 return IPPROTO_NONE; 1061 } 1062 1063 ipf_pr_short6(fin, sizeof(*ah)); 1064 1065 /* 1066 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup 1067 * enough data to satisfy ah_next (the very first one.) 1068 */ 1069 return ah->ah_next; 1070 } 1071 1072 1073 /* ------------------------------------------------------------------------ */ 1074 /* Function: ipf_pr_gre6 */ 1075 /* Returns: void */ 1076 /* Parameters: fin(I) - pointer to packet information */ 1077 /* */ 1078 /* Analyse the packet for GRE properties. */ 1079 /* ------------------------------------------------------------------------ */ 1080 static INLINE void 1081 ipf_pr_gre6(fr_info_t *fin) 1082 { 1083 grehdr_t *gre; 1084 1085 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { 1086 ipf_main_softc_t *softc = fin->fin_main_soft; 1087 1088 LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup); 1089 return; 1090 } 1091 1092 gre = fin->fin_dp; 1093 if (GRE_REV(gre->gr_flags) == 1) 1094 fin->fin_data[0] = gre->gr_call; 1095 } 1096 #endif /* USE_INET6 */ 1097 1098 1099 /* ------------------------------------------------------------------------ */ 1100 /* Function: ipf_pr_pullup */ 1101 /* Returns: int - 0 == pullup succeeded, -1 == failure */ 1102 /* Parameters: fin(I) - pointer to packet information */ 1103 /* plen(I) - length (excluding L3 header) to pullup */ 1104 /* */ 1105 /* Short inline function to cut down on code duplication to perform a call */ 1106 /* to ipf_pullup to ensure there is the required amount of data, */ 1107 /* consecutively in the packet buffer. */ 1108 /* */ 1109 /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */ 1110 /* points to the first byte after the complete layer 3 header, which will */ 1111 /* include all of the known extension headers for IPv6 or options for IPv4. */ 1112 /* */ 1113 /* Since fr_pullup() expects the total length of bytes to be pulled up, it */ 1114 /* is necessary to add those we can already assume to be pulled up (fin_dp */ 1115 /* - fin_ip) to what is passed through. */ 1116 /* ------------------------------------------------------------------------ */ 1117 int 1118 ipf_pr_pullup(fr_info_t *fin, int plen) 1119 { 1120 ipf_main_softc_t *softc = fin->fin_main_soft; 1121 1122 if (fin->fin_m != NULL) { 1123 if (fin->fin_dp != NULL) 1124 plen += (char *)fin->fin_dp - 1125 ((char *)fin->fin_ip + fin->fin_hlen); 1126 plen += fin->fin_hlen; 1127 if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) { 1128 #if defined(_KERNEL) 1129 if (ipf_pullup(fin->fin_m, fin, plen) == NULL) { 1130 DT(ipf_pullup_fail); 1131 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); 1132 return -1; 1133 } 1134 LBUMP(ipf_stats[fin->fin_out].fr_pull[0]); 1135 #else 1136 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]); 1137 /* 1138 * Fake ipf_pullup failing 1139 */ 1140 fin->fin_reason = FRB_PULLUP; 1141 *fin->fin_mp = NULL; 1142 fin->fin_m = NULL; 1143 fin->fin_ip = NULL; 1144 return -1; 1145 #endif 1146 } 1147 } 1148 return 0; 1149 } 1150 1151 1152 /* ------------------------------------------------------------------------ */ 1153 /* Function: ipf_pr_short */ 1154 /* Returns: void */ 1155 /* Parameters: fin(I) - pointer to packet information */ 1156 /* xmin(I) - minimum header size */ 1157 /* */ 1158 /* Check if a packet is "short" as defined by xmin. The rule we are */ 1159 /* applying here is that the packet must not be fragmented within the layer */ 1160 /* 4 header. That is, it must not be a fragment that has its offset set to */ 1161 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 1162 /* entire layer 4 header must be present (min). */ 1163 /* ------------------------------------------------------------------------ */ 1164 static INLINE void 1165 ipf_pr_short(fr_info_t *fin, int xmin) 1166 { 1167 1168 if (fin->fin_off == 0) { 1169 if (fin->fin_dlen < xmin) 1170 fin->fin_flx |= FI_SHORT; 1171 } else if (fin->fin_off < xmin) { 1172 fin->fin_flx |= FI_SHORT; 1173 } 1174 } 1175 1176 1177 /* ------------------------------------------------------------------------ */ 1178 /* Function: ipf_pr_icmp */ 1179 /* Returns: void */ 1180 /* Parameters: fin(I) - pointer to packet information */ 1181 /* */ 1182 /* IPv4 Only */ 1183 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 1184 /* except extrememly bad packets, both type and code will be present. */ 1185 /* The expected minimum size of an ICMP packet is very much dependent on */ 1186 /* the type of it. */ 1187 /* */ 1188 /* XXX - other ICMP sanity checks? */ 1189 /* ------------------------------------------------------------------------ */ 1190 static INLINE void 1191 ipf_pr_icmp(fr_info_t *fin) 1192 { 1193 ipf_main_softc_t *softc = fin->fin_main_soft; 1194 int minicmpsz = sizeof(struct icmp); 1195 icmphdr_t *icmp; 1196 ip_t *oip; 1197 1198 ipf_pr_short(fin, ICMPERR_ICMPHLEN); 1199 1200 if (fin->fin_off != 0) { 1201 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag); 1202 return; 1203 } 1204 1205 if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) { 1206 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup); 1207 return; 1208 } 1209 1210 icmp = fin->fin_dp; 1211 1212 fin->fin_data[0] = *(u_short *)icmp; 1213 fin->fin_data[1] = icmp->icmp_id; 1214 1215 switch (icmp->icmp_type) 1216 { 1217 case ICMP_ECHOREPLY : 1218 case ICMP_ECHO : 1219 /* Router discovery messaes - RFC 1256 */ 1220 case ICMP_ROUTERADVERT : 1221 case ICMP_ROUTERSOLICIT : 1222 fin->fin_flx |= FI_ICMPQUERY; 1223 minicmpsz = ICMP_MINLEN; 1224 break; 1225 /* 1226 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 1227 * 3 * timestamp(3 * 4) 1228 */ 1229 case ICMP_TSTAMP : 1230 case ICMP_TSTAMPREPLY : 1231 fin->fin_flx |= FI_ICMPQUERY; 1232 minicmpsz = 20; 1233 break; 1234 /* 1235 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 1236 * mask(4) 1237 */ 1238 case ICMP_IREQ : 1239 case ICMP_IREQREPLY : 1240 case ICMP_MASKREQ : 1241 case ICMP_MASKREPLY : 1242 fin->fin_flx |= FI_ICMPQUERY; 1243 minicmpsz = 12; 1244 break; 1245 /* 1246 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 1247 */ 1248 case ICMP_UNREACH : 1249 #ifdef icmp_nextmtu 1250 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 1251 if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) 1252 fin->fin_flx |= FI_BAD; 1253 } 1254 #endif 1255 case ICMP_SOURCEQUENCH : 1256 case ICMP_REDIRECT : 1257 case ICMP_TIMXCEED : 1258 case ICMP_PARAMPROB : 1259 fin->fin_flx |= FI_ICMPERR; 1260 if (ipf_coalesce(fin) != 1) { 1261 LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce); 1262 return; 1263 } 1264 1265 /* 1266 * ICMP error packets should not be generated for IP 1267 * packets that are a fragment that isn't the first 1268 * fragment. 1269 */ 1270 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1271 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) 1272 fin->fin_flx |= FI_BAD; 1273 1274 /* 1275 * If the destination of this packet doesn't match the 1276 * source of the original packet then this packet is 1277 * not correct. 1278 */ 1279 if (oip->ip_src.s_addr != fin->fin_daddr) 1280 fin->fin_flx |= FI_BAD; 1281 break; 1282 default : 1283 break; 1284 } 1285 1286 ipf_pr_short(fin, minicmpsz); 1287 1288 ipf_checkv4sum(fin); 1289 } 1290 1291 1292 /* ------------------------------------------------------------------------ */ 1293 /* Function: ipf_pr_tcpcommon */ 1294 /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */ 1295 /* Parameters: fin(I) - pointer to packet information */ 1296 /* */ 1297 /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1298 /* and make some checks with how they interact with other fields. */ 1299 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1300 /* valid and mark the packet as bad if not. */ 1301 /* ------------------------------------------------------------------------ */ 1302 static INLINE int 1303 ipf_pr_tcpcommon(fr_info_t *fin) 1304 { 1305 ipf_main_softc_t *softc = fin->fin_main_soft; 1306 int flags, tlen; 1307 tcphdr_t *tcp; 1308 1309 fin->fin_flx |= FI_TCPUDP; 1310 if (fin->fin_off != 0) { 1311 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag); 1312 return 0; 1313 } 1314 1315 if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) { 1316 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); 1317 return -1; 1318 } 1319 1320 tcp = fin->fin_dp; 1321 if (fin->fin_dlen > 3) { 1322 fin->fin_sport = ntohs(tcp->th_sport); 1323 fin->fin_dport = ntohs(tcp->th_dport); 1324 } 1325 1326 if ((fin->fin_flx & FI_SHORT) != 0) { 1327 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short); 1328 return 1; 1329 } 1330 1331 /* 1332 * Use of the TCP data offset *must* result in a value that is at 1333 * least the same size as the TCP header. 1334 */ 1335 tlen = TCP_OFF(tcp) << 2; 1336 if (tlen < sizeof(tcphdr_t)) { 1337 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small); 1338 fin->fin_flx |= FI_BAD; 1339 return 1; 1340 } 1341 1342 flags = tcp->th_flags; 1343 fin->fin_tcpf = tcp->th_flags; 1344 1345 /* 1346 * If the urgent flag is set, then the urgent pointer must 1347 * also be set and vice versa. Good TCP packets do not have 1348 * just one of these set. 1349 */ 1350 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1351 fin->fin_flx |= FI_BAD; 1352 #if 0 1353 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1354 /* 1355 * Ignore this case (#if 0) as it shows up in "real" 1356 * traffic with bogus values in the urgent pointer field. 1357 */ 1358 fin->fin_flx |= FI_BAD; 1359 #endif 1360 } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1361 ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1362 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1363 fin->fin_flx |= FI_BAD; 1364 #if 1 1365 } else if (((flags & TH_SYN) != 0) && 1366 ((flags & (TH_URG|TH_PUSH)) != 0)) { 1367 /* 1368 * SYN with URG and PUSH set is not for normal TCP but it is 1369 * possible(?) with T/TCP...but who uses T/TCP? 1370 */ 1371 fin->fin_flx |= FI_BAD; 1372 #endif 1373 } else if (!(flags & TH_ACK)) { 1374 /* 1375 * If the ack bit isn't set, then either the SYN or 1376 * RST bit must be set. If the SYN bit is set, then 1377 * we expect the ACK field to be 0. If the ACK is 1378 * not set and if URG, PSH or FIN are set, consdier 1379 * that to indicate a bad TCP packet. 1380 */ 1381 if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1382 /* 1383 * Cisco PIX sets the ACK field to a random value. 1384 * In light of this, do not set FI_BAD until a patch 1385 * is available from Cisco to ensure that 1386 * interoperability between existing systems is 1387 * achieved. 1388 */ 1389 /*fin->fin_flx |= FI_BAD*/; 1390 } else if (!(flags & (TH_RST|TH_SYN))) { 1391 fin->fin_flx |= FI_BAD; 1392 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1393 fin->fin_flx |= FI_BAD; 1394 } 1395 } 1396 if (fin->fin_flx & FI_BAD) { 1397 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags); 1398 return 1; 1399 } 1400 1401 /* 1402 * At this point, it's not exactly clear what is to be gained by 1403 * marking up which TCP options are and are not present. The one we 1404 * are most interested in is the TCP window scale. This is only in 1405 * a SYN packet [RFC1323] so we don't need this here...? 1406 * Now if we were to analyse the header for passive fingerprinting, 1407 * then that might add some weight to adding this... 1408 */ 1409 if (tlen == sizeof(tcphdr_t)) { 1410 return 0; 1411 } 1412 1413 if (ipf_pr_pullup(fin, tlen) == -1) { 1414 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup); 1415 return -1; 1416 } 1417 1418 #if 0 1419 tcp = fin->fin_dp; 1420 ip = fin->fin_ip; 1421 s = (u_char *)(tcp + 1); 1422 off = IP_HL(ip) << 2; 1423 # ifdef _KERNEL 1424 if (fin->fin_mp != NULL) { 1425 mb_t *m = *fin->fin_mp; 1426 1427 if (off + tlen > M_LEN(m)) 1428 return; 1429 } 1430 # endif 1431 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1432 opt = *s; 1433 if (opt == '\0') 1434 break; 1435 else if (opt == TCPOPT_NOP) 1436 ol = 1; 1437 else { 1438 if (tlen < 2) 1439 break; 1440 ol = (int)*(s + 1); 1441 if (ol < 2 || ol > tlen) 1442 break; 1443 } 1444 1445 for (i = 9, mv = 4; mv >= 0; ) { 1446 op = ipopts + i; 1447 if (opt == (u_char)op->ol_val) { 1448 optmsk |= op->ol_bit; 1449 break; 1450 } 1451 } 1452 tlen -= ol; 1453 s += ol; 1454 } 1455 #endif /* 0 */ 1456 1457 return 0; 1458 } 1459 1460 1461 1462 /* ------------------------------------------------------------------------ */ 1463 /* Function: ipf_pr_udpcommon */ 1464 /* Returns: int - 0 = header ok, 1 = bad packet */ 1465 /* Parameters: fin(I) - pointer to packet information */ 1466 /* */ 1467 /* Extract the UDP source and destination ports, if present. If compiled */ 1468 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1469 /* ------------------------------------------------------------------------ */ 1470 static INLINE int 1471 ipf_pr_udpcommon(fr_info_t *fin) 1472 { 1473 udphdr_t *udp; 1474 1475 fin->fin_flx |= FI_TCPUDP; 1476 1477 if (!fin->fin_off && (fin->fin_dlen > 3)) { 1478 if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) { 1479 ipf_main_softc_t *softc = fin->fin_main_soft; 1480 1481 fin->fin_flx |= FI_SHORT; 1482 LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup); 1483 return 1; 1484 } 1485 1486 udp = fin->fin_dp; 1487 1488 fin->fin_sport = ntohs(udp->uh_sport); 1489 fin->fin_dport = ntohs(udp->uh_dport); 1490 } 1491 1492 return 0; 1493 } 1494 1495 1496 /* ------------------------------------------------------------------------ */ 1497 /* Function: ipf_pr_tcp */ 1498 /* Returns: void */ 1499 /* Parameters: fin(I) - pointer to packet information */ 1500 /* */ 1501 /* IPv4 Only */ 1502 /* Analyse the packet for IPv4/TCP properties. */ 1503 /* ------------------------------------------------------------------------ */ 1504 static INLINE void 1505 ipf_pr_tcp(fr_info_t *fin) 1506 { 1507 1508 ipf_pr_short(fin, sizeof(tcphdr_t)); 1509 1510 if (ipf_pr_tcpcommon(fin) == 0) 1511 ipf_checkv4sum(fin); 1512 } 1513 1514 1515 /* ------------------------------------------------------------------------ */ 1516 /* Function: ipf_pr_udp */ 1517 /* Returns: void */ 1518 /* Parameters: fin(I) - pointer to packet information */ 1519 /* */ 1520 /* IPv4 Only */ 1521 /* Analyse the packet for IPv4/UDP properties. */ 1522 /* ------------------------------------------------------------------------ */ 1523 static INLINE void 1524 ipf_pr_udp(fr_info_t *fin) 1525 { 1526 1527 ipf_pr_short(fin, sizeof(udphdr_t)); 1528 1529 if (ipf_pr_udpcommon(fin) == 0) 1530 ipf_checkv4sum(fin); 1531 } 1532 1533 1534 /* ------------------------------------------------------------------------ */ 1535 /* Function: ipf_pr_esp */ 1536 /* Returns: void */ 1537 /* Parameters: fin(I) - pointer to packet information */ 1538 /* */ 1539 /* Analyse the packet for ESP properties. */ 1540 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1541 /* even though the newer ESP packets must also have a sequence number that */ 1542 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1543 /* simple packet header. */ 1544 /* ------------------------------------------------------------------------ */ 1545 static INLINE void 1546 ipf_pr_esp(fr_info_t *fin) 1547 { 1548 1549 if (fin->fin_off == 0) { 1550 ipf_pr_short(fin, 8); 1551 if (ipf_pr_pullup(fin, 8) == -1) { 1552 ipf_main_softc_t *softc = fin->fin_main_soft; 1553 1554 LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup); 1555 } 1556 } 1557 } 1558 1559 1560 /* ------------------------------------------------------------------------ */ 1561 /* Function: ipf_pr_ah */ 1562 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 1563 /* Parameters: fin(I) - pointer to packet information */ 1564 /* */ 1565 /* Analyse the packet for AH properties. */ 1566 /* The minimum length is taken to be the combination of all fields in the */ 1567 /* header being present and no authentication data (null algorithm used.) */ 1568 /* ------------------------------------------------------------------------ */ 1569 static INLINE int 1570 ipf_pr_ah(fr_info_t *fin) 1571 { 1572 ipf_main_softc_t *softc = fin->fin_main_soft; 1573 authhdr_t *ah; 1574 int len; 1575 1576 fin->fin_flx |= FI_AH; 1577 ipf_pr_short(fin, sizeof(*ah)); 1578 1579 if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) { 1580 LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad); 1581 return IPPROTO_NONE; 1582 } 1583 1584 if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) { 1585 DT(fr_v4_ah_pullup_1); 1586 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); 1587 return IPPROTO_NONE; 1588 } 1589 1590 ah = (authhdr_t *)fin->fin_dp; 1591 1592 len = (ah->ah_plen + 2) << 2; 1593 ipf_pr_short(fin, len); 1594 if (ipf_pr_pullup(fin, len) == -1) { 1595 DT(fr_v4_ah_pullup_2); 1596 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup); 1597 return IPPROTO_NONE; 1598 } 1599 1600 /* 1601 * Adjust fin_dp and fin_dlen for skipping over the authentication 1602 * header. 1603 */ 1604 fin->fin_dp = (char *)fin->fin_dp + len; 1605 fin->fin_dlen -= len; 1606 return ah->ah_next; 1607 } 1608 1609 1610 /* ------------------------------------------------------------------------ */ 1611 /* Function: ipf_pr_gre */ 1612 /* Returns: void */ 1613 /* Parameters: fin(I) - pointer to packet information */ 1614 /* */ 1615 /* Analyse the packet for GRE properties. */ 1616 /* ------------------------------------------------------------------------ */ 1617 static INLINE void 1618 ipf_pr_gre(fr_info_t *fin) 1619 { 1620 ipf_main_softc_t *softc = fin->fin_main_soft; 1621 grehdr_t *gre; 1622 1623 ipf_pr_short(fin, sizeof(grehdr_t)); 1624 1625 if (fin->fin_off != 0) { 1626 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag); 1627 return; 1628 } 1629 1630 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) { 1631 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup); 1632 return; 1633 } 1634 1635 gre = fin->fin_dp; 1636 if (GRE_REV(gre->gr_flags) == 1) 1637 fin->fin_data[0] = gre->gr_call; 1638 } 1639 1640 1641 /* ------------------------------------------------------------------------ */ 1642 /* Function: ipf_pr_ipv4hdr */ 1643 /* Returns: void */ 1644 /* Parameters: fin(I) - pointer to packet information */ 1645 /* */ 1646 /* IPv4 Only */ 1647 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1648 /* Check all options present and flag their presence if any exist. */ 1649 /* ------------------------------------------------------------------------ */ 1650 static INLINE void 1651 ipf_pr_ipv4hdr(fr_info_t *fin) 1652 { 1653 u_short optmsk = 0, secmsk = 0, auth = 0; 1654 int hlen, ol, mv, p, i; 1655 const struct optlist *op; 1656 u_char *s, opt; 1657 u_short off; 1658 fr_ip_t *fi; 1659 ip_t *ip; 1660 1661 fi = &fin->fin_fi; 1662 hlen = fin->fin_hlen; 1663 1664 ip = fin->fin_ip; 1665 p = ip->ip_p; 1666 fi->fi_p = p; 1667 fin->fin_crc = p; 1668 fi->fi_tos = ip->ip_tos; 1669 fin->fin_id = ip->ip_id; 1670 off = ntohs(ip->ip_off); 1671 1672 /* Get both TTL and protocol */ 1673 fi->fi_p = ip->ip_p; 1674 fi->fi_ttl = ip->ip_ttl; 1675 1676 /* Zero out bits not used in IPv6 address */ 1677 fi->fi_src.i6[1] = 0; 1678 fi->fi_src.i6[2] = 0; 1679 fi->fi_src.i6[3] = 0; 1680 fi->fi_dst.i6[1] = 0; 1681 fi->fi_dst.i6[2] = 0; 1682 fi->fi_dst.i6[3] = 0; 1683 1684 fi->fi_saddr = ip->ip_src.s_addr; 1685 fin->fin_crc += fi->fi_saddr; 1686 fi->fi_daddr = ip->ip_dst.s_addr; 1687 fin->fin_crc += fi->fi_daddr; 1688 if (IN_CLASSD(fi->fi_daddr)) 1689 fin->fin_flx |= FI_MULTICAST|FI_MBCAST; 1690 1691 /* 1692 * set packet attribute flags based on the offset and 1693 * calculate the byte offset that it represents. 1694 */ 1695 off &= IP_MF|IP_OFFMASK; 1696 if (off != 0) { 1697 int morefrag = off & IP_MF; 1698 1699 fi->fi_flx |= FI_FRAG; 1700 off &= IP_OFFMASK; 1701 if (off != 0) { 1702 fin->fin_flx |= FI_FRAGBODY; 1703 off <<= 3; 1704 if ((off + fin->fin_dlen > 65535) || 1705 (fin->fin_dlen == 0) || 1706 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) { 1707 /* 1708 * The length of the packet, starting at its 1709 * offset cannot exceed 65535 (0xffff) as the 1710 * length of an IP packet is only 16 bits. 1711 * 1712 * Any fragment that isn't the last fragment 1713 * must have a length greater than 0 and it 1714 * must be an even multiple of 8. 1715 */ 1716 fi->fi_flx |= FI_BAD; 1717 } 1718 } 1719 } 1720 fin->fin_off = off; 1721 1722 /* 1723 * Call per-protocol setup and checking 1724 */ 1725 if (p == IPPROTO_AH) { 1726 /* 1727 * Treat AH differently because we expect there to be another 1728 * layer 4 header after it. 1729 */ 1730 p = ipf_pr_ah(fin); 1731 } 1732 1733 switch (p) 1734 { 1735 case IPPROTO_UDP : 1736 ipf_pr_udp(fin); 1737 break; 1738 case IPPROTO_TCP : 1739 ipf_pr_tcp(fin); 1740 break; 1741 case IPPROTO_ICMP : 1742 ipf_pr_icmp(fin); 1743 break; 1744 case IPPROTO_ESP : 1745 ipf_pr_esp(fin); 1746 break; 1747 case IPPROTO_GRE : 1748 ipf_pr_gre(fin); 1749 break; 1750 } 1751 1752 ip = fin->fin_ip; 1753 if (ip == NULL) 1754 return; 1755 1756 /* 1757 * If it is a standard IP header (no options), set the flag fields 1758 * which relate to options to 0. 1759 */ 1760 if (hlen == sizeof(*ip)) { 1761 fi->fi_optmsk = 0; 1762 fi->fi_secmsk = 0; 1763 fi->fi_auth = 0; 1764 return; 1765 } 1766 1767 /* 1768 * So the IP header has some IP options attached. Walk the entire 1769 * list of options present with this packet and set flags to indicate 1770 * which ones are here and which ones are not. For the somewhat out 1771 * of date and obscure security classification options, set a flag to 1772 * represent which classification is present. 1773 */ 1774 fi->fi_flx |= FI_OPTIONS; 1775 1776 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1777 opt = *s; 1778 if (opt == '\0') 1779 break; 1780 else if (opt == IPOPT_NOP) 1781 ol = 1; 1782 else { 1783 if (hlen < 2) 1784 break; 1785 ol = (int)*(s + 1); 1786 if (ol < 2 || ol > hlen) 1787 break; 1788 } 1789 for (i = 9, mv = 4; mv >= 0; ) { 1790 op = ipopts + i; 1791 1792 if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1793 u_32_t doi; 1794 1795 switch (opt) 1796 { 1797 case IPOPT_SECURITY : 1798 if (optmsk & op->ol_bit) { 1799 fin->fin_flx |= FI_BAD; 1800 } else { 1801 doi = ipf_checkripso(s); 1802 secmsk = doi >> 16; 1803 auth = doi & 0xffff; 1804 } 1805 break; 1806 1807 case IPOPT_CIPSO : 1808 1809 if (optmsk & op->ol_bit) { 1810 fin->fin_flx |= FI_BAD; 1811 } else { 1812 doi = ipf_checkcipso(fin, 1813 s, ol); 1814 secmsk = doi >> 16; 1815 auth = doi & 0xffff; 1816 } 1817 break; 1818 } 1819 optmsk |= op->ol_bit; 1820 } 1821 1822 if (opt < op->ol_val) 1823 i -= mv; 1824 else 1825 i += mv; 1826 mv--; 1827 } 1828 hlen -= ol; 1829 s += ol; 1830 } 1831 1832 /* 1833 * 1834 */ 1835 if (auth && !(auth & 0x0100)) 1836 auth &= 0xff00; 1837 fi->fi_optmsk = optmsk; 1838 fi->fi_secmsk = secmsk; 1839 fi->fi_auth = auth; 1840 } 1841 1842 1843 /* ------------------------------------------------------------------------ */ 1844 /* Function: ipf_checkripso */ 1845 /* Returns: void */ 1846 /* Parameters: s(I) - pointer to start of RIPSO option */ 1847 /* */ 1848 /* ------------------------------------------------------------------------ */ 1849 static u_32_t 1850 ipf_checkripso(u_char *s) 1851 { 1852 const struct optlist *sp; 1853 u_short secmsk = 0, auth = 0; 1854 u_char sec; 1855 int j, m; 1856 1857 sec = *(s + 2); /* classification */ 1858 for (j = 3, m = 2; m >= 0; ) { 1859 sp = secopt + j; 1860 if (sec == sp->ol_val) { 1861 secmsk |= sp->ol_bit; 1862 auth = *(s + 3); 1863 auth *= 256; 1864 auth += *(s + 4); 1865 break; 1866 } 1867 if (sec < sp->ol_val) 1868 j -= m; 1869 else 1870 j += m; 1871 m--; 1872 } 1873 1874 return (secmsk << 16) | auth; 1875 } 1876 1877 1878 /* ------------------------------------------------------------------------ */ 1879 /* Function: ipf_checkcipso */ 1880 /* Returns: u_32_t - 0 = failure, else the doi from the header */ 1881 /* Parameters: fin(IO) - pointer to packet information */ 1882 /* s(I) - pointer to start of CIPSO option */ 1883 /* ol(I) - length of CIPSO option field */ 1884 /* */ 1885 /* This function returns the domain of integrity (DOI) field from the CIPSO */ 1886 /* header and returns that whilst also storing the highest sensitivity */ 1887 /* value found in the fr_info_t structure. */ 1888 /* */ 1889 /* No attempt is made to extract the category bitmaps as these are defined */ 1890 /* by the user (rather than the protocol) and can be rather numerous on the */ 1891 /* end nodes. */ 1892 /* ------------------------------------------------------------------------ */ 1893 static u_32_t 1894 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol) 1895 { 1896 ipf_main_softc_t *softc = fin->fin_main_soft; 1897 fr_ip_t *fi; 1898 u_32_t doi; 1899 u_char *t, tag, tlen, sensitivity; 1900 int len; 1901 1902 if (ol < 6 || ol > 40) { 1903 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad); 1904 fin->fin_flx |= FI_BAD; 1905 return 0; 1906 } 1907 1908 fi = &fin->fin_fi; 1909 fi->fi_sensitivity = 0; 1910 /* 1911 * The DOI field MUST be there. 1912 */ 1913 bcopy(s + 2, &doi, sizeof(doi)); 1914 1915 t = (u_char *)s + 6; 1916 for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) { 1917 tag = *t; 1918 tlen = *(t + 1); 1919 if (tlen > len || tlen < 4 || tlen > 34) { 1920 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen); 1921 fin->fin_flx |= FI_BAD; 1922 return 0; 1923 } 1924 1925 sensitivity = 0; 1926 /* 1927 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet 1928 * draft (16 July 1992) that has expired. 1929 */ 1930 if (tag == 0) { 1931 fin->fin_flx |= FI_BAD; 1932 continue; 1933 } else if (tag == 1) { 1934 if (*(t + 2) != 0) { 1935 fin->fin_flx |= FI_BAD; 1936 continue; 1937 } 1938 sensitivity = *(t + 3); 1939 /* Category bitmap for categories 0-239 */ 1940 1941 } else if (tag == 4) { 1942 if (*(t + 2) != 0) { 1943 fin->fin_flx |= FI_BAD; 1944 continue; 1945 } 1946 sensitivity = *(t + 3); 1947 /* Enumerated categories, 16bits each, upto 15 */ 1948 1949 } else if (tag == 5) { 1950 if (*(t + 2) != 0) { 1951 fin->fin_flx |= FI_BAD; 1952 continue; 1953 } 1954 sensitivity = *(t + 3); 1955 /* Range of categories (2*16bits), up to 7 pairs */ 1956 1957 } else if (tag > 127) { 1958 /* Custom defined DOI */ 1959 ; 1960 } else { 1961 fin->fin_flx |= FI_BAD; 1962 continue; 1963 } 1964 1965 if (sensitivity > fi->fi_sensitivity) 1966 fi->fi_sensitivity = sensitivity; 1967 } 1968 1969 return doi; 1970 } 1971 1972 1973 /* ------------------------------------------------------------------------ */ 1974 /* Function: ipf_makefrip */ 1975 /* Returns: int - 0 == packet ok, -1 == packet freed */ 1976 /* Parameters: hlen(I) - length of IP packet header */ 1977 /* ip(I) - pointer to the IP header */ 1978 /* fin(IO) - pointer to packet information */ 1979 /* */ 1980 /* Compact the IP header into a structure which contains just the info. */ 1981 /* which is useful for comparing IP headers with and store this information */ 1982 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 1983 /* this function will be called with either an IPv4 or IPv6 packet. */ 1984 /* ------------------------------------------------------------------------ */ 1985 int 1986 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin) 1987 { 1988 ipf_main_softc_t *softc = fin->fin_main_soft; 1989 int v; 1990 1991 fin->fin_depth = 0; 1992 fin->fin_hlen = (u_short)hlen; 1993 fin->fin_ip = ip; 1994 fin->fin_rule = 0xffffffff; 1995 fin->fin_group[0] = -1; 1996 fin->fin_group[1] = '\0'; 1997 fin->fin_dp = (char *)ip + hlen; 1998 1999 v = fin->fin_v; 2000 if (v == 4) { 2001 fin->fin_plen = ntohs(ip->ip_len); 2002 fin->fin_dlen = fin->fin_plen - hlen; 2003 ipf_pr_ipv4hdr(fin); 2004 #ifdef USE_INET6 2005 } else if (v == 6) { 2006 fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen); 2007 fin->fin_dlen = fin->fin_plen; 2008 fin->fin_plen += hlen; 2009 2010 ipf_pr_ipv6hdr(fin); 2011 #endif 2012 } 2013 if (fin->fin_ip == NULL) { 2014 LBUMP(ipf_stats[fin->fin_out].fr_ip_freed); 2015 return -1; 2016 } 2017 return 0; 2018 } 2019 2020 2021 /* ------------------------------------------------------------------------ */ 2022 /* Function: ipf_portcheck */ 2023 /* Returns: int - 1 == port matched, 0 == port match failed */ 2024 /* Parameters: frp(I) - pointer to port check `expression' */ 2025 /* pop(I) - port number to evaluate */ 2026 /* */ 2027 /* Perform a comparison of a port number against some other(s), using a */ 2028 /* structure with compare information stored in it. */ 2029 /* ------------------------------------------------------------------------ */ 2030 static INLINE int 2031 ipf_portcheck(frpcmp_t *frp, u_32_t pop) 2032 { 2033 int err = 1; 2034 u_32_t po; 2035 2036 po = frp->frp_port; 2037 2038 /* 2039 * Do opposite test to that required and continue if that succeeds. 2040 */ 2041 switch (frp->frp_cmp) 2042 { 2043 case FR_EQUAL : 2044 if (pop != po) /* EQUAL */ 2045 err = 0; 2046 break; 2047 case FR_NEQUAL : 2048 if (pop == po) /* NOTEQUAL */ 2049 err = 0; 2050 break; 2051 case FR_LESST : 2052 if (pop >= po) /* LESSTHAN */ 2053 err = 0; 2054 break; 2055 case FR_GREATERT : 2056 if (pop <= po) /* GREATERTHAN */ 2057 err = 0; 2058 break; 2059 case FR_LESSTE : 2060 if (pop > po) /* LT or EQ */ 2061 err = 0; 2062 break; 2063 case FR_GREATERTE : 2064 if (pop < po) /* GT or EQ */ 2065 err = 0; 2066 break; 2067 case FR_OUTRANGE : 2068 if (pop >= po && pop <= frp->frp_top) /* Out of range */ 2069 err = 0; 2070 break; 2071 case FR_INRANGE : 2072 if (pop <= po || pop >= frp->frp_top) /* In range */ 2073 err = 0; 2074 break; 2075 case FR_INCRANGE : 2076 if (pop < po || pop > frp->frp_top) /* Inclusive range */ 2077 err = 0; 2078 break; 2079 default : 2080 break; 2081 } 2082 return err; 2083 } 2084 2085 2086 /* ------------------------------------------------------------------------ */ 2087 /* Function: ipf_tcpudpchk */ 2088 /* Returns: int - 1 == protocol matched, 0 == check failed */ 2089 /* Parameters: fda(I) - pointer to packet information */ 2090 /* ft(I) - pointer to structure with comparison data */ 2091 /* */ 2092 /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 2093 /* structure containing information that we want to match against. */ 2094 /* ------------------------------------------------------------------------ */ 2095 int 2096 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft) 2097 { 2098 int err = 1; 2099 2100 /* 2101 * Both ports should *always* be in the first fragment. 2102 * So far, I cannot find any cases where they can not be. 2103 * 2104 * compare destination ports 2105 */ 2106 if (ft->ftu_dcmp) 2107 err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]); 2108 2109 /* 2110 * compare source ports 2111 */ 2112 if (err && ft->ftu_scmp) 2113 err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]); 2114 2115 /* 2116 * If we don't have all the TCP/UDP header, then how can we 2117 * expect to do any sort of match on it ? If we were looking for 2118 * TCP flags, then NO match. If not, then match (which should 2119 * satisfy the "short" class too). 2120 */ 2121 if (err && (fi->fi_p == IPPROTO_TCP)) { 2122 if (fi->fi_flx & FI_SHORT) 2123 return !(ft->ftu_tcpf | ft->ftu_tcpfm); 2124 /* 2125 * Match the flags ? If not, abort this match. 2126 */ 2127 if (ft->ftu_tcpfm && 2128 ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) { 2129 FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf, 2130 ft->ftu_tcpfm, ft->ftu_tcpf)); 2131 err = 0; 2132 } 2133 } 2134 return err; 2135 } 2136 2137 2138 /* ------------------------------------------------------------------------ */ 2139 /* Function: ipf_check_ipf */ 2140 /* Returns: int - 0 == match, else no match */ 2141 /* Parameters: fin(I) - pointer to packet information */ 2142 /* fr(I) - pointer to filter rule */ 2143 /* portcmp(I) - flag indicating whether to attempt matching on */ 2144 /* TCP/UDP port data. */ 2145 /* */ 2146 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 2147 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 2148 /* this function. */ 2149 /* ------------------------------------------------------------------------ */ 2150 static INLINE int 2151 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp) 2152 { 2153 u_32_t *ld, *lm, *lip; 2154 fripf_t *fri; 2155 fr_ip_t *fi; 2156 int i; 2157 2158 fi = &fin->fin_fi; 2159 fri = fr->fr_ipf; 2160 lip = (u_32_t *)fi; 2161 lm = (u_32_t *)&fri->fri_mip; 2162 ld = (u_32_t *)&fri->fri_ip; 2163 2164 /* 2165 * first 32 bits to check coversion: 2166 * IP version, TOS, TTL, protocol 2167 */ 2168 i = ((*lip & *lm) != *ld); 2169 FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 2170 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2171 if (i) 2172 return 1; 2173 2174 /* 2175 * Next 32 bits is a constructed bitmask indicating which IP options 2176 * are present (if any) in this packet. 2177 */ 2178 lip++, lm++, ld++; 2179 i = ((*lip & *lm) != *ld); 2180 FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 2181 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2182 if (i != 0) 2183 return 1; 2184 2185 lip++, lm++, ld++; 2186 /* 2187 * Unrolled loops (4 each, for 32 bits) for address checks. 2188 */ 2189 /* 2190 * Check the source address. 2191 */ 2192 if (fr->fr_satype == FRI_LOOKUP) { 2193 i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr, 2194 fi->fi_v, lip, fin->fin_plen); 2195 if (i == -1) 2196 return 1; 2197 lip += 3; 2198 lm += 3; 2199 ld += 3; 2200 } else { 2201 i = ((*lip & *lm) != *ld); 2202 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 2203 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2204 if (fi->fi_v == 6) { 2205 lip++, lm++, ld++; 2206 i |= ((*lip & *lm) != *ld); 2207 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 2208 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2209 lip++, lm++, ld++; 2210 i |= ((*lip & *lm) != *ld); 2211 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 2212 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2213 lip++, lm++, ld++; 2214 i |= ((*lip & *lm) != *ld); 2215 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 2216 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2217 } else { 2218 lip += 3; 2219 lm += 3; 2220 ld += 3; 2221 } 2222 } 2223 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 2224 if (i != 0) 2225 return 1; 2226 2227 /* 2228 * Check the destination address. 2229 */ 2230 lip++, lm++, ld++; 2231 if (fr->fr_datype == FRI_LOOKUP) { 2232 i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr, 2233 fi->fi_v, lip, fin->fin_plen); 2234 if (i == -1) 2235 return 1; 2236 lip += 3; 2237 lm += 3; 2238 ld += 3; 2239 } else { 2240 i = ((*lip & *lm) != *ld); 2241 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 2242 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2243 if (fi->fi_v == 6) { 2244 lip++, lm++, ld++; 2245 i |= ((*lip & *lm) != *ld); 2246 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 2247 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2248 lip++, lm++, ld++; 2249 i |= ((*lip & *lm) != *ld); 2250 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 2251 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2252 lip++, lm++, ld++; 2253 i |= ((*lip & *lm) != *ld); 2254 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 2255 ntohl(*lip), ntohl(*lm), ntohl(*ld))); 2256 } else { 2257 lip += 3; 2258 lm += 3; 2259 ld += 3; 2260 } 2261 } 2262 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 2263 if (i != 0) 2264 return 1; 2265 /* 2266 * IP addresses matched. The next 32bits contains: 2267 * mast of old IP header security & authentication bits. 2268 */ 2269 lip++, lm++, ld++; 2270 i = (*ld - (*lip & *lm)); 2271 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); 2272 2273 /* 2274 * Next we have 32 bits of packet flags. 2275 */ 2276 lip++, lm++, ld++; 2277 i |= (*ld - (*lip & *lm)); 2278 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld)); 2279 2280 if (i == 0) { 2281 /* 2282 * If a fragment, then only the first has what we're 2283 * looking for here... 2284 */ 2285 if (portcmp) { 2286 if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc)) 2287 i = 1; 2288 } else { 2289 if (fr->fr_dcmp || fr->fr_scmp || 2290 fr->fr_tcpf || fr->fr_tcpfm) 2291 i = 1; 2292 if (fr->fr_icmpm || fr->fr_icmp) { 2293 if (((fi->fi_p != IPPROTO_ICMP) && 2294 (fi->fi_p != IPPROTO_ICMPV6)) || 2295 fin->fin_off || (fin->fin_dlen < 2)) 2296 i = 1; 2297 else if ((fin->fin_data[0] & fr->fr_icmpm) != 2298 fr->fr_icmp) { 2299 FR_DEBUG(("i. %#x & %#x != %#x\n", 2300 fin->fin_data[0], 2301 fr->fr_icmpm, fr->fr_icmp)); 2302 i = 1; 2303 } 2304 } 2305 } 2306 } 2307 return i; 2308 } 2309 2310 2311 /* ------------------------------------------------------------------------ */ 2312 /* Function: ipf_scanlist */ 2313 /* Returns: int - result flags of scanning filter list */ 2314 /* Parameters: fin(I) - pointer to packet information */ 2315 /* pass(I) - default result to return for filtering */ 2316 /* */ 2317 /* Check the input/output list of rules for a match to the current packet. */ 2318 /* If a match is found, the value of fr_flags from the rule becomes the */ 2319 /* return value and fin->fin_fr points to the matched rule. */ 2320 /* */ 2321 /* This function may be called recusively upto 16 times (limit inbuilt.) */ 2322 /* When unwinding, it should finish up with fin_depth as 0. */ 2323 /* */ 2324 /* Could be per interface, but this gets real nasty when you don't have, */ 2325 /* or can't easily change, the kernel source code to . */ 2326 /* ------------------------------------------------------------------------ */ 2327 int 2328 ipf_scanlist(fr_info_t *fin, u_32_t pass) 2329 { 2330 ipf_main_softc_t *softc = fin->fin_main_soft; 2331 int rulen, portcmp, off, skip; 2332 struct frentry *fr, *fnext; 2333 u_32_t passt, passo; 2334 2335 /* 2336 * Do not allow nesting deeper than 16 levels. 2337 */ 2338 if (fin->fin_depth >= 16) 2339 return pass; 2340 2341 fr = fin->fin_fr; 2342 2343 /* 2344 * If there are no rules in this list, return now. 2345 */ 2346 if (fr == NULL) 2347 return pass; 2348 2349 skip = 0; 2350 portcmp = 0; 2351 fin->fin_depth++; 2352 fin->fin_fr = NULL; 2353 off = fin->fin_off; 2354 2355 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 2356 portcmp = 1; 2357 2358 for (rulen = 0; fr; fr = fnext, rulen++) { 2359 fnext = fr->fr_next; 2360 if (skip != 0) { 2361 FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags)); 2362 skip--; 2363 continue; 2364 } 2365 2366 /* 2367 * In all checks below, a null (zero) value in the 2368 * filter struture is taken to mean a wildcard. 2369 * 2370 * check that we are working for the right interface 2371 */ 2372 #ifdef _KERNEL 2373 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 2374 continue; 2375 #else 2376 if (opts & (OPT_VERBOSE|OPT_DEBUG)) 2377 printf("\n"); 2378 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 2379 FR_ISPASS(pass) ? 'p' : 2380 FR_ISACCOUNT(pass) ? 'A' : 2381 FR_ISAUTH(pass) ? 'a' : 2382 (pass & FR_NOMATCH) ? 'n' :'b')); 2383 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 2384 continue; 2385 FR_VERBOSE((":i")); 2386 #endif 2387 2388 switch (fr->fr_type) 2389 { 2390 case FR_T_IPF : 2391 case FR_T_IPF_BUILTIN : 2392 if (ipf_check_ipf(fin, fr, portcmp)) 2393 continue; 2394 break; 2395 #if defined(IPFILTER_BPF) 2396 case FR_T_BPFOPC : 2397 case FR_T_BPFOPC_BUILTIN : 2398 { 2399 u_char *mc; 2400 int wlen; 2401 2402 if (*fin->fin_mp == NULL) 2403 continue; 2404 if (fin->fin_family != fr->fr_family) 2405 continue; 2406 mc = (u_char *)fin->fin_m; 2407 wlen = fin->fin_dlen + fin->fin_hlen; 2408 if (!bpf_filter(fr->fr_data, mc, wlen, 0)) 2409 continue; 2410 break; 2411 } 2412 #endif 2413 case FR_T_CALLFUNC_BUILTIN : 2414 { 2415 frentry_t *f; 2416 2417 f = (*fr->fr_func)(fin, &pass); 2418 if (f != NULL) 2419 fr = f; 2420 else 2421 continue; 2422 break; 2423 } 2424 2425 case FR_T_IPFEXPR : 2426 case FR_T_IPFEXPR_BUILTIN : 2427 if (fin->fin_family != fr->fr_family) 2428 continue; 2429 if (ipf_fr_matcharray(fin, fr->fr_data) == 0) 2430 continue; 2431 break; 2432 2433 default : 2434 break; 2435 } 2436 2437 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 2438 if (fin->fin_nattag == NULL) 2439 continue; 2440 if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 2441 continue; 2442 } 2443 FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen)); 2444 2445 passt = fr->fr_flags; 2446 2447 /* 2448 * If the rule is a "call now" rule, then call the function 2449 * in the rule, if it exists and use the results from that. 2450 * If the function pointer is bad, just make like we ignore 2451 * it, except for increasing the hit counter. 2452 */ 2453 if ((passt & FR_CALLNOW) != 0) { 2454 frentry_t *frs; 2455 2456 ATOMIC_INC64(fr->fr_hits); 2457 if ((fr->fr_func == NULL) || 2458 (fr->fr_func == (ipfunc_t)-1)) 2459 continue; 2460 2461 frs = fin->fin_fr; 2462 fin->fin_fr = fr; 2463 fr = (*fr->fr_func)(fin, &passt); 2464 if (fr == NULL) { 2465 fin->fin_fr = frs; 2466 continue; 2467 } 2468 passt = fr->fr_flags; 2469 } 2470 fin->fin_fr = fr; 2471 2472 #ifdef IPFILTER_LOG 2473 /* 2474 * Just log this packet... 2475 */ 2476 if ((passt & FR_LOGMASK) == FR_LOG) { 2477 if (ipf_log_pkt(fin, passt) == -1) { 2478 if (passt & FR_LOGORBLOCK) { 2479 DT(frb_logfail); 2480 passt &= ~FR_CMDMASK; 2481 passt |= FR_BLOCK|FR_QUICK; 2482 fin->fin_reason = FRB_LOGFAIL; 2483 } 2484 } 2485 } 2486 #endif /* IPFILTER_LOG */ 2487 2488 MUTEX_ENTER(&fr->fr_lock); 2489 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2490 fr->fr_hits++; 2491 MUTEX_EXIT(&fr->fr_lock); 2492 fin->fin_rule = rulen; 2493 2494 passo = pass; 2495 if (FR_ISSKIP(passt)) { 2496 skip = fr->fr_arg; 2497 continue; 2498 } else if (((passt & FR_LOGMASK) != FR_LOG) && 2499 ((passt & FR_LOGMASK) != FR_DECAPSULATE)) { 2500 pass = passt; 2501 } 2502 2503 if (passt & (FR_RETICMP|FR_FAKEICMP)) 2504 fin->fin_icode = fr->fr_icode; 2505 2506 if (fr->fr_group != -1) { 2507 (void) strncpy(fin->fin_group, 2508 FR_NAME(fr, fr_group), 2509 strlen(FR_NAME(fr, fr_group))); 2510 } else { 2511 fin->fin_group[0] = '\0'; 2512 } 2513 2514 FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt)); 2515 2516 if (fr->fr_grphead != NULL) { 2517 fin->fin_fr = fr->fr_grphead->fg_start; 2518 FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead))); 2519 2520 if (FR_ISDECAPS(passt)) 2521 passt = ipf_decaps(fin, pass, fr->fr_icode); 2522 else 2523 passt = ipf_scanlist(fin, pass); 2524 2525 if (fin->fin_fr == NULL) { 2526 fin->fin_rule = rulen; 2527 if (fr->fr_group != -1) 2528 (void) strncpy(fin->fin_group, 2529 fr->fr_names + 2530 fr->fr_group, 2531 strlen(fr->fr_names + 2532 fr->fr_group)); 2533 fin->fin_fr = fr; 2534 passt = pass; 2535 } 2536 pass = passt; 2537 } 2538 2539 if (pass & FR_QUICK) { 2540 /* 2541 * Finally, if we've asked to track state for this 2542 * packet, set it up. Add state for "quick" rules 2543 * here so that if the action fails we can consider 2544 * the rule to "not match" and keep on processing 2545 * filter rules. 2546 */ 2547 if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) && 2548 !(fin->fin_flx & FI_STATE)) { 2549 int out = fin->fin_out; 2550 2551 fin->fin_fr = fr; 2552 if (ipf_state_add(softc, fin, NULL, 0) == 0) { 2553 LBUMPD(ipf_stats[out], fr_ads); 2554 } else { 2555 LBUMPD(ipf_stats[out], fr_bads); 2556 pass = passo; 2557 continue; 2558 } 2559 } 2560 break; 2561 } 2562 } 2563 fin->fin_depth--; 2564 return pass; 2565 } 2566 2567 2568 /* ------------------------------------------------------------------------ */ 2569 /* Function: ipf_acctpkt */ 2570 /* Returns: frentry_t* - always returns NULL */ 2571 /* Parameters: fin(I) - pointer to packet information */ 2572 /* passp(IO) - pointer to current/new filter decision (unused) */ 2573 /* */ 2574 /* Checks a packet against accounting rules, if there are any for the given */ 2575 /* IP protocol version. */ 2576 /* */ 2577 /* N.B.: this function returns NULL to match the prototype used by other */ 2578 /* functions called from the IPFilter "mainline" in ipf_check(). */ 2579 /* ------------------------------------------------------------------------ */ 2580 frentry_t * 2581 ipf_acctpkt(fr_info_t *fin, u_32_t *passp) 2582 { 2583 ipf_main_softc_t *softc = fin->fin_main_soft; 2584 char group[FR_GROUPLEN]; 2585 frentry_t *fr, *frsave; 2586 u_32_t pass, rulen; 2587 2588 passp = passp; 2589 fr = softc->ipf_acct[fin->fin_out][softc->ipf_active]; 2590 2591 if (fr != NULL) { 2592 frsave = fin->fin_fr; 2593 bcopy(fin->fin_group, group, FR_GROUPLEN); 2594 rulen = fin->fin_rule; 2595 fin->fin_fr = fr; 2596 pass = ipf_scanlist(fin, FR_NOMATCH); 2597 if (FR_ISACCOUNT(pass)) { 2598 LBUMPD(ipf_stats[0], fr_acct); 2599 } 2600 fin->fin_fr = frsave; 2601 bcopy(group, fin->fin_group, FR_GROUPLEN); 2602 fin->fin_rule = rulen; 2603 } 2604 return NULL; 2605 } 2606 2607 2608 /* ------------------------------------------------------------------------ */ 2609 /* Function: ipf_firewall */ 2610 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2611 /* were found, returns NULL. */ 2612 /* Parameters: fin(I) - pointer to packet information */ 2613 /* passp(IO) - pointer to current/new filter decision (unused) */ 2614 /* */ 2615 /* Applies an appropriate set of firewall rules to the packet, to see if */ 2616 /* there are any matches. The first check is to see if a match can be seen */ 2617 /* in the cache. If not, then search an appropriate list of rules. Once a */ 2618 /* matching rule is found, take any appropriate actions as defined by the */ 2619 /* rule - except logging. */ 2620 /* ------------------------------------------------------------------------ */ 2621 static frentry_t * 2622 ipf_firewall(fr_info_t *fin, u_32_t *passp) 2623 { 2624 ipf_main_softc_t *softc = fin->fin_main_soft; 2625 frentry_t *fr; 2626 u_32_t pass; 2627 int out; 2628 2629 out = fin->fin_out; 2630 pass = *passp; 2631 2632 /* 2633 * This rule cache will only affect packets that are not being 2634 * statefully filtered. 2635 */ 2636 fin->fin_fr = softc->ipf_rules[out][softc->ipf_active]; 2637 if (fin->fin_fr != NULL) 2638 pass = ipf_scanlist(fin, softc->ipf_pass); 2639 2640 if ((pass & FR_NOMATCH)) { 2641 LBUMPD(ipf_stats[out], fr_nom); 2642 } 2643 fr = fin->fin_fr; 2644 2645 /* 2646 * Apply packets per second rate-limiting to a rule as required. 2647 */ 2648 if ((fr != NULL) && (fr->fr_pps != 0) && 2649 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2650 DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr); 2651 pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST); 2652 pass |= FR_BLOCK; 2653 LBUMPD(ipf_stats[out], fr_ppshit); 2654 fin->fin_reason = FRB_PPSRATE; 2655 } 2656 2657 /* 2658 * If we fail to add a packet to the authorization queue, then we 2659 * drop the packet later. However, if it was added then pretend 2660 * we've dropped it already. 2661 */ 2662 if (FR_ISAUTH(pass)) { 2663 if (ipf_auth_new(fin->fin_m, fin) != 0) { 2664 DT1(frb_authnew, fr_info_t *, fin); 2665 fin->fin_m = *fin->fin_mp = NULL; 2666 fin->fin_reason = FRB_AUTHNEW; 2667 fin->fin_error = 0; 2668 } else { 2669 IPFERROR(1); 2670 fin->fin_error = ENOSPC; 2671 } 2672 } 2673 2674 if ((fr != NULL) && (fr->fr_func != NULL) && 2675 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2676 (void) (*fr->fr_func)(fin, &pass); 2677 2678 /* 2679 * If a rule is a pre-auth rule, check again in the list of rules 2680 * loaded for authenticated use. It does not particulary matter 2681 * if this search fails because a "preauth" result, from a rule, 2682 * is treated as "not a pass", hence the packet is blocked. 2683 */ 2684 if (FR_ISPREAUTH(pass)) { 2685 pass = ipf_auth_pre_scanlist(softc, fin, pass); 2686 } 2687 2688 /* 2689 * If the rule has "keep frag" and the packet is actually a fragment, 2690 * then create a fragment state entry. 2691 */ 2692 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) { 2693 if (fin->fin_flx & FI_FRAG) { 2694 if (ipf_frag_new(softc, fin, pass) == -1) { 2695 LBUMP(ipf_stats[out].fr_bnfr); 2696 } else { 2697 LBUMP(ipf_stats[out].fr_nfr); 2698 } 2699 } else { 2700 LBUMP(ipf_stats[out].fr_cfr); 2701 } 2702 } 2703 2704 fr = fin->fin_fr; 2705 *passp = pass; 2706 2707 return fr; 2708 } 2709 2710 2711 /* ------------------------------------------------------------------------ */ 2712 /* Function: ipf_check */ 2713 /* Returns: int - 0 == packet allowed through, */ 2714 /* User space: */ 2715 /* -1 == packet blocked */ 2716 /* 1 == packet not matched */ 2717 /* -2 == requires authentication */ 2718 /* Kernel: */ 2719 /* > 0 == filter error # for packet */ 2720 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2721 /* hlen(I) - length of header */ 2722 /* ifp(I) - pointer to interface this packet is on */ 2723 /* out(I) - 0 == packet going in, 1 == packet going out */ 2724 /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2725 /* IP packet. */ 2726 /* Solaris & HP-UX ONLY : */ 2727 /* qpi(I) - pointer to STREAMS queue information for this */ 2728 /* interface & direction. */ 2729 /* */ 2730 /* ipf_check() is the master function for all IPFilter packet processing. */ 2731 /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2732 /* authorisation (or pre-authorisation), presence of related state info., */ 2733 /* generating log entries, IP packet accounting, routing of packets as */ 2734 /* directed by firewall rules and of course whether or not to allow the */ 2735 /* packet to be further processed by the kernel. */ 2736 /* */ 2737 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2738 /* freed. Packets passed may be returned with the pointer pointed to by */ 2739 /* by "mp" changed to a new buffer. */ 2740 /* ------------------------------------------------------------------------ */ 2741 int 2742 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out, 2743 #if defined(_KERNEL) && defined(MENTAT) 2744 void *qif, 2745 #endif 2746 mb_t **mp) 2747 { 2748 /* 2749 * The above really sucks, but short of writing a diff 2750 */ 2751 ipf_main_softc_t *softc = ctx; 2752 fr_info_t frinfo; 2753 fr_info_t *fin = &frinfo; 2754 u_32_t pass = softc->ipf_pass; 2755 frentry_t *fr = NULL; 2756 int v = IP_V(ip); 2757 mb_t *mc = NULL; 2758 mb_t *m; 2759 /* 2760 * The first part of ipf_check() deals with making sure that what goes 2761 * into the filtering engine makes some sense. Information about the 2762 * the packet is distilled, collected into a fr_info_t structure and 2763 * the an attempt to ensure the buffer the packet is in is big enough 2764 * to hold all the required packet headers. 2765 */ 2766 #ifdef _KERNEL 2767 # ifdef MENTAT 2768 qpktinfo_t *qpi = qif; 2769 2770 # ifdef __sparc 2771 if ((u_int)ip & 0x3) 2772 return 2; 2773 # endif 2774 # else 2775 SPL_INT(s); 2776 # endif 2777 2778 if (softc->ipf_running <= 0) { 2779 return 0; 2780 } 2781 2782 bzero((char *)fin, sizeof(*fin)); 2783 2784 # ifdef MENTAT 2785 if (qpi->qpi_flags & QF_BROADCAST) 2786 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2787 if (qpi->qpi_flags & QF_MULTICAST) 2788 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2789 m = qpi->qpi_m; 2790 fin->fin_qfm = m; 2791 fin->fin_qpi = qpi; 2792 # else /* MENTAT */ 2793 2794 m = *mp; 2795 2796 # if defined(M_MCAST) 2797 if ((m->m_flags & M_MCAST) != 0) 2798 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2799 # endif 2800 # if defined(M_MLOOP) 2801 if ((m->m_flags & M_MLOOP) != 0) 2802 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2803 # endif 2804 # if defined(M_BCAST) 2805 if ((m->m_flags & M_BCAST) != 0) 2806 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2807 # endif 2808 # ifdef M_CANFASTFWD 2809 /* 2810 * XXX For now, IP Filter and fast-forwarding of cached flows 2811 * XXX are mutually exclusive. Eventually, IP Filter should 2812 * XXX get a "can-fast-forward" filter rule. 2813 */ 2814 m->m_flags &= ~M_CANFASTFWD; 2815 # endif /* M_CANFASTFWD */ 2816 # if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \ 2817 (__FreeBSD_version < 501108)) 2818 /* 2819 * disable delayed checksums. 2820 */ 2821 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2822 in_delayed_cksum(m); 2823 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2824 } 2825 # endif /* CSUM_DELAY_DATA */ 2826 # endif /* MENTAT */ 2827 #else 2828 bzero((char *)fin, sizeof(*fin)); 2829 m = *mp; 2830 # if defined(M_MCAST) 2831 if ((m->m_flags & M_MCAST) != 0) 2832 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2833 # endif 2834 # if defined(M_MLOOP) 2835 if ((m->m_flags & M_MLOOP) != 0) 2836 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2837 # endif 2838 # if defined(M_BCAST) 2839 if ((m->m_flags & M_BCAST) != 0) 2840 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2841 # endif 2842 #endif /* _KERNEL */ 2843 2844 fin->fin_v = v; 2845 fin->fin_m = m; 2846 fin->fin_ip = ip; 2847 fin->fin_mp = mp; 2848 fin->fin_out = out; 2849 fin->fin_ifp = ifp; 2850 fin->fin_error = ENETUNREACH; 2851 fin->fin_hlen = (u_short)hlen; 2852 fin->fin_dp = (char *)ip + hlen; 2853 fin->fin_main_soft = softc; 2854 2855 fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2856 2857 SPL_NET(s); 2858 2859 #ifdef USE_INET6 2860 if (v == 6) { 2861 LBUMP(ipf_stats[out].fr_ipv6); 2862 /* 2863 * Jumbo grams are quite likely too big for internal buffer 2864 * structures to handle comfortably, for now, so just drop 2865 * them. 2866 */ 2867 if (((ip6_t *)ip)->ip6_plen == 0) { 2868 DT1(frb_jumbo, ip6_t *, (ip6_t *)ip); 2869 pass = FR_BLOCK|FR_NOMATCH; 2870 fin->fin_reason = FRB_JUMBO; 2871 goto finished; 2872 } 2873 fin->fin_family = AF_INET6; 2874 } else 2875 #endif 2876 { 2877 fin->fin_family = AF_INET; 2878 } 2879 2880 if (ipf_makefrip(hlen, ip, fin) == -1) { 2881 DT1(frb_makefrip, fr_info_t *, fin); 2882 pass = FR_BLOCK|FR_NOMATCH; 2883 fin->fin_reason = FRB_MAKEFRIP; 2884 goto finished; 2885 } 2886 2887 /* 2888 * For at least IPv6 packets, if a m_pullup() fails then this pointer 2889 * becomes NULL and so we have no packet to free. 2890 */ 2891 if (*fin->fin_mp == NULL) 2892 goto finished; 2893 2894 if (!out) { 2895 if (v == 4) { 2896 if (softc->ipf_chksrc && !ipf_verifysrc(fin)) { 2897 LBUMPD(ipf_stats[0], fr_v4_badsrc); 2898 fin->fin_flx |= FI_BADSRC; 2899 } 2900 if (fin->fin_ip->ip_ttl < softc->ipf_minttl) { 2901 LBUMPD(ipf_stats[0], fr_v4_badttl); 2902 fin->fin_flx |= FI_LOWTTL; 2903 } 2904 } 2905 #ifdef USE_INET6 2906 else if (v == 6) { 2907 if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) { 2908 LBUMPD(ipf_stats[0], fr_v6_badttl); 2909 fin->fin_flx |= FI_LOWTTL; 2910 } 2911 } 2912 #endif 2913 } 2914 2915 if (fin->fin_flx & FI_SHORT) { 2916 LBUMPD(ipf_stats[out], fr_short); 2917 } 2918 2919 READ_ENTER(&softc->ipf_mutex); 2920 2921 if (!out) { 2922 switch (fin->fin_v) 2923 { 2924 case 4 : 2925 if (ipf_nat_checkin(fin, &pass) == -1) { 2926 goto filterdone; 2927 } 2928 break; 2929 #ifdef USE_INET6 2930 case 6 : 2931 if (ipf_nat6_checkin(fin, &pass) == -1) { 2932 goto filterdone; 2933 } 2934 break; 2935 #endif 2936 default : 2937 break; 2938 } 2939 } 2940 /* 2941 * Check auth now. 2942 * If a packet is found in the auth table, then skip checking 2943 * the access lists for permission but we do need to consider 2944 * the result as if it were from the ACL's. In addition, being 2945 * found in the auth table means it has been seen before, so do 2946 * not pass it through accounting (again), lest it be counted twice. 2947 */ 2948 fr = ipf_auth_check(fin, &pass); 2949 if (!out && (fr == NULL)) 2950 (void) ipf_acctpkt(fin, NULL); 2951 2952 if (fr == NULL) { 2953 if ((fin->fin_flx & FI_FRAG) != 0) 2954 fr = ipf_frag_known(fin, &pass); 2955 2956 if (fr == NULL) 2957 fr = ipf_state_check(fin, &pass); 2958 } 2959 2960 if ((pass & FR_NOMATCH) || (fr == NULL)) 2961 fr = ipf_firewall(fin, &pass); 2962 2963 /* 2964 * If we've asked to track state for this packet, set it up. 2965 * Here rather than ipf_firewall because ipf_checkauth may decide 2966 * to return a packet for "keep state" 2967 */ 2968 if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) && 2969 !(fin->fin_flx & FI_STATE)) { 2970 if (ipf_state_add(softc, fin, NULL, 0) == 0) { 2971 LBUMP(ipf_stats[out].fr_ads); 2972 } else { 2973 LBUMP(ipf_stats[out].fr_bads); 2974 if (FR_ISPASS(pass)) { 2975 DT(frb_stateadd); 2976 pass &= ~FR_CMDMASK; 2977 pass |= FR_BLOCK; 2978 fin->fin_reason = FRB_STATEADD; 2979 } 2980 } 2981 } 2982 2983 fin->fin_fr = fr; 2984 if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) { 2985 fin->fin_dif = &fr->fr_dif; 2986 fin->fin_tif = &fr->fr_tifs[fin->fin_rev]; 2987 } 2988 2989 /* 2990 * Only count/translate packets which will be passed on, out the 2991 * interface. 2992 */ 2993 if (out && FR_ISPASS(pass)) { 2994 (void) ipf_acctpkt(fin, NULL); 2995 2996 switch (fin->fin_v) 2997 { 2998 case 4 : 2999 if (ipf_nat_checkout(fin, &pass) == -1) { 3000 ; 3001 } else if ((softc->ipf_update_ipid != 0) && (v == 4)) { 3002 if (ipf_updateipid(fin) == -1) { 3003 DT(frb_updateipid); 3004 LBUMP(ipf_stats[1].fr_ipud); 3005 pass &= ~FR_CMDMASK; 3006 pass |= FR_BLOCK; 3007 fin->fin_reason = FRB_UPDATEIPID; 3008 } else { 3009 LBUMP(ipf_stats[0].fr_ipud); 3010 } 3011 } 3012 break; 3013 #ifdef USE_INET6 3014 case 6 : 3015 (void) ipf_nat6_checkout(fin, &pass); 3016 break; 3017 #endif 3018 default : 3019 break; 3020 } 3021 } 3022 3023 filterdone: 3024 #ifdef IPFILTER_LOG 3025 if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 3026 (void) ipf_dolog(fin, &pass); 3027 } 3028 #endif 3029 3030 /* 3031 * The FI_STATE flag is cleared here so that calling ipf_state_check 3032 * will work when called from inside of fr_fastroute. Although 3033 * there is a similar flag, FI_NATED, for NAT, it does have the same 3034 * impact on code execution. 3035 */ 3036 fin->fin_flx &= ~FI_STATE; 3037 3038 #if defined(FASTROUTE_RECURSION) 3039 /* 3040 * Up the reference on fr_lock and exit ipf_mutex. The generation of 3041 * a packet below can sometimes cause a recursive call into IPFilter. 3042 * On those platforms where that does happen, we need to hang onto 3043 * the filter rule just in case someone decides to remove or flush it 3044 * in the meantime. 3045 */ 3046 if (fr != NULL) { 3047 MUTEX_ENTER(&fr->fr_lock); 3048 fr->fr_ref++; 3049 MUTEX_EXIT(&fr->fr_lock); 3050 } 3051 3052 RWLOCK_EXIT(&softc->ipf_mutex); 3053 #endif 3054 3055 if ((pass & FR_RETMASK) != 0) { 3056 /* 3057 * Should we return an ICMP packet to indicate error 3058 * status passing through the packet filter ? 3059 * WARNING: ICMP error packets AND TCP RST packets should 3060 * ONLY be sent in repsonse to incoming packets. Sending 3061 * them in response to outbound packets can result in a 3062 * panic on some operating systems. 3063 */ 3064 if (!out) { 3065 if (pass & FR_RETICMP) { 3066 int dst; 3067 3068 if ((pass & FR_RETMASK) == FR_FAKEICMP) 3069 dst = 1; 3070 else 3071 dst = 0; 3072 (void) ipf_send_icmp_err(ICMP_UNREACH, fin, 3073 dst); 3074 LBUMP(ipf_stats[0].fr_ret); 3075 } else if (((pass & FR_RETMASK) == FR_RETRST) && 3076 !(fin->fin_flx & FI_SHORT)) { 3077 if (((fin->fin_flx & FI_OOW) != 0) || 3078 (ipf_send_reset(fin) == 0)) { 3079 LBUMP(ipf_stats[1].fr_ret); 3080 } 3081 } 3082 3083 /* 3084 * When using return-* with auth rules, the auth code 3085 * takes over disposing of this packet. 3086 */ 3087 if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) { 3088 DT1(frb_authcapture, fr_info_t *, fin); 3089 fin->fin_m = *fin->fin_mp = NULL; 3090 fin->fin_reason = FRB_AUTHCAPTURE; 3091 m = NULL; 3092 } 3093 } else { 3094 if (pass & FR_RETRST) { 3095 fin->fin_error = ECONNRESET; 3096 } 3097 } 3098 } 3099 3100 /* 3101 * After the above so that ICMP unreachables and TCP RSTs get 3102 * created properly. 3103 */ 3104 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) 3105 ipf_nat_uncreate(fin); 3106 3107 /* 3108 * If we didn't drop off the bottom of the list of rules (and thus 3109 * the 'current' rule fr is not NULL), then we may have some extra 3110 * instructions about what to do with a packet. 3111 * Once we're finished return to our caller, freeing the packet if 3112 * we are dropping it. 3113 */ 3114 if (fr != NULL) { 3115 frdest_t *fdp; 3116 3117 /* 3118 * Generate a duplicated packet first because ipf_fastroute 3119 * can lead to fin_m being free'd... not good. 3120 */ 3121 fdp = fin->fin_dif; 3122 if ((fdp != NULL) && (fdp->fd_ptr != NULL) && 3123 (fdp->fd_ptr != (void *)-1) && (fin->fin_m != NULL)) { 3124 mc = M_COPY(fin->fin_m); 3125 if (mc != NULL) 3126 ipf_fastroute(mc, &mc, fin, fdp); 3127 } 3128 3129 fdp = fin->fin_tif; 3130 if (!out && (pass & FR_FASTROUTE)) { 3131 /* 3132 * For fastroute rule, no destination interface defined 3133 * so pass NULL as the frdest_t parameter 3134 */ 3135 (void) ipf_fastroute(fin->fin_m, mp, fin, NULL); 3136 m = *mp = NULL; 3137 } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) && 3138 (fdp->fd_ptr != (struct ifnet *)-1)) { 3139 /* this is for to rules: */ 3140 ipf_fastroute(fin->fin_m, mp, fin, fdp); 3141 m = *mp = NULL; 3142 } 3143 3144 #if defined(FASTROUTE_RECURSION) 3145 (void) ipf_derefrule(softc, &fr); 3146 #endif 3147 } 3148 #if !defined(FASTROUTE_RECURSION) 3149 RWLOCK_EXIT(&softc->ipf_mutex); 3150 #endif 3151 3152 finished: 3153 if (!FR_ISPASS(pass)) { 3154 LBUMP(ipf_stats[out].fr_block); 3155 if (*mp != NULL) { 3156 #ifdef _KERNEL 3157 FREE_MB_T(*mp); 3158 #endif 3159 m = *mp = NULL; 3160 } 3161 } else { 3162 LBUMP(ipf_stats[out].fr_pass); 3163 #if defined(_KERNEL) && defined(__sgi) 3164 if ((fin->fin_hbuf != NULL) && 3165 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 3166 COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf); 3167 } 3168 #endif 3169 } 3170 3171 SPL_X(s); 3172 3173 #ifdef _KERNEL 3174 if (FR_ISPASS(pass)) 3175 return 0; 3176 LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]); 3177 return fin->fin_error; 3178 #else /* _KERNEL */ 3179 if (*mp != NULL) 3180 (*mp)->mb_ifp = fin->fin_ifp; 3181 blockreason = fin->fin_reason; 3182 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 3183 /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/ 3184 if ((pass & FR_NOMATCH) != 0) 3185 return 1; 3186 3187 if ((pass & FR_RETMASK) != 0) 3188 switch (pass & FR_RETMASK) 3189 { 3190 case FR_RETRST : 3191 return 3; 3192 case FR_RETICMP : 3193 return 4; 3194 case FR_FAKEICMP : 3195 return 5; 3196 } 3197 3198 switch (pass & FR_CMDMASK) 3199 { 3200 case FR_PASS : 3201 return 0; 3202 case FR_BLOCK : 3203 return -1; 3204 case FR_AUTH : 3205 return -2; 3206 case FR_ACCOUNT : 3207 return -3; 3208 case FR_PREAUTH : 3209 return -4; 3210 } 3211 return 2; 3212 #endif /* _KERNEL */ 3213 } 3214 3215 3216 #ifdef IPFILTER_LOG 3217 /* ------------------------------------------------------------------------ */ 3218 /* Function: ipf_dolog */ 3219 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 3220 /* Parameters: fin(I) - pointer to packet information */ 3221 /* passp(IO) - pointer to current/new filter decision (unused) */ 3222 /* */ 3223 /* Checks flags set to see how a packet should be logged, if it is to be */ 3224 /* logged. Adjust statistics based on its success or not. */ 3225 /* ------------------------------------------------------------------------ */ 3226 frentry_t * 3227 ipf_dolog(fr_info_t *fin, u_32_t *passp) 3228 { 3229 ipf_main_softc_t *softc = fin->fin_main_soft; 3230 u_32_t pass; 3231 int out; 3232 3233 out = fin->fin_out; 3234 pass = *passp; 3235 3236 if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 3237 pass |= FF_LOGNOMATCH; 3238 LBUMPD(ipf_stats[out], fr_npkl); 3239 goto logit; 3240 3241 } else if (((pass & FR_LOGMASK) == FR_LOGP) || 3242 (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) { 3243 if ((pass & FR_LOGMASK) != FR_LOGP) 3244 pass |= FF_LOGPASS; 3245 LBUMPD(ipf_stats[out], fr_ppkl); 3246 goto logit; 3247 3248 } else if (((pass & FR_LOGMASK) == FR_LOGB) || 3249 (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) { 3250 if ((pass & FR_LOGMASK) != FR_LOGB) 3251 pass |= FF_LOGBLOCK; 3252 LBUMPD(ipf_stats[out], fr_bpkl); 3253 3254 logit: 3255 if (ipf_log_pkt(fin, pass) == -1) { 3256 /* 3257 * If the "or-block" option has been used then 3258 * block the packet if we failed to log it. 3259 */ 3260 if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) { 3261 DT1(frb_logfail2, u_int, pass); 3262 pass &= ~FR_CMDMASK; 3263 pass |= FR_BLOCK; 3264 fin->fin_reason = FRB_LOGFAIL2; 3265 } 3266 } 3267 *passp = pass; 3268 } 3269 3270 return fin->fin_fr; 3271 } 3272 #endif /* IPFILTER_LOG */ 3273 3274 3275 /* ------------------------------------------------------------------------ */ 3276 /* Function: ipf_cksum */ 3277 /* Returns: u_short - IP header checksum */ 3278 /* Parameters: addr(I) - pointer to start of buffer to checksum */ 3279 /* len(I) - length of buffer in bytes */ 3280 /* */ 3281 /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 3282 /* */ 3283 /* N.B.: addr should be 16bit aligned. */ 3284 /* ------------------------------------------------------------------------ */ 3285 u_short 3286 ipf_cksum(u_short *addr, int len) 3287 { 3288 u_32_t sum = 0; 3289 3290 for (sum = 0; len > 1; len -= 2) 3291 sum += *addr++; 3292 3293 /* mop up an odd byte, if necessary */ 3294 if (len == 1) 3295 sum += *(u_char *)addr; 3296 3297 /* 3298 * add back carry outs from top 16 bits to low 16 bits 3299 */ 3300 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 3301 sum += (sum >> 16); /* add carry */ 3302 return (u_short)(~sum); 3303 } 3304 3305 3306 /* ------------------------------------------------------------------------ */ 3307 /* Function: fr_cksum */ 3308 /* Returns: u_short - layer 4 checksum */ 3309 /* Parameters: fin(I) - pointer to packet information */ 3310 /* ip(I) - pointer to IP header */ 3311 /* l4proto(I) - protocol to caclulate checksum for */ 3312 /* l4hdr(I) - pointer to layer 4 header */ 3313 /* */ 3314 /* Calculates the TCP checksum for the packet held in "m", using the data */ 3315 /* in the IP header "ip" to seed it. */ 3316 /* */ 3317 /* NB: This function assumes we've pullup'd enough for all of the IP header */ 3318 /* and the TCP header. We also assume that data blocks aren't allocated in */ 3319 /* odd sizes. */ 3320 /* */ 3321 /* Expects ip_len and ip_off to be in network byte order when called. */ 3322 /* ------------------------------------------------------------------------ */ 3323 u_short 3324 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr) 3325 { 3326 u_short *sp, slen, sumsave, *csump; 3327 u_int sum, sum2; 3328 int hlen; 3329 int off; 3330 #ifdef USE_INET6 3331 ip6_t *ip6; 3332 #endif 3333 3334 csump = NULL; 3335 sumsave = 0; 3336 sp = NULL; 3337 slen = 0; 3338 hlen = 0; 3339 sum = 0; 3340 3341 sum = htons((u_short)l4proto); 3342 /* 3343 * Add up IP Header portion 3344 */ 3345 #ifdef USE_INET6 3346 if (IP_V(ip) == 4) { 3347 #endif 3348 hlen = IP_HL(ip) << 2; 3349 off = hlen; 3350 sp = (u_short *)&ip->ip_src; 3351 sum += *sp++; /* ip_src */ 3352 sum += *sp++; 3353 sum += *sp++; /* ip_dst */ 3354 sum += *sp++; 3355 #ifdef USE_INET6 3356 } else if (IP_V(ip) == 6) { 3357 ip6 = (ip6_t *)ip; 3358 hlen = sizeof(*ip6); 3359 off = ((char *)fin->fin_dp - (char *)fin->fin_ip); 3360 sp = (u_short *)&ip6->ip6_src; 3361 sum += *sp++; /* ip6_src */ 3362 sum += *sp++; 3363 sum += *sp++; 3364 sum += *sp++; 3365 sum += *sp++; 3366 sum += *sp++; 3367 sum += *sp++; 3368 sum += *sp++; 3369 /* This needs to be routing header aware. */ 3370 sum += *sp++; /* ip6_dst */ 3371 sum += *sp++; 3372 sum += *sp++; 3373 sum += *sp++; 3374 sum += *sp++; 3375 sum += *sp++; 3376 sum += *sp++; 3377 sum += *sp++; 3378 } else { 3379 return 0xffff; 3380 } 3381 #endif 3382 slen = fin->fin_plen - off; 3383 sum += htons(slen); 3384 3385 switch (l4proto) 3386 { 3387 case IPPROTO_UDP : 3388 csump = &((udphdr_t *)l4hdr)->uh_sum; 3389 break; 3390 3391 case IPPROTO_TCP : 3392 csump = &((tcphdr_t *)l4hdr)->th_sum; 3393 break; 3394 case IPPROTO_ICMP : 3395 csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 3396 sum = 0; /* Pseudo-checksum is not included */ 3397 break; 3398 #ifdef USE_INET6 3399 case IPPROTO_ICMPV6 : 3400 csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum; 3401 break; 3402 #endif 3403 default : 3404 break; 3405 } 3406 3407 if (csump != NULL) { 3408 sumsave = *csump; 3409 *csump = 0; 3410 } 3411 3412 sum2 = ipf_pcksum(fin, off, sum); 3413 if (csump != NULL) 3414 *csump = sumsave; 3415 return sum2; 3416 } 3417 3418 3419 /* ------------------------------------------------------------------------ */ 3420 /* Function: ipf_findgroup */ 3421 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3422 /* Parameters: softc(I) - pointer to soft context main structure */ 3423 /* group(I) - group name to search for */ 3424 /* unit(I) - device to which this group belongs */ 3425 /* set(I) - which set of rules (inactive/inactive) this is */ 3426 /* fgpp(O) - pointer to place to store pointer to the pointer */ 3427 /* to where to add the next (last) group or where */ 3428 /* to delete group from. */ 3429 /* */ 3430 /* Search amongst the defined groups for a particular group number. */ 3431 /* ------------------------------------------------------------------------ */ 3432 frgroup_t * 3433 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set, 3434 frgroup_t ***fgpp) 3435 { 3436 frgroup_t *fg, **fgp; 3437 3438 /* 3439 * Which list of groups to search in is dependent on which list of 3440 * rules are being operated on. 3441 */ 3442 fgp = &softc->ipf_groups[unit][set]; 3443 3444 while ((fg = *fgp) != NULL) { 3445 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3446 break; 3447 else 3448 fgp = &fg->fg_next; 3449 } 3450 if (fgpp != NULL) 3451 *fgpp = fgp; 3452 return fg; 3453 } 3454 3455 3456 /* ------------------------------------------------------------------------ */ 3457 /* Function: ipf_group_add */ 3458 /* Returns: frgroup_t * - NULL == did not create group, */ 3459 /* != NULL == pointer to the group */ 3460 /* Parameters: softc(I) - pointer to soft context main structure */ 3461 /* num(I) - group number to add */ 3462 /* head(I) - rule pointer that is using this as the head */ 3463 /* flags(I) - rule flags which describe the type of rule it is */ 3464 /* unit(I) - device to which this group will belong to */ 3465 /* set(I) - which set of rules (inactive/inactive) this is */ 3466 /* Write Locks: ipf_mutex */ 3467 /* */ 3468 /* Add a new group head, or if it already exists, increase the reference */ 3469 /* count to it. */ 3470 /* ------------------------------------------------------------------------ */ 3471 frgroup_t * 3472 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags, 3473 minor_t unit, int set) 3474 { 3475 frgroup_t *fg, **fgp; 3476 u_32_t gflags; 3477 3478 if (group == NULL) 3479 return NULL; 3480 3481 if (unit == IPL_LOGIPF && *group == '\0') 3482 return NULL; 3483 3484 fgp = NULL; 3485 gflags = flags & FR_INOUT; 3486 3487 fg = ipf_findgroup(softc, group, unit, set, &fgp); 3488 if (fg != NULL) { 3489 if (fg->fg_head == NULL && head != NULL) 3490 fg->fg_head = head; 3491 if (fg->fg_flags == 0) 3492 fg->fg_flags = gflags; 3493 else if (gflags != fg->fg_flags) 3494 return NULL; 3495 fg->fg_ref++; 3496 return fg; 3497 } 3498 3499 KMALLOC(fg, frgroup_t *); 3500 if (fg != NULL) { 3501 fg->fg_head = head; 3502 fg->fg_start = NULL; 3503 fg->fg_next = *fgp; 3504 bcopy(group, fg->fg_name, strlen(group) + 1); 3505 fg->fg_flags = gflags; 3506 fg->fg_ref = 1; 3507 fg->fg_set = &softc->ipf_groups[unit][set]; 3508 *fgp = fg; 3509 } 3510 return fg; 3511 } 3512 3513 3514 /* ------------------------------------------------------------------------ */ 3515 /* Function: ipf_group_del */ 3516 /* Returns: int - number of rules deleted */ 3517 /* Parameters: softc(I) - pointer to soft context main structure */ 3518 /* group(I) - group name to delete */ 3519 /* fr(I) - filter rule from which group is referenced */ 3520 /* Write Locks: ipf_mutex */ 3521 /* */ 3522 /* This function is called whenever a reference to a group is to be dropped */ 3523 /* and thus its reference count needs to be lowered and the group free'd if */ 3524 /* the reference count reaches zero. Passing in fr is really for the sole */ 3525 /* purpose of knowing when the head rule is being deleted. */ 3526 /* ------------------------------------------------------------------------ */ 3527 void 3528 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr) 3529 { 3530 3531 if (group->fg_head == fr) 3532 group->fg_head = NULL; 3533 3534 group->fg_ref--; 3535 if ((group->fg_ref == 0) && (group->fg_start == NULL)) 3536 ipf_group_free(group); 3537 } 3538 3539 3540 /* ------------------------------------------------------------------------ */ 3541 /* Function: ipf_group_free */ 3542 /* Returns: Nil */ 3543 /* Parameters: group(I) - pointer to filter rule group */ 3544 /* */ 3545 /* Remove the group from the list of groups and free it. */ 3546 /* ------------------------------------------------------------------------ */ 3547 static void 3548 ipf_group_free(frgroup_t *group) 3549 { 3550 frgroup_t **gp; 3551 3552 for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) { 3553 if (*gp == group) { 3554 *gp = group->fg_next; 3555 break; 3556 } 3557 } 3558 KFREE(group); 3559 } 3560 3561 3562 /* ------------------------------------------------------------------------ */ 3563 /* Function: ipf_group_flush */ 3564 /* Returns: int - number of rules flush from group */ 3565 /* Parameters: softc(I) - pointer to soft context main structure */ 3566 /* Parameters: group(I) - pointer to filter rule group */ 3567 /* */ 3568 /* Remove all of the rules that currently are listed under the given group. */ 3569 /* ------------------------------------------------------------------------ */ 3570 static int 3571 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group) 3572 { 3573 int gone = 0; 3574 3575 (void) ipf_flushlist(softc, &gone, &group->fg_start); 3576 3577 return gone; 3578 } 3579 3580 3581 /* ------------------------------------------------------------------------ */ 3582 /* Function: ipf_getrulen */ 3583 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3584 /* Parameters: softc(I) - pointer to soft context main structure */ 3585 /* Parameters: unit(I) - device for which to count the rule's number */ 3586 /* flags(I) - which set of rules to find the rule in */ 3587 /* group(I) - group name */ 3588 /* n(I) - rule number to find */ 3589 /* */ 3590 /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3591 /* group # g doesn't exist or there are less than n rules in the group. */ 3592 /* ------------------------------------------------------------------------ */ 3593 frentry_t * 3594 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n) 3595 { 3596 frentry_t *fr; 3597 frgroup_t *fg; 3598 3599 fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL); 3600 if (fg == NULL) 3601 return NULL; 3602 for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--) 3603 ; 3604 if (n != 0) 3605 return NULL; 3606 return fr; 3607 } 3608 3609 3610 /* ------------------------------------------------------------------------ */ 3611 /* Function: ipf_flushlist */ 3612 /* Returns: int - >= 0 - number of flushed rules */ 3613 /* Parameters: softc(I) - pointer to soft context main structure */ 3614 /* nfreedp(O) - pointer to int where flush count is stored */ 3615 /* listp(I) - pointer to list to flush pointer */ 3616 /* Write Locks: ipf_mutex */ 3617 /* */ 3618 /* Recursively flush rules from the list, descending groups as they are */ 3619 /* encountered. if a rule is the head of a group and it has lost all its */ 3620 /* group members, then also delete the group reference. nfreedp is needed */ 3621 /* to store the accumulating count of rules removed, whereas the returned */ 3622 /* value is just the number removed from the current list. The latter is */ 3623 /* needed to correctly adjust reference counts on rules that define groups. */ 3624 /* */ 3625 /* NOTE: Rules not loaded from user space cannot be flushed. */ 3626 /* ------------------------------------------------------------------------ */ 3627 static int 3628 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp) 3629 { 3630 int freed = 0; 3631 frentry_t *fp; 3632 3633 while ((fp = *listp) != NULL) { 3634 if ((fp->fr_type & FR_T_BUILTIN) || 3635 !(fp->fr_flags & FR_COPIED)) { 3636 listp = &fp->fr_next; 3637 continue; 3638 } 3639 *listp = fp->fr_next; 3640 if (fp->fr_next != NULL) 3641 fp->fr_next->fr_pnext = fp->fr_pnext; 3642 fp->fr_pnext = NULL; 3643 3644 if (fp->fr_grphead != NULL) { 3645 freed += ipf_group_flush(softc, fp->fr_grphead); 3646 fp->fr_names[fp->fr_grhead] = '\0'; 3647 } 3648 3649 if (fp->fr_icmpgrp != NULL) { 3650 freed += ipf_group_flush(softc, fp->fr_icmpgrp); 3651 fp->fr_names[fp->fr_icmphead] = '\0'; 3652 } 3653 3654 if (fp->fr_srctrack.ht_max_nodes) 3655 ipf_rb_ht_flush(&fp->fr_srctrack); 3656 3657 fp->fr_next = NULL; 3658 3659 ASSERT(fp->fr_ref > 0); 3660 if (ipf_derefrule(softc, &fp) == 0) 3661 freed++; 3662 } 3663 *nfreedp += freed; 3664 return freed; 3665 } 3666 3667 3668 /* ------------------------------------------------------------------------ */ 3669 /* Function: ipf_flush */ 3670 /* Returns: int - >= 0 - number of flushed rules */ 3671 /* Parameters: softc(I) - pointer to soft context main structure */ 3672 /* unit(I) - device for which to flush rules */ 3673 /* flags(I) - which set of rules to flush */ 3674 /* */ 3675 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3676 /* and IPv6) as defined by the value of flags. */ 3677 /* ------------------------------------------------------------------------ */ 3678 int 3679 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags) 3680 { 3681 int flushed = 0, set; 3682 3683 WRITE_ENTER(&softc->ipf_mutex); 3684 3685 set = softc->ipf_active; 3686 if ((flags & FR_INACTIVE) == FR_INACTIVE) 3687 set = 1 - set; 3688 3689 if (flags & FR_OUTQUE) { 3690 ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]); 3691 ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]); 3692 } 3693 if (flags & FR_INQUE) { 3694 ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]); 3695 ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]); 3696 } 3697 3698 flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set], 3699 flags & (FR_INQUE|FR_OUTQUE)); 3700 3701 RWLOCK_EXIT(&softc->ipf_mutex); 3702 3703 if (unit == IPL_LOGIPF) { 3704 int tmp; 3705 3706 tmp = ipf_flush(softc, IPL_LOGCOUNT, flags); 3707 if (tmp >= 0) 3708 flushed += tmp; 3709 } 3710 return flushed; 3711 } 3712 3713 3714 /* ------------------------------------------------------------------------ */ 3715 /* Function: ipf_flush_groups */ 3716 /* Returns: int - >= 0 - number of flushed rules */ 3717 /* Parameters: softc(I) - soft context pointerto work with */ 3718 /* grhead(I) - pointer to the start of the group list to flush */ 3719 /* flags(I) - which set of rules to flush */ 3720 /* */ 3721 /* Walk through all of the groups under the given group head and remove all */ 3722 /* of those that match the flags passed in. The for loop here is bit more */ 3723 /* complicated than usual because the removal of a rule with ipf_derefrule */ 3724 /* may end up removing not only the structure pointed to by "fg" but also */ 3725 /* what is fg_next and fg_next after that. So if a filter rule is actually */ 3726 /* removed from the group then it is necessary to start again. */ 3727 /* ------------------------------------------------------------------------ */ 3728 static int 3729 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags) 3730 { 3731 frentry_t *fr, **frp; 3732 frgroup_t *fg, **fgp; 3733 int flushed = 0; 3734 int removed = 0; 3735 3736 for (fgp = grhead; (fg = *fgp) != NULL; ) { 3737 while ((fg != NULL) && ((fg->fg_flags & flags) == 0)) 3738 fg = fg->fg_next; 3739 if (fg == NULL) 3740 break; 3741 removed = 0; 3742 frp = &fg->fg_start; 3743 while ((removed == 0) && ((fr = *frp) != NULL)) { 3744 if ((fr->fr_flags & flags) == 0) { 3745 frp = &fr->fr_next; 3746 } else { 3747 if (fr->fr_next != NULL) 3748 fr->fr_next->fr_pnext = fr->fr_pnext; 3749 *frp = fr->fr_next; 3750 fr->fr_pnext = NULL; 3751 fr->fr_next = NULL; 3752 (void) ipf_derefrule(softc, &fr); 3753 flushed++; 3754 removed++; 3755 } 3756 } 3757 if (removed == 0) 3758 fgp = &fg->fg_next; 3759 } 3760 return flushed; 3761 } 3762 3763 3764 /* ------------------------------------------------------------------------ */ 3765 /* Function: memstr */ 3766 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3767 /* Parameters: src(I) - pointer to byte sequence to match */ 3768 /* dst(I) - pointer to byte sequence to search */ 3769 /* slen(I) - match length */ 3770 /* dlen(I) - length available to search in */ 3771 /* */ 3772 /* Search dst for a sequence of bytes matching those at src and extend for */ 3773 /* slen bytes. */ 3774 /* ------------------------------------------------------------------------ */ 3775 char * 3776 memstr(const char *src, char *dst, size_t slen, size_t dlen) 3777 { 3778 char *s = NULL; 3779 3780 while (dlen >= slen) { 3781 if (memcmp(src, dst, slen) == 0) { 3782 s = dst; 3783 break; 3784 } 3785 dst++; 3786 dlen--; 3787 } 3788 return s; 3789 } 3790 3791 3792 /* ------------------------------------------------------------------------ */ 3793 /* Function: ipf_fixskip */ 3794 /* Returns: Nil */ 3795 /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3796 /* rp(I) - rule added/removed with skip in it. */ 3797 /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3798 /* depending on whether a rule was just added */ 3799 /* or removed. */ 3800 /* */ 3801 /* Adjust all the rules in a list which would have skip'd past the position */ 3802 /* where we are inserting to skip to the right place given the change. */ 3803 /* ------------------------------------------------------------------------ */ 3804 void 3805 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove) 3806 { 3807 int rules, rn; 3808 frentry_t *fp; 3809 3810 rules = 0; 3811 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3812 rules++; 3813 3814 if (!fp) 3815 return; 3816 3817 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3818 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3819 fp->fr_arg += addremove; 3820 } 3821 3822 3823 #ifdef _KERNEL 3824 /* ------------------------------------------------------------------------ */ 3825 /* Function: count4bits */ 3826 /* Returns: int - >= 0 - number of consecutive bits in input */ 3827 /* Parameters: ip(I) - 32bit IP address */ 3828 /* */ 3829 /* IPv4 ONLY */ 3830 /* count consecutive 1's in bit mask. If the mask generated by counting */ 3831 /* consecutive 1's is different to that passed, return -1, else return # */ 3832 /* of bits. */ 3833 /* ------------------------------------------------------------------------ */ 3834 int 3835 count4bits(u_32_t ip) 3836 { 3837 u_32_t ipn; 3838 int cnt = 0, i, j; 3839 3840 ip = ipn = ntohl(ip); 3841 for (i = 32; i; i--, ipn *= 2) 3842 if (ipn & 0x80000000) 3843 cnt++; 3844 else 3845 break; 3846 ipn = 0; 3847 for (i = 32, j = cnt; i; i--, j--) { 3848 ipn *= 2; 3849 if (j > 0) 3850 ipn++; 3851 } 3852 if (ipn == ip) 3853 return cnt; 3854 return -1; 3855 } 3856 3857 3858 /* ------------------------------------------------------------------------ */ 3859 /* Function: count6bits */ 3860 /* Returns: int - >= 0 - number of consecutive bits in input */ 3861 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3862 /* */ 3863 /* IPv6 ONLY */ 3864 /* count consecutive 1's in bit mask. */ 3865 /* ------------------------------------------------------------------------ */ 3866 # ifdef USE_INET6 3867 int 3868 count6bits(u_32_t *msk) 3869 { 3870 int i = 0, k; 3871 u_32_t j; 3872 3873 for (k = 3; k >= 0; k--) 3874 if (msk[k] == 0xffffffff) 3875 i += 32; 3876 else { 3877 for (j = msk[k]; j; j <<= 1) 3878 if (j & 0x80000000) 3879 i++; 3880 } 3881 return i; 3882 } 3883 # endif 3884 #endif /* _KERNEL */ 3885 3886 3887 /* ------------------------------------------------------------------------ */ 3888 /* Function: ipf_synclist */ 3889 /* Returns: int - 0 = no failures, else indication of first failure */ 3890 /* Parameters: fr(I) - start of filter list to sync interface names for */ 3891 /* ifp(I) - interface pointer for limiting sync lookups */ 3892 /* Write Locks: ipf_mutex */ 3893 /* */ 3894 /* Walk through a list of filter rules and resolve any interface names into */ 3895 /* pointers. Where dynamic addresses are used, also update the IP address */ 3896 /* used in the rule. The interface pointer is used to limit the lookups to */ 3897 /* a specific set of matching names if it is non-NULL. */ 3898 /* Errors can occur when resolving the destination name of to/dup-to fields */ 3899 /* when the name points to a pool and that pool doest not exist. If this */ 3900 /* does happen then it is necessary to check if there are any lookup refs */ 3901 /* that need to be dropped before returning with an error. */ 3902 /* ------------------------------------------------------------------------ */ 3903 static int 3904 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp) 3905 { 3906 frentry_t *frt, *start = fr; 3907 frdest_t *fdp; 3908 char *name; 3909 int error; 3910 void *ifa; 3911 int v, i; 3912 3913 error = 0; 3914 3915 for (; fr; fr = fr->fr_next) { 3916 if (fr->fr_family == AF_INET) 3917 v = 4; 3918 else if (fr->fr_family == AF_INET6) 3919 v = 6; 3920 else 3921 v = 0; 3922 3923 /* 3924 * Lookup all the interface names that are part of the rule. 3925 */ 3926 for (i = 0; i < 4; i++) { 3927 if ((ifp != NULL) && (fr->fr_ifas[i] != ifp)) 3928 continue; 3929 if (fr->fr_ifnames[i] == -1) 3930 continue; 3931 name = FR_NAME(fr, fr_ifnames[i]); 3932 fr->fr_ifas[i] = ipf_resolvenic(softc, name, v); 3933 } 3934 3935 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { 3936 if (fr->fr_satype != FRI_NORMAL && 3937 fr->fr_satype != FRI_LOOKUP) { 3938 ifa = ipf_resolvenic(softc, fr->fr_names + 3939 fr->fr_sifpidx, v); 3940 ipf_ifpaddr(softc, v, fr->fr_satype, ifa, 3941 &fr->fr_src6, &fr->fr_smsk6); 3942 } 3943 if (fr->fr_datype != FRI_NORMAL && 3944 fr->fr_datype != FRI_LOOKUP) { 3945 ifa = ipf_resolvenic(softc, fr->fr_names + 3946 fr->fr_sifpidx, v); 3947 ipf_ifpaddr(softc, v, fr->fr_datype, ifa, 3948 &fr->fr_dst6, &fr->fr_dmsk6); 3949 } 3950 } 3951 3952 fdp = &fr->fr_tifs[0]; 3953 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 3954 error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 3955 if (error != 0) 3956 goto unwind; 3957 } 3958 3959 fdp = &fr->fr_tifs[1]; 3960 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 3961 error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 3962 if (error != 0) 3963 goto unwind; 3964 } 3965 3966 fdp = &fr->fr_dif; 3967 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) { 3968 error = ipf_resolvedest(softc, fr->fr_names, fdp, v); 3969 if (error != 0) 3970 goto unwind; 3971 } 3972 3973 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 3974 (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) { 3975 fr->fr_srcptr = ipf_lookup_res_num(softc, 3976 fr->fr_srctype, 3977 IPL_LOGIPF, 3978 fr->fr_srcnum, 3979 &fr->fr_srcfunc); 3980 } 3981 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 3982 (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) { 3983 fr->fr_dstptr = ipf_lookup_res_num(softc, 3984 fr->fr_dsttype, 3985 IPL_LOGIPF, 3986 fr->fr_dstnum, 3987 &fr->fr_dstfunc); 3988 } 3989 } 3990 return 0; 3991 3992 unwind: 3993 for (frt = start; frt != fr; fr = fr->fr_next) { 3994 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 3995 (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL)) 3996 ipf_lookup_deref(softc, frt->fr_srctype, 3997 frt->fr_srcptr); 3998 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) && 3999 (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL)) 4000 ipf_lookup_deref(softc, frt->fr_dsttype, 4001 frt->fr_dstptr); 4002 } 4003 return error; 4004 } 4005 4006 4007 /* ------------------------------------------------------------------------ */ 4008 /* Function: ipf_sync */ 4009 /* Returns: void */ 4010 /* Parameters: Nil */ 4011 /* */ 4012 /* ipf_sync() is called when we suspect that the interface list or */ 4013 /* information about interfaces (like IP#) has changed. Go through all */ 4014 /* filter rules, NAT entries and the state table and check if anything */ 4015 /* needs to be changed/updated. */ 4016 /* ------------------------------------------------------------------------ */ 4017 int 4018 ipf_sync(ipf_main_softc_t *softc, void *ifp) 4019 { 4020 int i; 4021 4022 # if !SOLARIS 4023 ipf_nat_sync(softc, ifp); 4024 ipf_state_sync(softc, ifp); 4025 ipf_lookup_sync(softc, ifp); 4026 # endif 4027 4028 WRITE_ENTER(&softc->ipf_mutex); 4029 (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp); 4030 (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp); 4031 (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp); 4032 (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp); 4033 4034 for (i = 0; i < IPL_LOGSIZE; i++) { 4035 frgroup_t *g; 4036 4037 for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next) 4038 (void) ipf_synclist(softc, g->fg_start, ifp); 4039 for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next) 4040 (void) ipf_synclist(softc, g->fg_start, ifp); 4041 } 4042 RWLOCK_EXIT(&softc->ipf_mutex); 4043 4044 return 0; 4045 } 4046 4047 4048 /* 4049 * In the functions below, bcopy() is called because the pointer being 4050 * copied _from_ in this instance is a pointer to a char buf (which could 4051 * end up being unaligned) and on the kernel's local stack. 4052 */ 4053 /* ------------------------------------------------------------------------ */ 4054 /* Function: copyinptr */ 4055 /* Returns: int - 0 = success, else failure */ 4056 /* Parameters: src(I) - pointer to the source address */ 4057 /* dst(I) - destination address */ 4058 /* size(I) - number of bytes to copy */ 4059 /* */ 4060 /* Copy a block of data in from user space, given a pointer to the pointer */ 4061 /* to start copying from (src) and a pointer to where to store it (dst). */ 4062 /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 4063 /* ------------------------------------------------------------------------ */ 4064 int 4065 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size) 4066 { 4067 void *ca; 4068 int error; 4069 4070 # if SOLARIS 4071 error = COPYIN(src, &ca, sizeof(ca)); 4072 if (error != 0) 4073 return error; 4074 # else 4075 bcopy(src, (void *)&ca, sizeof(ca)); 4076 # endif 4077 error = COPYIN(ca, dst, size); 4078 if (error != 0) { 4079 IPFERROR(3); 4080 error = EFAULT; 4081 } 4082 return error; 4083 } 4084 4085 4086 /* ------------------------------------------------------------------------ */ 4087 /* Function: copyoutptr */ 4088 /* Returns: int - 0 = success, else failure */ 4089 /* Parameters: src(I) - pointer to the source address */ 4090 /* dst(I) - destination address */ 4091 /* size(I) - number of bytes to copy */ 4092 /* */ 4093 /* Copy a block of data out to user space, given a pointer to the pointer */ 4094 /* to start copying from (src) and a pointer to where to store it (dst). */ 4095 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 4096 /* ------------------------------------------------------------------------ */ 4097 int 4098 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size) 4099 { 4100 void *ca; 4101 int error; 4102 4103 bcopy(dst, &ca, sizeof(ca)); 4104 error = COPYOUT(src, ca, size); 4105 if (error != 0) { 4106 IPFERROR(4); 4107 error = EFAULT; 4108 } 4109 return error; 4110 } 4111 #ifdef _KERNEL 4112 #endif 4113 4114 4115 /* ------------------------------------------------------------------------ */ 4116 /* Function: ipf_lock */ 4117 /* Returns: int - 0 = success, else error */ 4118 /* Parameters: data(I) - pointer to lock value to set */ 4119 /* lockp(O) - pointer to location to store old lock value */ 4120 /* */ 4121 /* Get the new value for the lock integer, set it and return the old value */ 4122 /* in *lockp. */ 4123 /* ------------------------------------------------------------------------ */ 4124 int 4125 ipf_lock(void *data, int *lockp) 4126 { 4127 int arg, err; 4128 4129 err = BCOPYIN(data, &arg, sizeof(arg)); 4130 if (err != 0) 4131 return EFAULT; 4132 err = BCOPYOUT(lockp, data, sizeof(*lockp)); 4133 if (err != 0) 4134 return EFAULT; 4135 *lockp = arg; 4136 return 0; 4137 } 4138 4139 4140 /* ------------------------------------------------------------------------ */ 4141 /* Function: ipf_getstat */ 4142 /* Returns: Nil */ 4143 /* Parameters: softc(I) - pointer to soft context main structure */ 4144 /* fiop(I) - pointer to ipfilter stats structure */ 4145 /* rev(I) - version claim by program doing ioctl */ 4146 /* */ 4147 /* Stores a copy of current pointers, counters, etc, in the friostat */ 4148 /* structure. */ 4149 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */ 4150 /* program is looking for. This ensure that validation of the version it */ 4151 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */ 4152 /* allow older binaries to work but kernels without it will not. */ 4153 /* ------------------------------------------------------------------------ */ 4154 /*ARGSUSED*/ 4155 static void 4156 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev) 4157 { 4158 int i; 4159 4160 bcopy((char *)softc->ipf_stats, (char *)fiop->f_st, 4161 sizeof(ipf_statistics_t) * 2); 4162 fiop->f_locks[IPL_LOGSTATE] = -1; 4163 fiop->f_locks[IPL_LOGNAT] = -1; 4164 fiop->f_locks[IPL_LOGIPF] = -1; 4165 fiop->f_locks[IPL_LOGAUTH] = -1; 4166 4167 fiop->f_ipf[0][0] = softc->ipf_rules[0][0]; 4168 fiop->f_acct[0][0] = softc->ipf_acct[0][0]; 4169 fiop->f_ipf[0][1] = softc->ipf_rules[0][1]; 4170 fiop->f_acct[0][1] = softc->ipf_acct[0][1]; 4171 fiop->f_ipf[1][0] = softc->ipf_rules[1][0]; 4172 fiop->f_acct[1][0] = softc->ipf_acct[1][0]; 4173 fiop->f_ipf[1][1] = softc->ipf_rules[1][1]; 4174 fiop->f_acct[1][1] = softc->ipf_acct[1][1]; 4175 4176 fiop->f_ticks = softc->ipf_ticks; 4177 fiop->f_active = softc->ipf_active; 4178 fiop->f_froute[0] = softc->ipf_frouteok[0]; 4179 fiop->f_froute[1] = softc->ipf_frouteok[1]; 4180 fiop->f_rb_no_mem = softc->ipf_rb_no_mem; 4181 fiop->f_rb_node_max = softc->ipf_rb_node_max; 4182 4183 fiop->f_running = softc->ipf_running; 4184 for (i = 0; i < IPL_LOGSIZE; i++) { 4185 fiop->f_groups[i][0] = softc->ipf_groups[i][0]; 4186 fiop->f_groups[i][1] = softc->ipf_groups[i][1]; 4187 } 4188 #ifdef IPFILTER_LOG 4189 fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF); 4190 fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF); 4191 fiop->f_logging = 1; 4192 #else 4193 fiop->f_log_ok = 0; 4194 fiop->f_log_fail = 0; 4195 fiop->f_logging = 0; 4196 #endif 4197 fiop->f_defpass = softc->ipf_pass; 4198 fiop->f_features = ipf_features; 4199 4200 #ifdef IPFILTER_COMPAT 4201 snprintf(fiop->f_version, sizeof(fiop->f_version), 4202 "IP Filter: v%d.%d.%d", (rev / 1000000) % 100, 4203 (rev / 10000) % 100, (rev / 100) % 100); 4204 #else 4205 rev = rev; 4206 (void) strncpy(fiop->f_version, ipfilter_version, 4207 sizeof(fiop->f_version)); 4208 fiop->f_version[sizeof(fiop->f_version) - 1] = '\0'; 4209 #endif 4210 } 4211 4212 4213 #ifdef USE_INET6 4214 int icmptoicmp6types[ICMP_MAXTYPE+1] = { 4215 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 4216 -1, /* 1: UNUSED */ 4217 -1, /* 2: UNUSED */ 4218 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 4219 -1, /* 4: ICMP_SOURCEQUENCH */ 4220 ND_REDIRECT, /* 5: ICMP_REDIRECT */ 4221 -1, /* 6: UNUSED */ 4222 -1, /* 7: UNUSED */ 4223 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 4224 -1, /* 9: UNUSED */ 4225 -1, /* 10: UNUSED */ 4226 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 4227 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 4228 -1, /* 13: ICMP_TSTAMP */ 4229 -1, /* 14: ICMP_TSTAMPREPLY */ 4230 -1, /* 15: ICMP_IREQ */ 4231 -1, /* 16: ICMP_IREQREPLY */ 4232 -1, /* 17: ICMP_MASKREQ */ 4233 -1, /* 18: ICMP_MASKREPLY */ 4234 }; 4235 4236 4237 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 4238 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 4239 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 4240 -1, /* 2: ICMP_UNREACH_PROTOCOL */ 4241 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 4242 -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 4243 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 4244 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 4245 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 4246 -1, /* 8: ICMP_UNREACH_ISOLATED */ 4247 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 4248 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 4249 -1, /* 11: ICMP_UNREACH_TOSNET */ 4250 -1, /* 12: ICMP_UNREACH_TOSHOST */ 4251 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 4252 }; 4253 int icmpreplytype6[ICMP6_MAXTYPE + 1]; 4254 #endif 4255 4256 int icmpreplytype4[ICMP_MAXTYPE + 1]; 4257 4258 4259 /* ------------------------------------------------------------------------ */ 4260 /* Function: ipf_matchicmpqueryreply */ 4261 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 4262 /* Parameters: v(I) - IP protocol version (4 or 6) */ 4263 /* ic(I) - ICMP information */ 4264 /* icmp(I) - ICMP packet header */ 4265 /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 4266 /* */ 4267 /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 4268 /* reply to one as described by what's in ic. If it is a match, return 1, */ 4269 /* else return 0 for no match. */ 4270 /* ------------------------------------------------------------------------ */ 4271 int 4272 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev) 4273 { 4274 int ictype; 4275 4276 ictype = ic->ici_type; 4277 4278 if (v == 4) { 4279 /* 4280 * If we matched its type on the way in, then when going out 4281 * it will still be the same type. 4282 */ 4283 if ((!rev && (icmp->icmp_type == ictype)) || 4284 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4285 if (icmp->icmp_type != ICMP_ECHOREPLY) 4286 return 1; 4287 if (icmp->icmp_id == ic->ici_id) 4288 return 1; 4289 } 4290 } 4291 #ifdef USE_INET6 4292 else if (v == 6) { 4293 if ((!rev && (icmp->icmp_type == ictype)) || 4294 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4295 if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4296 return 1; 4297 if (icmp->icmp_id == ic->ici_id) 4298 return 1; 4299 } 4300 } 4301 #endif 4302 return 0; 4303 } 4304 4305 4306 /* ------------------------------------------------------------------------ */ 4307 /* Function: frrequest */ 4308 /* Returns: int - 0 == success, > 0 == errno value */ 4309 /* Parameters: unit(I) - device for which this is for */ 4310 /* req(I) - ioctl command (SIOC*) */ 4311 /* data(I) - pointr to ioctl data */ 4312 /* set(I) - 1 or 0 (filter set) */ 4313 /* makecopy(I) - flag indicating whether data points to a rule */ 4314 /* in kernel space & hence doesn't need copying. */ 4315 /* */ 4316 /* This function handles all the requests which operate on the list of */ 4317 /* filter rules. This includes adding, deleting, insertion. It is also */ 4318 /* responsible for creating groups when a "head" rule is loaded. Interface */ 4319 /* names are resolved here and other sanity checks are made on the content */ 4320 /* of the rule structure being loaded. If a rule has user defined timeouts */ 4321 /* then make sure they are created and initialised before exiting. */ 4322 /* ------------------------------------------------------------------------ */ 4323 int 4324 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data, 4325 int set, int makecopy) 4326 { 4327 int error = 0, in, family, addrem, need_free = 0; 4328 frentry_t frd, *fp, *f, **fprev, **ftail; 4329 void *ptr, *uptr; 4330 u_int *p, *pp; 4331 frgroup_t *fg; 4332 char *group; 4333 4334 ptr = NULL; 4335 fg = NULL; 4336 fp = &frd; 4337 if (makecopy != 0) { 4338 bzero(fp, sizeof(frd)); 4339 error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY); 4340 if (error) { 4341 return error; 4342 } 4343 if ((fp->fr_type & FR_T_BUILTIN) != 0) { 4344 IPFERROR(6); 4345 return EINVAL; 4346 } 4347 KMALLOCS(f, frentry_t *, fp->fr_size); 4348 if (f == NULL) { 4349 IPFERROR(131); 4350 return ENOMEM; 4351 } 4352 bzero(f, fp->fr_size); 4353 error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY, 4354 fp->fr_size); 4355 if (error) { 4356 KFREES(f, fp->fr_size); 4357 return error; 4358 } 4359 4360 fp = f; 4361 f = NULL; 4362 fp->fr_next = NULL; 4363 fp->fr_dnext = NULL; 4364 fp->fr_pnext = NULL; 4365 fp->fr_pdnext = NULL; 4366 fp->fr_grp = NULL; 4367 fp->fr_grphead = NULL; 4368 fp->fr_icmpgrp = NULL; 4369 fp->fr_isc = (void *)-1; 4370 fp->fr_ptr = NULL; 4371 fp->fr_ref = 0; 4372 fp->fr_flags |= FR_COPIED; 4373 } else { 4374 fp = (frentry_t *)data; 4375 if ((fp->fr_type & FR_T_BUILTIN) == 0) { 4376 IPFERROR(7); 4377 return EINVAL; 4378 } 4379 fp->fr_flags &= ~FR_COPIED; 4380 } 4381 4382 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4383 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) { 4384 IPFERROR(8); 4385 error = EINVAL; 4386 goto donenolock; 4387 } 4388 4389 family = fp->fr_family; 4390 uptr = fp->fr_data; 4391 4392 if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR || 4393 req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR) 4394 addrem = 0; 4395 else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) 4396 addrem = 1; 4397 else if (req == (ioctlcmd_t)SIOCZRLST) 4398 addrem = 2; 4399 else { 4400 IPFERROR(9); 4401 error = EINVAL; 4402 goto donenolock; 4403 } 4404 4405 /* 4406 * Only filter rules for IPv4 or IPv6 are accepted. 4407 */ 4408 if (family == AF_INET) { 4409 /*EMPTY*/; 4410 #ifdef USE_INET6 4411 } else if (family == AF_INET6) { 4412 /*EMPTY*/; 4413 #endif 4414 } else if (family != 0) { 4415 IPFERROR(10); 4416 error = EINVAL; 4417 goto donenolock; 4418 } 4419 4420 /* 4421 * If the rule is being loaded from user space, i.e. we had to copy it 4422 * into kernel space, then do not trust the function pointer in the 4423 * rule. 4424 */ 4425 if ((makecopy == 1) && (fp->fr_func != NULL)) { 4426 if (ipf_findfunc(fp->fr_func) == NULL) { 4427 IPFERROR(11); 4428 error = ESRCH; 4429 goto donenolock; 4430 } 4431 4432 if (addrem == 0) { 4433 error = ipf_funcinit(softc, fp); 4434 if (error != 0) 4435 goto donenolock; 4436 } 4437 } 4438 if ((fp->fr_flags & FR_CALLNOW) && 4439 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { 4440 IPFERROR(142); 4441 error = ESRCH; 4442 goto donenolock; 4443 } 4444 if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) && 4445 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) { 4446 IPFERROR(143); 4447 error = ESRCH; 4448 goto donenolock; 4449 } 4450 4451 ptr = NULL; 4452 4453 if (FR_ISACCOUNT(fp->fr_flags)) 4454 unit = IPL_LOGCOUNT; 4455 4456 /* 4457 * Check that each group name in the rule has a start index that 4458 * is valid. 4459 */ 4460 if (fp->fr_icmphead != -1) { 4461 if ((fp->fr_icmphead < 0) || 4462 (fp->fr_icmphead >= fp->fr_namelen)) { 4463 IPFERROR(136); 4464 error = EINVAL; 4465 goto donenolock; 4466 } 4467 if (!strcmp(FR_NAME(fp, fr_icmphead), "0")) 4468 fp->fr_names[fp->fr_icmphead] = '\0'; 4469 } 4470 4471 if (fp->fr_grhead != -1) { 4472 if ((fp->fr_grhead < 0) || 4473 (fp->fr_grhead >= fp->fr_namelen)) { 4474 IPFERROR(137); 4475 error = EINVAL; 4476 goto donenolock; 4477 } 4478 if (!strcmp(FR_NAME(fp, fr_grhead), "0")) 4479 fp->fr_names[fp->fr_grhead] = '\0'; 4480 } 4481 4482 if (fp->fr_group != -1) { 4483 if ((fp->fr_group < 0) || 4484 (fp->fr_group >= fp->fr_namelen)) { 4485 IPFERROR(138); 4486 error = EINVAL; 4487 goto donenolock; 4488 } 4489 if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) { 4490 /* 4491 * Allow loading rules that are in groups to cause 4492 * them to be created if they don't already exit. 4493 */ 4494 group = FR_NAME(fp, fr_group); 4495 if (addrem == 0) { 4496 fg = ipf_group_add(softc, group, NULL, 4497 fp->fr_flags, unit, set); 4498 fp->fr_grp = fg; 4499 } else { 4500 fg = ipf_findgroup(softc, group, unit, 4501 set, NULL); 4502 if (fg == NULL) { 4503 IPFERROR(12); 4504 error = ESRCH; 4505 goto donenolock; 4506 } 4507 } 4508 4509 if (fg->fg_flags == 0) { 4510 fg->fg_flags = fp->fr_flags & FR_INOUT; 4511 } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) { 4512 IPFERROR(13); 4513 error = ESRCH; 4514 goto donenolock; 4515 } 4516 } 4517 } else { 4518 /* 4519 * If a rule is going to be part of a group then it does 4520 * not matter whether it is an in or out rule, but if it 4521 * isn't in a group, then it does... 4522 */ 4523 if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) { 4524 IPFERROR(14); 4525 error = EINVAL; 4526 goto donenolock; 4527 } 4528 } 4529 in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4530 4531 /* 4532 * Work out which rule list this change is being applied to. 4533 */ 4534 ftail = NULL; 4535 fprev = NULL; 4536 if (unit == IPL_LOGAUTH) { 4537 if ((fp->fr_tifs[0].fd_ptr != NULL) || 4538 (fp->fr_tifs[1].fd_ptr != NULL) || 4539 (fp->fr_dif.fd_ptr != NULL) || 4540 (fp->fr_flags & FR_FASTROUTE)) { 4541 IPFERROR(145); 4542 error = EINVAL; 4543 goto donenolock; 4544 } 4545 fprev = ipf_auth_rulehead(softc); 4546 } else { 4547 if (FR_ISACCOUNT(fp->fr_flags)) 4548 fprev = &softc->ipf_acct[in][set]; 4549 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4550 fprev = &softc->ipf_rules[in][set]; 4551 } 4552 if (fprev == NULL) { 4553 IPFERROR(15); 4554 error = ESRCH; 4555 goto donenolock; 4556 } 4557 4558 if (fg != NULL) 4559 fprev = &fg->fg_start; 4560 4561 /* 4562 * Copy in extra data for the rule. 4563 */ 4564 if (fp->fr_dsize != 0) { 4565 if (makecopy != 0) { 4566 KMALLOCS(ptr, void *, fp->fr_dsize); 4567 if (ptr == NULL) { 4568 IPFERROR(16); 4569 error = ENOMEM; 4570 goto donenolock; 4571 } 4572 4573 /* 4574 * The bcopy case is for when the data is appended 4575 * to the rule by ipf_in_compat(). 4576 */ 4577 if (uptr >= (void *)fp && 4578 uptr < (void *)((char *)fp + fp->fr_size)) { 4579 bcopy(uptr, ptr, fp->fr_dsize); 4580 error = 0; 4581 } else { 4582 error = COPYIN(uptr, ptr, fp->fr_dsize); 4583 if (error != 0) { 4584 IPFERROR(17); 4585 error = EFAULT; 4586 goto donenolock; 4587 } 4588 } 4589 } else { 4590 ptr = uptr; 4591 } 4592 fp->fr_data = ptr; 4593 } else { 4594 fp->fr_data = NULL; 4595 } 4596 4597 /* 4598 * Perform per-rule type sanity checks of their members. 4599 * All code after this needs to be aware that allocated memory 4600 * may need to be free'd before exiting. 4601 */ 4602 switch (fp->fr_type & ~FR_T_BUILTIN) 4603 { 4604 #if defined(IPFILTER_BPF) 4605 case FR_T_BPFOPC : 4606 if (fp->fr_dsize == 0) { 4607 IPFERROR(19); 4608 error = EINVAL; 4609 break; 4610 } 4611 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4612 IPFERROR(20); 4613 error = EINVAL; 4614 break; 4615 } 4616 break; 4617 #endif 4618 case FR_T_IPF : 4619 /* 4620 * Preparation for error case at the bottom of this function. 4621 */ 4622 if (fp->fr_datype == FRI_LOOKUP) 4623 fp->fr_dstptr = NULL; 4624 if (fp->fr_satype == FRI_LOOKUP) 4625 fp->fr_srcptr = NULL; 4626 4627 if (fp->fr_dsize != sizeof(fripf_t)) { 4628 IPFERROR(21); 4629 error = EINVAL; 4630 break; 4631 } 4632 4633 /* 4634 * Allowing a rule with both "keep state" and "with oow" is 4635 * pointless because adding a state entry to the table will 4636 * fail with the out of window (oow) flag set. 4637 */ 4638 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) { 4639 IPFERROR(22); 4640 error = EINVAL; 4641 break; 4642 } 4643 4644 switch (fp->fr_satype) 4645 { 4646 case FRI_BROADCAST : 4647 case FRI_DYNAMIC : 4648 case FRI_NETWORK : 4649 case FRI_NETMASKED : 4650 case FRI_PEERADDR : 4651 if (fp->fr_sifpidx < 0) { 4652 IPFERROR(23); 4653 error = EINVAL; 4654 } 4655 break; 4656 case FRI_LOOKUP : 4657 fp->fr_srcptr = ipf_findlookup(softc, unit, fp, 4658 &fp->fr_src6, 4659 &fp->fr_smsk6); 4660 if (fp->fr_srcfunc == NULL) { 4661 IPFERROR(132); 4662 error = ESRCH; 4663 break; 4664 } 4665 break; 4666 case FRI_NORMAL : 4667 break; 4668 default : 4669 IPFERROR(133); 4670 error = EINVAL; 4671 break; 4672 } 4673 if (error != 0) 4674 break; 4675 4676 switch (fp->fr_datype) 4677 { 4678 case FRI_BROADCAST : 4679 case FRI_DYNAMIC : 4680 case FRI_NETWORK : 4681 case FRI_NETMASKED : 4682 case FRI_PEERADDR : 4683 if (fp->fr_difpidx < 0) { 4684 IPFERROR(24); 4685 error = EINVAL; 4686 } 4687 break; 4688 case FRI_LOOKUP : 4689 fp->fr_dstptr = ipf_findlookup(softc, unit, fp, 4690 &fp->fr_dst6, 4691 &fp->fr_dmsk6); 4692 if (fp->fr_dstfunc == NULL) { 4693 IPFERROR(134); 4694 error = ESRCH; 4695 } 4696 break; 4697 case FRI_NORMAL : 4698 break; 4699 default : 4700 IPFERROR(135); 4701 error = EINVAL; 4702 } 4703 break; 4704 4705 case FR_T_NONE : 4706 case FR_T_CALLFUNC : 4707 case FR_T_COMPIPF : 4708 break; 4709 4710 case FR_T_IPFEXPR : 4711 if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) { 4712 IPFERROR(25); 4713 error = EINVAL; 4714 } 4715 break; 4716 4717 default : 4718 IPFERROR(26); 4719 error = EINVAL; 4720 break; 4721 } 4722 if (error != 0) 4723 goto donenolock; 4724 4725 if (fp->fr_tif.fd_name != -1) { 4726 if ((fp->fr_tif.fd_name < 0) || 4727 (fp->fr_tif.fd_name >= fp->fr_namelen)) { 4728 IPFERROR(139); 4729 error = EINVAL; 4730 goto donenolock; 4731 } 4732 } 4733 4734 if (fp->fr_dif.fd_name != -1) { 4735 if ((fp->fr_dif.fd_name < 0) || 4736 (fp->fr_dif.fd_name >= fp->fr_namelen)) { 4737 IPFERROR(140); 4738 error = EINVAL; 4739 goto donenolock; 4740 } 4741 } 4742 4743 if (fp->fr_rif.fd_name != -1) { 4744 if ((fp->fr_rif.fd_name < 0) || 4745 (fp->fr_rif.fd_name >= fp->fr_namelen)) { 4746 IPFERROR(141); 4747 error = EINVAL; 4748 goto donenolock; 4749 } 4750 } 4751 4752 /* 4753 * Lookup all the interface names that are part of the rule. 4754 */ 4755 error = ipf_synclist(softc, fp, NULL); 4756 if (error != 0) 4757 goto donenolock; 4758 fp->fr_statecnt = 0; 4759 if (fp->fr_srctrack.ht_max_nodes != 0) 4760 ipf_rb_ht_init(&fp->fr_srctrack); 4761 4762 /* 4763 * Look for an existing matching filter rule, but don't include the 4764 * next or interface pointer in the comparison (fr_next, fr_ifa). 4765 * This elminates rules which are indentical being loaded. Checksum 4766 * the constant part of the filter rule to make comparisons quicker 4767 * (this meaning no pointers are included). 4768 */ 4769 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4770 p < pp; p++) 4771 fp->fr_cksum += *p; 4772 pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize); 4773 for (p = (u_int *)fp->fr_data; p < pp; p++) 4774 fp->fr_cksum += *p; 4775 4776 WRITE_ENTER(&softc->ipf_mutex); 4777 4778 /* 4779 * Now that the filter rule lists are locked, we can walk the 4780 * chain of them without fear. 4781 */ 4782 ftail = fprev; 4783 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4784 if (fp->fr_collect <= f->fr_collect) { 4785 ftail = fprev; 4786 f = NULL; 4787 break; 4788 } 4789 fprev = ftail; 4790 } 4791 4792 for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4793 DT2(rule_cmp, frentry_t *, fp, frentry_t *, f); 4794 if ((fp->fr_cksum != f->fr_cksum) || 4795 (fp->fr_size != f->fr_size) || 4796 (f->fr_dsize != fp->fr_dsize)) 4797 continue; 4798 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, 4799 fp->fr_size - offsetof(struct frentry, fr_func)) != 0) 4800 continue; 4801 if ((!ptr && !f->fr_data) || 4802 (ptr && f->fr_data && 4803 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize))) 4804 break; 4805 } 4806 4807 /* 4808 * If zero'ing statistics, copy current to caller and zero. 4809 */ 4810 if (addrem == 2) { 4811 if (f == NULL) { 4812 IPFERROR(27); 4813 error = ESRCH; 4814 } else { 4815 /* 4816 * Copy and reduce lock because of impending copyout. 4817 * Well we should, but if we do then the atomicity of 4818 * this call and the correctness of fr_hits and 4819 * fr_bytes cannot be guaranteed. As it is, this code 4820 * only resets them to 0 if they are successfully 4821 * copied out into user space. 4822 */ 4823 bcopy((char *)f, (char *)fp, f->fr_size); 4824 /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */ 4825 4826 /* 4827 * When we copy this rule back out, set the data 4828 * pointer to be what it was in user space. 4829 */ 4830 fp->fr_data = uptr; 4831 error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY); 4832 4833 if (error == 0) { 4834 if ((f->fr_dsize != 0) && (uptr != NULL)) 4835 error = COPYOUT(f->fr_data, uptr, 4836 f->fr_dsize); 4837 if (error != 0) { 4838 IPFERROR(28); 4839 error = EFAULT; 4840 } 4841 if (error == 0) { 4842 f->fr_hits = 0; 4843 f->fr_bytes = 0; 4844 } 4845 } 4846 } 4847 4848 if (makecopy != 0) { 4849 if (ptr != NULL) { 4850 KFREES(ptr, fp->fr_dsize); 4851 } 4852 KFREES(fp, fp->fr_size); 4853 } 4854 RWLOCK_EXIT(&softc->ipf_mutex); 4855 return error; 4856 } 4857 4858 if (!f) { 4859 /* 4860 * At the end of this, ftail must point to the place where the 4861 * new rule is to be saved/inserted/added. 4862 * For SIOCAD*FR, this should be the last rule in the group of 4863 * rules that have equal fr_collect fields. 4864 * For SIOCIN*FR, ... 4865 */ 4866 if (req == (ioctlcmd_t)SIOCADAFR || 4867 req == (ioctlcmd_t)SIOCADIFR) { 4868 4869 for (ftail = fprev; (f = *ftail) != NULL; ) { 4870 if (f->fr_collect > fp->fr_collect) 4871 break; 4872 ftail = &f->fr_next; 4873 fprev = ftail; 4874 } 4875 ftail = fprev; 4876 f = NULL; 4877 ptr = NULL; 4878 } else if (req == (ioctlcmd_t)SIOCINAFR || 4879 req == (ioctlcmd_t)SIOCINIFR) { 4880 while ((f = *fprev) != NULL) { 4881 if (f->fr_collect >= fp->fr_collect) 4882 break; 4883 fprev = &f->fr_next; 4884 } 4885 ftail = fprev; 4886 if (fp->fr_hits != 0) { 4887 while (fp->fr_hits && (f = *ftail)) { 4888 if (f->fr_collect != fp->fr_collect) 4889 break; 4890 fprev = ftail; 4891 ftail = &f->fr_next; 4892 fp->fr_hits--; 4893 } 4894 } 4895 f = NULL; 4896 ptr = NULL; 4897 } 4898 } 4899 4900 /* 4901 * Request to remove a rule. 4902 */ 4903 if (addrem == 1) { 4904 if (!f) { 4905 IPFERROR(29); 4906 error = ESRCH; 4907 } else { 4908 /* 4909 * Do not allow activity from user space to interfere 4910 * with rules not loaded that way. 4911 */ 4912 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4913 IPFERROR(30); 4914 error = EPERM; 4915 goto done; 4916 } 4917 4918 /* 4919 * Return EBUSY if the rule is being reference by 4920 * something else (eg state information.) 4921 */ 4922 if (f->fr_ref > 1) { 4923 IPFERROR(31); 4924 error = EBUSY; 4925 goto done; 4926 } 4927 #ifdef IPFILTER_SCAN 4928 if (f->fr_isctag != -1 && 4929 (f->fr_isc != (struct ipscan *)-1)) 4930 ipf_scan_detachfr(f); 4931 #endif 4932 4933 if (unit == IPL_LOGAUTH) { 4934 error = ipf_auth_precmd(softc, req, f, ftail); 4935 goto done; 4936 } 4937 4938 ipf_rule_delete(softc, f, unit, set); 4939 4940 need_free = makecopy; 4941 } 4942 } else { 4943 /* 4944 * Not removing, so we must be adding/inserting a rule. 4945 */ 4946 if (f != NULL) { 4947 IPFERROR(32); 4948 error = EEXIST; 4949 goto done; 4950 } 4951 if (unit == IPL_LOGAUTH) { 4952 error = ipf_auth_precmd(softc, req, fp, ftail); 4953 goto done; 4954 } 4955 4956 MUTEX_NUKE(&fp->fr_lock); 4957 MUTEX_INIT(&fp->fr_lock, "filter rule lock"); 4958 if (fp->fr_die != 0) 4959 ipf_rule_expire_insert(softc, fp, set); 4960 4961 fp->fr_hits = 0; 4962 if (makecopy != 0) 4963 fp->fr_ref = 1; 4964 fp->fr_pnext = ftail; 4965 fp->fr_next = *ftail; 4966 if (fp->fr_next != NULL) 4967 fp->fr_next->fr_pnext = &fp->fr_next; 4968 *ftail = fp; 4969 if (addrem == 0) 4970 ipf_fixskip(ftail, fp, 1); 4971 4972 fp->fr_icmpgrp = NULL; 4973 if (fp->fr_icmphead != -1) { 4974 group = FR_NAME(fp, fr_icmphead); 4975 fg = ipf_group_add(softc, group, fp, 0, unit, set); 4976 fp->fr_icmpgrp = fg; 4977 } 4978 4979 fp->fr_grphead = NULL; 4980 if (fp->fr_grhead != -1) { 4981 group = FR_NAME(fp, fr_grhead); 4982 fg = ipf_group_add(softc, group, fp, fp->fr_flags, 4983 unit, set); 4984 fp->fr_grphead = fg; 4985 } 4986 } 4987 done: 4988 RWLOCK_EXIT(&softc->ipf_mutex); 4989 donenolock: 4990 if (need_free || (error != 0)) { 4991 if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) { 4992 if ((fp->fr_satype == FRI_LOOKUP) && 4993 (fp->fr_srcptr != NULL)) 4994 ipf_lookup_deref(softc, fp->fr_srctype, 4995 fp->fr_srcptr); 4996 if ((fp->fr_datype == FRI_LOOKUP) && 4997 (fp->fr_dstptr != NULL)) 4998 ipf_lookup_deref(softc, fp->fr_dsttype, 4999 fp->fr_dstptr); 5000 } 5001 if (fp->fr_grp != NULL) { 5002 WRITE_ENTER(&softc->ipf_mutex); 5003 ipf_group_del(softc, fp->fr_grp, fp); 5004 RWLOCK_EXIT(&softc->ipf_mutex); 5005 } 5006 if ((ptr != NULL) && (makecopy != 0)) { 5007 KFREES(ptr, fp->fr_dsize); 5008 } 5009 KFREES(fp, fp->fr_size); 5010 } 5011 return (error); 5012 } 5013 5014 5015 /* ------------------------------------------------------------------------ */ 5016 /* Function: ipf_rule_delete */ 5017 /* Returns: Nil */ 5018 /* Parameters: softc(I) - pointer to soft context main structure */ 5019 /* f(I) - pointer to the rule being deleted */ 5020 /* ftail(I) - pointer to the pointer to f */ 5021 /* unit(I) - device for which this is for */ 5022 /* set(I) - 1 or 0 (filter set) */ 5023 /* */ 5024 /* This function attempts to do what it can to delete a filter rule: remove */ 5025 /* it from any linked lists and remove any groups it is responsible for. */ 5026 /* But in the end, removing a rule can only drop the reference count - we */ 5027 /* must use that as the guide for whether or not it can be freed. */ 5028 /* ------------------------------------------------------------------------ */ 5029 static void 5030 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set) 5031 { 5032 5033 /* 5034 * If fr_pdnext is set, then the rule is on the expire list, so 5035 * remove it from there. 5036 */ 5037 if (f->fr_pdnext != NULL) { 5038 *f->fr_pdnext = f->fr_dnext; 5039 if (f->fr_dnext != NULL) 5040 f->fr_dnext->fr_pdnext = f->fr_pdnext; 5041 f->fr_pdnext = NULL; 5042 f->fr_dnext = NULL; 5043 } 5044 5045 ipf_fixskip(f->fr_pnext, f, -1); 5046 if (f->fr_pnext != NULL) 5047 *f->fr_pnext = f->fr_next; 5048 if (f->fr_next != NULL) 5049 f->fr_next->fr_pnext = f->fr_pnext; 5050 f->fr_pnext = NULL; 5051 f->fr_next = NULL; 5052 5053 (void) ipf_derefrule(softc, &f); 5054 } 5055 5056 /* ------------------------------------------------------------------------ */ 5057 /* Function: ipf_rule_expire_insert */ 5058 /* Returns: Nil */ 5059 /* Parameters: softc(I) - pointer to soft context main structure */ 5060 /* f(I) - pointer to rule to be added to expire list */ 5061 /* set(I) - 1 or 0 (filter set) */ 5062 /* */ 5063 /* If the new rule has a given expiration time, insert it into the list of */ 5064 /* expiring rules with the ones to be removed first added to the front of */ 5065 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */ 5066 /* expiration interval checks. */ 5067 /* ------------------------------------------------------------------------ */ 5068 static void 5069 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set) 5070 { 5071 frentry_t *fr; 5072 5073 /* 5074 */ 5075 5076 f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die); 5077 for (fr = softc->ipf_rule_explist[set]; fr != NULL; 5078 fr = fr->fr_dnext) { 5079 if (f->fr_die < fr->fr_die) 5080 break; 5081 if (fr->fr_dnext == NULL) { 5082 /* 5083 * We've got to the last rule and everything 5084 * wanted to be expired before this new node, 5085 * so we have to tack it on the end... 5086 */ 5087 fr->fr_dnext = f; 5088 f->fr_pdnext = &fr->fr_dnext; 5089 fr = NULL; 5090 break; 5091 } 5092 } 5093 5094 if (softc->ipf_rule_explist[set] == NULL) { 5095 softc->ipf_rule_explist[set] = f; 5096 f->fr_pdnext = &softc->ipf_rule_explist[set]; 5097 } else if (fr != NULL) { 5098 f->fr_dnext = fr; 5099 f->fr_pdnext = fr->fr_pdnext; 5100 fr->fr_pdnext = &f->fr_dnext; 5101 } 5102 } 5103 5104 5105 /* ------------------------------------------------------------------------ */ 5106 /* Function: ipf_findlookup */ 5107 /* Returns: NULL = failure, else success */ 5108 /* Parameters: softc(I) - pointer to soft context main structure */ 5109 /* unit(I) - ipf device we want to find match for */ 5110 /* fp(I) - rule for which lookup is for */ 5111 /* addrp(I) - pointer to lookup information in address struct */ 5112 /* maskp(O) - pointer to lookup information for storage */ 5113 /* */ 5114 /* When using pools and hash tables to store addresses for matching in */ 5115 /* rules, it is necessary to resolve both the object referred to by the */ 5116 /* name or address (and return that pointer) and also provide the means by */ 5117 /* which to determine if an address belongs to that object to make the */ 5118 /* packet matching quicker. */ 5119 /* ------------------------------------------------------------------------ */ 5120 static void * 5121 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr, 5122 i6addr_t *addrp, i6addr_t *maskp) 5123 { 5124 void *ptr = NULL; 5125 5126 switch (addrp->iplookupsubtype) 5127 { 5128 case 0 : 5129 ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype, 5130 addrp->iplookupnum, 5131 &maskp->iplookupfunc); 5132 break; 5133 case 1 : 5134 if (addrp->iplookupname < 0) 5135 break; 5136 if (addrp->iplookupname >= fr->fr_namelen) 5137 break; 5138 ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype, 5139 fr->fr_names + addrp->iplookupname, 5140 &maskp->iplookupfunc); 5141 break; 5142 default : 5143 break; 5144 } 5145 5146 return ptr; 5147 } 5148 5149 5150 /* ------------------------------------------------------------------------ */ 5151 /* Function: ipf_funcinit */ 5152 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 5153 /* Parameters: softc(I) - pointer to soft context main structure */ 5154 /* fr(I) - pointer to filter rule */ 5155 /* */ 5156 /* If a rule is a call rule, then check if the function it points to needs */ 5157 /* an init function to be called now the rule has been loaded. */ 5158 /* ------------------------------------------------------------------------ */ 5159 static int 5160 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr) 5161 { 5162 ipfunc_resolve_t *ft; 5163 int err; 5164 5165 IPFERROR(34); 5166 err = ESRCH; 5167 5168 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5169 if (ft->ipfu_addr == fr->fr_func) { 5170 err = 0; 5171 if (ft->ipfu_init != NULL) 5172 err = (*ft->ipfu_init)(softc, fr); 5173 break; 5174 } 5175 return err; 5176 } 5177 5178 5179 /* ------------------------------------------------------------------------ */ 5180 /* Function: ipf_funcfini */ 5181 /* Returns: Nil */ 5182 /* Parameters: softc(I) - pointer to soft context main structure */ 5183 /* fr(I) - pointer to filter rule */ 5184 /* */ 5185 /* For a given filter rule, call the matching "fini" function if the rule */ 5186 /* is using a known function that would have resulted in the "init" being */ 5187 /* called for ealier. */ 5188 /* ------------------------------------------------------------------------ */ 5189 static void 5190 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr) 5191 { 5192 ipfunc_resolve_t *ft; 5193 5194 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5195 if (ft->ipfu_addr == fr->fr_func) { 5196 if (ft->ipfu_fini != NULL) 5197 (void) (*ft->ipfu_fini)(softc, fr); 5198 break; 5199 } 5200 } 5201 5202 5203 /* ------------------------------------------------------------------------ */ 5204 /* Function: ipf_findfunc */ 5205 /* Returns: ipfunc_t - pointer to function if found, else NULL */ 5206 /* Parameters: funcptr(I) - function pointer to lookup */ 5207 /* */ 5208 /* Look for a function in the table of known functions. */ 5209 /* ------------------------------------------------------------------------ */ 5210 static ipfunc_t 5211 ipf_findfunc(ipfunc_t funcptr) 5212 { 5213 ipfunc_resolve_t *ft; 5214 5215 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5216 if (ft->ipfu_addr == funcptr) 5217 return funcptr; 5218 return NULL; 5219 } 5220 5221 5222 /* ------------------------------------------------------------------------ */ 5223 /* Function: ipf_resolvefunc */ 5224 /* Returns: int - 0 == success, else error */ 5225 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 5226 /* */ 5227 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 5228 /* This will either be the function name (if the pointer is set) or the */ 5229 /* function pointer if the name is set. When found, fill in the other one */ 5230 /* so that the entire, complete, structure can be copied back to user space.*/ 5231 /* ------------------------------------------------------------------------ */ 5232 int 5233 ipf_resolvefunc(ipf_main_softc_t *softc, void *data) 5234 { 5235 ipfunc_resolve_t res, *ft; 5236 int error; 5237 5238 error = BCOPYIN(data, &res, sizeof(res)); 5239 if (error != 0) { 5240 IPFERROR(123); 5241 return EFAULT; 5242 } 5243 5244 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 5245 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5246 if (strncmp(res.ipfu_name, ft->ipfu_name, 5247 sizeof(res.ipfu_name)) == 0) { 5248 res.ipfu_addr = ft->ipfu_addr; 5249 res.ipfu_init = ft->ipfu_init; 5250 if (COPYOUT(&res, data, sizeof(res)) != 0) { 5251 IPFERROR(35); 5252 return EFAULT; 5253 } 5254 return 0; 5255 } 5256 } 5257 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 5258 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++) 5259 if (ft->ipfu_addr == res.ipfu_addr) { 5260 (void) strncpy(res.ipfu_name, ft->ipfu_name, 5261 sizeof(res.ipfu_name)); 5262 res.ipfu_init = ft->ipfu_init; 5263 if (COPYOUT(&res, data, sizeof(res)) != 0) { 5264 IPFERROR(36); 5265 return EFAULT; 5266 } 5267 return 0; 5268 } 5269 } 5270 IPFERROR(37); 5271 return ESRCH; 5272 } 5273 5274 5275 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \ 5276 !defined(__FreeBSD__)) || \ 5277 FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \ 5278 OPENBSD_LT_REV(200006) 5279 /* 5280 * From: NetBSD 5281 * ppsratecheck(): packets (or events) per second limitation. 5282 */ 5283 int 5284 ppsratecheck(lasttime, curpps, maxpps) 5285 struct timeval *lasttime; 5286 int *curpps; 5287 int maxpps; /* maximum pps allowed */ 5288 { 5289 struct timeval tv, delta; 5290 int rv; 5291 5292 GETKTIME(&tv); 5293 5294 delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 5295 delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 5296 if (delta.tv_usec < 0) { 5297 delta.tv_sec--; 5298 delta.tv_usec += 1000000; 5299 } 5300 5301 /* 5302 * check for 0,0 is so that the message will be seen at least once. 5303 * if more than one second have passed since the last update of 5304 * lasttime, reset the counter. 5305 * 5306 * we do increment *curpps even in *curpps < maxpps case, as some may 5307 * try to use *curpps for stat purposes as well. 5308 */ 5309 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 5310 delta.tv_sec >= 1) { 5311 *lasttime = tv; 5312 *curpps = 0; 5313 rv = 1; 5314 } else if (maxpps < 0) 5315 rv = 1; 5316 else if (*curpps < maxpps) 5317 rv = 1; 5318 else 5319 rv = 0; 5320 *curpps = *curpps + 1; 5321 5322 return (rv); 5323 } 5324 #endif 5325 5326 5327 /* ------------------------------------------------------------------------ */ 5328 /* Function: ipf_derefrule */ 5329 /* Returns: int - 0 == rule freed up, else rule not freed */ 5330 /* Parameters: fr(I) - pointer to filter rule */ 5331 /* */ 5332 /* Decrement the reference counter to a rule by one. If it reaches zero, */ 5333 /* free it and any associated storage space being used by it. */ 5334 /* ------------------------------------------------------------------------ */ 5335 int 5336 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp) 5337 { 5338 frentry_t *fr; 5339 frdest_t *fdp; 5340 5341 fr = *frp; 5342 *frp = NULL; 5343 5344 MUTEX_ENTER(&fr->fr_lock); 5345 fr->fr_ref--; 5346 if (fr->fr_ref == 0) { 5347 MUTEX_EXIT(&fr->fr_lock); 5348 MUTEX_DESTROY(&fr->fr_lock); 5349 5350 ipf_funcfini(softc, fr); 5351 5352 fdp = &fr->fr_tif; 5353 if (fdp->fd_type == FRD_DSTLIST) 5354 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5355 5356 fdp = &fr->fr_rif; 5357 if (fdp->fd_type == FRD_DSTLIST) 5358 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5359 5360 fdp = &fr->fr_dif; 5361 if (fdp->fd_type == FRD_DSTLIST) 5362 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr); 5363 5364 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && 5365 fr->fr_satype == FRI_LOOKUP) 5366 ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr); 5367 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF && 5368 fr->fr_datype == FRI_LOOKUP) 5369 ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr); 5370 5371 if (fr->fr_grp != NULL) 5372 ipf_group_del(softc, fr->fr_grp, fr); 5373 5374 if (fr->fr_grphead != NULL) 5375 ipf_group_del(softc, fr->fr_grphead, fr); 5376 5377 if (fr->fr_icmpgrp != NULL) 5378 ipf_group_del(softc, fr->fr_icmpgrp, fr); 5379 5380 if ((fr->fr_flags & FR_COPIED) != 0) { 5381 if (fr->fr_dsize) { 5382 KFREES(fr->fr_data, fr->fr_dsize); 5383 } 5384 KFREES(fr, fr->fr_size); 5385 return 0; 5386 } 5387 return 1; 5388 } else { 5389 MUTEX_EXIT(&fr->fr_lock); 5390 } 5391 return -1; 5392 } 5393 5394 5395 /* ------------------------------------------------------------------------ */ 5396 /* Function: ipf_grpmapinit */ 5397 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 5398 /* Parameters: fr(I) - pointer to rule to find hash table for */ 5399 /* */ 5400 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 5401 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */ 5402 /* ------------------------------------------------------------------------ */ 5403 static int 5404 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr) 5405 { 5406 char name[FR_GROUPLEN]; 5407 iphtable_t *iph; 5408 5409 (void) snprintf(name, sizeof(name), "%d", fr->fr_arg); 5410 iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name); 5411 if (iph == NULL) { 5412 IPFERROR(38); 5413 return ESRCH; 5414 } 5415 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) { 5416 IPFERROR(39); 5417 return ESRCH; 5418 } 5419 iph->iph_ref++; 5420 fr->fr_ptr = iph; 5421 return 0; 5422 } 5423 5424 5425 /* ------------------------------------------------------------------------ */ 5426 /* Function: ipf_grpmapfini */ 5427 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 5428 /* Parameters: softc(I) - pointer to soft context main structure */ 5429 /* fr(I) - pointer to rule to release hash table for */ 5430 /* */ 5431 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */ 5432 /* be called to undo what ipf_grpmapinit caused to be done. */ 5433 /* ------------------------------------------------------------------------ */ 5434 static int 5435 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr) 5436 { 5437 iphtable_t *iph; 5438 iph = fr->fr_ptr; 5439 if (iph != NULL) 5440 ipf_lookup_deref(softc, IPLT_HASH, iph); 5441 return 0; 5442 } 5443 5444 5445 /* ------------------------------------------------------------------------ */ 5446 /* Function: ipf_srcgrpmap */ 5447 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5448 /* Parameters: fin(I) - pointer to packet information */ 5449 /* passp(IO) - pointer to current/new filter decision (unused) */ 5450 /* */ 5451 /* Look for a rule group head in a hash table, using the source address as */ 5452 /* the key, and descend into that group and continue matching rules against */ 5453 /* the packet. */ 5454 /* ------------------------------------------------------------------------ */ 5455 frentry_t * 5456 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp) 5457 { 5458 frgroup_t *fg; 5459 void *rval; 5460 5461 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, 5462 &fin->fin_src); 5463 if (rval == NULL) 5464 return NULL; 5465 5466 fg = rval; 5467 fin->fin_fr = fg->fg_start; 5468 (void) ipf_scanlist(fin, *passp); 5469 return fin->fin_fr; 5470 } 5471 5472 5473 /* ------------------------------------------------------------------------ */ 5474 /* Function: ipf_dstgrpmap */ 5475 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5476 /* Parameters: fin(I) - pointer to packet information */ 5477 /* passp(IO) - pointer to current/new filter decision (unused) */ 5478 /* */ 5479 /* Look for a rule group head in a hash table, using the destination */ 5480 /* address as the key, and descend into that group and continue matching */ 5481 /* rules against the packet. */ 5482 /* ------------------------------------------------------------------------ */ 5483 frentry_t * 5484 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp) 5485 { 5486 frgroup_t *fg; 5487 void *rval; 5488 5489 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr, 5490 &fin->fin_dst); 5491 if (rval == NULL) 5492 return NULL; 5493 5494 fg = rval; 5495 fin->fin_fr = fg->fg_start; 5496 (void) ipf_scanlist(fin, *passp); 5497 return fin->fin_fr; 5498 } 5499 5500 /* 5501 * Queue functions 5502 * =============== 5503 * These functions manage objects on queues for efficient timeouts. There 5504 * are a number of system defined queues as well as user defined timeouts. 5505 * It is expected that a lock is held in the domain in which the queue 5506 * belongs (i.e. either state or NAT) when calling any of these functions 5507 * that prevents ipf_freetimeoutqueue() from being called at the same time 5508 * as any other. 5509 */ 5510 5511 5512 /* ------------------------------------------------------------------------ */ 5513 /* Function: ipf_addtimeoutqueue */ 5514 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 5515 /* timeout queue with given interval. */ 5516 /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 5517 /* of interface queues. */ 5518 /* seconds(I) - timeout value in seconds for this queue. */ 5519 /* */ 5520 /* This routine first looks for a timeout queue that matches the interval */ 5521 /* being requested. If it finds one, increments the reference counter and */ 5522 /* returns a pointer to it. If none are found, it allocates a new one and */ 5523 /* inserts it at the top of the list. */ 5524 /* */ 5525 /* Locking. */ 5526 /* It is assumed that the caller of this function has an appropriate lock */ 5527 /* held (exclusively) in the domain that encompases 'parent'. */ 5528 /* ------------------------------------------------------------------------ */ 5529 ipftq_t * 5530 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds) 5531 { 5532 ipftq_t *ifq; 5533 u_int period; 5534 5535 period = seconds * IPF_HZ_DIVIDE; 5536 5537 MUTEX_ENTER(&softc->ipf_timeoutlock); 5538 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 5539 if (ifq->ifq_ttl == period) { 5540 /* 5541 * Reset the delete flag, if set, so the structure 5542 * gets reused rather than freed and reallocated. 5543 */ 5544 MUTEX_ENTER(&ifq->ifq_lock); 5545 ifq->ifq_flags &= ~IFQF_DELETE; 5546 ifq->ifq_ref++; 5547 MUTEX_EXIT(&ifq->ifq_lock); 5548 MUTEX_EXIT(&softc->ipf_timeoutlock); 5549 5550 return ifq; 5551 } 5552 } 5553 5554 KMALLOC(ifq, ipftq_t *); 5555 if (ifq != NULL) { 5556 MUTEX_NUKE(&ifq->ifq_lock); 5557 IPFTQ_INIT(ifq, period, "ipftq mutex"); 5558 ifq->ifq_next = *parent; 5559 ifq->ifq_pnext = parent; 5560 ifq->ifq_flags = IFQF_USER; 5561 ifq->ifq_ref++; 5562 *parent = ifq; 5563 softc->ipf_userifqs++; 5564 } 5565 MUTEX_EXIT(&softc->ipf_timeoutlock); 5566 return ifq; 5567 } 5568 5569 5570 /* ------------------------------------------------------------------------ */ 5571 /* Function: ipf_deletetimeoutqueue */ 5572 /* Returns: int - new reference count value of the timeout queue */ 5573 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5574 /* Locks: ifq->ifq_lock */ 5575 /* */ 5576 /* This routine must be called when we're discarding a pointer to a timeout */ 5577 /* queue object, taking care of the reference counter. */ 5578 /* */ 5579 /* Now that this just sets a DELETE flag, it requires the expire code to */ 5580 /* check the list of user defined timeout queues and call the free function */ 5581 /* below (currently commented out) to stop memory leaking. It is done this */ 5582 /* way because the locking may not be sufficient to safely do a free when */ 5583 /* this function is called. */ 5584 /* ------------------------------------------------------------------------ */ 5585 int 5586 ipf_deletetimeoutqueue(ipftq_t *ifq) 5587 { 5588 5589 ifq->ifq_ref--; 5590 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 5591 ifq->ifq_flags |= IFQF_DELETE; 5592 } 5593 5594 return ifq->ifq_ref; 5595 } 5596 5597 5598 /* ------------------------------------------------------------------------ */ 5599 /* Function: ipf_freetimeoutqueue */ 5600 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5601 /* Returns: Nil */ 5602 /* */ 5603 /* Locking: */ 5604 /* It is assumed that the caller of this function has an appropriate lock */ 5605 /* held (exclusively) in the domain that encompases the callers "domain". */ 5606 /* The ifq_lock for this structure should not be held. */ 5607 /* */ 5608 /* Remove a user defined timeout queue from the list of queues it is in and */ 5609 /* tidy up after this is done. */ 5610 /* ------------------------------------------------------------------------ */ 5611 void 5612 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq) 5613 { 5614 5615 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 5616 ((ifq->ifq_flags & IFQF_USER) == 0)) { 5617 printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 5618 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 5619 ifq->ifq_ref); 5620 return; 5621 } 5622 5623 /* 5624 * Remove from its position in the list. 5625 */ 5626 *ifq->ifq_pnext = ifq->ifq_next; 5627 if (ifq->ifq_next != NULL) 5628 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 5629 ifq->ifq_next = NULL; 5630 ifq->ifq_pnext = NULL; 5631 5632 MUTEX_DESTROY(&ifq->ifq_lock); 5633 ATOMIC_DEC(softc->ipf_userifqs); 5634 KFREE(ifq); 5635 } 5636 5637 5638 /* ------------------------------------------------------------------------ */ 5639 /* Function: ipf_deletequeueentry */ 5640 /* Returns: Nil */ 5641 /* Parameters: tqe(I) - timeout queue entry to delete */ 5642 /* */ 5643 /* Remove a tail queue entry from its queue and make it an orphan. */ 5644 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */ 5645 /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */ 5646 /* the correct lock(s) may not be held that would make it safe to do so. */ 5647 /* ------------------------------------------------------------------------ */ 5648 void 5649 ipf_deletequeueentry(ipftqent_t *tqe) 5650 { 5651 ipftq_t *ifq; 5652 5653 ifq = tqe->tqe_ifq; 5654 5655 MUTEX_ENTER(&ifq->ifq_lock); 5656 5657 if (tqe->tqe_pnext != NULL) { 5658 *tqe->tqe_pnext = tqe->tqe_next; 5659 if (tqe->tqe_next != NULL) 5660 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5661 else /* we must be the tail anyway */ 5662 ifq->ifq_tail = tqe->tqe_pnext; 5663 5664 tqe->tqe_pnext = NULL; 5665 tqe->tqe_ifq = NULL; 5666 } 5667 5668 (void) ipf_deletetimeoutqueue(ifq); 5669 ASSERT(ifq->ifq_ref > 0); 5670 5671 MUTEX_EXIT(&ifq->ifq_lock); 5672 } 5673 5674 5675 /* ------------------------------------------------------------------------ */ 5676 /* Function: ipf_queuefront */ 5677 /* Returns: Nil */ 5678 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5679 /* */ 5680 /* Move a queue entry to the front of the queue, if it isn't already there. */ 5681 /* ------------------------------------------------------------------------ */ 5682 void 5683 ipf_queuefront(ipftqent_t *tqe) 5684 { 5685 ipftq_t *ifq; 5686 5687 ifq = tqe->tqe_ifq; 5688 if (ifq == NULL) 5689 return; 5690 5691 MUTEX_ENTER(&ifq->ifq_lock); 5692 if (ifq->ifq_head != tqe) { 5693 *tqe->tqe_pnext = tqe->tqe_next; 5694 if (tqe->tqe_next) 5695 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5696 else 5697 ifq->ifq_tail = tqe->tqe_pnext; 5698 5699 tqe->tqe_next = ifq->ifq_head; 5700 ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5701 ifq->ifq_head = tqe; 5702 tqe->tqe_pnext = &ifq->ifq_head; 5703 } 5704 MUTEX_EXIT(&ifq->ifq_lock); 5705 } 5706 5707 5708 /* ------------------------------------------------------------------------ */ 5709 /* Function: ipf_queueback */ 5710 /* Returns: Nil */ 5711 /* Parameters: ticks(I) - ipf tick time to use with this call */ 5712 /* tqe(I) - pointer to timeout queue entry */ 5713 /* */ 5714 /* Move a queue entry to the back of the queue, if it isn't already there. */ 5715 /* We use use ticks to calculate the expiration and mark for when we last */ 5716 /* touched the structure. */ 5717 /* ------------------------------------------------------------------------ */ 5718 void 5719 ipf_queueback(u_long ticks, ipftqent_t *tqe) 5720 { 5721 ipftq_t *ifq; 5722 5723 ifq = tqe->tqe_ifq; 5724 if (ifq == NULL) 5725 return; 5726 tqe->tqe_die = ticks + ifq->ifq_ttl; 5727 tqe->tqe_touched = ticks; 5728 5729 MUTEX_ENTER(&ifq->ifq_lock); 5730 if (tqe->tqe_next != NULL) { /* at the end already ? */ 5731 /* 5732 * Remove from list 5733 */ 5734 *tqe->tqe_pnext = tqe->tqe_next; 5735 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5736 5737 /* 5738 * Make it the last entry. 5739 */ 5740 tqe->tqe_next = NULL; 5741 tqe->tqe_pnext = ifq->ifq_tail; 5742 *ifq->ifq_tail = tqe; 5743 ifq->ifq_tail = &tqe->tqe_next; 5744 } 5745 MUTEX_EXIT(&ifq->ifq_lock); 5746 } 5747 5748 5749 /* ------------------------------------------------------------------------ */ 5750 /* Function: ipf_queueappend */ 5751 /* Returns: Nil */ 5752 /* Parameters: ticks(I) - ipf tick time to use with this call */ 5753 /* tqe(I) - pointer to timeout queue entry */ 5754 /* ifq(I) - pointer to timeout queue */ 5755 /* parent(I) - owing object pointer */ 5756 /* */ 5757 /* Add a new item to this queue and put it on the very end. */ 5758 /* We use use ticks to calculate the expiration and mark for when we last */ 5759 /* touched the structure. */ 5760 /* ------------------------------------------------------------------------ */ 5761 void 5762 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent) 5763 { 5764 5765 MUTEX_ENTER(&ifq->ifq_lock); 5766 tqe->tqe_parent = parent; 5767 tqe->tqe_pnext = ifq->ifq_tail; 5768 *ifq->ifq_tail = tqe; 5769 ifq->ifq_tail = &tqe->tqe_next; 5770 tqe->tqe_next = NULL; 5771 tqe->tqe_ifq = ifq; 5772 tqe->tqe_die = ticks + ifq->ifq_ttl; 5773 tqe->tqe_touched = ticks; 5774 ifq->ifq_ref++; 5775 MUTEX_EXIT(&ifq->ifq_lock); 5776 } 5777 5778 5779 /* ------------------------------------------------------------------------ */ 5780 /* Function: ipf_movequeue */ 5781 /* Returns: Nil */ 5782 /* Parameters: tq(I) - pointer to timeout queue information */ 5783 /* oifp(I) - old timeout queue entry was on */ 5784 /* nifp(I) - new timeout queue to put entry on */ 5785 /* */ 5786 /* Move a queue entry from one timeout queue to another timeout queue. */ 5787 /* If it notices that the current entry is already last and does not need */ 5788 /* to move queue, the return. */ 5789 /* ------------------------------------------------------------------------ */ 5790 void 5791 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq) 5792 { 5793 5794 /* 5795 * If the queue hasn't changed and we last touched this entry at the 5796 * same ipf time, then we're not going to achieve anything by either 5797 * changing the ttl or moving it on the queue. 5798 */ 5799 if (oifq == nifq && tqe->tqe_touched == ticks) 5800 return; 5801 5802 /* 5803 * For any of this to be outside the lock, there is a risk that two 5804 * packets entering simultaneously, with one changing to a different 5805 * queue and one not, could end up with things in a bizarre state. 5806 */ 5807 MUTEX_ENTER(&oifq->ifq_lock); 5808 5809 tqe->tqe_touched = ticks; 5810 tqe->tqe_die = ticks + nifq->ifq_ttl; 5811 /* 5812 * Is the operation here going to be a no-op ? 5813 */ 5814 if (oifq == nifq) { 5815 if ((tqe->tqe_next == NULL) || 5816 (tqe->tqe_next->tqe_die == tqe->tqe_die)) { 5817 MUTEX_EXIT(&oifq->ifq_lock); 5818 return; 5819 } 5820 } 5821 5822 /* 5823 * Remove from the old queue 5824 */ 5825 *tqe->tqe_pnext = tqe->tqe_next; 5826 if (tqe->tqe_next) 5827 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5828 else 5829 oifq->ifq_tail = tqe->tqe_pnext; 5830 tqe->tqe_next = NULL; 5831 5832 /* 5833 * If we're moving from one queue to another, release the 5834 * lock on the old queue and get a lock on the new queue. 5835 * For user defined queues, if we're moving off it, call 5836 * delete in case it can now be freed. 5837 */ 5838 if (oifq != nifq) { 5839 tqe->tqe_ifq = NULL; 5840 5841 (void) ipf_deletetimeoutqueue(oifq); 5842 5843 MUTEX_EXIT(&oifq->ifq_lock); 5844 5845 MUTEX_ENTER(&nifq->ifq_lock); 5846 5847 tqe->tqe_ifq = nifq; 5848 nifq->ifq_ref++; 5849 } 5850 5851 /* 5852 * Add to the bottom of the new queue 5853 */ 5854 tqe->tqe_pnext = nifq->ifq_tail; 5855 *nifq->ifq_tail = tqe; 5856 nifq->ifq_tail = &tqe->tqe_next; 5857 MUTEX_EXIT(&nifq->ifq_lock); 5858 } 5859 5860 5861 /* ------------------------------------------------------------------------ */ 5862 /* Function: ipf_updateipid */ 5863 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ 5864 /* Parameters: fin(I) - pointer to packet information */ 5865 /* */ 5866 /* When we are doing NAT, change the IP of every packet to represent a */ 5867 /* single sequence of packets coming from the host, hiding any host */ 5868 /* specific sequencing that might otherwise be revealed. If the packet is */ 5869 /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5870 /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5871 /* has no match in the cache, return an error. */ 5872 /* ------------------------------------------------------------------------ */ 5873 static int 5874 ipf_updateipid(fr_info_t *fin) 5875 { 5876 u_short id, ido, sums; 5877 u_32_t sumd, sum; 5878 ip_t *ip; 5879 5880 if (fin->fin_off != 0) { 5881 sum = ipf_frag_ipidknown(fin); 5882 if (sum == 0xffffffff) 5883 return -1; 5884 sum &= 0xffff; 5885 id = (u_short)sum; 5886 } else { 5887 id = ipf_nextipid(fin); 5888 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5889 (void) ipf_frag_ipidnew(fin, (u_32_t)id); 5890 } 5891 5892 ip = fin->fin_ip; 5893 ido = ntohs(ip->ip_id); 5894 if (id == ido) 5895 return 0; 5896 ip->ip_id = htons(id); 5897 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5898 sum = (~ntohs(ip->ip_sum)) & 0xffff; 5899 sum += sumd; 5900 sum = (sum >> 16) + (sum & 0xffff); 5901 sum = (sum >> 16) + (sum & 0xffff); 5902 sums = ~(u_short)sum; 5903 ip->ip_sum = htons(sums); 5904 return 0; 5905 } 5906 5907 5908 #ifdef NEED_FRGETIFNAME 5909 /* ------------------------------------------------------------------------ */ 5910 /* Function: ipf_getifname */ 5911 /* Returns: char * - pointer to interface name */ 5912 /* Parameters: ifp(I) - pointer to network interface */ 5913 /* buffer(O) - pointer to where to store interface name */ 5914 /* */ 5915 /* Constructs an interface name in the buffer passed. The buffer passed is */ 5916 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 5917 /* as a NULL pointer then return a pointer to a static array. */ 5918 /* ------------------------------------------------------------------------ */ 5919 char * 5920 ipf_getifname(ifp, buffer) 5921 struct ifnet *ifp; 5922 char *buffer; 5923 { 5924 static char namebuf[LIFNAMSIZ]; 5925 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5926 defined(__sgi) || defined(linux) || defined(_AIX51) || \ 5927 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5928 int unit, space; 5929 char temp[20]; 5930 char *s; 5931 # endif 5932 5933 if (buffer == NULL) 5934 buffer = namebuf; 5935 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 5936 buffer[LIFNAMSIZ - 1] = '\0'; 5937 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5938 defined(__sgi) || defined(_AIX51) || \ 5939 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5940 for (s = buffer; *s; s++) 5941 ; 5942 unit = ifp->if_unit; 5943 space = LIFNAMSIZ - (s - buffer); 5944 if ((space > 0) && (unit >= 0)) { 5945 snprintf(temp, sizeof(temp), "%d", unit); 5946 (void) strncpy(s, temp, space); 5947 s[space - 1] = '\0'; 5948 } 5949 # endif 5950 return buffer; 5951 } 5952 #endif 5953 5954 5955 /* ------------------------------------------------------------------------ */ 5956 /* Function: ipf_ioctlswitch */ 5957 /* Returns: int - -1 continue processing, else ioctl return value */ 5958 /* Parameters: unit(I) - device unit opened */ 5959 /* data(I) - pointer to ioctl data */ 5960 /* cmd(I) - ioctl command */ 5961 /* mode(I) - mode value */ 5962 /* uid(I) - uid making the ioctl call */ 5963 /* ctx(I) - pointer to context data */ 5964 /* */ 5965 /* Based on the value of unit, call the appropriate ioctl handler or return */ 5966 /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 5967 /* for the device in order to execute the ioctl. A special case is made */ 5968 /* SIOCIPFINTERROR so that the same code isn't required in every handler. */ 5969 /* The context data pointer is passed through as this is used as the key */ 5970 /* for locating a matching token for continued access for walking lists, */ 5971 /* etc. */ 5972 /* ------------------------------------------------------------------------ */ 5973 int 5974 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd, 5975 int mode, int uid, void *ctx) 5976 { 5977 int error = 0; 5978 5979 switch (cmd) 5980 { 5981 case SIOCIPFINTERROR : 5982 error = BCOPYOUT(&softc->ipf_interror, data, 5983 sizeof(softc->ipf_interror)); 5984 if (error != 0) { 5985 IPFERROR(40); 5986 error = EFAULT; 5987 } 5988 return error; 5989 default : 5990 break; 5991 } 5992 5993 switch (unit) 5994 { 5995 case IPL_LOGIPF : 5996 error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx); 5997 break; 5998 case IPL_LOGNAT : 5999 if (softc->ipf_running > 0) { 6000 error = ipf_nat_ioctl(softc, data, cmd, mode, 6001 uid, ctx); 6002 } else { 6003 IPFERROR(42); 6004 error = EIO; 6005 } 6006 break; 6007 case IPL_LOGSTATE : 6008 if (softc->ipf_running > 0) { 6009 error = ipf_state_ioctl(softc, data, cmd, mode, 6010 uid, ctx); 6011 } else { 6012 IPFERROR(43); 6013 error = EIO; 6014 } 6015 break; 6016 case IPL_LOGAUTH : 6017 if (softc->ipf_running > 0) { 6018 error = ipf_auth_ioctl(softc, data, cmd, mode, 6019 uid, ctx); 6020 } else { 6021 IPFERROR(44); 6022 error = EIO; 6023 } 6024 break; 6025 case IPL_LOGSYNC : 6026 if (softc->ipf_running > 0) { 6027 error = ipf_sync_ioctl(softc, data, cmd, mode, 6028 uid, ctx); 6029 } else { 6030 error = EIO; 6031 IPFERROR(45); 6032 } 6033 break; 6034 case IPL_LOGSCAN : 6035 #ifdef IPFILTER_SCAN 6036 if (softc->ipf_running > 0) 6037 error = ipf_scan_ioctl(softc, data, cmd, mode, 6038 uid, ctx); 6039 else 6040 #endif 6041 { 6042 error = EIO; 6043 IPFERROR(46); 6044 } 6045 break; 6046 case IPL_LOGLOOKUP : 6047 if (softc->ipf_running > 0) { 6048 error = ipf_lookup_ioctl(softc, data, cmd, mode, 6049 uid, ctx); 6050 } else { 6051 error = EIO; 6052 IPFERROR(47); 6053 } 6054 break; 6055 default : 6056 IPFERROR(48); 6057 error = EIO; 6058 break; 6059 } 6060 6061 return error; 6062 } 6063 6064 6065 /* 6066 * This array defines the expected size of objects coming into the kernel 6067 * for the various recognised object types. The first column is flags (see 6068 * below), 2nd column is current size, 3rd column is the version number of 6069 * when the current size became current. 6070 * Flags: 6071 * 1 = minimum size, not absolute size 6072 */ 6073 static int ipf_objbytes[IPFOBJ_COUNT][3] = { 6074 { 1, sizeof(struct frentry), 5010000 }, /* 0 */ 6075 { 1, sizeof(struct friostat), 5010000 }, 6076 { 0, sizeof(struct fr_info), 5010000 }, 6077 { 0, sizeof(struct ipf_authstat), 4010100 }, 6078 { 0, sizeof(struct ipfrstat), 5010000 }, 6079 { 1, sizeof(struct ipnat), 5010000 }, /* 5 */ 6080 { 0, sizeof(struct natstat), 5010000 }, 6081 { 0, sizeof(struct ipstate_save), 5010000 }, 6082 { 1, sizeof(struct nat_save), 5010000 }, 6083 { 0, sizeof(struct natlookup), 5010000 }, 6084 { 1, sizeof(struct ipstate), 5010000 }, /* 10 */ 6085 { 0, sizeof(struct ips_stat), 5010000 }, 6086 { 0, sizeof(struct frauth), 5010000 }, 6087 { 0, sizeof(struct ipftune), 4010100 }, 6088 { 0, sizeof(struct nat), 5010000 }, 6089 { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */ 6090 { 0, sizeof(struct ipfgeniter), 4011400 }, 6091 { 0, sizeof(struct ipftable), 4011400 }, 6092 { 0, sizeof(struct ipflookupiter), 4011400 }, 6093 { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES }, 6094 { 1, 0, 0 }, /* IPFEXPR */ 6095 { 0, 0, 0 }, /* PROXYCTL */ 6096 { 0, sizeof (struct fripf), 5010000 } 6097 }; 6098 6099 6100 /* ------------------------------------------------------------------------ */ 6101 /* Function: ipf_inobj */ 6102 /* Returns: int - 0 = success, else failure */ 6103 /* Parameters: softc(I) - soft context pointerto work with */ 6104 /* data(I) - pointer to ioctl data */ 6105 /* objp(O) - where to store ipfobj structure */ 6106 /* ptr(I) - pointer to data to copy out */ 6107 /* type(I) - type of structure being moved */ 6108 /* */ 6109 /* Copy in the contents of what the ipfobj_t points to. In future, we */ 6110 /* add things to check for version numbers, sizes, etc, to make it backward */ 6111 /* compatible at the ABI for user land. */ 6112 /* If objp is not NULL then we assume that the caller wants to see what is */ 6113 /* in the ipfobj_t structure being copied in. As an example, this can tell */ 6114 /* the caller what version of ipfilter the ioctl program was written to. */ 6115 /* ------------------------------------------------------------------------ */ 6116 int 6117 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr, 6118 int type) 6119 { 6120 ipfobj_t obj; 6121 int error; 6122 int size; 6123 6124 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6125 IPFERROR(49); 6126 return EINVAL; 6127 } 6128 6129 if (objp == NULL) 6130 objp = &obj; 6131 error = BCOPYIN(data, objp, sizeof(*objp)); 6132 if (error != 0) { 6133 IPFERROR(124); 6134 return EFAULT; 6135 } 6136 6137 if (objp->ipfo_type != type) { 6138 IPFERROR(50); 6139 return EINVAL; 6140 } 6141 6142 if (objp->ipfo_rev >= ipf_objbytes[type][2]) { 6143 if ((ipf_objbytes[type][0] & 1) != 0) { 6144 if (objp->ipfo_size < ipf_objbytes[type][1]) { 6145 IPFERROR(51); 6146 return EINVAL; 6147 } 6148 size = ipf_objbytes[type][1]; 6149 } else if (objp->ipfo_size == ipf_objbytes[type][1]) { 6150 size = objp->ipfo_size; 6151 } else { 6152 IPFERROR(52); 6153 return EINVAL; 6154 } 6155 error = COPYIN(objp->ipfo_ptr, ptr, size); 6156 if (error != 0) { 6157 IPFERROR(55); 6158 error = EFAULT; 6159 } 6160 } else { 6161 #ifdef IPFILTER_COMPAT 6162 error = ipf_in_compat(softc, objp, ptr, 0); 6163 #else 6164 IPFERROR(54); 6165 error = EINVAL; 6166 #endif 6167 } 6168 return error; 6169 } 6170 6171 6172 /* ------------------------------------------------------------------------ */ 6173 /* Function: ipf_inobjsz */ 6174 /* Returns: int - 0 = success, else failure */ 6175 /* Parameters: softc(I) - soft context pointerto work with */ 6176 /* data(I) - pointer to ioctl data */ 6177 /* ptr(I) - pointer to store real data in */ 6178 /* type(I) - type of structure being moved */ 6179 /* sz(I) - size of data to copy */ 6180 /* */ 6181 /* As per ipf_inobj, except the size of the object to copy in is passed in */ 6182 /* but it must not be smaller than the size defined for the type and the */ 6183 /* type must allow for varied sized objects. The extra requirement here is */ 6184 /* that sz must match the size of the object being passed in - this is not */ 6185 /* not possible nor required in ipf_inobj(). */ 6186 /* ------------------------------------------------------------------------ */ 6187 int 6188 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz) 6189 { 6190 ipfobj_t obj; 6191 int error; 6192 6193 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6194 IPFERROR(56); 6195 return EINVAL; 6196 } 6197 6198 error = BCOPYIN(data, &obj, sizeof(obj)); 6199 if (error != 0) { 6200 IPFERROR(125); 6201 return EFAULT; 6202 } 6203 6204 if (obj.ipfo_type != type) { 6205 IPFERROR(58); 6206 return EINVAL; 6207 } 6208 6209 if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6210 if (((ipf_objbytes[type][0] & 1) == 0) || 6211 (sz < ipf_objbytes[type][1])) { 6212 IPFERROR(57); 6213 return EINVAL; 6214 } 6215 error = COPYIN(obj.ipfo_ptr, ptr, sz); 6216 if (error != 0) { 6217 IPFERROR(61); 6218 error = EFAULT; 6219 } 6220 } else { 6221 #ifdef IPFILTER_COMPAT 6222 error = ipf_in_compat(softc, &obj, ptr, sz); 6223 #else 6224 IPFERROR(60); 6225 error = EINVAL; 6226 #endif 6227 } 6228 return error; 6229 } 6230 6231 6232 /* ------------------------------------------------------------------------ */ 6233 /* Function: ipf_outobjsz */ 6234 /* Returns: int - 0 = success, else failure */ 6235 /* Parameters: data(I) - pointer to ioctl data */ 6236 /* ptr(I) - pointer to store real data in */ 6237 /* type(I) - type of structure being moved */ 6238 /* sz(I) - size of data to copy */ 6239 /* */ 6240 /* As per ipf_outobj, except the size of the object to copy out is passed in*/ 6241 /* but it must not be smaller than the size defined for the type and the */ 6242 /* type must allow for varied sized objects. The extra requirement here is */ 6243 /* that sz must match the size of the object being passed in - this is not */ 6244 /* not possible nor required in ipf_outobj(). */ 6245 /* ------------------------------------------------------------------------ */ 6246 int 6247 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz) 6248 { 6249 ipfobj_t obj; 6250 int error; 6251 6252 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6253 IPFERROR(62); 6254 return EINVAL; 6255 } 6256 6257 error = BCOPYIN(data, &obj, sizeof(obj)); 6258 if (error != 0) { 6259 IPFERROR(127); 6260 return EFAULT; 6261 } 6262 6263 if (obj.ipfo_type != type) { 6264 IPFERROR(63); 6265 return EINVAL; 6266 } 6267 6268 if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6269 if (((ipf_objbytes[type][0] & 1) == 0) || 6270 (sz < ipf_objbytes[type][1])) { 6271 IPFERROR(146); 6272 return EINVAL; 6273 } 6274 error = COPYOUT(ptr, obj.ipfo_ptr, sz); 6275 if (error != 0) { 6276 IPFERROR(66); 6277 error = EFAULT; 6278 } 6279 } else { 6280 #ifdef IPFILTER_COMPAT 6281 error = ipf_out_compat(softc, &obj, ptr); 6282 #else 6283 IPFERROR(65); 6284 error = EINVAL; 6285 #endif 6286 } 6287 return error; 6288 } 6289 6290 6291 /* ------------------------------------------------------------------------ */ 6292 /* Function: ipf_outobj */ 6293 /* Returns: int - 0 = success, else failure */ 6294 /* Parameters: data(I) - pointer to ioctl data */ 6295 /* ptr(I) - pointer to store real data in */ 6296 /* type(I) - type of structure being moved */ 6297 /* */ 6298 /* Copy out the contents of what ptr is to where ipfobj points to. In */ 6299 /* future, we add things to check for version numbers, sizes, etc, to make */ 6300 /* it backward compatible at the ABI for user land. */ 6301 /* ------------------------------------------------------------------------ */ 6302 int 6303 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type) 6304 { 6305 ipfobj_t obj; 6306 int error; 6307 6308 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6309 IPFERROR(67); 6310 return EINVAL; 6311 } 6312 6313 error = BCOPYIN(data, &obj, sizeof(obj)); 6314 if (error != 0) { 6315 IPFERROR(126); 6316 return EFAULT; 6317 } 6318 6319 if (obj.ipfo_type != type) { 6320 IPFERROR(68); 6321 return EINVAL; 6322 } 6323 6324 if (obj.ipfo_rev >= ipf_objbytes[type][2]) { 6325 if ((ipf_objbytes[type][0] & 1) != 0) { 6326 if (obj.ipfo_size < ipf_objbytes[type][1]) { 6327 IPFERROR(69); 6328 return EINVAL; 6329 } 6330 } else if (obj.ipfo_size != ipf_objbytes[type][1]) { 6331 IPFERROR(70); 6332 return EINVAL; 6333 } 6334 6335 error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size); 6336 if (error != 0) { 6337 IPFERROR(73); 6338 error = EFAULT; 6339 } 6340 } else { 6341 #ifdef IPFILTER_COMPAT 6342 error = ipf_out_compat(softc, &obj, ptr); 6343 #else 6344 IPFERROR(72); 6345 error = EINVAL; 6346 #endif 6347 } 6348 return error; 6349 } 6350 6351 6352 /* ------------------------------------------------------------------------ */ 6353 /* Function: ipf_outobjk */ 6354 /* Returns: int - 0 = success, else failure */ 6355 /* Parameters: obj(I) - pointer to data description structure */ 6356 /* ptr(I) - pointer to kernel data to copy out */ 6357 /* */ 6358 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/ 6359 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */ 6360 /* already populated with information and now we just need to use it. */ 6361 /* There is no need for this function to have a "type" parameter as there */ 6362 /* is no point in validating information that comes from the kernel with */ 6363 /* itself. */ 6364 /* ------------------------------------------------------------------------ */ 6365 int 6366 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr) 6367 { 6368 int type = obj->ipfo_type; 6369 int error; 6370 6371 if ((type < 0) || (type >= IPFOBJ_COUNT)) { 6372 IPFERROR(147); 6373 return EINVAL; 6374 } 6375 6376 if (obj->ipfo_rev >= ipf_objbytes[type][2]) { 6377 if ((ipf_objbytes[type][0] & 1) != 0) { 6378 if (obj->ipfo_size < ipf_objbytes[type][1]) { 6379 IPFERROR(148); 6380 return EINVAL; 6381 } 6382 6383 } else if (obj->ipfo_size != ipf_objbytes[type][1]) { 6384 IPFERROR(149); 6385 return EINVAL; 6386 } 6387 6388 error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size); 6389 if (error != 0) { 6390 IPFERROR(150); 6391 error = EFAULT; 6392 } 6393 } else { 6394 #ifdef IPFILTER_COMPAT 6395 error = ipf_out_compat(softc, obj, ptr); 6396 #else 6397 IPFERROR(151); 6398 error = EINVAL; 6399 #endif 6400 } 6401 return error; 6402 } 6403 6404 6405 /* ------------------------------------------------------------------------ */ 6406 /* Function: ipf_checkl4sum */ 6407 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 6408 /* Parameters: fin(I) - pointer to packet information */ 6409 /* */ 6410 /* If possible, calculate the layer 4 checksum for the packet. If this is */ 6411 /* not possible, return without indicating a failure or success but in a */ 6412 /* way that is ditinguishable. This function should only be called by the */ 6413 /* ipf_checkv6sum() for each platform. */ 6414 /* ------------------------------------------------------------------------ */ 6415 int 6416 ipf_checkl4sum(fr_info_t *fin) 6417 { 6418 u_short sum, hdrsum, *csump; 6419 udphdr_t *udp; 6420 int dosum; 6421 6422 /* 6423 * If the TCP packet isn't a fragment, isn't too short and otherwise 6424 * isn't already considered "bad", then validate the checksum. If 6425 * this check fails then considered the packet to be "bad". 6426 */ 6427 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 6428 return 1; 6429 6430 csump = NULL; 6431 hdrsum = 0; 6432 dosum = 0; 6433 sum = 0; 6434 6435 switch (fin->fin_p) 6436 { 6437 case IPPROTO_TCP : 6438 csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 6439 dosum = 1; 6440 break; 6441 6442 case IPPROTO_UDP : 6443 udp = fin->fin_dp; 6444 if (udp->uh_sum != 0) { 6445 csump = &udp->uh_sum; 6446 dosum = 1; 6447 } 6448 break; 6449 6450 #ifdef USE_INET6 6451 case IPPROTO_ICMPV6 : 6452 csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum; 6453 dosum = 1; 6454 break; 6455 #endif 6456 6457 case IPPROTO_ICMP : 6458 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 6459 dosum = 1; 6460 break; 6461 6462 default : 6463 return 1; 6464 /*NOTREACHED*/ 6465 } 6466 6467 if (csump != NULL) 6468 hdrsum = *csump; 6469 6470 if (dosum) { 6471 sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp); 6472 } 6473 #if !defined(_KERNEL) 6474 if (sum == hdrsum) { 6475 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 6476 } else { 6477 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 6478 } 6479 #endif 6480 DT2(l4sums, u_short, hdrsum, u_short, sum); 6481 if (hdrsum == sum) { 6482 fin->fin_cksum = FI_CK_SUMOK; 6483 return 0; 6484 } 6485 fin->fin_cksum = FI_CK_BAD; 6486 return -1; 6487 } 6488 6489 6490 /* ------------------------------------------------------------------------ */ 6491 /* Function: ipf_ifpfillv4addr */ 6492 /* Returns: int - 0 = address update, -1 = address not updated */ 6493 /* Parameters: atype(I) - type of network address update to perform */ 6494 /* sin(I) - pointer to source of address information */ 6495 /* mask(I) - pointer to source of netmask information */ 6496 /* inp(I) - pointer to destination address store */ 6497 /* inpmask(I) - pointer to destination netmask store */ 6498 /* */ 6499 /* Given a type of network address update (atype) to perform, copy */ 6500 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6501 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6502 /* which case the operation fails. For all values of atype other than */ 6503 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6504 /* value. */ 6505 /* ------------------------------------------------------------------------ */ 6506 int 6507 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask, 6508 struct in_addr *inp, struct in_addr *inpmask) 6509 { 6510 if (inpmask != NULL && atype != FRI_NETMASKED) 6511 inpmask->s_addr = 0xffffffff; 6512 6513 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6514 if (atype == FRI_NETMASKED) { 6515 if (inpmask == NULL) 6516 return -1; 6517 inpmask->s_addr = mask->sin_addr.s_addr; 6518 } 6519 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 6520 } else { 6521 inp->s_addr = sin->sin_addr.s_addr; 6522 } 6523 return 0; 6524 } 6525 6526 6527 #ifdef USE_INET6 6528 /* ------------------------------------------------------------------------ */ 6529 /* Function: ipf_ifpfillv6addr */ 6530 /* Returns: int - 0 = address update, -1 = address not updated */ 6531 /* Parameters: atype(I) - type of network address update to perform */ 6532 /* sin(I) - pointer to source of address information */ 6533 /* mask(I) - pointer to source of netmask information */ 6534 /* inp(I) - pointer to destination address store */ 6535 /* inpmask(I) - pointer to destination netmask store */ 6536 /* */ 6537 /* Given a type of network address update (atype) to perform, copy */ 6538 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6539 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6540 /* which case the operation fails. For all values of atype other than */ 6541 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6542 /* value. */ 6543 /* ------------------------------------------------------------------------ */ 6544 int 6545 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin, 6546 struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask) 6547 { 6548 i6addr_t *src, *and; 6549 6550 src = (i6addr_t *)&sin->sin6_addr; 6551 and = (i6addr_t *)&mask->sin6_addr; 6552 6553 if (inpmask != NULL && atype != FRI_NETMASKED) { 6554 inpmask->i6[0] = 0xffffffff; 6555 inpmask->i6[1] = 0xffffffff; 6556 inpmask->i6[2] = 0xffffffff; 6557 inpmask->i6[3] = 0xffffffff; 6558 } 6559 6560 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6561 if (atype == FRI_NETMASKED) { 6562 if (inpmask == NULL) 6563 return -1; 6564 inpmask->i6[0] = and->i6[0]; 6565 inpmask->i6[1] = and->i6[1]; 6566 inpmask->i6[2] = and->i6[2]; 6567 inpmask->i6[3] = and->i6[3]; 6568 } 6569 6570 inp->i6[0] = src->i6[0] & and->i6[0]; 6571 inp->i6[1] = src->i6[1] & and->i6[1]; 6572 inp->i6[2] = src->i6[2] & and->i6[2]; 6573 inp->i6[3] = src->i6[3] & and->i6[3]; 6574 } else { 6575 inp->i6[0] = src->i6[0]; 6576 inp->i6[1] = src->i6[1]; 6577 inp->i6[2] = src->i6[2]; 6578 inp->i6[3] = src->i6[3]; 6579 } 6580 return 0; 6581 } 6582 #endif 6583 6584 6585 /* ------------------------------------------------------------------------ */ 6586 /* Function: ipf_matchtag */ 6587 /* Returns: 0 == mismatch, 1 == match. */ 6588 /* Parameters: tag1(I) - pointer to first tag to compare */ 6589 /* tag2(I) - pointer to second tag to compare */ 6590 /* */ 6591 /* Returns true (non-zero) or false(0) if the two tag structures can be */ 6592 /* considered to be a match or not match, respectively. The tag is 16 */ 6593 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 6594 /* compare the ints instead, for speed. tag1 is the master of the */ 6595 /* comparison. This function should only be called with both tag1 and tag2 */ 6596 /* as non-NULL pointers. */ 6597 /* ------------------------------------------------------------------------ */ 6598 int 6599 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2) 6600 { 6601 if (tag1 == tag2) 6602 return 1; 6603 6604 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 6605 return 1; 6606 6607 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 6608 (tag1->ipt_num[1] == tag2->ipt_num[1]) && 6609 (tag1->ipt_num[2] == tag2->ipt_num[2]) && 6610 (tag1->ipt_num[3] == tag2->ipt_num[3])) 6611 return 1; 6612 return 0; 6613 } 6614 6615 6616 /* ------------------------------------------------------------------------ */ 6617 /* Function: ipf_coalesce */ 6618 /* Returns: 1 == success, -1 == failure, 0 == no change */ 6619 /* Parameters: fin(I) - pointer to packet information */ 6620 /* */ 6621 /* Attempt to get all of the packet data into a single, contiguous buffer. */ 6622 /* If this call returns a failure then the buffers have also been freed. */ 6623 /* ------------------------------------------------------------------------ */ 6624 int 6625 ipf_coalesce(fr_info_t *fin) 6626 { 6627 6628 if ((fin->fin_flx & FI_COALESCE) != 0) 6629 return 1; 6630 6631 /* 6632 * If the mbuf pointers indicate that there is no mbuf to work with, 6633 * return but do not indicate success or failure. 6634 */ 6635 if (fin->fin_m == NULL || fin->fin_mp == NULL) 6636 return 0; 6637 6638 #if defined(_KERNEL) 6639 if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 6640 ipf_main_softc_t *softc = fin->fin_main_soft; 6641 6642 DT1(frb_coalesce, fr_info_t *, fin); 6643 LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces); 6644 # ifdef MENTAT 6645 FREE_MB_T(*fin->fin_mp); 6646 # endif 6647 fin->fin_reason = FRB_COALESCE; 6648 *fin->fin_mp = NULL; 6649 fin->fin_m = NULL; 6650 return -1; 6651 } 6652 #else 6653 fin = fin; /* LINT */ 6654 #endif 6655 return 1; 6656 } 6657 6658 6659 /* 6660 * The following table lists all of the tunable variables that can be 6661 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row 6662 * in the table below is as follows: 6663 * 6664 * pointer to value, name of value, minimum, maximum, size of the value's 6665 * container, value attribute flags 6666 * 6667 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 6668 * means the value can only be written to when IPFilter is loaded but disabled. 6669 * The obvious implication is if neither of these are set then the value can be 6670 * changed at any time without harm. 6671 */ 6672 6673 6674 /* ------------------------------------------------------------------------ */ 6675 /* Function: ipf_tune_findbycookie */ 6676 /* Returns: NULL = search failed, else pointer to tune struct */ 6677 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6678 /* next(O) - pointer to place to store the cookie for the */ 6679 /* "next" tuneable, if it is desired. */ 6680 /* */ 6681 /* This function is used to walk through all of the existing tunables with */ 6682 /* successive calls. It searches the known tunables for the one which has */ 6683 /* a matching value for "cookie" - ie its address. When returning a match, */ 6684 /* the next one to be found may be returned inside next. */ 6685 /* ------------------------------------------------------------------------ */ 6686 static ipftuneable_t * 6687 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next) 6688 { 6689 ipftuneable_t *ta, **tap; 6690 6691 for (ta = *ptop; ta->ipft_name != NULL; ta++) 6692 if (ta == cookie) { 6693 if (next != NULL) { 6694 /* 6695 * If the next entry in the array has a name 6696 * present, then return a pointer to it for 6697 * where to go next, else return a pointer to 6698 * the dynaminc list as a key to search there 6699 * next. This facilitates a weak linking of 6700 * the two "lists" together. 6701 */ 6702 if ((ta + 1)->ipft_name != NULL) 6703 *next = ta + 1; 6704 else 6705 *next = ptop; 6706 } 6707 return ta; 6708 } 6709 6710 for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next) 6711 if (tap == cookie) { 6712 if (next != NULL) 6713 *next = &ta->ipft_next; 6714 return ta; 6715 } 6716 6717 if (next != NULL) 6718 *next = NULL; 6719 return NULL; 6720 } 6721 6722 6723 /* ------------------------------------------------------------------------ */ 6724 /* Function: ipf_tune_findbyname */ 6725 /* Returns: NULL = search failed, else pointer to tune struct */ 6726 /* Parameters: name(I) - name of the tuneable entry to find. */ 6727 /* */ 6728 /* Search the static array of tuneables and the list of dynamic tuneables */ 6729 /* for an entry with a matching name. If we can find one, return a pointer */ 6730 /* to the matching structure. */ 6731 /* ------------------------------------------------------------------------ */ 6732 static ipftuneable_t * 6733 ipf_tune_findbyname(ipftuneable_t *top, const char *name) 6734 { 6735 ipftuneable_t *ta; 6736 6737 for (ta = top; ta != NULL; ta = ta->ipft_next) 6738 if (!strcmp(ta->ipft_name, name)) { 6739 return ta; 6740 } 6741 6742 return NULL; 6743 } 6744 6745 6746 /* ------------------------------------------------------------------------ */ 6747 /* Function: ipf_tune_add_array */ 6748 /* Returns: int - 0 == success, else failure */ 6749 /* Parameters: newtune - pointer to new tune array to add to tuneables */ 6750 /* */ 6751 /* Appends tune structures from the array passed in (newtune) to the end of */ 6752 /* the current list of "dynamic" tuneable parameters. */ 6753 /* If any entry to be added is already present (by name) then the operation */ 6754 /* is aborted - entries that have been added are removed before returning. */ 6755 /* An entry with no name (NULL) is used as the indication that the end of */ 6756 /* the array has been reached. */ 6757 /* ------------------------------------------------------------------------ */ 6758 int 6759 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune) 6760 { 6761 ipftuneable_t *nt, *dt; 6762 int error = 0; 6763 6764 for (nt = newtune; nt->ipft_name != NULL; nt++) { 6765 error = ipf_tune_add(softc, nt); 6766 if (error != 0) { 6767 for (dt = newtune; dt != nt; dt++) { 6768 (void) ipf_tune_del(softc, dt); 6769 } 6770 } 6771 } 6772 6773 return error; 6774 } 6775 6776 6777 /* ------------------------------------------------------------------------ */ 6778 /* Function: ipf_tune_array_link */ 6779 /* Returns: 0 == success, -1 == failure */ 6780 /* Parameters: softc(I) - soft context pointerto work with */ 6781 /* array(I) - pointer to an array of tuneables */ 6782 /* */ 6783 /* Given an array of tunables (array), append them to the current list of */ 6784 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */ 6785 /* the array for being appended to the list, initialise all of the next */ 6786 /* pointers so we don't need to walk parts of it with ++ and others with */ 6787 /* next. The array is expected to have an entry with a NULL name as the */ 6788 /* terminator. Trying to add an array with no non-NULL names will return as */ 6789 /* a failure. */ 6790 /* ------------------------------------------------------------------------ */ 6791 int 6792 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array) 6793 { 6794 ipftuneable_t *t, **p; 6795 6796 t = array; 6797 if (t->ipft_name == NULL) 6798 return -1; 6799 6800 for (; t[1].ipft_name != NULL; t++) 6801 t[0].ipft_next = &t[1]; 6802 t->ipft_next = NULL; 6803 6804 /* 6805 * Since a pointer to the last entry isn't kept, we need to find it 6806 * each time we want to add new variables to the list. 6807 */ 6808 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) 6809 if (t->ipft_name == NULL) 6810 break; 6811 *p = array; 6812 6813 return 0; 6814 } 6815 6816 6817 /* ------------------------------------------------------------------------ */ 6818 /* Function: ipf_tune_array_unlink */ 6819 /* Returns: 0 == success, -1 == failure */ 6820 /* Parameters: softc(I) - soft context pointerto work with */ 6821 /* array(I) - pointer to an array of tuneables */ 6822 /* */ 6823 /* ------------------------------------------------------------------------ */ 6824 int 6825 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array) 6826 { 6827 ipftuneable_t *t, **p; 6828 6829 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next) 6830 if (t == array) 6831 break; 6832 if (t == NULL) 6833 return -1; 6834 6835 for (; t[1].ipft_name != NULL; t++) 6836 ; 6837 6838 *p = t->ipft_next; 6839 6840 return 0; 6841 } 6842 6843 6844 /* ------------------------------------------------------------------------ */ 6845 /* Function: ipf_tune_array_copy */ 6846 /* Returns: NULL = failure, else pointer to new array */ 6847 /* Parameters: base(I) - pointer to structure base */ 6848 /* size(I) - size of the array at template */ 6849 /* template(I) - original array to copy */ 6850 /* */ 6851 /* Allocate memory for a new set of tuneable values and copy everything */ 6852 /* from template into the new region of memory. The new region is full of */ 6853 /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */ 6854 /* */ 6855 /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */ 6856 /* In the array template, ipftp_offset is the offset (in bytes) of the */ 6857 /* location of the tuneable value inside the structure pointed to by base. */ 6858 /* As ipftp_offset is a union over the pointers to the tuneable values, if */ 6859 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */ 6860 /* ipftp_void that points to the stored value. */ 6861 /* ------------------------------------------------------------------------ */ 6862 ipftuneable_t * 6863 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template) 6864 { 6865 ipftuneable_t *copy; 6866 int i; 6867 6868 6869 KMALLOCS(copy, ipftuneable_t *, size); 6870 if (copy == NULL) { 6871 return NULL; 6872 } 6873 bcopy(template, copy, size); 6874 6875 for (i = 0; copy[i].ipft_name; i++) { 6876 copy[i].ipft_una.ipftp_offset += (u_long)base; 6877 copy[i].ipft_next = copy + i + 1; 6878 } 6879 6880 return copy; 6881 } 6882 6883 6884 /* ------------------------------------------------------------------------ */ 6885 /* Function: ipf_tune_add */ 6886 /* Returns: int - 0 == success, else failure */ 6887 /* Parameters: newtune - pointer to new tune entry to add to tuneables */ 6888 /* */ 6889 /* Appends tune structures from the array passed in (newtune) to the end of */ 6890 /* the current list of "dynamic" tuneable parameters. Once added, the */ 6891 /* owner of the object is not expected to ever change "ipft_next". */ 6892 /* ------------------------------------------------------------------------ */ 6893 int 6894 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune) 6895 { 6896 ipftuneable_t *ta, **tap; 6897 6898 ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name); 6899 if (ta != NULL) { 6900 IPFERROR(74); 6901 return EEXIST; 6902 } 6903 6904 for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next) 6905 ; 6906 6907 newtune->ipft_next = NULL; 6908 *tap = newtune; 6909 return 0; 6910 } 6911 6912 6913 /* ------------------------------------------------------------------------ */ 6914 /* Function: ipf_tune_del */ 6915 /* Returns: int - 0 == success, else failure */ 6916 /* Parameters: oldtune - pointer to tune entry to remove from the list of */ 6917 /* current dynamic tuneables */ 6918 /* */ 6919 /* Search for the tune structure, by pointer, in the list of those that are */ 6920 /* dynamically added at run time. If found, adjust the list so that this */ 6921 /* structure is no longer part of it. */ 6922 /* ------------------------------------------------------------------------ */ 6923 int 6924 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune) 6925 { 6926 ipftuneable_t *ta, **tap; 6927 int error = 0; 6928 6929 for (tap = &softc->ipf_tuners; (ta = *tap) != NULL; 6930 tap = &ta->ipft_next) { 6931 if (ta == oldtune) { 6932 *tap = oldtune->ipft_next; 6933 oldtune->ipft_next = NULL; 6934 break; 6935 } 6936 } 6937 6938 if (ta == NULL) { 6939 error = ESRCH; 6940 IPFERROR(75); 6941 } 6942 return error; 6943 } 6944 6945 6946 /* ------------------------------------------------------------------------ */ 6947 /* Function: ipf_tune_del_array */ 6948 /* Returns: int - 0 == success, else failure */ 6949 /* Parameters: oldtune - pointer to tuneables array */ 6950 /* */ 6951 /* Remove each tuneable entry in the array from the list of "dynamic" */ 6952 /* tunables. If one entry should fail to be found, an error will be */ 6953 /* returned and no further ones removed. */ 6954 /* An entry with a NULL name is used as the indicator of the last entry in */ 6955 /* the array. */ 6956 /* ------------------------------------------------------------------------ */ 6957 int 6958 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune) 6959 { 6960 ipftuneable_t *ot; 6961 int error = 0; 6962 6963 for (ot = oldtune; ot->ipft_name != NULL; ot++) { 6964 error = ipf_tune_del(softc, ot); 6965 if (error != 0) 6966 break; 6967 } 6968 6969 return error; 6970 6971 } 6972 6973 6974 /* ------------------------------------------------------------------------ */ 6975 /* Function: ipf_tune */ 6976 /* Returns: int - 0 == success, else failure */ 6977 /* Parameters: cmd(I) - ioctl command number */ 6978 /* data(I) - pointer to ioctl data structure */ 6979 /* */ 6980 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 6981 /* three ioctls provide the means to access and control global variables */ 6982 /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 6983 /* changed without rebooting, reloading or recompiling. The initialisation */ 6984 /* and 'destruction' routines of the various components of ipfilter are all */ 6985 /* each responsible for handling their own values being too big. */ 6986 /* ------------------------------------------------------------------------ */ 6987 int 6988 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data) 6989 { 6990 ipftuneable_t *ta; 6991 ipftune_t tu; 6992 void *cookie; 6993 int error; 6994 6995 error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE); 6996 if (error != 0) 6997 return error; 6998 6999 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 7000 cookie = tu.ipft_cookie; 7001 ta = NULL; 7002 7003 switch (cmd) 7004 { 7005 case SIOCIPFGETNEXT : 7006 /* 7007 * If cookie is non-NULL, assume it to be a pointer to the last 7008 * entry we looked at, so find it (if possible) and return a 7009 * pointer to the next one after it. The last entry in the 7010 * the table is a NULL entry, so when we get to it, set cookie 7011 * to NULL and return that, indicating end of list, erstwhile 7012 * if we come in with cookie set to NULL, we are starting anew 7013 * at the front of the list. 7014 */ 7015 if (cookie != NULL) { 7016 ta = ipf_tune_findbycookie(&softc->ipf_tuners, 7017 cookie, &tu.ipft_cookie); 7018 } else { 7019 ta = softc->ipf_tuners; 7020 tu.ipft_cookie = ta + 1; 7021 } 7022 if (ta != NULL) { 7023 /* 7024 * Entry found, but does the data pointed to by that 7025 * row fit in what we can return? 7026 */ 7027 if (ta->ipft_sz > sizeof(tu.ipft_un)) { 7028 IPFERROR(76); 7029 return EINVAL; 7030 } 7031 7032 tu.ipft_vlong = 0; 7033 if (ta->ipft_sz == sizeof(u_long)) 7034 tu.ipft_vlong = *ta->ipft_plong; 7035 else if (ta->ipft_sz == sizeof(u_int)) 7036 tu.ipft_vint = *ta->ipft_pint; 7037 else if (ta->ipft_sz == sizeof(u_short)) 7038 tu.ipft_vshort = *ta->ipft_pshort; 7039 else if (ta->ipft_sz == sizeof(u_char)) 7040 tu.ipft_vchar = *ta->ipft_pchar; 7041 7042 tu.ipft_sz = ta->ipft_sz; 7043 tu.ipft_min = ta->ipft_min; 7044 tu.ipft_max = ta->ipft_max; 7045 tu.ipft_flags = ta->ipft_flags; 7046 bcopy(ta->ipft_name, tu.ipft_name, 7047 MIN(sizeof(tu.ipft_name), 7048 strlen(ta->ipft_name) + 1)); 7049 } 7050 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7051 break; 7052 7053 case SIOCIPFGET : 7054 case SIOCIPFSET : 7055 /* 7056 * Search by name or by cookie value for a particular entry 7057 * in the tuning paramter table. 7058 */ 7059 IPFERROR(77); 7060 error = ESRCH; 7061 if (cookie != NULL) { 7062 ta = ipf_tune_findbycookie(&softc->ipf_tuners, 7063 cookie, NULL); 7064 if (ta != NULL) 7065 error = 0; 7066 } else if (tu.ipft_name[0] != '\0') { 7067 ta = ipf_tune_findbyname(softc->ipf_tuners, 7068 tu.ipft_name); 7069 if (ta != NULL) 7070 error = 0; 7071 } 7072 if (error != 0) 7073 break; 7074 7075 if (cmd == (ioctlcmd_t)SIOCIPFGET) { 7076 /* 7077 * Fetch the tuning parameters for a particular value 7078 */ 7079 tu.ipft_vlong = 0; 7080 if (ta->ipft_sz == sizeof(u_long)) 7081 tu.ipft_vlong = *ta->ipft_plong; 7082 else if (ta->ipft_sz == sizeof(u_int)) 7083 tu.ipft_vint = *ta->ipft_pint; 7084 else if (ta->ipft_sz == sizeof(u_short)) 7085 tu.ipft_vshort = *ta->ipft_pshort; 7086 else if (ta->ipft_sz == sizeof(u_char)) 7087 tu.ipft_vchar = *ta->ipft_pchar; 7088 tu.ipft_cookie = ta; 7089 tu.ipft_sz = ta->ipft_sz; 7090 tu.ipft_min = ta->ipft_min; 7091 tu.ipft_max = ta->ipft_max; 7092 tu.ipft_flags = ta->ipft_flags; 7093 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7094 7095 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 7096 /* 7097 * Set an internal parameter. The hard part here is 7098 * getting the new value safely and correctly out of 7099 * the kernel (given we only know its size, not type.) 7100 */ 7101 u_long in; 7102 7103 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 7104 (softc->ipf_running > 0)) { 7105 IPFERROR(78); 7106 error = EBUSY; 7107 break; 7108 } 7109 7110 in = tu.ipft_vlong; 7111 if (in < ta->ipft_min || in > ta->ipft_max) { 7112 IPFERROR(79); 7113 error = EINVAL; 7114 break; 7115 } 7116 7117 if (ta->ipft_func != NULL) { 7118 SPL_INT(s); 7119 7120 SPL_NET(s); 7121 error = (*ta->ipft_func)(softc, ta, 7122 &tu.ipft_un); 7123 SPL_X(s); 7124 7125 } else if (ta->ipft_sz == sizeof(u_long)) { 7126 tu.ipft_vlong = *ta->ipft_plong; 7127 *ta->ipft_plong = in; 7128 7129 } else if (ta->ipft_sz == sizeof(u_int)) { 7130 tu.ipft_vint = *ta->ipft_pint; 7131 *ta->ipft_pint = (u_int)(in & 0xffffffff); 7132 7133 } else if (ta->ipft_sz == sizeof(u_short)) { 7134 tu.ipft_vshort = *ta->ipft_pshort; 7135 *ta->ipft_pshort = (u_short)(in & 0xffff); 7136 7137 } else if (ta->ipft_sz == sizeof(u_char)) { 7138 tu.ipft_vchar = *ta->ipft_pchar; 7139 *ta->ipft_pchar = (u_char)(in & 0xff); 7140 } 7141 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE); 7142 } 7143 break; 7144 7145 default : 7146 IPFERROR(80); 7147 error = EINVAL; 7148 break; 7149 } 7150 7151 return error; 7152 } 7153 7154 7155 /* ------------------------------------------------------------------------ */ 7156 /* Function: ipf_zerostats */ 7157 /* Returns: int - 0 = success, else failure */ 7158 /* Parameters: data(O) - pointer to pointer for copying data back to */ 7159 /* */ 7160 /* Copies the current statistics out to userspace and then zero's the */ 7161 /* current ones in the kernel. The lock is only held across the bzero() as */ 7162 /* the copyout may result in paging (ie network activity.) */ 7163 /* ------------------------------------------------------------------------ */ 7164 int 7165 ipf_zerostats(ipf_main_softc_t *softc, void *data) 7166 { 7167 friostat_t fio; 7168 ipfobj_t obj; 7169 int error; 7170 7171 error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT); 7172 if (error != 0) 7173 return error; 7174 ipf_getstat(softc, &fio, obj.ipfo_rev); 7175 error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT); 7176 if (error != 0) 7177 return error; 7178 7179 WRITE_ENTER(&softc->ipf_mutex); 7180 bzero(&softc->ipf_stats, sizeof(softc->ipf_stats)); 7181 RWLOCK_EXIT(&softc->ipf_mutex); 7182 7183 return 0; 7184 } 7185 7186 7187 /* ------------------------------------------------------------------------ */ 7188 /* Function: ipf_resolvedest */ 7189 /* Returns: Nil */ 7190 /* Parameters: softc(I) - pointer to soft context main structure */ 7191 /* base(I) - where strings are stored */ 7192 /* fdp(IO) - pointer to destination information to resolve */ 7193 /* v(I) - IP protocol version to match */ 7194 /* */ 7195 /* Looks up an interface name in the frdest structure pointed to by fdp and */ 7196 /* if a matching name can be found for the particular IP protocol version */ 7197 /* then store the interface pointer in the frdest struct. If no match is */ 7198 /* found, then set the interface pointer to be -1 as NULL is considered to */ 7199 /* indicate there is no information at all in the structure. */ 7200 /* ------------------------------------------------------------------------ */ 7201 int 7202 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v) 7203 { 7204 int errval = 0; 7205 void *ifp; 7206 7207 ifp = NULL; 7208 7209 if (fdp->fd_name != -1) { 7210 if (fdp->fd_type == FRD_DSTLIST) { 7211 ifp = ipf_lookup_res_name(softc, IPL_LOGIPF, 7212 IPLT_DSTLIST, 7213 base + fdp->fd_name, 7214 NULL); 7215 if (ifp == NULL) { 7216 IPFERROR(144); 7217 errval = ESRCH; 7218 } 7219 } else { 7220 ifp = GETIFP(base + fdp->fd_name, v); 7221 if (ifp == NULL) 7222 ifp = (void *)-1; 7223 if ((ifp != NULL) && (ifp != (void *)-1)) 7224 fdp->fd_local = ipf_deliverlocal(softc, v, ifp, 7225 &fdp->fd_ip6); 7226 } 7227 } 7228 fdp->fd_ptr = ifp; 7229 7230 return errval; 7231 } 7232 7233 7234 /* ------------------------------------------------------------------------ */ 7235 /* Function: ipf_resolvenic */ 7236 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 7237 /* pointer to interface structure for NIC */ 7238 /* Parameters: softc(I)- pointer to soft context main structure */ 7239 /* name(I) - complete interface name */ 7240 /* v(I) - IP protocol version */ 7241 /* */ 7242 /* Look for a network interface structure that firstly has a matching name */ 7243 /* to that passed in and that is also being used for that IP protocol */ 7244 /* version (necessary on some platforms where there are separate listings */ 7245 /* for both IPv4 and IPv6 on the same physical NIC. */ 7246 /* */ 7247 /* ------------------------------------------------------------------------ */ 7248 void * 7249 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v) 7250 { 7251 void *nic; 7252 7253 softc = softc; /* gcc -Wextra */ 7254 if (name[0] == '\0') 7255 return NULL; 7256 7257 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 7258 return NULL; 7259 } 7260 7261 nic = GETIFP(name, v); 7262 if (nic == NULL) 7263 nic = (void *)-1; 7264 return nic; 7265 } 7266 7267 7268 /* ------------------------------------------------------------------------ */ 7269 /* Function: ipf_token_expire */ 7270 /* Returns: None. */ 7271 /* Parameters: softc(I) - pointer to soft context main structure */ 7272 /* */ 7273 /* This function is run every ipf tick to see if there are any tokens that */ 7274 /* have been held for too long and need to be freed up. */ 7275 /* ------------------------------------------------------------------------ */ 7276 void 7277 ipf_token_expire(ipf_main_softc_t *softc) 7278 { 7279 ipftoken_t *it; 7280 7281 WRITE_ENTER(&softc->ipf_tokens); 7282 while ((it = softc->ipf_token_head) != NULL) { 7283 if (it->ipt_die > softc->ipf_ticks) 7284 break; 7285 7286 ipf_token_deref(softc, it); 7287 } 7288 RWLOCK_EXIT(&softc->ipf_tokens); 7289 } 7290 7291 7292 /* ------------------------------------------------------------------------ */ 7293 /* Function: ipf_token_flush */ 7294 /* Returns: None. */ 7295 /* Parameters: softc(I) - pointer to soft context main structure */ 7296 /* */ 7297 /* Loop through all of the existing tokens and call deref to see if they */ 7298 /* can be freed. Normally a function like this might just loop on */ 7299 /* ipf_token_head but there is a chance that a token might have a ref count */ 7300 /* of greater than one and in that case the the reference would drop twice */ 7301 /* by code that is only entitled to drop it once. */ 7302 /* ------------------------------------------------------------------------ */ 7303 static void 7304 ipf_token_flush(ipf_main_softc_t *softc) 7305 { 7306 ipftoken_t *it, *next; 7307 7308 WRITE_ENTER(&softc->ipf_tokens); 7309 for (it = softc->ipf_token_head; it != NULL; it = next) { 7310 next = it->ipt_next; 7311 (void) ipf_token_deref(softc, it); 7312 } 7313 RWLOCK_EXIT(&softc->ipf_tokens); 7314 } 7315 7316 7317 /* ------------------------------------------------------------------------ */ 7318 /* Function: ipf_token_del */ 7319 /* Returns: int - 0 = success, else error */ 7320 /* Parameters: softc(I)- pointer to soft context main structure */ 7321 /* type(I) - the token type to match */ 7322 /* uid(I) - uid owning the token */ 7323 /* ptr(I) - context pointer for the token */ 7324 /* */ 7325 /* This function looks for a a token in the current list that matches up */ 7326 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ 7327 /* call ipf_token_dewref() to remove it from the list. In the event that */ 7328 /* the token has a reference held elsewhere, setting ipt_complete to 2 */ 7329 /* enables debugging to distinguish between the two paths that ultimately */ 7330 /* lead to a token to be deleted. */ 7331 /* ------------------------------------------------------------------------ */ 7332 int 7333 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr) 7334 { 7335 ipftoken_t *it; 7336 int error; 7337 7338 IPFERROR(82); 7339 error = ESRCH; 7340 7341 WRITE_ENTER(&softc->ipf_tokens); 7342 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { 7343 if (ptr == it->ipt_ctx && type == it->ipt_type && 7344 uid == it->ipt_uid) { 7345 it->ipt_complete = 2; 7346 ipf_token_deref(softc, it); 7347 error = 0; 7348 break; 7349 } 7350 } 7351 RWLOCK_EXIT(&softc->ipf_tokens); 7352 7353 return error; 7354 } 7355 7356 7357 /* ------------------------------------------------------------------------ */ 7358 /* Function: ipf_token_mark_complete */ 7359 /* Returns: None. */ 7360 /* Parameters: token(I) - pointer to token structure */ 7361 /* */ 7362 /* Mark a token as being ineligable for being found with ipf_token_find. */ 7363 /* ------------------------------------------------------------------------ */ 7364 void 7365 ipf_token_mark_complete(ipftoken_t *token) 7366 { 7367 if (token->ipt_complete == 0) 7368 token->ipt_complete = 1; 7369 } 7370 7371 7372 /* ------------------------------------------------------------------------ */ 7373 /* Function: ipf_token_find */ 7374 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ 7375 /* Parameters: softc(I)- pointer to soft context main structure */ 7376 /* type(I) - the token type to match */ 7377 /* uid(I) - uid owning the token */ 7378 /* ptr(I) - context pointer for the token */ 7379 /* */ 7380 /* This function looks for a live token in the list of current tokens that */ 7381 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ 7382 /* allocated. If one is found then it is moved to the top of the list of */ 7383 /* currently active tokens. */ 7384 /* ------------------------------------------------------------------------ */ 7385 ipftoken_t * 7386 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr) 7387 { 7388 ipftoken_t *it, *new; 7389 7390 KMALLOC(new, ipftoken_t *); 7391 if (new != NULL) 7392 bzero((char *)new, sizeof(*new)); 7393 7394 WRITE_ENTER(&softc->ipf_tokens); 7395 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) { 7396 if ((ptr == it->ipt_ctx) && (type == it->ipt_type) && 7397 (uid == it->ipt_uid) && (it->ipt_complete < 2)) 7398 break; 7399 } 7400 7401 if (it == NULL) { 7402 it = new; 7403 new = NULL; 7404 if (it == NULL) { 7405 RWLOCK_EXIT(&softc->ipf_tokens); 7406 return NULL; 7407 } 7408 it->ipt_ctx = ptr; 7409 it->ipt_uid = uid; 7410 it->ipt_type = type; 7411 it->ipt_ref = 1; 7412 } else { 7413 if (new != NULL) { 7414 KFREE(new); 7415 new = NULL; 7416 } 7417 7418 if (it->ipt_complete > 0) 7419 it = NULL; 7420 else 7421 ipf_token_unlink(softc, it); 7422 } 7423 7424 if (it != NULL) { 7425 it->ipt_pnext = softc->ipf_token_tail; 7426 *softc->ipf_token_tail = it; 7427 softc->ipf_token_tail = &it->ipt_next; 7428 it->ipt_next = NULL; 7429 it->ipt_ref++; 7430 7431 it->ipt_die = softc->ipf_ticks + 20; 7432 } 7433 7434 RWLOCK_EXIT(&softc->ipf_tokens); 7435 7436 return it; 7437 } 7438 7439 7440 /* ------------------------------------------------------------------------ */ 7441 /* Function: ipf_token_unlink */ 7442 /* Returns: None. */ 7443 /* Parameters: softc(I) - pointer to soft context main structure */ 7444 /* token(I) - pointer to token structure */ 7445 /* Write Locks: ipf_tokens */ 7446 /* */ 7447 /* This function unlinks a token structure from the linked list of tokens */ 7448 /* that "own" it. The head pointer never needs to be explicitly adjusted */ 7449 /* but the tail does due to the linked list implementation. */ 7450 /* ------------------------------------------------------------------------ */ 7451 static void 7452 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token) 7453 { 7454 7455 if (softc->ipf_token_tail == &token->ipt_next) 7456 softc->ipf_token_tail = token->ipt_pnext; 7457 7458 *token->ipt_pnext = token->ipt_next; 7459 if (token->ipt_next != NULL) 7460 token->ipt_next->ipt_pnext = token->ipt_pnext; 7461 token->ipt_next = NULL; 7462 token->ipt_pnext = NULL; 7463 } 7464 7465 7466 /* ------------------------------------------------------------------------ */ 7467 /* Function: ipf_token_deref */ 7468 /* Returns: int - 0 == token freed, else reference count */ 7469 /* Parameters: softc(I) - pointer to soft context main structure */ 7470 /* token(I) - pointer to token structure */ 7471 /* Write Locks: ipf_tokens */ 7472 /* */ 7473 /* Drop the reference count on the token structure and if it drops to zero, */ 7474 /* call the dereference function for the token type because it is then */ 7475 /* possible to free the token data structure. */ 7476 /* ------------------------------------------------------------------------ */ 7477 int 7478 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token) 7479 { 7480 void *data, **datap; 7481 7482 ASSERT(token->ipt_ref > 0); 7483 token->ipt_ref--; 7484 if (token->ipt_ref > 0) 7485 return token->ipt_ref; 7486 7487 data = token->ipt_data; 7488 datap = &data; 7489 7490 if ((data != NULL) && (data != (void *)-1)) { 7491 switch (token->ipt_type) 7492 { 7493 case IPFGENITER_IPF : 7494 (void) ipf_derefrule(softc, (frentry_t **)datap); 7495 break; 7496 case IPFGENITER_IPNAT : 7497 WRITE_ENTER(&softc->ipf_nat); 7498 ipf_nat_rule_deref(softc, (ipnat_t **)datap); 7499 RWLOCK_EXIT(&softc->ipf_nat); 7500 break; 7501 case IPFGENITER_NAT : 7502 ipf_nat_deref(softc, (nat_t **)datap); 7503 break; 7504 case IPFGENITER_STATE : 7505 ipf_state_deref(softc, (ipstate_t **)datap); 7506 break; 7507 case IPFGENITER_FRAG : 7508 ipf_frag_pkt_deref(softc, (ipfr_t **)datap); 7509 break; 7510 case IPFGENITER_NATFRAG : 7511 ipf_frag_nat_deref(softc, (ipfr_t **)datap); 7512 break; 7513 case IPFGENITER_HOSTMAP : 7514 WRITE_ENTER(&softc->ipf_nat); 7515 ipf_nat_hostmapdel(softc, (hostmap_t **)datap); 7516 RWLOCK_EXIT(&softc->ipf_nat); 7517 break; 7518 default : 7519 ipf_lookup_iterderef(softc, token->ipt_type, data); 7520 break; 7521 } 7522 } 7523 7524 ipf_token_unlink(softc, token); 7525 KFREE(token); 7526 return 0; 7527 } 7528 7529 7530 /* ------------------------------------------------------------------------ */ 7531 /* Function: ipf_nextrule */ 7532 /* Returns: frentry_t * - NULL == no more rules, else pointer to next */ 7533 /* Parameters: softc(I) - pointer to soft context main structure */ 7534 /* fr(I) - pointer to filter rule */ 7535 /* out(I) - 1 == out rules, 0 == input rules */ 7536 /* */ 7537 /* Starting with "fr", find the next rule to visit. This includes visiting */ 7538 /* the list of rule groups if either fr is NULL (empty list) or it is the */ 7539 /* last rule in the list. When walking rule lists, it is either input or */ 7540 /* output rules that are returned, never both. */ 7541 /* ------------------------------------------------------------------------ */ 7542 static frentry_t * 7543 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit, 7544 frentry_t *fr, int out) 7545 { 7546 frentry_t *next; 7547 frgroup_t *fg; 7548 7549 if (fr != NULL && fr->fr_group != -1) { 7550 fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group, 7551 unit, active, NULL); 7552 if (fg != NULL) 7553 fg = fg->fg_next; 7554 } else { 7555 fg = softc->ipf_groups[unit][active]; 7556 } 7557 7558 while (fg != NULL) { 7559 next = fg->fg_start; 7560 while (next != NULL) { 7561 if (out) { 7562 if (next->fr_flags & FR_OUTQUE) 7563 return next; 7564 } else if (next->fr_flags & FR_INQUE) { 7565 return next; 7566 } 7567 next = next->fr_next; 7568 } 7569 if (next == NULL) 7570 fg = fg->fg_next; 7571 } 7572 7573 return NULL; 7574 } 7575 7576 /* ------------------------------------------------------------------------ */ 7577 /* Function: ipf_getnextrule */ 7578 /* Returns: int - 0 = success, else error */ 7579 /* Parameters: softc(I)- pointer to soft context main structure */ 7580 /* t(I) - pointer to destination information to resolve */ 7581 /* ptr(I) - pointer to ipfobj_t to copyin from user space */ 7582 /* */ 7583 /* This function's first job is to bring in the ipfruleiter_t structure via */ 7584 /* the ipfobj_t structure to determine what should be the next rule to */ 7585 /* return. Once the ipfruleiter_t has been brought in, it then tries to */ 7586 /* find the 'next rule'. This may include searching rule group lists or */ 7587 /* just be as simple as looking at the 'next' field in the rule structure. */ 7588 /* When we have found the rule to return, increase its reference count and */ 7589 /* if we used an existing rule to get here, decrease its reference count. */ 7590 /* ------------------------------------------------------------------------ */ 7591 int 7592 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr) 7593 { 7594 frentry_t *fr, *next, zero; 7595 ipfruleiter_t it; 7596 int error, out; 7597 frgroup_t *fg; 7598 ipfobj_t obj; 7599 int predict; 7600 char *dst; 7601 int unit; 7602 7603 if (t == NULL || ptr == NULL) { 7604 IPFERROR(84); 7605 return EFAULT; 7606 } 7607 7608 error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER); 7609 if (error != 0) 7610 return error; 7611 7612 if ((it.iri_inout < 0) || (it.iri_inout > 3)) { 7613 IPFERROR(85); 7614 return EINVAL; 7615 } 7616 if ((it.iri_active != 0) && (it.iri_active != 1)) { 7617 IPFERROR(86); 7618 return EINVAL; 7619 } 7620 if (it.iri_nrules == 0) { 7621 IPFERROR(87); 7622 return ENOSPC; 7623 } 7624 if (it.iri_rule == NULL) { 7625 IPFERROR(88); 7626 return EFAULT; 7627 } 7628 7629 fg = NULL; 7630 fr = t->ipt_data; 7631 if ((it.iri_inout & F_OUT) != 0) 7632 out = 1; 7633 else 7634 out = 0; 7635 if ((it.iri_inout & F_ACIN) != 0) 7636 unit = IPL_LOGCOUNT; 7637 else 7638 unit = IPL_LOGIPF; 7639 7640 READ_ENTER(&softc->ipf_mutex); 7641 if (fr == NULL) { 7642 if (*it.iri_group == '\0') { 7643 if (unit == IPL_LOGCOUNT) { 7644 next = softc->ipf_acct[out][it.iri_active]; 7645 } else { 7646 next = softc->ipf_rules[out][it.iri_active]; 7647 } 7648 if (next == NULL) 7649 next = ipf_nextrule(softc, it.iri_active, 7650 unit, NULL, out); 7651 } else { 7652 fg = ipf_findgroup(softc, it.iri_group, unit, 7653 it.iri_active, NULL); 7654 if (fg != NULL) 7655 next = fg->fg_start; 7656 else 7657 next = NULL; 7658 } 7659 } else { 7660 next = fr->fr_next; 7661 if (next == NULL) 7662 next = ipf_nextrule(softc, it.iri_active, unit, 7663 fr, out); 7664 } 7665 7666 if (next != NULL && next->fr_next != NULL) 7667 predict = 1; 7668 else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL) 7669 predict = 1; 7670 else 7671 predict = 0; 7672 7673 if (fr != NULL) 7674 (void) ipf_derefrule(softc, &fr); 7675 7676 obj.ipfo_type = IPFOBJ_FRENTRY; 7677 dst = (char *)it.iri_rule; 7678 7679 if (next != NULL) { 7680 obj.ipfo_size = next->fr_size; 7681 MUTEX_ENTER(&next->fr_lock); 7682 next->fr_ref++; 7683 MUTEX_EXIT(&next->fr_lock); 7684 t->ipt_data = next; 7685 } else { 7686 obj.ipfo_size = sizeof(frentry_t); 7687 bzero(&zero, sizeof(zero)); 7688 next = &zero; 7689 t->ipt_data = NULL; 7690 } 7691 it.iri_rule = predict ? next : NULL; 7692 if (predict == 0) 7693 ipf_token_mark_complete(t); 7694 7695 RWLOCK_EXIT(&softc->ipf_mutex); 7696 7697 obj.ipfo_ptr = dst; 7698 error = ipf_outobjk(softc, &obj, next); 7699 if (error == 0 && t->ipt_data != NULL) { 7700 dst += obj.ipfo_size; 7701 if (next->fr_data != NULL) { 7702 ipfobj_t dobj; 7703 7704 if (next->fr_type == FR_T_IPFEXPR) 7705 dobj.ipfo_type = IPFOBJ_IPFEXPR; 7706 else 7707 dobj.ipfo_type = IPFOBJ_FRIPF; 7708 dobj.ipfo_size = next->fr_dsize; 7709 dobj.ipfo_rev = obj.ipfo_rev; 7710 dobj.ipfo_ptr = dst; 7711 error = ipf_outobjk(softc, &dobj, next->fr_data); 7712 } 7713 } 7714 7715 if ((fr != NULL) && (next == &zero)) 7716 (void) ipf_derefrule(softc, &fr); 7717 7718 return error; 7719 } 7720 7721 7722 /* ------------------------------------------------------------------------ */ 7723 /* Function: ipf_frruleiter */ 7724 /* Returns: int - 0 = success, else error */ 7725 /* Parameters: softc(I)- pointer to soft context main structure */ 7726 /* data(I) - the token type to match */ 7727 /* uid(I) - uid owning the token */ 7728 /* ptr(I) - context pointer for the token */ 7729 /* */ 7730 /* This function serves as a stepping stone between ipf_ipf_ioctl and */ 7731 /* ipf_getnextrule. It's role is to find the right token in the kernel for */ 7732 /* the process doing the ioctl and use that to ask for the next rule. */ 7733 /* ------------------------------------------------------------------------ */ 7734 static int 7735 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx) 7736 { 7737 ipftoken_t *token; 7738 ipfruleiter_t it; 7739 ipfobj_t obj; 7740 int error; 7741 7742 token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx); 7743 if (token != NULL) { 7744 error = ipf_getnextrule(softc, token, data); 7745 WRITE_ENTER(&softc->ipf_tokens); 7746 ipf_token_deref(softc, token); 7747 RWLOCK_EXIT(&softc->ipf_tokens); 7748 } else { 7749 error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER); 7750 if (error != 0) 7751 return error; 7752 it.iri_rule = NULL; 7753 error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER); 7754 } 7755 7756 return error; 7757 } 7758 7759 7760 /* ------------------------------------------------------------------------ */ 7761 /* Function: ipf_geniter */ 7762 /* Returns: int - 0 = success, else error */ 7763 /* Parameters: softc(I) - pointer to soft context main structure */ 7764 /* token(I) - pointer to ipftoken_t structure */ 7765 /* itp(I) - pointer to iterator data */ 7766 /* */ 7767 /* Decide which iterator function to call using information passed through */ 7768 /* the ipfgeniter_t structure at itp. */ 7769 /* ------------------------------------------------------------------------ */ 7770 static int 7771 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp) 7772 { 7773 int error; 7774 7775 switch (itp->igi_type) 7776 { 7777 case IPFGENITER_FRAG : 7778 error = ipf_frag_pkt_next(softc, token, itp); 7779 break; 7780 default : 7781 IPFERROR(92); 7782 error = EINVAL; 7783 break; 7784 } 7785 7786 return error; 7787 } 7788 7789 7790 /* ------------------------------------------------------------------------ */ 7791 /* Function: ipf_genericiter */ 7792 /* Returns: int - 0 = success, else error */ 7793 /* Parameters: softc(I)- pointer to soft context main structure */ 7794 /* data(I) - the token type to match */ 7795 /* uid(I) - uid owning the token */ 7796 /* ptr(I) - context pointer for the token */ 7797 /* */ 7798 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */ 7799 /* ------------------------------------------------------------------------ */ 7800 int 7801 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx) 7802 { 7803 ipftoken_t *token; 7804 ipfgeniter_t iter; 7805 int error; 7806 7807 error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER); 7808 if (error != 0) 7809 return error; 7810 7811 token = ipf_token_find(softc, iter.igi_type, uid, ctx); 7812 if (token != NULL) { 7813 token->ipt_subtype = iter.igi_type; 7814 error = ipf_geniter(softc, token, &iter); 7815 WRITE_ENTER(&softc->ipf_tokens); 7816 ipf_token_deref(softc, token); 7817 RWLOCK_EXIT(&softc->ipf_tokens); 7818 } else { 7819 IPFERROR(93); 7820 error = 0; 7821 } 7822 7823 return error; 7824 } 7825 7826 7827 /* ------------------------------------------------------------------------ */ 7828 /* Function: ipf_ipf_ioctl */ 7829 /* Returns: int - 0 = success, else error */ 7830 /* Parameters: softc(I)- pointer to soft context main structure */ 7831 /* data(I) - the token type to match */ 7832 /* cmd(I) - the ioctl command number */ 7833 /* mode(I) - mode flags for the ioctl */ 7834 /* uid(I) - uid owning the token */ 7835 /* ptr(I) - context pointer for the token */ 7836 /* */ 7837 /* This function handles all of the ioctl command that are actually isssued */ 7838 /* to the /dev/ipl device. */ 7839 /* ------------------------------------------------------------------------ */ 7840 int 7841 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode, 7842 int uid, void *ctx) 7843 { 7844 friostat_t fio; 7845 int error, tmp; 7846 ipfobj_t obj; 7847 SPL_INT(s); 7848 7849 switch (cmd) 7850 { 7851 case SIOCFRENB : 7852 if (!(mode & FWRITE)) { 7853 IPFERROR(94); 7854 error = EPERM; 7855 } else { 7856 error = BCOPYIN(data, &tmp, sizeof(tmp)); 7857 if (error != 0) { 7858 IPFERROR(95); 7859 error = EFAULT; 7860 break; 7861 } 7862 7863 WRITE_ENTER(&softc->ipf_global); 7864 if (tmp) { 7865 if (softc->ipf_running > 0) 7866 error = 0; 7867 else 7868 error = ipfattach(softc); 7869 if (error == 0) 7870 softc->ipf_running = 1; 7871 else 7872 (void) ipfdetach(softc); 7873 } else { 7874 if (softc->ipf_running == 1) 7875 error = ipfdetach(softc); 7876 else 7877 error = 0; 7878 if (error == 0) 7879 softc->ipf_running = -1; 7880 } 7881 RWLOCK_EXIT(&softc->ipf_global); 7882 } 7883 break; 7884 7885 case SIOCIPFSET : 7886 if (!(mode & FWRITE)) { 7887 IPFERROR(96); 7888 error = EPERM; 7889 break; 7890 } 7891 /* FALLTHRU */ 7892 case SIOCIPFGETNEXT : 7893 case SIOCIPFGET : 7894 error = ipf_ipftune(softc, cmd, (void *)data); 7895 break; 7896 7897 case SIOCSETFF : 7898 if (!(mode & FWRITE)) { 7899 IPFERROR(97); 7900 error = EPERM; 7901 } else { 7902 error = BCOPYIN(data, &softc->ipf_flags, 7903 sizeof(softc->ipf_flags)); 7904 if (error != 0) { 7905 IPFERROR(98); 7906 error = EFAULT; 7907 } 7908 } 7909 break; 7910 7911 case SIOCGETFF : 7912 error = BCOPYOUT(&softc->ipf_flags, data, 7913 sizeof(softc->ipf_flags)); 7914 if (error != 0) { 7915 IPFERROR(99); 7916 error = EFAULT; 7917 } 7918 break; 7919 7920 case SIOCFUNCL : 7921 error = ipf_resolvefunc(softc, (void *)data); 7922 break; 7923 7924 case SIOCINAFR : 7925 case SIOCRMAFR : 7926 case SIOCADAFR : 7927 case SIOCZRLST : 7928 if (!(mode & FWRITE)) { 7929 IPFERROR(100); 7930 error = EPERM; 7931 } else { 7932 error = frrequest(softc, IPL_LOGIPF, cmd, data, 7933 softc->ipf_active, 1); 7934 } 7935 break; 7936 7937 case SIOCINIFR : 7938 case SIOCRMIFR : 7939 case SIOCADIFR : 7940 if (!(mode & FWRITE)) { 7941 IPFERROR(101); 7942 error = EPERM; 7943 } else { 7944 error = frrequest(softc, IPL_LOGIPF, cmd, data, 7945 1 - softc->ipf_active, 1); 7946 } 7947 break; 7948 7949 case SIOCSWAPA : 7950 if (!(mode & FWRITE)) { 7951 IPFERROR(102); 7952 error = EPERM; 7953 } else { 7954 WRITE_ENTER(&softc->ipf_mutex); 7955 error = BCOPYOUT(&softc->ipf_active, data, 7956 sizeof(softc->ipf_active)); 7957 if (error != 0) { 7958 IPFERROR(103); 7959 error = EFAULT; 7960 } else { 7961 softc->ipf_active = 1 - softc->ipf_active; 7962 } 7963 RWLOCK_EXIT(&softc->ipf_mutex); 7964 } 7965 break; 7966 7967 case SIOCGETFS : 7968 error = ipf_inobj(softc, (void *)data, &obj, &fio, 7969 IPFOBJ_IPFSTAT); 7970 if (error != 0) 7971 break; 7972 ipf_getstat(softc, &fio, obj.ipfo_rev); 7973 error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT); 7974 break; 7975 7976 case SIOCFRZST : 7977 if (!(mode & FWRITE)) { 7978 IPFERROR(104); 7979 error = EPERM; 7980 } else 7981 error = ipf_zerostats(softc, data); 7982 break; 7983 7984 case SIOCIPFFL : 7985 if (!(mode & FWRITE)) { 7986 IPFERROR(105); 7987 error = EPERM; 7988 } else { 7989 error = BCOPYIN(data, &tmp, sizeof(tmp)); 7990 if (!error) { 7991 tmp = ipf_flush(softc, IPL_LOGIPF, tmp); 7992 error = BCOPYOUT(&tmp, data, sizeof(tmp)); 7993 if (error != 0) { 7994 IPFERROR(106); 7995 error = EFAULT; 7996 } 7997 } else { 7998 IPFERROR(107); 7999 error = EFAULT; 8000 } 8001 } 8002 break; 8003 8004 #ifdef USE_INET6 8005 case SIOCIPFL6 : 8006 if (!(mode & FWRITE)) { 8007 IPFERROR(108); 8008 error = EPERM; 8009 } else { 8010 error = BCOPYIN(data, &tmp, sizeof(tmp)); 8011 if (!error) { 8012 tmp = ipf_flush(softc, IPL_LOGIPF, tmp); 8013 error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8014 if (error != 0) { 8015 IPFERROR(109); 8016 error = EFAULT; 8017 } 8018 } else { 8019 IPFERROR(110); 8020 error = EFAULT; 8021 } 8022 } 8023 break; 8024 #endif 8025 8026 case SIOCSTLCK : 8027 if (!(mode & FWRITE)) { 8028 IPFERROR(122); 8029 error = EPERM; 8030 } else { 8031 error = BCOPYIN(data, &tmp, sizeof(tmp)); 8032 if (error == 0) { 8033 ipf_state_setlock(softc->ipf_state_soft, tmp); 8034 ipf_nat_setlock(softc->ipf_nat_soft, tmp); 8035 ipf_frag_setlock(softc->ipf_frag_soft, tmp); 8036 ipf_auth_setlock(softc->ipf_auth_soft, tmp); 8037 } else { 8038 IPFERROR(111); 8039 error = EFAULT; 8040 } 8041 } 8042 break; 8043 8044 #ifdef IPFILTER_LOG 8045 case SIOCIPFFB : 8046 if (!(mode & FWRITE)) { 8047 IPFERROR(112); 8048 error = EPERM; 8049 } else { 8050 tmp = ipf_log_clear(softc, IPL_LOGIPF); 8051 error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8052 if (error) { 8053 IPFERROR(113); 8054 error = EFAULT; 8055 } 8056 } 8057 break; 8058 #endif /* IPFILTER_LOG */ 8059 8060 case SIOCFRSYN : 8061 if (!(mode & FWRITE)) { 8062 IPFERROR(114); 8063 error = EPERM; 8064 } else { 8065 WRITE_ENTER(&softc->ipf_global); 8066 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES) 8067 error = ipfsync(); 8068 #else 8069 ipf_sync(softc, NULL); 8070 error = 0; 8071 #endif 8072 RWLOCK_EXIT(&softc->ipf_global); 8073 8074 } 8075 break; 8076 8077 case SIOCGFRST : 8078 error = ipf_outobj(softc, (void *)data, 8079 ipf_frag_stats(softc->ipf_frag_soft), 8080 IPFOBJ_FRAGSTAT); 8081 break; 8082 8083 #ifdef IPFILTER_LOG 8084 case FIONREAD : 8085 tmp = ipf_log_bytesused(softc, IPL_LOGIPF); 8086 error = BCOPYOUT(&tmp, data, sizeof(tmp)); 8087 break; 8088 #endif 8089 8090 case SIOCIPFITER : 8091 SPL_SCHED(s); 8092 error = ipf_frruleiter(softc, data, uid, ctx); 8093 SPL_X(s); 8094 break; 8095 8096 case SIOCGENITER : 8097 SPL_SCHED(s); 8098 error = ipf_genericiter(softc, data, uid, ctx); 8099 SPL_X(s); 8100 break; 8101 8102 case SIOCIPFDELTOK : 8103 error = BCOPYIN(data, &tmp, sizeof(tmp)); 8104 if (error == 0) { 8105 SPL_SCHED(s); 8106 error = ipf_token_del(softc, tmp, uid, ctx); 8107 SPL_X(s); 8108 } 8109 break; 8110 8111 default : 8112 IPFERROR(115); 8113 error = EINVAL; 8114 break; 8115 } 8116 8117 return error; 8118 } 8119 8120 8121 /* ------------------------------------------------------------------------ */ 8122 /* Function: ipf_decaps */ 8123 /* Returns: int - -1 == decapsulation failed, else bit mask of */ 8124 /* flags indicating packet filtering decision. */ 8125 /* Parameters: fin(I) - pointer to packet information */ 8126 /* pass(I) - IP protocol version to match */ 8127 /* l5proto(I) - layer 5 protocol to decode UDP data as. */ 8128 /* */ 8129 /* This function is called for packets that are wrapt up in other packets, */ 8130 /* for example, an IP packet that is the entire data segment for another IP */ 8131 /* packet. If the basic constraints for this are satisfied, change the */ 8132 /* buffer to point to the start of the inner packet and start processing */ 8133 /* rules belonging to the head group this rule specifies. */ 8134 /* ------------------------------------------------------------------------ */ 8135 u_32_t 8136 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto) 8137 { 8138 fr_info_t fin2, *fino = NULL; 8139 int elen, hlen, nh; 8140 grehdr_t gre; 8141 ip_t *ip; 8142 mb_t *m; 8143 8144 if ((fin->fin_flx & FI_COALESCE) == 0) 8145 if (ipf_coalesce(fin) == -1) 8146 goto cantdecaps; 8147 8148 m = fin->fin_m; 8149 hlen = fin->fin_hlen; 8150 8151 switch (fin->fin_p) 8152 { 8153 case IPPROTO_UDP : 8154 /* 8155 * In this case, the specific protocol being decapsulated 8156 * inside UDP frames comes from the rule. 8157 */ 8158 nh = fin->fin_fr->fr_icode; 8159 break; 8160 8161 case IPPROTO_GRE : /* 47 */ 8162 bcopy(fin->fin_dp, (char *)&gre, sizeof(gre)); 8163 hlen += sizeof(grehdr_t); 8164 if (gre.gr_R|gre.gr_s) 8165 goto cantdecaps; 8166 if (gre.gr_C) 8167 hlen += 4; 8168 if (gre.gr_K) 8169 hlen += 4; 8170 if (gre.gr_S) 8171 hlen += 4; 8172 8173 nh = IPPROTO_IP; 8174 8175 /* 8176 * If the routing options flag is set, validate that it is 8177 * there and bounce over it. 8178 */ 8179 #if 0 8180 /* This is really heavy weight and lots of room for error, */ 8181 /* so for now, put it off and get the simple stuff right. */ 8182 if (gre.gr_R) { 8183 u_char off, len, *s; 8184 u_short af; 8185 int end; 8186 8187 end = 0; 8188 s = fin->fin_dp; 8189 s += hlen; 8190 aplen = fin->fin_plen - hlen; 8191 while (aplen > 3) { 8192 af = (s[0] << 8) | s[1]; 8193 off = s[2]; 8194 len = s[3]; 8195 aplen -= 4; 8196 s += 4; 8197 if (af == 0 && len == 0) { 8198 end = 1; 8199 break; 8200 } 8201 if (aplen < len) 8202 break; 8203 s += len; 8204 aplen -= len; 8205 } 8206 if (end != 1) 8207 goto cantdecaps; 8208 hlen = s - (u_char *)fin->fin_dp; 8209 } 8210 #endif 8211 break; 8212 8213 #ifdef IPPROTO_IPIP 8214 case IPPROTO_IPIP : /* 4 */ 8215 #endif 8216 nh = IPPROTO_IP; 8217 break; 8218 8219 default : /* Includes ESP, AH is special for IPv4 */ 8220 goto cantdecaps; 8221 } 8222 8223 switch (nh) 8224 { 8225 case IPPROTO_IP : 8226 case IPPROTO_IPV6 : 8227 break; 8228 default : 8229 goto cantdecaps; 8230 } 8231 8232 bcopy((char *)fin, (char *)&fin2, sizeof(fin2)); 8233 fino = fin; 8234 fin = &fin2; 8235 elen = hlen; 8236 #if defined(MENTAT) && defined(_KERNEL) 8237 m->b_rptr += elen; 8238 #else 8239 m->m_data += elen; 8240 m->m_len -= elen; 8241 #endif 8242 fin->fin_plen -= elen; 8243 8244 ip = (ip_t *)((char *)fin->fin_ip + elen); 8245 8246 /* 8247 * Make sure we have at least enough data for the network layer 8248 * header. 8249 */ 8250 if (IP_V(ip) == 4) 8251 hlen = IP_HL(ip) << 2; 8252 #ifdef USE_INET6 8253 else if (IP_V(ip) == 6) 8254 hlen = sizeof(ip6_t); 8255 #endif 8256 else 8257 goto cantdecaps2; 8258 8259 if (fin->fin_plen < hlen) 8260 goto cantdecaps2; 8261 8262 fin->fin_dp = (char *)ip + hlen; 8263 8264 if (IP_V(ip) == 4) { 8265 /* 8266 * Perform IPv4 header checksum validation. 8267 */ 8268 if (ipf_cksum((u_short *)ip, hlen)) 8269 goto cantdecaps2; 8270 } 8271 8272 if (ipf_makefrip(hlen, ip, fin) == -1) { 8273 cantdecaps2: 8274 if (m != NULL) { 8275 #if defined(MENTAT) && defined(_KERNEL) 8276 m->b_rptr -= elen; 8277 #else 8278 m->m_data -= elen; 8279 m->m_len += elen; 8280 #endif 8281 } 8282 cantdecaps: 8283 DT1(frb_decapfrip, fr_info_t *, fin); 8284 pass &= ~FR_CMDMASK; 8285 pass |= FR_BLOCK|FR_QUICK; 8286 fin->fin_reason = FRB_DECAPFRIP; 8287 return -1; 8288 } 8289 8290 pass = ipf_scanlist(fin, pass); 8291 8292 /* 8293 * Copy the packet filter "result" fields out of the fr_info_t struct 8294 * that is local to the decapsulation processing and back into the 8295 * one we were called with. 8296 */ 8297 fino->fin_flx = fin->fin_flx; 8298 fino->fin_rev = fin->fin_rev; 8299 fino->fin_icode = fin->fin_icode; 8300 fino->fin_rule = fin->fin_rule; 8301 (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN); 8302 fino->fin_fr = fin->fin_fr; 8303 fino->fin_error = fin->fin_error; 8304 fino->fin_mp = fin->fin_mp; 8305 fino->fin_m = fin->fin_m; 8306 m = fin->fin_m; 8307 if (m != NULL) { 8308 #if defined(MENTAT) && defined(_KERNEL) 8309 m->b_rptr -= elen; 8310 #else 8311 m->m_data -= elen; 8312 m->m_len += elen; 8313 #endif 8314 } 8315 return pass; 8316 } 8317 8318 8319 /* ------------------------------------------------------------------------ */ 8320 /* Function: ipf_matcharray_load */ 8321 /* Returns: int - 0 = success, else error */ 8322 /* Parameters: softc(I) - pointer to soft context main structure */ 8323 /* data(I) - pointer to ioctl data */ 8324 /* objp(I) - ipfobj_t structure to load data into */ 8325 /* arrayptr(I) - pointer to location to store array pointer */ 8326 /* */ 8327 /* This function loads in a mathing array through the ipfobj_t struct that */ 8328 /* describes it. Sanity checking and array size limitations are enforced */ 8329 /* in this function to prevent userspace from trying to load in something */ 8330 /* that is insanely big. Once the size of the array is known, the memory */ 8331 /* required is malloc'd and returned through changing *arrayptr. The */ 8332 /* contents of the array are verified before returning. Only in the event */ 8333 /* of a successful call is the caller required to free up the malloc area. */ 8334 /* ------------------------------------------------------------------------ */ 8335 int 8336 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, 8337 int **arrayptr) 8338 { 8339 int arraysize, *array, error; 8340 8341 *arrayptr = NULL; 8342 8343 error = BCOPYIN(data, objp, sizeof(*objp)); 8344 if (error != 0) { 8345 IPFERROR(116); 8346 return EFAULT; 8347 } 8348 8349 if (objp->ipfo_type != IPFOBJ_IPFEXPR) { 8350 IPFERROR(117); 8351 return EINVAL; 8352 } 8353 8354 if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) || 8355 (objp->ipfo_size > 1024)) { 8356 IPFERROR(118); 8357 return EINVAL; 8358 } 8359 8360 arraysize = objp->ipfo_size * sizeof(*array); 8361 KMALLOCS(array, int *, arraysize); 8362 if (array == NULL) { 8363 IPFERROR(119); 8364 return ENOMEM; 8365 } 8366 8367 error = COPYIN(objp->ipfo_ptr, array, arraysize); 8368 if (error != 0) { 8369 KFREES(array, arraysize); 8370 IPFERROR(120); 8371 return EFAULT; 8372 } 8373 8374 if (ipf_matcharray_verify(array, arraysize) != 0) { 8375 KFREES(array, arraysize); 8376 IPFERROR(121); 8377 return EINVAL; 8378 } 8379 8380 *arrayptr = array; 8381 return 0; 8382 } 8383 8384 8385 /* ------------------------------------------------------------------------ */ 8386 /* Function: ipf_matcharray_verify */ 8387 /* Returns: Nil */ 8388 /* Parameters: array(I) - pointer to matching array */ 8389 /* arraysize(I) - number of elements in the array */ 8390 /* */ 8391 /* Verify the contents of a matching array by stepping through each element */ 8392 /* in it. The actual commands in the array are not verified for */ 8393 /* correctness, only that all of the sizes are correctly within limits. */ 8394 /* ------------------------------------------------------------------------ */ 8395 int 8396 ipf_matcharray_verify(int *array, int arraysize) 8397 { 8398 int i, nelem, maxidx; 8399 ipfexp_t *e; 8400 8401 nelem = arraysize / sizeof(*array); 8402 8403 /* 8404 * Currently, it makes no sense to have an array less than 6 8405 * elements long - the initial size at the from, a single operation 8406 * (minimum 4 in length) and a trailer, for a total of 6. 8407 */ 8408 if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) { 8409 return -1; 8410 } 8411 8412 /* 8413 * Verify the size of data pointed to by array with how long 8414 * the array claims to be itself. 8415 */ 8416 if (array[0] * sizeof(*array) != arraysize) { 8417 return -1; 8418 } 8419 8420 maxidx = nelem - 1; 8421 /* 8422 * The last opcode in this array should be an IPF_EXP_END. 8423 */ 8424 if (array[maxidx] != IPF_EXP_END) { 8425 return -1; 8426 } 8427 8428 for (i = 1; i < maxidx; ) { 8429 e = (ipfexp_t *)(array + i); 8430 8431 /* 8432 * The length of the bits to check must be at least 1 8433 * (or else there is nothing to comapre with!) and it 8434 * cannot exceed the length of the data present. 8435 */ 8436 if ((e->ipfe_size < 1 ) || 8437 (e->ipfe_size + i > maxidx)) { 8438 return -1; 8439 } 8440 i += e->ipfe_size; 8441 } 8442 return 0; 8443 } 8444 8445 8446 /* ------------------------------------------------------------------------ */ 8447 /* Function: ipf_fr_matcharray */ 8448 /* Returns: int - 0 = match failed, else positive match */ 8449 /* Parameters: fin(I) - pointer to packet information */ 8450 /* array(I) - pointer to matching array */ 8451 /* */ 8452 /* This function is used to apply a matching array against a packet and */ 8453 /* return an indication of whether or not the packet successfully matches */ 8454 /* all of the commands in it. */ 8455 /* ------------------------------------------------------------------------ */ 8456 static int 8457 ipf_fr_matcharray(fr_info_t *fin, int *array) 8458 { 8459 int i, n, *x, rv, p; 8460 ipfexp_t *e; 8461 8462 rv = 0; 8463 n = array[0]; 8464 x = array + 1; 8465 8466 for (; n > 0; x += 3 + x[3], rv = 0) { 8467 e = (ipfexp_t *)x; 8468 if (e->ipfe_cmd == IPF_EXP_END) 8469 break; 8470 n -= e->ipfe_size; 8471 8472 /* 8473 * The upper 16 bits currently store the protocol value. 8474 * This is currently used with TCP and UDP port compares and 8475 * allows "tcp.port = 80" without requiring an explicit 8476 " "ip.pr = tcp" first. 8477 */ 8478 p = e->ipfe_cmd >> 16; 8479 if ((p != 0) && (p != fin->fin_p)) 8480 break; 8481 8482 switch (e->ipfe_cmd) 8483 { 8484 case IPF_EXP_IP_PR : 8485 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8486 rv |= (fin->fin_p == e->ipfe_arg0[i]); 8487 } 8488 break; 8489 8490 case IPF_EXP_IP_SRCADDR : 8491 if (fin->fin_v != 4) 8492 break; 8493 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8494 rv |= ((fin->fin_saddr & 8495 e->ipfe_arg0[i * 2 + 1]) == 8496 e->ipfe_arg0[i * 2]); 8497 } 8498 break; 8499 8500 case IPF_EXP_IP_DSTADDR : 8501 if (fin->fin_v != 4) 8502 break; 8503 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8504 rv |= ((fin->fin_daddr & 8505 e->ipfe_arg0[i * 2 + 1]) == 8506 e->ipfe_arg0[i * 2]); 8507 } 8508 break; 8509 8510 case IPF_EXP_IP_ADDR : 8511 if (fin->fin_v != 4) 8512 break; 8513 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8514 rv |= ((fin->fin_saddr & 8515 e->ipfe_arg0[i * 2 + 1]) == 8516 e->ipfe_arg0[i * 2]) || 8517 ((fin->fin_daddr & 8518 e->ipfe_arg0[i * 2 + 1]) == 8519 e->ipfe_arg0[i * 2]); 8520 } 8521 break; 8522 8523 #ifdef USE_INET6 8524 case IPF_EXP_IP6_SRCADDR : 8525 if (fin->fin_v != 6) 8526 break; 8527 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8528 rv |= IP6_MASKEQ(&fin->fin_src6, 8529 &e->ipfe_arg0[i * 8 + 4], 8530 &e->ipfe_arg0[i * 8]); 8531 } 8532 break; 8533 8534 case IPF_EXP_IP6_DSTADDR : 8535 if (fin->fin_v != 6) 8536 break; 8537 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8538 rv |= IP6_MASKEQ(&fin->fin_dst6, 8539 &e->ipfe_arg0[i * 8 + 4], 8540 &e->ipfe_arg0[i * 8]); 8541 } 8542 break; 8543 8544 case IPF_EXP_IP6_ADDR : 8545 if (fin->fin_v != 6) 8546 break; 8547 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8548 rv |= IP6_MASKEQ(&fin->fin_src6, 8549 &e->ipfe_arg0[i * 8 + 4], 8550 &e->ipfe_arg0[i * 8]) || 8551 IP6_MASKEQ(&fin->fin_dst6, 8552 &e->ipfe_arg0[i * 8 + 4], 8553 &e->ipfe_arg0[i * 8]); 8554 } 8555 break; 8556 #endif 8557 8558 case IPF_EXP_UDP_PORT : 8559 case IPF_EXP_TCP_PORT : 8560 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8561 rv |= (fin->fin_sport == e->ipfe_arg0[i]) || 8562 (fin->fin_dport == e->ipfe_arg0[i]); 8563 } 8564 break; 8565 8566 case IPF_EXP_UDP_SPORT : 8567 case IPF_EXP_TCP_SPORT : 8568 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8569 rv |= (fin->fin_sport == e->ipfe_arg0[i]); 8570 } 8571 break; 8572 8573 case IPF_EXP_UDP_DPORT : 8574 case IPF_EXP_TCP_DPORT : 8575 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8576 rv |= (fin->fin_dport == e->ipfe_arg0[i]); 8577 } 8578 break; 8579 8580 case IPF_EXP_TCP_FLAGS : 8581 for (i = 0; !rv && i < e->ipfe_narg; i++) { 8582 rv |= ((fin->fin_tcpf & 8583 e->ipfe_arg0[i * 2 + 1]) == 8584 e->ipfe_arg0[i * 2]); 8585 } 8586 break; 8587 } 8588 rv ^= e->ipfe_not; 8589 8590 if (rv == 0) 8591 break; 8592 } 8593 8594 return rv; 8595 } 8596 8597 8598 /* ------------------------------------------------------------------------ */ 8599 /* Function: ipf_queueflush */ 8600 /* Returns: int - number of entries flushed (0 = none) */ 8601 /* Parameters: softc(I) - pointer to soft context main structure */ 8602 /* deletefn(I) - function to call to delete entry */ 8603 /* ipfqs(I) - top of the list of ipf internal queues */ 8604 /* userqs(I) - top of the list of user defined timeouts */ 8605 /* */ 8606 /* This fucntion gets called when the state/NAT hash tables fill up and we */ 8607 /* need to try a bit harder to free up some space. The algorithm used here */ 8608 /* split into two parts but both halves have the same goal: to reduce the */ 8609 /* number of connections considered to be "active" to the low watermark. */ 8610 /* There are two steps in doing this: */ 8611 /* 1) Remove any TCP connections that are already considered to be "closed" */ 8612 /* but have not yet been removed from the state table. The two states */ 8613 /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */ 8614 /* candidates for this style of removal. If freeing up entries in */ 8615 /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */ 8616 /* we do not go on to step 2. */ 8617 /* */ 8618 /* 2) Look for the oldest entries on each timeout queue and free them if */ 8619 /* they are within the given window we are considering. Where the */ 8620 /* window starts and the steps taken to increase its size depend upon */ 8621 /* how long ipf has been running (ipf_ticks.) Anything modified in the */ 8622 /* last 30 seconds is not touched. */ 8623 /* touched */ 8624 /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */ 8625 /* | | | | | | */ 8626 /* future <--+----------+--------+-----------+-----+-----+-----------> past */ 8627 /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */ 8628 /* */ 8629 /* Points to note: */ 8630 /* - tqe_die is the time, in the future, when entries die. */ 8631 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */ 8632 /* ticks. */ 8633 /* - tqe_touched is when the entry was last used by NAT/state */ 8634 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */ 8635 /* ipf_ticks any given timeout queue and vice versa. */ 8636 /* - both tqe_die and tqe_touched increase over time */ 8637 /* - timeout queues are sorted with the highest value of tqe_die at the */ 8638 /* bottom and therefore the smallest values of each are at the top */ 8639 /* - the pointer passed in as ipfqs should point to an array of timeout */ 8640 /* queues representing each of the TCP states */ 8641 /* */ 8642 /* We start by setting up a maximum range to scan for things to move of */ 8643 /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */ 8644 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */ 8645 /* we start again with a new value for "iend" and "istart". This is */ 8646 /* continued until we either finish the scan of 30 second intervals or the */ 8647 /* low water mark is reached. */ 8648 /* ------------------------------------------------------------------------ */ 8649 int 8650 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn, 8651 ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low) 8652 { 8653 u_long interval, istart, iend; 8654 ipftq_t *ifq, *ifqnext; 8655 ipftqent_t *tqe, *tqn; 8656 int removed = 0; 8657 8658 for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) { 8659 tqn = tqe->tqe_next; 8660 if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8661 removed++; 8662 } 8663 if ((*activep * 100 / size) > low) { 8664 for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head; 8665 ((tqe = tqn) != NULL); ) { 8666 tqn = tqe->tqe_next; 8667 if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8668 removed++; 8669 } 8670 } 8671 8672 if ((*activep * 100 / size) <= low) { 8673 return removed; 8674 } 8675 8676 /* 8677 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is 8678 * used then the operations are upgraded to floating point 8679 * and kernels don't like floating point... 8680 */ 8681 if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) { 8682 istart = IPF_TTLVAL(86400 * 4); 8683 interval = IPF_TTLVAL(43200); 8684 } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) { 8685 istart = IPF_TTLVAL(43200); 8686 interval = IPF_TTLVAL(1800); 8687 } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) { 8688 istart = IPF_TTLVAL(1800); 8689 interval = IPF_TTLVAL(30); 8690 } else { 8691 return 0; 8692 } 8693 if (istart > softc->ipf_ticks) { 8694 if (softc->ipf_ticks - interval < interval) 8695 istart = interval; 8696 else 8697 istart = (softc->ipf_ticks / interval) * interval; 8698 } 8699 8700 iend = softc->ipf_ticks - interval; 8701 8702 while ((*activep * 100 / size) > low) { 8703 u_long try; 8704 8705 try = softc->ipf_ticks - istart; 8706 8707 for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) { 8708 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { 8709 if (try < tqe->tqe_touched) 8710 break; 8711 tqn = tqe->tqe_next; 8712 if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8713 removed++; 8714 } 8715 } 8716 8717 for (ifq = userqs; ifq != NULL; ifq = ifqnext) { 8718 ifqnext = ifq->ifq_next; 8719 8720 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) { 8721 if (try < tqe->tqe_touched) 8722 break; 8723 tqn = tqe->tqe_next; 8724 if ((*deletefn)(softc, tqe->tqe_parent) == 0) 8725 removed++; 8726 } 8727 } 8728 8729 if (try >= iend) { 8730 if (interval == IPF_TTLVAL(43200)) { 8731 interval = IPF_TTLVAL(1800); 8732 } else if (interval == IPF_TTLVAL(1800)) { 8733 interval = IPF_TTLVAL(30); 8734 } else { 8735 break; 8736 } 8737 if (interval >= softc->ipf_ticks) 8738 break; 8739 8740 iend = softc->ipf_ticks - interval; 8741 } 8742 istart -= interval; 8743 } 8744 8745 return removed; 8746 } 8747 8748 8749 /* ------------------------------------------------------------------------ */ 8750 /* Function: ipf_deliverlocal */ 8751 /* Returns: int - 1 = local address, 0 = non-local address */ 8752 /* Parameters: softc(I) - pointer to soft context main structure */ 8753 /* ipversion(I) - IP protocol version (4 or 6) */ 8754 /* ifp(I) - network interface pointer */ 8755 /* ipaddr(I) - IPv4/6 destination address */ 8756 /* */ 8757 /* This fucntion is used to determine in the address "ipaddr" belongs to */ 8758 /* the network interface represented by ifp. */ 8759 /* ------------------------------------------------------------------------ */ 8760 int 8761 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp, 8762 i6addr_t *ipaddr) 8763 { 8764 i6addr_t addr; 8765 int islocal = 0; 8766 8767 if (ipversion == 4) { 8768 if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) { 8769 if (addr.in4.s_addr == ipaddr->in4.s_addr) 8770 islocal = 1; 8771 } 8772 8773 #ifdef USE_INET6 8774 } else if (ipversion == 6) { 8775 if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) { 8776 if (IP6_EQ(&addr, ipaddr)) 8777 islocal = 1; 8778 } 8779 #endif 8780 } 8781 8782 return islocal; 8783 } 8784 8785 8786 /* ------------------------------------------------------------------------ */ 8787 /* Function: ipf_settimeout */ 8788 /* Returns: int - 0 = success, -1 = failure */ 8789 /* Parameters: softc(I) - pointer to soft context main structure */ 8790 /* t(I) - pointer to tuneable array entry */ 8791 /* p(I) - pointer to values passed in to apply */ 8792 /* */ 8793 /* This function is called to set the timeout values for each distinct */ 8794 /* queue timeout that is available. When called, it calls into both the */ 8795 /* state and NAT code, telling them to update their timeout queues. */ 8796 /* ------------------------------------------------------------------------ */ 8797 static int 8798 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t, 8799 ipftuneval_t *p) 8800 { 8801 8802 /* 8803 * ipf_interror should be set by the functions called here, not 8804 * by this function - it's just a middle man. 8805 */ 8806 if (ipf_state_settimeout(softc, t, p) == -1) 8807 return -1; 8808 if (ipf_nat_settimeout(softc, t, p) == -1) 8809 return -1; 8810 return 0; 8811 } 8812 8813 8814 /* ------------------------------------------------------------------------ */ 8815 /* Function: ipf_apply_timeout */ 8816 /* Returns: int - 0 = success, -1 = failure */ 8817 /* Parameters: head(I) - pointer to tuneable array entry */ 8818 /* seconds(I) - pointer to values passed in to apply */ 8819 /* */ 8820 /* This function applies a timeout of "seconds" to the timeout queue that */ 8821 /* is pointed to by "head". All entries on this list have an expiration */ 8822 /* set to be the current tick value of ipf plus the ttl. Given that this */ 8823 /* function should only be called when the delta is non-zero, the task is */ 8824 /* to walk the entire list and apply the change. The sort order will not */ 8825 /* change. The only catch is that this is O(n) across the list, so if the */ 8826 /* queue has lots of entries (10s of thousands or 100s of thousands), it */ 8827 /* could take a relatively long time to work through them all. */ 8828 /* ------------------------------------------------------------------------ */ 8829 void 8830 ipf_apply_timeout(ipftq_t *head, u_int seconds) 8831 { 8832 u_int oldtimeout, newtimeout; 8833 ipftqent_t *tqe; 8834 int delta; 8835 8836 MUTEX_ENTER(&head->ifq_lock); 8837 oldtimeout = head->ifq_ttl; 8838 newtimeout = IPF_TTLVAL(seconds); 8839 delta = oldtimeout - newtimeout; 8840 8841 head->ifq_ttl = newtimeout; 8842 8843 for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) { 8844 tqe->tqe_die += delta; 8845 } 8846 MUTEX_EXIT(&head->ifq_lock); 8847 } 8848 8849 8850 /* ------------------------------------------------------------------------ */ 8851 /* Function: ipf_settimeout_tcp */ 8852 /* Returns: int - 0 = successfully applied, -1 = failed */ 8853 /* Parameters: t(I) - pointer to tuneable to change */ 8854 /* p(I) - pointer to new timeout information */ 8855 /* tab(I) - pointer to table of TCP queues */ 8856 /* */ 8857 /* This function applies the new timeout (p) to the TCP tunable (t) and */ 8858 /* updates all of the entries on the relevant timeout queue by calling */ 8859 /* ipf_apply_timeout(). */ 8860 /* ------------------------------------------------------------------------ */ 8861 int 8862 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab) 8863 { 8864 if (!strcmp(t->ipft_name, "tcp_idle_timeout") || 8865 !strcmp(t->ipft_name, "tcp_established")) { 8866 ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int); 8867 } else if (!strcmp(t->ipft_name, "tcp_close_wait")) { 8868 ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int); 8869 } else if (!strcmp(t->ipft_name, "tcp_last_ack")) { 8870 ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int); 8871 } else if (!strcmp(t->ipft_name, "tcp_timeout")) { 8872 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); 8873 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); 8874 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); 8875 } else if (!strcmp(t->ipft_name, "tcp_listen")) { 8876 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int); 8877 } else if (!strcmp(t->ipft_name, "tcp_half_established")) { 8878 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int); 8879 } else if (!strcmp(t->ipft_name, "tcp_closing")) { 8880 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int); 8881 } else if (!strcmp(t->ipft_name, "tcp_syn_received")) { 8882 ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int); 8883 } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) { 8884 ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int); 8885 } else if (!strcmp(t->ipft_name, "tcp_closed")) { 8886 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); 8887 } else if (!strcmp(t->ipft_name, "tcp_half_closed")) { 8888 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int); 8889 } else if (!strcmp(t->ipft_name, "tcp_time_wait")) { 8890 ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int); 8891 } else { 8892 /* 8893 * ipf_interror isn't set here because it should be set 8894 * by whatever called this function. 8895 */ 8896 return -1; 8897 } 8898 return 0; 8899 } 8900 8901 8902 /* ------------------------------------------------------------------------ */ 8903 /* Function: ipf_main_soft_create */ 8904 /* Returns: NULL = failure, else success */ 8905 /* Parameters: arg(I) - pointer to soft context structure if already allocd */ 8906 /* */ 8907 /* Create the foundation soft context structure. In circumstances where it */ 8908 /* is not required to dynamically allocate the context, a pointer can be */ 8909 /* passed in (rather than NULL) to a structure to be initialised. */ 8910 /* The main thing of interest is that a number of locks are initialised */ 8911 /* here instead of in the where might be expected - in the relevant create */ 8912 /* function elsewhere. This is done because the current locking design has */ 8913 /* some areas where these locks are used outside of their module. */ 8914 /* Possibly the most important exercise that is done here is setting of all */ 8915 /* the timeout values, allowing them to be changed before init(). */ 8916 /* ------------------------------------------------------------------------ */ 8917 void * 8918 ipf_main_soft_create(void *arg) 8919 { 8920 ipf_main_softc_t *softc; 8921 8922 if (arg == NULL) { 8923 KMALLOC(softc, ipf_main_softc_t *); 8924 if (softc == NULL) 8925 return NULL; 8926 } else { 8927 softc = arg; 8928 } 8929 8930 bzero((char *)softc, sizeof(*softc)); 8931 8932 /* 8933 * This serves as a flag as to whether or not the softc should be 8934 * free'd when _destroy is called. 8935 */ 8936 softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0; 8937 8938 softc->ipf_tuners = ipf_tune_array_copy(softc, 8939 sizeof(ipf_main_tuneables), 8940 ipf_main_tuneables); 8941 if (softc->ipf_tuners == NULL) { 8942 ipf_main_soft_destroy(softc); 8943 return NULL; 8944 } 8945 8946 MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex"); 8947 MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock"); 8948 RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex"); 8949 RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock"); 8950 RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock"); 8951 RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock"); 8952 RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock"); 8953 RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock"); 8954 RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock"); 8955 8956 softc->ipf_token_head = NULL; 8957 softc->ipf_token_tail = &softc->ipf_token_head; 8958 8959 softc->ipf_tcpidletimeout = FIVE_DAYS; 8960 softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL); 8961 softc->ipf_tcplastack = IPF_TTLVAL(30); 8962 softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL); 8963 softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL); 8964 softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL); 8965 softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL); 8966 softc->ipf_tcpclosed = IPF_TTLVAL(30); 8967 softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600); 8968 softc->ipf_udptimeout = IPF_TTLVAL(120); 8969 softc->ipf_udpacktimeout = IPF_TTLVAL(12); 8970 softc->ipf_icmptimeout = IPF_TTLVAL(60); 8971 softc->ipf_icmpacktimeout = IPF_TTLVAL(6); 8972 softc->ipf_iptimeout = IPF_TTLVAL(60); 8973 8974 #if defined(IPFILTER_DEFAULT_BLOCK) 8975 softc->ipf_pass = FR_BLOCK|FR_NOMATCH; 8976 #else 8977 softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH; 8978 #endif 8979 softc->ipf_minttl = 4; 8980 softc->ipf_icmpminfragmtu = 68; 8981 softc->ipf_flags = IPF_LOGGING; 8982 8983 return softc; 8984 } 8985 8986 /* ------------------------------------------------------------------------ */ 8987 /* Function: ipf_main_soft_init */ 8988 /* Returns: 0 = success, -1 = failure */ 8989 /* Parameters: softc(I) - pointer to soft context main structure */ 8990 /* */ 8991 /* A null-op function that exists as a placeholder so that the flow in */ 8992 /* other functions is obvious. */ 8993 /* ------------------------------------------------------------------------ */ 8994 /*ARGSUSED*/ 8995 int 8996 ipf_main_soft_init(ipf_main_softc_t *softc) 8997 { 8998 return 0; 8999 } 9000 9001 9002 /* ------------------------------------------------------------------------ */ 9003 /* Function: ipf_main_soft_destroy */ 9004 /* Returns: void */ 9005 /* Parameters: softc(I) - pointer to soft context main structure */ 9006 /* */ 9007 /* Undo everything that we did in ipf_main_soft_create. */ 9008 /* */ 9009 /* The most important check that needs to be made here is whether or not */ 9010 /* the structure was allocated by ipf_main_soft_create() by checking what */ 9011 /* value is stored in ipf_dynamic_main. */ 9012 /* ------------------------------------------------------------------------ */ 9013 /*ARGSUSED*/ 9014 void 9015 ipf_main_soft_destroy(ipf_main_softc_t *softc) 9016 { 9017 9018 RW_DESTROY(&softc->ipf_frag); 9019 RW_DESTROY(&softc->ipf_poolrw); 9020 RW_DESTROY(&softc->ipf_nat); 9021 RW_DESTROY(&softc->ipf_state); 9022 RW_DESTROY(&softc->ipf_tokens); 9023 RW_DESTROY(&softc->ipf_mutex); 9024 RW_DESTROY(&softc->ipf_global); 9025 MUTEX_DESTROY(&softc->ipf_timeoutlock); 9026 MUTEX_DESTROY(&softc->ipf_rw); 9027 9028 if (softc->ipf_tuners != NULL) { 9029 KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables)); 9030 } 9031 if (softc->ipf_dynamic_softc == 1) { 9032 KFREE(softc); 9033 } 9034 } 9035 9036 9037 /* ------------------------------------------------------------------------ */ 9038 /* Function: ipf_main_soft_fini */ 9039 /* Returns: 0 = success, -1 = failure */ 9040 /* Parameters: softc(I) - pointer to soft context main structure */ 9041 /* */ 9042 /* Clean out the rules which have been added since _init was last called, */ 9043 /* the only dynamic part of the mainline. */ 9044 /* ------------------------------------------------------------------------ */ 9045 int 9046 ipf_main_soft_fini(ipf_main_softc_t *softc) 9047 { 9048 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE); 9049 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE); 9050 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE); 9051 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE); 9052 9053 return 0; 9054 } 9055 9056 9057 /* ------------------------------------------------------------------------ */ 9058 /* Function: ipf_main_load */ 9059 /* Returns: 0 = success, -1 = failure */ 9060 /* Parameters: none */ 9061 /* */ 9062 /* Handle global initialisation that needs to be done for the base part of */ 9063 /* IPFilter. At present this just amounts to initialising some ICMP lookup */ 9064 /* arrays that get used by the state/NAT code. */ 9065 /* ------------------------------------------------------------------------ */ 9066 int 9067 ipf_main_load(void) 9068 { 9069 int i; 9070 9071 /* fill icmp reply type table */ 9072 for (i = 0; i <= ICMP_MAXTYPE; i++) 9073 icmpreplytype4[i] = -1; 9074 icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY; 9075 icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY; 9076 icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY; 9077 icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY; 9078 9079 #ifdef USE_INET6 9080 /* fill icmp reply type table */ 9081 for (i = 0; i <= ICMP6_MAXTYPE; i++) 9082 icmpreplytype6[i] = -1; 9083 icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY; 9084 icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT; 9085 icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY; 9086 icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT; 9087 icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT; 9088 #endif 9089 9090 return 0; 9091 } 9092 9093 9094 /* ------------------------------------------------------------------------ */ 9095 /* Function: ipf_main_unload */ 9096 /* Returns: 0 = success, -1 = failure */ 9097 /* Parameters: none */ 9098 /* */ 9099 /* A null-op function that exists as a placeholder so that the flow in */ 9100 /* other functions is obvious. */ 9101 /* ------------------------------------------------------------------------ */ 9102 int 9103 ipf_main_unload(void) 9104 { 9105 return 0; 9106 } 9107 9108 9109 /* ------------------------------------------------------------------------ */ 9110 /* Function: ipf_load_all */ 9111 /* Returns: 0 = success, -1 = failure */ 9112 /* Parameters: none */ 9113 /* */ 9114 /* Work through all of the subsystems inside IPFilter and call the load */ 9115 /* function for each in an order that won't lead to a crash :) */ 9116 /* ------------------------------------------------------------------------ */ 9117 int 9118 ipf_load_all(void) 9119 { 9120 if (ipf_main_load() == -1) 9121 return -1; 9122 9123 if (ipf_state_main_load() == -1) 9124 return -1; 9125 9126 if (ipf_nat_main_load() == -1) 9127 return -1; 9128 9129 if (ipf_frag_main_load() == -1) 9130 return -1; 9131 9132 if (ipf_auth_main_load() == -1) 9133 return -1; 9134 9135 if (ipf_proxy_main_load() == -1) 9136 return -1; 9137 9138 return 0; 9139 } 9140 9141 9142 /* ------------------------------------------------------------------------ */ 9143 /* Function: ipf_unload_all */ 9144 /* Returns: 0 = success, -1 = failure */ 9145 /* Parameters: none */ 9146 /* */ 9147 /* Work through all of the subsystems inside IPFilter and call the unload */ 9148 /* function for each in an order that won't lead to a crash :) */ 9149 /* ------------------------------------------------------------------------ */ 9150 int 9151 ipf_unload_all(void) 9152 { 9153 if (ipf_proxy_main_unload() == -1) 9154 return -1; 9155 9156 if (ipf_auth_main_unload() == -1) 9157 return -1; 9158 9159 if (ipf_frag_main_unload() == -1) 9160 return -1; 9161 9162 if (ipf_nat_main_unload() == -1) 9163 return -1; 9164 9165 if (ipf_state_main_unload() == -1) 9166 return -1; 9167 9168 if (ipf_main_unload() == -1) 9169 return -1; 9170 9171 return 0; 9172 } 9173 9174 9175 /* ------------------------------------------------------------------------ */ 9176 /* Function: ipf_create_all */ 9177 /* Returns: NULL = failure, else success */ 9178 /* Parameters: arg(I) - pointer to soft context main structure */ 9179 /* */ 9180 /* Work through all of the subsystems inside IPFilter and call the create */ 9181 /* function for each in an order that won't lead to a crash :) */ 9182 /* ------------------------------------------------------------------------ */ 9183 ipf_main_softc_t * 9184 ipf_create_all(void *arg) 9185 { 9186 ipf_main_softc_t *softc; 9187 9188 softc = ipf_main_soft_create(arg); 9189 if (softc == NULL) 9190 return NULL; 9191 9192 #ifdef IPFILTER_LOG 9193 softc->ipf_log_soft = ipf_log_soft_create(softc); 9194 if (softc->ipf_log_soft == NULL) { 9195 ipf_destroy_all(softc); 9196 return NULL; 9197 } 9198 #endif 9199 9200 softc->ipf_lookup_soft = ipf_lookup_soft_create(softc); 9201 if (softc->ipf_lookup_soft == NULL) { 9202 ipf_destroy_all(softc); 9203 return NULL; 9204 } 9205 9206 softc->ipf_sync_soft = ipf_sync_soft_create(softc); 9207 if (softc->ipf_sync_soft == NULL) { 9208 ipf_destroy_all(softc); 9209 return NULL; 9210 } 9211 9212 softc->ipf_state_soft = ipf_state_soft_create(softc); 9213 if (softc->ipf_state_soft == NULL) { 9214 ipf_destroy_all(softc); 9215 return NULL; 9216 } 9217 9218 softc->ipf_nat_soft = ipf_nat_soft_create(softc); 9219 if (softc->ipf_nat_soft == NULL) { 9220 ipf_destroy_all(softc); 9221 return NULL; 9222 } 9223 9224 softc->ipf_frag_soft = ipf_frag_soft_create(softc); 9225 if (softc->ipf_frag_soft == NULL) { 9226 ipf_destroy_all(softc); 9227 return NULL; 9228 } 9229 9230 softc->ipf_auth_soft = ipf_auth_soft_create(softc); 9231 if (softc->ipf_auth_soft == NULL) { 9232 ipf_destroy_all(softc); 9233 return NULL; 9234 } 9235 9236 softc->ipf_proxy_soft = ipf_proxy_soft_create(softc); 9237 if (softc->ipf_proxy_soft == NULL) { 9238 ipf_destroy_all(softc); 9239 return NULL; 9240 } 9241 9242 return softc; 9243 } 9244 9245 9246 /* ------------------------------------------------------------------------ */ 9247 /* Function: ipf_destroy_all */ 9248 /* Returns: void */ 9249 /* Parameters: softc(I) - pointer to soft context main structure */ 9250 /* */ 9251 /* Work through all of the subsystems inside IPFilter and call the destroy */ 9252 /* function for each in an order that won't lead to a crash :) */ 9253 /* */ 9254 /* Every one of these functions is expected to succeed, so there is no */ 9255 /* checking of return values. */ 9256 /* ------------------------------------------------------------------------ */ 9257 void 9258 ipf_destroy_all(ipf_main_softc_t *softc) 9259 { 9260 9261 if (softc->ipf_state_soft != NULL) { 9262 ipf_state_soft_destroy(softc, softc->ipf_state_soft); 9263 softc->ipf_state_soft = NULL; 9264 } 9265 9266 if (softc->ipf_nat_soft != NULL) { 9267 ipf_nat_soft_destroy(softc, softc->ipf_nat_soft); 9268 softc->ipf_nat_soft = NULL; 9269 } 9270 9271 if (softc->ipf_frag_soft != NULL) { 9272 ipf_frag_soft_destroy(softc, softc->ipf_frag_soft); 9273 softc->ipf_frag_soft = NULL; 9274 } 9275 9276 if (softc->ipf_auth_soft != NULL) { 9277 ipf_auth_soft_destroy(softc, softc->ipf_auth_soft); 9278 softc->ipf_auth_soft = NULL; 9279 } 9280 9281 if (softc->ipf_proxy_soft != NULL) { 9282 ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft); 9283 softc->ipf_proxy_soft = NULL; 9284 } 9285 9286 if (softc->ipf_sync_soft != NULL) { 9287 ipf_sync_soft_destroy(softc, softc->ipf_sync_soft); 9288 softc->ipf_sync_soft = NULL; 9289 } 9290 9291 if (softc->ipf_lookup_soft != NULL) { 9292 ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft); 9293 softc->ipf_lookup_soft = NULL; 9294 } 9295 9296 #ifdef IPFILTER_LOG 9297 if (softc->ipf_log_soft != NULL) { 9298 ipf_log_soft_destroy(softc, softc->ipf_log_soft); 9299 softc->ipf_log_soft = NULL; 9300 } 9301 #endif 9302 9303 ipf_main_soft_destroy(softc); 9304 } 9305 9306 9307 /* ------------------------------------------------------------------------ */ 9308 /* Function: ipf_init_all */ 9309 /* Returns: 0 = success, -1 = failure */ 9310 /* Parameters: softc(I) - pointer to soft context main structure */ 9311 /* */ 9312 /* Work through all of the subsystems inside IPFilter and call the init */ 9313 /* function for each in an order that won't lead to a crash :) */ 9314 /* ------------------------------------------------------------------------ */ 9315 int 9316 ipf_init_all(ipf_main_softc_t *softc) 9317 { 9318 9319 if (ipf_main_soft_init(softc) == -1) 9320 return -1; 9321 9322 #ifdef IPFILTER_LOG 9323 if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1) 9324 return -1; 9325 #endif 9326 9327 if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1) 9328 return -1; 9329 9330 if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1) 9331 return -1; 9332 9333 if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1) 9334 return -1; 9335 9336 if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1) 9337 return -1; 9338 9339 if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1) 9340 return -1; 9341 9342 if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1) 9343 return -1; 9344 9345 if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1) 9346 return -1; 9347 9348 return 0; 9349 } 9350 9351 9352 /* ------------------------------------------------------------------------ */ 9353 /* Function: ipf_fini_all */ 9354 /* Returns: 0 = success, -1 = failure */ 9355 /* Parameters: softc(I) - pointer to soft context main structure */ 9356 /* */ 9357 /* Work through all of the subsystems inside IPFilter and call the fini */ 9358 /* function for each in an order that won't lead to a crash :) */ 9359 /* ------------------------------------------------------------------------ */ 9360 int 9361 ipf_fini_all(ipf_main_softc_t *softc) 9362 { 9363 9364 ipf_token_flush(softc); 9365 9366 if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1) 9367 return -1; 9368 9369 if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1) 9370 return -1; 9371 9372 if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1) 9373 return -1; 9374 9375 if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1) 9376 return -1; 9377 9378 if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1) 9379 return -1; 9380 9381 if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1) 9382 return -1; 9383 9384 if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1) 9385 return -1; 9386 9387 #ifdef IPFILTER_LOG 9388 if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1) 9389 return -1; 9390 #endif 9391 9392 if (ipf_main_soft_fini(softc) == -1) 9393 return -1; 9394 9395 return 0; 9396 } 9397 9398 9399 /* ------------------------------------------------------------------------ */ 9400 /* Function: ipf_rule_expire */ 9401 /* Returns: Nil */ 9402 /* Parameters: softc(I) - pointer to soft context main structure */ 9403 /* */ 9404 /* At present this function exists just to support temporary addition of */ 9405 /* firewall rules. Both inactive and active lists are scanned for items to */ 9406 /* purge, as by rights, the expiration is computed as soon as the rule is */ 9407 /* loaded in. */ 9408 /* ------------------------------------------------------------------------ */ 9409 void 9410 ipf_rule_expire(ipf_main_softc_t *softc) 9411 { 9412 frentry_t *fr; 9413 9414 if ((softc->ipf_rule_explist[0] == NULL) && 9415 (softc->ipf_rule_explist[1] == NULL)) 9416 return; 9417 9418 WRITE_ENTER(&softc->ipf_mutex); 9419 9420 while ((fr = softc->ipf_rule_explist[0]) != NULL) { 9421 /* 9422 * Because the list is kept sorted on insertion, the fist 9423 * one that dies in the future means no more work to do. 9424 */ 9425 if (fr->fr_die > softc->ipf_ticks) 9426 break; 9427 ipf_rule_delete(softc, fr, IPL_LOGIPF, 0); 9428 } 9429 9430 while ((fr = softc->ipf_rule_explist[1]) != NULL) { 9431 /* 9432 * Because the list is kept sorted on insertion, the fist 9433 * one that dies in the future means no more work to do. 9434 */ 9435 if (fr->fr_die > softc->ipf_ticks) 9436 break; 9437 ipf_rule_delete(softc, fr, IPL_LOGIPF, 1); 9438 } 9439 9440 RWLOCK_EXIT(&softc->ipf_mutex); 9441 } 9442 9443 9444 static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *); 9445 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int, 9446 i6addr_t *); 9447 9448 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp) 9449 9450 9451 /* ------------------------------------------------------------------------ */ 9452 /* Function: ipf_ht_node_cmp */ 9453 /* Returns: int - 0 == nodes are the same, .. */ 9454 /* Parameters: k1(I) - pointer to first key to compare */ 9455 /* k2(I) - pointer to second key to compare */ 9456 /* */ 9457 /* The "key" for the node is a combination of two fields: the address */ 9458 /* family and the address itself. */ 9459 /* */ 9460 /* Because we're not actually interpreting the address data, it isn't */ 9461 /* necessary to convert them to/from network/host byte order. The mask is */ 9462 /* just used to remove bits that aren't significant - it doesn't matter */ 9463 /* where they are, as long as they're always in the same place. */ 9464 /* */ 9465 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */ 9466 /* this is where individual ones will differ the most - but not true for */ 9467 /* for /48's, etc. */ 9468 /* ------------------------------------------------------------------------ */ 9469 static int 9470 ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2) 9471 { 9472 int i; 9473 9474 i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family); 9475 if (i != 0) 9476 return i; 9477 9478 if (k1->hn_addr.adf_family == AF_INET) 9479 return (k2->hn_addr.adf_addr.in4.s_addr - 9480 k1->hn_addr.adf_addr.in4.s_addr); 9481 9482 i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3]; 9483 if (i != 0) 9484 return i; 9485 i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2]; 9486 if (i != 0) 9487 return i; 9488 i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1]; 9489 if (i != 0) 9490 return i; 9491 i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0]; 9492 return i; 9493 } 9494 9495 9496 /* ------------------------------------------------------------------------ */ 9497 /* Function: ipf_ht_node_make_key */ 9498 /* Returns: Nil */ 9499 /* parameters: htp(I) - pointer to address tracking structure */ 9500 /* key(I) - where to store masked address for lookup */ 9501 /* family(I) - protocol family of address */ 9502 /* addr(I) - pointer to network address */ 9503 /* */ 9504 /* Using the "netmask" (number of bits) stored parent host tracking struct, */ 9505 /* copy the address passed in into the key structure whilst masking out the */ 9506 /* bits that we don't want. */ 9507 /* */ 9508 /* Because the parser will set ht_netmask to 128 if there is no protocol */ 9509 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */ 9510 /* have to be wary of that and not allow 32-128 to happen. */ 9511 /* ------------------------------------------------------------------------ */ 9512 static void 9513 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family, 9514 i6addr_t *addr) 9515 { 9516 key->hn_addr.adf_family = family; 9517 if (family == AF_INET) { 9518 u_32_t mask; 9519 int bits; 9520 9521 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4); 9522 bits = htp->ht_netmask; 9523 if (bits >= 32) { 9524 mask = 0xffffffff; 9525 } else { 9526 mask = htonl(0xffffffff << (32 - bits)); 9527 } 9528 key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask; 9529 #ifdef USE_INET6 9530 } else { 9531 int bits = htp->ht_netmask; 9532 9533 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6); 9534 if (bits > 96) { 9535 key->hn_addr.adf_addr.i6[3] = addr->i6[3] & 9536 htonl(0xffffffff << (128 - bits)); 9537 key->hn_addr.adf_addr.i6[2] = addr->i6[2]; 9538 key->hn_addr.adf_addr.i6[1] = addr->i6[2]; 9539 key->hn_addr.adf_addr.i6[0] = addr->i6[2]; 9540 } else if (bits > 64) { 9541 key->hn_addr.adf_addr.i6[3] = 0; 9542 key->hn_addr.adf_addr.i6[2] = addr->i6[2] & 9543 htonl(0xffffffff << (96 - bits)); 9544 key->hn_addr.adf_addr.i6[1] = addr->i6[1]; 9545 key->hn_addr.adf_addr.i6[0] = addr->i6[0]; 9546 } else if (bits > 32) { 9547 key->hn_addr.adf_addr.i6[3] = 0; 9548 key->hn_addr.adf_addr.i6[2] = 0; 9549 key->hn_addr.adf_addr.i6[1] = addr->i6[1] & 9550 htonl(0xffffffff << (64 - bits)); 9551 key->hn_addr.adf_addr.i6[0] = addr->i6[0]; 9552 } else { 9553 key->hn_addr.adf_addr.i6[3] = 0; 9554 key->hn_addr.adf_addr.i6[2] = 0; 9555 key->hn_addr.adf_addr.i6[1] = 0; 9556 key->hn_addr.adf_addr.i6[0] = addr->i6[0] & 9557 htonl(0xffffffff << (32 - bits)); 9558 } 9559 #endif 9560 } 9561 } 9562 9563 9564 /* ------------------------------------------------------------------------ */ 9565 /* Function: ipf_ht_node_add */ 9566 /* Returns: int - 0 == success, -1 == failure */ 9567 /* Parameters: softc(I) - pointer to soft context main structure */ 9568 /* htp(I) - pointer to address tracking structure */ 9569 /* family(I) - protocol family of address */ 9570 /* addr(I) - pointer to network address */ 9571 /* */ 9572 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ 9573 /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */ 9574 /* */ 9575 /* After preparing the key with the address information to find, look in */ 9576 /* the red-black tree to see if the address is known. A successful call to */ 9577 /* this function can mean one of two things: a new node was added to the */ 9578 /* tree or a matching node exists and we're able to bump up its activity. */ 9579 /* ------------------------------------------------------------------------ */ 9580 int 9581 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family, 9582 i6addr_t *addr) 9583 { 9584 host_node_t *h; 9585 host_node_t k; 9586 9587 ipf_ht_node_make_key(htp, &k, family, addr); 9588 9589 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); 9590 if (h == NULL) { 9591 if (htp->ht_cur_nodes >= htp->ht_max_nodes) 9592 return -1; 9593 KMALLOC(h, host_node_t *); 9594 if (h == NULL) { 9595 DT(ipf_rb_no_mem); 9596 LBUMP(ipf_rb_no_mem); 9597 return -1; 9598 } 9599 9600 /* 9601 * If there was a macro to initialise the RB node then that 9602 * would get used here, but there isn't... 9603 */ 9604 bzero((char *)h, sizeof(*h)); 9605 h->hn_addr = k.hn_addr; 9606 h->hn_addr.adf_family = k.hn_addr.adf_family; 9607 RBI_INSERT(ipf_rb, &htp->ht_root, h); 9608 htp->ht_cur_nodes++; 9609 } else { 9610 if ((htp->ht_max_per_node != 0) && 9611 (h->hn_active >= htp->ht_max_per_node)) { 9612 DT(ipf_rb_node_max); 9613 LBUMP(ipf_rb_node_max); 9614 return -1; 9615 } 9616 } 9617 9618 h->hn_active++; 9619 9620 return 0; 9621 } 9622 9623 9624 /* ------------------------------------------------------------------------ */ 9625 /* Function: ipf_ht_node_del */ 9626 /* Returns: int - 0 == success, -1 == failure */ 9627 /* parameters: htp(I) - pointer to address tracking structure */ 9628 /* family(I) - protocol family of address */ 9629 /* addr(I) - pointer to network address */ 9630 /* */ 9631 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */ 9632 /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */ 9633 /* */ 9634 /* Try and find the address passed in amongst the leaves on this tree to */ 9635 /* be friend. If found then drop the active account for that node drops by */ 9636 /* one. If that count reaches 0, it is time to free it all up. */ 9637 /* ------------------------------------------------------------------------ */ 9638 int 9639 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr) 9640 { 9641 host_node_t *h; 9642 host_node_t k; 9643 9644 ipf_ht_node_make_key(htp, &k, family, addr); 9645 9646 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k); 9647 if (h == NULL) { 9648 return -1; 9649 } else { 9650 h->hn_active--; 9651 if (h->hn_active == 0) { 9652 (void) RBI_DELETE(ipf_rb, &htp->ht_root, h); 9653 htp->ht_cur_nodes--; 9654 KFREE(h); 9655 } 9656 } 9657 9658 return 0; 9659 } 9660 9661 9662 /* ------------------------------------------------------------------------ */ 9663 /* Function: ipf_rb_ht_init */ 9664 /* Returns: Nil */ 9665 /* Parameters: head(I) - pointer to host tracking structure */ 9666 /* */ 9667 /* Initialise the host tracking structure to be ready for use above. */ 9668 /* ------------------------------------------------------------------------ */ 9669 void 9670 ipf_rb_ht_init(host_track_t *head) 9671 { 9672 memset(head, 0, sizeof(*head)); 9673 RBI_INIT(ipf_rb, &head->ht_root); 9674 } 9675 9676 9677 /* ------------------------------------------------------------------------ */ 9678 /* Function: ipf_rb_ht_freenode */ 9679 /* Returns: Nil */ 9680 /* Parameters: head(I) - pointer to host tracking structure */ 9681 /* arg(I) - additional argument from walk caller */ 9682 /* */ 9683 /* Free an actual host_node_t structure. */ 9684 /* ------------------------------------------------------------------------ */ 9685 void 9686 ipf_rb_ht_freenode(host_node_t *node, void *arg) 9687 { 9688 KFREE(node); 9689 } 9690 9691 9692 /* ------------------------------------------------------------------------ */ 9693 /* Function: ipf_rb_ht_flush */ 9694 /* Returns: Nil */ 9695 /* Parameters: head(I) - pointer to host tracking structure */ 9696 /* */ 9697 /* Remove all of the nodes in the tree tracking hosts by calling a walker */ 9698 /* and free'ing each one. */ 9699 /* ------------------------------------------------------------------------ */ 9700 void 9701 ipf_rb_ht_flush(host_track_t *head) 9702 { 9703 /* XXX - May use node members after freeing the node. */ 9704 RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL); 9705 } 9706 9707 9708 /* ------------------------------------------------------------------------ */ 9709 /* Function: ipf_slowtimer */ 9710 /* Returns: Nil */ 9711 /* Parameters: ptr(I) - pointer to main ipf soft context structure */ 9712 /* */ 9713 /* Slowly expire held state for fragments. Timeouts are set * in */ 9714 /* expectation of this being called twice per second. */ 9715 /* ------------------------------------------------------------------------ */ 9716 void 9717 ipf_slowtimer(ipf_main_softc_t *softc) 9718 { 9719 9720 ipf_token_expire(softc); 9721 ipf_frag_expire(softc); 9722 ipf_state_expire(softc); 9723 ipf_nat_expire(softc); 9724 ipf_auth_expire(softc); 9725 ipf_lookup_expire(softc); 9726 ipf_rule_expire(softc); 9727 ipf_sync_expire(softc); 9728 softc->ipf_ticks++; 9729 # if defined(__OpenBSD__) 9730 timeout_add(&ipf_slowtimer_ch, hz/2); 9731 # endif 9732 } 9733 9734 9735 /* ------------------------------------------------------------------------ */ 9736 /* Function: ipf_inet_mask_add */ 9737 /* Returns: Nil */ 9738 /* Parameters: bits(I) - pointer to nat context information */ 9739 /* mtab(I) - pointer to mask hash table structure */ 9740 /* */ 9741 /* When called, bits represents the mask of a new NAT rule that has just */ 9742 /* been added. This function inserts a bitmask into the array of masks to */ 9743 /* search when searching for a matching NAT rule for a packet. */ 9744 /* Prevention of duplicate masks is achieved by checking the use count for */ 9745 /* a given netmask. */ 9746 /* ------------------------------------------------------------------------ */ 9747 void 9748 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab) 9749 { 9750 u_32_t mask; 9751 int i, j; 9752 9753 mtab->imt4_masks[bits]++; 9754 if (mtab->imt4_masks[bits] > 1) 9755 return; 9756 9757 if (bits == 0) 9758 mask = 0; 9759 else 9760 mask = 0xffffffff << (32 - bits); 9761 9762 for (i = 0; i < 33; i++) { 9763 if (ntohl(mtab->imt4_active[i]) < mask) { 9764 for (j = 32; j > i; j--) 9765 mtab->imt4_active[j] = mtab->imt4_active[j - 1]; 9766 mtab->imt4_active[i] = htonl(mask); 9767 break; 9768 } 9769 } 9770 mtab->imt4_max++; 9771 } 9772 9773 9774 /* ------------------------------------------------------------------------ */ 9775 /* Function: ipf_inet_mask_del */ 9776 /* Returns: Nil */ 9777 /* Parameters: bits(I) - number of bits set in the netmask */ 9778 /* mtab(I) - pointer to mask hash table structure */ 9779 /* */ 9780 /* Remove the 32bit bitmask represented by "bits" from the collection of */ 9781 /* netmasks stored inside of mtab. */ 9782 /* ------------------------------------------------------------------------ */ 9783 void 9784 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab) 9785 { 9786 u_32_t mask; 9787 int i, j; 9788 9789 mtab->imt4_masks[bits]--; 9790 if (mtab->imt4_masks[bits] > 0) 9791 return; 9792 9793 mask = htonl(0xffffffff << (32 - bits)); 9794 for (i = 0; i < 33; i++) { 9795 if (mtab->imt4_active[i] == mask) { 9796 for (j = i + 1; j < 33; j++) 9797 mtab->imt4_active[j - 1] = mtab->imt4_active[j]; 9798 break; 9799 } 9800 } 9801 mtab->imt4_max--; 9802 ASSERT(mtab->imt4_max >= 0); 9803 } 9804 9805 9806 #ifdef USE_INET6 9807 /* ------------------------------------------------------------------------ */ 9808 /* Function: ipf_inet6_mask_add */ 9809 /* Returns: Nil */ 9810 /* Parameters: bits(I) - number of bits set in mask */ 9811 /* mask(I) - pointer to mask to add */ 9812 /* mtab(I) - pointer to mask hash table structure */ 9813 /* */ 9814 /* When called, bitcount represents the mask of a IPv6 NAT map rule that */ 9815 /* has just been added. This function inserts a bitmask into the array of */ 9816 /* masks to search when searching for a matching NAT rule for a packet. */ 9817 /* Prevention of duplicate masks is achieved by checking the use count for */ 9818 /* a given netmask. */ 9819 /* ------------------------------------------------------------------------ */ 9820 void 9821 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab) 9822 { 9823 i6addr_t zero; 9824 int i, j; 9825 9826 mtab->imt6_masks[bits]++; 9827 if (mtab->imt6_masks[bits] > 1) 9828 return; 9829 9830 if (bits == 0) { 9831 mask = &zero; 9832 zero.i6[0] = 0; 9833 zero.i6[1] = 0; 9834 zero.i6[2] = 0; 9835 zero.i6[3] = 0; 9836 } 9837 9838 for (i = 0; i < 129; i++) { 9839 if (IP6_LT(&mtab->imt6_active[i], mask)) { 9840 for (j = 128; j > i; j--) 9841 mtab->imt6_active[j] = mtab->imt6_active[j - 1]; 9842 mtab->imt6_active[i] = *mask; 9843 break; 9844 } 9845 } 9846 mtab->imt6_max++; 9847 } 9848 9849 9850 /* ------------------------------------------------------------------------ */ 9851 /* Function: ipf_inet6_mask_del */ 9852 /* Returns: Nil */ 9853 /* Parameters: bits(I) - number of bits set in mask */ 9854 /* mask(I) - pointer to mask to remove */ 9855 /* mtab(I) - pointer to mask hash table structure */ 9856 /* */ 9857 /* Remove the 128bit bitmask represented by "bits" from the collection of */ 9858 /* netmasks stored inside of mtab. */ 9859 /* ------------------------------------------------------------------------ */ 9860 void 9861 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab) 9862 { 9863 i6addr_t zero; 9864 int i, j; 9865 9866 mtab->imt6_masks[bits]--; 9867 if (mtab->imt6_masks[bits] > 0) 9868 return; 9869 9870 if (bits == 0) 9871 mask = &zero; 9872 zero.i6[0] = 0; 9873 zero.i6[1] = 0; 9874 zero.i6[2] = 0; 9875 zero.i6[3] = 0; 9876 9877 for (i = 0; i < 129; i++) { 9878 if (IP6_EQ(&mtab->imt6_active[i], mask)) { 9879 for (j = i + 1; j < 129; j++) { 9880 mtab->imt6_active[j - 1] = mtab->imt6_active[j]; 9881 if (IP6_EQ(&mtab->imt6_active[j - 1], &zero)) 9882 break; 9883 } 9884 break; 9885 } 9886 } 9887 mtab->imt6_max--; 9888 ASSERT(mtab->imt6_max >= 0); 9889 } 9890 #endif 9891