1 /* $NetBSD: dwc2_hcdqueue.c,v 1.13 2015/08/31 06:12:55 uebayasi Exp $ */ 2 3 /* 4 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines 5 * 6 * Copyright (C) 2004-2013 Synopsys, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The names of the above-listed copyright holders may not be used 18 * to endorse or promote products derived from this software without 19 * specific prior written permission. 20 * 21 * ALTERNATIVELY, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") as published by the Free Software 23 * Foundation; either version 2 of the License, or (at your option) any 24 * later version. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 27 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 28 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 30 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 31 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 32 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 33 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 35 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * This file contains the functions to manage Queue Heads and Queue 41 * Transfer Descriptors for Host mode 42 */ 43 44 #include <sys/cdefs.h> 45 __KERNEL_RCSID(0, "$NetBSD: dwc2_hcdqueue.c,v 1.13 2015/08/31 06:12:55 uebayasi Exp $"); 46 47 #include <sys/types.h> 48 #include <sys/kmem.h> 49 #include <sys/pool.h> 50 51 #include <dev/usb/usb.h> 52 #include <dev/usb/usbdi.h> 53 #include <dev/usb/usbdivar.h> 54 #include <dev/usb/usb_mem.h> 55 56 #include <machine/param.h> 57 58 #include <linux/kernel.h> 59 60 #include <dwc2/dwc2.h> 61 #include <dwc2/dwc2var.h> 62 63 #include "dwc2_core.h" 64 #include "dwc2_hcd.h" 65 66 static u32 dwc2_calc_bus_time(struct dwc2_hsotg *, int, int, int, int); 67 68 /** 69 * dwc2_qh_init() - Initializes a QH structure 70 * 71 * @hsotg: The HCD state structure for the DWC OTG controller 72 * @qh: The QH to init 73 * @urb: Holds the information about the device/endpoint needed to initialize 74 * the QH 75 */ 76 #define SCHEDULE_SLOP 10 77 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 78 struct dwc2_hcd_urb *urb) 79 { 80 int dev_speed, hub_addr, hub_port; 81 82 dev_vdbg(hsotg->dev, "%s()\n", __func__); 83 84 /* Initialize QH */ 85 qh->ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info); 86 qh->ep_is_in = dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0; 87 88 qh->data_toggle = DWC2_HC_PID_DATA0; 89 qh->maxp = dwc2_hcd_get_mps(&urb->pipe_info); 90 INIT_LIST_HEAD(&qh->qtd_list); 91 INIT_LIST_HEAD(&qh->qh_list_entry); 92 93 /* FS/LS Endpoint on HS Hub, NOT virtual root hub */ 94 dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 95 96 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); 97 qh->nak_frame = 0xffff; 98 99 if ((dev_speed == USB_SPEED_LOW || dev_speed == USB_SPEED_FULL) && 100 hub_addr != 0 && hub_addr != 1) { 101 dev_vdbg(hsotg->dev, 102 "QH init: EP %d: TT found at hub addr %d, for port %d\n", 103 dwc2_hcd_get_ep_num(&urb->pipe_info), hub_addr, 104 hub_port); 105 qh->do_split = 1; 106 } 107 108 if (qh->ep_type == USB_ENDPOINT_XFER_INT || 109 qh->ep_type == USB_ENDPOINT_XFER_ISOC) { 110 /* Compute scheduling parameters once and save them */ 111 u32 hprt, prtspd; 112 113 /* Todo: Account for split transfers in the bus time */ 114 int bytecount = 115 dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp); 116 117 qh->usecs = dwc2_calc_bus_time(hsotg, qh->do_split ? 118 USB_SPEED_HIGH : dev_speed, qh->ep_is_in, 119 qh->ep_type == USB_ENDPOINT_XFER_ISOC, 120 bytecount); 121 /* Start in a slightly future (micro)frame */ 122 qh->sched_frame = dwc2_frame_num_inc(hsotg->frame_number, 123 SCHEDULE_SLOP); 124 qh->interval = urb->interval; 125 #if 0 126 /* Increase interrupt polling rate for debugging */ 127 if (qh->ep_type == USB_ENDPOINT_XFER_INT) 128 qh->interval = 8; 129 #endif 130 hprt = DWC2_READ_4(hsotg, HPRT0); 131 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 132 if (prtspd == HPRT0_SPD_HIGH_SPEED && 133 (dev_speed == USB_SPEED_LOW || 134 dev_speed == USB_SPEED_FULL)) { 135 qh->interval *= 8; 136 qh->sched_frame |= 0x7; 137 qh->start_split_frame = qh->sched_frame; 138 } 139 dev_dbg(hsotg->dev, "interval=%d\n", qh->interval); 140 } 141 142 dev_vdbg(hsotg->dev, "DWC OTG HCD QH Initialized\n"); 143 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - qh = %p\n", qh); 144 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Device Address = %d\n", 145 dwc2_hcd_get_dev_addr(&urb->pipe_info)); 146 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Endpoint %d, %s\n", 147 dwc2_hcd_get_ep_num(&urb->pipe_info), 148 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT"); 149 150 qh->dev_speed = dev_speed; 151 152 #ifdef DWC2_DEBUG 153 const char *speed, *type; 154 switch (dev_speed) { 155 case USB_SPEED_LOW: 156 speed = "low"; 157 break; 158 case USB_SPEED_FULL: 159 speed = "full"; 160 break; 161 case USB_SPEED_HIGH: 162 speed = "high"; 163 break; 164 default: 165 speed = "?"; 166 break; 167 } 168 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Speed = %s\n", speed); 169 170 switch (qh->ep_type) { 171 case USB_ENDPOINT_XFER_ISOC: 172 type = "isochronous"; 173 break; 174 case USB_ENDPOINT_XFER_INT: 175 type = "interrupt"; 176 break; 177 case USB_ENDPOINT_XFER_CONTROL: 178 type = "control"; 179 break; 180 case USB_ENDPOINT_XFER_BULK: 181 type = "bulk"; 182 break; 183 default: 184 type = "?"; 185 break; 186 } 187 188 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Type = %s\n", type); 189 #endif 190 191 if (qh->ep_type == USB_ENDPOINT_XFER_INT) { 192 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - usecs = %d\n", 193 qh->usecs); 194 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - interval = %d\n", 195 qh->interval); 196 } 197 } 198 199 /** 200 * dwc2_hcd_qh_create() - Allocates and initializes a QH 201 * 202 * @hsotg: The HCD state structure for the DWC OTG controller 203 * @urb: Holds the information about the device/endpoint needed 204 * to initialize the QH 205 * @mem_flags: Flag to do atomic allocation if needed 206 * 207 * Return: Pointer to the newly allocated QH, or NULL on error 208 */ 209 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, 210 struct dwc2_hcd_urb *urb, 211 gfp_t mem_flags) 212 { 213 struct dwc2_softc *sc = hsotg->hsotg_sc; 214 struct dwc2_qh *qh; 215 216 if (!urb->priv) 217 return NULL; 218 219 /* Allocate memory */ 220 qh = pool_cache_get(sc->sc_qhpool, PR_NOWAIT); 221 if (!qh) 222 return NULL; 223 224 memset(qh, 0, sizeof(*qh)); 225 dwc2_qh_init(hsotg, qh, urb); 226 227 if (hsotg->core_params->dma_desc_enable > 0 && 228 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) { 229 dwc2_hcd_qh_free(hsotg, qh); 230 return NULL; 231 } 232 233 return qh; 234 } 235 236 /** 237 * dwc2_hcd_qh_free() - Frees the QH 238 * 239 * @hsotg: HCD instance 240 * @qh: The QH to free 241 * 242 * QH should already be removed from the list. QTD list should already be empty 243 * if called from URB Dequeue. 244 * 245 * Must NOT be called with interrupt disabled or spinlock held 246 */ 247 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 248 { 249 struct dwc2_softc *sc = hsotg->hsotg_sc; 250 251 if (hsotg->core_params->dma_desc_enable > 0) { 252 dwc2_hcd_qh_free_ddma(hsotg, qh); 253 } else if (qh->dw_align_buf) { 254 usb_freemem(&sc->sc_bus, &qh->dw_align_buf_usbdma); 255 qh->dw_align_buf_dma = (dma_addr_t)0; 256 } 257 258 pool_cache_put(sc->sc_qhpool, qh); 259 } 260 261 /** 262 * dwc2_periodic_channel_available() - Checks that a channel is available for a 263 * periodic transfer 264 * 265 * @hsotg: The HCD state structure for the DWC OTG controller 266 * 267 * Return: 0 if successful, negative error code otherwise 268 */ 269 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg) 270 { 271 /* 272 * Currently assuming that there is a dedicated host channel for 273 * each periodic transaction plus at least one host channel for 274 * non-periodic transactions 275 */ 276 int status; 277 int num_channels; 278 279 num_channels = hsotg->core_params->host_channels; 280 if (hsotg->periodic_channels + hsotg->non_periodic_channels < 281 num_channels 282 && hsotg->periodic_channels < num_channels - 1) { 283 status = 0; 284 } else { 285 dev_dbg(hsotg->dev, 286 "%s: Total channels: %d, Periodic: %d, " 287 "Non-periodic: %d\n", __func__, num_channels, 288 hsotg->periodic_channels, hsotg->non_periodic_channels); 289 status = -ENOSPC; 290 } 291 292 return status; 293 } 294 295 /** 296 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth 297 * for the specified QH in the periodic schedule 298 * 299 * @hsotg: The HCD state structure for the DWC OTG controller 300 * @qh: QH containing periodic bandwidth required 301 * 302 * Return: 0 if successful, negative error code otherwise 303 * 304 * For simplicity, this calculation assumes that all the transfers in the 305 * periodic schedule may occur in the same (micro)frame 306 */ 307 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg, 308 struct dwc2_qh *qh) 309 { 310 int status; 311 s16 max_claimed_usecs; 312 313 status = 0; 314 315 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 316 /* 317 * High speed mode 318 * Max periodic usecs is 80% x 125 usec = 100 usec 319 */ 320 max_claimed_usecs = 100 - qh->usecs; 321 } else { 322 /* 323 * Full speed mode 324 * Max periodic usecs is 90% x 1000 usec = 900 usec 325 */ 326 max_claimed_usecs = 900 - qh->usecs; 327 } 328 329 if (hsotg->periodic_usecs > max_claimed_usecs) { 330 dev_err(hsotg->dev, 331 "%s: already claimed usecs %d, required usecs %d\n", 332 __func__, hsotg->periodic_usecs, qh->usecs); 333 status = -ENOSPC; 334 } 335 336 return status; 337 } 338 339 /** 340 * Microframe scheduler 341 * track the total use in hsotg->frame_usecs 342 * keep each qh use in qh->frame_usecs 343 * when surrendering the qh then donate the time back 344 */ 345 static const unsigned short max_uframe_usecs[] = { 346 100, 100, 100, 100, 100, 100, 30, 0 347 }; 348 349 void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg) 350 { 351 int i; 352 353 for (i = 0; i < 8; i++) 354 hsotg->frame_usecs[i] = max_uframe_usecs[i]; 355 } 356 357 static int dwc2_find_single_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 358 { 359 unsigned short utime = qh->usecs; 360 int i; 361 362 for (i = 0; i < 8; i++) { 363 /* At the start hsotg->frame_usecs[i] = max_uframe_usecs[i] */ 364 if (utime <= hsotg->frame_usecs[i]) { 365 hsotg->frame_usecs[i] -= utime; 366 qh->frame_usecs[i] += utime; 367 return i; 368 } 369 } 370 return -ENOSPC; 371 } 372 373 /* 374 * use this for FS apps that can span multiple uframes 375 */ 376 static int dwc2_find_multi_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 377 { 378 unsigned short utime = qh->usecs; 379 unsigned short xtime; 380 int t_left; 381 int i; 382 int j; 383 int k; 384 385 for (i = 0; i < 8; i++) { 386 if (hsotg->frame_usecs[i] <= 0) 387 continue; 388 389 /* 390 * we need n consecutive slots so use j as a start slot 391 * j plus j+1 must be enough time (for now) 392 */ 393 xtime = hsotg->frame_usecs[i]; 394 for (j = i + 1; j < 8; j++) { 395 /* 396 * if we add this frame remaining time to xtime we may 397 * be OK, if not we need to test j for a complete frame 398 */ 399 if (xtime + hsotg->frame_usecs[j] < utime) { 400 if (hsotg->frame_usecs[j] < 401 max_uframe_usecs[j]) 402 continue; 403 } 404 if (xtime >= utime) { 405 t_left = utime; 406 for (k = i; k < 8; k++) { 407 t_left -= hsotg->frame_usecs[k]; 408 if (t_left <= 0) { 409 qh->frame_usecs[k] += 410 hsotg->frame_usecs[k] 411 + t_left; 412 hsotg->frame_usecs[k] = -t_left; 413 return i; 414 } else { 415 qh->frame_usecs[k] += 416 hsotg->frame_usecs[k]; 417 hsotg->frame_usecs[k] = 0; 418 } 419 } 420 } 421 /* add the frame time to x time */ 422 xtime += hsotg->frame_usecs[j]; 423 /* we must have a fully available next frame or break */ 424 if (xtime < utime && 425 hsotg->frame_usecs[j] == max_uframe_usecs[j]) 426 continue; 427 } 428 } 429 return -ENOSPC; 430 } 431 432 static int dwc2_find_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 433 { 434 int ret; 435 436 if (qh->dev_speed == USB_SPEED_HIGH) { 437 /* if this is a hs transaction we need a full frame */ 438 ret = dwc2_find_single_uframe(hsotg, qh); 439 } else { 440 /* 441 * if this is a fs transaction we may need a sequence 442 * of frames 443 */ 444 ret = dwc2_find_multi_uframe(hsotg, qh); 445 } 446 return ret; 447 } 448 449 /** 450 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a 451 * host channel is large enough to handle the maximum data transfer in a single 452 * (micro)frame for a periodic transfer 453 * 454 * @hsotg: The HCD state structure for the DWC OTG controller 455 * @qh: QH for a periodic endpoint 456 * 457 * Return: 0 if successful, negative error code otherwise 458 */ 459 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg, 460 struct dwc2_qh *qh) 461 { 462 u32 max_xfer_size; 463 u32 max_channel_xfer_size; 464 int status = 0; 465 466 max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp); 467 max_channel_xfer_size = hsotg->core_params->max_transfer_size; 468 469 if (max_xfer_size > max_channel_xfer_size) { 470 dev_err(hsotg->dev, 471 "%s: Periodic xfer length %d > max xfer length for channel %d\n", 472 __func__, max_xfer_size, max_channel_xfer_size); 473 status = -ENOSPC; 474 } 475 476 return status; 477 } 478 479 /** 480 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in 481 * the periodic schedule 482 * 483 * @hsotg: The HCD state structure for the DWC OTG controller 484 * @qh: QH for the periodic transfer. The QH should already contain the 485 * scheduling information. 486 * 487 * Return: 0 if successful, negative error code otherwise 488 */ 489 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 490 { 491 int status; 492 493 if (hsotg->core_params->uframe_sched > 0) { 494 int frame = -1; 495 496 status = dwc2_find_uframe(hsotg, qh); 497 if (status == 0) 498 frame = 7; 499 else if (status > 0) 500 frame = status - 1; 501 502 /* Set the new frame up */ 503 if (frame >= 0) { 504 qh->sched_frame &= ~0x7; 505 qh->sched_frame |= (frame & 7); 506 } 507 508 if (status > 0) 509 status = 0; 510 } else { 511 status = dwc2_periodic_channel_available(hsotg); 512 if (status) { 513 dev_info(hsotg->dev, 514 "%s: No host channel available for periodic transfer\n", 515 __func__); 516 return status; 517 } 518 519 status = dwc2_check_periodic_bandwidth(hsotg, qh); 520 } 521 522 if (status) { 523 dev_dbg(hsotg->dev, 524 "%s: Insufficient periodic bandwidth for periodic transfer\n", 525 __func__); 526 return status; 527 } 528 529 status = dwc2_check_max_xfer_size(hsotg, qh); 530 if (status) { 531 dev_dbg(hsotg->dev, 532 "%s: Channel max transfer size too small for periodic transfer\n", 533 __func__); 534 return status; 535 } 536 537 if (hsotg->core_params->dma_desc_enable > 0) 538 /* Don't rely on SOF and start in ready schedule */ 539 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready); 540 else 541 /* Always start in inactive schedule */ 542 list_add_tail(&qh->qh_list_entry, 543 &hsotg->periodic_sched_inactive); 544 545 if (hsotg->core_params->uframe_sched <= 0) 546 /* Reserve periodic channel */ 547 hsotg->periodic_channels++; 548 549 /* Update claimed usecs per (micro)frame */ 550 hsotg->periodic_usecs += qh->usecs; 551 552 return status; 553 } 554 555 /** 556 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer 557 * from the periodic schedule 558 * 559 * @hsotg: The HCD state structure for the DWC OTG controller 560 * @qh: QH for the periodic transfer 561 */ 562 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg, 563 struct dwc2_qh *qh) 564 { 565 int i; 566 567 list_del_init(&qh->qh_list_entry); 568 569 /* Update claimed usecs per (micro)frame */ 570 hsotg->periodic_usecs -= qh->usecs; 571 572 if (hsotg->core_params->uframe_sched > 0) { 573 for (i = 0; i < 8; i++) { 574 hsotg->frame_usecs[i] += qh->frame_usecs[i]; 575 qh->frame_usecs[i] = 0; 576 } 577 } else { 578 /* Release periodic channel reservation */ 579 hsotg->periodic_channels--; 580 } 581 } 582 583 /** 584 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic 585 * schedule if it is not already in the schedule. If the QH is already in 586 * the schedule, no action is taken. 587 * 588 * @hsotg: The HCD state structure for the DWC OTG controller 589 * @qh: The QH to add 590 * 591 * Return: 0 if successful, negative error code otherwise 592 */ 593 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 594 { 595 int status; 596 u32 intr_mask; 597 598 if (dbg_qh(qh)) 599 dev_vdbg(hsotg->dev, "%s()\n", __func__); 600 601 if (!list_empty(&qh->qh_list_entry)) 602 /* QH already in a schedule */ 603 return 0; 604 605 /* Add the new QH to the appropriate schedule */ 606 if (dwc2_qh_is_non_per(qh)) { 607 /* Always start in inactive schedule */ 608 list_add_tail(&qh->qh_list_entry, 609 &hsotg->non_periodic_sched_inactive); 610 return 0; 611 } 612 613 status = dwc2_schedule_periodic(hsotg, qh); 614 if (status) 615 return status; 616 if (!hsotg->periodic_qh_count) { 617 intr_mask = DWC2_READ_4(hsotg, GINTMSK); 618 intr_mask |= GINTSTS_SOF; 619 DWC2_WRITE_4(hsotg, GINTMSK, intr_mask); 620 } 621 hsotg->periodic_qh_count++; 622 623 return 0; 624 } 625 626 /** 627 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic 628 * schedule. Memory is not freed. 629 * 630 * @hsotg: The HCD state structure 631 * @qh: QH to remove from schedule 632 */ 633 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 634 { 635 u32 intr_mask; 636 637 dev_vdbg(hsotg->dev, "%s()\n", __func__); 638 639 if (list_empty(&qh->qh_list_entry)) 640 /* QH is not in a schedule */ 641 return; 642 643 if (dwc2_qh_is_non_per(qh)) { 644 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry) 645 hsotg->non_periodic_qh_ptr = 646 hsotg->non_periodic_qh_ptr->next; 647 list_del_init(&qh->qh_list_entry); 648 return; 649 } 650 651 dwc2_deschedule_periodic(hsotg, qh); 652 hsotg->periodic_qh_count--; 653 if (!hsotg->periodic_qh_count) { 654 intr_mask = DWC2_READ_4(hsotg, GINTMSK); 655 intr_mask &= ~GINTSTS_SOF; 656 DWC2_WRITE_4(hsotg, GINTMSK, intr_mask); 657 } 658 } 659 660 /* 661 * Schedule the next continuing periodic split transfer 662 */ 663 static void dwc2_sched_periodic_split(struct dwc2_hsotg *hsotg, 664 struct dwc2_qh *qh, u16 frame_number, 665 int sched_next_periodic_split) 666 { 667 u16 incr; 668 669 if (sched_next_periodic_split) { 670 qh->sched_frame = frame_number; 671 incr = dwc2_frame_num_inc(qh->start_split_frame, 1); 672 if (dwc2_frame_num_le(frame_number, incr)) { 673 /* 674 * Allow one frame to elapse after start split 675 * microframe before scheduling complete split, but 676 * DON'T if we are doing the next start split in the 677 * same frame for an ISOC out 678 */ 679 if (qh->ep_type != USB_ENDPOINT_XFER_ISOC || 680 qh->ep_is_in != 0) { 681 qh->sched_frame = 682 dwc2_frame_num_inc(qh->sched_frame, 1); 683 } 684 } 685 } else { 686 qh->sched_frame = dwc2_frame_num_inc(qh->start_split_frame, 687 qh->interval); 688 if (dwc2_frame_num_le(qh->sched_frame, frame_number)) 689 qh->sched_frame = frame_number; 690 qh->sched_frame |= 0x7; 691 qh->start_split_frame = qh->sched_frame; 692 } 693 } 694 695 /* 696 * Deactivates a QH. For non-periodic QHs, removes the QH from the active 697 * non-periodic schedule. The QH is added to the inactive non-periodic 698 * schedule if any QTDs are still attached to the QH. 699 * 700 * For periodic QHs, the QH is removed from the periodic queued schedule. If 701 * there are any QTDs still attached to the QH, the QH is added to either the 702 * periodic inactive schedule or the periodic ready schedule and its next 703 * scheduled frame is calculated. The QH is placed in the ready schedule if 704 * the scheduled frame has been reached already. Otherwise it's placed in the 705 * inactive schedule. If there are no QTDs attached to the QH, the QH is 706 * completely removed from the periodic schedule. 707 */ 708 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 709 int sched_next_periodic_split) 710 { 711 u16 frame_number; 712 713 if (dbg_qh(qh)) 714 dev_vdbg(hsotg->dev, "%s()\n", __func__); 715 716 if (dwc2_qh_is_non_per(qh)) { 717 dwc2_hcd_qh_unlink(hsotg, qh); 718 if (!list_empty(&qh->qtd_list)) 719 /* Add back to inactive non-periodic schedule */ 720 dwc2_hcd_qh_add(hsotg, qh); 721 return; 722 } 723 724 frame_number = dwc2_hcd_get_frame_number(hsotg); 725 726 if (qh->do_split) { 727 dwc2_sched_periodic_split(hsotg, qh, frame_number, 728 sched_next_periodic_split); 729 } else { 730 qh->sched_frame = dwc2_frame_num_inc(qh->sched_frame, 731 qh->interval); 732 if (dwc2_frame_num_le(qh->sched_frame, frame_number)) 733 qh->sched_frame = frame_number; 734 } 735 736 if (list_empty(&qh->qtd_list)) { 737 dwc2_hcd_qh_unlink(hsotg, qh); 738 return; 739 } 740 /* 741 * Remove from periodic_sched_queued and move to 742 * appropriate queue 743 */ 744 if ((hsotg->core_params->uframe_sched > 0 && 745 dwc2_frame_num_le(qh->sched_frame, frame_number)) || 746 (hsotg->core_params->uframe_sched <= 0 && 747 qh->sched_frame == frame_number)) 748 list_move(&qh->qh_list_entry, &hsotg->periodic_sched_ready); 749 else 750 list_move(&qh->qh_list_entry, &hsotg->periodic_sched_inactive); 751 } 752 753 /** 754 * dwc2_hcd_qtd_init() - Initializes a QTD structure 755 * 756 * @qtd: The QTD to initialize 757 * @urb: The associated URB 758 */ 759 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 760 { 761 qtd->urb = urb; 762 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) == 763 USB_ENDPOINT_XFER_CONTROL) { 764 /* 765 * The only time the QTD data toggle is used is on the data 766 * phase of control transfers. This phase always starts with 767 * DATA1. 768 */ 769 qtd->data_toggle = DWC2_HC_PID_DATA1; 770 qtd->control_phase = DWC2_CONTROL_SETUP; 771 } 772 773 /* Start split */ 774 qtd->complete_split = 0; 775 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL; 776 qtd->isoc_split_offset = 0; 777 qtd->in_process = 0; 778 779 /* Store the qtd ptr in the urb to reference the QTD */ 780 urb->qtd = qtd; 781 } 782 783 /** 784 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH 785 * Caller must hold driver lock. 786 * 787 * @hsotg: The DWC HCD structure 788 * @qtd: The QTD to add 789 * @qh: Queue head to add qtd to 790 * 791 * Return: 0 if successful, negative error code otherwise 792 * 793 * If the QH to which the QTD is added is not currently scheduled, it is placed 794 * into the proper schedule based on its EP type. 795 */ 796 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 797 struct dwc2_qh *qh) 798 { 799 800 KASSERT(mutex_owned(&hsotg->lock)); 801 int retval; 802 803 if (unlikely(!qh)) { 804 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__); 805 retval = -EINVAL; 806 goto fail; 807 } 808 809 retval = dwc2_hcd_qh_add(hsotg, qh); 810 if (retval) 811 goto fail; 812 813 qtd->qh = qh; 814 list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); 815 816 return 0; 817 fail: 818 return retval; 819 } 820 821 void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg, 822 struct dwc2_qtd *qtd, 823 struct dwc2_qh *qh) 824 { 825 struct dwc2_softc *sc = hsotg->hsotg_sc; 826 827 list_del_init(&qtd->qtd_list_entry); 828 pool_cache_put(sc->sc_qtdpool, qtd); 829 } 830 831 #define BITSTUFFTIME(bytecount) ((8 * 7 * (bytecount)) / 6) 832 #define HS_HOST_DELAY 5 /* nanoseconds */ 833 #define FS_LS_HOST_DELAY 1000 /* nanoseconds */ 834 #define HUB_LS_SETUP 333 /* nanoseconds */ 835 836 static u32 dwc2_calc_bus_time(struct dwc2_hsotg *hsotg, int speed, int is_in, 837 int is_isoc, int bytecount) 838 { 839 unsigned long retval; 840 841 switch (speed) { 842 case USB_SPEED_HIGH: 843 if (is_isoc) 844 retval = 845 ((38 * 8 * 2083) + 846 (2083 * (3 + BITSTUFFTIME(bytecount)))) / 1000 + 847 HS_HOST_DELAY; 848 else 849 retval = 850 ((55 * 8 * 2083) + 851 (2083 * (3 + BITSTUFFTIME(bytecount)))) / 1000 + 852 HS_HOST_DELAY; 853 break; 854 case USB_SPEED_FULL: 855 if (is_isoc) { 856 retval = 857 (8354 * (31 + 10 * BITSTUFFTIME(bytecount))) / 1000; 858 if (is_in) 859 retval = 7268 + FS_LS_HOST_DELAY + retval; 860 else 861 retval = 6265 + FS_LS_HOST_DELAY + retval; 862 } else { 863 retval = 864 (8354 * (31 + 10 * BITSTUFFTIME(bytecount))) / 1000; 865 retval = 9107 + FS_LS_HOST_DELAY + retval; 866 } 867 break; 868 case USB_SPEED_LOW: 869 if (is_in) { 870 retval = 871 (67667 * (31 + 10 * BITSTUFFTIME(bytecount))) / 872 1000; 873 retval = 874 64060 + (2 * HUB_LS_SETUP) + FS_LS_HOST_DELAY + 875 retval; 876 } else { 877 retval = 878 (66700 * (31 + 10 * BITSTUFFTIME(bytecount))) / 879 1000; 880 retval = 881 64107 + (2 * HUB_LS_SETUP) + FS_LS_HOST_DELAY + 882 retval; 883 } 884 break; 885 default: 886 dev_warn(hsotg->dev, "Unknown device speed\n"); 887 retval = -1; 888 } 889 890 return NS_TO_US(retval); 891 } 892