xref: /netbsd-src/sys/external/bsd/dwc2/dist/dwc2_hcd.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: dwc2_hcd.h,v 1.8 2014/04/03 06:34:58 skrll Exp $	*/
2 
3 /*
4  * hcd.h - DesignWare HS OTG Controller host-mode declarations
5  *
6  * Copyright (C) 2004-2013 Synopsys, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The names of the above-listed copyright holders may not be used
18  *    to endorse or promote products derived from this software without
19  *    specific prior written permission.
20  *
21  * ALTERNATIVELY, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") as published by the Free Software
23  * Foundation; either version 2 of the License, or (at your option) any
24  * later version.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37  */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40 
41 /*
42  * This file contains the structures, constants, and interfaces for the
43  * Host Contoller Driver (HCD)
44  *
45  * The Host Controller Driver (HCD) is responsible for translating requests
46  * from the USB Driver into the appropriate actions on the DWC_otg controller.
47  * It isolates the USBD from the specifics of the controller by providing an
48  * API to the USBD.
49  */
50 
51 struct dwc2_qh;
52 
53 /**
54  * struct dwc2_host_chan - Software host channel descriptor
55  *
56  * @hc_num:             Host channel number, used for register address lookup
57  * @dev_addr:           Address of the device
58  * @ep_num:             Endpoint of the device
59  * @ep_is_in:           Endpoint direction
60  * @speed:              Device speed. One of the following values:
61  *                       - USB_SPEED_LOW
62  *                       - USB_SPEED_FULL
63  *                       - USB_SPEED_HIGH
64  * @ep_type:            Endpoint type. One of the following values:
65  *                       - USB_ENDPOINT_XFER_CONTROL: 0
66  *                       - USB_ENDPOINT_XFER_ISOC:    1
67  *                       - USB_ENDPOINT_XFER_BULK:    2
68  *                       - USB_ENDPOINT_XFER_INTR:    3
69  * @max_packet:         Max packet size in bytes
70  * @data_pid_start:     PID for initial transaction.
71  *                       0: DATA0
72  *                       1: DATA2
73  *                       2: DATA1
74  *                       3: MDATA (non-Control EP),
75  *                          SETUP (Control EP)
76  * @multi_count:        Number of additional periodic transactions per
77  *                      (micro)frame
78  * @xfer_buf:           Pointer to current transfer buffer position
79  * @xfer_dma:           DMA address of xfer_buf
80  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
81  *                      DWORD aligned
82  * @xfer_len:           Total number of bytes to transfer
83  * @xfer_count:         Number of bytes transferred so far
84  * @start_pkt_count:    Packet count at start of transfer
85  * @xfer_started:       True if the transfer has been started
86  * @ping:               True if a PING request should be issued on this channel
87  * @error_state:        True if the error count for this transaction is non-zero
88  * @halt_on_queue:      True if this channel should be halted the next time a
89  *                      request is queued for the channel. This is necessary in
90  *                      slave mode if no request queue space is available when
91  *                      an attempt is made to halt the channel.
92  * @halt_pending:       True if the host channel has been halted, but the core
93  *                      is not finished flushing queued requests
94  * @do_split:           Enable split for the channel
95  * @complete_split:     Enable complete split
96  * @hub_addr:           Address of high speed hub for the split
97  * @hub_port:           Port of the low/full speed device for the split
98  * @xact_pos:           Split transaction position. One of the following values:
99  *                       - DWC2_HCSPLT_XACTPOS_MID
100  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
101  *                       - DWC2_HCSPLT_XACTPOS_END
102  *                       - DWC2_HCSPLT_XACTPOS_ALL
103  * @requests:           Number of requests issued for this channel since it was
104  *                      assigned to the current transfer (not counting PINGs)
105  * @schinfo:            Scheduling micro-frame bitmap
106  * @ntd:                Number of transfer descriptors for the transfer
107  * @halt_status:        Reason for halting the host channel
108  * @hcint               Contents of the HCINT register when the interrupt came
109  * @qh:                 QH for the transfer being processed by this channel
110  * @hc_list_entry:      For linking to list of host channels
111  * @desc_list_addr:     Current QH's descriptor list DMA address
112  *
113  * This structure represents the state of a single host channel when acting in
114  * host mode. It contains the data items needed to transfer packets to an
115  * endpoint via a host channel.
116  */
117 struct dwc2_host_chan {
118 	u8 hc_num;
119 
120 	unsigned dev_addr:7;
121 	unsigned ep_num:4;
122 	unsigned ep_is_in:1;
123 	unsigned speed:4;
124 	unsigned ep_type:2;
125 	unsigned max_packet:11;
126 	unsigned data_pid_start:2;
127 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
128 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
129 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
130 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
131 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
132 
133 	unsigned multi_count:2;
134 
135 	usb_dma_t *xfer_usbdma;
136 	u8 *xfer_buf;
137 	dma_addr_t xfer_dma;
138 	dma_addr_t align_buf;
139 	u32 xfer_len;
140 	u32 xfer_count;
141 	u16 start_pkt_count;
142 	u8 xfer_started;
143 	u8 do_ping;
144 	u8 error_state;
145 	u8 halt_on_queue;
146 	u8 halt_pending;
147 	u8 do_split;
148 	u8 complete_split;
149 	u8 hub_addr;
150 	u8 hub_port;
151 	u8 xact_pos;
152 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
153 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
156 
157 	u8 requests;
158 	u8 schinfo;
159 	u16 ntd;
160 	enum dwc2_halt_status halt_status;
161 	u32 hcint;
162 	struct dwc2_qh *qh;
163 	struct list_head hc_list_entry;
164 	dma_addr_t desc_list_addr;
165 };
166 
167 struct dwc2_hcd_pipe_info {
168 	u8 dev_addr;
169 	u8 ep_num;
170 	u8 pipe_type;
171 	u8 pipe_dir;
172 	u16 mps;
173 };
174 
175 struct dwc2_hcd_iso_packet_desc {
176 	u32 offset;
177 	u32 length;
178 	u32 actual_length;
179 	u32 status;
180 };
181 
182 struct dwc2_qtd;
183 
184 struct dwc2_hcd_urb {
185 	void *priv;		/* the xfer handle */
186 	struct dwc2_qtd *qtd;
187 	usb_dma_t *usbdma;
188 	u8 *buf;
189 	dma_addr_t dma;
190 	usb_dma_t *setup_usbdma;
191 	void *setup_packet;
192 	dma_addr_t setup_dma;
193 	u32 length;
194 	u32 actual_length;
195 	u32 status;
196 	u32 error_count;
197 	u32 packet_count;
198 	u32 flags;
199 	u16 interval;
200 	struct dwc2_hcd_pipe_info pipe_info;
201 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 };
203 
204 /* Phases for control transfers */
205 enum dwc2_control_phase {
206 	DWC2_CONTROL_SETUP,
207 	DWC2_CONTROL_DATA,
208 	DWC2_CONTROL_STATUS,
209 };
210 
211 /* Transaction types */
212 enum dwc2_transaction_type {
213 	DWC2_TRANSACTION_NONE,
214 	DWC2_TRANSACTION_PERIODIC,
215 	DWC2_TRANSACTION_NON_PERIODIC,
216 	DWC2_TRANSACTION_ALL,
217 };
218 
219 /**
220  * struct dwc2_qh - Software queue head structure
221  *
222  * @ep_type:            Endpoint type. One of the following values:
223  *                       - USB_ENDPOINT_XFER_CONTROL
224  *                       - USB_ENDPOINT_XFER_BULK
225  *                       - USB_ENDPOINT_XFER_INT
226  *                       - USB_ENDPOINT_XFER_ISOC
227  * @ep_is_in:           Endpoint direction
228  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
229  * @dev_speed:          Device speed. One of the following values:
230  *                       - USB_SPEED_LOW
231  *                       - USB_SPEED_FULL
232  *                       - USB_SPEED_HIGH
233  * @data_toggle:        Determines the PID of the next data packet for
234  *                      non-controltransfers. Ignored for control transfers.
235  *                      One of the following values:
236  *                       - DWC2_HC_PID_DATA0
237  *                       - DWC2_HC_PID_DATA1
238  * @ping_state:         Ping state
239  * @do_split:           Full/low speed endpoint on high-speed hub requires split
240  * @td_first:           Index of first activated isochronous transfer descriptor
241  * @td_last:            Index of last activated isochronous transfer descriptor
242  * @usecs:              Bandwidth in microseconds per (micro)frame
243  * @interval:           Interval between transfers in (micro)frames
244  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
245  *                      The transfer executes in the following (micro)frame.
246  * @frame_usecs:        Internal variable used by the microframe scheduler
247  * @start_split_frame:  (Micro)frame at which last start split was initialized
248  * @ntd:                Actual number of transfer descriptors in a list
249  * @dw_align_buf:       Used instead of original buffer if its physical address
250  *                      is not dword-aligned
251  * @dw_align_buf_dma:   DMA address for align_buf
252  * @qtd_list:           List of QTDs for this QH
253  * @channel:            Host channel currently processing transfers for this QH
254  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
255  *                      schedule
256  * @desc_list:          List of transfer descriptors
257  * @desc_list_dma:      Physical address of desc_list
258  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
259  *                      descriptor and indicates original XferSize value for the
260  *                      descriptor
261  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
262  *
263  * A Queue Head (QH) holds the static characteristics of an endpoint and
264  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
265  * be entered in either the non-periodic or periodic schedule.
266  */
267 struct dwc2_qh {
268 	u8 ep_type;
269 	u8 ep_is_in;
270 	u16 maxp;
271 	u8 dev_speed;
272 	u8 data_toggle;
273 	u8 ping_state;
274 	u8 do_split;
275 	u8 td_first;
276 	u8 td_last;
277 	u16 usecs;
278 	u16 interval;
279 	u16 sched_frame;
280 	u16 frame_usecs[8];
281 	u16 start_split_frame;
282 	u16 ntd;
283 	usb_dma_t dw_align_buf_usbdma;
284 	u8 *dw_align_buf;
285 	dma_addr_t dw_align_buf_dma;
286 	struct list_head qtd_list;
287 	struct dwc2_host_chan *channel;
288 	struct list_head qh_list_entry;
289 	usb_dma_t desc_list_usbdma;
290 	struct dwc2_hcd_dma_desc *desc_list;
291 	dma_addr_t desc_list_dma;
292 	u32 *n_bytes;
293 	unsigned tt_buffer_dirty:1;
294 };
295 
296 /**
297  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
298  *
299  * @control_phase:      Current phase for control transfers (Setup, Data, or
300  *                      Status)
301  * @in_process:         Indicates if this QTD is currently processed by HW
302  * @data_toggle:        Determines the PID of the next data packet for the
303  *                      data phase of control transfers. Ignored for other
304  *                      transfer types. One of the following values:
305  *                       - DWC2_HC_PID_DATA0
306  *                       - DWC2_HC_PID_DATA1
307  * @complete_split:     Keeps track of the current split type for FS/LS
308  *                      endpoints on a HS Hub
309  * @isoc_split_pos:     Position of the ISOC split in full/low speed
310  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
311  *                      transfer. A frame descriptor describes the buffer
312  *                      position and length of the data to be transferred in the
313  *                      next scheduled (micro)frame of an isochronous transfer.
314  *                      It also holds status for that transaction. The frame
315  *                      index starts at 0.
316  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
317  *                      current frame
318  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
319  * @error_count:        Holds the number of bus errors that have occurred for
320  *                      a transaction within this transfer
321  * @n_desc:             Number of DMA descriptors for this QTD
322  * @isoc_frame_index_last: Last activated frame (packet) index, used in
323  *                      descriptor DMA mode only
324  * @urb:                URB for this transfer
325  * @qh:                 Queue head for this QTD
326  * @qtd_list_entry:     For linking to the QH's list of QTDs
327  *
328  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
329  * interrupt, or isochronous transfer. A single QTD is created for each URB
330  * (of one of these types) submitted to the HCD. The transfer associated with
331  * a QTD may require one or multiple transactions.
332  *
333  * A QTD is linked to a Queue Head, which is entered in either the
334  * non-periodic or periodic schedule for execution. When a QTD is chosen for
335  * execution, some or all of its transactions may be executed. After
336  * execution, the state of the QTD is updated. The QTD may be retired if all
337  * its transactions are complete or if an error occurred. Otherwise, it
338  * remains in the schedule so more transactions can be executed later.
339  */
340 struct dwc2_qtd {
341 	enum dwc2_control_phase control_phase;
342 	u8 in_process;
343 	u8 data_toggle;
344 	u8 complete_split;
345 	u8 isoc_split_pos;
346 	u16 isoc_frame_index;
347 	u16 isoc_split_offset;
348 	u32 ssplit_out_xfer_count;
349 	u8 error_count;
350 	u8 n_desc;
351 	u16 isoc_frame_index_last;
352 	struct dwc2_hcd_urb *urb;
353 	struct dwc2_qh *qh;
354 	struct list_head qtd_list_entry;
355 };
356 
357 #ifdef DEBUG
358 struct hc_xfer_info {
359 	struct dwc2_hsotg *hsotg;
360 	struct dwc2_host_chan *chan;
361 };
362 #endif
363 
364 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
365 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
366 {
367 	return (struct usb_hcd *)hsotg->priv;
368 }
369 
370 /*
371  * Inline used to disable one channel interrupt. Channel interrupts are
372  * disabled when the channel is halted or released by the interrupt handler.
373  * There is no need to handle further interrupts of that type until the
374  * channel is re-assigned. In fact, subsequent handling may cause crashes
375  * because the channel structures are cleaned up when the channel is released.
376  */
377 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
378 {
379 	u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
380 
381 	mask &= ~intr;
382 	DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
383 }
384 
385 /*
386  * Returns the mode of operation, host or device
387  */
388 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
389 {
390 	return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
391 }
392 
393 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
394 {
395 	return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
396 }
397 
398 /*
399  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
400  * are read as 1, they won't clear when written back.
401  */
402 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
403 {
404 	u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
405 
406 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
407 	return hprt0;
408 }
409 
410 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
411 {
412 	return pipe->ep_num;
413 }
414 
415 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
416 {
417 	return pipe->pipe_type;
418 }
419 
420 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
421 {
422 	return pipe->mps;
423 }
424 
425 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
426 {
427 	return pipe->dev_addr;
428 }
429 
430 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
431 {
432 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
433 }
434 
435 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
436 {
437 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
438 }
439 
440 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
441 {
442 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
443 }
444 
445 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
446 {
447 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
448 }
449 
450 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
451 {
452 	return pipe->pipe_dir == USB_DIR_IN;
453 }
454 
455 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
456 {
457 	return !dwc2_hcd_is_pipe_in(pipe);
458 }
459 
460 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg,
461 			 const struct dwc2_core_params *params);
462 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
463 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
464 				const struct dwc2_core_params *params);
465 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
466 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
467 
468 /* Transaction Execution Functions */
469 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
470 						struct dwc2_hsotg *hsotg);
471 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
472 					enum dwc2_transaction_type tr_type);
473 
474 /* Schedule Queue Functions */
475 /* Implemented in hcd_queue.c */
476 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
477 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
478 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
479 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
480 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
481 				   int sched_csplit);
482 
483 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
484 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
485 			    struct dwc2_qh **qh, int mem_flags);
486 
487 /* Removes and frees a QTD */
488 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
489 					 struct dwc2_qtd *qtd,
490 					 struct dwc2_qh *qh);
491 
492 /* Descriptor DMA support functions */
493 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
494 				     struct dwc2_qh *qh);
495 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
496 					struct dwc2_host_chan *chan, int chnum,
497 					enum dwc2_halt_status halt_status);
498 
499 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
500 				 gfp_t mem_flags);
501 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
502 
503 /* Check if QH is non-periodic */
504 #define dwc2_qh_is_non_per(_qh_ptr_) \
505 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
506 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
507 
508 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
509 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
510 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
511 static inline bool dbg_perio(void) { return true; }
512 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
513 static inline bool dbg_hc(struct dwc2_host_chan *hc)
514 {
515 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
516 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
517 }
518 
519 static inline bool dbg_qh(struct dwc2_qh *qh)
520 {
521 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
522 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
523 }
524 
525 
526 static inline bool dbg_perio(void) { return false; }
527 #endif
528 
529 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
530 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
531 
532 /* Packet size for any kind of endpoint descriptor */
533 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
534 
535 /*
536  * Returns true if frame1 is less than or equal to frame2. The comparison is
537  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
538  * frame number when the max frame number is reached.
539  */
540 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
541 {
542 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
543 }
544 
545 /*
546  * Returns true if frame1 is greater than frame2. The comparison is done
547  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
548  * number when the max frame number is reached.
549  */
550 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
551 {
552 	return (frame1 != frame2) &&
553 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
554 }
555 
556 /*
557  * Increments frame by the amount specified by inc. The addition is done
558  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
559  */
560 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
561 {
562 	return (frame + inc) & HFNUM_MAX_FRNUM;
563 }
564 
565 static inline u16 dwc2_full_frame_num(u16 frame)
566 {
567 	return (frame & HFNUM_MAX_FRNUM) >> 3;
568 }
569 
570 static inline u16 dwc2_micro_frame_num(u16 frame)
571 {
572 	return frame & 0x7;
573 }
574 
575 /*
576  * Returns the Core Interrupt Status register contents, ANDed with the Core
577  * Interrupt Mask register contents
578  */
579 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
580 {
581 	return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
582 }
583 
584 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
585 {
586 	return dwc2_urb->status;
587 }
588 
589 static inline u32 dwc2_hcd_urb_get_actual_length(
590 		struct dwc2_hcd_urb *dwc2_urb)
591 {
592 	return dwc2_urb->actual_length;
593 }
594 
595 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
596 {
597 	return dwc2_urb->error_count;
598 }
599 
600 static inline void dwc2_hcd_urb_set_iso_desc_params(
601 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
602 		u32 length)
603 {
604 	dwc2_urb->iso_descs[desc_num].offset = offset;
605 	dwc2_urb->iso_descs[desc_num].length = length;
606 }
607 
608 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
609 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
610 {
611 	return dwc2_urb->iso_descs[desc_num].status;
612 }
613 
614 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
615 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
616 {
617 	return dwc2_urb->iso_descs[desc_num].actual_length;
618 }
619 
620 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
621 						  usbd_xfer_handle xfer)
622 {
623 	struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
624 	struct dwc2_qh *qh = dpipe->priv;
625 
626 	if (qh && !list_empty(&qh->qh_list_entry))
627 		return 1;
628 
629 	return 0;
630 }
631 
632 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
633 					    struct dwc2_pipe *dpipe)
634 {
635 	struct dwc2_qh *qh = dpipe->priv;
636 
637 	if (!qh) {
638 		WARN_ON(1);
639 		return 0;
640 	}
641 
642 	return qh->usecs;
643 }
644 
645 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
646 				      struct dwc2_host_chan *chan, int chnum,
647 				      struct dwc2_qtd *qtd);
648 
649 /* HCD Core API */
650 
651 /**
652  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
653  *
654  * @hsotg: The DWC2 HCD
655  *
656  * Returns IRQ_HANDLED if interrupt is handled
657  * Return IRQ_NONE if interrupt is not handled
658  */
659 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
660 
661 /**
662  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
663  *
664  * @hsotg: The DWC2 HCD
665  */
666 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
667 
668 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
669 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
670 
671 /**
672  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
673  * and 0 otherwise
674  *
675  * @hsotg: The DWC2 HCD
676  */
677 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
678 
679 /**
680  * dwc2_hcd_get_frame_number() - Returns current frame number
681  *
682  * @hsotg: The DWC2 HCD
683  */
684 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
685 
686 /**
687  * dwc2_hcd_dump_state() - Dumps hsotg state
688  *
689  * @hsotg: The DWC2 HCD
690  *
691  * NOTE: This function will be removed once the peripheral controller code
692  * is integrated and the driver is stable
693  */
694 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
695 
696 /**
697  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
698  *
699  * @hsotg: The DWC2 HCD
700  *
701  * This can be used to determine average interrupt latency. Frame remaining is
702  * also shown for start transfer and two additional sample points.
703  *
704  * NOTE: This function will be removed once the peripheral controller code
705  * is integrated and the driver is stable
706  */
707 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
708 
709 /* URB interface */
710 
711 /* Transfer flags */
712 #define URB_GIVEBACK_ASAP	0x1
713 #define URB_SEND_ZERO_PACKET	0x2
714 
715 /* Host driver callbacks */
716 
717 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
718 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
719 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
720 			       int *hub_addr, int *hub_port);
721 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
722 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
723 			       int status);
724 
725 #ifdef DEBUG
726 /*
727  * Macro to sample the remaining PHY clocks left in the current frame. This
728  * may be used during debugging to determine the average time it takes to
729  * execute sections of code. There are two possible sample points, "a" and
730  * "b", so the _letter_ argument must be one of these values.
731  *
732  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
733  * example, "cat /sys/devices/lm0/hcd_frrem".
734  */
735 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
736 do {									\
737 	struct hfnum_data _hfnum_;					\
738 	struct dwc2_qtd *_qtd_;						\
739 									\
740 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
741 			   qtd_list_entry);				\
742 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
743 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
744 		_hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM);		\
745 		switch (_hfnum_.b.frnum & 0x7) {			\
746 		case 7:							\
747 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
748 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
749 				_hfnum_.b.frrem;			\
750 			break;						\
751 		case 0:							\
752 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
753 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
754 				_hfnum_.b.frrem;			\
755 			break;						\
756 		default:						\
757 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
758 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
759 				_hfnum_.b.frrem;			\
760 			break;						\
761 		}							\
762 	}								\
763 } while (0)
764 #else
765 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
766 #endif
767 
768 
769 void dwc2_wakeup_detected(void *);
770 
771 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
772 void dwc2_hcd_reinit(struct dwc2_hsotg *);
773 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
774 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
775 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *, struct dwc2_hcd_urb *, void **,
776 			 gfp_t);
777 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
778 			       u8 ,u8, u8, u8, u16);
779 
780 void dwc2_conn_id_status_change(struct work *);
781 void dwc2_hcd_start_func(struct work *);
782 void dwc2_hcd_reset_func(struct work *);
783 
784 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
785 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
786 
787 int _dwc2_hcd_start(struct dwc2_hsotg *);
788 
789 int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
790 
791 #endif /* __DWC2_HCD_H__ */
792