xref: /netbsd-src/sys/external/bsd/dwc2/dist/dwc2_hcd.h (revision 230b95665bbd3a9d1a53658a36b1053f8382a519)
1 /*	$NetBSD: dwc2_hcd.h,v 1.9 2014/09/03 10:00:08 skrll Exp $	*/
2 
3 /*
4  * hcd.h - DesignWare HS OTG Controller host-mode declarations
5  *
6  * Copyright (C) 2004-2013 Synopsys, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The names of the above-listed copyright holders may not be used
18  *    to endorse or promote products derived from this software without
19  *    specific prior written permission.
20  *
21  * ALTERNATIVELY, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") as published by the Free Software
23  * Foundation; either version 2 of the License, or (at your option) any
24  * later version.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37  */
38 #ifndef __DWC2_HCD_H__
39 #define __DWC2_HCD_H__
40 
41 /*
42  * This file contains the structures, constants, and interfaces for the
43  * Host Contoller Driver (HCD)
44  *
45  * The Host Controller Driver (HCD) is responsible for translating requests
46  * from the USB Driver into the appropriate actions on the DWC_otg controller.
47  * It isolates the USBD from the specifics of the controller by providing an
48  * API to the USBD.
49  */
50 
51 struct dwc2_qh;
52 
53 /**
54  * struct dwc2_host_chan - Software host channel descriptor
55  *
56  * @hc_num:             Host channel number, used for register address lookup
57  * @dev_addr:           Address of the device
58  * @ep_num:             Endpoint of the device
59  * @ep_is_in:           Endpoint direction
60  * @speed:              Device speed. One of the following values:
61  *                       - USB_SPEED_LOW
62  *                       - USB_SPEED_FULL
63  *                       - USB_SPEED_HIGH
64  * @ep_type:            Endpoint type. One of the following values:
65  *                       - USB_ENDPOINT_XFER_CONTROL: 0
66  *                       - USB_ENDPOINT_XFER_ISOC:    1
67  *                       - USB_ENDPOINT_XFER_BULK:    2
68  *                       - USB_ENDPOINT_XFER_INTR:    3
69  * @max_packet:         Max packet size in bytes
70  * @data_pid_start:     PID for initial transaction.
71  *                       0: DATA0
72  *                       1: DATA2
73  *                       2: DATA1
74  *                       3: MDATA (non-Control EP),
75  *                          SETUP (Control EP)
76  * @multi_count:        Number of additional periodic transactions per
77  *                      (micro)frame
78  * @xfer_buf:           Pointer to current transfer buffer position
79  * @xfer_dma:           DMA address of xfer_buf
80  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
81  *                      DWORD aligned
82  * @xfer_len:           Total number of bytes to transfer
83  * @xfer_count:         Number of bytes transferred so far
84  * @start_pkt_count:    Packet count at start of transfer
85  * @xfer_started:       True if the transfer has been started
86  * @ping:               True if a PING request should be issued on this channel
87  * @error_state:        True if the error count for this transaction is non-zero
88  * @halt_on_queue:      True if this channel should be halted the next time a
89  *                      request is queued for the channel. This is necessary in
90  *                      slave mode if no request queue space is available when
91  *                      an attempt is made to halt the channel.
92  * @halt_pending:       True if the host channel has been halted, but the core
93  *                      is not finished flushing queued requests
94  * @do_split:           Enable split for the channel
95  * @complete_split:     Enable complete split
96  * @hub_addr:           Address of high speed hub for the split
97  * @hub_port:           Port of the low/full speed device for the split
98  * @xact_pos:           Split transaction position. One of the following values:
99  *                       - DWC2_HCSPLT_XACTPOS_MID
100  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
101  *                       - DWC2_HCSPLT_XACTPOS_END
102  *                       - DWC2_HCSPLT_XACTPOS_ALL
103  * @requests:           Number of requests issued for this channel since it was
104  *                      assigned to the current transfer (not counting PINGs)
105  * @schinfo:            Scheduling micro-frame bitmap
106  * @ntd:                Number of transfer descriptors for the transfer
107  * @halt_status:        Reason for halting the host channel
108  * @hcint               Contents of the HCINT register when the interrupt came
109  * @qh:                 QH for the transfer being processed by this channel
110  * @hc_list_entry:      For linking to list of host channels
111  * @desc_list_addr:     Current QH's descriptor list DMA address
112  *
113  * This structure represents the state of a single host channel when acting in
114  * host mode. It contains the data items needed to transfer packets to an
115  * endpoint via a host channel.
116  */
117 struct dwc2_host_chan {
118 	u8 hc_num;
119 
120 	unsigned dev_addr:7;
121 	unsigned ep_num:4;
122 	unsigned ep_is_in:1;
123 	unsigned speed:4;
124 	unsigned ep_type:2;
125 	unsigned max_packet:11;
126 	unsigned data_pid_start:2;
127 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
128 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
129 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
130 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
131 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
132 
133 	unsigned multi_count:2;
134 
135 	usb_dma_t *xfer_usbdma;
136 	u8 *xfer_buf;
137 	dma_addr_t xfer_dma;
138 	dma_addr_t align_buf;
139 	u32 xfer_len;
140 	u32 xfer_count;
141 	u16 start_pkt_count;
142 	u8 xfer_started;
143 	u8 do_ping;
144 	u8 error_state;
145 	u8 halt_on_queue;
146 	u8 halt_pending;
147 	u8 do_split;
148 	u8 complete_split;
149 	u8 hub_addr;
150 	u8 hub_port;
151 	u8 xact_pos;
152 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
153 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
156 
157 	u8 requests;
158 	u8 schinfo;
159 	u16 ntd;
160 	enum dwc2_halt_status halt_status;
161 	u32 hcint;
162 	struct dwc2_qh *qh;
163 	struct list_head hc_list_entry;
164 	dma_addr_t desc_list_addr;
165 };
166 
167 struct dwc2_hcd_pipe_info {
168 	u8 dev_addr;
169 	u8 ep_num;
170 	u8 pipe_type;
171 	u8 pipe_dir;
172 	u16 mps;
173 };
174 
175 struct dwc2_hcd_iso_packet_desc {
176 	u32 offset;
177 	u32 length;
178 	u32 actual_length;
179 	u32 status;
180 };
181 
182 struct dwc2_qtd;
183 
184 struct dwc2_hcd_urb {
185 	void *priv;		/* the xfer handle */
186 	struct dwc2_qtd *qtd;
187 	usb_dma_t *usbdma;
188 	u8 *buf;
189 	dma_addr_t dma;
190 	usb_dma_t *setup_usbdma;
191 	void *setup_packet;
192 	dma_addr_t setup_dma;
193 	u32 length;
194 	u32 actual_length;
195 	u32 status;
196 	u32 error_count;
197 	u32 packet_count;
198 	u32 flags;
199 	u16 interval;
200 	struct dwc2_hcd_pipe_info pipe_info;
201 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 };
203 
204 /* Phases for control transfers */
205 enum dwc2_control_phase {
206 	DWC2_CONTROL_SETUP,
207 	DWC2_CONTROL_DATA,
208 	DWC2_CONTROL_STATUS,
209 };
210 
211 /* Transaction types */
212 enum dwc2_transaction_type {
213 	DWC2_TRANSACTION_NONE,
214 	DWC2_TRANSACTION_PERIODIC,
215 	DWC2_TRANSACTION_NON_PERIODIC,
216 	DWC2_TRANSACTION_ALL,
217 };
218 
219 /**
220  * struct dwc2_qh - Software queue head structure
221  *
222  * @ep_type:            Endpoint type. One of the following values:
223  *                       - USB_ENDPOINT_XFER_CONTROL
224  *                       - USB_ENDPOINT_XFER_BULK
225  *                       - USB_ENDPOINT_XFER_INT
226  *                       - USB_ENDPOINT_XFER_ISOC
227  * @ep_is_in:           Endpoint direction
228  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
229  * @dev_speed:          Device speed. One of the following values:
230  *                       - USB_SPEED_LOW
231  *                       - USB_SPEED_FULL
232  *                       - USB_SPEED_HIGH
233  * @data_toggle:        Determines the PID of the next data packet for
234  *                      non-controltransfers. Ignored for control transfers.
235  *                      One of the following values:
236  *                       - DWC2_HC_PID_DATA0
237  *                       - DWC2_HC_PID_DATA1
238  * @ping_state:         Ping state
239  * @do_split:           Full/low speed endpoint on high-speed hub requires split
240  * @td_first:           Index of first activated isochronous transfer descriptor
241  * @td_last:            Index of last activated isochronous transfer descriptor
242  * @usecs:              Bandwidth in microseconds per (micro)frame
243  * @interval:           Interval between transfers in (micro)frames
244  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
245  *                      The transfer executes in the following (micro)frame.
246  * @nak_frame:          Internal variable used by the NAK holdoff code
247  * @frame_usecs:        Internal variable used by the microframe scheduler
248  * @start_split_frame:  (Micro)frame at which last start split was initialized
249  * @ntd:                Actual number of transfer descriptors in a list
250  * @dw_align_buf:       Used instead of original buffer if its physical address
251  *                      is not dword-aligned
252  * @dw_align_buf_dma:   DMA address for align_buf
253  * @qtd_list:           List of QTDs for this QH
254  * @channel:            Host channel currently processing transfers for this QH
255  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
256  *                      schedule
257  * @desc_list:          List of transfer descriptors
258  * @desc_list_dma:      Physical address of desc_list
259  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
260  *                      descriptor and indicates original XferSize value for the
261  *                      descriptor
262  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
263  *
264  * A Queue Head (QH) holds the static characteristics of an endpoint and
265  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
266  * be entered in either the non-periodic or periodic schedule.
267  */
268 struct dwc2_qh {
269 	u8 ep_type;
270 	u8 ep_is_in;
271 	u16 maxp;
272 	u8 dev_speed;
273 	u8 data_toggle;
274 	u8 ping_state;
275 	u8 do_split;
276 	u8 td_first;
277 	u8 td_last;
278 	u16 usecs;
279 	u16 interval;
280 	u16 sched_frame;
281 	u16 nak_frame;
282 	u16 frame_usecs[8];
283 	u16 start_split_frame;
284 	u16 ntd;
285 	usb_dma_t dw_align_buf_usbdma;
286 	u8 *dw_align_buf;
287 	dma_addr_t dw_align_buf_dma;
288 	struct list_head qtd_list;
289 	struct dwc2_host_chan *channel;
290 	struct list_head qh_list_entry;
291 	usb_dma_t desc_list_usbdma;
292 	struct dwc2_hcd_dma_desc *desc_list;
293 	dma_addr_t desc_list_dma;
294 	u32 *n_bytes;
295 	unsigned tt_buffer_dirty:1;
296 };
297 
298 /**
299  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
300  *
301  * @control_phase:      Current phase for control transfers (Setup, Data, or
302  *                      Status)
303  * @in_process:         Indicates if this QTD is currently processed by HW
304  * @data_toggle:        Determines the PID of the next data packet for the
305  *                      data phase of control transfers. Ignored for other
306  *                      transfer types. One of the following values:
307  *                       - DWC2_HC_PID_DATA0
308  *                       - DWC2_HC_PID_DATA1
309  * @complete_split:     Keeps track of the current split type for FS/LS
310  *                      endpoints on a HS Hub
311  * @isoc_split_pos:     Position of the ISOC split in full/low speed
312  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
313  *                      transfer. A frame descriptor describes the buffer
314  *                      position and length of the data to be transferred in the
315  *                      next scheduled (micro)frame of an isochronous transfer.
316  *                      It also holds status for that transaction. The frame
317  *                      index starts at 0.
318  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
319  *                      current frame
320  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
321  * @error_count:        Holds the number of bus errors that have occurred for
322  *                      a transaction within this transfer
323  * @n_desc:             Number of DMA descriptors for this QTD
324  * @isoc_frame_index_last: Last activated frame (packet) index, used in
325  *                      descriptor DMA mode only
326  * @urb:                URB for this transfer
327  * @qh:                 Queue head for this QTD
328  * @qtd_list_entry:     For linking to the QH's list of QTDs
329  *
330  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
331  * interrupt, or isochronous transfer. A single QTD is created for each URB
332  * (of one of these types) submitted to the HCD. The transfer associated with
333  * a QTD may require one or multiple transactions.
334  *
335  * A QTD is linked to a Queue Head, which is entered in either the
336  * non-periodic or periodic schedule for execution. When a QTD is chosen for
337  * execution, some or all of its transactions may be executed. After
338  * execution, the state of the QTD is updated. The QTD may be retired if all
339  * its transactions are complete or if an error occurred. Otherwise, it
340  * remains in the schedule so more transactions can be executed later.
341  */
342 struct dwc2_qtd {
343 	enum dwc2_control_phase control_phase;
344 	u8 in_process;
345 	u8 data_toggle;
346 	u8 complete_split;
347 	u8 isoc_split_pos;
348 	u16 isoc_frame_index;
349 	u16 isoc_split_offset;
350 	u32 ssplit_out_xfer_count;
351 	u8 error_count;
352 	u8 n_desc;
353 	u16 isoc_frame_index_last;
354 	struct dwc2_hcd_urb *urb;
355 	struct dwc2_qh *qh;
356 	struct list_head qtd_list_entry;
357 };
358 
359 #ifdef DEBUG
360 struct hc_xfer_info {
361 	struct dwc2_hsotg *hsotg;
362 	struct dwc2_host_chan *chan;
363 };
364 #endif
365 
366 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
367 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
368 {
369 	return (struct usb_hcd *)hsotg->priv;
370 }
371 
372 /*
373  * Inline used to disable one channel interrupt. Channel interrupts are
374  * disabled when the channel is halted or released by the interrupt handler.
375  * There is no need to handle further interrupts of that type until the
376  * channel is re-assigned. In fact, subsequent handling may cause crashes
377  * because the channel structures are cleaned up when the channel is released.
378  */
379 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
380 {
381 	u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
382 
383 	mask &= ~intr;
384 	DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
385 }
386 
387 /*
388  * Returns the mode of operation, host or device
389  */
390 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
391 {
392 	return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
393 }
394 
395 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
396 {
397 	return (DWC2_READ_4(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
398 }
399 
400 /*
401  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
402  * are read as 1, they won't clear when written back.
403  */
404 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
405 {
406 	u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
407 
408 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
409 	return hprt0;
410 }
411 
412 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
413 {
414 	return pipe->ep_num;
415 }
416 
417 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
418 {
419 	return pipe->pipe_type;
420 }
421 
422 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
423 {
424 	return pipe->mps;
425 }
426 
427 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
428 {
429 	return pipe->dev_addr;
430 }
431 
432 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
433 {
434 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
435 }
436 
437 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
438 {
439 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
440 }
441 
442 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
443 {
444 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
445 }
446 
447 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
448 {
449 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
450 }
451 
452 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
453 {
454 	return pipe->pipe_dir == USB_DIR_IN;
455 }
456 
457 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
458 {
459 	return !dwc2_hcd_is_pipe_in(pipe);
460 }
461 
462 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg,
463 			 const struct dwc2_core_params *params);
464 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
465 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
466 				const struct dwc2_core_params *params);
467 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
468 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
469 
470 /* Transaction Execution Functions */
471 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
472 						struct dwc2_hsotg *hsotg);
473 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
474 					enum dwc2_transaction_type tr_type);
475 
476 /* Schedule Queue Functions */
477 /* Implemented in hcd_queue.c */
478 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
479 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
480 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
481 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
482 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
483 				   int sched_csplit);
484 
485 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
486 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
487 			    struct dwc2_qh **qh, int mem_flags);
488 
489 /* Removes and frees a QTD */
490 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
491 					 struct dwc2_qtd *qtd,
492 					 struct dwc2_qh *qh);
493 
494 /* Descriptor DMA support functions */
495 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
496 				     struct dwc2_qh *qh);
497 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
498 					struct dwc2_host_chan *chan, int chnum,
499 					enum dwc2_halt_status halt_status);
500 
501 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
502 				 gfp_t mem_flags);
503 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
504 
505 /* Check if QH is non-periodic */
506 #define dwc2_qh_is_non_per(_qh_ptr_) \
507 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
508 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
509 
510 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
511 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
512 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
513 static inline bool dbg_perio(void) { return true; }
514 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
515 static inline bool dbg_hc(struct dwc2_host_chan *hc)
516 {
517 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
518 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
519 }
520 
521 static inline bool dbg_qh(struct dwc2_qh *qh)
522 {
523 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
524 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
525 }
526 
527 
528 static inline bool dbg_perio(void) { return false; }
529 #endif
530 
531 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533 
534 /* Packet size for any kind of endpoint descriptor */
535 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536 
537 /*
538  * Returns true if frame1 is less than or equal to frame2. The comparison is
539  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540  * frame number when the max frame number is reached.
541  */
542 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543 {
544 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545 }
546 
547 /*
548  * Returns true if frame1 is greater than frame2. The comparison is done
549  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550  * number when the max frame number is reached.
551  */
552 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553 {
554 	return (frame1 != frame2) &&
555 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556 }
557 
558 /*
559  * Increments frame by the amount specified by inc. The addition is done
560  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561  */
562 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563 {
564 	return (frame + inc) & HFNUM_MAX_FRNUM;
565 }
566 
567 static inline u16 dwc2_full_frame_num(u16 frame)
568 {
569 	return (frame & HFNUM_MAX_FRNUM) >> 3;
570 }
571 
572 static inline u16 dwc2_micro_frame_num(u16 frame)
573 {
574 	return frame & 0x7;
575 }
576 
577 /*
578  * Returns the Core Interrupt Status register contents, ANDed with the Core
579  * Interrupt Mask register contents
580  */
581 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582 {
583 	return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
584 }
585 
586 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
587 {
588 	return dwc2_urb->status;
589 }
590 
591 static inline u32 dwc2_hcd_urb_get_actual_length(
592 		struct dwc2_hcd_urb *dwc2_urb)
593 {
594 	return dwc2_urb->actual_length;
595 }
596 
597 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
598 {
599 	return dwc2_urb->error_count;
600 }
601 
602 static inline void dwc2_hcd_urb_set_iso_desc_params(
603 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
604 		u32 length)
605 {
606 	dwc2_urb->iso_descs[desc_num].offset = offset;
607 	dwc2_urb->iso_descs[desc_num].length = length;
608 }
609 
610 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
611 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
612 {
613 	return dwc2_urb->iso_descs[desc_num].status;
614 }
615 
616 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
617 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
618 {
619 	return dwc2_urb->iso_descs[desc_num].actual_length;
620 }
621 
622 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
623 						  usbd_xfer_handle xfer)
624 {
625 	struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
626 	struct dwc2_qh *qh = dpipe->priv;
627 
628 	if (qh && !list_empty(&qh->qh_list_entry))
629 		return 1;
630 
631 	return 0;
632 }
633 
634 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
635 					    struct dwc2_pipe *dpipe)
636 {
637 	struct dwc2_qh *qh = dpipe->priv;
638 
639 	if (!qh) {
640 		WARN_ON(1);
641 		return 0;
642 	}
643 
644 	return qh->usecs;
645 }
646 
647 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
648 				      struct dwc2_host_chan *chan, int chnum,
649 				      struct dwc2_qtd *qtd);
650 
651 /* HCD Core API */
652 
653 /**
654  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
655  *
656  * @hsotg: The DWC2 HCD
657  *
658  * Returns IRQ_HANDLED if interrupt is handled
659  * Return IRQ_NONE if interrupt is not handled
660  */
661 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
662 
663 /**
664  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
665  *
666  * @hsotg: The DWC2 HCD
667  */
668 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
669 
670 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
671 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
672 
673 /**
674  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
675  * and 0 otherwise
676  *
677  * @hsotg: The DWC2 HCD
678  */
679 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
680 
681 /**
682  * dwc2_hcd_get_frame_number() - Returns current frame number
683  *
684  * @hsotg: The DWC2 HCD
685  */
686 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
687 
688 /**
689  * dwc2_hcd_dump_state() - Dumps hsotg state
690  *
691  * @hsotg: The DWC2 HCD
692  *
693  * NOTE: This function will be removed once the peripheral controller code
694  * is integrated and the driver is stable
695  */
696 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
697 
698 /**
699  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
700  *
701  * @hsotg: The DWC2 HCD
702  *
703  * This can be used to determine average interrupt latency. Frame remaining is
704  * also shown for start transfer and two additional sample points.
705  *
706  * NOTE: This function will be removed once the peripheral controller code
707  * is integrated and the driver is stable
708  */
709 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
710 
711 /* URB interface */
712 
713 /* Transfer flags */
714 #define URB_GIVEBACK_ASAP	0x1
715 #define URB_SEND_ZERO_PACKET	0x2
716 
717 /* Host driver callbacks */
718 
719 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
720 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
721 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
722 			       int *hub_addr, int *hub_port);
723 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
724 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
725 			       int status);
726 
727 #ifdef DEBUG
728 /*
729  * Macro to sample the remaining PHY clocks left in the current frame. This
730  * may be used during debugging to determine the average time it takes to
731  * execute sections of code. There are two possible sample points, "a" and
732  * "b", so the _letter_ argument must be one of these values.
733  *
734  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
735  * example, "cat /sys/devices/lm0/hcd_frrem".
736  */
737 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
738 do {									\
739 	struct hfnum_data _hfnum_;					\
740 	struct dwc2_qtd *_qtd_;						\
741 									\
742 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
743 			   qtd_list_entry);				\
744 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
745 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
746 		_hfnum_.d32 = DWC2_READ_4(hsotg, (_hcd_)->regs + HFNUM);		\
747 		switch (_hfnum_.b.frnum & 0x7) {			\
748 		case 7:							\
749 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
750 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
751 				_hfnum_.b.frrem;			\
752 			break;						\
753 		case 0:							\
754 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
755 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
756 				_hfnum_.b.frrem;			\
757 			break;						\
758 		default:						\
759 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
760 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
761 				_hfnum_.b.frrem;			\
762 			break;						\
763 		}							\
764 	}								\
765 } while (0)
766 #else
767 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
768 #endif
769 
770 
771 void dwc2_wakeup_detected(void *);
772 
773 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
774 void dwc2_hcd_reinit(struct dwc2_hsotg *);
775 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
776 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
777 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *, struct dwc2_hcd_urb *, void **,
778 			 gfp_t);
779 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
780 			       u8 ,u8, u8, u8, u16);
781 
782 void dwc2_conn_id_status_change(struct work *);
783 void dwc2_hcd_start_func(struct work *);
784 void dwc2_hcd_reset_func(struct work *);
785 
786 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
787 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
788 
789 int _dwc2_hcd_start(struct dwc2_hsotg *);
790 
791 int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
792 
793 #endif /* __DWC2_HCD_H__ */
794