xref: /netbsd-src/sys/external/bsd/drm2/linux/linux_xa.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: linux_xa.c,v 1.3 2021/12/19 12:05:25 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2021 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: linux_xa.c,v 1.3 2021/12/19 12:05:25 riastradh Exp $");
31 
32 /*
33  * This is a lame-o implementation of the Linux xarray data type, which
34  * implements a map from 64-bit integers to pointers.  The operations
35  * it supports are designed to be implemented by a radix tree, but
36  * NetBSD's radixtree(9) doesn't quite support them all, and it's a bit
37  * of work to implement them, so this just uses a red/black tree
38  * instead at the cost of some performance in certain types of lookups
39  * (and negative-lookups -- finding a free key).
40  */
41 
42 #include <sys/rbtree.h>
43 
44 #include <linux/xarray.h>
45 
46 struct node {
47 	struct rb_node	n_rb;
48 	uint64_t	n_key;
49 	void		*n_datum;
50 };
51 
52 static int
53 compare_nodes(void *cookie, const void *va, const void *vb)
54 {
55 	const struct node *a = va, *b = vb;
56 
57 	if (a->n_key < b->n_key)
58 		return -1;
59 	if (a->n_key > b->n_key)
60 		return +1;
61 	return 0;
62 }
63 
64 static int
65 compare_node_key(void *cookie, const void *vn, const void *vk)
66 {
67 	const struct node *n = vn;
68 	const uint64_t *k = vk;
69 
70 	if (n->n_key < *k)
71 		return -1;
72 	if (n->n_key > *k)
73 		return +1;
74 	return 0;
75 }
76 
77 static const rb_tree_ops_t xa_rb_ops = {
78 	.rbto_compare_nodes = compare_nodes,
79 	.rbto_compare_key = compare_node_key,
80 	.rbto_node_offset = offsetof(struct node, n_rb),
81 };
82 
83 const struct xa_limit xa_limit_32b = { .min = 0, .max = UINT32_MAX };
84 
85 void
86 xa_init_flags(struct xarray *xa, gfp_t gfp)
87 {
88 
89 	mutex_init(&xa->xa_lock, MUTEX_DEFAULT, IPL_VM);
90 	rb_tree_init(&xa->xa_tree, &xa_rb_ops);
91 	xa->xa_gfp = gfp;
92 }
93 
94 void
95 xa_destroy(struct xarray *xa)
96 {
97 	struct node *n;
98 
99 	/*
100 	 * Linux allows xa to remain populated on destruction; it is
101 	 * our job to free any internal node structures.
102 	 */
103 	while ((n = RB_TREE_MIN(&xa->xa_tree)) != NULL) {
104 		rb_tree_remove_node(&xa->xa_tree, n);
105 		kmem_free(n, sizeof(*n));
106 	}
107 	mutex_destroy(&xa->xa_lock);
108 }
109 
110 void *
111 xa_load(struct xarray *xa, unsigned long key)
112 {
113 	const uint64_t key64 = key;
114 	struct node *n;
115 
116 	/* XXX pserialize */
117 	mutex_enter(&xa->xa_lock);
118 	n = rb_tree_find_node(&xa->xa_tree, &key64);
119 	mutex_exit(&xa->xa_lock);
120 
121 	return n ? n->n_datum : NULL;
122 }
123 
124 void *
125 xa_store(struct xarray *xa, unsigned long key, void *datum, gfp_t gfp)
126 {
127 	struct node *n, *collision;
128 
129 	KASSERT(datum != NULL);
130 	KASSERT(((uintptr_t)datum & 0x3) == 0);
131 
132 	n = kmem_zalloc(sizeof(*n), gfp & __GFP_WAIT ? KM_SLEEP : KM_NOSLEEP);
133 	if (n == NULL)
134 		return XA_ERROR(-ENOMEM);
135 	n->n_key = key;
136 	n->n_datum = datum;
137 
138 	mutex_enter(&xa->xa_lock);
139 	collision = rb_tree_insert_node(&xa->xa_tree, n);
140 	mutex_exit(&xa->xa_lock);
141 
142 	if (collision != n) {
143 		datum = collision->n_datum;
144 		kmem_free(collision, sizeof(*collision));
145 	}
146 	return datum;
147 }
148 
149 int
150 xa_alloc(struct xarray *xa, uint32_t *idp, void *datum, struct xa_limit limit,
151     gfp_t gfp)
152 {
153 	uint64_t key64 = limit.min;
154 	struct node *n, *n1, *collision __diagused;
155 	int error;
156 
157 	KASSERTMSG(limit.min < limit.max, "min=%"PRIu32" max=%"PRIu32,
158 	    limit.min, limit.max);
159 
160 	n = kmem_zalloc(sizeof(*n), gfp & __GFP_WAIT ? KM_SLEEP : KM_NOSLEEP);
161 	if (n == NULL)
162 		return -ENOMEM;
163 	n->n_datum = datum;
164 
165 	mutex_enter(&xa->xa_lock);
166 	while ((n1 = rb_tree_find_node_geq(&xa->xa_tree, &key64)) != NULL &&
167 	    n1->n_key == key64) {
168 		if (key64 == limit.max) {
169 			error = -EBUSY;
170 			goto out;
171 		}
172 		KASSERT(key64 < UINT32_MAX);
173 		key64++;
174 	}
175 	/* Found a hole -- insert in it.  */
176 	KASSERT(n1 == NULL || n1->n_key > key64);
177 	n->n_key = key64;
178 	collision = rb_tree_insert_node(&xa->xa_tree, n);
179 	KASSERT(collision == n);
180 	error = 0;
181 out:	mutex_exit(&xa->xa_lock);
182 
183 	if (error)
184 		return error;
185 	*idp = key64;
186 	return 0;
187 }
188 
189 void *
190 xa_find(struct xarray *xa, unsigned long *startp, unsigned long max,
191     unsigned tagmask)
192 {
193 	uint64_t key64 = *startp;
194 	struct node *n = NULL;
195 
196 	KASSERT(tagmask == -1);	/* not yet supported */
197 
198 	mutex_enter(&xa->xa_lock);
199 	n = rb_tree_find_node_geq(&xa->xa_tree, &key64);
200 	mutex_exit(&xa->xa_lock);
201 
202 	if (n == NULL || n->n_key > max)
203 		return NULL;
204 
205 	*startp = n->n_key;
206 	return n->n_datum;
207 }
208 
209 void *
210 xa_find_after(struct xarray *xa, unsigned long *startp, unsigned long max,
211     unsigned tagmask)
212 {
213 	unsigned long start = *startp + 1;
214 	void *found;
215 
216 	if (start == max)
217 		return NULL;
218 	found = xa_find(xa, &start, max, tagmask);
219 	if (found)
220 		*startp = start;
221 	return found;
222 }
223 
224 void *
225 xa_erase(struct xarray *xa, unsigned long key)
226 {
227 	uint64_t key64 = key;
228 	struct node *n;
229 	void *datum = NULL;
230 
231 	mutex_enter(&xa->xa_lock);
232 	n = rb_tree_find_node(&xa->xa_tree, &key64);
233 	if (n)
234 		rb_tree_remove_node(&xa->xa_tree, n);
235 	mutex_exit(&xa->xa_lock);
236 
237 	if (n) {
238 		datum = n->n_datum;
239 		kmem_free(n, sizeof(*n));
240 	}
241 	return datum;
242 }
243