xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/ttm/ttm_page_alloc.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*
2  * Copyright (c) Red Hat Inc.
3 
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: Dave Airlie <airlied@redhat.com>
24  *          Jerome Glisse <jglisse@redhat.com>
25  *          Pauli Nieminen <suokkos@gmail.com>
26  */
27 
28 /* simple list based uncached page pool
29  * - Pool collects resently freed pages for reuse
30  * - Use page->lru to keep a free list
31  * - doesn't track currently in use pages
32  */
33 
34 #define pr_fmt(fmt) "[TTM] " fmt
35 
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
45 
46 #include <linux/atomic.h>
47 
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50 
51 #ifdef TTM_HAS_AGP
52 #include <asm/agp.h>
53 #endif
54 
55 #define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
56 #define SMALL_ALLOCATION		16
57 #define FREE_ALL_PAGES			(~0U)
58 /* times are in msecs */
59 #define PAGE_FREE_INTERVAL		1000
60 
61 /**
62  * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
63  *
64  * @lock: Protects the shared pool from concurrnet access. Must be used with
65  * irqsave/irqrestore variants because pool allocator maybe called from
66  * delayed work.
67  * @fill_lock: Prevent concurrent calls to fill.
68  * @list: Pool of free uc/wc pages for fast reuse.
69  * @gfp_flags: Flags to pass for alloc_page.
70  * @npages: Number of pages in pool.
71  */
72 struct ttm_page_pool {
73 	spinlock_t		lock;
74 	bool			fill_lock;
75 	struct list_head	list;
76 	gfp_t			gfp_flags;
77 	unsigned		npages;
78 	char			*name;
79 	unsigned long		nfrees;
80 	unsigned long		nrefills;
81 };
82 
83 /**
84  * Limits for the pool. They are handled without locks because only place where
85  * they may change is in sysfs store. They won't have immediate effect anyway
86  * so forcing serialization to access them is pointless.
87  */
88 
89 struct ttm_pool_opts {
90 	unsigned	alloc_size;
91 	unsigned	max_size;
92 	unsigned	small;
93 };
94 
95 #define NUM_POOLS 4
96 
97 /**
98  * struct ttm_pool_manager - Holds memory pools for fst allocation
99  *
100  * Manager is read only object for pool code so it doesn't need locking.
101  *
102  * @free_interval: minimum number of jiffies between freeing pages from pool.
103  * @page_alloc_inited: reference counting for pool allocation.
104  * @work: Work that is used to shrink the pool. Work is only run when there is
105  * some pages to free.
106  * @small_allocation: Limit in number of pages what is small allocation.
107  *
108  * @pools: All pool objects in use.
109  **/
110 struct ttm_pool_manager {
111 	struct kobject		kobj;
112 	struct shrinker		mm_shrink;
113 	struct ttm_pool_opts	options;
114 
115 	union {
116 		struct ttm_page_pool	pools[NUM_POOLS];
117 		struct {
118 			struct ttm_page_pool	wc_pool;
119 			struct ttm_page_pool	uc_pool;
120 			struct ttm_page_pool	wc_pool_dma32;
121 			struct ttm_page_pool	uc_pool_dma32;
122 		} ;
123 	};
124 };
125 
126 static struct attribute ttm_page_pool_max = {
127 	.name = "pool_max_size",
128 	.mode = S_IRUGO | S_IWUSR
129 };
130 static struct attribute ttm_page_pool_small = {
131 	.name = "pool_small_allocation",
132 	.mode = S_IRUGO | S_IWUSR
133 };
134 static struct attribute ttm_page_pool_alloc_size = {
135 	.name = "pool_allocation_size",
136 	.mode = S_IRUGO | S_IWUSR
137 };
138 
139 static struct attribute *ttm_pool_attrs[] = {
140 	&ttm_page_pool_max,
141 	&ttm_page_pool_small,
142 	&ttm_page_pool_alloc_size,
143 	NULL
144 };
145 
146 static void ttm_pool_kobj_release(struct kobject *kobj)
147 {
148 	struct ttm_pool_manager *m =
149 		container_of(kobj, struct ttm_pool_manager, kobj);
150 	kfree(m);
151 }
152 
153 static ssize_t ttm_pool_store(struct kobject *kobj,
154 		struct attribute *attr, const char *buffer, size_t size)
155 {
156 	struct ttm_pool_manager *m =
157 		container_of(kobj, struct ttm_pool_manager, kobj);
158 	int chars;
159 	unsigned val;
160 	chars = sscanf(buffer, "%u", &val);
161 	if (chars == 0)
162 		return size;
163 
164 	/* Convert kb to number of pages */
165 	val = val / (PAGE_SIZE >> 10);
166 
167 	if (attr == &ttm_page_pool_max)
168 		m->options.max_size = val;
169 	else if (attr == &ttm_page_pool_small)
170 		m->options.small = val;
171 	else if (attr == &ttm_page_pool_alloc_size) {
172 		if (val > NUM_PAGES_TO_ALLOC*8) {
173 			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
174 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
175 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
176 			return size;
177 		} else if (val > NUM_PAGES_TO_ALLOC) {
178 			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
179 				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
180 		}
181 		m->options.alloc_size = val;
182 	}
183 
184 	return size;
185 }
186 
187 static ssize_t ttm_pool_show(struct kobject *kobj,
188 		struct attribute *attr, char *buffer)
189 {
190 	struct ttm_pool_manager *m =
191 		container_of(kobj, struct ttm_pool_manager, kobj);
192 	unsigned val = 0;
193 
194 	if (attr == &ttm_page_pool_max)
195 		val = m->options.max_size;
196 	else if (attr == &ttm_page_pool_small)
197 		val = m->options.small;
198 	else if (attr == &ttm_page_pool_alloc_size)
199 		val = m->options.alloc_size;
200 
201 	val = val * (PAGE_SIZE >> 10);
202 
203 	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
204 }
205 
206 static const struct sysfs_ops ttm_pool_sysfs_ops = {
207 	.show = &ttm_pool_show,
208 	.store = &ttm_pool_store,
209 };
210 
211 static struct kobj_type ttm_pool_kobj_type = {
212 	.release = &ttm_pool_kobj_release,
213 	.sysfs_ops = &ttm_pool_sysfs_ops,
214 	.default_attrs = ttm_pool_attrs,
215 };
216 
217 static struct ttm_pool_manager *_manager;
218 
219 #ifndef CONFIG_X86
220 static int set_pages_array_wb(struct page **pages, int addrinarray)
221 {
222 #ifdef TTM_HAS_AGP
223 	int i;
224 
225 	for (i = 0; i < addrinarray; i++)
226 		unmap_page_from_agp(pages[i]);
227 #endif
228 	return 0;
229 }
230 
231 static int set_pages_array_wc(struct page **pages, int addrinarray)
232 {
233 #ifdef TTM_HAS_AGP
234 	int i;
235 
236 	for (i = 0; i < addrinarray; i++)
237 		map_page_into_agp(pages[i]);
238 #endif
239 	return 0;
240 }
241 
242 static int set_pages_array_uc(struct page **pages, int addrinarray)
243 {
244 #ifdef TTM_HAS_AGP
245 	int i;
246 
247 	for (i = 0; i < addrinarray; i++)
248 		map_page_into_agp(pages[i]);
249 #endif
250 	return 0;
251 }
252 #endif
253 
254 /**
255  * Select the right pool or requested caching state and ttm flags. */
256 static struct ttm_page_pool *ttm_get_pool(int flags,
257 		enum ttm_caching_state cstate)
258 {
259 	int pool_index;
260 
261 	if (cstate == tt_cached)
262 		return NULL;
263 
264 	if (cstate == tt_wc)
265 		pool_index = 0x0;
266 	else
267 		pool_index = 0x1;
268 
269 	if (flags & TTM_PAGE_FLAG_DMA32)
270 		pool_index |= 0x2;
271 
272 	return &_manager->pools[pool_index];
273 }
274 
275 /* set memory back to wb and free the pages. */
276 static void ttm_pages_put(struct page *pages[], unsigned npages)
277 {
278 	unsigned i;
279 	if (set_pages_array_wb(pages, npages))
280 		pr_err("Failed to set %d pages to wb!\n", npages);
281 	for (i = 0; i < npages; ++i)
282 		__free_page(pages[i]);
283 }
284 
285 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
286 		unsigned freed_pages)
287 {
288 	pool->npages -= freed_pages;
289 	pool->nfrees += freed_pages;
290 }
291 
292 /**
293  * Free pages from pool.
294  *
295  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
296  * number of pages in one go.
297  *
298  * @pool: to free the pages from
299  * @free_all: If set to true will free all pages in pool
300  **/
301 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free)
302 {
303 	unsigned long irq_flags;
304 	struct page *p;
305 	struct page **pages_to_free;
306 	unsigned freed_pages = 0,
307 		 npages_to_free = nr_free;
308 
309 	if (NUM_PAGES_TO_ALLOC < nr_free)
310 		npages_to_free = NUM_PAGES_TO_ALLOC;
311 
312 	pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
313 			GFP_KERNEL);
314 	if (!pages_to_free) {
315 		pr_err("Failed to allocate memory for pool free operation\n");
316 		return 0;
317 	}
318 
319 restart:
320 	spin_lock_irqsave(&pool->lock, irq_flags);
321 
322 	list_for_each_entry_reverse(p, &pool->list, lru) {
323 		if (freed_pages >= npages_to_free)
324 			break;
325 
326 		pages_to_free[freed_pages++] = p;
327 		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
328 		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
329 			/* remove range of pages from the pool */
330 			__list_del(p->lru.prev, &pool->list);
331 
332 			ttm_pool_update_free_locked(pool, freed_pages);
333 			/**
334 			 * Because changing page caching is costly
335 			 * we unlock the pool to prevent stalling.
336 			 */
337 			spin_unlock_irqrestore(&pool->lock, irq_flags);
338 
339 			ttm_pages_put(pages_to_free, freed_pages);
340 			if (likely(nr_free != FREE_ALL_PAGES))
341 				nr_free -= freed_pages;
342 
343 			if (NUM_PAGES_TO_ALLOC >= nr_free)
344 				npages_to_free = nr_free;
345 			else
346 				npages_to_free = NUM_PAGES_TO_ALLOC;
347 
348 			freed_pages = 0;
349 
350 			/* free all so restart the processing */
351 			if (nr_free)
352 				goto restart;
353 
354 			/* Not allowed to fall through or break because
355 			 * following context is inside spinlock while we are
356 			 * outside here.
357 			 */
358 			goto out;
359 
360 		}
361 	}
362 
363 	/* remove range of pages from the pool */
364 	if (freed_pages) {
365 		__list_del(&p->lru, &pool->list);
366 
367 		ttm_pool_update_free_locked(pool, freed_pages);
368 		nr_free -= freed_pages;
369 	}
370 
371 	spin_unlock_irqrestore(&pool->lock, irq_flags);
372 
373 	if (freed_pages)
374 		ttm_pages_put(pages_to_free, freed_pages);
375 out:
376 	kfree(pages_to_free);
377 	return nr_free;
378 }
379 
380 /* Get good estimation how many pages are free in pools */
381 static int ttm_pool_get_num_unused_pages(void)
382 {
383 	unsigned i;
384 	int total = 0;
385 	for (i = 0; i < NUM_POOLS; ++i)
386 		total += _manager->pools[i].npages;
387 
388 	return total;
389 }
390 
391 /**
392  * Callback for mm to request pool to reduce number of page held.
393  */
394 static int ttm_pool_mm_shrink(struct shrinker *shrink,
395 			      struct shrink_control *sc)
396 {
397 	static atomic_t start_pool = ATOMIC_INIT(0);
398 	unsigned i;
399 	unsigned pool_offset = atomic_add_return(1, &start_pool);
400 	struct ttm_page_pool *pool;
401 	int shrink_pages = sc->nr_to_scan;
402 
403 	pool_offset = pool_offset % NUM_POOLS;
404 	/* select start pool in round robin fashion */
405 	for (i = 0; i < NUM_POOLS; ++i) {
406 		unsigned nr_free = shrink_pages;
407 		if (shrink_pages == 0)
408 			break;
409 		pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
410 		shrink_pages = ttm_page_pool_free(pool, nr_free);
411 	}
412 	/* return estimated number of unused pages in pool */
413 	return ttm_pool_get_num_unused_pages();
414 }
415 
416 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
417 {
418 	manager->mm_shrink.shrink = &ttm_pool_mm_shrink;
419 	manager->mm_shrink.seeks = 1;
420 	register_shrinker(&manager->mm_shrink);
421 }
422 
423 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
424 {
425 	unregister_shrinker(&manager->mm_shrink);
426 }
427 
428 static int ttm_set_pages_caching(struct page **pages,
429 		enum ttm_caching_state cstate, unsigned cpages)
430 {
431 	int r = 0;
432 	/* Set page caching */
433 	switch (cstate) {
434 	case tt_uncached:
435 		r = set_pages_array_uc(pages, cpages);
436 		if (r)
437 			pr_err("Failed to set %d pages to uc!\n", cpages);
438 		break;
439 	case tt_wc:
440 		r = set_pages_array_wc(pages, cpages);
441 		if (r)
442 			pr_err("Failed to set %d pages to wc!\n", cpages);
443 		break;
444 	default:
445 		break;
446 	}
447 	return r;
448 }
449 
450 /**
451  * Free pages the pages that failed to change the caching state. If there is
452  * any pages that have changed their caching state already put them to the
453  * pool.
454  */
455 static void ttm_handle_caching_state_failure(struct list_head *pages,
456 		int ttm_flags, enum ttm_caching_state cstate,
457 		struct page **failed_pages, unsigned cpages)
458 {
459 	unsigned i;
460 	/* Failed pages have to be freed */
461 	for (i = 0; i < cpages; ++i) {
462 		list_del(&failed_pages[i]->lru);
463 		__free_page(failed_pages[i]);
464 	}
465 }
466 
467 /**
468  * Allocate new pages with correct caching.
469  *
470  * This function is reentrant if caller updates count depending on number of
471  * pages returned in pages array.
472  */
473 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
474 		int ttm_flags, enum ttm_caching_state cstate, unsigned count)
475 {
476 	struct page **caching_array;
477 	struct page *p;
478 	int r = 0;
479 	unsigned i, cpages;
480 	unsigned max_cpages = min(count,
481 			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
482 
483 	/* allocate array for page caching change */
484 	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
485 
486 	if (!caching_array) {
487 		pr_err("Unable to allocate table for new pages\n");
488 		return -ENOMEM;
489 	}
490 
491 	for (i = 0, cpages = 0; i < count; ++i) {
492 		p = alloc_page(gfp_flags);
493 
494 		if (!p) {
495 			pr_err("Unable to get page %u\n", i);
496 
497 			/* store already allocated pages in the pool after
498 			 * setting the caching state */
499 			if (cpages) {
500 				r = ttm_set_pages_caching(caching_array,
501 							  cstate, cpages);
502 				if (r)
503 					ttm_handle_caching_state_failure(pages,
504 						ttm_flags, cstate,
505 						caching_array, cpages);
506 			}
507 			r = -ENOMEM;
508 			goto out;
509 		}
510 
511 #ifdef CONFIG_HIGHMEM
512 		/* gfp flags of highmem page should never be dma32 so we
513 		 * we should be fine in such case
514 		 */
515 		if (!PageHighMem(p))
516 #endif
517 		{
518 			caching_array[cpages++] = p;
519 			if (cpages == max_cpages) {
520 
521 				r = ttm_set_pages_caching(caching_array,
522 						cstate, cpages);
523 				if (r) {
524 					ttm_handle_caching_state_failure(pages,
525 						ttm_flags, cstate,
526 						caching_array, cpages);
527 					goto out;
528 				}
529 				cpages = 0;
530 			}
531 		}
532 
533 		list_add(&p->lru, pages);
534 	}
535 
536 	if (cpages) {
537 		r = ttm_set_pages_caching(caching_array, cstate, cpages);
538 		if (r)
539 			ttm_handle_caching_state_failure(pages,
540 					ttm_flags, cstate,
541 					caching_array, cpages);
542 	}
543 out:
544 	kfree(caching_array);
545 
546 	return r;
547 }
548 
549 /**
550  * Fill the given pool if there aren't enough pages and the requested number of
551  * pages is small.
552  */
553 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
554 		int ttm_flags, enum ttm_caching_state cstate, unsigned count,
555 		unsigned long *irq_flags)
556 {
557 	struct page *p;
558 	int r;
559 	unsigned cpages = 0;
560 	/**
561 	 * Only allow one pool fill operation at a time.
562 	 * If pool doesn't have enough pages for the allocation new pages are
563 	 * allocated from outside of pool.
564 	 */
565 	if (pool->fill_lock)
566 		return;
567 
568 	pool->fill_lock = true;
569 
570 	/* If allocation request is small and there are not enough
571 	 * pages in a pool we fill the pool up first. */
572 	if (count < _manager->options.small
573 		&& count > pool->npages) {
574 		struct list_head new_pages;
575 		unsigned alloc_size = _manager->options.alloc_size;
576 
577 		/**
578 		 * Can't change page caching if in irqsave context. We have to
579 		 * drop the pool->lock.
580 		 */
581 		spin_unlock_irqrestore(&pool->lock, *irq_flags);
582 
583 		INIT_LIST_HEAD(&new_pages);
584 		r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
585 				cstate,	alloc_size);
586 		spin_lock_irqsave(&pool->lock, *irq_flags);
587 
588 		if (!r) {
589 			list_splice(&new_pages, &pool->list);
590 			++pool->nrefills;
591 			pool->npages += alloc_size;
592 		} else {
593 			pr_err("Failed to fill pool (%p)\n", pool);
594 			/* If we have any pages left put them to the pool. */
595 			list_for_each_entry(p, &pool->list, lru) {
596 				++cpages;
597 			}
598 			list_splice(&new_pages, &pool->list);
599 			pool->npages += cpages;
600 		}
601 
602 	}
603 	pool->fill_lock = false;
604 }
605 
606 /**
607  * Cut 'count' number of pages from the pool and put them on the return list.
608  *
609  * @return count of pages still required to fulfill the request.
610  */
611 static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
612 					struct list_head *pages,
613 					int ttm_flags,
614 					enum ttm_caching_state cstate,
615 					unsigned count)
616 {
617 	unsigned long irq_flags;
618 	struct list_head *p;
619 	unsigned i;
620 
621 	spin_lock_irqsave(&pool->lock, irq_flags);
622 	ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count, &irq_flags);
623 
624 	if (count >= pool->npages) {
625 		/* take all pages from the pool */
626 		list_splice_init(&pool->list, pages);
627 		count -= pool->npages;
628 		pool->npages = 0;
629 		goto out;
630 	}
631 	/* find the last pages to include for requested number of pages. Split
632 	 * pool to begin and halve it to reduce search space. */
633 	if (count <= pool->npages/2) {
634 		i = 0;
635 		list_for_each(p, &pool->list) {
636 			if (++i == count)
637 				break;
638 		}
639 	} else {
640 		i = pool->npages + 1;
641 		list_for_each_prev(p, &pool->list) {
642 			if (--i == count)
643 				break;
644 		}
645 	}
646 	/* Cut 'count' number of pages from the pool */
647 	list_cut_position(pages, &pool->list, p);
648 	pool->npages -= count;
649 	count = 0;
650 out:
651 	spin_unlock_irqrestore(&pool->lock, irq_flags);
652 	return count;
653 }
654 
655 /* Put all pages in pages list to correct pool to wait for reuse */
656 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
657 			  enum ttm_caching_state cstate)
658 {
659 	unsigned long irq_flags;
660 	struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
661 	unsigned i;
662 
663 	if (pool == NULL) {
664 		/* No pool for this memory type so free the pages */
665 		for (i = 0; i < npages; i++) {
666 			if (pages[i]) {
667 				if (page_count(pages[i]) != 1)
668 					pr_err("Erroneous page count. Leaking pages.\n");
669 				__free_page(pages[i]);
670 				pages[i] = NULL;
671 			}
672 		}
673 		return;
674 	}
675 
676 	spin_lock_irqsave(&pool->lock, irq_flags);
677 	for (i = 0; i < npages; i++) {
678 		if (pages[i]) {
679 			if (page_count(pages[i]) != 1)
680 				pr_err("Erroneous page count. Leaking pages.\n");
681 			list_add_tail(&pages[i]->lru, &pool->list);
682 			pages[i] = NULL;
683 			pool->npages++;
684 		}
685 	}
686 	/* Check that we don't go over the pool limit */
687 	npages = 0;
688 	if (pool->npages > _manager->options.max_size) {
689 		npages = pool->npages - _manager->options.max_size;
690 		/* free at least NUM_PAGES_TO_ALLOC number of pages
691 		 * to reduce calls to set_memory_wb */
692 		if (npages < NUM_PAGES_TO_ALLOC)
693 			npages = NUM_PAGES_TO_ALLOC;
694 	}
695 	spin_unlock_irqrestore(&pool->lock, irq_flags);
696 	if (npages)
697 		ttm_page_pool_free(pool, npages);
698 }
699 
700 /*
701  * On success pages list will hold count number of correctly
702  * cached pages.
703  */
704 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
705 			 enum ttm_caching_state cstate)
706 {
707 	struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
708 	struct list_head plist;
709 	struct page *p = NULL;
710 	gfp_t gfp_flags = GFP_USER;
711 	unsigned count;
712 	int r;
713 
714 	/* set zero flag for page allocation if required */
715 	if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
716 		gfp_flags |= __GFP_ZERO;
717 
718 	/* No pool for cached pages */
719 	if (pool == NULL) {
720 		if (flags & TTM_PAGE_FLAG_DMA32)
721 			gfp_flags |= GFP_DMA32;
722 		else
723 			gfp_flags |= GFP_HIGHUSER;
724 
725 		for (r = 0; r < npages; ++r) {
726 			p = alloc_page(gfp_flags);
727 			if (!p) {
728 
729 				pr_err("Unable to allocate page\n");
730 				return -ENOMEM;
731 			}
732 
733 			pages[r] = p;
734 		}
735 		return 0;
736 	}
737 
738 	/* combine zero flag to pool flags */
739 	gfp_flags |= pool->gfp_flags;
740 
741 	/* First we take pages from the pool */
742 	INIT_LIST_HEAD(&plist);
743 	npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
744 	count = 0;
745 	list_for_each_entry(p, &plist, lru) {
746 		pages[count++] = p;
747 	}
748 
749 	/* clear the pages coming from the pool if requested */
750 	if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
751 		list_for_each_entry(p, &plist, lru) {
752 			if (PageHighMem(p))
753 				clear_highpage(p);
754 			else
755 				clear_page(page_address(p));
756 		}
757 	}
758 
759 	/* If pool didn't have enough pages allocate new one. */
760 	if (npages > 0) {
761 		/* ttm_alloc_new_pages doesn't reference pool so we can run
762 		 * multiple requests in parallel.
763 		 **/
764 		INIT_LIST_HEAD(&plist);
765 		r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate, npages);
766 		list_for_each_entry(p, &plist, lru) {
767 			pages[count++] = p;
768 		}
769 		if (r) {
770 			/* If there is any pages in the list put them back to
771 			 * the pool. */
772 			pr_err("Failed to allocate extra pages for large request\n");
773 			ttm_put_pages(pages, count, flags, cstate);
774 			return r;
775 		}
776 	}
777 
778 	return 0;
779 }
780 
781 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags,
782 		char *name)
783 {
784 	spin_lock_init(&pool->lock);
785 	pool->fill_lock = false;
786 	INIT_LIST_HEAD(&pool->list);
787 	pool->npages = pool->nfrees = 0;
788 	pool->gfp_flags = flags;
789 	pool->name = name;
790 }
791 
792 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
793 {
794 	int ret;
795 
796 	WARN_ON(_manager);
797 
798 	pr_info("Initializing pool allocator\n");
799 
800 	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
801 
802 	ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc");
803 
804 	ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc");
805 
806 	ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
807 				  GFP_USER | GFP_DMA32, "wc dma");
808 
809 	ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
810 				  GFP_USER | GFP_DMA32, "uc dma");
811 
812 	_manager->options.max_size = max_pages;
813 	_manager->options.small = SMALL_ALLOCATION;
814 	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
815 
816 	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
817 				   &glob->kobj, "pool");
818 	if (unlikely(ret != 0)) {
819 		kobject_put(&_manager->kobj);
820 		_manager = NULL;
821 		return ret;
822 	}
823 
824 	ttm_pool_mm_shrink_init(_manager);
825 
826 	return 0;
827 }
828 
829 void ttm_page_alloc_fini(void)
830 {
831 	int i;
832 
833 	pr_info("Finalizing pool allocator\n");
834 	ttm_pool_mm_shrink_fini(_manager);
835 
836 	for (i = 0; i < NUM_POOLS; ++i)
837 		ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES);
838 
839 	kobject_put(&_manager->kobj);
840 	_manager = NULL;
841 }
842 
843 int ttm_pool_populate(struct ttm_tt *ttm)
844 {
845 	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
846 	unsigned i;
847 	int ret;
848 
849 	if (ttm->state != tt_unpopulated)
850 		return 0;
851 
852 	for (i = 0; i < ttm->num_pages; ++i) {
853 		ret = ttm_get_pages(&ttm->pages[i], 1,
854 				    ttm->page_flags,
855 				    ttm->caching_state);
856 		if (ret != 0) {
857 			ttm_pool_unpopulate(ttm);
858 			return -ENOMEM;
859 		}
860 
861 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
862 						false, false);
863 		if (unlikely(ret != 0)) {
864 			ttm_pool_unpopulate(ttm);
865 			return -ENOMEM;
866 		}
867 	}
868 
869 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
870 		ret = ttm_tt_swapin(ttm);
871 		if (unlikely(ret != 0)) {
872 			ttm_pool_unpopulate(ttm);
873 			return ret;
874 		}
875 	}
876 
877 	ttm->state = tt_unbound;
878 	return 0;
879 }
880 EXPORT_SYMBOL(ttm_pool_populate);
881 
882 void ttm_pool_unpopulate(struct ttm_tt *ttm)
883 {
884 	unsigned i;
885 
886 	for (i = 0; i < ttm->num_pages; ++i) {
887 		if (ttm->pages[i]) {
888 			ttm_mem_global_free_page(ttm->glob->mem_glob,
889 						 ttm->pages[i]);
890 			ttm_put_pages(&ttm->pages[i], 1,
891 				      ttm->page_flags,
892 				      ttm->caching_state);
893 		}
894 	}
895 	ttm->state = tt_unpopulated;
896 }
897 EXPORT_SYMBOL(ttm_pool_unpopulate);
898 
899 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
900 {
901 	struct ttm_page_pool *p;
902 	unsigned i;
903 	char *h[] = {"pool", "refills", "pages freed", "size"};
904 	if (!_manager) {
905 		seq_printf(m, "No pool allocator running.\n");
906 		return 0;
907 	}
908 	seq_printf(m, "%6s %12s %13s %8s\n",
909 			h[0], h[1], h[2], h[3]);
910 	for (i = 0; i < NUM_POOLS; ++i) {
911 		p = &_manager->pools[i];
912 
913 		seq_printf(m, "%6s %12ld %13ld %8d\n",
914 				p->name, p->nrefills,
915 				p->nfrees, p->npages);
916 	}
917 	return 0;
918 }
919 EXPORT_SYMBOL(ttm_page_alloc_debugfs);
920