1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #define pr_fmt(fmt) "[TTM] " fmt 29 30 #include <drm/ttm/ttm_memory.h> 31 #include <drm/ttm/ttm_module.h> 32 #include <drm/ttm/ttm_page_alloc.h> 33 #include <linux/spinlock.h> 34 #include <linux/sched.h> 35 #include <linux/wait.h> 36 #include <linux/mm.h> 37 #include <linux/module.h> 38 #include <linux/slab.h> 39 40 #define TTM_MEMORY_ALLOC_RETRIES 4 41 42 struct ttm_mem_zone { 43 struct kobject kobj; 44 struct ttm_mem_global *glob; 45 const char *name; 46 uint64_t zone_mem; 47 uint64_t emer_mem; 48 uint64_t max_mem; 49 uint64_t swap_limit; 50 uint64_t used_mem; 51 }; 52 53 static struct attribute ttm_mem_sys = { 54 .name = "zone_memory", 55 .mode = S_IRUGO 56 }; 57 static struct attribute ttm_mem_emer = { 58 .name = "emergency_memory", 59 .mode = S_IRUGO | S_IWUSR 60 }; 61 static struct attribute ttm_mem_max = { 62 .name = "available_memory", 63 .mode = S_IRUGO | S_IWUSR 64 }; 65 static struct attribute ttm_mem_swap = { 66 .name = "swap_limit", 67 .mode = S_IRUGO | S_IWUSR 68 }; 69 static struct attribute ttm_mem_used = { 70 .name = "used_memory", 71 .mode = S_IRUGO 72 }; 73 74 static void ttm_mem_zone_kobj_release(struct kobject *kobj) 75 { 76 struct ttm_mem_zone *zone = 77 container_of(kobj, struct ttm_mem_zone, kobj); 78 79 pr_info("Zone %7s: Used memory at exit: %llu kiB\n", 80 zone->name, (unsigned long long)zone->used_mem >> 10); 81 kfree(zone); 82 } 83 84 static ssize_t ttm_mem_zone_show(struct kobject *kobj, 85 struct attribute *attr, 86 char *buffer) 87 { 88 struct ttm_mem_zone *zone = 89 container_of(kobj, struct ttm_mem_zone, kobj); 90 uint64_t val = 0; 91 92 spin_lock(&zone->glob->lock); 93 if (attr == &ttm_mem_sys) 94 val = zone->zone_mem; 95 else if (attr == &ttm_mem_emer) 96 val = zone->emer_mem; 97 else if (attr == &ttm_mem_max) 98 val = zone->max_mem; 99 else if (attr == &ttm_mem_swap) 100 val = zone->swap_limit; 101 else if (attr == &ttm_mem_used) 102 val = zone->used_mem; 103 spin_unlock(&zone->glob->lock); 104 105 return snprintf(buffer, PAGE_SIZE, "%llu\n", 106 (unsigned long long) val >> 10); 107 } 108 109 static void ttm_check_swapping(struct ttm_mem_global *glob); 110 111 static ssize_t ttm_mem_zone_store(struct kobject *kobj, 112 struct attribute *attr, 113 const char *buffer, 114 size_t size) 115 { 116 struct ttm_mem_zone *zone = 117 container_of(kobj, struct ttm_mem_zone, kobj); 118 int chars; 119 unsigned long val; 120 uint64_t val64; 121 122 chars = sscanf(buffer, "%lu", &val); 123 if (chars == 0) 124 return size; 125 126 val64 = val; 127 val64 <<= 10; 128 129 spin_lock(&zone->glob->lock); 130 if (val64 > zone->zone_mem) 131 val64 = zone->zone_mem; 132 if (attr == &ttm_mem_emer) { 133 zone->emer_mem = val64; 134 if (zone->max_mem > val64) 135 zone->max_mem = val64; 136 } else if (attr == &ttm_mem_max) { 137 zone->max_mem = val64; 138 if (zone->emer_mem < val64) 139 zone->emer_mem = val64; 140 } else if (attr == &ttm_mem_swap) 141 zone->swap_limit = val64; 142 spin_unlock(&zone->glob->lock); 143 144 ttm_check_swapping(zone->glob); 145 146 return size; 147 } 148 149 static struct attribute *ttm_mem_zone_attrs[] = { 150 &ttm_mem_sys, 151 &ttm_mem_emer, 152 &ttm_mem_max, 153 &ttm_mem_swap, 154 &ttm_mem_used, 155 NULL 156 }; 157 158 static const struct sysfs_ops ttm_mem_zone_ops = { 159 .show = &ttm_mem_zone_show, 160 .store = &ttm_mem_zone_store 161 }; 162 163 static struct kobj_type ttm_mem_zone_kobj_type = { 164 .release = &ttm_mem_zone_kobj_release, 165 .sysfs_ops = &ttm_mem_zone_ops, 166 .default_attrs = ttm_mem_zone_attrs, 167 }; 168 169 static void ttm_mem_global_kobj_release(struct kobject *kobj) 170 { 171 struct ttm_mem_global *glob = 172 container_of(kobj, struct ttm_mem_global, kobj); 173 174 kfree(glob); 175 } 176 177 static struct kobj_type ttm_mem_glob_kobj_type = { 178 .release = &ttm_mem_global_kobj_release, 179 }; 180 181 static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob, 182 bool from_wq, uint64_t extra) 183 { 184 unsigned int i; 185 struct ttm_mem_zone *zone; 186 uint64_t target; 187 188 for (i = 0; i < glob->num_zones; ++i) { 189 zone = glob->zones[i]; 190 191 if (from_wq) 192 target = zone->swap_limit; 193 else if (capable(CAP_SYS_ADMIN)) 194 target = zone->emer_mem; 195 else 196 target = zone->max_mem; 197 198 target = (extra > target) ? 0ULL : target; 199 200 if (zone->used_mem > target) 201 return true; 202 } 203 return false; 204 } 205 206 /** 207 * At this point we only support a single shrink callback. 208 * Extend this if needed, perhaps using a linked list of callbacks. 209 * Note that this function is reentrant: 210 * many threads may try to swap out at any given time. 211 */ 212 213 static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq, 214 uint64_t extra) 215 { 216 int ret; 217 struct ttm_mem_shrink *shrink; 218 219 spin_lock(&glob->lock); 220 if (glob->shrink == NULL) 221 goto out; 222 223 while (ttm_zones_above_swap_target(glob, from_wq, extra)) { 224 shrink = glob->shrink; 225 spin_unlock(&glob->lock); 226 ret = shrink->do_shrink(shrink); 227 spin_lock(&glob->lock); 228 if (unlikely(ret != 0)) 229 goto out; 230 } 231 out: 232 spin_unlock(&glob->lock); 233 } 234 235 236 237 static void ttm_shrink_work(struct work_struct *work) 238 { 239 struct ttm_mem_global *glob = 240 container_of(work, struct ttm_mem_global, work); 241 242 ttm_shrink(glob, true, 0ULL); 243 } 244 245 static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob, 246 const struct sysinfo *si) 247 { 248 struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL); 249 uint64_t mem; 250 int ret; 251 252 if (unlikely(!zone)) 253 return -ENOMEM; 254 255 mem = si->totalram - si->totalhigh; 256 mem *= si->mem_unit; 257 258 zone->name = "kernel"; 259 zone->zone_mem = mem; 260 zone->max_mem = mem >> 1; 261 zone->emer_mem = (mem >> 1) + (mem >> 2); 262 zone->swap_limit = zone->max_mem - (mem >> 3); 263 zone->used_mem = 0; 264 zone->glob = glob; 265 glob->zone_kernel = zone; 266 ret = kobject_init_and_add( 267 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); 268 if (unlikely(ret != 0)) { 269 kobject_put(&zone->kobj); 270 return ret; 271 } 272 glob->zones[glob->num_zones++] = zone; 273 return 0; 274 } 275 276 #ifdef CONFIG_HIGHMEM 277 static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob, 278 const struct sysinfo *si) 279 { 280 struct ttm_mem_zone *zone; 281 uint64_t mem; 282 int ret; 283 284 if (si->totalhigh == 0) 285 return 0; 286 287 zone = kzalloc(sizeof(*zone), GFP_KERNEL); 288 if (unlikely(!zone)) 289 return -ENOMEM; 290 291 mem = si->totalram; 292 mem *= si->mem_unit; 293 294 zone->name = "highmem"; 295 zone->zone_mem = mem; 296 zone->max_mem = mem >> 1; 297 zone->emer_mem = (mem >> 1) + (mem >> 2); 298 zone->swap_limit = zone->max_mem - (mem >> 3); 299 zone->used_mem = 0; 300 zone->glob = glob; 301 glob->zone_highmem = zone; 302 ret = kobject_init_and_add( 303 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); 304 if (unlikely(ret != 0)) { 305 kobject_put(&zone->kobj); 306 return ret; 307 } 308 glob->zones[glob->num_zones++] = zone; 309 return 0; 310 } 311 #else 312 static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob, 313 const struct sysinfo *si) 314 { 315 struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL); 316 uint64_t mem; 317 int ret; 318 319 if (unlikely(!zone)) 320 return -ENOMEM; 321 322 mem = si->totalram; 323 mem *= si->mem_unit; 324 325 /** 326 * No special dma32 zone needed. 327 */ 328 329 if (mem <= ((uint64_t) 1ULL << 32)) { 330 kfree(zone); 331 return 0; 332 } 333 334 /* 335 * Limit max dma32 memory to 4GB for now 336 * until we can figure out how big this 337 * zone really is. 338 */ 339 340 mem = ((uint64_t) 1ULL << 32); 341 zone->name = "dma32"; 342 zone->zone_mem = mem; 343 zone->max_mem = mem >> 1; 344 zone->emer_mem = (mem >> 1) + (mem >> 2); 345 zone->swap_limit = zone->max_mem - (mem >> 3); 346 zone->used_mem = 0; 347 zone->glob = glob; 348 glob->zone_dma32 = zone; 349 ret = kobject_init_and_add( 350 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); 351 if (unlikely(ret != 0)) { 352 kobject_put(&zone->kobj); 353 return ret; 354 } 355 glob->zones[glob->num_zones++] = zone; 356 return 0; 357 } 358 #endif 359 360 int ttm_mem_global_init(struct ttm_mem_global *glob) 361 { 362 struct sysinfo si; 363 int ret; 364 int i; 365 struct ttm_mem_zone *zone; 366 367 spin_lock_init(&glob->lock); 368 glob->swap_queue = create_singlethread_workqueue("ttm_swap"); 369 INIT_WORK(&glob->work, ttm_shrink_work); 370 ret = kobject_init_and_add( 371 &glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting"); 372 if (unlikely(ret != 0)) { 373 kobject_put(&glob->kobj); 374 return ret; 375 } 376 377 si_meminfo(&si); 378 379 ret = ttm_mem_init_kernel_zone(glob, &si); 380 if (unlikely(ret != 0)) 381 goto out_no_zone; 382 #ifdef CONFIG_HIGHMEM 383 ret = ttm_mem_init_highmem_zone(glob, &si); 384 if (unlikely(ret != 0)) 385 goto out_no_zone; 386 #else 387 ret = ttm_mem_init_dma32_zone(glob, &si); 388 if (unlikely(ret != 0)) 389 goto out_no_zone; 390 #endif 391 for (i = 0; i < glob->num_zones; ++i) { 392 zone = glob->zones[i]; 393 pr_info("Zone %7s: Available graphics memory: %llu kiB\n", 394 zone->name, (unsigned long long)zone->max_mem >> 10); 395 } 396 ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE)); 397 ttm_dma_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE)); 398 return 0; 399 out_no_zone: 400 ttm_mem_global_release(glob); 401 return ret; 402 } 403 EXPORT_SYMBOL(ttm_mem_global_init); 404 405 void ttm_mem_global_release(struct ttm_mem_global *glob) 406 { 407 unsigned int i; 408 struct ttm_mem_zone *zone; 409 410 /* let the page allocator first stop the shrink work. */ 411 ttm_page_alloc_fini(); 412 ttm_dma_page_alloc_fini(); 413 414 flush_workqueue(glob->swap_queue); 415 destroy_workqueue(glob->swap_queue); 416 glob->swap_queue = NULL; 417 for (i = 0; i < glob->num_zones; ++i) { 418 zone = glob->zones[i]; 419 kobject_del(&zone->kobj); 420 kobject_put(&zone->kobj); 421 } 422 kobject_del(&glob->kobj); 423 kobject_put(&glob->kobj); 424 } 425 EXPORT_SYMBOL(ttm_mem_global_release); 426 427 static void ttm_check_swapping(struct ttm_mem_global *glob) 428 { 429 bool needs_swapping = false; 430 unsigned int i; 431 struct ttm_mem_zone *zone; 432 433 spin_lock(&glob->lock); 434 for (i = 0; i < glob->num_zones; ++i) { 435 zone = glob->zones[i]; 436 if (zone->used_mem > zone->swap_limit) { 437 needs_swapping = true; 438 break; 439 } 440 } 441 442 spin_unlock(&glob->lock); 443 444 if (unlikely(needs_swapping)) 445 (void)queue_work(glob->swap_queue, &glob->work); 446 447 } 448 449 static void ttm_mem_global_free_zone(struct ttm_mem_global *glob, 450 struct ttm_mem_zone *single_zone, 451 uint64_t amount) 452 { 453 unsigned int i; 454 struct ttm_mem_zone *zone; 455 456 spin_lock(&glob->lock); 457 for (i = 0; i < glob->num_zones; ++i) { 458 zone = glob->zones[i]; 459 if (single_zone && zone != single_zone) 460 continue; 461 zone->used_mem -= amount; 462 } 463 spin_unlock(&glob->lock); 464 } 465 466 void ttm_mem_global_free(struct ttm_mem_global *glob, 467 uint64_t amount) 468 { 469 return ttm_mem_global_free_zone(glob, NULL, amount); 470 } 471 EXPORT_SYMBOL(ttm_mem_global_free); 472 473 static int ttm_mem_global_reserve(struct ttm_mem_global *glob, 474 struct ttm_mem_zone *single_zone, 475 uint64_t amount, bool reserve) 476 { 477 uint64_t limit; 478 int ret = -ENOMEM; 479 unsigned int i; 480 struct ttm_mem_zone *zone; 481 482 spin_lock(&glob->lock); 483 for (i = 0; i < glob->num_zones; ++i) { 484 zone = glob->zones[i]; 485 if (single_zone && zone != single_zone) 486 continue; 487 488 limit = (capable(CAP_SYS_ADMIN)) ? 489 zone->emer_mem : zone->max_mem; 490 491 if (zone->used_mem > limit) 492 goto out_unlock; 493 } 494 495 if (reserve) { 496 for (i = 0; i < glob->num_zones; ++i) { 497 zone = glob->zones[i]; 498 if (single_zone && zone != single_zone) 499 continue; 500 zone->used_mem += amount; 501 } 502 } 503 504 ret = 0; 505 out_unlock: 506 spin_unlock(&glob->lock); 507 ttm_check_swapping(glob); 508 509 return ret; 510 } 511 512 513 static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob, 514 struct ttm_mem_zone *single_zone, 515 uint64_t memory, 516 bool no_wait, bool interruptible) 517 { 518 int count = TTM_MEMORY_ALLOC_RETRIES; 519 520 while (unlikely(ttm_mem_global_reserve(glob, 521 single_zone, 522 memory, true) 523 != 0)) { 524 if (no_wait) 525 return -ENOMEM; 526 if (unlikely(count-- == 0)) 527 return -ENOMEM; 528 ttm_shrink(glob, false, memory + (memory >> 2) + 16); 529 } 530 531 return 0; 532 } 533 534 int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory, 535 bool no_wait, bool interruptible) 536 { 537 /** 538 * Normal allocations of kernel memory are registered in 539 * all zones. 540 */ 541 542 return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait, 543 interruptible); 544 } 545 EXPORT_SYMBOL(ttm_mem_global_alloc); 546 547 int ttm_mem_global_alloc_page(struct ttm_mem_global *glob, 548 struct page *page, 549 bool no_wait, bool interruptible) 550 { 551 552 struct ttm_mem_zone *zone = NULL; 553 554 /** 555 * Page allocations may be registed in a single zone 556 * only if highmem or !dma32. 557 */ 558 559 #ifdef CONFIG_HIGHMEM 560 if (PageHighMem(page) && glob->zone_highmem != NULL) 561 zone = glob->zone_highmem; 562 #else 563 if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) 564 zone = glob->zone_kernel; 565 #endif 566 return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait, 567 interruptible); 568 } 569 570 void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page) 571 { 572 struct ttm_mem_zone *zone = NULL; 573 574 #ifdef CONFIG_HIGHMEM 575 if (PageHighMem(page) && glob->zone_highmem != NULL) 576 zone = glob->zone_highmem; 577 #else 578 if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) 579 zone = glob->zone_kernel; 580 #endif 581 ttm_mem_global_free_zone(glob, zone, PAGE_SIZE); 582 } 583 584 585 size_t ttm_round_pot(size_t size) 586 { 587 if ((size & (size - 1)) == 0) 588 return size; 589 else if (size > PAGE_SIZE) 590 return PAGE_ALIGN(size); 591 else { 592 size_t tmp_size = 4; 593 594 while (tmp_size < size) 595 tmp_size <<= 1; 596 597 return tmp_size; 598 } 599 return 0; 600 } 601 EXPORT_SYMBOL(ttm_round_pot); 602