xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/radeon/radeon_fence.c (revision e7ac2a8b5bd66fa2e050809de09a075c36a7014d)
1 /*	$NetBSD: radeon_fence.c,v 1.16 2020/02/14 04:35:20 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2009 Jerome Glisse.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * The above copyright notice and this permission notice (including the
24  * next paragraph) shall be included in all copies or substantial portions
25  * of the Software.
26  *
27  */
28 /*
29  * Authors:
30  *    Jerome Glisse <glisse@freedesktop.org>
31  *    Dave Airlie
32  */
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.16 2020/02/14 04:35:20 riastradh Exp $");
35 
36 #include <linux/seq_file.h>
37 #include <linux/atomic.h>
38 #include <linux/wait.h>
39 #include <linux/kref.h>
40 #include <linux/slab.h>
41 #include <linux/firmware.h>
42 #include <drm/drmP.h>
43 #include "radeon_reg.h"
44 #include "radeon.h"
45 #include "radeon_trace.h"
46 
47 #include <linux/nbsd-namespace.h>
48 
49 /*
50  * Fences
51  * Fences mark an event in the GPUs pipeline and are used
52  * for GPU/CPU synchronization.  When the fence is written,
53  * it is expected that all buffers associated with that fence
54  * are no longer in use by the associated ring on the GPU and
55  * that the the relevant GPU caches have been flushed.  Whether
56  * we use a scratch register or memory location depends on the asic
57  * and whether writeback is enabled.
58  */
59 
60 /**
61  * radeon_fence_write - write a fence value
62  *
63  * @rdev: radeon_device pointer
64  * @seq: sequence number to write
65  * @ring: ring index the fence is associated with
66  *
67  * Writes a fence value to memory or a scratch register (all asics).
68  */
69 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
70 {
71 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
72 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
73 		if (drv->cpu_addr) {
74 			*drv->cpu_addr = cpu_to_le32(seq);
75 		}
76 	} else {
77 		WREG32(drv->scratch_reg, seq);
78 	}
79 }
80 
81 /**
82  * radeon_fence_read - read a fence value
83  *
84  * @rdev: radeon_device pointer
85  * @ring: ring index the fence is associated with
86  *
87  * Reads a fence value from memory or a scratch register (all asics).
88  * Returns the value of the fence read from memory or register.
89  */
90 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
91 {
92 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
93 	u32 seq = 0;
94 
95 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
96 		if (drv->cpu_addr) {
97 			seq = le32_to_cpu(*drv->cpu_addr);
98 		} else {
99 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
100 		}
101 	} else {
102 		seq = RREG32(drv->scratch_reg);
103 	}
104 	return seq;
105 }
106 
107 /**
108  * radeon_fence_schedule_check - schedule lockup check
109  *
110  * @rdev: radeon_device pointer
111  * @ring: ring index we should work with
112  *
113  * Queues a delayed work item to check for lockups.
114  */
115 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
116 {
117 	/*
118 	 * Do not reset the timer here with mod_delayed_work,
119 	 * this can livelock in an interaction with TTM delayed destroy.
120 	 */
121 	queue_delayed_work(system_power_efficient_wq,
122 			   &rdev->fence_drv[ring].lockup_work,
123 			   RADEON_FENCE_JIFFIES_TIMEOUT);
124 }
125 
126 /**
127  * radeon_fence_emit - emit a fence on the requested ring
128  *
129  * @rdev: radeon_device pointer
130  * @fence: radeon fence object
131  * @ring: ring index the fence is associated with
132  *
133  * Emits a fence command on the requested ring (all asics).
134  * Returns 0 on success, -ENOMEM on failure.
135  */
136 int radeon_fence_emit(struct radeon_device *rdev,
137 		      struct radeon_fence **fence,
138 		      int ring)
139 {
140 	u64 seq = ++rdev->fence_drv[ring].sync_seq[ring];
141 
142 	/* we are protected by the ring emission mutex */
143 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
144 	if ((*fence) == NULL) {
145 		return -ENOMEM;
146 	}
147 	(*fence)->rdev = rdev;
148 	(*fence)->seq = seq;
149 	(*fence)->ring = ring;
150 	(*fence)->is_vm_update = false;
151 	fence_init(&(*fence)->base, &radeon_fence_ops,
152 		   &rdev->fence_lock, rdev->fence_context + ring, seq);
153 	radeon_fence_ring_emit(rdev, ring, *fence);
154 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
155 	radeon_fence_schedule_check(rdev, ring);
156 	return 0;
157 }
158 
159 /**
160  * radeon_fence_check_signaled - callback from fence_queue
161  *
162  * this function is called with fence_queue lock held, which is also used
163  * for the fence locking itself, so unlocked variants are used for
164  * fence_signal, and remove_wait_queue.
165  */
166 #ifdef __NetBSD__
167 static int radeon_fence_check_signaled(struct radeon_fence *fence)
168 #else
169 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
170 #endif
171 {
172 #ifndef __NetBSD__
173 	struct radeon_fence *fence;
174 #endif
175 	u64 seq;
176 
177 #ifndef __NetBSD__
178 	fence = container_of(wait, struct radeon_fence, fence_wake);
179 #endif
180 	BUG_ON(!spin_is_locked(&fence->rdev->fence_lock));
181 
182 	/*
183 	 * We cannot use radeon_fence_process here because we're already
184 	 * in the waitqueue, in a call from wake_up_all.
185 	 */
186 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
187 	if (seq >= fence->seq) {
188 		int ret = fence_signal_locked(&fence->base);
189 
190 		if (!ret)
191 			FENCE_TRACE(&fence->base, "signaled from irq context\n");
192 		else
193 			FENCE_TRACE(&fence->base, "was already signaled\n");
194 
195 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
196 #ifdef __NetBSD__
197 		TAILQ_REMOVE(&fence->rdev->fence_check, fence, fence_check);
198 #else
199 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
200 #endif
201 		fence_put(&fence->base);
202 	} else
203 		FENCE_TRACE(&fence->base, "pending\n");
204 	return 0;
205 }
206 
207 #ifdef __NetBSD__
208 void
209 radeon_fence_wakeup_locked(struct radeon_device *rdev)
210 {
211 	struct radeon_fence *fence, *next;
212 
213 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
214 	DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock);
215 	TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) {
216 		radeon_fence_check_signaled(fence);
217 	}
218 }
219 #endif
220 
221 /**
222  * radeon_fence_activity - check for fence activity
223  *
224  * @rdev: radeon_device pointer
225  * @ring: ring index the fence is associated with
226  *
227  * Checks the current fence value and calculates the last
228  * signalled fence value. Returns true if activity occured
229  * on the ring, and the fence_queue should be waken up.
230  */
231 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
232 {
233 	uint64_t seq, last_seq, last_emitted;
234 	unsigned count_loop = 0;
235 	bool wake = false;
236 
237 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
238 
239 	/* Note there is a scenario here for an infinite loop but it's
240 	 * very unlikely to happen. For it to happen, the current polling
241 	 * process need to be interrupted by another process and another
242 	 * process needs to update the last_seq btw the atomic read and
243 	 * xchg of the current process.
244 	 *
245 	 * More over for this to go in infinite loop there need to be
246 	 * continuously new fence signaled ie radeon_fence_read needs
247 	 * to return a different value each time for both the currently
248 	 * polling process and the other process that xchg the last_seq
249 	 * btw atomic read and xchg of the current process. And the
250 	 * value the other process set as last seq must be higher than
251 	 * the seq value we just read. Which means that current process
252 	 * need to be interrupted after radeon_fence_read and before
253 	 * atomic xchg.
254 	 *
255 	 * To be even more safe we count the number of time we loop and
256 	 * we bail after 10 loop just accepting the fact that we might
257 	 * have temporarly set the last_seq not to the true real last
258 	 * seq but to an older one.
259 	 */
260 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
261 	do {
262 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
263 		seq = radeon_fence_read(rdev, ring);
264 		seq |= last_seq & 0xffffffff00000000LL;
265 		if (seq < last_seq) {
266 			seq &= 0xffffffff;
267 			seq |= last_emitted & 0xffffffff00000000LL;
268 		}
269 
270 		if (seq <= last_seq || seq > last_emitted) {
271 			break;
272 		}
273 		/* If we loop over we don't want to return without
274 		 * checking if a fence is signaled as it means that the
275 		 * seq we just read is different from the previous on.
276 		 */
277 		wake = true;
278 		last_seq = seq;
279 		if ((count_loop++) > 10) {
280 			/* We looped over too many time leave with the
281 			 * fact that we might have set an older fence
282 			 * seq then the current real last seq as signaled
283 			 * by the hw.
284 			 */
285 			break;
286 		}
287 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
288 
289 	if (seq < last_emitted)
290 		radeon_fence_schedule_check(rdev, ring);
291 
292 	return wake;
293 }
294 
295 /**
296  * radeon_fence_check_lockup - check for hardware lockup
297  *
298  * @work: delayed work item
299  *
300  * Checks for fence activity and if there is none probe
301  * the hardware if a lockup occured.
302  */
303 static void radeon_fence_check_lockup(struct work_struct *work)
304 {
305 	struct radeon_fence_driver *fence_drv;
306 	struct radeon_device *rdev;
307 	int ring;
308 
309 	fence_drv = container_of(work, struct radeon_fence_driver,
310 				 lockup_work.work);
311 	rdev = fence_drv->rdev;
312 	ring = fence_drv - &rdev->fence_drv[0];
313 
314 #ifdef __NetBSD__
315 	spin_lock(&rdev->fence_lock);
316 #endif
317 
318 	if (!down_read_trylock(&rdev->exclusive_lock)) {
319 		/* just reschedule the check if a reset is going on */
320 		radeon_fence_schedule_check(rdev, ring);
321 		return;
322 	}
323 
324 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
325 		unsigned long irqflags;
326 
327 		fence_drv->delayed_irq = false;
328 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
329 		radeon_irq_set(rdev);
330 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
331 	}
332 
333 	if (radeon_fence_activity(rdev, ring))
334 #ifdef __NetBSD__
335 		radeon_fence_wakeup_locked(rdev);
336 #else
337 		wake_up_all(&rdev->fence_queue);
338 #endif
339 
340 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
341 
342 		/* good news we believe it's a lockup */
343 		dev_warn(rdev->dev, "GPU lockup (current fence id "
344 			 "0x%016"PRIx64" last fence id 0x%016"PRIx64" on ring %d)\n",
345 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
346 			 fence_drv->sync_seq[ring], ring);
347 
348 		/* remember that we need an reset */
349 		rdev->needs_reset = true;
350 #ifdef __NetBSD__
351 		radeon_fence_wakeup_locked(rdev);
352 #else
353 		wake_up_all(&rdev->fence_queue);
354 #endif
355 	}
356 	up_read(&rdev->exclusive_lock);
357 #ifdef __NetBSD__
358 	spin_unlock(&rdev->fence_lock);
359 #endif
360 }
361 
362 /**
363  * radeon_fence_process - process a fence
364  *
365  * @rdev: radeon_device pointer
366  * @ring: ring index the fence is associated with
367  *
368  * Checks the current fence value and wakes the fence queue
369  * if the sequence number has increased (all asics).
370  */
371 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring)
372 {
373 	if (radeon_fence_activity(rdev, ring))
374 #ifdef __NetBSD__
375 		radeon_fence_wakeup_locked(rdev);
376 #else
377 		wake_up_all(&rdev->fence_queue);
378 #endif
379 }
380 
381 void radeon_fence_process(struct radeon_device *rdev, int ring)
382 {
383 
384 	spin_lock(&rdev->fence_lock);
385 	radeon_fence_process_locked(rdev, ring);
386 	spin_unlock(&rdev->fence_lock);
387 }
388 
389 /**
390  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
391  *
392  * @rdev: radeon device pointer
393  * @seq: sequence number
394  * @ring: ring index the fence is associated with
395  *
396  * Check if the last signaled fence sequnce number is >= the requested
397  * sequence number (all asics).
398  * Returns true if the fence has signaled (current fence value
399  * is >= requested value) or false if it has not (current fence
400  * value is < the requested value.  Helper function for
401  * radeon_fence_signaled().
402  */
403 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
404 				      u64 seq, unsigned ring)
405 {
406 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
407 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
408 		return true;
409 	}
410 	/* poll new last sequence at least once */
411 	radeon_fence_process_locked(rdev, ring);
412 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
413 		return true;
414 	}
415 	return false;
416 }
417 
418 static bool radeon_fence_is_signaled(struct fence *f)
419 {
420 	struct radeon_fence *fence = to_radeon_fence(f);
421 	struct radeon_device *rdev = fence->rdev;
422 	unsigned ring = fence->ring;
423 	u64 seq = fence->seq;
424 
425 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
426 
427 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
428 		return true;
429 	}
430 
431 	if (down_read_trylock(&rdev->exclusive_lock)) {
432 		radeon_fence_process_locked(rdev, ring);
433 		up_read(&rdev->exclusive_lock);
434 
435 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
436 			return true;
437 		}
438 	}
439 	return false;
440 }
441 
442 /**
443  * radeon_fence_enable_signaling - enable signalling on fence
444  * @fence: fence
445  *
446  * This function is called with fence_queue lock held, and adds a callback
447  * to fence_queue that checks if this fence is signaled, and if so it
448  * signals the fence and removes itself.
449  */
450 static bool radeon_fence_enable_signaling(struct fence *f)
451 {
452 	struct radeon_fence *fence = to_radeon_fence(f);
453 	struct radeon_device *rdev = fence->rdev;
454 
455 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
456 
457 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
458 		return false;
459 
460 	if (down_read_trylock(&rdev->exclusive_lock)) {
461 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
462 
463 		if (radeon_fence_activity(rdev, fence->ring))
464 #ifdef __NetBSD__
465 			radeon_fence_wakeup_locked(rdev);
466 #else
467 			wake_up_all_locked(&rdev->fence_queue);
468 #endif
469 
470 		/* did fence get signaled after we enabled the sw irq? */
471 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
472 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
473 			up_read(&rdev->exclusive_lock);
474 			return false;
475 		}
476 
477 		up_read(&rdev->exclusive_lock);
478 	} else {
479 		/* we're probably in a lockup, lets not fiddle too much */
480 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
481 			rdev->fence_drv[fence->ring].delayed_irq = true;
482 		radeon_fence_schedule_check(rdev, fence->ring);
483 	}
484 
485 #ifdef __NetBSD__
486 	TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check);
487 #else
488 	fence->fence_wake.flags = 0;
489 	fence->fence_wake.private = NULL;
490 	fence->fence_wake.func = radeon_fence_check_signaled;
491 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
492 #endif
493 	fence_get(f);
494 
495 	FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
496 	return true;
497 }
498 
499 /**
500  * radeon_fence_signaled - check if a fence has signaled
501  *
502  * @fence: radeon fence object
503  *
504  * Check if the requested fence has signaled (all asics).
505  * Returns true if the fence has signaled or false if it has not.
506  */
507 bool radeon_fence_signaled(struct radeon_fence *fence)
508 {
509 	if (!fence)
510 		return true;
511 
512 	spin_lock(&fence->rdev->fence_lock);
513 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
514 		int ret;
515 
516 		ret = fence_signal_locked(&fence->base);
517 		if (!ret)
518 			FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
519 		spin_unlock(&fence->rdev->fence_lock);
520 		return true;
521 	}
522 	spin_unlock(&fence->rdev->fence_lock);
523 	return false;
524 }
525 
526 /**
527  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
528  *
529  * @rdev: radeon device pointer
530  * @seq: sequence numbers
531  *
532  * Check if the last signaled fence sequnce number is >= the requested
533  * sequence number (all asics).
534  * Returns true if any has signaled (current value is >= requested value)
535  * or false if it has not. Helper function for radeon_fence_wait_seq.
536  */
537 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
538 {
539 	unsigned i;
540 
541 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
542 
543 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
544 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
545 			return true;
546 	}
547 	return false;
548 }
549 
550 /**
551  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
552  *
553  * @rdev: radeon device pointer
554  * @target_seq: sequence number(s) we want to wait for
555  * @intr: use interruptable sleep
556  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
557  *
558  * Wait for the requested sequence number(s) to be written by any ring
559  * (all asics).  Sequnce number array is indexed by ring id.
560  * @intr selects whether to use interruptable (true) or non-interruptable
561  * (false) sleep when waiting for the sequence number.  Helper function
562  * for radeon_fence_wait_*().
563  * Returns remaining time if the sequence number has passed, 0 when
564  * the wait timeout, or an error for all other cases.
565  * -EDEADLK is returned when a GPU lockup has been detected.
566  */
567 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev,
568 					  u64 *target_seq, bool intr,
569 					  long timeout)
570 {
571 	long r;
572 	int i;
573 
574 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
575 		return timeout;
576 
577 	/* enable IRQs and tracing */
578 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
579 		if (!target_seq[i])
580 			continue;
581 
582 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
583 		radeon_irq_kms_sw_irq_get(rdev, i);
584 	}
585 
586 #ifdef __NetBSD__
587 	if (intr)
588 		DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
589 		    &rdev->fence_lock, timeout,
590 		    (radeon_fence_any_seq_signaled(rdev, target_seq)
591 			|| rdev->needs_reset));
592 	else
593 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
594 		    &rdev->fence_lock, timeout,
595 		    (radeon_fence_any_seq_signaled(rdev, target_seq)
596 			|| rdev->needs_reset));
597 #else
598 	if (intr) {
599 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
600 			radeon_fence_any_seq_signaled(rdev, target_seq)
601 			 || rdev->needs_reset), timeout);
602 	} else {
603 		r = wait_event_timeout(rdev->fence_queue, (
604 			radeon_fence_any_seq_signaled(rdev, target_seq)
605 			 || rdev->needs_reset), timeout);
606 	}
607 #endif
608 
609 	if (rdev->needs_reset)
610 		r = -EDEADLK;
611 
612 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
613 		if (!target_seq[i])
614 			continue;
615 
616 		radeon_irq_kms_sw_irq_put(rdev, i);
617 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
618 	}
619 
620 	return r;
621 }
622 
623 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
624     u64 *target_seq, bool intr, long timo)
625 {
626 	long r;
627 
628 	spin_lock(&rdev->fence_lock);
629 	r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo);
630 	spin_unlock(&rdev->fence_lock);
631 
632 	return r;
633 }
634 
635 /**
636  * radeon_fence_wait - wait for a fence to signal
637  *
638  * @fence: radeon fence object
639  * @intr: use interruptible sleep
640  *
641  * Wait for the requested fence to signal (all asics).
642  * @intr selects whether to use interruptable (true) or non-interruptable
643  * (false) sleep when waiting for the fence.
644  * Returns 0 if the fence has passed, error for all other cases.
645  */
646 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
647 {
648 	uint64_t seq[RADEON_NUM_RINGS] = {};
649 	long r;
650 
651 	/*
652 	 * This function should not be called on !radeon fences.
653 	 * If this is the case, it would mean this function can
654 	 * also be called on radeon fences belonging to another card.
655 	 * exclusive_lock is not held in that case.
656 	 */
657 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
658 		return fence_wait(&fence->base, intr);
659 
660 	seq[fence->ring] = fence->seq;
661 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
662 	if (r < 0) {
663 		return r;
664 	}
665 
666 	r = fence_signal(&fence->base);
667 	if (!r)
668 		FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
669 	return 0;
670 }
671 
672 /**
673  * radeon_fence_wait_any - wait for a fence to signal on any ring
674  *
675  * @rdev: radeon device pointer
676  * @fences: radeon fence object(s)
677  * @intr: use interruptable sleep
678  *
679  * Wait for any requested fence to signal (all asics).  Fence
680  * array is indexed by ring id.  @intr selects whether to use
681  * interruptable (true) or non-interruptable (false) sleep when
682  * waiting for the fences. Used by the suballocator.
683  * Returns 0 if any fence has passed, error for all other cases.
684  */
685 int radeon_fence_wait_any(struct radeon_device *rdev,
686 			  struct radeon_fence **fences,
687 			  bool intr)
688 {
689 	uint64_t seq[RADEON_NUM_RINGS];
690 	unsigned i, num_rings = 0;
691 	long r;
692 
693 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
694 		seq[i] = 0;
695 
696 		if (!fences[i]) {
697 			continue;
698 		}
699 
700 		seq[i] = fences[i]->seq;
701 		++num_rings;
702 	}
703 
704 	/* nothing to wait for ? */
705 	if (num_rings == 0)
706 		return -ENOENT;
707 
708 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
709 	if (r < 0) {
710 		return r;
711 	}
712 	return 0;
713 }
714 
715 /**
716  * radeon_fence_wait_next - wait for the next fence to signal
717  *
718  * @rdev: radeon device pointer
719  * @ring: ring index the fence is associated with
720  *
721  * Wait for the next fence on the requested ring to signal (all asics).
722  * Returns 0 if the next fence has passed, error for all other cases.
723  * Caller must hold ring lock.
724  */
725 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
726 {
727 	uint64_t seq[RADEON_NUM_RINGS] = {};
728 	long r;
729 
730 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
731 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
732 		/* nothing to wait for, last_seq is
733 		   already the last emited fence */
734 		return -ENOENT;
735 	}
736 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
737 	if (r < 0)
738 		return r;
739 	return 0;
740 }
741 
742 /**
743  * radeon_fence_wait_empty - wait for all fences to signal
744  *
745  * @rdev: radeon device pointer
746  * @ring: ring index the fence is associated with
747  *
748  * Wait for all fences on the requested ring to signal (all asics).
749  * Returns 0 if the fences have passed, error for all other cases.
750  * Caller must hold ring lock.
751  */
752 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
753 {
754 	uint64_t seq[RADEON_NUM_RINGS] = {};
755 	long r;
756 
757 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
758 	if (!seq[ring])
759 		return 0;
760 
761 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
762 	if (r < 0) {
763 		if (r == -EDEADLK)
764 			return -EDEADLK;
765 
766 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
767 			ring, r);
768 	}
769 	return 0;
770 }
771 
772 /**
773  * radeon_fence_ref - take a ref on a fence
774  *
775  * @fence: radeon fence object
776  *
777  * Take a reference on a fence (all asics).
778  * Returns the fence.
779  */
780 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
781 {
782 	fence_get(&fence->base);
783 	return fence;
784 }
785 
786 /**
787  * radeon_fence_unref - remove a ref on a fence
788  *
789  * @fence: radeon fence object
790  *
791  * Remove a reference on a fence (all asics).
792  */
793 void radeon_fence_unref(struct radeon_fence **fence)
794 {
795 	struct radeon_fence *tmp = *fence;
796 
797 	*fence = NULL;
798 	if (tmp) {
799 		fence_put(&tmp->base);
800 	}
801 }
802 
803 /**
804  * radeon_fence_count_emitted - get the count of emitted fences
805  *
806  * @rdev: radeon device pointer
807  * @ring: ring index the fence is associated with
808  *
809  * Get the number of fences emitted on the requested ring (all asics).
810  * Returns the number of emitted fences on the ring.  Used by the
811  * dynpm code to ring track activity.
812  */
813 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
814 {
815 	uint64_t emitted;
816 
817 	/* We are not protected by ring lock when reading the last sequence
818 	 * but it's ok to report slightly wrong fence count here.
819 	 */
820 	radeon_fence_process(rdev, ring);
821 	emitted = rdev->fence_drv[ring].sync_seq[ring]
822 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
823 	/* to avoid 32bits warp around */
824 	if (emitted > 0x10000000) {
825 		emitted = 0x10000000;
826 	}
827 	return (unsigned)emitted;
828 }
829 
830 /**
831  * radeon_fence_need_sync - do we need a semaphore
832  *
833  * @fence: radeon fence object
834  * @dst_ring: which ring to check against
835  *
836  * Check if the fence needs to be synced against another ring
837  * (all asics).  If so, we need to emit a semaphore.
838  * Returns true if we need to sync with another ring, false if
839  * not.
840  */
841 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
842 {
843 	struct radeon_fence_driver *fdrv;
844 
845 	if (!fence) {
846 		return false;
847 	}
848 
849 	if (fence->ring == dst_ring) {
850 		return false;
851 	}
852 
853 	/* we are protected by the ring mutex */
854 	fdrv = &fence->rdev->fence_drv[dst_ring];
855 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
856 		return false;
857 	}
858 
859 	return true;
860 }
861 
862 /**
863  * radeon_fence_note_sync - record the sync point
864  *
865  * @fence: radeon fence object
866  * @dst_ring: which ring to check against
867  *
868  * Note the sequence number at which point the fence will
869  * be synced with the requested ring (all asics).
870  */
871 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
872 {
873 	struct radeon_fence_driver *dst, *src;
874 	unsigned i;
875 
876 	if (!fence) {
877 		return;
878 	}
879 
880 	if (fence->ring == dst_ring) {
881 		return;
882 	}
883 
884 	/* we are protected by the ring mutex */
885 	src = &fence->rdev->fence_drv[fence->ring];
886 	dst = &fence->rdev->fence_drv[dst_ring];
887 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
888 		if (i == dst_ring) {
889 			continue;
890 		}
891 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
892 	}
893 }
894 
895 /**
896  * radeon_fence_driver_start_ring - make the fence driver
897  * ready for use on the requested ring.
898  *
899  * @rdev: radeon device pointer
900  * @ring: ring index to start the fence driver on
901  *
902  * Make the fence driver ready for processing (all asics).
903  * Not all asics have all rings, so each asic will only
904  * start the fence driver on the rings it has.
905  * Returns 0 for success, errors for failure.
906  */
907 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
908 {
909 	uint64_t index;
910 	int r;
911 
912 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
913 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
914 		rdev->fence_drv[ring].scratch_reg = 0;
915 		if (ring != R600_RING_TYPE_UVD_INDEX) {
916 			index = R600_WB_EVENT_OFFSET + ring * 4;
917 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
918 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
919 							 index;
920 
921 		} else {
922 			/* put fence directly behind firmware */
923 			index = ALIGN(rdev->uvd_fw->size, 8);
924 			rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index);
925 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
926 		}
927 
928 	} else {
929 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
930 		if (r) {
931 			dev_err(rdev->dev, "fence failed to get scratch register\n");
932 			return r;
933 		}
934 		index = RADEON_WB_SCRATCH_OFFSET +
935 			rdev->fence_drv[ring].scratch_reg -
936 			rdev->scratch.reg_base;
937 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
938 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
939 	}
940 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
941 	rdev->fence_drv[ring].initialized = true;
942 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n",
943 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
944 	return 0;
945 }
946 
947 /**
948  * radeon_fence_driver_init_ring - init the fence driver
949  * for the requested ring.
950  *
951  * @rdev: radeon device pointer
952  * @ring: ring index to start the fence driver on
953  *
954  * Init the fence driver for the requested ring (all asics).
955  * Helper function for radeon_fence_driver_init().
956  */
957 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
958 {
959 	int i;
960 
961 	rdev->fence_drv[ring].scratch_reg = -1;
962 	rdev->fence_drv[ring].cpu_addr = NULL;
963 	rdev->fence_drv[ring].gpu_addr = 0;
964 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
965 		rdev->fence_drv[ring].sync_seq[i] = 0;
966 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
967 	rdev->fence_drv[ring].initialized = false;
968 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
969 			  radeon_fence_check_lockup);
970 	rdev->fence_drv[ring].rdev = rdev;
971 }
972 
973 /**
974  * radeon_fence_driver_init - init the fence driver
975  * for all possible rings.
976  *
977  * @rdev: radeon device pointer
978  *
979  * Init the fence driver for all possible rings (all asics).
980  * Not all asics have all rings, so each asic will only
981  * start the fence driver on the rings it has using
982  * radeon_fence_driver_start_ring().
983  * Returns 0 for success.
984  */
985 int radeon_fence_driver_init(struct radeon_device *rdev)
986 {
987 	int ring;
988 
989 #ifdef __NetBSD__
990 	spin_lock_init(&rdev->fence_lock);
991 	DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence");
992 	TAILQ_INIT(&rdev->fence_check);
993 #else
994 	init_waitqueue_head(&rdev->fence_queue);
995 #endif
996 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
997 		radeon_fence_driver_init_ring(rdev, ring);
998 	}
999 	if (radeon_debugfs_fence_init(rdev)) {
1000 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
1001 	}
1002 	return 0;
1003 }
1004 
1005 /**
1006  * radeon_fence_driver_fini - tear down the fence driver
1007  * for all possible rings.
1008  *
1009  * @rdev: radeon device pointer
1010  *
1011  * Tear down the fence driver for all possible rings (all asics).
1012  */
1013 void radeon_fence_driver_fini(struct radeon_device *rdev)
1014 {
1015 	int ring, r;
1016 
1017 	mutex_lock(&rdev->ring_lock);
1018 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
1019 		if (!rdev->fence_drv[ring].initialized)
1020 			continue;
1021 		r = radeon_fence_wait_empty(rdev, ring);
1022 		if (r) {
1023 			/* no need to trigger GPU reset as we are unloading */
1024 			radeon_fence_driver_force_completion(rdev, ring);
1025 		}
1026 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1027 #ifdef __NetBSD__
1028 		spin_lock(&rdev->fence_lock);
1029 		radeon_fence_wakeup_locked(rdev);
1030 		spin_unlock(&rdev->fence_lock);
1031 #else
1032 		wake_up_all(&rdev->fence_queue);
1033 #endif
1034 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
1035 		rdev->fence_drv[ring].initialized = false;
1036 	}
1037 	mutex_unlock(&rdev->ring_lock);
1038 
1039 #ifdef __NetBSD__
1040 	BUG_ON(!TAILQ_EMPTY(&rdev->fence_check));
1041 	DRM_DESTROY_WAITQUEUE(&rdev->fence_queue);
1042 	spin_lock_destroy(&rdev->fence_lock);
1043 #endif
1044 }
1045 
1046 /**
1047  * radeon_fence_driver_force_completion - force all fence waiter to complete
1048  *
1049  * @rdev: radeon device pointer
1050  * @ring: the ring to complete
1051  *
1052  * In case of GPU reset failure make sure no process keep waiting on fence
1053  * that will never complete.
1054  */
1055 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
1056 {
1057 	if (rdev->fence_drv[ring].initialized) {
1058 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
1059 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
1060 	}
1061 }
1062 
1063 
1064 /*
1065  * Fence debugfs
1066  */
1067 #if defined(CONFIG_DEBUG_FS)
1068 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
1069 {
1070 	struct drm_info_node *node = (struct drm_info_node *)m->private;
1071 	struct drm_device *dev = node->minor->dev;
1072 	struct radeon_device *rdev = dev->dev_private;
1073 	int i, j;
1074 
1075 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1076 		if (!rdev->fence_drv[i].initialized)
1077 			continue;
1078 
1079 		radeon_fence_process(rdev, i);
1080 
1081 		seq_printf(m, "--- ring %d ---\n", i);
1082 		seq_printf(m, "Last signaled fence 0x%016llx\n",
1083 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
1084 		seq_printf(m, "Last emitted        0x%016"PRIx64"\n",
1085 			   rdev->fence_drv[i].sync_seq[i]);
1086 
1087 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
1088 			if (i != j && rdev->fence_drv[j].initialized)
1089 				seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n",
1090 					   j, rdev->fence_drv[i].sync_seq[j]);
1091 		}
1092 	}
1093 	return 0;
1094 }
1095 
1096 /**
1097  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1098  *
1099  * Manually trigger a gpu reset at the next fence wait.
1100  */
1101 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1102 {
1103 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1104 	struct drm_device *dev = node->minor->dev;
1105 	struct radeon_device *rdev = dev->dev_private;
1106 
1107 	down_read(&rdev->exclusive_lock);
1108 	seq_printf(m, "%d\n", rdev->needs_reset);
1109 	rdev->needs_reset = true;
1110 	wake_up_all(&rdev->fence_queue);
1111 	up_read(&rdev->exclusive_lock);
1112 
1113 	return 0;
1114 }
1115 
1116 static struct drm_info_list radeon_debugfs_fence_list[] = {
1117 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1118 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1119 };
1120 #endif
1121 
1122 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1123 {
1124 #if defined(CONFIG_DEBUG_FS)
1125 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1126 #else
1127 	return 0;
1128 #endif
1129 }
1130 
1131 static const char *radeon_fence_get_driver_name(struct fence *fence)
1132 {
1133 	return "radeon";
1134 }
1135 
1136 static const char *radeon_fence_get_timeline_name(struct fence *f)
1137 {
1138 	struct radeon_fence *fence = to_radeon_fence(f);
1139 	switch (fence->ring) {
1140 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1141 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1142 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1143 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1144 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1145 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1146 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1147 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1148 	default: WARN_ON_ONCE(1); return "radeon.unk";
1149 	}
1150 }
1151 
1152 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1153 {
1154 	return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1155 }
1156 
1157 #ifdef __NetBSD__
1158 
1159 static void
1160 radeon_fence_wakeup_cb(struct fence *fence, struct fence_cb *cb)
1161 {
1162 	struct radeon_fence *rfence = to_radeon_fence(fence);
1163 	struct radeon_device *rdev = rfence->rdev;
1164 
1165 	BUG_ON(!spin_is_locked(&rdev->fence_lock));
1166 	cv_broadcast(&rdev->fence_queue);
1167 }
1168 
1169 static signed long
1170 radeon_fence_default_wait(struct fence *f, bool intr, signed long timo)
1171 {
1172 	struct fence_cb fcb;
1173 	struct radeon_fence *fence = to_radeon_fence(f);
1174 	struct radeon_device *rdev = fence->rdev;
1175 	int r;
1176 
1177 	r = fence_add_callback(f, &fcb, radeon_fence_wakeup_cb);
1178 	if (r)			/* fence is done already */
1179 		return timo;
1180 
1181 	spin_lock(&rdev->fence_lock);
1182 	if (intr) {
1183 		DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue,
1184 		    &rdev->fence_lock, timo,
1185 		    radeon_test_signaled(fence));
1186 	} else {
1187 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue,
1188 		    &rdev->fence_lock, timo,
1189 		    radeon_test_signaled(fence));
1190 	}
1191 	spin_unlock(&rdev->fence_lock);
1192 
1193 	(void)fence_remove_callback(f, &fcb);
1194 
1195 	return r;
1196 }
1197 
1198 #else
1199 
1200 struct radeon_wait_cb {
1201 	struct fence_cb base;
1202 	struct task_struct *task;
1203 };
1204 
1205 static void
1206 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1207 {
1208 	struct radeon_wait_cb *wait =
1209 		container_of(cb, struct radeon_wait_cb, base);
1210 
1211 	wake_up_process(wait->task);
1212 }
1213 
1214 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1215 					     signed long t)
1216 {
1217 	struct radeon_fence *fence = to_radeon_fence(f);
1218 	struct radeon_device *rdev = fence->rdev;
1219 	struct radeon_wait_cb cb;
1220 
1221 	cb.task = current;
1222 
1223 	if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1224 		return t;
1225 
1226 	while (t > 0) {
1227 		if (intr)
1228 			set_current_state(TASK_INTERRUPTIBLE);
1229 		else
1230 			set_current_state(TASK_UNINTERRUPTIBLE);
1231 
1232 		/*
1233 		 * radeon_test_signaled must be called after
1234 		 * set_current_state to prevent a race with wake_up_process
1235 		 */
1236 		if (radeon_test_signaled(fence))
1237 			break;
1238 
1239 		if (rdev->needs_reset) {
1240 			t = -EDEADLK;
1241 			break;
1242 		}
1243 
1244 		t = schedule_timeout(t);
1245 
1246 		if (t > 0 && intr && signal_pending(current))
1247 			t = -ERESTARTSYS;
1248 	}
1249 
1250 	__set_current_state(TASK_RUNNING);
1251 	fence_remove_callback(f, &cb.base);
1252 
1253 	return t;
1254 }
1255 
1256 #endif
1257 
1258 const struct fence_ops radeon_fence_ops = {
1259 	.get_driver_name = radeon_fence_get_driver_name,
1260 	.get_timeline_name = radeon_fence_get_timeline_name,
1261 	.enable_signaling = radeon_fence_enable_signaling,
1262 	.signaled = radeon_fence_is_signaled,
1263 	.wait = radeon_fence_default_wait,
1264 	.release = NULL,
1265 };
1266