1 /* $NetBSD: radeon_fence.c,v 1.16 2020/02/14 04:35:20 riastradh Exp $ */ 2 3 /* 4 * Copyright 2009 Jerome Glisse. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 21 * USE OR OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * The above copyright notice and this permission notice (including the 24 * next paragraph) shall be included in all copies or substantial portions 25 * of the Software. 26 * 27 */ 28 /* 29 * Authors: 30 * Jerome Glisse <glisse@freedesktop.org> 31 * Dave Airlie 32 */ 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: radeon_fence.c,v 1.16 2020/02/14 04:35:20 riastradh Exp $"); 35 36 #include <linux/seq_file.h> 37 #include <linux/atomic.h> 38 #include <linux/wait.h> 39 #include <linux/kref.h> 40 #include <linux/slab.h> 41 #include <linux/firmware.h> 42 #include <drm/drmP.h> 43 #include "radeon_reg.h" 44 #include "radeon.h" 45 #include "radeon_trace.h" 46 47 #include <linux/nbsd-namespace.h> 48 49 /* 50 * Fences 51 * Fences mark an event in the GPUs pipeline and are used 52 * for GPU/CPU synchronization. When the fence is written, 53 * it is expected that all buffers associated with that fence 54 * are no longer in use by the associated ring on the GPU and 55 * that the the relevant GPU caches have been flushed. Whether 56 * we use a scratch register or memory location depends on the asic 57 * and whether writeback is enabled. 58 */ 59 60 /** 61 * radeon_fence_write - write a fence value 62 * 63 * @rdev: radeon_device pointer 64 * @seq: sequence number to write 65 * @ring: ring index the fence is associated with 66 * 67 * Writes a fence value to memory or a scratch register (all asics). 68 */ 69 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 70 { 71 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 72 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 73 if (drv->cpu_addr) { 74 *drv->cpu_addr = cpu_to_le32(seq); 75 } 76 } else { 77 WREG32(drv->scratch_reg, seq); 78 } 79 } 80 81 /** 82 * radeon_fence_read - read a fence value 83 * 84 * @rdev: radeon_device pointer 85 * @ring: ring index the fence is associated with 86 * 87 * Reads a fence value from memory or a scratch register (all asics). 88 * Returns the value of the fence read from memory or register. 89 */ 90 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 91 { 92 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 93 u32 seq = 0; 94 95 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 96 if (drv->cpu_addr) { 97 seq = le32_to_cpu(*drv->cpu_addr); 98 } else { 99 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 100 } 101 } else { 102 seq = RREG32(drv->scratch_reg); 103 } 104 return seq; 105 } 106 107 /** 108 * radeon_fence_schedule_check - schedule lockup check 109 * 110 * @rdev: radeon_device pointer 111 * @ring: ring index we should work with 112 * 113 * Queues a delayed work item to check for lockups. 114 */ 115 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 116 { 117 /* 118 * Do not reset the timer here with mod_delayed_work, 119 * this can livelock in an interaction with TTM delayed destroy. 120 */ 121 queue_delayed_work(system_power_efficient_wq, 122 &rdev->fence_drv[ring].lockup_work, 123 RADEON_FENCE_JIFFIES_TIMEOUT); 124 } 125 126 /** 127 * radeon_fence_emit - emit a fence on the requested ring 128 * 129 * @rdev: radeon_device pointer 130 * @fence: radeon fence object 131 * @ring: ring index the fence is associated with 132 * 133 * Emits a fence command on the requested ring (all asics). 134 * Returns 0 on success, -ENOMEM on failure. 135 */ 136 int radeon_fence_emit(struct radeon_device *rdev, 137 struct radeon_fence **fence, 138 int ring) 139 { 140 u64 seq = ++rdev->fence_drv[ring].sync_seq[ring]; 141 142 /* we are protected by the ring emission mutex */ 143 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 144 if ((*fence) == NULL) { 145 return -ENOMEM; 146 } 147 (*fence)->rdev = rdev; 148 (*fence)->seq = seq; 149 (*fence)->ring = ring; 150 (*fence)->is_vm_update = false; 151 fence_init(&(*fence)->base, &radeon_fence_ops, 152 &rdev->fence_lock, rdev->fence_context + ring, seq); 153 radeon_fence_ring_emit(rdev, ring, *fence); 154 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); 155 radeon_fence_schedule_check(rdev, ring); 156 return 0; 157 } 158 159 /** 160 * radeon_fence_check_signaled - callback from fence_queue 161 * 162 * this function is called with fence_queue lock held, which is also used 163 * for the fence locking itself, so unlocked variants are used for 164 * fence_signal, and remove_wait_queue. 165 */ 166 #ifdef __NetBSD__ 167 static int radeon_fence_check_signaled(struct radeon_fence *fence) 168 #else 169 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key) 170 #endif 171 { 172 #ifndef __NetBSD__ 173 struct radeon_fence *fence; 174 #endif 175 u64 seq; 176 177 #ifndef __NetBSD__ 178 fence = container_of(wait, struct radeon_fence, fence_wake); 179 #endif 180 BUG_ON(!spin_is_locked(&fence->rdev->fence_lock)); 181 182 /* 183 * We cannot use radeon_fence_process here because we're already 184 * in the waitqueue, in a call from wake_up_all. 185 */ 186 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 187 if (seq >= fence->seq) { 188 int ret = fence_signal_locked(&fence->base); 189 190 if (!ret) 191 FENCE_TRACE(&fence->base, "signaled from irq context\n"); 192 else 193 FENCE_TRACE(&fence->base, "was already signaled\n"); 194 195 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 196 #ifdef __NetBSD__ 197 TAILQ_REMOVE(&fence->rdev->fence_check, fence, fence_check); 198 #else 199 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 200 #endif 201 fence_put(&fence->base); 202 } else 203 FENCE_TRACE(&fence->base, "pending\n"); 204 return 0; 205 } 206 207 #ifdef __NetBSD__ 208 void 209 radeon_fence_wakeup_locked(struct radeon_device *rdev) 210 { 211 struct radeon_fence *fence, *next; 212 213 BUG_ON(!spin_is_locked(&rdev->fence_lock)); 214 DRM_SPIN_WAKEUP_ALL(&rdev->fence_queue, &rdev->fence_lock); 215 TAILQ_FOREACH_SAFE(fence, &rdev->fence_check, fence_check, next) { 216 radeon_fence_check_signaled(fence); 217 } 218 } 219 #endif 220 221 /** 222 * radeon_fence_activity - check for fence activity 223 * 224 * @rdev: radeon_device pointer 225 * @ring: ring index the fence is associated with 226 * 227 * Checks the current fence value and calculates the last 228 * signalled fence value. Returns true if activity occured 229 * on the ring, and the fence_queue should be waken up. 230 */ 231 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 232 { 233 uint64_t seq, last_seq, last_emitted; 234 unsigned count_loop = 0; 235 bool wake = false; 236 237 BUG_ON(!spin_is_locked(&rdev->fence_lock)); 238 239 /* Note there is a scenario here for an infinite loop but it's 240 * very unlikely to happen. For it to happen, the current polling 241 * process need to be interrupted by another process and another 242 * process needs to update the last_seq btw the atomic read and 243 * xchg of the current process. 244 * 245 * More over for this to go in infinite loop there need to be 246 * continuously new fence signaled ie radeon_fence_read needs 247 * to return a different value each time for both the currently 248 * polling process and the other process that xchg the last_seq 249 * btw atomic read and xchg of the current process. And the 250 * value the other process set as last seq must be higher than 251 * the seq value we just read. Which means that current process 252 * need to be interrupted after radeon_fence_read and before 253 * atomic xchg. 254 * 255 * To be even more safe we count the number of time we loop and 256 * we bail after 10 loop just accepting the fact that we might 257 * have temporarly set the last_seq not to the true real last 258 * seq but to an older one. 259 */ 260 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 261 do { 262 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 263 seq = radeon_fence_read(rdev, ring); 264 seq |= last_seq & 0xffffffff00000000LL; 265 if (seq < last_seq) { 266 seq &= 0xffffffff; 267 seq |= last_emitted & 0xffffffff00000000LL; 268 } 269 270 if (seq <= last_seq || seq > last_emitted) { 271 break; 272 } 273 /* If we loop over we don't want to return without 274 * checking if a fence is signaled as it means that the 275 * seq we just read is different from the previous on. 276 */ 277 wake = true; 278 last_seq = seq; 279 if ((count_loop++) > 10) { 280 /* We looped over too many time leave with the 281 * fact that we might have set an older fence 282 * seq then the current real last seq as signaled 283 * by the hw. 284 */ 285 break; 286 } 287 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 288 289 if (seq < last_emitted) 290 radeon_fence_schedule_check(rdev, ring); 291 292 return wake; 293 } 294 295 /** 296 * radeon_fence_check_lockup - check for hardware lockup 297 * 298 * @work: delayed work item 299 * 300 * Checks for fence activity and if there is none probe 301 * the hardware if a lockup occured. 302 */ 303 static void radeon_fence_check_lockup(struct work_struct *work) 304 { 305 struct radeon_fence_driver *fence_drv; 306 struct radeon_device *rdev; 307 int ring; 308 309 fence_drv = container_of(work, struct radeon_fence_driver, 310 lockup_work.work); 311 rdev = fence_drv->rdev; 312 ring = fence_drv - &rdev->fence_drv[0]; 313 314 #ifdef __NetBSD__ 315 spin_lock(&rdev->fence_lock); 316 #endif 317 318 if (!down_read_trylock(&rdev->exclusive_lock)) { 319 /* just reschedule the check if a reset is going on */ 320 radeon_fence_schedule_check(rdev, ring); 321 return; 322 } 323 324 if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) { 325 unsigned long irqflags; 326 327 fence_drv->delayed_irq = false; 328 spin_lock_irqsave(&rdev->irq.lock, irqflags); 329 radeon_irq_set(rdev); 330 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 331 } 332 333 if (radeon_fence_activity(rdev, ring)) 334 #ifdef __NetBSD__ 335 radeon_fence_wakeup_locked(rdev); 336 #else 337 wake_up_all(&rdev->fence_queue); 338 #endif 339 340 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 341 342 /* good news we believe it's a lockup */ 343 dev_warn(rdev->dev, "GPU lockup (current fence id " 344 "0x%016"PRIx64" last fence id 0x%016"PRIx64" on ring %d)\n", 345 (uint64_t)atomic64_read(&fence_drv->last_seq), 346 fence_drv->sync_seq[ring], ring); 347 348 /* remember that we need an reset */ 349 rdev->needs_reset = true; 350 #ifdef __NetBSD__ 351 radeon_fence_wakeup_locked(rdev); 352 #else 353 wake_up_all(&rdev->fence_queue); 354 #endif 355 } 356 up_read(&rdev->exclusive_lock); 357 #ifdef __NetBSD__ 358 spin_unlock(&rdev->fence_lock); 359 #endif 360 } 361 362 /** 363 * radeon_fence_process - process a fence 364 * 365 * @rdev: radeon_device pointer 366 * @ring: ring index the fence is associated with 367 * 368 * Checks the current fence value and wakes the fence queue 369 * if the sequence number has increased (all asics). 370 */ 371 static void radeon_fence_process_locked(struct radeon_device *rdev, int ring) 372 { 373 if (radeon_fence_activity(rdev, ring)) 374 #ifdef __NetBSD__ 375 radeon_fence_wakeup_locked(rdev); 376 #else 377 wake_up_all(&rdev->fence_queue); 378 #endif 379 } 380 381 void radeon_fence_process(struct radeon_device *rdev, int ring) 382 { 383 384 spin_lock(&rdev->fence_lock); 385 radeon_fence_process_locked(rdev, ring); 386 spin_unlock(&rdev->fence_lock); 387 } 388 389 /** 390 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 391 * 392 * @rdev: radeon device pointer 393 * @seq: sequence number 394 * @ring: ring index the fence is associated with 395 * 396 * Check if the last signaled fence sequnce number is >= the requested 397 * sequence number (all asics). 398 * Returns true if the fence has signaled (current fence value 399 * is >= requested value) or false if it has not (current fence 400 * value is < the requested value. Helper function for 401 * radeon_fence_signaled(). 402 */ 403 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 404 u64 seq, unsigned ring) 405 { 406 BUG_ON(!spin_is_locked(&rdev->fence_lock)); 407 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 408 return true; 409 } 410 /* poll new last sequence at least once */ 411 radeon_fence_process_locked(rdev, ring); 412 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 413 return true; 414 } 415 return false; 416 } 417 418 static bool radeon_fence_is_signaled(struct fence *f) 419 { 420 struct radeon_fence *fence = to_radeon_fence(f); 421 struct radeon_device *rdev = fence->rdev; 422 unsigned ring = fence->ring; 423 u64 seq = fence->seq; 424 425 BUG_ON(!spin_is_locked(&rdev->fence_lock)); 426 427 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 428 return true; 429 } 430 431 if (down_read_trylock(&rdev->exclusive_lock)) { 432 radeon_fence_process_locked(rdev, ring); 433 up_read(&rdev->exclusive_lock); 434 435 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { 436 return true; 437 } 438 } 439 return false; 440 } 441 442 /** 443 * radeon_fence_enable_signaling - enable signalling on fence 444 * @fence: fence 445 * 446 * This function is called with fence_queue lock held, and adds a callback 447 * to fence_queue that checks if this fence is signaled, and if so it 448 * signals the fence and removes itself. 449 */ 450 static bool radeon_fence_enable_signaling(struct fence *f) 451 { 452 struct radeon_fence *fence = to_radeon_fence(f); 453 struct radeon_device *rdev = fence->rdev; 454 455 BUG_ON(!spin_is_locked(&rdev->fence_lock)); 456 457 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 458 return false; 459 460 if (down_read_trylock(&rdev->exclusive_lock)) { 461 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 462 463 if (radeon_fence_activity(rdev, fence->ring)) 464 #ifdef __NetBSD__ 465 radeon_fence_wakeup_locked(rdev); 466 #else 467 wake_up_all_locked(&rdev->fence_queue); 468 #endif 469 470 /* did fence get signaled after we enabled the sw irq? */ 471 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 472 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 473 up_read(&rdev->exclusive_lock); 474 return false; 475 } 476 477 up_read(&rdev->exclusive_lock); 478 } else { 479 /* we're probably in a lockup, lets not fiddle too much */ 480 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 481 rdev->fence_drv[fence->ring].delayed_irq = true; 482 radeon_fence_schedule_check(rdev, fence->ring); 483 } 484 485 #ifdef __NetBSD__ 486 TAILQ_INSERT_TAIL(&rdev->fence_check, fence, fence_check); 487 #else 488 fence->fence_wake.flags = 0; 489 fence->fence_wake.private = NULL; 490 fence->fence_wake.func = radeon_fence_check_signaled; 491 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 492 #endif 493 fence_get(f); 494 495 FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring); 496 return true; 497 } 498 499 /** 500 * radeon_fence_signaled - check if a fence has signaled 501 * 502 * @fence: radeon fence object 503 * 504 * Check if the requested fence has signaled (all asics). 505 * Returns true if the fence has signaled or false if it has not. 506 */ 507 bool radeon_fence_signaled(struct radeon_fence *fence) 508 { 509 if (!fence) 510 return true; 511 512 spin_lock(&fence->rdev->fence_lock); 513 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 514 int ret; 515 516 ret = fence_signal_locked(&fence->base); 517 if (!ret) 518 FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n"); 519 spin_unlock(&fence->rdev->fence_lock); 520 return true; 521 } 522 spin_unlock(&fence->rdev->fence_lock); 523 return false; 524 } 525 526 /** 527 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 528 * 529 * @rdev: radeon device pointer 530 * @seq: sequence numbers 531 * 532 * Check if the last signaled fence sequnce number is >= the requested 533 * sequence number (all asics). 534 * Returns true if any has signaled (current value is >= requested value) 535 * or false if it has not. Helper function for radeon_fence_wait_seq. 536 */ 537 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 538 { 539 unsigned i; 540 541 BUG_ON(!spin_is_locked(&rdev->fence_lock)); 542 543 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 544 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 545 return true; 546 } 547 return false; 548 } 549 550 /** 551 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 552 * 553 * @rdev: radeon device pointer 554 * @target_seq: sequence number(s) we want to wait for 555 * @intr: use interruptable sleep 556 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 557 * 558 * Wait for the requested sequence number(s) to be written by any ring 559 * (all asics). Sequnce number array is indexed by ring id. 560 * @intr selects whether to use interruptable (true) or non-interruptable 561 * (false) sleep when waiting for the sequence number. Helper function 562 * for radeon_fence_wait_*(). 563 * Returns remaining time if the sequence number has passed, 0 when 564 * the wait timeout, or an error for all other cases. 565 * -EDEADLK is returned when a GPU lockup has been detected. 566 */ 567 static long radeon_fence_wait_seq_timeout_locked(struct radeon_device *rdev, 568 u64 *target_seq, bool intr, 569 long timeout) 570 { 571 long r; 572 int i; 573 574 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 575 return timeout; 576 577 /* enable IRQs and tracing */ 578 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 579 if (!target_seq[i]) 580 continue; 581 582 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]); 583 radeon_irq_kms_sw_irq_get(rdev, i); 584 } 585 586 #ifdef __NetBSD__ 587 if (intr) 588 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue, 589 &rdev->fence_lock, timeout, 590 (radeon_fence_any_seq_signaled(rdev, target_seq) 591 || rdev->needs_reset)); 592 else 593 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue, 594 &rdev->fence_lock, timeout, 595 (radeon_fence_any_seq_signaled(rdev, target_seq) 596 || rdev->needs_reset)); 597 #else 598 if (intr) { 599 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 600 radeon_fence_any_seq_signaled(rdev, target_seq) 601 || rdev->needs_reset), timeout); 602 } else { 603 r = wait_event_timeout(rdev->fence_queue, ( 604 radeon_fence_any_seq_signaled(rdev, target_seq) 605 || rdev->needs_reset), timeout); 606 } 607 #endif 608 609 if (rdev->needs_reset) 610 r = -EDEADLK; 611 612 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 613 if (!target_seq[i]) 614 continue; 615 616 radeon_irq_kms_sw_irq_put(rdev, i); 617 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]); 618 } 619 620 return r; 621 } 622 623 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 624 u64 *target_seq, bool intr, long timo) 625 { 626 long r; 627 628 spin_lock(&rdev->fence_lock); 629 r = radeon_fence_wait_seq_timeout_locked(rdev, target_seq, intr, timo); 630 spin_unlock(&rdev->fence_lock); 631 632 return r; 633 } 634 635 /** 636 * radeon_fence_wait - wait for a fence to signal 637 * 638 * @fence: radeon fence object 639 * @intr: use interruptible sleep 640 * 641 * Wait for the requested fence to signal (all asics). 642 * @intr selects whether to use interruptable (true) or non-interruptable 643 * (false) sleep when waiting for the fence. 644 * Returns 0 if the fence has passed, error for all other cases. 645 */ 646 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 647 { 648 uint64_t seq[RADEON_NUM_RINGS] = {}; 649 long r; 650 651 /* 652 * This function should not be called on !radeon fences. 653 * If this is the case, it would mean this function can 654 * also be called on radeon fences belonging to another card. 655 * exclusive_lock is not held in that case. 656 */ 657 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 658 return fence_wait(&fence->base, intr); 659 660 seq[fence->ring] = fence->seq; 661 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 662 if (r < 0) { 663 return r; 664 } 665 666 r = fence_signal(&fence->base); 667 if (!r) 668 FENCE_TRACE(&fence->base, "signaled from fence_wait\n"); 669 return 0; 670 } 671 672 /** 673 * radeon_fence_wait_any - wait for a fence to signal on any ring 674 * 675 * @rdev: radeon device pointer 676 * @fences: radeon fence object(s) 677 * @intr: use interruptable sleep 678 * 679 * Wait for any requested fence to signal (all asics). Fence 680 * array is indexed by ring id. @intr selects whether to use 681 * interruptable (true) or non-interruptable (false) sleep when 682 * waiting for the fences. Used by the suballocator. 683 * Returns 0 if any fence has passed, error for all other cases. 684 */ 685 int radeon_fence_wait_any(struct radeon_device *rdev, 686 struct radeon_fence **fences, 687 bool intr) 688 { 689 uint64_t seq[RADEON_NUM_RINGS]; 690 unsigned i, num_rings = 0; 691 long r; 692 693 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 694 seq[i] = 0; 695 696 if (!fences[i]) { 697 continue; 698 } 699 700 seq[i] = fences[i]->seq; 701 ++num_rings; 702 } 703 704 /* nothing to wait for ? */ 705 if (num_rings == 0) 706 return -ENOENT; 707 708 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 709 if (r < 0) { 710 return r; 711 } 712 return 0; 713 } 714 715 /** 716 * radeon_fence_wait_next - wait for the next fence to signal 717 * 718 * @rdev: radeon device pointer 719 * @ring: ring index the fence is associated with 720 * 721 * Wait for the next fence on the requested ring to signal (all asics). 722 * Returns 0 if the next fence has passed, error for all other cases. 723 * Caller must hold ring lock. 724 */ 725 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 726 { 727 uint64_t seq[RADEON_NUM_RINGS] = {}; 728 long r; 729 730 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 731 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 732 /* nothing to wait for, last_seq is 733 already the last emited fence */ 734 return -ENOENT; 735 } 736 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 737 if (r < 0) 738 return r; 739 return 0; 740 } 741 742 /** 743 * radeon_fence_wait_empty - wait for all fences to signal 744 * 745 * @rdev: radeon device pointer 746 * @ring: ring index the fence is associated with 747 * 748 * Wait for all fences on the requested ring to signal (all asics). 749 * Returns 0 if the fences have passed, error for all other cases. 750 * Caller must hold ring lock. 751 */ 752 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 753 { 754 uint64_t seq[RADEON_NUM_RINGS] = {}; 755 long r; 756 757 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 758 if (!seq[ring]) 759 return 0; 760 761 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 762 if (r < 0) { 763 if (r == -EDEADLK) 764 return -EDEADLK; 765 766 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 767 ring, r); 768 } 769 return 0; 770 } 771 772 /** 773 * radeon_fence_ref - take a ref on a fence 774 * 775 * @fence: radeon fence object 776 * 777 * Take a reference on a fence (all asics). 778 * Returns the fence. 779 */ 780 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 781 { 782 fence_get(&fence->base); 783 return fence; 784 } 785 786 /** 787 * radeon_fence_unref - remove a ref on a fence 788 * 789 * @fence: radeon fence object 790 * 791 * Remove a reference on a fence (all asics). 792 */ 793 void radeon_fence_unref(struct radeon_fence **fence) 794 { 795 struct radeon_fence *tmp = *fence; 796 797 *fence = NULL; 798 if (tmp) { 799 fence_put(&tmp->base); 800 } 801 } 802 803 /** 804 * radeon_fence_count_emitted - get the count of emitted fences 805 * 806 * @rdev: radeon device pointer 807 * @ring: ring index the fence is associated with 808 * 809 * Get the number of fences emitted on the requested ring (all asics). 810 * Returns the number of emitted fences on the ring. Used by the 811 * dynpm code to ring track activity. 812 */ 813 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 814 { 815 uint64_t emitted; 816 817 /* We are not protected by ring lock when reading the last sequence 818 * but it's ok to report slightly wrong fence count here. 819 */ 820 radeon_fence_process(rdev, ring); 821 emitted = rdev->fence_drv[ring].sync_seq[ring] 822 - atomic64_read(&rdev->fence_drv[ring].last_seq); 823 /* to avoid 32bits warp around */ 824 if (emitted > 0x10000000) { 825 emitted = 0x10000000; 826 } 827 return (unsigned)emitted; 828 } 829 830 /** 831 * radeon_fence_need_sync - do we need a semaphore 832 * 833 * @fence: radeon fence object 834 * @dst_ring: which ring to check against 835 * 836 * Check if the fence needs to be synced against another ring 837 * (all asics). If so, we need to emit a semaphore. 838 * Returns true if we need to sync with another ring, false if 839 * not. 840 */ 841 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 842 { 843 struct radeon_fence_driver *fdrv; 844 845 if (!fence) { 846 return false; 847 } 848 849 if (fence->ring == dst_ring) { 850 return false; 851 } 852 853 /* we are protected by the ring mutex */ 854 fdrv = &fence->rdev->fence_drv[dst_ring]; 855 if (fence->seq <= fdrv->sync_seq[fence->ring]) { 856 return false; 857 } 858 859 return true; 860 } 861 862 /** 863 * radeon_fence_note_sync - record the sync point 864 * 865 * @fence: radeon fence object 866 * @dst_ring: which ring to check against 867 * 868 * Note the sequence number at which point the fence will 869 * be synced with the requested ring (all asics). 870 */ 871 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 872 { 873 struct radeon_fence_driver *dst, *src; 874 unsigned i; 875 876 if (!fence) { 877 return; 878 } 879 880 if (fence->ring == dst_ring) { 881 return; 882 } 883 884 /* we are protected by the ring mutex */ 885 src = &fence->rdev->fence_drv[fence->ring]; 886 dst = &fence->rdev->fence_drv[dst_ring]; 887 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 888 if (i == dst_ring) { 889 continue; 890 } 891 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 892 } 893 } 894 895 /** 896 * radeon_fence_driver_start_ring - make the fence driver 897 * ready for use on the requested ring. 898 * 899 * @rdev: radeon device pointer 900 * @ring: ring index to start the fence driver on 901 * 902 * Make the fence driver ready for processing (all asics). 903 * Not all asics have all rings, so each asic will only 904 * start the fence driver on the rings it has. 905 * Returns 0 for success, errors for failure. 906 */ 907 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 908 { 909 uint64_t index; 910 int r; 911 912 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 913 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 914 rdev->fence_drv[ring].scratch_reg = 0; 915 if (ring != R600_RING_TYPE_UVD_INDEX) { 916 index = R600_WB_EVENT_OFFSET + ring * 4; 917 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 918 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 919 index; 920 921 } else { 922 /* put fence directly behind firmware */ 923 index = ALIGN(rdev->uvd_fw->size, 8); 924 rdev->fence_drv[ring].cpu_addr = (uint32_t *)((uint8_t *)rdev->uvd.cpu_addr + index); 925 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 926 } 927 928 } else { 929 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 930 if (r) { 931 dev_err(rdev->dev, "fence failed to get scratch register\n"); 932 return r; 933 } 934 index = RADEON_WB_SCRATCH_OFFSET + 935 rdev->fence_drv[ring].scratch_reg - 936 rdev->scratch.reg_base; 937 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 938 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 939 } 940 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 941 rdev->fence_drv[ring].initialized = true; 942 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016"PRIx64" and cpu addr 0x%p\n", 943 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr); 944 return 0; 945 } 946 947 /** 948 * radeon_fence_driver_init_ring - init the fence driver 949 * for the requested ring. 950 * 951 * @rdev: radeon device pointer 952 * @ring: ring index to start the fence driver on 953 * 954 * Init the fence driver for the requested ring (all asics). 955 * Helper function for radeon_fence_driver_init(). 956 */ 957 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 958 { 959 int i; 960 961 rdev->fence_drv[ring].scratch_reg = -1; 962 rdev->fence_drv[ring].cpu_addr = NULL; 963 rdev->fence_drv[ring].gpu_addr = 0; 964 for (i = 0; i < RADEON_NUM_RINGS; ++i) 965 rdev->fence_drv[ring].sync_seq[i] = 0; 966 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 967 rdev->fence_drv[ring].initialized = false; 968 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 969 radeon_fence_check_lockup); 970 rdev->fence_drv[ring].rdev = rdev; 971 } 972 973 /** 974 * radeon_fence_driver_init - init the fence driver 975 * for all possible rings. 976 * 977 * @rdev: radeon device pointer 978 * 979 * Init the fence driver for all possible rings (all asics). 980 * Not all asics have all rings, so each asic will only 981 * start the fence driver on the rings it has using 982 * radeon_fence_driver_start_ring(). 983 * Returns 0 for success. 984 */ 985 int radeon_fence_driver_init(struct radeon_device *rdev) 986 { 987 int ring; 988 989 #ifdef __NetBSD__ 990 spin_lock_init(&rdev->fence_lock); 991 DRM_INIT_WAITQUEUE(&rdev->fence_queue, "radfence"); 992 TAILQ_INIT(&rdev->fence_check); 993 #else 994 init_waitqueue_head(&rdev->fence_queue); 995 #endif 996 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 997 radeon_fence_driver_init_ring(rdev, ring); 998 } 999 if (radeon_debugfs_fence_init(rdev)) { 1000 dev_err(rdev->dev, "fence debugfs file creation failed\n"); 1001 } 1002 return 0; 1003 } 1004 1005 /** 1006 * radeon_fence_driver_fini - tear down the fence driver 1007 * for all possible rings. 1008 * 1009 * @rdev: radeon device pointer 1010 * 1011 * Tear down the fence driver for all possible rings (all asics). 1012 */ 1013 void radeon_fence_driver_fini(struct radeon_device *rdev) 1014 { 1015 int ring, r; 1016 1017 mutex_lock(&rdev->ring_lock); 1018 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 1019 if (!rdev->fence_drv[ring].initialized) 1020 continue; 1021 r = radeon_fence_wait_empty(rdev, ring); 1022 if (r) { 1023 /* no need to trigger GPU reset as we are unloading */ 1024 radeon_fence_driver_force_completion(rdev, ring); 1025 } 1026 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 1027 #ifdef __NetBSD__ 1028 spin_lock(&rdev->fence_lock); 1029 radeon_fence_wakeup_locked(rdev); 1030 spin_unlock(&rdev->fence_lock); 1031 #else 1032 wake_up_all(&rdev->fence_queue); 1033 #endif 1034 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 1035 rdev->fence_drv[ring].initialized = false; 1036 } 1037 mutex_unlock(&rdev->ring_lock); 1038 1039 #ifdef __NetBSD__ 1040 BUG_ON(!TAILQ_EMPTY(&rdev->fence_check)); 1041 DRM_DESTROY_WAITQUEUE(&rdev->fence_queue); 1042 spin_lock_destroy(&rdev->fence_lock); 1043 #endif 1044 } 1045 1046 /** 1047 * radeon_fence_driver_force_completion - force all fence waiter to complete 1048 * 1049 * @rdev: radeon device pointer 1050 * @ring: the ring to complete 1051 * 1052 * In case of GPU reset failure make sure no process keep waiting on fence 1053 * that will never complete. 1054 */ 1055 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 1056 { 1057 if (rdev->fence_drv[ring].initialized) { 1058 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 1059 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 1060 } 1061 } 1062 1063 1064 /* 1065 * Fence debugfs 1066 */ 1067 #if defined(CONFIG_DEBUG_FS) 1068 static int radeon_debugfs_fence_info(struct seq_file *m, void *data) 1069 { 1070 struct drm_info_node *node = (struct drm_info_node *)m->private; 1071 struct drm_device *dev = node->minor->dev; 1072 struct radeon_device *rdev = dev->dev_private; 1073 int i, j; 1074 1075 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1076 if (!rdev->fence_drv[i].initialized) 1077 continue; 1078 1079 radeon_fence_process(rdev, i); 1080 1081 seq_printf(m, "--- ring %d ---\n", i); 1082 seq_printf(m, "Last signaled fence 0x%016llx\n", 1083 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 1084 seq_printf(m, "Last emitted 0x%016"PRIx64"\n", 1085 rdev->fence_drv[i].sync_seq[i]); 1086 1087 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 1088 if (i != j && rdev->fence_drv[j].initialized) 1089 seq_printf(m, "Last sync to ring %d 0x%016"PRIx64"\n", 1090 j, rdev->fence_drv[i].sync_seq[j]); 1091 } 1092 } 1093 return 0; 1094 } 1095 1096 /** 1097 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 1098 * 1099 * Manually trigger a gpu reset at the next fence wait. 1100 */ 1101 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data) 1102 { 1103 struct drm_info_node *node = (struct drm_info_node *) m->private; 1104 struct drm_device *dev = node->minor->dev; 1105 struct radeon_device *rdev = dev->dev_private; 1106 1107 down_read(&rdev->exclusive_lock); 1108 seq_printf(m, "%d\n", rdev->needs_reset); 1109 rdev->needs_reset = true; 1110 wake_up_all(&rdev->fence_queue); 1111 up_read(&rdev->exclusive_lock); 1112 1113 return 0; 1114 } 1115 1116 static struct drm_info_list radeon_debugfs_fence_list[] = { 1117 {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL}, 1118 {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL} 1119 }; 1120 #endif 1121 1122 int radeon_debugfs_fence_init(struct radeon_device *rdev) 1123 { 1124 #if defined(CONFIG_DEBUG_FS) 1125 return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2); 1126 #else 1127 return 0; 1128 #endif 1129 } 1130 1131 static const char *radeon_fence_get_driver_name(struct fence *fence) 1132 { 1133 return "radeon"; 1134 } 1135 1136 static const char *radeon_fence_get_timeline_name(struct fence *f) 1137 { 1138 struct radeon_fence *fence = to_radeon_fence(f); 1139 switch (fence->ring) { 1140 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1141 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1142 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1143 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1144 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1145 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1146 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1147 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1148 default: WARN_ON_ONCE(1); return "radeon.unk"; 1149 } 1150 } 1151 1152 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1153 { 1154 return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1155 } 1156 1157 #ifdef __NetBSD__ 1158 1159 static void 1160 radeon_fence_wakeup_cb(struct fence *fence, struct fence_cb *cb) 1161 { 1162 struct radeon_fence *rfence = to_radeon_fence(fence); 1163 struct radeon_device *rdev = rfence->rdev; 1164 1165 BUG_ON(!spin_is_locked(&rdev->fence_lock)); 1166 cv_broadcast(&rdev->fence_queue); 1167 } 1168 1169 static signed long 1170 radeon_fence_default_wait(struct fence *f, bool intr, signed long timo) 1171 { 1172 struct fence_cb fcb; 1173 struct radeon_fence *fence = to_radeon_fence(f); 1174 struct radeon_device *rdev = fence->rdev; 1175 int r; 1176 1177 r = fence_add_callback(f, &fcb, radeon_fence_wakeup_cb); 1178 if (r) /* fence is done already */ 1179 return timo; 1180 1181 spin_lock(&rdev->fence_lock); 1182 if (intr) { 1183 DRM_SPIN_TIMED_WAIT_UNTIL(r, &rdev->fence_queue, 1184 &rdev->fence_lock, timo, 1185 radeon_test_signaled(fence)); 1186 } else { 1187 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(r, &rdev->fence_queue, 1188 &rdev->fence_lock, timo, 1189 radeon_test_signaled(fence)); 1190 } 1191 spin_unlock(&rdev->fence_lock); 1192 1193 (void)fence_remove_callback(f, &fcb); 1194 1195 return r; 1196 } 1197 1198 #else 1199 1200 struct radeon_wait_cb { 1201 struct fence_cb base; 1202 struct task_struct *task; 1203 }; 1204 1205 static void 1206 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb) 1207 { 1208 struct radeon_wait_cb *wait = 1209 container_of(cb, struct radeon_wait_cb, base); 1210 1211 wake_up_process(wait->task); 1212 } 1213 1214 static signed long radeon_fence_default_wait(struct fence *f, bool intr, 1215 signed long t) 1216 { 1217 struct radeon_fence *fence = to_radeon_fence(f); 1218 struct radeon_device *rdev = fence->rdev; 1219 struct radeon_wait_cb cb; 1220 1221 cb.task = current; 1222 1223 if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1224 return t; 1225 1226 while (t > 0) { 1227 if (intr) 1228 set_current_state(TASK_INTERRUPTIBLE); 1229 else 1230 set_current_state(TASK_UNINTERRUPTIBLE); 1231 1232 /* 1233 * radeon_test_signaled must be called after 1234 * set_current_state to prevent a race with wake_up_process 1235 */ 1236 if (radeon_test_signaled(fence)) 1237 break; 1238 1239 if (rdev->needs_reset) { 1240 t = -EDEADLK; 1241 break; 1242 } 1243 1244 t = schedule_timeout(t); 1245 1246 if (t > 0 && intr && signal_pending(current)) 1247 t = -ERESTARTSYS; 1248 } 1249 1250 __set_current_state(TASK_RUNNING); 1251 fence_remove_callback(f, &cb.base); 1252 1253 return t; 1254 } 1255 1256 #endif 1257 1258 const struct fence_ops radeon_fence_ops = { 1259 .get_driver_name = radeon_fence_get_driver_name, 1260 .get_timeline_name = radeon_fence_get_timeline_name, 1261 .enable_signaling = radeon_fence_enable_signaling, 1262 .signaled = radeon_fence_is_signaled, 1263 .wait = radeon_fence_default_wait, 1264 .release = NULL, 1265 }; 1266