xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/intel_pm.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35 
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46 
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49 	/* Be paranoid as we can arrive here with only partial
50 	 * state retrieved from the hardware during setup.
51 	 */
52 	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54 
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57 	struct drm_i915_private *dev_priv = dev->dev_private;
58 	u32 fbc_ctl;
59 
60 	/* Disable compression */
61 	fbc_ctl = I915_READ(FBC_CONTROL);
62 	if ((fbc_ctl & FBC_CTL_EN) == 0)
63 		return;
64 
65 	fbc_ctl &= ~FBC_CTL_EN;
66 	I915_WRITE(FBC_CONTROL, fbc_ctl);
67 
68 	/* Wait for compressing bit to clear */
69 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70 		DRM_DEBUG_KMS("FBC idle timed out\n");
71 		return;
72 	}
73 
74 	DRM_DEBUG_KMS("disabled FBC\n");
75 }
76 
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79 	struct drm_device *dev = crtc->dev;
80 	struct drm_i915_private *dev_priv = dev->dev_private;
81 	struct drm_framebuffer *fb = crtc->fb;
82 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83 	struct drm_i915_gem_object *obj = intel_fb->obj;
84 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85 	int cfb_pitch;
86 	int plane, i;
87 	u32 fbc_ctl, fbc_ctl2;
88 
89 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90 	if (fb->pitches[0] < cfb_pitch)
91 		cfb_pitch = fb->pitches[0];
92 
93 	/* FBC_CTL wants 64B units */
94 	cfb_pitch = (cfb_pitch / 64) - 1;
95 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96 
97 	/* Clear old tags */
98 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99 		I915_WRITE(FBC_TAG + (i * 4), 0);
100 
101 	/* Set it up... */
102 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103 	fbc_ctl2 |= plane;
104 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
106 
107 	/* enable it... */
108 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109 	if (IS_I945GM(dev))
110 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113 	fbc_ctl |= obj->fence_reg;
114 	I915_WRITE(FBC_CONTROL, fbc_ctl);
115 
116 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
117 		      cfb_pitch, crtc->y, intel_crtc->plane);
118 }
119 
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122 	struct drm_i915_private *dev_priv = dev->dev_private;
123 
124 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126 
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129 	struct drm_device *dev = crtc->dev;
130 	struct drm_i915_private *dev_priv = dev->dev_private;
131 	struct drm_framebuffer *fb = crtc->fb;
132 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133 	struct drm_i915_gem_object *obj = intel_fb->obj;
134 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136 	unsigned long stall_watermark = 200;
137 	u32 dpfc_ctl;
138 
139 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142 
143 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147 
148 	/* enable it... */
149 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150 
151 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
152 }
153 
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156 	struct drm_i915_private *dev_priv = dev->dev_private;
157 	u32 dpfc_ctl;
158 
159 	/* Disable compression */
160 	dpfc_ctl = I915_READ(DPFC_CONTROL);
161 	if (dpfc_ctl & DPFC_CTL_EN) {
162 		dpfc_ctl &= ~DPFC_CTL_EN;
163 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164 
165 		DRM_DEBUG_KMS("disabled FBC\n");
166 	}
167 }
168 
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171 	struct drm_i915_private *dev_priv = dev->dev_private;
172 
173 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175 
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178 	struct drm_i915_private *dev_priv = dev->dev_private;
179 	u32 blt_ecoskpd;
180 
181 	/* Make sure blitter notifies FBC of writes */
182 	gen6_gt_force_wake_get(dev_priv);
183 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185 		GEN6_BLITTER_LOCK_SHIFT;
186 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190 			 GEN6_BLITTER_LOCK_SHIFT);
191 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
193 	gen6_gt_force_wake_put(dev_priv);
194 }
195 
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198 	struct drm_device *dev = crtc->dev;
199 	struct drm_i915_private *dev_priv = dev->dev_private;
200 	struct drm_framebuffer *fb = crtc->fb;
201 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202 	struct drm_i915_gem_object *obj = intel_fb->obj;
203 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205 	unsigned long stall_watermark = 200;
206 	u32 dpfc_ctl;
207 
208 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209 	dpfc_ctl &= DPFC_RESERVED;
210 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211 	/* Set persistent mode for front-buffer rendering, ala X. */
212 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215 
216 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221 	/* enable it... */
222 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223 
224 	if (IS_GEN6(dev)) {
225 		I915_WRITE(SNB_DPFC_CTL_SA,
226 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228 		sandybridge_blit_fbc_update(dev);
229 	}
230 
231 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
232 }
233 
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236 	struct drm_i915_private *dev_priv = dev->dev_private;
237 	u32 dpfc_ctl;
238 
239 	/* Disable compression */
240 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241 	if (dpfc_ctl & DPFC_CTL_EN) {
242 		dpfc_ctl &= ~DPFC_CTL_EN;
243 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244 
245 		DRM_DEBUG_KMS("disabled FBC\n");
246 	}
247 }
248 
249 static bool ironlake_fbc_enabled(struct drm_device *dev)
250 {
251 	struct drm_i915_private *dev_priv = dev->dev_private;
252 
253 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
254 }
255 
256 bool intel_fbc_enabled(struct drm_device *dev)
257 {
258 	struct drm_i915_private *dev_priv = dev->dev_private;
259 
260 	if (!dev_priv->display.fbc_enabled)
261 		return false;
262 
263 	return dev_priv->display.fbc_enabled(dev);
264 }
265 
266 static void intel_fbc_work_fn(struct work_struct *__work)
267 {
268 	struct intel_fbc_work *work =
269 		container_of(to_delayed_work(__work),
270 			     struct intel_fbc_work, work);
271 	struct drm_device *dev = work->crtc->dev;
272 	struct drm_i915_private *dev_priv = dev->dev_private;
273 
274 	mutex_lock(&dev->struct_mutex);
275 	if (work == dev_priv->fbc_work) {
276 		/* Double check that we haven't switched fb without cancelling
277 		 * the prior work.
278 		 */
279 		if (work->crtc->fb == work->fb) {
280 			dev_priv->display.enable_fbc(work->crtc,
281 						     work->interval);
282 
283 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
284 			dev_priv->cfb_fb = work->crtc->fb->base.id;
285 			dev_priv->cfb_y = work->crtc->y;
286 		}
287 
288 		dev_priv->fbc_work = NULL;
289 	}
290 	mutex_unlock(&dev->struct_mutex);
291 
292 	kfree(work);
293 }
294 
295 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
296 {
297 	if (dev_priv->fbc_work == NULL)
298 		return;
299 
300 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
301 
302 	/* Synchronisation is provided by struct_mutex and checking of
303 	 * dev_priv->fbc_work, so we can perform the cancellation
304 	 * entirely asynchronously.
305 	 */
306 	if (cancel_delayed_work(&dev_priv->fbc_work->work))
307 		/* tasklet was killed before being run, clean up */
308 		kfree(dev_priv->fbc_work);
309 
310 	/* Mark the work as no longer wanted so that if it does
311 	 * wake-up (because the work was already running and waiting
312 	 * for our mutex), it will discover that is no longer
313 	 * necessary to run.
314 	 */
315 	dev_priv->fbc_work = NULL;
316 }
317 
318 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
319 {
320 	struct intel_fbc_work *work;
321 	struct drm_device *dev = crtc->dev;
322 	struct drm_i915_private *dev_priv = dev->dev_private;
323 
324 	if (!dev_priv->display.enable_fbc)
325 		return;
326 
327 	intel_cancel_fbc_work(dev_priv);
328 
329 	work = kzalloc(sizeof *work, GFP_KERNEL);
330 	if (work == NULL) {
331 		dev_priv->display.enable_fbc(crtc, interval);
332 		return;
333 	}
334 
335 	work->crtc = crtc;
336 	work->fb = crtc->fb;
337 	work->interval = interval;
338 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
339 
340 	dev_priv->fbc_work = work;
341 
342 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
343 
344 	/* Delay the actual enabling to let pageflipping cease and the
345 	 * display to settle before starting the compression. Note that
346 	 * this delay also serves a second purpose: it allows for a
347 	 * vblank to pass after disabling the FBC before we attempt
348 	 * to modify the control registers.
349 	 *
350 	 * A more complicated solution would involve tracking vblanks
351 	 * following the termination of the page-flipping sequence
352 	 * and indeed performing the enable as a co-routine and not
353 	 * waiting synchronously upon the vblank.
354 	 */
355 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
356 }
357 
358 void intel_disable_fbc(struct drm_device *dev)
359 {
360 	struct drm_i915_private *dev_priv = dev->dev_private;
361 
362 	intel_cancel_fbc_work(dev_priv);
363 
364 	if (!dev_priv->display.disable_fbc)
365 		return;
366 
367 	dev_priv->display.disable_fbc(dev);
368 	dev_priv->cfb_plane = -1;
369 }
370 
371 /**
372  * intel_update_fbc - enable/disable FBC as needed
373  * @dev: the drm_device
374  *
375  * Set up the framebuffer compression hardware at mode set time.  We
376  * enable it if possible:
377  *   - plane A only (on pre-965)
378  *   - no pixel mulitply/line duplication
379  *   - no alpha buffer discard
380  *   - no dual wide
381  *   - framebuffer <= 2048 in width, 1536 in height
382  *
383  * We can't assume that any compression will take place (worst case),
384  * so the compressed buffer has to be the same size as the uncompressed
385  * one.  It also must reside (along with the line length buffer) in
386  * stolen memory.
387  *
388  * We need to enable/disable FBC on a global basis.
389  */
390 void intel_update_fbc(struct drm_device *dev)
391 {
392 	struct drm_i915_private *dev_priv = dev->dev_private;
393 	struct drm_crtc *crtc = NULL, *tmp_crtc;
394 	struct intel_crtc *intel_crtc;
395 	struct drm_framebuffer *fb;
396 	struct intel_framebuffer *intel_fb;
397 	struct drm_i915_gem_object *obj;
398 	int enable_fbc;
399 
400 	if (!i915_powersave)
401 		return;
402 
403 	if (!I915_HAS_FBC(dev))
404 		return;
405 
406 	/*
407 	 * If FBC is already on, we just have to verify that we can
408 	 * keep it that way...
409 	 * Need to disable if:
410 	 *   - more than one pipe is active
411 	 *   - changing FBC params (stride, fence, mode)
412 	 *   - new fb is too large to fit in compressed buffer
413 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
414 	 */
415 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
416 		if (intel_crtc_active(tmp_crtc) &&
417 		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
418 			if (crtc) {
419 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
420 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
421 				goto out_disable;
422 			}
423 			crtc = tmp_crtc;
424 		}
425 	}
426 
427 	if (!crtc || crtc->fb == NULL) {
428 		DRM_DEBUG_KMS("no output, disabling\n");
429 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
430 		goto out_disable;
431 	}
432 
433 	intel_crtc = to_intel_crtc(crtc);
434 	fb = crtc->fb;
435 	intel_fb = to_intel_framebuffer(fb);
436 	obj = intel_fb->obj;
437 
438 	enable_fbc = i915_enable_fbc;
439 	if (enable_fbc < 0) {
440 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
441 		enable_fbc = 1;
442 		if (INTEL_INFO(dev)->gen <= 6)
443 			enable_fbc = 0;
444 	}
445 	if (!enable_fbc) {
446 		DRM_DEBUG_KMS("fbc disabled per module param\n");
447 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
448 		goto out_disable;
449 	}
450 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
451 		DRM_DEBUG_KMS("framebuffer too large, disabling "
452 			      "compression\n");
453 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
454 		goto out_disable;
455 	}
456 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
457 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
458 		DRM_DEBUG_KMS("mode incompatible with compression, "
459 			      "disabling\n");
460 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
461 		goto out_disable;
462 	}
463 	if ((crtc->mode.hdisplay > 2048) ||
464 	    (crtc->mode.vdisplay > 1536)) {
465 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
466 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
467 		goto out_disable;
468 	}
469 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
470 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
471 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
472 		goto out_disable;
473 	}
474 
475 	/* The use of a CPU fence is mandatory in order to detect writes
476 	 * by the CPU to the scanout and trigger updates to the FBC.
477 	 */
478 	if (obj->tiling_mode != I915_TILING_X ||
479 	    obj->fence_reg == I915_FENCE_REG_NONE) {
480 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
481 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
482 		goto out_disable;
483 	}
484 
485 	/* If the kernel debugger is active, always disable compression */
486 	if (in_dbg_master())
487 		goto out_disable;
488 
489 	/* If the scanout has not changed, don't modify the FBC settings.
490 	 * Note that we make the fundamental assumption that the fb->obj
491 	 * cannot be unpinned (and have its GTT offset and fence revoked)
492 	 * without first being decoupled from the scanout and FBC disabled.
493 	 */
494 	if (dev_priv->cfb_plane == intel_crtc->plane &&
495 	    dev_priv->cfb_fb == fb->base.id &&
496 	    dev_priv->cfb_y == crtc->y)
497 		return;
498 
499 	if (intel_fbc_enabled(dev)) {
500 		/* We update FBC along two paths, after changing fb/crtc
501 		 * configuration (modeswitching) and after page-flipping
502 		 * finishes. For the latter, we know that not only did
503 		 * we disable the FBC at the start of the page-flip
504 		 * sequence, but also more than one vblank has passed.
505 		 *
506 		 * For the former case of modeswitching, it is possible
507 		 * to switch between two FBC valid configurations
508 		 * instantaneously so we do need to disable the FBC
509 		 * before we can modify its control registers. We also
510 		 * have to wait for the next vblank for that to take
511 		 * effect. However, since we delay enabling FBC we can
512 		 * assume that a vblank has passed since disabling and
513 		 * that we can safely alter the registers in the deferred
514 		 * callback.
515 		 *
516 		 * In the scenario that we go from a valid to invalid
517 		 * and then back to valid FBC configuration we have
518 		 * no strict enforcement that a vblank occurred since
519 		 * disabling the FBC. However, along all current pipe
520 		 * disabling paths we do need to wait for a vblank at
521 		 * some point. And we wait before enabling FBC anyway.
522 		 */
523 		DRM_DEBUG_KMS("disabling active FBC for update\n");
524 		intel_disable_fbc(dev);
525 	}
526 
527 	intel_enable_fbc(crtc, 500);
528 	return;
529 
530 out_disable:
531 	/* Multiple disables should be harmless */
532 	if (intel_fbc_enabled(dev)) {
533 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
534 		intel_disable_fbc(dev);
535 	}
536 }
537 
538 static void i915_pineview_get_mem_freq(struct drm_device *dev)
539 {
540 	drm_i915_private_t *dev_priv = dev->dev_private;
541 	u32 tmp;
542 
543 	tmp = I915_READ(CLKCFG);
544 
545 	switch (tmp & CLKCFG_FSB_MASK) {
546 	case CLKCFG_FSB_533:
547 		dev_priv->fsb_freq = 533; /* 133*4 */
548 		break;
549 	case CLKCFG_FSB_800:
550 		dev_priv->fsb_freq = 800; /* 200*4 */
551 		break;
552 	case CLKCFG_FSB_667:
553 		dev_priv->fsb_freq =  667; /* 167*4 */
554 		break;
555 	case CLKCFG_FSB_400:
556 		dev_priv->fsb_freq = 400; /* 100*4 */
557 		break;
558 	}
559 
560 	switch (tmp & CLKCFG_MEM_MASK) {
561 	case CLKCFG_MEM_533:
562 		dev_priv->mem_freq = 533;
563 		break;
564 	case CLKCFG_MEM_667:
565 		dev_priv->mem_freq = 667;
566 		break;
567 	case CLKCFG_MEM_800:
568 		dev_priv->mem_freq = 800;
569 		break;
570 	}
571 
572 	/* detect pineview DDR3 setting */
573 	tmp = I915_READ(CSHRDDR3CTL);
574 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
575 }
576 
577 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
578 {
579 	drm_i915_private_t *dev_priv = dev->dev_private;
580 	u16 ddrpll, csipll;
581 
582 	ddrpll = I915_READ16(DDRMPLL1);
583 	csipll = I915_READ16(CSIPLL0);
584 
585 	switch (ddrpll & 0xff) {
586 	case 0xc:
587 		dev_priv->mem_freq = 800;
588 		break;
589 	case 0x10:
590 		dev_priv->mem_freq = 1066;
591 		break;
592 	case 0x14:
593 		dev_priv->mem_freq = 1333;
594 		break;
595 	case 0x18:
596 		dev_priv->mem_freq = 1600;
597 		break;
598 	default:
599 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
600 				 ddrpll & 0xff);
601 		dev_priv->mem_freq = 0;
602 		break;
603 	}
604 
605 	dev_priv->ips.r_t = dev_priv->mem_freq;
606 
607 	switch (csipll & 0x3ff) {
608 	case 0x00c:
609 		dev_priv->fsb_freq = 3200;
610 		break;
611 	case 0x00e:
612 		dev_priv->fsb_freq = 3733;
613 		break;
614 	case 0x010:
615 		dev_priv->fsb_freq = 4266;
616 		break;
617 	case 0x012:
618 		dev_priv->fsb_freq = 4800;
619 		break;
620 	case 0x014:
621 		dev_priv->fsb_freq = 5333;
622 		break;
623 	case 0x016:
624 		dev_priv->fsb_freq = 5866;
625 		break;
626 	case 0x018:
627 		dev_priv->fsb_freq = 6400;
628 		break;
629 	default:
630 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
631 				 csipll & 0x3ff);
632 		dev_priv->fsb_freq = 0;
633 		break;
634 	}
635 
636 	if (dev_priv->fsb_freq == 3200) {
637 		dev_priv->ips.c_m = 0;
638 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
639 		dev_priv->ips.c_m = 1;
640 	} else {
641 		dev_priv->ips.c_m = 2;
642 	}
643 }
644 
645 static const struct cxsr_latency cxsr_latency_table[] = {
646 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
647 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
648 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
649 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
650 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
651 
652 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
653 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
654 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
655 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
656 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
657 
658 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
659 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
660 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
661 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
662 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
663 
664 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
665 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
666 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
667 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
668 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
669 
670 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
671 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
672 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
673 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
674 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
675 
676 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
677 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
678 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
679 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
680 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
681 };
682 
683 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
684 							 int is_ddr3,
685 							 int fsb,
686 							 int mem)
687 {
688 	const struct cxsr_latency *latency;
689 	int i;
690 
691 	if (fsb == 0 || mem == 0)
692 		return NULL;
693 
694 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
695 		latency = &cxsr_latency_table[i];
696 		if (is_desktop == latency->is_desktop &&
697 		    is_ddr3 == latency->is_ddr3 &&
698 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
699 			return latency;
700 	}
701 
702 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
703 
704 	return NULL;
705 }
706 
707 static void pineview_disable_cxsr(struct drm_device *dev)
708 {
709 	struct drm_i915_private *dev_priv = dev->dev_private;
710 
711 	/* deactivate cxsr */
712 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
713 }
714 
715 /*
716  * Latency for FIFO fetches is dependent on several factors:
717  *   - memory configuration (speed, channels)
718  *   - chipset
719  *   - current MCH state
720  * It can be fairly high in some situations, so here we assume a fairly
721  * pessimal value.  It's a tradeoff between extra memory fetches (if we
722  * set this value too high, the FIFO will fetch frequently to stay full)
723  * and power consumption (set it too low to save power and we might see
724  * FIFO underruns and display "flicker").
725  *
726  * A value of 5us seems to be a good balance; safe for very low end
727  * platforms but not overly aggressive on lower latency configs.
728  */
729 static const int latency_ns = 5000;
730 
731 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
732 {
733 	struct drm_i915_private *dev_priv = dev->dev_private;
734 	uint32_t dsparb = I915_READ(DSPARB);
735 	int size;
736 
737 	size = dsparb & 0x7f;
738 	if (plane)
739 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
740 
741 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
742 		      plane ? "B" : "A", size);
743 
744 	return size;
745 }
746 
747 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
748 {
749 	struct drm_i915_private *dev_priv = dev->dev_private;
750 	uint32_t dsparb = I915_READ(DSPARB);
751 	int size;
752 
753 	size = dsparb & 0x1ff;
754 	if (plane)
755 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
756 	size >>= 1; /* Convert to cachelines */
757 
758 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
759 		      plane ? "B" : "A", size);
760 
761 	return size;
762 }
763 
764 static int i845_get_fifo_size(struct drm_device *dev, int plane)
765 {
766 	struct drm_i915_private *dev_priv = dev->dev_private;
767 	uint32_t dsparb = I915_READ(DSPARB);
768 	int size;
769 
770 	size = dsparb & 0x7f;
771 	size >>= 2; /* Convert to cachelines */
772 
773 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
774 		      plane ? "B" : "A",
775 		      size);
776 
777 	return size;
778 }
779 
780 static int i830_get_fifo_size(struct drm_device *dev, int plane)
781 {
782 	struct drm_i915_private *dev_priv = dev->dev_private;
783 	uint32_t dsparb = I915_READ(DSPARB);
784 	int size;
785 
786 	size = dsparb & 0x7f;
787 	size >>= 1; /* Convert to cachelines */
788 
789 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
790 		      plane ? "B" : "A", size);
791 
792 	return size;
793 }
794 
795 /* Pineview has different values for various configs */
796 static const struct intel_watermark_params pineview_display_wm = {
797 	PINEVIEW_DISPLAY_FIFO,
798 	PINEVIEW_MAX_WM,
799 	PINEVIEW_DFT_WM,
800 	PINEVIEW_GUARD_WM,
801 	PINEVIEW_FIFO_LINE_SIZE
802 };
803 static const struct intel_watermark_params pineview_display_hplloff_wm = {
804 	PINEVIEW_DISPLAY_FIFO,
805 	PINEVIEW_MAX_WM,
806 	PINEVIEW_DFT_HPLLOFF_WM,
807 	PINEVIEW_GUARD_WM,
808 	PINEVIEW_FIFO_LINE_SIZE
809 };
810 static const struct intel_watermark_params pineview_cursor_wm = {
811 	PINEVIEW_CURSOR_FIFO,
812 	PINEVIEW_CURSOR_MAX_WM,
813 	PINEVIEW_CURSOR_DFT_WM,
814 	PINEVIEW_CURSOR_GUARD_WM,
815 	PINEVIEW_FIFO_LINE_SIZE,
816 };
817 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
818 	PINEVIEW_CURSOR_FIFO,
819 	PINEVIEW_CURSOR_MAX_WM,
820 	PINEVIEW_CURSOR_DFT_WM,
821 	PINEVIEW_CURSOR_GUARD_WM,
822 	PINEVIEW_FIFO_LINE_SIZE
823 };
824 static const struct intel_watermark_params g4x_wm_info = {
825 	G4X_FIFO_SIZE,
826 	G4X_MAX_WM,
827 	G4X_MAX_WM,
828 	2,
829 	G4X_FIFO_LINE_SIZE,
830 };
831 static const struct intel_watermark_params g4x_cursor_wm_info = {
832 	I965_CURSOR_FIFO,
833 	I965_CURSOR_MAX_WM,
834 	I965_CURSOR_DFT_WM,
835 	2,
836 	G4X_FIFO_LINE_SIZE,
837 };
838 static const struct intel_watermark_params valleyview_wm_info = {
839 	VALLEYVIEW_FIFO_SIZE,
840 	VALLEYVIEW_MAX_WM,
841 	VALLEYVIEW_MAX_WM,
842 	2,
843 	G4X_FIFO_LINE_SIZE,
844 };
845 static const struct intel_watermark_params valleyview_cursor_wm_info = {
846 	I965_CURSOR_FIFO,
847 	VALLEYVIEW_CURSOR_MAX_WM,
848 	I965_CURSOR_DFT_WM,
849 	2,
850 	G4X_FIFO_LINE_SIZE,
851 };
852 static const struct intel_watermark_params i965_cursor_wm_info = {
853 	I965_CURSOR_FIFO,
854 	I965_CURSOR_MAX_WM,
855 	I965_CURSOR_DFT_WM,
856 	2,
857 	I915_FIFO_LINE_SIZE,
858 };
859 static const struct intel_watermark_params i945_wm_info = {
860 	I945_FIFO_SIZE,
861 	I915_MAX_WM,
862 	1,
863 	2,
864 	I915_FIFO_LINE_SIZE
865 };
866 static const struct intel_watermark_params i915_wm_info = {
867 	I915_FIFO_SIZE,
868 	I915_MAX_WM,
869 	1,
870 	2,
871 	I915_FIFO_LINE_SIZE
872 };
873 static const struct intel_watermark_params i855_wm_info = {
874 	I855GM_FIFO_SIZE,
875 	I915_MAX_WM,
876 	1,
877 	2,
878 	I830_FIFO_LINE_SIZE
879 };
880 static const struct intel_watermark_params i830_wm_info = {
881 	I830_FIFO_SIZE,
882 	I915_MAX_WM,
883 	1,
884 	2,
885 	I830_FIFO_LINE_SIZE
886 };
887 
888 static const struct intel_watermark_params ironlake_display_wm_info = {
889 	ILK_DISPLAY_FIFO,
890 	ILK_DISPLAY_MAXWM,
891 	ILK_DISPLAY_DFTWM,
892 	2,
893 	ILK_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params ironlake_cursor_wm_info = {
896 	ILK_CURSOR_FIFO,
897 	ILK_CURSOR_MAXWM,
898 	ILK_CURSOR_DFTWM,
899 	2,
900 	ILK_FIFO_LINE_SIZE
901 };
902 static const struct intel_watermark_params ironlake_display_srwm_info = {
903 	ILK_DISPLAY_SR_FIFO,
904 	ILK_DISPLAY_MAX_SRWM,
905 	ILK_DISPLAY_DFT_SRWM,
906 	2,
907 	ILK_FIFO_LINE_SIZE
908 };
909 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
910 	ILK_CURSOR_SR_FIFO,
911 	ILK_CURSOR_MAX_SRWM,
912 	ILK_CURSOR_DFT_SRWM,
913 	2,
914 	ILK_FIFO_LINE_SIZE
915 };
916 
917 static const struct intel_watermark_params sandybridge_display_wm_info = {
918 	SNB_DISPLAY_FIFO,
919 	SNB_DISPLAY_MAXWM,
920 	SNB_DISPLAY_DFTWM,
921 	2,
922 	SNB_FIFO_LINE_SIZE
923 };
924 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
925 	SNB_CURSOR_FIFO,
926 	SNB_CURSOR_MAXWM,
927 	SNB_CURSOR_DFTWM,
928 	2,
929 	SNB_FIFO_LINE_SIZE
930 };
931 static const struct intel_watermark_params sandybridge_display_srwm_info = {
932 	SNB_DISPLAY_SR_FIFO,
933 	SNB_DISPLAY_MAX_SRWM,
934 	SNB_DISPLAY_DFT_SRWM,
935 	2,
936 	SNB_FIFO_LINE_SIZE
937 };
938 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
939 	SNB_CURSOR_SR_FIFO,
940 	SNB_CURSOR_MAX_SRWM,
941 	SNB_CURSOR_DFT_SRWM,
942 	2,
943 	SNB_FIFO_LINE_SIZE
944 };
945 
946 
947 /**
948  * intel_calculate_wm - calculate watermark level
949  * @clock_in_khz: pixel clock
950  * @wm: chip FIFO params
951  * @pixel_size: display pixel size
952  * @latency_ns: memory latency for the platform
953  *
954  * Calculate the watermark level (the level at which the display plane will
955  * start fetching from memory again).  Each chip has a different display
956  * FIFO size and allocation, so the caller needs to figure that out and pass
957  * in the correct intel_watermark_params structure.
958  *
959  * As the pixel clock runs, the FIFO will be drained at a rate that depends
960  * on the pixel size.  When it reaches the watermark level, it'll start
961  * fetching FIFO line sized based chunks from memory until the FIFO fills
962  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
963  * will occur, and a display engine hang could result.
964  */
965 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
966 					const struct intel_watermark_params *wm,
967 					int fifo_size,
968 					int pixel_size,
969 					unsigned long latency_ns)
970 {
971 	long entries_required, wm_size;
972 
973 	/*
974 	 * Note: we need to make sure we don't overflow for various clock &
975 	 * latency values.
976 	 * clocks go from a few thousand to several hundred thousand.
977 	 * latency is usually a few thousand
978 	 */
979 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
980 		1000;
981 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
982 
983 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
984 
985 	wm_size = fifo_size - (entries_required + wm->guard_size);
986 
987 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
988 
989 	/* Don't promote wm_size to unsigned... */
990 	if (wm_size > (long)wm->max_wm)
991 		wm_size = wm->max_wm;
992 	if (wm_size <= 0)
993 		wm_size = wm->default_wm;
994 	return wm_size;
995 }
996 
997 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
998 {
999 	struct drm_crtc *crtc, *enabled = NULL;
1000 
1001 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1002 		if (intel_crtc_active(crtc)) {
1003 			if (enabled)
1004 				return NULL;
1005 			enabled = crtc;
1006 		}
1007 	}
1008 
1009 	return enabled;
1010 }
1011 
1012 static void pineview_update_wm(struct drm_device *dev)
1013 {
1014 	struct drm_i915_private *dev_priv = dev->dev_private;
1015 	struct drm_crtc *crtc;
1016 	const struct cxsr_latency *latency;
1017 	u32 reg;
1018 	unsigned long wm;
1019 
1020 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1021 					 dev_priv->fsb_freq, dev_priv->mem_freq);
1022 	if (!latency) {
1023 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1024 		pineview_disable_cxsr(dev);
1025 		return;
1026 	}
1027 
1028 	crtc = single_enabled_crtc(dev);
1029 	if (crtc) {
1030 		int clock = crtc->mode.clock;
1031 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1032 
1033 		/* Display SR */
1034 		wm = intel_calculate_wm(clock, &pineview_display_wm,
1035 					pineview_display_wm.fifo_size,
1036 					pixel_size, latency->display_sr);
1037 		reg = I915_READ(DSPFW1);
1038 		reg &= ~DSPFW_SR_MASK;
1039 		reg |= wm << DSPFW_SR_SHIFT;
1040 		I915_WRITE(DSPFW1, reg);
1041 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1042 
1043 		/* cursor SR */
1044 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1045 					pineview_display_wm.fifo_size,
1046 					pixel_size, latency->cursor_sr);
1047 		reg = I915_READ(DSPFW3);
1048 		reg &= ~DSPFW_CURSOR_SR_MASK;
1049 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1050 		I915_WRITE(DSPFW3, reg);
1051 
1052 		/* Display HPLL off SR */
1053 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1054 					pineview_display_hplloff_wm.fifo_size,
1055 					pixel_size, latency->display_hpll_disable);
1056 		reg = I915_READ(DSPFW3);
1057 		reg &= ~DSPFW_HPLL_SR_MASK;
1058 		reg |= wm & DSPFW_HPLL_SR_MASK;
1059 		I915_WRITE(DSPFW3, reg);
1060 
1061 		/* cursor HPLL off SR */
1062 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1063 					pineview_display_hplloff_wm.fifo_size,
1064 					pixel_size, latency->cursor_hpll_disable);
1065 		reg = I915_READ(DSPFW3);
1066 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1067 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1068 		I915_WRITE(DSPFW3, reg);
1069 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1070 
1071 		/* activate cxsr */
1072 		I915_WRITE(DSPFW3,
1073 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1074 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1075 	} else {
1076 		pineview_disable_cxsr(dev);
1077 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1078 	}
1079 }
1080 
1081 static bool g4x_compute_wm0(struct drm_device *dev,
1082 			    int plane,
1083 			    const struct intel_watermark_params *display,
1084 			    int display_latency_ns,
1085 			    const struct intel_watermark_params *cursor,
1086 			    int cursor_latency_ns,
1087 			    int *plane_wm,
1088 			    int *cursor_wm)
1089 {
1090 	struct drm_crtc *crtc;
1091 	int htotal, hdisplay, clock, pixel_size;
1092 	int line_time_us, line_count;
1093 	int entries, tlb_miss;
1094 
1095 	crtc = intel_get_crtc_for_plane(dev, plane);
1096 	if (!intel_crtc_active(crtc)) {
1097 		*cursor_wm = cursor->guard_size;
1098 		*plane_wm = display->guard_size;
1099 		return false;
1100 	}
1101 
1102 	htotal = crtc->mode.htotal;
1103 	hdisplay = crtc->mode.hdisplay;
1104 	clock = crtc->mode.clock;
1105 	pixel_size = crtc->fb->bits_per_pixel / 8;
1106 
1107 	/* Use the small buffer method to calculate plane watermark */
1108 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1109 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1110 	if (tlb_miss > 0)
1111 		entries += tlb_miss;
1112 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1113 	*plane_wm = entries + display->guard_size;
1114 	if (*plane_wm > (int)display->max_wm)
1115 		*plane_wm = display->max_wm;
1116 
1117 	/* Use the large buffer method to calculate cursor watermark */
1118 	line_time_us = ((htotal * 1000) / clock);
1119 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1120 	entries = line_count * 64 * pixel_size;
1121 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1122 	if (tlb_miss > 0)
1123 		entries += tlb_miss;
1124 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1125 	*cursor_wm = entries + cursor->guard_size;
1126 	if (*cursor_wm > (int)cursor->max_wm)
1127 		*cursor_wm = (int)cursor->max_wm;
1128 
1129 	return true;
1130 }
1131 
1132 /*
1133  * Check the wm result.
1134  *
1135  * If any calculated watermark values is larger than the maximum value that
1136  * can be programmed into the associated watermark register, that watermark
1137  * must be disabled.
1138  */
1139 static bool g4x_check_srwm(struct drm_device *dev,
1140 			   int display_wm, int cursor_wm,
1141 			   const struct intel_watermark_params *display,
1142 			   const struct intel_watermark_params *cursor)
1143 {
1144 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1145 		      display_wm, cursor_wm);
1146 
1147 	if (display_wm > display->max_wm) {
1148 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1149 			      display_wm, display->max_wm);
1150 		return false;
1151 	}
1152 
1153 	if (cursor_wm > cursor->max_wm) {
1154 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1155 			      cursor_wm, cursor->max_wm);
1156 		return false;
1157 	}
1158 
1159 	if (!(display_wm || cursor_wm)) {
1160 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1161 		return false;
1162 	}
1163 
1164 	return true;
1165 }
1166 
1167 static bool g4x_compute_srwm(struct drm_device *dev,
1168 			     int plane,
1169 			     int latency_ns,
1170 			     const struct intel_watermark_params *display,
1171 			     const struct intel_watermark_params *cursor,
1172 			     int *display_wm, int *cursor_wm)
1173 {
1174 	struct drm_crtc *crtc;
1175 	int hdisplay, htotal, pixel_size, clock;
1176 	unsigned long line_time_us;
1177 	int line_count, line_size;
1178 	int small, large;
1179 	int entries;
1180 
1181 	if (!latency_ns) {
1182 		*display_wm = *cursor_wm = 0;
1183 		return false;
1184 	}
1185 
1186 	crtc = intel_get_crtc_for_plane(dev, plane);
1187 	hdisplay = crtc->mode.hdisplay;
1188 	htotal = crtc->mode.htotal;
1189 	clock = crtc->mode.clock;
1190 	pixel_size = crtc->fb->bits_per_pixel / 8;
1191 
1192 	line_time_us = (htotal * 1000) / clock;
1193 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1194 	line_size = hdisplay * pixel_size;
1195 
1196 	/* Use the minimum of the small and large buffer method for primary */
1197 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1198 	large = line_count * line_size;
1199 
1200 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1201 	*display_wm = entries + display->guard_size;
1202 
1203 	/* calculate the self-refresh watermark for display cursor */
1204 	entries = line_count * pixel_size * 64;
1205 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1206 	*cursor_wm = entries + cursor->guard_size;
1207 
1208 	return g4x_check_srwm(dev,
1209 			      *display_wm, *cursor_wm,
1210 			      display, cursor);
1211 }
1212 
1213 static bool vlv_compute_drain_latency(struct drm_device *dev,
1214 				     int plane,
1215 				     int *plane_prec_mult,
1216 				     int *plane_dl,
1217 				     int *cursor_prec_mult,
1218 				     int *cursor_dl)
1219 {
1220 	struct drm_crtc *crtc;
1221 	int clock, pixel_size;
1222 	int entries;
1223 
1224 	crtc = intel_get_crtc_for_plane(dev, plane);
1225 	if (!intel_crtc_active(crtc))
1226 		return false;
1227 
1228 	clock = crtc->mode.clock;	/* VESA DOT Clock */
1229 	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1230 
1231 	entries = (clock / 1000) * pixel_size;
1232 	*plane_prec_mult = (entries > 256) ?
1233 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1234 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1235 						     pixel_size);
1236 
1237 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1238 	*cursor_prec_mult = (entries > 256) ?
1239 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1240 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1241 
1242 	return true;
1243 }
1244 
1245 /*
1246  * Update drain latency registers of memory arbiter
1247  *
1248  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1249  * to be programmed. Each plane has a drain latency multiplier and a drain
1250  * latency value.
1251  */
1252 
1253 static void vlv_update_drain_latency(struct drm_device *dev)
1254 {
1255 	struct drm_i915_private *dev_priv = dev->dev_private;
1256 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1257 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1258 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1259 							either 16 or 32 */
1260 
1261 	/* For plane A, Cursor A */
1262 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1263 				      &cursor_prec_mult, &cursora_dl)) {
1264 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1265 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1266 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1267 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1268 
1269 		I915_WRITE(VLV_DDL1, cursora_prec |
1270 				(cursora_dl << DDL_CURSORA_SHIFT) |
1271 				planea_prec | planea_dl);
1272 	}
1273 
1274 	/* For plane B, Cursor B */
1275 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1276 				      &cursor_prec_mult, &cursorb_dl)) {
1277 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1278 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1279 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1280 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1281 
1282 		I915_WRITE(VLV_DDL2, cursorb_prec |
1283 				(cursorb_dl << DDL_CURSORB_SHIFT) |
1284 				planeb_prec | planeb_dl);
1285 	}
1286 }
1287 
1288 #define single_plane_enabled(mask) is_power_of_2(mask)
1289 
1290 static void valleyview_update_wm(struct drm_device *dev)
1291 {
1292 	static const int sr_latency_ns = 12000;
1293 	struct drm_i915_private *dev_priv = dev->dev_private;
1294 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1295 	int plane_sr, cursor_sr;
1296 	int ignore_plane_sr, ignore_cursor_sr;
1297 	unsigned int enabled = 0;
1298 
1299 	vlv_update_drain_latency(dev);
1300 
1301 	if (g4x_compute_wm0(dev, 0,
1302 			    &valleyview_wm_info, latency_ns,
1303 			    &valleyview_cursor_wm_info, latency_ns,
1304 			    &planea_wm, &cursora_wm))
1305 		enabled |= 1;
1306 
1307 	if (g4x_compute_wm0(dev, 1,
1308 			    &valleyview_wm_info, latency_ns,
1309 			    &valleyview_cursor_wm_info, latency_ns,
1310 			    &planeb_wm, &cursorb_wm))
1311 		enabled |= 2;
1312 
1313 	if (single_plane_enabled(enabled) &&
1314 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1315 			     sr_latency_ns,
1316 			     &valleyview_wm_info,
1317 			     &valleyview_cursor_wm_info,
1318 			     &plane_sr, &ignore_cursor_sr) &&
1319 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1320 			     2*sr_latency_ns,
1321 			     &valleyview_wm_info,
1322 			     &valleyview_cursor_wm_info,
1323 			     &ignore_plane_sr, &cursor_sr)) {
1324 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1325 	} else {
1326 		I915_WRITE(FW_BLC_SELF_VLV,
1327 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1328 		plane_sr = cursor_sr = 0;
1329 	}
1330 
1331 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1332 		      planea_wm, cursora_wm,
1333 		      planeb_wm, cursorb_wm,
1334 		      plane_sr, cursor_sr);
1335 
1336 	I915_WRITE(DSPFW1,
1337 		   (plane_sr << DSPFW_SR_SHIFT) |
1338 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1339 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1340 		   planea_wm);
1341 	I915_WRITE(DSPFW2,
1342 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1343 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1344 	I915_WRITE(DSPFW3,
1345 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1346 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1347 }
1348 
1349 static void g4x_update_wm(struct drm_device *dev)
1350 {
1351 	static const int sr_latency_ns = 12000;
1352 	struct drm_i915_private *dev_priv = dev->dev_private;
1353 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1354 	int plane_sr, cursor_sr;
1355 	unsigned int enabled = 0;
1356 
1357 	if (g4x_compute_wm0(dev, 0,
1358 			    &g4x_wm_info, latency_ns,
1359 			    &g4x_cursor_wm_info, latency_ns,
1360 			    &planea_wm, &cursora_wm))
1361 		enabled |= 1;
1362 
1363 	if (g4x_compute_wm0(dev, 1,
1364 			    &g4x_wm_info, latency_ns,
1365 			    &g4x_cursor_wm_info, latency_ns,
1366 			    &planeb_wm, &cursorb_wm))
1367 		enabled |= 2;
1368 
1369 	if (single_plane_enabled(enabled) &&
1370 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1371 			     sr_latency_ns,
1372 			     &g4x_wm_info,
1373 			     &g4x_cursor_wm_info,
1374 			     &plane_sr, &cursor_sr)) {
1375 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1376 	} else {
1377 		I915_WRITE(FW_BLC_SELF,
1378 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1379 		plane_sr = cursor_sr = 0;
1380 	}
1381 
1382 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1383 		      planea_wm, cursora_wm,
1384 		      planeb_wm, cursorb_wm,
1385 		      plane_sr, cursor_sr);
1386 
1387 	I915_WRITE(DSPFW1,
1388 		   (plane_sr << DSPFW_SR_SHIFT) |
1389 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1390 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1391 		   planea_wm);
1392 	I915_WRITE(DSPFW2,
1393 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1394 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1395 	/* HPLL off in SR has some issues on G4x... disable it */
1396 	I915_WRITE(DSPFW3,
1397 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1398 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1399 }
1400 
1401 static void i965_update_wm(struct drm_device *dev)
1402 {
1403 	struct drm_i915_private *dev_priv = dev->dev_private;
1404 	struct drm_crtc *crtc;
1405 	int srwm = 1;
1406 	int cursor_sr = 16;
1407 
1408 	/* Calc sr entries for one plane configs */
1409 	crtc = single_enabled_crtc(dev);
1410 	if (crtc) {
1411 		/* self-refresh has much higher latency */
1412 		static const int sr_latency_ns = 12000;
1413 		int clock = crtc->mode.clock;
1414 		int htotal = crtc->mode.htotal;
1415 		int hdisplay = crtc->mode.hdisplay;
1416 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1417 		unsigned long line_time_us;
1418 		int entries;
1419 
1420 		line_time_us = ((htotal * 1000) / clock);
1421 
1422 		/* Use ns/us then divide to preserve precision */
1423 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1424 			pixel_size * hdisplay;
1425 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1426 		srwm = I965_FIFO_SIZE - entries;
1427 		if (srwm < 0)
1428 			srwm = 1;
1429 		srwm &= 0x1ff;
1430 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1431 			      entries, srwm);
1432 
1433 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1434 			pixel_size * 64;
1435 		entries = DIV_ROUND_UP(entries,
1436 					  i965_cursor_wm_info.cacheline_size);
1437 		cursor_sr = i965_cursor_wm_info.fifo_size -
1438 			(entries + i965_cursor_wm_info.guard_size);
1439 
1440 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1441 			cursor_sr = i965_cursor_wm_info.max_wm;
1442 
1443 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1444 			      "cursor %d\n", srwm, cursor_sr);
1445 
1446 		if (IS_CRESTLINE(dev))
1447 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1448 	} else {
1449 		/* Turn off self refresh if both pipes are enabled */
1450 		if (IS_CRESTLINE(dev))
1451 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1452 				   & ~FW_BLC_SELF_EN);
1453 	}
1454 
1455 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1456 		      srwm);
1457 
1458 	/* 965 has limitations... */
1459 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1460 		   (8 << 16) | (8 << 8) | (8 << 0));
1461 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1462 	/* update cursor SR watermark */
1463 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1464 }
1465 
1466 static void i9xx_update_wm(struct drm_device *dev)
1467 {
1468 	struct drm_i915_private *dev_priv = dev->dev_private;
1469 	const struct intel_watermark_params *wm_info;
1470 	uint32_t fwater_lo;
1471 	uint32_t fwater_hi;
1472 	int cwm, srwm = 1;
1473 	int fifo_size;
1474 	int planea_wm, planeb_wm;
1475 	struct drm_crtc *crtc, *enabled = NULL;
1476 
1477 	if (IS_I945GM(dev))
1478 		wm_info = &i945_wm_info;
1479 	else if (!IS_GEN2(dev))
1480 		wm_info = &i915_wm_info;
1481 	else
1482 		wm_info = &i855_wm_info;
1483 
1484 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1485 	crtc = intel_get_crtc_for_plane(dev, 0);
1486 	if (intel_crtc_active(crtc)) {
1487 		int cpp = crtc->fb->bits_per_pixel / 8;
1488 		if (IS_GEN2(dev))
1489 			cpp = 4;
1490 
1491 		planea_wm = intel_calculate_wm(crtc->mode.clock,
1492 					       wm_info, fifo_size, cpp,
1493 					       latency_ns);
1494 		enabled = crtc;
1495 	} else
1496 		planea_wm = fifo_size - wm_info->guard_size;
1497 
1498 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1499 	crtc = intel_get_crtc_for_plane(dev, 1);
1500 	if (intel_crtc_active(crtc)) {
1501 		int cpp = crtc->fb->bits_per_pixel / 8;
1502 		if (IS_GEN2(dev))
1503 			cpp = 4;
1504 
1505 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1506 					       wm_info, fifo_size, cpp,
1507 					       latency_ns);
1508 		if (enabled == NULL)
1509 			enabled = crtc;
1510 		else
1511 			enabled = NULL;
1512 	} else
1513 		planeb_wm = fifo_size - wm_info->guard_size;
1514 
1515 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1516 
1517 	/*
1518 	 * Overlay gets an aggressive default since video jitter is bad.
1519 	 */
1520 	cwm = 2;
1521 
1522 	/* Play safe and disable self-refresh before adjusting watermarks. */
1523 	if (IS_I945G(dev) || IS_I945GM(dev))
1524 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1525 	else if (IS_I915GM(dev))
1526 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1527 
1528 	/* Calc sr entries for one plane configs */
1529 	if (HAS_FW_BLC(dev) && enabled) {
1530 		/* self-refresh has much higher latency */
1531 		static const int sr_latency_ns = 6000;
1532 		int clock = enabled->mode.clock;
1533 		int htotal = enabled->mode.htotal;
1534 		int hdisplay = enabled->mode.hdisplay;
1535 		int pixel_size = enabled->fb->bits_per_pixel / 8;
1536 		unsigned long line_time_us;
1537 		int entries;
1538 
1539 		line_time_us = (htotal * 1000) / clock;
1540 
1541 		/* Use ns/us then divide to preserve precision */
1542 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1543 			pixel_size * hdisplay;
1544 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1545 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1546 		srwm = wm_info->fifo_size - entries;
1547 		if (srwm < 0)
1548 			srwm = 1;
1549 
1550 		if (IS_I945G(dev) || IS_I945GM(dev))
1551 			I915_WRITE(FW_BLC_SELF,
1552 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1553 		else if (IS_I915GM(dev))
1554 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1555 	}
1556 
1557 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1558 		      planea_wm, planeb_wm, cwm, srwm);
1559 
1560 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1561 	fwater_hi = (cwm & 0x1f);
1562 
1563 	/* Set request length to 8 cachelines per fetch */
1564 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1565 	fwater_hi = fwater_hi | (1 << 8);
1566 
1567 	I915_WRITE(FW_BLC, fwater_lo);
1568 	I915_WRITE(FW_BLC2, fwater_hi);
1569 
1570 	if (HAS_FW_BLC(dev)) {
1571 		if (enabled) {
1572 			if (IS_I945G(dev) || IS_I945GM(dev))
1573 				I915_WRITE(FW_BLC_SELF,
1574 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1575 			else if (IS_I915GM(dev))
1576 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1577 			DRM_DEBUG_KMS("memory self refresh enabled\n");
1578 		} else
1579 			DRM_DEBUG_KMS("memory self refresh disabled\n");
1580 	}
1581 }
1582 
1583 static void i830_update_wm(struct drm_device *dev)
1584 {
1585 	struct drm_i915_private *dev_priv = dev->dev_private;
1586 	struct drm_crtc *crtc;
1587 	uint32_t fwater_lo;
1588 	int planea_wm;
1589 
1590 	crtc = single_enabled_crtc(dev);
1591 	if (crtc == NULL)
1592 		return;
1593 
1594 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1595 				       dev_priv->display.get_fifo_size(dev, 0),
1596 				       4, latency_ns);
1597 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1598 	fwater_lo |= (3<<8) | planea_wm;
1599 
1600 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1601 
1602 	I915_WRITE(FW_BLC, fwater_lo);
1603 }
1604 
1605 #define ILK_LP0_PLANE_LATENCY		700
1606 #define ILK_LP0_CURSOR_LATENCY		1300
1607 
1608 /*
1609  * Check the wm result.
1610  *
1611  * If any calculated watermark values is larger than the maximum value that
1612  * can be programmed into the associated watermark register, that watermark
1613  * must be disabled.
1614  */
1615 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1616 				int fbc_wm, int display_wm, int cursor_wm,
1617 				const struct intel_watermark_params *display,
1618 				const struct intel_watermark_params *cursor)
1619 {
1620 	struct drm_i915_private *dev_priv = dev->dev_private;
1621 
1622 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1623 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1624 
1625 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1626 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1627 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1628 
1629 		/* fbc has it's own way to disable FBC WM */
1630 		I915_WRITE(DISP_ARB_CTL,
1631 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1632 		return false;
1633 	}
1634 
1635 	if (display_wm > display->max_wm) {
1636 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1637 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1638 		return false;
1639 	}
1640 
1641 	if (cursor_wm > cursor->max_wm) {
1642 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1643 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1644 		return false;
1645 	}
1646 
1647 	if (!(fbc_wm || display_wm || cursor_wm)) {
1648 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1649 		return false;
1650 	}
1651 
1652 	return true;
1653 }
1654 
1655 /*
1656  * Compute watermark values of WM[1-3],
1657  */
1658 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1659 				  int latency_ns,
1660 				  const struct intel_watermark_params *display,
1661 				  const struct intel_watermark_params *cursor,
1662 				  int *fbc_wm, int *display_wm, int *cursor_wm)
1663 {
1664 	struct drm_crtc *crtc;
1665 	unsigned long line_time_us;
1666 	int hdisplay, htotal, pixel_size, clock;
1667 	int line_count, line_size;
1668 	int small, large;
1669 	int entries;
1670 
1671 	if (!latency_ns) {
1672 		*fbc_wm = *display_wm = *cursor_wm = 0;
1673 		return false;
1674 	}
1675 
1676 	crtc = intel_get_crtc_for_plane(dev, plane);
1677 	hdisplay = crtc->mode.hdisplay;
1678 	htotal = crtc->mode.htotal;
1679 	clock = crtc->mode.clock;
1680 	pixel_size = crtc->fb->bits_per_pixel / 8;
1681 
1682 	line_time_us = (htotal * 1000) / clock;
1683 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1684 	line_size = hdisplay * pixel_size;
1685 
1686 	/* Use the minimum of the small and large buffer method for primary */
1687 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1688 	large = line_count * line_size;
1689 
1690 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1691 	*display_wm = entries + display->guard_size;
1692 
1693 	/*
1694 	 * Spec says:
1695 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1696 	 */
1697 	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1698 
1699 	/* calculate the self-refresh watermark for display cursor */
1700 	entries = line_count * pixel_size * 64;
1701 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1702 	*cursor_wm = entries + cursor->guard_size;
1703 
1704 	return ironlake_check_srwm(dev, level,
1705 				   *fbc_wm, *display_wm, *cursor_wm,
1706 				   display, cursor);
1707 }
1708 
1709 static void ironlake_update_wm(struct drm_device *dev)
1710 {
1711 	struct drm_i915_private *dev_priv = dev->dev_private;
1712 	int fbc_wm, plane_wm, cursor_wm;
1713 	unsigned int enabled;
1714 
1715 	enabled = 0;
1716 	if (g4x_compute_wm0(dev, 0,
1717 			    &ironlake_display_wm_info,
1718 			    ILK_LP0_PLANE_LATENCY,
1719 			    &ironlake_cursor_wm_info,
1720 			    ILK_LP0_CURSOR_LATENCY,
1721 			    &plane_wm, &cursor_wm)) {
1722 		I915_WRITE(WM0_PIPEA_ILK,
1723 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1724 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1725 			      " plane %d, " "cursor: %d\n",
1726 			      plane_wm, cursor_wm);
1727 		enabled |= 1;
1728 	}
1729 
1730 	if (g4x_compute_wm0(dev, 1,
1731 			    &ironlake_display_wm_info,
1732 			    ILK_LP0_PLANE_LATENCY,
1733 			    &ironlake_cursor_wm_info,
1734 			    ILK_LP0_CURSOR_LATENCY,
1735 			    &plane_wm, &cursor_wm)) {
1736 		I915_WRITE(WM0_PIPEB_ILK,
1737 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1738 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1739 			      " plane %d, cursor: %d\n",
1740 			      plane_wm, cursor_wm);
1741 		enabled |= 2;
1742 	}
1743 
1744 	/*
1745 	 * Calculate and update the self-refresh watermark only when one
1746 	 * display plane is used.
1747 	 */
1748 	I915_WRITE(WM3_LP_ILK, 0);
1749 	I915_WRITE(WM2_LP_ILK, 0);
1750 	I915_WRITE(WM1_LP_ILK, 0);
1751 
1752 	if (!single_plane_enabled(enabled))
1753 		return;
1754 	enabled = ffs(enabled) - 1;
1755 
1756 	/* WM1 */
1757 	if (!ironlake_compute_srwm(dev, 1, enabled,
1758 				   ILK_READ_WM1_LATENCY() * 500,
1759 				   &ironlake_display_srwm_info,
1760 				   &ironlake_cursor_srwm_info,
1761 				   &fbc_wm, &plane_wm, &cursor_wm))
1762 		return;
1763 
1764 	I915_WRITE(WM1_LP_ILK,
1765 		   WM1_LP_SR_EN |
1766 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1767 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1768 		   (plane_wm << WM1_LP_SR_SHIFT) |
1769 		   cursor_wm);
1770 
1771 	/* WM2 */
1772 	if (!ironlake_compute_srwm(dev, 2, enabled,
1773 				   ILK_READ_WM2_LATENCY() * 500,
1774 				   &ironlake_display_srwm_info,
1775 				   &ironlake_cursor_srwm_info,
1776 				   &fbc_wm, &plane_wm, &cursor_wm))
1777 		return;
1778 
1779 	I915_WRITE(WM2_LP_ILK,
1780 		   WM2_LP_EN |
1781 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1782 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1783 		   (plane_wm << WM1_LP_SR_SHIFT) |
1784 		   cursor_wm);
1785 
1786 	/*
1787 	 * WM3 is unsupported on ILK, probably because we don't have latency
1788 	 * data for that power state
1789 	 */
1790 }
1791 
1792 static void sandybridge_update_wm(struct drm_device *dev)
1793 {
1794 	struct drm_i915_private *dev_priv = dev->dev_private;
1795 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1796 	u32 val;
1797 	int fbc_wm, plane_wm, cursor_wm;
1798 	unsigned int enabled;
1799 
1800 	enabled = 0;
1801 	if (g4x_compute_wm0(dev, 0,
1802 			    &sandybridge_display_wm_info, latency,
1803 			    &sandybridge_cursor_wm_info, latency,
1804 			    &plane_wm, &cursor_wm)) {
1805 		val = I915_READ(WM0_PIPEA_ILK);
1806 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1807 		I915_WRITE(WM0_PIPEA_ILK, val |
1808 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1809 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1810 			      " plane %d, " "cursor: %d\n",
1811 			      plane_wm, cursor_wm);
1812 		enabled |= 1;
1813 	}
1814 
1815 	if (g4x_compute_wm0(dev, 1,
1816 			    &sandybridge_display_wm_info, latency,
1817 			    &sandybridge_cursor_wm_info, latency,
1818 			    &plane_wm, &cursor_wm)) {
1819 		val = I915_READ(WM0_PIPEB_ILK);
1820 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1821 		I915_WRITE(WM0_PIPEB_ILK, val |
1822 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1823 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1824 			      " plane %d, cursor: %d\n",
1825 			      plane_wm, cursor_wm);
1826 		enabled |= 2;
1827 	}
1828 
1829 	/*
1830 	 * Calculate and update the self-refresh watermark only when one
1831 	 * display plane is used.
1832 	 *
1833 	 * SNB support 3 levels of watermark.
1834 	 *
1835 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1836 	 * and disabled in the descending order
1837 	 *
1838 	 */
1839 	I915_WRITE(WM3_LP_ILK, 0);
1840 	I915_WRITE(WM2_LP_ILK, 0);
1841 	I915_WRITE(WM1_LP_ILK, 0);
1842 
1843 	if (!single_plane_enabled(enabled) ||
1844 	    dev_priv->sprite_scaling_enabled)
1845 		return;
1846 	enabled = ffs(enabled) - 1;
1847 
1848 	/* WM1 */
1849 	if (!ironlake_compute_srwm(dev, 1, enabled,
1850 				   SNB_READ_WM1_LATENCY() * 500,
1851 				   &sandybridge_display_srwm_info,
1852 				   &sandybridge_cursor_srwm_info,
1853 				   &fbc_wm, &plane_wm, &cursor_wm))
1854 		return;
1855 
1856 	I915_WRITE(WM1_LP_ILK,
1857 		   WM1_LP_SR_EN |
1858 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1859 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1860 		   (plane_wm << WM1_LP_SR_SHIFT) |
1861 		   cursor_wm);
1862 
1863 	/* WM2 */
1864 	if (!ironlake_compute_srwm(dev, 2, enabled,
1865 				   SNB_READ_WM2_LATENCY() * 500,
1866 				   &sandybridge_display_srwm_info,
1867 				   &sandybridge_cursor_srwm_info,
1868 				   &fbc_wm, &plane_wm, &cursor_wm))
1869 		return;
1870 
1871 	I915_WRITE(WM2_LP_ILK,
1872 		   WM2_LP_EN |
1873 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1874 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1875 		   (plane_wm << WM1_LP_SR_SHIFT) |
1876 		   cursor_wm);
1877 
1878 	/* WM3 */
1879 	if (!ironlake_compute_srwm(dev, 3, enabled,
1880 				   SNB_READ_WM3_LATENCY() * 500,
1881 				   &sandybridge_display_srwm_info,
1882 				   &sandybridge_cursor_srwm_info,
1883 				   &fbc_wm, &plane_wm, &cursor_wm))
1884 		return;
1885 
1886 	I915_WRITE(WM3_LP_ILK,
1887 		   WM3_LP_EN |
1888 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1889 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1890 		   (plane_wm << WM1_LP_SR_SHIFT) |
1891 		   cursor_wm);
1892 }
1893 
1894 static void ivybridge_update_wm(struct drm_device *dev)
1895 {
1896 	struct drm_i915_private *dev_priv = dev->dev_private;
1897 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1898 	u32 val;
1899 	int fbc_wm, plane_wm, cursor_wm;
1900 	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1901 	unsigned int enabled;
1902 
1903 	enabled = 0;
1904 	if (g4x_compute_wm0(dev, 0,
1905 			    &sandybridge_display_wm_info, latency,
1906 			    &sandybridge_cursor_wm_info, latency,
1907 			    &plane_wm, &cursor_wm)) {
1908 		val = I915_READ(WM0_PIPEA_ILK);
1909 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1910 		I915_WRITE(WM0_PIPEA_ILK, val |
1911 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1912 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1913 			      " plane %d, " "cursor: %d\n",
1914 			      plane_wm, cursor_wm);
1915 		enabled |= 1;
1916 	}
1917 
1918 	if (g4x_compute_wm0(dev, 1,
1919 			    &sandybridge_display_wm_info, latency,
1920 			    &sandybridge_cursor_wm_info, latency,
1921 			    &plane_wm, &cursor_wm)) {
1922 		val = I915_READ(WM0_PIPEB_ILK);
1923 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1924 		I915_WRITE(WM0_PIPEB_ILK, val |
1925 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1926 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1927 			      " plane %d, cursor: %d\n",
1928 			      plane_wm, cursor_wm);
1929 		enabled |= 2;
1930 	}
1931 
1932 	if (g4x_compute_wm0(dev, 2,
1933 			    &sandybridge_display_wm_info, latency,
1934 			    &sandybridge_cursor_wm_info, latency,
1935 			    &plane_wm, &cursor_wm)) {
1936 		val = I915_READ(WM0_PIPEC_IVB);
1937 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1938 		I915_WRITE(WM0_PIPEC_IVB, val |
1939 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1940 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1941 			      " plane %d, cursor: %d\n",
1942 			      plane_wm, cursor_wm);
1943 		enabled |= 3;
1944 	}
1945 
1946 	/*
1947 	 * Calculate and update the self-refresh watermark only when one
1948 	 * display plane is used.
1949 	 *
1950 	 * SNB support 3 levels of watermark.
1951 	 *
1952 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1953 	 * and disabled in the descending order
1954 	 *
1955 	 */
1956 	I915_WRITE(WM3_LP_ILK, 0);
1957 	I915_WRITE(WM2_LP_ILK, 0);
1958 	I915_WRITE(WM1_LP_ILK, 0);
1959 
1960 	if (!single_plane_enabled(enabled) ||
1961 	    dev_priv->sprite_scaling_enabled)
1962 		return;
1963 	enabled = ffs(enabled) - 1;
1964 
1965 	/* WM1 */
1966 	if (!ironlake_compute_srwm(dev, 1, enabled,
1967 				   SNB_READ_WM1_LATENCY() * 500,
1968 				   &sandybridge_display_srwm_info,
1969 				   &sandybridge_cursor_srwm_info,
1970 				   &fbc_wm, &plane_wm, &cursor_wm))
1971 		return;
1972 
1973 	I915_WRITE(WM1_LP_ILK,
1974 		   WM1_LP_SR_EN |
1975 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1976 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1977 		   (plane_wm << WM1_LP_SR_SHIFT) |
1978 		   cursor_wm);
1979 
1980 	/* WM2 */
1981 	if (!ironlake_compute_srwm(dev, 2, enabled,
1982 				   SNB_READ_WM2_LATENCY() * 500,
1983 				   &sandybridge_display_srwm_info,
1984 				   &sandybridge_cursor_srwm_info,
1985 				   &fbc_wm, &plane_wm, &cursor_wm))
1986 		return;
1987 
1988 	I915_WRITE(WM2_LP_ILK,
1989 		   WM2_LP_EN |
1990 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1991 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1992 		   (plane_wm << WM1_LP_SR_SHIFT) |
1993 		   cursor_wm);
1994 
1995 	/* WM3, note we have to correct the cursor latency */
1996 	if (!ironlake_compute_srwm(dev, 3, enabled,
1997 				   SNB_READ_WM3_LATENCY() * 500,
1998 				   &sandybridge_display_srwm_info,
1999 				   &sandybridge_cursor_srwm_info,
2000 				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2001 	    !ironlake_compute_srwm(dev, 3, enabled,
2002 				   2 * SNB_READ_WM3_LATENCY() * 500,
2003 				   &sandybridge_display_srwm_info,
2004 				   &sandybridge_cursor_srwm_info,
2005 				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2006 		return;
2007 
2008 	I915_WRITE(WM3_LP_ILK,
2009 		   WM3_LP_EN |
2010 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2011 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2012 		   (plane_wm << WM1_LP_SR_SHIFT) |
2013 		   cursor_wm);
2014 }
2015 
2016 static void
2017 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2018 				 struct drm_display_mode *mode)
2019 {
2020 	struct drm_i915_private *dev_priv = dev->dev_private;
2021 	u32 temp;
2022 
2023 	temp = I915_READ(PIPE_WM_LINETIME(pipe));
2024 	temp &= ~PIPE_WM_LINETIME_MASK;
2025 
2026 	/* The WM are computed with base on how long it takes to fill a single
2027 	 * row at the given clock rate, multiplied by 8.
2028 	 * */
2029 	temp |= PIPE_WM_LINETIME_TIME(
2030 		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2031 
2032 	/* IPS watermarks are only used by pipe A, and are ignored by
2033 	 * pipes B and C.  They are calculated similarly to the common
2034 	 * linetime values, except that we are using CD clock frequency
2035 	 * in MHz instead of pixel rate for the division.
2036 	 *
2037 	 * This is a placeholder for the IPS watermark calculation code.
2038 	 */
2039 
2040 	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2041 }
2042 
2043 static bool
2044 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2045 			      uint32_t sprite_width, int pixel_size,
2046 			      const struct intel_watermark_params *display,
2047 			      int display_latency_ns, int *sprite_wm)
2048 {
2049 	struct drm_crtc *crtc;
2050 	int clock;
2051 	int entries, tlb_miss;
2052 
2053 	crtc = intel_get_crtc_for_plane(dev, plane);
2054 	if (!intel_crtc_active(crtc)) {
2055 		*sprite_wm = display->guard_size;
2056 		return false;
2057 	}
2058 
2059 	clock = crtc->mode.clock;
2060 
2061 	/* Use the small buffer method to calculate the sprite watermark */
2062 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2063 	tlb_miss = display->fifo_size*display->cacheline_size -
2064 		sprite_width * 8;
2065 	if (tlb_miss > 0)
2066 		entries += tlb_miss;
2067 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
2068 	*sprite_wm = entries + display->guard_size;
2069 	if (*sprite_wm > (int)display->max_wm)
2070 		*sprite_wm = display->max_wm;
2071 
2072 	return true;
2073 }
2074 
2075 static bool
2076 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2077 				uint32_t sprite_width, int pixel_size,
2078 				const struct intel_watermark_params *display,
2079 				int latency_ns, int *sprite_wm)
2080 {
2081 	struct drm_crtc *crtc;
2082 	unsigned long line_time_us;
2083 	int clock;
2084 	int line_count, line_size;
2085 	int small, large;
2086 	int entries;
2087 
2088 	if (!latency_ns) {
2089 		*sprite_wm = 0;
2090 		return false;
2091 	}
2092 
2093 	crtc = intel_get_crtc_for_plane(dev, plane);
2094 	clock = crtc->mode.clock;
2095 	if (!clock) {
2096 		*sprite_wm = 0;
2097 		return false;
2098 	}
2099 
2100 	line_time_us = (sprite_width * 1000) / clock;
2101 	if (!line_time_us) {
2102 		*sprite_wm = 0;
2103 		return false;
2104 	}
2105 
2106 	line_count = (latency_ns / line_time_us + 1000) / 1000;
2107 	line_size = sprite_width * pixel_size;
2108 
2109 	/* Use the minimum of the small and large buffer method for primary */
2110 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2111 	large = line_count * line_size;
2112 
2113 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2114 	*sprite_wm = entries + display->guard_size;
2115 
2116 	return *sprite_wm > 0x3ff ? false : true;
2117 }
2118 
2119 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2120 					 uint32_t sprite_width, int pixel_size)
2121 {
2122 	struct drm_i915_private *dev_priv = dev->dev_private;
2123 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
2124 	u32 val;
2125 	int sprite_wm, reg;
2126 	int ret;
2127 
2128 	switch (pipe) {
2129 	case 0:
2130 		reg = WM0_PIPEA_ILK;
2131 		break;
2132 	case 1:
2133 		reg = WM0_PIPEB_ILK;
2134 		break;
2135 	case 2:
2136 		reg = WM0_PIPEC_IVB;
2137 		break;
2138 	default:
2139 		return; /* bad pipe */
2140 	}
2141 
2142 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2143 					    &sandybridge_display_wm_info,
2144 					    latency, &sprite_wm);
2145 	if (!ret) {
2146 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2147 			      pipe);
2148 		return;
2149 	}
2150 
2151 	val = I915_READ(reg);
2152 	val &= ~WM0_PIPE_SPRITE_MASK;
2153 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2154 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2155 
2156 
2157 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2158 					      pixel_size,
2159 					      &sandybridge_display_srwm_info,
2160 					      SNB_READ_WM1_LATENCY() * 500,
2161 					      &sprite_wm);
2162 	if (!ret) {
2163 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2164 			      pipe);
2165 		return;
2166 	}
2167 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2168 
2169 	/* Only IVB has two more LP watermarks for sprite */
2170 	if (!IS_IVYBRIDGE(dev))
2171 		return;
2172 
2173 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2174 					      pixel_size,
2175 					      &sandybridge_display_srwm_info,
2176 					      SNB_READ_WM2_LATENCY() * 500,
2177 					      &sprite_wm);
2178 	if (!ret) {
2179 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2180 			      pipe);
2181 		return;
2182 	}
2183 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2184 
2185 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2186 					      pixel_size,
2187 					      &sandybridge_display_srwm_info,
2188 					      SNB_READ_WM3_LATENCY() * 500,
2189 					      &sprite_wm);
2190 	if (!ret) {
2191 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2192 			      pipe);
2193 		return;
2194 	}
2195 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2196 }
2197 
2198 /**
2199  * intel_update_watermarks - update FIFO watermark values based on current modes
2200  *
2201  * Calculate watermark values for the various WM regs based on current mode
2202  * and plane configuration.
2203  *
2204  * There are several cases to deal with here:
2205  *   - normal (i.e. non-self-refresh)
2206  *   - self-refresh (SR) mode
2207  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2208  *   - lines are small relative to FIFO size (buffer can hold more than 2
2209  *     lines), so need to account for TLB latency
2210  *
2211  *   The normal calculation is:
2212  *     watermark = dotclock * bytes per pixel * latency
2213  *   where latency is platform & configuration dependent (we assume pessimal
2214  *   values here).
2215  *
2216  *   The SR calculation is:
2217  *     watermark = (trunc(latency/line time)+1) * surface width *
2218  *       bytes per pixel
2219  *   where
2220  *     line time = htotal / dotclock
2221  *     surface width = hdisplay for normal plane and 64 for cursor
2222  *   and latency is assumed to be high, as above.
2223  *
2224  * The final value programmed to the register should always be rounded up,
2225  * and include an extra 2 entries to account for clock crossings.
2226  *
2227  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2228  * to set the non-SR watermarks to 8.
2229  */
2230 void intel_update_watermarks(struct drm_device *dev)
2231 {
2232 	struct drm_i915_private *dev_priv = dev->dev_private;
2233 
2234 	if (dev_priv->display.update_wm)
2235 		dev_priv->display.update_wm(dev);
2236 }
2237 
2238 void intel_update_linetime_watermarks(struct drm_device *dev,
2239 		int pipe, struct drm_display_mode *mode)
2240 {
2241 	struct drm_i915_private *dev_priv = dev->dev_private;
2242 
2243 	if (dev_priv->display.update_linetime_wm)
2244 		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2245 }
2246 
2247 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2248 				    uint32_t sprite_width, int pixel_size)
2249 {
2250 	struct drm_i915_private *dev_priv = dev->dev_private;
2251 
2252 	if (dev_priv->display.update_sprite_wm)
2253 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2254 						   pixel_size);
2255 }
2256 
2257 static struct drm_i915_gem_object *
2258 intel_alloc_context_page(struct drm_device *dev)
2259 {
2260 	struct drm_i915_gem_object *ctx;
2261 	int ret;
2262 
2263 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2264 
2265 	ctx = i915_gem_alloc_object(dev, 4096);
2266 	if (!ctx) {
2267 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2268 		return NULL;
2269 	}
2270 
2271 	ret = i915_gem_object_pin(ctx, 4096, true, false);
2272 	if (ret) {
2273 		DRM_ERROR("failed to pin power context: %d\n", ret);
2274 		goto err_unref;
2275 	}
2276 
2277 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2278 	if (ret) {
2279 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2280 		goto err_unpin;
2281 	}
2282 
2283 	return ctx;
2284 
2285 err_unpin:
2286 	i915_gem_object_unpin(ctx);
2287 err_unref:
2288 	drm_gem_object_unreference(&ctx->base);
2289 	mutex_unlock(&dev->struct_mutex);
2290 	return NULL;
2291 }
2292 
2293 /**
2294  * Lock protecting IPS related data structures
2295  */
2296 DEFINE_SPINLOCK(mchdev_lock);
2297 
2298 /* Global for IPS driver to get at the current i915 device. Protected by
2299  * mchdev_lock. */
2300 static struct drm_i915_private *i915_mch_dev;
2301 
2302 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2303 {
2304 	struct drm_i915_private *dev_priv = dev->dev_private;
2305 	u16 rgvswctl;
2306 
2307 	assert_spin_locked(&mchdev_lock);
2308 
2309 	rgvswctl = I915_READ16(MEMSWCTL);
2310 	if (rgvswctl & MEMCTL_CMD_STS) {
2311 		DRM_DEBUG("gpu busy, RCS change rejected\n");
2312 		return false; /* still busy with another command */
2313 	}
2314 
2315 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2316 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2317 	I915_WRITE16(MEMSWCTL, rgvswctl);
2318 	POSTING_READ16(MEMSWCTL);
2319 
2320 	rgvswctl |= MEMCTL_CMD_STS;
2321 	I915_WRITE16(MEMSWCTL, rgvswctl);
2322 
2323 	return true;
2324 }
2325 
2326 static void ironlake_enable_drps(struct drm_device *dev)
2327 {
2328 	struct drm_i915_private *dev_priv = dev->dev_private;
2329 	u32 rgvmodectl = I915_READ(MEMMODECTL);
2330 	u8 fmax, fmin, fstart, vstart;
2331 
2332 	spin_lock_irq(&mchdev_lock);
2333 
2334 	/* Enable temp reporting */
2335 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2336 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2337 
2338 	/* 100ms RC evaluation intervals */
2339 	I915_WRITE(RCUPEI, 100000);
2340 	I915_WRITE(RCDNEI, 100000);
2341 
2342 	/* Set max/min thresholds to 90ms and 80ms respectively */
2343 	I915_WRITE(RCBMAXAVG, 90000);
2344 	I915_WRITE(RCBMINAVG, 80000);
2345 
2346 	I915_WRITE(MEMIHYST, 1);
2347 
2348 	/* Set up min, max, and cur for interrupt handling */
2349 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2350 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2351 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2352 		MEMMODE_FSTART_SHIFT;
2353 
2354 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2355 		PXVFREQ_PX_SHIFT;
2356 
2357 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2358 	dev_priv->ips.fstart = fstart;
2359 
2360 	dev_priv->ips.max_delay = fstart;
2361 	dev_priv->ips.min_delay = fmin;
2362 	dev_priv->ips.cur_delay = fstart;
2363 
2364 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2365 			 fmax, fmin, fstart);
2366 
2367 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2368 
2369 	/*
2370 	 * Interrupts will be enabled in ironlake_irq_postinstall
2371 	 */
2372 
2373 	I915_WRITE(VIDSTART, vstart);
2374 	POSTING_READ(VIDSTART);
2375 
2376 	rgvmodectl |= MEMMODE_SWMODE_EN;
2377 	I915_WRITE(MEMMODECTL, rgvmodectl);
2378 
2379 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2380 		DRM_ERROR("stuck trying to change perf mode\n");
2381 	mdelay(1);
2382 
2383 	ironlake_set_drps(dev, fstart);
2384 
2385 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2386 		I915_READ(0x112e0);
2387 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2388 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2389 	getrawmonotonic(&dev_priv->ips.last_time2);
2390 
2391 	spin_unlock_irq(&mchdev_lock);
2392 }
2393 
2394 static void ironlake_disable_drps(struct drm_device *dev)
2395 {
2396 	struct drm_i915_private *dev_priv = dev->dev_private;
2397 	u16 rgvswctl;
2398 
2399 	spin_lock_irq(&mchdev_lock);
2400 
2401 	rgvswctl = I915_READ16(MEMSWCTL);
2402 
2403 	/* Ack interrupts, disable EFC interrupt */
2404 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2405 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2406 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2407 	I915_WRITE(DEIIR, DE_PCU_EVENT);
2408 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2409 
2410 	/* Go back to the starting frequency */
2411 	ironlake_set_drps(dev, dev_priv->ips.fstart);
2412 	mdelay(1);
2413 	rgvswctl |= MEMCTL_CMD_STS;
2414 	I915_WRITE(MEMSWCTL, rgvswctl);
2415 	mdelay(1);
2416 
2417 	spin_unlock_irq(&mchdev_lock);
2418 }
2419 
2420 /* There's a funny hw issue where the hw returns all 0 when reading from
2421  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2422  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2423  * all limits and the gpu stuck at whatever frequency it is at atm).
2424  */
2425 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2426 {
2427 	u32 limits;
2428 
2429 	limits = 0;
2430 
2431 	if (*val >= dev_priv->rps.max_delay)
2432 		*val = dev_priv->rps.max_delay;
2433 	limits |= dev_priv->rps.max_delay << 24;
2434 
2435 	/* Only set the down limit when we've reached the lowest level to avoid
2436 	 * getting more interrupts, otherwise leave this clear. This prevents a
2437 	 * race in the hw when coming out of rc6: There's a tiny window where
2438 	 * the hw runs at the minimal clock before selecting the desired
2439 	 * frequency, if the down threshold expires in that window we will not
2440 	 * receive a down interrupt. */
2441 	if (*val <= dev_priv->rps.min_delay) {
2442 		*val = dev_priv->rps.min_delay;
2443 		limits |= dev_priv->rps.min_delay << 16;
2444 	}
2445 
2446 	return limits;
2447 }
2448 
2449 void gen6_set_rps(struct drm_device *dev, u8 val)
2450 {
2451 	struct drm_i915_private *dev_priv = dev->dev_private;
2452 	u32 limits = gen6_rps_limits(dev_priv, &val);
2453 
2454 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2455 	WARN_ON(val > dev_priv->rps.max_delay);
2456 	WARN_ON(val < dev_priv->rps.min_delay);
2457 
2458 	if (val == dev_priv->rps.cur_delay)
2459 		return;
2460 
2461 	I915_WRITE(GEN6_RPNSWREQ,
2462 		   GEN6_FREQUENCY(val) |
2463 		   GEN6_OFFSET(0) |
2464 		   GEN6_AGGRESSIVE_TURBO);
2465 
2466 	/* Make sure we continue to get interrupts
2467 	 * until we hit the minimum or maximum frequencies.
2468 	 */
2469 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2470 
2471 	POSTING_READ(GEN6_RPNSWREQ);
2472 
2473 	dev_priv->rps.cur_delay = val;
2474 
2475 	trace_intel_gpu_freq_change(val * 50);
2476 }
2477 
2478 static void gen6_disable_rps(struct drm_device *dev)
2479 {
2480 	struct drm_i915_private *dev_priv = dev->dev_private;
2481 
2482 	I915_WRITE(GEN6_RC_CONTROL, 0);
2483 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2484 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2485 	I915_WRITE(GEN6_PMIER, 0);
2486 	/* Complete PM interrupt masking here doesn't race with the rps work
2487 	 * item again unmasking PM interrupts because that is using a different
2488 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2489 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2490 
2491 	spin_lock_irq(&dev_priv->rps.lock);
2492 	dev_priv->rps.pm_iir = 0;
2493 	spin_unlock_irq(&dev_priv->rps.lock);
2494 
2495 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2496 }
2497 
2498 int intel_enable_rc6(const struct drm_device *dev)
2499 {
2500 	/* Respect the kernel parameter if it is set */
2501 	if (i915_enable_rc6 >= 0)
2502 		return i915_enable_rc6;
2503 
2504 	/* Disable RC6 on Ironlake */
2505 	if (INTEL_INFO(dev)->gen == 5)
2506 		return 0;
2507 
2508 	if (IS_HASWELL(dev)) {
2509 		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2510 		return INTEL_RC6_ENABLE;
2511 	}
2512 
2513 	/* snb/ivb have more than one rc6 state. */
2514 	if (INTEL_INFO(dev)->gen == 6) {
2515 		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2516 		return INTEL_RC6_ENABLE;
2517 	}
2518 
2519 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2520 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2521 }
2522 
2523 static void gen6_enable_rps(struct drm_device *dev)
2524 {
2525 	struct drm_i915_private *dev_priv = dev->dev_private;
2526 	struct intel_ring_buffer *ring;
2527 	u32 rp_state_cap;
2528 	u32 gt_perf_status;
2529 	u32 rc6vids, pcu_mbox, rc6_mask = 0;
2530 	u32 gtfifodbg;
2531 	int rc6_mode;
2532 	int i, ret;
2533 
2534 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2535 
2536 	/* Here begins a magic sequence of register writes to enable
2537 	 * auto-downclocking.
2538 	 *
2539 	 * Perhaps there might be some value in exposing these to
2540 	 * userspace...
2541 	 */
2542 	I915_WRITE(GEN6_RC_STATE, 0);
2543 
2544 	/* Clear the DBG now so we don't confuse earlier errors */
2545 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2546 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2547 		I915_WRITE(GTFIFODBG, gtfifodbg);
2548 	}
2549 
2550 	gen6_gt_force_wake_get(dev_priv);
2551 
2552 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2553 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2554 
2555 	/* In units of 100MHz */
2556 	dev_priv->rps.max_delay = rp_state_cap & 0xff;
2557 	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2558 	dev_priv->rps.cur_delay = 0;
2559 
2560 	/* disable the counters and set deterministic thresholds */
2561 	I915_WRITE(GEN6_RC_CONTROL, 0);
2562 
2563 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2564 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2565 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2566 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2567 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2568 
2569 	for_each_ring(ring, dev_priv, i)
2570 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2571 
2572 	I915_WRITE(GEN6_RC_SLEEP, 0);
2573 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2574 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2575 	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2576 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2577 
2578 	/* Check if we are enabling RC6 */
2579 	rc6_mode = intel_enable_rc6(dev_priv->dev);
2580 	if (rc6_mode & INTEL_RC6_ENABLE)
2581 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2582 
2583 	/* We don't use those on Haswell */
2584 	if (!IS_HASWELL(dev)) {
2585 		if (rc6_mode & INTEL_RC6p_ENABLE)
2586 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2587 
2588 		if (rc6_mode & INTEL_RC6pp_ENABLE)
2589 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2590 	}
2591 
2592 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2593 			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2594 			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2595 			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2596 
2597 	I915_WRITE(GEN6_RC_CONTROL,
2598 		   rc6_mask |
2599 		   GEN6_RC_CTL_EI_MODE(1) |
2600 		   GEN6_RC_CTL_HW_ENABLE);
2601 
2602 	I915_WRITE(GEN6_RPNSWREQ,
2603 		   GEN6_FREQUENCY(10) |
2604 		   GEN6_OFFSET(0) |
2605 		   GEN6_AGGRESSIVE_TURBO);
2606 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2607 		   GEN6_FREQUENCY(12));
2608 
2609 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2610 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2611 		   dev_priv->rps.max_delay << 24 |
2612 		   dev_priv->rps.min_delay << 16);
2613 
2614 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2615 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2616 	I915_WRITE(GEN6_RP_UP_EI, 66000);
2617 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2618 
2619 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2620 	I915_WRITE(GEN6_RP_CONTROL,
2621 		   GEN6_RP_MEDIA_TURBO |
2622 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2623 		   GEN6_RP_MEDIA_IS_GFX |
2624 		   GEN6_RP_ENABLE |
2625 		   GEN6_RP_UP_BUSY_AVG |
2626 		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2627 
2628 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2629 	if (!ret) {
2630 		pcu_mbox = 0;
2631 		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2632 		if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2633 			dev_priv->rps.max_delay = pcu_mbox & 0xff;
2634 			DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2635 		}
2636 	} else {
2637 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2638 	}
2639 
2640 	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2641 
2642 	/* requires MSI enabled */
2643 	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2644 	spin_lock_irq(&dev_priv->rps.lock);
2645 	WARN_ON(dev_priv->rps.pm_iir != 0);
2646 	I915_WRITE(GEN6_PMIMR, 0);
2647 	spin_unlock_irq(&dev_priv->rps.lock);
2648 	/* enable all PM interrupts */
2649 	I915_WRITE(GEN6_PMINTRMSK, 0);
2650 
2651 	rc6vids = 0;
2652 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2653 	if (IS_GEN6(dev) && ret) {
2654 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2655 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2656 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2657 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2658 		rc6vids &= 0xffff00;
2659 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
2660 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2661 		if (ret)
2662 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2663 	}
2664 
2665 	gen6_gt_force_wake_put(dev_priv);
2666 }
2667 
2668 static void gen6_update_ring_freq(struct drm_device *dev)
2669 {
2670 	struct drm_i915_private *dev_priv = dev->dev_private;
2671 	int min_freq = 15;
2672 	int gpu_freq;
2673 	unsigned int ia_freq, max_ia_freq;
2674 	int scaling_factor = 180;
2675 
2676 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2677 
2678 	max_ia_freq = cpufreq_quick_get_max(0);
2679 	/*
2680 	 * Default to measured freq if none found, PCU will ensure we don't go
2681 	 * over
2682 	 */
2683 	if (!max_ia_freq)
2684 		max_ia_freq = tsc_khz;
2685 
2686 	/* Convert from kHz to MHz */
2687 	max_ia_freq /= 1000;
2688 
2689 	/*
2690 	 * For each potential GPU frequency, load a ring frequency we'd like
2691 	 * to use for memory access.  We do this by specifying the IA frequency
2692 	 * the PCU should use as a reference to determine the ring frequency.
2693 	 */
2694 	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2695 	     gpu_freq--) {
2696 		int diff = dev_priv->rps.max_delay - gpu_freq;
2697 
2698 		/*
2699 		 * For GPU frequencies less than 750MHz, just use the lowest
2700 		 * ring freq.
2701 		 */
2702 		if (gpu_freq < min_freq)
2703 			ia_freq = 800;
2704 		else
2705 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2706 		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2707 		ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2708 
2709 		sandybridge_pcode_write(dev_priv,
2710 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2711 					ia_freq | gpu_freq);
2712 	}
2713 }
2714 
2715 void ironlake_teardown_rc6(struct drm_device *dev)
2716 {
2717 	struct drm_i915_private *dev_priv = dev->dev_private;
2718 
2719 	if (dev_priv->ips.renderctx) {
2720 		i915_gem_object_unpin(dev_priv->ips.renderctx);
2721 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2722 		dev_priv->ips.renderctx = NULL;
2723 	}
2724 
2725 	if (dev_priv->ips.pwrctx) {
2726 		i915_gem_object_unpin(dev_priv->ips.pwrctx);
2727 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2728 		dev_priv->ips.pwrctx = NULL;
2729 	}
2730 }
2731 
2732 static void ironlake_disable_rc6(struct drm_device *dev)
2733 {
2734 	struct drm_i915_private *dev_priv = dev->dev_private;
2735 
2736 	if (I915_READ(PWRCTXA)) {
2737 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2738 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2739 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2740 			 50);
2741 
2742 		I915_WRITE(PWRCTXA, 0);
2743 		POSTING_READ(PWRCTXA);
2744 
2745 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2746 		POSTING_READ(RSTDBYCTL);
2747 	}
2748 }
2749 
2750 static int ironlake_setup_rc6(struct drm_device *dev)
2751 {
2752 	struct drm_i915_private *dev_priv = dev->dev_private;
2753 
2754 	if (dev_priv->ips.renderctx == NULL)
2755 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2756 	if (!dev_priv->ips.renderctx)
2757 		return -ENOMEM;
2758 
2759 	if (dev_priv->ips.pwrctx == NULL)
2760 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2761 	if (!dev_priv->ips.pwrctx) {
2762 		ironlake_teardown_rc6(dev);
2763 		return -ENOMEM;
2764 	}
2765 
2766 	return 0;
2767 }
2768 
2769 static void ironlake_enable_rc6(struct drm_device *dev)
2770 {
2771 	struct drm_i915_private *dev_priv = dev->dev_private;
2772 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2773 	bool was_interruptible;
2774 	int ret;
2775 
2776 	/* rc6 disabled by default due to repeated reports of hanging during
2777 	 * boot and resume.
2778 	 */
2779 	if (!intel_enable_rc6(dev))
2780 		return;
2781 
2782 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2783 
2784 	ret = ironlake_setup_rc6(dev);
2785 	if (ret)
2786 		return;
2787 
2788 	was_interruptible = dev_priv->mm.interruptible;
2789 	dev_priv->mm.interruptible = false;
2790 
2791 	/*
2792 	 * GPU can automatically power down the render unit if given a page
2793 	 * to save state.
2794 	 */
2795 	ret = intel_ring_begin(ring, 6);
2796 	if (ret) {
2797 		ironlake_teardown_rc6(dev);
2798 		dev_priv->mm.interruptible = was_interruptible;
2799 		return;
2800 	}
2801 
2802 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2803 	intel_ring_emit(ring, MI_SET_CONTEXT);
2804 	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2805 			MI_MM_SPACE_GTT |
2806 			MI_SAVE_EXT_STATE_EN |
2807 			MI_RESTORE_EXT_STATE_EN |
2808 			MI_RESTORE_INHIBIT);
2809 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2810 	intel_ring_emit(ring, MI_NOOP);
2811 	intel_ring_emit(ring, MI_FLUSH);
2812 	intel_ring_advance(ring);
2813 
2814 	/*
2815 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2816 	 * does an implicit flush, combined with MI_FLUSH above, it should be
2817 	 * safe to assume that renderctx is valid
2818 	 */
2819 	ret = intel_ring_idle(ring);
2820 	dev_priv->mm.interruptible = was_interruptible;
2821 	if (ret) {
2822 		DRM_ERROR("failed to enable ironlake power power savings\n");
2823 		ironlake_teardown_rc6(dev);
2824 		return;
2825 	}
2826 
2827 	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2828 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2829 }
2830 
2831 static unsigned long intel_pxfreq(u32 vidfreq)
2832 {
2833 	unsigned long freq;
2834 	int div = (vidfreq & 0x3f0000) >> 16;
2835 	int post = (vidfreq & 0x3000) >> 12;
2836 	int pre = (vidfreq & 0x7);
2837 
2838 	if (!pre)
2839 		return 0;
2840 
2841 	freq = ((div * 133333) / ((1<<post) * pre));
2842 
2843 	return freq;
2844 }
2845 
2846 static const struct cparams {
2847 	u16 i;
2848 	u16 t;
2849 	u16 m;
2850 	u16 c;
2851 } cparams[] = {
2852 	{ 1, 1333, 301, 28664 },
2853 	{ 1, 1066, 294, 24460 },
2854 	{ 1, 800, 294, 25192 },
2855 	{ 0, 1333, 276, 27605 },
2856 	{ 0, 1066, 276, 27605 },
2857 	{ 0, 800, 231, 23784 },
2858 };
2859 
2860 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2861 {
2862 	u64 total_count, diff, ret;
2863 	u32 count1, count2, count3, m = 0, c = 0;
2864 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
2865 	int i;
2866 
2867 	assert_spin_locked(&mchdev_lock);
2868 
2869 	diff1 = now - dev_priv->ips.last_time1;
2870 
2871 	/* Prevent division-by-zero if we are asking too fast.
2872 	 * Also, we don't get interesting results if we are polling
2873 	 * faster than once in 10ms, so just return the saved value
2874 	 * in such cases.
2875 	 */
2876 	if (diff1 <= 10)
2877 		return dev_priv->ips.chipset_power;
2878 
2879 	count1 = I915_READ(DMIEC);
2880 	count2 = I915_READ(DDREC);
2881 	count3 = I915_READ(CSIEC);
2882 
2883 	total_count = count1 + count2 + count3;
2884 
2885 	/* FIXME: handle per-counter overflow */
2886 	if (total_count < dev_priv->ips.last_count1) {
2887 		diff = ~0UL - dev_priv->ips.last_count1;
2888 		diff += total_count;
2889 	} else {
2890 		diff = total_count - dev_priv->ips.last_count1;
2891 	}
2892 
2893 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2894 		if (cparams[i].i == dev_priv->ips.c_m &&
2895 		    cparams[i].t == dev_priv->ips.r_t) {
2896 			m = cparams[i].m;
2897 			c = cparams[i].c;
2898 			break;
2899 		}
2900 	}
2901 
2902 	diff = div_u64(diff, diff1);
2903 	ret = ((m * diff) + c);
2904 	ret = div_u64(ret, 10);
2905 
2906 	dev_priv->ips.last_count1 = total_count;
2907 	dev_priv->ips.last_time1 = now;
2908 
2909 	dev_priv->ips.chipset_power = ret;
2910 
2911 	return ret;
2912 }
2913 
2914 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2915 {
2916 	unsigned long val;
2917 
2918 	if (dev_priv->info->gen != 5)
2919 		return 0;
2920 
2921 	spin_lock_irq(&mchdev_lock);
2922 
2923 	val = __i915_chipset_val(dev_priv);
2924 
2925 	spin_unlock_irq(&mchdev_lock);
2926 
2927 	return val;
2928 }
2929 
2930 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2931 {
2932 	unsigned long m, x, b;
2933 	u32 tsfs;
2934 
2935 	tsfs = I915_READ(TSFS);
2936 
2937 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2938 	x = I915_READ8(TR1);
2939 
2940 	b = tsfs & TSFS_INTR_MASK;
2941 
2942 	return ((m * x) / 127) - b;
2943 }
2944 
2945 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2946 {
2947 	static const struct v_table {
2948 		u16 vd; /* in .1 mil */
2949 		u16 vm; /* in .1 mil */
2950 	} v_table[] = {
2951 		{ 0, 0, },
2952 		{ 375, 0, },
2953 		{ 500, 0, },
2954 		{ 625, 0, },
2955 		{ 750, 0, },
2956 		{ 875, 0, },
2957 		{ 1000, 0, },
2958 		{ 1125, 0, },
2959 		{ 4125, 3000, },
2960 		{ 4125, 3000, },
2961 		{ 4125, 3000, },
2962 		{ 4125, 3000, },
2963 		{ 4125, 3000, },
2964 		{ 4125, 3000, },
2965 		{ 4125, 3000, },
2966 		{ 4125, 3000, },
2967 		{ 4125, 3000, },
2968 		{ 4125, 3000, },
2969 		{ 4125, 3000, },
2970 		{ 4125, 3000, },
2971 		{ 4125, 3000, },
2972 		{ 4125, 3000, },
2973 		{ 4125, 3000, },
2974 		{ 4125, 3000, },
2975 		{ 4125, 3000, },
2976 		{ 4125, 3000, },
2977 		{ 4125, 3000, },
2978 		{ 4125, 3000, },
2979 		{ 4125, 3000, },
2980 		{ 4125, 3000, },
2981 		{ 4125, 3000, },
2982 		{ 4125, 3000, },
2983 		{ 4250, 3125, },
2984 		{ 4375, 3250, },
2985 		{ 4500, 3375, },
2986 		{ 4625, 3500, },
2987 		{ 4750, 3625, },
2988 		{ 4875, 3750, },
2989 		{ 5000, 3875, },
2990 		{ 5125, 4000, },
2991 		{ 5250, 4125, },
2992 		{ 5375, 4250, },
2993 		{ 5500, 4375, },
2994 		{ 5625, 4500, },
2995 		{ 5750, 4625, },
2996 		{ 5875, 4750, },
2997 		{ 6000, 4875, },
2998 		{ 6125, 5000, },
2999 		{ 6250, 5125, },
3000 		{ 6375, 5250, },
3001 		{ 6500, 5375, },
3002 		{ 6625, 5500, },
3003 		{ 6750, 5625, },
3004 		{ 6875, 5750, },
3005 		{ 7000, 5875, },
3006 		{ 7125, 6000, },
3007 		{ 7250, 6125, },
3008 		{ 7375, 6250, },
3009 		{ 7500, 6375, },
3010 		{ 7625, 6500, },
3011 		{ 7750, 6625, },
3012 		{ 7875, 6750, },
3013 		{ 8000, 6875, },
3014 		{ 8125, 7000, },
3015 		{ 8250, 7125, },
3016 		{ 8375, 7250, },
3017 		{ 8500, 7375, },
3018 		{ 8625, 7500, },
3019 		{ 8750, 7625, },
3020 		{ 8875, 7750, },
3021 		{ 9000, 7875, },
3022 		{ 9125, 8000, },
3023 		{ 9250, 8125, },
3024 		{ 9375, 8250, },
3025 		{ 9500, 8375, },
3026 		{ 9625, 8500, },
3027 		{ 9750, 8625, },
3028 		{ 9875, 8750, },
3029 		{ 10000, 8875, },
3030 		{ 10125, 9000, },
3031 		{ 10250, 9125, },
3032 		{ 10375, 9250, },
3033 		{ 10500, 9375, },
3034 		{ 10625, 9500, },
3035 		{ 10750, 9625, },
3036 		{ 10875, 9750, },
3037 		{ 11000, 9875, },
3038 		{ 11125, 10000, },
3039 		{ 11250, 10125, },
3040 		{ 11375, 10250, },
3041 		{ 11500, 10375, },
3042 		{ 11625, 10500, },
3043 		{ 11750, 10625, },
3044 		{ 11875, 10750, },
3045 		{ 12000, 10875, },
3046 		{ 12125, 11000, },
3047 		{ 12250, 11125, },
3048 		{ 12375, 11250, },
3049 		{ 12500, 11375, },
3050 		{ 12625, 11500, },
3051 		{ 12750, 11625, },
3052 		{ 12875, 11750, },
3053 		{ 13000, 11875, },
3054 		{ 13125, 12000, },
3055 		{ 13250, 12125, },
3056 		{ 13375, 12250, },
3057 		{ 13500, 12375, },
3058 		{ 13625, 12500, },
3059 		{ 13750, 12625, },
3060 		{ 13875, 12750, },
3061 		{ 14000, 12875, },
3062 		{ 14125, 13000, },
3063 		{ 14250, 13125, },
3064 		{ 14375, 13250, },
3065 		{ 14500, 13375, },
3066 		{ 14625, 13500, },
3067 		{ 14750, 13625, },
3068 		{ 14875, 13750, },
3069 		{ 15000, 13875, },
3070 		{ 15125, 14000, },
3071 		{ 15250, 14125, },
3072 		{ 15375, 14250, },
3073 		{ 15500, 14375, },
3074 		{ 15625, 14500, },
3075 		{ 15750, 14625, },
3076 		{ 15875, 14750, },
3077 		{ 16000, 14875, },
3078 		{ 16125, 15000, },
3079 	};
3080 	if (dev_priv->info->is_mobile)
3081 		return v_table[pxvid].vm;
3082 	else
3083 		return v_table[pxvid].vd;
3084 }
3085 
3086 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3087 {
3088 	struct timespec now, diff1;
3089 	u64 diff;
3090 	unsigned long diffms;
3091 	u32 count;
3092 
3093 	assert_spin_locked(&mchdev_lock);
3094 
3095 	getrawmonotonic(&now);
3096 	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3097 
3098 	/* Don't divide by 0 */
3099 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3100 	if (!diffms)
3101 		return;
3102 
3103 	count = I915_READ(GFXEC);
3104 
3105 	if (count < dev_priv->ips.last_count2) {
3106 		diff = ~0UL - dev_priv->ips.last_count2;
3107 		diff += count;
3108 	} else {
3109 		diff = count - dev_priv->ips.last_count2;
3110 	}
3111 
3112 	dev_priv->ips.last_count2 = count;
3113 	dev_priv->ips.last_time2 = now;
3114 
3115 	/* More magic constants... */
3116 	diff = diff * 1181;
3117 	diff = div_u64(diff, diffms * 10);
3118 	dev_priv->ips.gfx_power = diff;
3119 }
3120 
3121 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3122 {
3123 	if (dev_priv->info->gen != 5)
3124 		return;
3125 
3126 	spin_lock_irq(&mchdev_lock);
3127 
3128 	__i915_update_gfx_val(dev_priv);
3129 
3130 	spin_unlock_irq(&mchdev_lock);
3131 }
3132 
3133 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3134 {
3135 	unsigned long t, corr, state1, corr2, state2;
3136 	u32 pxvid, ext_v;
3137 
3138 	assert_spin_locked(&mchdev_lock);
3139 
3140 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3141 	pxvid = (pxvid >> 24) & 0x7f;
3142 	ext_v = pvid_to_extvid(dev_priv, pxvid);
3143 
3144 	state1 = ext_v;
3145 
3146 	t = i915_mch_val(dev_priv);
3147 
3148 	/* Revel in the empirically derived constants */
3149 
3150 	/* Correction factor in 1/100000 units */
3151 	if (t > 80)
3152 		corr = ((t * 2349) + 135940);
3153 	else if (t >= 50)
3154 		corr = ((t * 964) + 29317);
3155 	else /* < 50 */
3156 		corr = ((t * 301) + 1004);
3157 
3158 	corr = corr * ((150142 * state1) / 10000 - 78642);
3159 	corr /= 100000;
3160 	corr2 = (corr * dev_priv->ips.corr);
3161 
3162 	state2 = (corr2 * state1) / 10000;
3163 	state2 /= 100; /* convert to mW */
3164 
3165 	__i915_update_gfx_val(dev_priv);
3166 
3167 	return dev_priv->ips.gfx_power + state2;
3168 }
3169 
3170 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3171 {
3172 	unsigned long val;
3173 
3174 	if (dev_priv->info->gen != 5)
3175 		return 0;
3176 
3177 	spin_lock_irq(&mchdev_lock);
3178 
3179 	val = __i915_gfx_val(dev_priv);
3180 
3181 	spin_unlock_irq(&mchdev_lock);
3182 
3183 	return val;
3184 }
3185 
3186 /**
3187  * i915_read_mch_val - return value for IPS use
3188  *
3189  * Calculate and return a value for the IPS driver to use when deciding whether
3190  * we have thermal and power headroom to increase CPU or GPU power budget.
3191  */
3192 unsigned long i915_read_mch_val(void)
3193 {
3194 	struct drm_i915_private *dev_priv;
3195 	unsigned long chipset_val, graphics_val, ret = 0;
3196 
3197 	spin_lock_irq(&mchdev_lock);
3198 	if (!i915_mch_dev)
3199 		goto out_unlock;
3200 	dev_priv = i915_mch_dev;
3201 
3202 	chipset_val = __i915_chipset_val(dev_priv);
3203 	graphics_val = __i915_gfx_val(dev_priv);
3204 
3205 	ret = chipset_val + graphics_val;
3206 
3207 out_unlock:
3208 	spin_unlock_irq(&mchdev_lock);
3209 
3210 	return ret;
3211 }
3212 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3213 
3214 /**
3215  * i915_gpu_raise - raise GPU frequency limit
3216  *
3217  * Raise the limit; IPS indicates we have thermal headroom.
3218  */
3219 bool i915_gpu_raise(void)
3220 {
3221 	struct drm_i915_private *dev_priv;
3222 	bool ret = true;
3223 
3224 	spin_lock_irq(&mchdev_lock);
3225 	if (!i915_mch_dev) {
3226 		ret = false;
3227 		goto out_unlock;
3228 	}
3229 	dev_priv = i915_mch_dev;
3230 
3231 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3232 		dev_priv->ips.max_delay--;
3233 
3234 out_unlock:
3235 	spin_unlock_irq(&mchdev_lock);
3236 
3237 	return ret;
3238 }
3239 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3240 
3241 /**
3242  * i915_gpu_lower - lower GPU frequency limit
3243  *
3244  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3245  * frequency maximum.
3246  */
3247 bool i915_gpu_lower(void)
3248 {
3249 	struct drm_i915_private *dev_priv;
3250 	bool ret = true;
3251 
3252 	spin_lock_irq(&mchdev_lock);
3253 	if (!i915_mch_dev) {
3254 		ret = false;
3255 		goto out_unlock;
3256 	}
3257 	dev_priv = i915_mch_dev;
3258 
3259 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3260 		dev_priv->ips.max_delay++;
3261 
3262 out_unlock:
3263 	spin_unlock_irq(&mchdev_lock);
3264 
3265 	return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3268 
3269 /**
3270  * i915_gpu_busy - indicate GPU business to IPS
3271  *
3272  * Tell the IPS driver whether or not the GPU is busy.
3273  */
3274 bool i915_gpu_busy(void)
3275 {
3276 	struct drm_i915_private *dev_priv;
3277 	struct intel_ring_buffer *ring;
3278 	bool ret = false;
3279 	int i;
3280 
3281 	spin_lock_irq(&mchdev_lock);
3282 	if (!i915_mch_dev)
3283 		goto out_unlock;
3284 	dev_priv = i915_mch_dev;
3285 
3286 	for_each_ring(ring, dev_priv, i)
3287 		ret |= !list_empty(&ring->request_list);
3288 
3289 out_unlock:
3290 	spin_unlock_irq(&mchdev_lock);
3291 
3292 	return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3295 
3296 /**
3297  * i915_gpu_turbo_disable - disable graphics turbo
3298  *
3299  * Disable graphics turbo by resetting the max frequency and setting the
3300  * current frequency to the default.
3301  */
3302 bool i915_gpu_turbo_disable(void)
3303 {
3304 	struct drm_i915_private *dev_priv;
3305 	bool ret = true;
3306 
3307 	spin_lock_irq(&mchdev_lock);
3308 	if (!i915_mch_dev) {
3309 		ret = false;
3310 		goto out_unlock;
3311 	}
3312 	dev_priv = i915_mch_dev;
3313 
3314 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
3315 
3316 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3317 		ret = false;
3318 
3319 out_unlock:
3320 	spin_unlock_irq(&mchdev_lock);
3321 
3322 	return ret;
3323 }
3324 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3325 
3326 /**
3327  * Tells the intel_ips driver that the i915 driver is now loaded, if
3328  * IPS got loaded first.
3329  *
3330  * This awkward dance is so that neither module has to depend on the
3331  * other in order for IPS to do the appropriate communication of
3332  * GPU turbo limits to i915.
3333  */
3334 static void
3335 ips_ping_for_i915_load(void)
3336 {
3337 	void (*link)(void);
3338 
3339 	link = symbol_get(ips_link_to_i915_driver);
3340 	if (link) {
3341 		link();
3342 		symbol_put(ips_link_to_i915_driver);
3343 	}
3344 }
3345 
3346 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3347 {
3348 	/* We only register the i915 ips part with intel-ips once everything is
3349 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3350 	spin_lock_irq(&mchdev_lock);
3351 	i915_mch_dev = dev_priv;
3352 	spin_unlock_irq(&mchdev_lock);
3353 
3354 	ips_ping_for_i915_load();
3355 }
3356 
3357 void intel_gpu_ips_teardown(void)
3358 {
3359 	spin_lock_irq(&mchdev_lock);
3360 	i915_mch_dev = NULL;
3361 	spin_unlock_irq(&mchdev_lock);
3362 }
3363 static void intel_init_emon(struct drm_device *dev)
3364 {
3365 	struct drm_i915_private *dev_priv = dev->dev_private;
3366 	u32 lcfuse;
3367 	u8 pxw[16];
3368 	int i;
3369 
3370 	/* Disable to program */
3371 	I915_WRITE(ECR, 0);
3372 	POSTING_READ(ECR);
3373 
3374 	/* Program energy weights for various events */
3375 	I915_WRITE(SDEW, 0x15040d00);
3376 	I915_WRITE(CSIEW0, 0x007f0000);
3377 	I915_WRITE(CSIEW1, 0x1e220004);
3378 	I915_WRITE(CSIEW2, 0x04000004);
3379 
3380 	for (i = 0; i < 5; i++)
3381 		I915_WRITE(PEW + (i * 4), 0);
3382 	for (i = 0; i < 3; i++)
3383 		I915_WRITE(DEW + (i * 4), 0);
3384 
3385 	/* Program P-state weights to account for frequency power adjustment */
3386 	for (i = 0; i < 16; i++) {
3387 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3388 		unsigned long freq = intel_pxfreq(pxvidfreq);
3389 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3390 			PXVFREQ_PX_SHIFT;
3391 		unsigned long val;
3392 
3393 		val = vid * vid;
3394 		val *= (freq / 1000);
3395 		val *= 255;
3396 		val /= (127*127*900);
3397 		if (val > 0xff)
3398 			DRM_ERROR("bad pxval: %ld\n", val);
3399 		pxw[i] = val;
3400 	}
3401 	/* Render standby states get 0 weight */
3402 	pxw[14] = 0;
3403 	pxw[15] = 0;
3404 
3405 	for (i = 0; i < 4; i++) {
3406 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3407 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3408 		I915_WRITE(PXW + (i * 4), val);
3409 	}
3410 
3411 	/* Adjust magic regs to magic values (more experimental results) */
3412 	I915_WRITE(OGW0, 0);
3413 	I915_WRITE(OGW1, 0);
3414 	I915_WRITE(EG0, 0x00007f00);
3415 	I915_WRITE(EG1, 0x0000000e);
3416 	I915_WRITE(EG2, 0x000e0000);
3417 	I915_WRITE(EG3, 0x68000300);
3418 	I915_WRITE(EG4, 0x42000000);
3419 	I915_WRITE(EG5, 0x00140031);
3420 	I915_WRITE(EG6, 0);
3421 	I915_WRITE(EG7, 0);
3422 
3423 	for (i = 0; i < 8; i++)
3424 		I915_WRITE(PXWL + (i * 4), 0);
3425 
3426 	/* Enable PMON + select events */
3427 	I915_WRITE(ECR, 0x80000019);
3428 
3429 	lcfuse = I915_READ(LCFUSE02);
3430 
3431 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3432 }
3433 
3434 void intel_disable_gt_powersave(struct drm_device *dev)
3435 {
3436 	struct drm_i915_private *dev_priv = dev->dev_private;
3437 
3438 	if (IS_IRONLAKE_M(dev)) {
3439 		ironlake_disable_drps(dev);
3440 		ironlake_disable_rc6(dev);
3441 	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3442 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3443 		mutex_lock(&dev_priv->rps.hw_lock);
3444 		gen6_disable_rps(dev);
3445 		mutex_unlock(&dev_priv->rps.hw_lock);
3446 	}
3447 }
3448 
3449 static void intel_gen6_powersave_work(struct work_struct *work)
3450 {
3451 	struct drm_i915_private *dev_priv =
3452 		container_of(work, struct drm_i915_private,
3453 			     rps.delayed_resume_work.work);
3454 	struct drm_device *dev = dev_priv->dev;
3455 
3456 	mutex_lock(&dev_priv->rps.hw_lock);
3457 	gen6_enable_rps(dev);
3458 	gen6_update_ring_freq(dev);
3459 	mutex_unlock(&dev_priv->rps.hw_lock);
3460 }
3461 
3462 void intel_enable_gt_powersave(struct drm_device *dev)
3463 {
3464 	struct drm_i915_private *dev_priv = dev->dev_private;
3465 
3466 	if (IS_IRONLAKE_M(dev)) {
3467 		ironlake_enable_drps(dev);
3468 		ironlake_enable_rc6(dev);
3469 		intel_init_emon(dev);
3470 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3471 		/*
3472 		 * PCU communication is slow and this doesn't need to be
3473 		 * done at any specific time, so do this out of our fast path
3474 		 * to make resume and init faster.
3475 		 */
3476 		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3477 				      round_jiffies_up_relative(HZ));
3478 	}
3479 }
3480 
3481 static void ibx_init_clock_gating(struct drm_device *dev)
3482 {
3483 	struct drm_i915_private *dev_priv = dev->dev_private;
3484 
3485 	/*
3486 	 * On Ibex Peak and Cougar Point, we need to disable clock
3487 	 * gating for the panel power sequencer or it will fail to
3488 	 * start up when no ports are active.
3489 	 */
3490 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3491 }
3492 
3493 static void ironlake_init_clock_gating(struct drm_device *dev)
3494 {
3495 	struct drm_i915_private *dev_priv = dev->dev_private;
3496 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3497 
3498 	/* Required for FBC */
3499 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3500 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3501 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3502 
3503 	I915_WRITE(PCH_3DCGDIS0,
3504 		   MARIUNIT_CLOCK_GATE_DISABLE |
3505 		   SVSMUNIT_CLOCK_GATE_DISABLE);
3506 	I915_WRITE(PCH_3DCGDIS1,
3507 		   VFMUNIT_CLOCK_GATE_DISABLE);
3508 
3509 	/*
3510 	 * According to the spec the following bits should be set in
3511 	 * order to enable memory self-refresh
3512 	 * The bit 22/21 of 0x42004
3513 	 * The bit 5 of 0x42020
3514 	 * The bit 15 of 0x45000
3515 	 */
3516 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3517 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3518 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3519 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3520 	I915_WRITE(DISP_ARB_CTL,
3521 		   (I915_READ(DISP_ARB_CTL) |
3522 		    DISP_FBC_WM_DIS));
3523 	I915_WRITE(WM3_LP_ILK, 0);
3524 	I915_WRITE(WM2_LP_ILK, 0);
3525 	I915_WRITE(WM1_LP_ILK, 0);
3526 
3527 	/*
3528 	 * Based on the document from hardware guys the following bits
3529 	 * should be set unconditionally in order to enable FBC.
3530 	 * The bit 22 of 0x42000
3531 	 * The bit 22 of 0x42004
3532 	 * The bit 7,8,9 of 0x42020.
3533 	 */
3534 	if (IS_IRONLAKE_M(dev)) {
3535 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3536 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3537 			   ILK_FBCQ_DIS);
3538 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3539 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3540 			   ILK_DPARB_GATE);
3541 	}
3542 
3543 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3544 
3545 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3546 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3547 		   ILK_ELPIN_409_SELECT);
3548 	I915_WRITE(_3D_CHICKEN2,
3549 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3550 		   _3D_CHICKEN2_WM_READ_PIPELINED);
3551 
3552 	/* WaDisableRenderCachePipelinedFlush */
3553 	I915_WRITE(CACHE_MODE_0,
3554 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3555 
3556 	ibx_init_clock_gating(dev);
3557 }
3558 
3559 static void cpt_init_clock_gating(struct drm_device *dev)
3560 {
3561 	struct drm_i915_private *dev_priv = dev->dev_private;
3562 	int pipe;
3563 
3564 	/*
3565 	 * On Ibex Peak and Cougar Point, we need to disable clock
3566 	 * gating for the panel power sequencer or it will fail to
3567 	 * start up when no ports are active.
3568 	 */
3569 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3570 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3571 		   DPLS_EDP_PPS_FIX_DIS);
3572 	/* The below fixes the weird display corruption, a few pixels shifted
3573 	 * downward, on (only) LVDS of some HP laptops with IVY.
3574 	 */
3575 	for_each_pipe(pipe)
3576 		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
3577 	/* WADP0ClockGatingDisable */
3578 	for_each_pipe(pipe) {
3579 		I915_WRITE(TRANS_CHICKEN1(pipe),
3580 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3581 	}
3582 }
3583 
3584 static void gen6_init_clock_gating(struct drm_device *dev)
3585 {
3586 	struct drm_i915_private *dev_priv = dev->dev_private;
3587 	int pipe;
3588 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3589 
3590 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3591 
3592 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3593 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3594 		   ILK_ELPIN_409_SELECT);
3595 
3596 	/* WaDisableHiZPlanesWhenMSAAEnabled */
3597 	I915_WRITE(_3D_CHICKEN,
3598 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3599 
3600 	/* WaSetupGtModeTdRowDispatch */
3601 	if (IS_SNB_GT1(dev))
3602 		I915_WRITE(GEN6_GT_MODE,
3603 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3604 
3605 	I915_WRITE(WM3_LP_ILK, 0);
3606 	I915_WRITE(WM2_LP_ILK, 0);
3607 	I915_WRITE(WM1_LP_ILK, 0);
3608 
3609 	I915_WRITE(CACHE_MODE_0,
3610 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3611 
3612 	I915_WRITE(GEN6_UCGCTL1,
3613 		   I915_READ(GEN6_UCGCTL1) |
3614 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3615 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3616 
3617 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3618 	 * gating disable must be set.  Failure to set it results in
3619 	 * flickering pixels due to Z write ordering failures after
3620 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3621 	 * Sanctuary and Tropics, and apparently anything else with
3622 	 * alpha test or pixel discard.
3623 	 *
3624 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3625 	 * but we didn't debug actual testcases to find it out.
3626 	 *
3627 	 * Also apply WaDisableVDSUnitClockGating and
3628 	 * WaDisableRCPBUnitClockGating.
3629 	 */
3630 	I915_WRITE(GEN6_UCGCTL2,
3631 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3632 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3633 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3634 
3635 	/* Bspec says we need to always set all mask bits. */
3636 	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3637 		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3638 
3639 	/*
3640 	 * According to the spec the following bits should be
3641 	 * set in order to enable memory self-refresh and fbc:
3642 	 * The bit21 and bit22 of 0x42000
3643 	 * The bit21 and bit22 of 0x42004
3644 	 * The bit5 and bit7 of 0x42020
3645 	 * The bit14 of 0x70180
3646 	 * The bit14 of 0x71180
3647 	 */
3648 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3649 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3650 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3651 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3652 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3653 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3654 	I915_WRITE(ILK_DSPCLK_GATE_D,
3655 		   I915_READ(ILK_DSPCLK_GATE_D) |
3656 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3657 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3658 
3659 	/* WaMbcDriverBootEnable */
3660 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3661 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3662 
3663 	for_each_pipe(pipe) {
3664 		I915_WRITE(DSPCNTR(pipe),
3665 			   I915_READ(DSPCNTR(pipe)) |
3666 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3667 		intel_flush_display_plane(dev_priv, pipe);
3668 	}
3669 
3670 	/* The default value should be 0x200 according to docs, but the two
3671 	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3672 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3673 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3674 
3675 	cpt_init_clock_gating(dev);
3676 }
3677 
3678 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3679 {
3680 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3681 
3682 	reg &= ~GEN7_FF_SCHED_MASK;
3683 	reg |= GEN7_FF_TS_SCHED_HW;
3684 	reg |= GEN7_FF_VS_SCHED_HW;
3685 	reg |= GEN7_FF_DS_SCHED_HW;
3686 
3687 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3688 }
3689 
3690 static void lpt_init_clock_gating(struct drm_device *dev)
3691 {
3692 	struct drm_i915_private *dev_priv = dev->dev_private;
3693 
3694 	/*
3695 	 * TODO: this bit should only be enabled when really needed, then
3696 	 * disabled when not needed anymore in order to save power.
3697 	 */
3698 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3699 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
3700 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
3701 			   PCH_LP_PARTITION_LEVEL_DISABLE);
3702 }
3703 
3704 static void haswell_init_clock_gating(struct drm_device *dev)
3705 {
3706 	struct drm_i915_private *dev_priv = dev->dev_private;
3707 	int pipe;
3708 
3709 	I915_WRITE(WM3_LP_ILK, 0);
3710 	I915_WRITE(WM2_LP_ILK, 0);
3711 	I915_WRITE(WM1_LP_ILK, 0);
3712 
3713 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3714 	 * This implements the WaDisableRCZUnitClockGating workaround.
3715 	 */
3716 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3717 
3718 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3719 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3720 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3721 
3722 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3723 	I915_WRITE(GEN7_L3CNTLREG1,
3724 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3725 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3726 			GEN7_WA_L3_CHICKEN_MODE);
3727 
3728 	/* This is required by WaCatErrorRejectionIssue */
3729 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3730 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3731 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3732 
3733 	for_each_pipe(pipe) {
3734 		I915_WRITE(DSPCNTR(pipe),
3735 			   I915_READ(DSPCNTR(pipe)) |
3736 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3737 		intel_flush_display_plane(dev_priv, pipe);
3738 	}
3739 
3740 	gen7_setup_fixed_func_scheduler(dev_priv);
3741 
3742 	/* WaDisable4x2SubspanOptimization */
3743 	I915_WRITE(CACHE_MODE_1,
3744 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3745 
3746 	/* WaMbcDriverBootEnable */
3747 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3748 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3749 
3750 	/* XXX: This is a workaround for early silicon revisions and should be
3751 	 * removed later.
3752 	 */
3753 	I915_WRITE(WM_DBG,
3754 			I915_READ(WM_DBG) |
3755 			WM_DBG_DISALLOW_MULTIPLE_LP |
3756 			WM_DBG_DISALLOW_SPRITE |
3757 			WM_DBG_DISALLOW_MAXFIFO);
3758 
3759 	lpt_init_clock_gating(dev);
3760 }
3761 
3762 static void ivybridge_init_clock_gating(struct drm_device *dev)
3763 {
3764 	struct drm_i915_private *dev_priv = dev->dev_private;
3765 	int pipe;
3766 	uint32_t snpcr;
3767 
3768 	I915_WRITE(WM3_LP_ILK, 0);
3769 	I915_WRITE(WM2_LP_ILK, 0);
3770 	I915_WRITE(WM1_LP_ILK, 0);
3771 
3772 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3773 
3774 	/* WaDisableEarlyCull */
3775 	I915_WRITE(_3D_CHICKEN3,
3776 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3777 
3778 	/* WaDisableBackToBackFlipFix */
3779 	I915_WRITE(IVB_CHICKEN3,
3780 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3781 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3782 
3783 	/* WaDisablePSDDualDispatchEnable */
3784 	if (IS_IVB_GT1(dev))
3785 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3786 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3787 	else
3788 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3789 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3790 
3791 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3792 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3793 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3794 
3795 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3796 	I915_WRITE(GEN7_L3CNTLREG1,
3797 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3798 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3799 		   GEN7_WA_L3_CHICKEN_MODE);
3800 	if (IS_IVB_GT1(dev))
3801 		I915_WRITE(GEN7_ROW_CHICKEN2,
3802 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3803 	else
3804 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3805 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3806 
3807 
3808 	/* WaForceL3Serialization */
3809 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3810 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3811 
3812 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3813 	 * gating disable must be set.  Failure to set it results in
3814 	 * flickering pixels due to Z write ordering failures after
3815 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3816 	 * Sanctuary and Tropics, and apparently anything else with
3817 	 * alpha test or pixel discard.
3818 	 *
3819 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3820 	 * but we didn't debug actual testcases to find it out.
3821 	 *
3822 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3823 	 * This implements the WaDisableRCZUnitClockGating workaround.
3824 	 */
3825 	I915_WRITE(GEN6_UCGCTL2,
3826 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3827 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3828 
3829 	/* This is required by WaCatErrorRejectionIssue */
3830 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3831 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3832 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3833 
3834 	for_each_pipe(pipe) {
3835 		I915_WRITE(DSPCNTR(pipe),
3836 			   I915_READ(DSPCNTR(pipe)) |
3837 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3838 		intel_flush_display_plane(dev_priv, pipe);
3839 	}
3840 
3841 	/* WaMbcDriverBootEnable */
3842 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3843 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3844 
3845 	gen7_setup_fixed_func_scheduler(dev_priv);
3846 
3847 	/* WaDisable4x2SubspanOptimization */
3848 	I915_WRITE(CACHE_MODE_1,
3849 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3850 
3851 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3852 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3853 	snpcr |= GEN6_MBC_SNPCR_MED;
3854 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3855 
3856 	cpt_init_clock_gating(dev);
3857 }
3858 
3859 static void valleyview_init_clock_gating(struct drm_device *dev)
3860 {
3861 	struct drm_i915_private *dev_priv = dev->dev_private;
3862 	int pipe;
3863 
3864 	I915_WRITE(WM3_LP_ILK, 0);
3865 	I915_WRITE(WM2_LP_ILK, 0);
3866 	I915_WRITE(WM1_LP_ILK, 0);
3867 
3868 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3869 
3870 	/* WaDisableEarlyCull */
3871 	I915_WRITE(_3D_CHICKEN3,
3872 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3873 
3874 	/* WaDisableBackToBackFlipFix */
3875 	I915_WRITE(IVB_CHICKEN3,
3876 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3877 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3878 
3879 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3880 		   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3881 
3882 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3883 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3884 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3885 
3886 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3887 	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3888 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3889 
3890 	/* WaForceL3Serialization */
3891 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3892 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3893 
3894 	/* WaDisableDopClockGating */
3895 	I915_WRITE(GEN7_ROW_CHICKEN2,
3896 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3897 
3898 	/* WaForceL3Serialization */
3899 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3900 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3901 
3902 	/* This is required by WaCatErrorRejectionIssue */
3903 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3904 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3905 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3906 
3907 	/* WaMbcDriverBootEnable */
3908 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3909 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3910 
3911 
3912 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3913 	 * gating disable must be set.  Failure to set it results in
3914 	 * flickering pixels due to Z write ordering failures after
3915 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3916 	 * Sanctuary and Tropics, and apparently anything else with
3917 	 * alpha test or pixel discard.
3918 	 *
3919 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3920 	 * but we didn't debug actual testcases to find it out.
3921 	 *
3922 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3923 	 * This implements the WaDisableRCZUnitClockGating workaround.
3924 	 *
3925 	 * Also apply WaDisableVDSUnitClockGating and
3926 	 * WaDisableRCPBUnitClockGating.
3927 	 */
3928 	I915_WRITE(GEN6_UCGCTL2,
3929 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3930 		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3931 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3932 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3933 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3934 
3935 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3936 
3937 	for_each_pipe(pipe) {
3938 		I915_WRITE(DSPCNTR(pipe),
3939 			   I915_READ(DSPCNTR(pipe)) |
3940 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3941 		intel_flush_display_plane(dev_priv, pipe);
3942 	}
3943 
3944 	I915_WRITE(CACHE_MODE_1,
3945 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3946 
3947 	/*
3948 	 * On ValleyView, the GUnit needs to signal the GT
3949 	 * when flip and other events complete.  So enable
3950 	 * all the GUnit->GT interrupts here
3951 	 */
3952 	I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3953 		   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3954 		   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3955 		   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3956 		   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3957 		   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3958 		   PLANEA_FLIPDONE_INT_EN);
3959 
3960 	/*
3961 	 * WaDisableVLVClockGating_VBIIssue
3962 	 * Disable clock gating on th GCFG unit to prevent a delay
3963 	 * in the reporting of vblank events.
3964 	 */
3965 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3966 }
3967 
3968 static void g4x_init_clock_gating(struct drm_device *dev)
3969 {
3970 	struct drm_i915_private *dev_priv = dev->dev_private;
3971 	uint32_t dspclk_gate;
3972 
3973 	I915_WRITE(RENCLK_GATE_D1, 0);
3974 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3975 		   GS_UNIT_CLOCK_GATE_DISABLE |
3976 		   CL_UNIT_CLOCK_GATE_DISABLE);
3977 	I915_WRITE(RAMCLK_GATE_D, 0);
3978 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3979 		OVRUNIT_CLOCK_GATE_DISABLE |
3980 		OVCUNIT_CLOCK_GATE_DISABLE;
3981 	if (IS_GM45(dev))
3982 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3983 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3984 
3985 	/* WaDisableRenderCachePipelinedFlush */
3986 	I915_WRITE(CACHE_MODE_0,
3987 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3988 }
3989 
3990 static void crestline_init_clock_gating(struct drm_device *dev)
3991 {
3992 	struct drm_i915_private *dev_priv = dev->dev_private;
3993 
3994 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3995 	I915_WRITE(RENCLK_GATE_D2, 0);
3996 	I915_WRITE(DSPCLK_GATE_D, 0);
3997 	I915_WRITE(RAMCLK_GATE_D, 0);
3998 	I915_WRITE16(DEUC, 0);
3999 }
4000 
4001 static void broadwater_init_clock_gating(struct drm_device *dev)
4002 {
4003 	struct drm_i915_private *dev_priv = dev->dev_private;
4004 
4005 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4006 		   I965_RCC_CLOCK_GATE_DISABLE |
4007 		   I965_RCPB_CLOCK_GATE_DISABLE |
4008 		   I965_ISC_CLOCK_GATE_DISABLE |
4009 		   I965_FBC_CLOCK_GATE_DISABLE);
4010 	I915_WRITE(RENCLK_GATE_D2, 0);
4011 }
4012 
4013 static void gen3_init_clock_gating(struct drm_device *dev)
4014 {
4015 	struct drm_i915_private *dev_priv = dev->dev_private;
4016 	u32 dstate = I915_READ(D_STATE);
4017 
4018 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4019 		DSTATE_DOT_CLOCK_GATING;
4020 	I915_WRITE(D_STATE, dstate);
4021 
4022 	if (IS_PINEVIEW(dev))
4023 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4024 
4025 	/* IIR "flip pending" means done if this bit is set */
4026 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4027 }
4028 
4029 static void i85x_init_clock_gating(struct drm_device *dev)
4030 {
4031 	struct drm_i915_private *dev_priv = dev->dev_private;
4032 
4033 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4034 }
4035 
4036 static void i830_init_clock_gating(struct drm_device *dev)
4037 {
4038 	struct drm_i915_private *dev_priv = dev->dev_private;
4039 
4040 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4041 }
4042 
4043 void intel_init_clock_gating(struct drm_device *dev)
4044 {
4045 	struct drm_i915_private *dev_priv = dev->dev_private;
4046 
4047 	dev_priv->display.init_clock_gating(dev);
4048 }
4049 
4050 /* Starting with Haswell, we have different power wells for
4051  * different parts of the GPU. This attempts to enable them all.
4052  */
4053 void intel_init_power_wells(struct drm_device *dev)
4054 {
4055 	struct drm_i915_private *dev_priv = dev->dev_private;
4056 	unsigned long power_wells[] = {
4057 		HSW_PWR_WELL_CTL1,
4058 		HSW_PWR_WELL_CTL2,
4059 		HSW_PWR_WELL_CTL4
4060 	};
4061 	int i;
4062 
4063 	if (!IS_HASWELL(dev))
4064 		return;
4065 
4066 	mutex_lock(&dev->struct_mutex);
4067 
4068 	for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4069 		int well = I915_READ(power_wells[i]);
4070 
4071 		if ((well & HSW_PWR_WELL_STATE) == 0) {
4072 			I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
4073 			if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
4074 				DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4075 		}
4076 	}
4077 
4078 	mutex_unlock(&dev->struct_mutex);
4079 }
4080 
4081 /* Set up chip specific power management-related functions */
4082 void intel_init_pm(struct drm_device *dev)
4083 {
4084 	struct drm_i915_private *dev_priv = dev->dev_private;
4085 
4086 	if (I915_HAS_FBC(dev)) {
4087 		if (HAS_PCH_SPLIT(dev)) {
4088 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4089 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
4090 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
4091 		} else if (IS_GM45(dev)) {
4092 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4093 			dev_priv->display.enable_fbc = g4x_enable_fbc;
4094 			dev_priv->display.disable_fbc = g4x_disable_fbc;
4095 		} else if (IS_CRESTLINE(dev)) {
4096 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4097 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
4098 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
4099 		}
4100 		/* 855GM needs testing */
4101 	}
4102 
4103 	/* For cxsr */
4104 	if (IS_PINEVIEW(dev))
4105 		i915_pineview_get_mem_freq(dev);
4106 	else if (IS_GEN5(dev))
4107 		i915_ironlake_get_mem_freq(dev);
4108 
4109 	/* For FIFO watermark updates */
4110 	if (HAS_PCH_SPLIT(dev)) {
4111 		if (IS_GEN5(dev)) {
4112 			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4113 				dev_priv->display.update_wm = ironlake_update_wm;
4114 			else {
4115 				DRM_DEBUG_KMS("Failed to get proper latency. "
4116 					      "Disable CxSR\n");
4117 				dev_priv->display.update_wm = NULL;
4118 			}
4119 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4120 		} else if (IS_GEN6(dev)) {
4121 			if (SNB_READ_WM0_LATENCY()) {
4122 				dev_priv->display.update_wm = sandybridge_update_wm;
4123 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4124 			} else {
4125 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4126 					      "Disable CxSR\n");
4127 				dev_priv->display.update_wm = NULL;
4128 			}
4129 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4130 		} else if (IS_IVYBRIDGE(dev)) {
4131 			/* FIXME: detect B0+ stepping and use auto training */
4132 			if (SNB_READ_WM0_LATENCY()) {
4133 				dev_priv->display.update_wm = ivybridge_update_wm;
4134 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4135 			} else {
4136 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4137 					      "Disable CxSR\n");
4138 				dev_priv->display.update_wm = NULL;
4139 			}
4140 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4141 		} else if (IS_HASWELL(dev)) {
4142 			if (SNB_READ_WM0_LATENCY()) {
4143 				dev_priv->display.update_wm = sandybridge_update_wm;
4144 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4145 				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4146 			} else {
4147 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4148 					      "Disable CxSR\n");
4149 				dev_priv->display.update_wm = NULL;
4150 			}
4151 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4152 		} else
4153 			dev_priv->display.update_wm = NULL;
4154 	} else if (IS_VALLEYVIEW(dev)) {
4155 		dev_priv->display.update_wm = valleyview_update_wm;
4156 		dev_priv->display.init_clock_gating =
4157 			valleyview_init_clock_gating;
4158 	} else if (IS_PINEVIEW(dev)) {
4159 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4160 					    dev_priv->is_ddr3,
4161 					    dev_priv->fsb_freq,
4162 					    dev_priv->mem_freq)) {
4163 			DRM_INFO("failed to find known CxSR latency "
4164 				 "(found ddr%s fsb freq %d, mem freq %d), "
4165 				 "disabling CxSR\n",
4166 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4167 				 dev_priv->fsb_freq, dev_priv->mem_freq);
4168 			/* Disable CxSR and never update its watermark again */
4169 			pineview_disable_cxsr(dev);
4170 			dev_priv->display.update_wm = NULL;
4171 		} else
4172 			dev_priv->display.update_wm = pineview_update_wm;
4173 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4174 	} else if (IS_G4X(dev)) {
4175 		dev_priv->display.update_wm = g4x_update_wm;
4176 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4177 	} else if (IS_GEN4(dev)) {
4178 		dev_priv->display.update_wm = i965_update_wm;
4179 		if (IS_CRESTLINE(dev))
4180 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4181 		else if (IS_BROADWATER(dev))
4182 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4183 	} else if (IS_GEN3(dev)) {
4184 		dev_priv->display.update_wm = i9xx_update_wm;
4185 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4186 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4187 	} else if (IS_I865G(dev)) {
4188 		dev_priv->display.update_wm = i830_update_wm;
4189 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4190 		dev_priv->display.get_fifo_size = i830_get_fifo_size;
4191 	} else if (IS_I85X(dev)) {
4192 		dev_priv->display.update_wm = i9xx_update_wm;
4193 		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4194 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4195 	} else {
4196 		dev_priv->display.update_wm = i830_update_wm;
4197 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
4198 		if (IS_845G(dev))
4199 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
4200 		else
4201 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4202 	}
4203 }
4204 
4205 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4206 {
4207 	u32 gt_thread_status_mask;
4208 
4209 	if (IS_HASWELL(dev_priv->dev))
4210 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4211 	else
4212 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4213 
4214 	/* w/a for a sporadic read returning 0 by waiting for the GT
4215 	 * thread to wake up.
4216 	 */
4217 	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4218 		DRM_ERROR("GT thread status wait timed out\n");
4219 }
4220 
4221 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4222 {
4223 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4224 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4225 }
4226 
4227 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4228 {
4229 	u32 forcewake_ack;
4230 
4231 	if (IS_HASWELL(dev_priv->dev))
4232 		forcewake_ack = FORCEWAKE_ACK_HSW;
4233 	else
4234 		forcewake_ack = FORCEWAKE_ACK;
4235 
4236 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4237 			    FORCEWAKE_ACK_TIMEOUT_MS))
4238 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4239 
4240 	I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4241 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4242 
4243 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4244 			    FORCEWAKE_ACK_TIMEOUT_MS))
4245 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4246 
4247 	__gen6_gt_wait_for_thread_c0(dev_priv);
4248 }
4249 
4250 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4251 {
4252 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4253 	/* something from same cacheline, but !FORCEWAKE_MT */
4254 	POSTING_READ(ECOBUS);
4255 }
4256 
4257 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4258 {
4259 	u32 forcewake_ack;
4260 
4261 	if (IS_HASWELL(dev_priv->dev))
4262 		forcewake_ack = FORCEWAKE_ACK_HSW;
4263 	else
4264 		forcewake_ack = FORCEWAKE_MT_ACK;
4265 
4266 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4267 			    FORCEWAKE_ACK_TIMEOUT_MS))
4268 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4269 
4270 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4271 	/* something from same cacheline, but !FORCEWAKE_MT */
4272 	POSTING_READ(ECOBUS);
4273 
4274 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4275 			    FORCEWAKE_ACK_TIMEOUT_MS))
4276 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4277 
4278 	__gen6_gt_wait_for_thread_c0(dev_priv);
4279 }
4280 
4281 /*
4282  * Generally this is called implicitly by the register read function. However,
4283  * if some sequence requires the GT to not power down then this function should
4284  * be called at the beginning of the sequence followed by a call to
4285  * gen6_gt_force_wake_put() at the end of the sequence.
4286  */
4287 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4288 {
4289 	unsigned long irqflags;
4290 
4291 	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4292 	if (dev_priv->forcewake_count++ == 0)
4293 		dev_priv->gt.force_wake_get(dev_priv);
4294 	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4295 }
4296 
4297 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4298 {
4299 	u32 gtfifodbg;
4300 	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4301 	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4302 	     "MMIO read or write has been dropped %x\n", gtfifodbg))
4303 		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4304 }
4305 
4306 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4307 {
4308 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4309 	/* something from same cacheline, but !FORCEWAKE */
4310 	POSTING_READ(ECOBUS);
4311 	gen6_gt_check_fifodbg(dev_priv);
4312 }
4313 
4314 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4315 {
4316 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4317 	/* something from same cacheline, but !FORCEWAKE_MT */
4318 	POSTING_READ(ECOBUS);
4319 	gen6_gt_check_fifodbg(dev_priv);
4320 }
4321 
4322 /*
4323  * see gen6_gt_force_wake_get()
4324  */
4325 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4326 {
4327 	unsigned long irqflags;
4328 
4329 	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4330 	if (--dev_priv->forcewake_count == 0)
4331 		dev_priv->gt.force_wake_put(dev_priv);
4332 	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4333 }
4334 
4335 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4336 {
4337 	int ret = 0;
4338 
4339 	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4340 		int loop = 500;
4341 		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4342 		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4343 			udelay(10);
4344 			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4345 		}
4346 		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4347 			++ret;
4348 		dev_priv->gt_fifo_count = fifo;
4349 	}
4350 	dev_priv->gt_fifo_count--;
4351 
4352 	return ret;
4353 }
4354 
4355 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4356 {
4357 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4358 	/* something from same cacheline, but !FORCEWAKE_VLV */
4359 	POSTING_READ(FORCEWAKE_ACK_VLV);
4360 }
4361 
4362 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4363 {
4364 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4365 			    FORCEWAKE_ACK_TIMEOUT_MS))
4366 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4367 
4368 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4369 
4370 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4371 			    FORCEWAKE_ACK_TIMEOUT_MS))
4372 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4373 
4374 	__gen6_gt_wait_for_thread_c0(dev_priv);
4375 }
4376 
4377 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4378 {
4379 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4380 	/* something from same cacheline, but !FORCEWAKE_VLV */
4381 	POSTING_READ(FORCEWAKE_ACK_VLV);
4382 	gen6_gt_check_fifodbg(dev_priv);
4383 }
4384 
4385 void intel_gt_reset(struct drm_device *dev)
4386 {
4387 	struct drm_i915_private *dev_priv = dev->dev_private;
4388 
4389 	if (IS_VALLEYVIEW(dev)) {
4390 		vlv_force_wake_reset(dev_priv);
4391 	} else if (INTEL_INFO(dev)->gen >= 6) {
4392 		__gen6_gt_force_wake_reset(dev_priv);
4393 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4394 			__gen6_gt_force_wake_mt_reset(dev_priv);
4395 	}
4396 }
4397 
4398 void intel_gt_init(struct drm_device *dev)
4399 {
4400 	struct drm_i915_private *dev_priv = dev->dev_private;
4401 
4402 	spin_lock_init(&dev_priv->gt_lock);
4403 
4404 	intel_gt_reset(dev);
4405 
4406 	if (IS_VALLEYVIEW(dev)) {
4407 		dev_priv->gt.force_wake_get = vlv_force_wake_get;
4408 		dev_priv->gt.force_wake_put = vlv_force_wake_put;
4409 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4410 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4411 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4412 	} else if (IS_GEN6(dev)) {
4413 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4414 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4415 	}
4416 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4417 			  intel_gen6_powersave_work);
4418 }
4419 
4420 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4421 {
4422 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4423 
4424 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4425 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4426 		return -EAGAIN;
4427 	}
4428 
4429 	I915_WRITE(GEN6_PCODE_DATA, *val);
4430 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4431 
4432 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4433 		     500)) {
4434 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4435 		return -ETIMEDOUT;
4436 	}
4437 
4438 	*val = I915_READ(GEN6_PCODE_DATA);
4439 	I915_WRITE(GEN6_PCODE_DATA, 0);
4440 
4441 	return 0;
4442 }
4443 
4444 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4445 {
4446 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4447 
4448 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4449 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4450 		return -EAGAIN;
4451 	}
4452 
4453 	I915_WRITE(GEN6_PCODE_DATA, val);
4454 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4455 
4456 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4457 		     500)) {
4458 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4459 		return -ETIMEDOUT;
4460 	}
4461 
4462 	I915_WRITE(GEN6_PCODE_DATA, 0);
4463 
4464 	return 0;
4465 }
4466