1 /* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eugeni Dodonov <eugeni.dodonov@intel.com> 25 * 26 */ 27 28 #include <linux/cpufreq.h> 29 #include "i915_drv.h" 30 #include "intel_drv.h" 31 #include "../../../platform/x86/intel_ips.h" 32 #include <linux/module.h> 33 34 #define FORCEWAKE_ACK_TIMEOUT_MS 2 35 36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the 37 * framebuffer contents in-memory, aiming at reducing the required bandwidth 38 * during in-memory transfers and, therefore, reduce the power packet. 39 * 40 * The benefits of FBC are mostly visible with solid backgrounds and 41 * variation-less patterns. 42 * 43 * FBC-related functionality can be enabled by the means of the 44 * i915.i915_enable_fbc parameter 45 */ 46 47 static bool intel_crtc_active(struct drm_crtc *crtc) 48 { 49 /* Be paranoid as we can arrive here with only partial 50 * state retrieved from the hardware during setup. 51 */ 52 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock; 53 } 54 55 static void i8xx_disable_fbc(struct drm_device *dev) 56 { 57 struct drm_i915_private *dev_priv = dev->dev_private; 58 u32 fbc_ctl; 59 60 /* Disable compression */ 61 fbc_ctl = I915_READ(FBC_CONTROL); 62 if ((fbc_ctl & FBC_CTL_EN) == 0) 63 return; 64 65 fbc_ctl &= ~FBC_CTL_EN; 66 I915_WRITE(FBC_CONTROL, fbc_ctl); 67 68 /* Wait for compressing bit to clear */ 69 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) { 70 DRM_DEBUG_KMS("FBC idle timed out\n"); 71 return; 72 } 73 74 DRM_DEBUG_KMS("disabled FBC\n"); 75 } 76 77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval) 78 { 79 struct drm_device *dev = crtc->dev; 80 struct drm_i915_private *dev_priv = dev->dev_private; 81 struct drm_framebuffer *fb = crtc->fb; 82 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 83 struct drm_i915_gem_object *obj = intel_fb->obj; 84 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 85 int cfb_pitch; 86 int plane, i; 87 u32 fbc_ctl, fbc_ctl2; 88 89 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE; 90 if (fb->pitches[0] < cfb_pitch) 91 cfb_pitch = fb->pitches[0]; 92 93 /* FBC_CTL wants 64B units */ 94 cfb_pitch = (cfb_pitch / 64) - 1; 95 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB; 96 97 /* Clear old tags */ 98 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) 99 I915_WRITE(FBC_TAG + (i * 4), 0); 100 101 /* Set it up... */ 102 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE; 103 fbc_ctl2 |= plane; 104 I915_WRITE(FBC_CONTROL2, fbc_ctl2); 105 I915_WRITE(FBC_FENCE_OFF, crtc->y); 106 107 /* enable it... */ 108 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC; 109 if (IS_I945GM(dev)) 110 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ 111 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT; 112 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT; 113 fbc_ctl |= obj->fence_reg; 114 I915_WRITE(FBC_CONTROL, fbc_ctl); 115 116 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ", 117 cfb_pitch, crtc->y, intel_crtc->plane); 118 } 119 120 static bool i8xx_fbc_enabled(struct drm_device *dev) 121 { 122 struct drm_i915_private *dev_priv = dev->dev_private; 123 124 return I915_READ(FBC_CONTROL) & FBC_CTL_EN; 125 } 126 127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval) 128 { 129 struct drm_device *dev = crtc->dev; 130 struct drm_i915_private *dev_priv = dev->dev_private; 131 struct drm_framebuffer *fb = crtc->fb; 132 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 133 struct drm_i915_gem_object *obj = intel_fb->obj; 134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 135 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; 136 unsigned long stall_watermark = 200; 137 u32 dpfc_ctl; 138 139 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X; 140 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg; 141 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY); 142 143 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | 144 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | 145 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); 146 I915_WRITE(DPFC_FENCE_YOFF, crtc->y); 147 148 /* enable it... */ 149 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN); 150 151 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); 152 } 153 154 static void g4x_disable_fbc(struct drm_device *dev) 155 { 156 struct drm_i915_private *dev_priv = dev->dev_private; 157 u32 dpfc_ctl; 158 159 /* Disable compression */ 160 dpfc_ctl = I915_READ(DPFC_CONTROL); 161 if (dpfc_ctl & DPFC_CTL_EN) { 162 dpfc_ctl &= ~DPFC_CTL_EN; 163 I915_WRITE(DPFC_CONTROL, dpfc_ctl); 164 165 DRM_DEBUG_KMS("disabled FBC\n"); 166 } 167 } 168 169 static bool g4x_fbc_enabled(struct drm_device *dev) 170 { 171 struct drm_i915_private *dev_priv = dev->dev_private; 172 173 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN; 174 } 175 176 static void sandybridge_blit_fbc_update(struct drm_device *dev) 177 { 178 struct drm_i915_private *dev_priv = dev->dev_private; 179 u32 blt_ecoskpd; 180 181 /* Make sure blitter notifies FBC of writes */ 182 gen6_gt_force_wake_get(dev_priv); 183 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD); 184 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY << 185 GEN6_BLITTER_LOCK_SHIFT; 186 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); 187 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY; 188 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); 189 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY << 190 GEN6_BLITTER_LOCK_SHIFT); 191 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); 192 POSTING_READ(GEN6_BLITTER_ECOSKPD); 193 gen6_gt_force_wake_put(dev_priv); 194 } 195 196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval) 197 { 198 struct drm_device *dev = crtc->dev; 199 struct drm_i915_private *dev_priv = dev->dev_private; 200 struct drm_framebuffer *fb = crtc->fb; 201 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 202 struct drm_i915_gem_object *obj = intel_fb->obj; 203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 204 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; 205 unsigned long stall_watermark = 200; 206 u32 dpfc_ctl; 207 208 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); 209 dpfc_ctl &= DPFC_RESERVED; 210 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X); 211 /* Set persistent mode for front-buffer rendering, ala X. */ 212 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE; 213 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg); 214 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY); 215 216 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | 217 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | 218 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); 219 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y); 220 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID); 221 /* enable it... */ 222 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); 223 224 if (IS_GEN6(dev)) { 225 I915_WRITE(SNB_DPFC_CTL_SA, 226 SNB_CPU_FENCE_ENABLE | obj->fence_reg); 227 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y); 228 sandybridge_blit_fbc_update(dev); 229 } 230 231 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); 232 } 233 234 static void ironlake_disable_fbc(struct drm_device *dev) 235 { 236 struct drm_i915_private *dev_priv = dev->dev_private; 237 u32 dpfc_ctl; 238 239 /* Disable compression */ 240 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); 241 if (dpfc_ctl & DPFC_CTL_EN) { 242 dpfc_ctl &= ~DPFC_CTL_EN; 243 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl); 244 245 DRM_DEBUG_KMS("disabled FBC\n"); 246 } 247 } 248 249 static bool ironlake_fbc_enabled(struct drm_device *dev) 250 { 251 struct drm_i915_private *dev_priv = dev->dev_private; 252 253 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN; 254 } 255 256 bool intel_fbc_enabled(struct drm_device *dev) 257 { 258 struct drm_i915_private *dev_priv = dev->dev_private; 259 260 if (!dev_priv->display.fbc_enabled) 261 return false; 262 263 return dev_priv->display.fbc_enabled(dev); 264 } 265 266 static void intel_fbc_work_fn(struct work_struct *__work) 267 { 268 struct intel_fbc_work *work = 269 container_of(to_delayed_work(__work), 270 struct intel_fbc_work, work); 271 struct drm_device *dev = work->crtc->dev; 272 struct drm_i915_private *dev_priv = dev->dev_private; 273 274 mutex_lock(&dev->struct_mutex); 275 if (work == dev_priv->fbc_work) { 276 /* Double check that we haven't switched fb without cancelling 277 * the prior work. 278 */ 279 if (work->crtc->fb == work->fb) { 280 dev_priv->display.enable_fbc(work->crtc, 281 work->interval); 282 283 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane; 284 dev_priv->cfb_fb = work->crtc->fb->base.id; 285 dev_priv->cfb_y = work->crtc->y; 286 } 287 288 dev_priv->fbc_work = NULL; 289 } 290 mutex_unlock(&dev->struct_mutex); 291 292 kfree(work); 293 } 294 295 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv) 296 { 297 if (dev_priv->fbc_work == NULL) 298 return; 299 300 DRM_DEBUG_KMS("cancelling pending FBC enable\n"); 301 302 /* Synchronisation is provided by struct_mutex and checking of 303 * dev_priv->fbc_work, so we can perform the cancellation 304 * entirely asynchronously. 305 */ 306 if (cancel_delayed_work(&dev_priv->fbc_work->work)) 307 /* tasklet was killed before being run, clean up */ 308 kfree(dev_priv->fbc_work); 309 310 /* Mark the work as no longer wanted so that if it does 311 * wake-up (because the work was already running and waiting 312 * for our mutex), it will discover that is no longer 313 * necessary to run. 314 */ 315 dev_priv->fbc_work = NULL; 316 } 317 318 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval) 319 { 320 struct intel_fbc_work *work; 321 struct drm_device *dev = crtc->dev; 322 struct drm_i915_private *dev_priv = dev->dev_private; 323 324 if (!dev_priv->display.enable_fbc) 325 return; 326 327 intel_cancel_fbc_work(dev_priv); 328 329 work = kzalloc(sizeof *work, GFP_KERNEL); 330 if (work == NULL) { 331 dev_priv->display.enable_fbc(crtc, interval); 332 return; 333 } 334 335 work->crtc = crtc; 336 work->fb = crtc->fb; 337 work->interval = interval; 338 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn); 339 340 dev_priv->fbc_work = work; 341 342 DRM_DEBUG_KMS("scheduling delayed FBC enable\n"); 343 344 /* Delay the actual enabling to let pageflipping cease and the 345 * display to settle before starting the compression. Note that 346 * this delay also serves a second purpose: it allows for a 347 * vblank to pass after disabling the FBC before we attempt 348 * to modify the control registers. 349 * 350 * A more complicated solution would involve tracking vblanks 351 * following the termination of the page-flipping sequence 352 * and indeed performing the enable as a co-routine and not 353 * waiting synchronously upon the vblank. 354 */ 355 schedule_delayed_work(&work->work, msecs_to_jiffies(50)); 356 } 357 358 void intel_disable_fbc(struct drm_device *dev) 359 { 360 struct drm_i915_private *dev_priv = dev->dev_private; 361 362 intel_cancel_fbc_work(dev_priv); 363 364 if (!dev_priv->display.disable_fbc) 365 return; 366 367 dev_priv->display.disable_fbc(dev); 368 dev_priv->cfb_plane = -1; 369 } 370 371 /** 372 * intel_update_fbc - enable/disable FBC as needed 373 * @dev: the drm_device 374 * 375 * Set up the framebuffer compression hardware at mode set time. We 376 * enable it if possible: 377 * - plane A only (on pre-965) 378 * - no pixel mulitply/line duplication 379 * - no alpha buffer discard 380 * - no dual wide 381 * - framebuffer <= 2048 in width, 1536 in height 382 * 383 * We can't assume that any compression will take place (worst case), 384 * so the compressed buffer has to be the same size as the uncompressed 385 * one. It also must reside (along with the line length buffer) in 386 * stolen memory. 387 * 388 * We need to enable/disable FBC on a global basis. 389 */ 390 void intel_update_fbc(struct drm_device *dev) 391 { 392 struct drm_i915_private *dev_priv = dev->dev_private; 393 struct drm_crtc *crtc = NULL, *tmp_crtc; 394 struct intel_crtc *intel_crtc; 395 struct drm_framebuffer *fb; 396 struct intel_framebuffer *intel_fb; 397 struct drm_i915_gem_object *obj; 398 int enable_fbc; 399 400 if (!i915_powersave) 401 return; 402 403 if (!I915_HAS_FBC(dev)) 404 return; 405 406 /* 407 * If FBC is already on, we just have to verify that we can 408 * keep it that way... 409 * Need to disable if: 410 * - more than one pipe is active 411 * - changing FBC params (stride, fence, mode) 412 * - new fb is too large to fit in compressed buffer 413 * - going to an unsupported config (interlace, pixel multiply, etc.) 414 */ 415 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) { 416 if (intel_crtc_active(tmp_crtc) && 417 !to_intel_crtc(tmp_crtc)->primary_disabled) { 418 if (crtc) { 419 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n"); 420 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES; 421 goto out_disable; 422 } 423 crtc = tmp_crtc; 424 } 425 } 426 427 if (!crtc || crtc->fb == NULL) { 428 DRM_DEBUG_KMS("no output, disabling\n"); 429 dev_priv->no_fbc_reason = FBC_NO_OUTPUT; 430 goto out_disable; 431 } 432 433 intel_crtc = to_intel_crtc(crtc); 434 fb = crtc->fb; 435 intel_fb = to_intel_framebuffer(fb); 436 obj = intel_fb->obj; 437 438 enable_fbc = i915_enable_fbc; 439 if (enable_fbc < 0) { 440 DRM_DEBUG_KMS("fbc set to per-chip default\n"); 441 enable_fbc = 1; 442 if (INTEL_INFO(dev)->gen <= 6) 443 enable_fbc = 0; 444 } 445 if (!enable_fbc) { 446 DRM_DEBUG_KMS("fbc disabled per module param\n"); 447 dev_priv->no_fbc_reason = FBC_MODULE_PARAM; 448 goto out_disable; 449 } 450 if (intel_fb->obj->base.size > dev_priv->cfb_size) { 451 DRM_DEBUG_KMS("framebuffer too large, disabling " 452 "compression\n"); 453 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL; 454 goto out_disable; 455 } 456 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) || 457 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) { 458 DRM_DEBUG_KMS("mode incompatible with compression, " 459 "disabling\n"); 460 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE; 461 goto out_disable; 462 } 463 if ((crtc->mode.hdisplay > 2048) || 464 (crtc->mode.vdisplay > 1536)) { 465 DRM_DEBUG_KMS("mode too large for compression, disabling\n"); 466 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE; 467 goto out_disable; 468 } 469 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) { 470 DRM_DEBUG_KMS("plane not 0, disabling compression\n"); 471 dev_priv->no_fbc_reason = FBC_BAD_PLANE; 472 goto out_disable; 473 } 474 475 /* The use of a CPU fence is mandatory in order to detect writes 476 * by the CPU to the scanout and trigger updates to the FBC. 477 */ 478 if (obj->tiling_mode != I915_TILING_X || 479 obj->fence_reg == I915_FENCE_REG_NONE) { 480 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n"); 481 dev_priv->no_fbc_reason = FBC_NOT_TILED; 482 goto out_disable; 483 } 484 485 /* If the kernel debugger is active, always disable compression */ 486 if (in_dbg_master()) 487 goto out_disable; 488 489 /* If the scanout has not changed, don't modify the FBC settings. 490 * Note that we make the fundamental assumption that the fb->obj 491 * cannot be unpinned (and have its GTT offset and fence revoked) 492 * without first being decoupled from the scanout and FBC disabled. 493 */ 494 if (dev_priv->cfb_plane == intel_crtc->plane && 495 dev_priv->cfb_fb == fb->base.id && 496 dev_priv->cfb_y == crtc->y) 497 return; 498 499 if (intel_fbc_enabled(dev)) { 500 /* We update FBC along two paths, after changing fb/crtc 501 * configuration (modeswitching) and after page-flipping 502 * finishes. For the latter, we know that not only did 503 * we disable the FBC at the start of the page-flip 504 * sequence, but also more than one vblank has passed. 505 * 506 * For the former case of modeswitching, it is possible 507 * to switch between two FBC valid configurations 508 * instantaneously so we do need to disable the FBC 509 * before we can modify its control registers. We also 510 * have to wait for the next vblank for that to take 511 * effect. However, since we delay enabling FBC we can 512 * assume that a vblank has passed since disabling and 513 * that we can safely alter the registers in the deferred 514 * callback. 515 * 516 * In the scenario that we go from a valid to invalid 517 * and then back to valid FBC configuration we have 518 * no strict enforcement that a vblank occurred since 519 * disabling the FBC. However, along all current pipe 520 * disabling paths we do need to wait for a vblank at 521 * some point. And we wait before enabling FBC anyway. 522 */ 523 DRM_DEBUG_KMS("disabling active FBC for update\n"); 524 intel_disable_fbc(dev); 525 } 526 527 intel_enable_fbc(crtc, 500); 528 return; 529 530 out_disable: 531 /* Multiple disables should be harmless */ 532 if (intel_fbc_enabled(dev)) { 533 DRM_DEBUG_KMS("unsupported config, disabling FBC\n"); 534 intel_disable_fbc(dev); 535 } 536 } 537 538 static void i915_pineview_get_mem_freq(struct drm_device *dev) 539 { 540 drm_i915_private_t *dev_priv = dev->dev_private; 541 u32 tmp; 542 543 tmp = I915_READ(CLKCFG); 544 545 switch (tmp & CLKCFG_FSB_MASK) { 546 case CLKCFG_FSB_533: 547 dev_priv->fsb_freq = 533; /* 133*4 */ 548 break; 549 case CLKCFG_FSB_800: 550 dev_priv->fsb_freq = 800; /* 200*4 */ 551 break; 552 case CLKCFG_FSB_667: 553 dev_priv->fsb_freq = 667; /* 167*4 */ 554 break; 555 case CLKCFG_FSB_400: 556 dev_priv->fsb_freq = 400; /* 100*4 */ 557 break; 558 } 559 560 switch (tmp & CLKCFG_MEM_MASK) { 561 case CLKCFG_MEM_533: 562 dev_priv->mem_freq = 533; 563 break; 564 case CLKCFG_MEM_667: 565 dev_priv->mem_freq = 667; 566 break; 567 case CLKCFG_MEM_800: 568 dev_priv->mem_freq = 800; 569 break; 570 } 571 572 /* detect pineview DDR3 setting */ 573 tmp = I915_READ(CSHRDDR3CTL); 574 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; 575 } 576 577 static void i915_ironlake_get_mem_freq(struct drm_device *dev) 578 { 579 drm_i915_private_t *dev_priv = dev->dev_private; 580 u16 ddrpll, csipll; 581 582 ddrpll = I915_READ16(DDRMPLL1); 583 csipll = I915_READ16(CSIPLL0); 584 585 switch (ddrpll & 0xff) { 586 case 0xc: 587 dev_priv->mem_freq = 800; 588 break; 589 case 0x10: 590 dev_priv->mem_freq = 1066; 591 break; 592 case 0x14: 593 dev_priv->mem_freq = 1333; 594 break; 595 case 0x18: 596 dev_priv->mem_freq = 1600; 597 break; 598 default: 599 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n", 600 ddrpll & 0xff); 601 dev_priv->mem_freq = 0; 602 break; 603 } 604 605 dev_priv->ips.r_t = dev_priv->mem_freq; 606 607 switch (csipll & 0x3ff) { 608 case 0x00c: 609 dev_priv->fsb_freq = 3200; 610 break; 611 case 0x00e: 612 dev_priv->fsb_freq = 3733; 613 break; 614 case 0x010: 615 dev_priv->fsb_freq = 4266; 616 break; 617 case 0x012: 618 dev_priv->fsb_freq = 4800; 619 break; 620 case 0x014: 621 dev_priv->fsb_freq = 5333; 622 break; 623 case 0x016: 624 dev_priv->fsb_freq = 5866; 625 break; 626 case 0x018: 627 dev_priv->fsb_freq = 6400; 628 break; 629 default: 630 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n", 631 csipll & 0x3ff); 632 dev_priv->fsb_freq = 0; 633 break; 634 } 635 636 if (dev_priv->fsb_freq == 3200) { 637 dev_priv->ips.c_m = 0; 638 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) { 639 dev_priv->ips.c_m = 1; 640 } else { 641 dev_priv->ips.c_m = 2; 642 } 643 } 644 645 static const struct cxsr_latency cxsr_latency_table[] = { 646 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ 647 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ 648 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ 649 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ 650 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ 651 652 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ 653 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ 654 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ 655 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ 656 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ 657 658 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ 659 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ 660 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ 661 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ 662 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ 663 664 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ 665 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ 666 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ 667 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ 668 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ 669 670 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ 671 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ 672 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ 673 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ 674 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ 675 676 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ 677 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ 678 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ 679 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ 680 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ 681 }; 682 683 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, 684 int is_ddr3, 685 int fsb, 686 int mem) 687 { 688 const struct cxsr_latency *latency; 689 int i; 690 691 if (fsb == 0 || mem == 0) 692 return NULL; 693 694 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { 695 latency = &cxsr_latency_table[i]; 696 if (is_desktop == latency->is_desktop && 697 is_ddr3 == latency->is_ddr3 && 698 fsb == latency->fsb_freq && mem == latency->mem_freq) 699 return latency; 700 } 701 702 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); 703 704 return NULL; 705 } 706 707 static void pineview_disable_cxsr(struct drm_device *dev) 708 { 709 struct drm_i915_private *dev_priv = dev->dev_private; 710 711 /* deactivate cxsr */ 712 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN); 713 } 714 715 /* 716 * Latency for FIFO fetches is dependent on several factors: 717 * - memory configuration (speed, channels) 718 * - chipset 719 * - current MCH state 720 * It can be fairly high in some situations, so here we assume a fairly 721 * pessimal value. It's a tradeoff between extra memory fetches (if we 722 * set this value too high, the FIFO will fetch frequently to stay full) 723 * and power consumption (set it too low to save power and we might see 724 * FIFO underruns and display "flicker"). 725 * 726 * A value of 5us seems to be a good balance; safe for very low end 727 * platforms but not overly aggressive on lower latency configs. 728 */ 729 static const int latency_ns = 5000; 730 731 static int i9xx_get_fifo_size(struct drm_device *dev, int plane) 732 { 733 struct drm_i915_private *dev_priv = dev->dev_private; 734 uint32_t dsparb = I915_READ(DSPARB); 735 int size; 736 737 size = dsparb & 0x7f; 738 if (plane) 739 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; 740 741 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, 742 plane ? "B" : "A", size); 743 744 return size; 745 } 746 747 static int i85x_get_fifo_size(struct drm_device *dev, int plane) 748 { 749 struct drm_i915_private *dev_priv = dev->dev_private; 750 uint32_t dsparb = I915_READ(DSPARB); 751 int size; 752 753 size = dsparb & 0x1ff; 754 if (plane) 755 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; 756 size >>= 1; /* Convert to cachelines */ 757 758 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, 759 plane ? "B" : "A", size); 760 761 return size; 762 } 763 764 static int i845_get_fifo_size(struct drm_device *dev, int plane) 765 { 766 struct drm_i915_private *dev_priv = dev->dev_private; 767 uint32_t dsparb = I915_READ(DSPARB); 768 int size; 769 770 size = dsparb & 0x7f; 771 size >>= 2; /* Convert to cachelines */ 772 773 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, 774 plane ? "B" : "A", 775 size); 776 777 return size; 778 } 779 780 static int i830_get_fifo_size(struct drm_device *dev, int plane) 781 { 782 struct drm_i915_private *dev_priv = dev->dev_private; 783 uint32_t dsparb = I915_READ(DSPARB); 784 int size; 785 786 size = dsparb & 0x7f; 787 size >>= 1; /* Convert to cachelines */ 788 789 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, 790 plane ? "B" : "A", size); 791 792 return size; 793 } 794 795 /* Pineview has different values for various configs */ 796 static const struct intel_watermark_params pineview_display_wm = { 797 PINEVIEW_DISPLAY_FIFO, 798 PINEVIEW_MAX_WM, 799 PINEVIEW_DFT_WM, 800 PINEVIEW_GUARD_WM, 801 PINEVIEW_FIFO_LINE_SIZE 802 }; 803 static const struct intel_watermark_params pineview_display_hplloff_wm = { 804 PINEVIEW_DISPLAY_FIFO, 805 PINEVIEW_MAX_WM, 806 PINEVIEW_DFT_HPLLOFF_WM, 807 PINEVIEW_GUARD_WM, 808 PINEVIEW_FIFO_LINE_SIZE 809 }; 810 static const struct intel_watermark_params pineview_cursor_wm = { 811 PINEVIEW_CURSOR_FIFO, 812 PINEVIEW_CURSOR_MAX_WM, 813 PINEVIEW_CURSOR_DFT_WM, 814 PINEVIEW_CURSOR_GUARD_WM, 815 PINEVIEW_FIFO_LINE_SIZE, 816 }; 817 static const struct intel_watermark_params pineview_cursor_hplloff_wm = { 818 PINEVIEW_CURSOR_FIFO, 819 PINEVIEW_CURSOR_MAX_WM, 820 PINEVIEW_CURSOR_DFT_WM, 821 PINEVIEW_CURSOR_GUARD_WM, 822 PINEVIEW_FIFO_LINE_SIZE 823 }; 824 static const struct intel_watermark_params g4x_wm_info = { 825 G4X_FIFO_SIZE, 826 G4X_MAX_WM, 827 G4X_MAX_WM, 828 2, 829 G4X_FIFO_LINE_SIZE, 830 }; 831 static const struct intel_watermark_params g4x_cursor_wm_info = { 832 I965_CURSOR_FIFO, 833 I965_CURSOR_MAX_WM, 834 I965_CURSOR_DFT_WM, 835 2, 836 G4X_FIFO_LINE_SIZE, 837 }; 838 static const struct intel_watermark_params valleyview_wm_info = { 839 VALLEYVIEW_FIFO_SIZE, 840 VALLEYVIEW_MAX_WM, 841 VALLEYVIEW_MAX_WM, 842 2, 843 G4X_FIFO_LINE_SIZE, 844 }; 845 static const struct intel_watermark_params valleyview_cursor_wm_info = { 846 I965_CURSOR_FIFO, 847 VALLEYVIEW_CURSOR_MAX_WM, 848 I965_CURSOR_DFT_WM, 849 2, 850 G4X_FIFO_LINE_SIZE, 851 }; 852 static const struct intel_watermark_params i965_cursor_wm_info = { 853 I965_CURSOR_FIFO, 854 I965_CURSOR_MAX_WM, 855 I965_CURSOR_DFT_WM, 856 2, 857 I915_FIFO_LINE_SIZE, 858 }; 859 static const struct intel_watermark_params i945_wm_info = { 860 I945_FIFO_SIZE, 861 I915_MAX_WM, 862 1, 863 2, 864 I915_FIFO_LINE_SIZE 865 }; 866 static const struct intel_watermark_params i915_wm_info = { 867 I915_FIFO_SIZE, 868 I915_MAX_WM, 869 1, 870 2, 871 I915_FIFO_LINE_SIZE 872 }; 873 static const struct intel_watermark_params i855_wm_info = { 874 I855GM_FIFO_SIZE, 875 I915_MAX_WM, 876 1, 877 2, 878 I830_FIFO_LINE_SIZE 879 }; 880 static const struct intel_watermark_params i830_wm_info = { 881 I830_FIFO_SIZE, 882 I915_MAX_WM, 883 1, 884 2, 885 I830_FIFO_LINE_SIZE 886 }; 887 888 static const struct intel_watermark_params ironlake_display_wm_info = { 889 ILK_DISPLAY_FIFO, 890 ILK_DISPLAY_MAXWM, 891 ILK_DISPLAY_DFTWM, 892 2, 893 ILK_FIFO_LINE_SIZE 894 }; 895 static const struct intel_watermark_params ironlake_cursor_wm_info = { 896 ILK_CURSOR_FIFO, 897 ILK_CURSOR_MAXWM, 898 ILK_CURSOR_DFTWM, 899 2, 900 ILK_FIFO_LINE_SIZE 901 }; 902 static const struct intel_watermark_params ironlake_display_srwm_info = { 903 ILK_DISPLAY_SR_FIFO, 904 ILK_DISPLAY_MAX_SRWM, 905 ILK_DISPLAY_DFT_SRWM, 906 2, 907 ILK_FIFO_LINE_SIZE 908 }; 909 static const struct intel_watermark_params ironlake_cursor_srwm_info = { 910 ILK_CURSOR_SR_FIFO, 911 ILK_CURSOR_MAX_SRWM, 912 ILK_CURSOR_DFT_SRWM, 913 2, 914 ILK_FIFO_LINE_SIZE 915 }; 916 917 static const struct intel_watermark_params sandybridge_display_wm_info = { 918 SNB_DISPLAY_FIFO, 919 SNB_DISPLAY_MAXWM, 920 SNB_DISPLAY_DFTWM, 921 2, 922 SNB_FIFO_LINE_SIZE 923 }; 924 static const struct intel_watermark_params sandybridge_cursor_wm_info = { 925 SNB_CURSOR_FIFO, 926 SNB_CURSOR_MAXWM, 927 SNB_CURSOR_DFTWM, 928 2, 929 SNB_FIFO_LINE_SIZE 930 }; 931 static const struct intel_watermark_params sandybridge_display_srwm_info = { 932 SNB_DISPLAY_SR_FIFO, 933 SNB_DISPLAY_MAX_SRWM, 934 SNB_DISPLAY_DFT_SRWM, 935 2, 936 SNB_FIFO_LINE_SIZE 937 }; 938 static const struct intel_watermark_params sandybridge_cursor_srwm_info = { 939 SNB_CURSOR_SR_FIFO, 940 SNB_CURSOR_MAX_SRWM, 941 SNB_CURSOR_DFT_SRWM, 942 2, 943 SNB_FIFO_LINE_SIZE 944 }; 945 946 947 /** 948 * intel_calculate_wm - calculate watermark level 949 * @clock_in_khz: pixel clock 950 * @wm: chip FIFO params 951 * @pixel_size: display pixel size 952 * @latency_ns: memory latency for the platform 953 * 954 * Calculate the watermark level (the level at which the display plane will 955 * start fetching from memory again). Each chip has a different display 956 * FIFO size and allocation, so the caller needs to figure that out and pass 957 * in the correct intel_watermark_params structure. 958 * 959 * As the pixel clock runs, the FIFO will be drained at a rate that depends 960 * on the pixel size. When it reaches the watermark level, it'll start 961 * fetching FIFO line sized based chunks from memory until the FIFO fills 962 * past the watermark point. If the FIFO drains completely, a FIFO underrun 963 * will occur, and a display engine hang could result. 964 */ 965 static unsigned long intel_calculate_wm(unsigned long clock_in_khz, 966 const struct intel_watermark_params *wm, 967 int fifo_size, 968 int pixel_size, 969 unsigned long latency_ns) 970 { 971 long entries_required, wm_size; 972 973 /* 974 * Note: we need to make sure we don't overflow for various clock & 975 * latency values. 976 * clocks go from a few thousand to several hundred thousand. 977 * latency is usually a few thousand 978 */ 979 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) / 980 1000; 981 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size); 982 983 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required); 984 985 wm_size = fifo_size - (entries_required + wm->guard_size); 986 987 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size); 988 989 /* Don't promote wm_size to unsigned... */ 990 if (wm_size > (long)wm->max_wm) 991 wm_size = wm->max_wm; 992 if (wm_size <= 0) 993 wm_size = wm->default_wm; 994 return wm_size; 995 } 996 997 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev) 998 { 999 struct drm_crtc *crtc, *enabled = NULL; 1000 1001 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1002 if (intel_crtc_active(crtc)) { 1003 if (enabled) 1004 return NULL; 1005 enabled = crtc; 1006 } 1007 } 1008 1009 return enabled; 1010 } 1011 1012 static void pineview_update_wm(struct drm_device *dev) 1013 { 1014 struct drm_i915_private *dev_priv = dev->dev_private; 1015 struct drm_crtc *crtc; 1016 const struct cxsr_latency *latency; 1017 u32 reg; 1018 unsigned long wm; 1019 1020 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, 1021 dev_priv->fsb_freq, dev_priv->mem_freq); 1022 if (!latency) { 1023 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); 1024 pineview_disable_cxsr(dev); 1025 return; 1026 } 1027 1028 crtc = single_enabled_crtc(dev); 1029 if (crtc) { 1030 int clock = crtc->mode.clock; 1031 int pixel_size = crtc->fb->bits_per_pixel / 8; 1032 1033 /* Display SR */ 1034 wm = intel_calculate_wm(clock, &pineview_display_wm, 1035 pineview_display_wm.fifo_size, 1036 pixel_size, latency->display_sr); 1037 reg = I915_READ(DSPFW1); 1038 reg &= ~DSPFW_SR_MASK; 1039 reg |= wm << DSPFW_SR_SHIFT; 1040 I915_WRITE(DSPFW1, reg); 1041 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); 1042 1043 /* cursor SR */ 1044 wm = intel_calculate_wm(clock, &pineview_cursor_wm, 1045 pineview_display_wm.fifo_size, 1046 pixel_size, latency->cursor_sr); 1047 reg = I915_READ(DSPFW3); 1048 reg &= ~DSPFW_CURSOR_SR_MASK; 1049 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT; 1050 I915_WRITE(DSPFW3, reg); 1051 1052 /* Display HPLL off SR */ 1053 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm, 1054 pineview_display_hplloff_wm.fifo_size, 1055 pixel_size, latency->display_hpll_disable); 1056 reg = I915_READ(DSPFW3); 1057 reg &= ~DSPFW_HPLL_SR_MASK; 1058 reg |= wm & DSPFW_HPLL_SR_MASK; 1059 I915_WRITE(DSPFW3, reg); 1060 1061 /* cursor HPLL off SR */ 1062 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, 1063 pineview_display_hplloff_wm.fifo_size, 1064 pixel_size, latency->cursor_hpll_disable); 1065 reg = I915_READ(DSPFW3); 1066 reg &= ~DSPFW_HPLL_CURSOR_MASK; 1067 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT; 1068 I915_WRITE(DSPFW3, reg); 1069 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); 1070 1071 /* activate cxsr */ 1072 I915_WRITE(DSPFW3, 1073 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN); 1074 DRM_DEBUG_KMS("Self-refresh is enabled\n"); 1075 } else { 1076 pineview_disable_cxsr(dev); 1077 DRM_DEBUG_KMS("Self-refresh is disabled\n"); 1078 } 1079 } 1080 1081 static bool g4x_compute_wm0(struct drm_device *dev, 1082 int plane, 1083 const struct intel_watermark_params *display, 1084 int display_latency_ns, 1085 const struct intel_watermark_params *cursor, 1086 int cursor_latency_ns, 1087 int *plane_wm, 1088 int *cursor_wm) 1089 { 1090 struct drm_crtc *crtc; 1091 int htotal, hdisplay, clock, pixel_size; 1092 int line_time_us, line_count; 1093 int entries, tlb_miss; 1094 1095 crtc = intel_get_crtc_for_plane(dev, plane); 1096 if (!intel_crtc_active(crtc)) { 1097 *cursor_wm = cursor->guard_size; 1098 *plane_wm = display->guard_size; 1099 return false; 1100 } 1101 1102 htotal = crtc->mode.htotal; 1103 hdisplay = crtc->mode.hdisplay; 1104 clock = crtc->mode.clock; 1105 pixel_size = crtc->fb->bits_per_pixel / 8; 1106 1107 /* Use the small buffer method to calculate plane watermark */ 1108 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000; 1109 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8; 1110 if (tlb_miss > 0) 1111 entries += tlb_miss; 1112 entries = DIV_ROUND_UP(entries, display->cacheline_size); 1113 *plane_wm = entries + display->guard_size; 1114 if (*plane_wm > (int)display->max_wm) 1115 *plane_wm = display->max_wm; 1116 1117 /* Use the large buffer method to calculate cursor watermark */ 1118 line_time_us = ((htotal * 1000) / clock); 1119 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000; 1120 entries = line_count * 64 * pixel_size; 1121 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8; 1122 if (tlb_miss > 0) 1123 entries += tlb_miss; 1124 entries = DIV_ROUND_UP(entries, cursor->cacheline_size); 1125 *cursor_wm = entries + cursor->guard_size; 1126 if (*cursor_wm > (int)cursor->max_wm) 1127 *cursor_wm = (int)cursor->max_wm; 1128 1129 return true; 1130 } 1131 1132 /* 1133 * Check the wm result. 1134 * 1135 * If any calculated watermark values is larger than the maximum value that 1136 * can be programmed into the associated watermark register, that watermark 1137 * must be disabled. 1138 */ 1139 static bool g4x_check_srwm(struct drm_device *dev, 1140 int display_wm, int cursor_wm, 1141 const struct intel_watermark_params *display, 1142 const struct intel_watermark_params *cursor) 1143 { 1144 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n", 1145 display_wm, cursor_wm); 1146 1147 if (display_wm > display->max_wm) { 1148 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n", 1149 display_wm, display->max_wm); 1150 return false; 1151 } 1152 1153 if (cursor_wm > cursor->max_wm) { 1154 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n", 1155 cursor_wm, cursor->max_wm); 1156 return false; 1157 } 1158 1159 if (!(display_wm || cursor_wm)) { 1160 DRM_DEBUG_KMS("SR latency is 0, disabling\n"); 1161 return false; 1162 } 1163 1164 return true; 1165 } 1166 1167 static bool g4x_compute_srwm(struct drm_device *dev, 1168 int plane, 1169 int latency_ns, 1170 const struct intel_watermark_params *display, 1171 const struct intel_watermark_params *cursor, 1172 int *display_wm, int *cursor_wm) 1173 { 1174 struct drm_crtc *crtc; 1175 int hdisplay, htotal, pixel_size, clock; 1176 unsigned long line_time_us; 1177 int line_count, line_size; 1178 int small, large; 1179 int entries; 1180 1181 if (!latency_ns) { 1182 *display_wm = *cursor_wm = 0; 1183 return false; 1184 } 1185 1186 crtc = intel_get_crtc_for_plane(dev, plane); 1187 hdisplay = crtc->mode.hdisplay; 1188 htotal = crtc->mode.htotal; 1189 clock = crtc->mode.clock; 1190 pixel_size = crtc->fb->bits_per_pixel / 8; 1191 1192 line_time_us = (htotal * 1000) / clock; 1193 line_count = (latency_ns / line_time_us + 1000) / 1000; 1194 line_size = hdisplay * pixel_size; 1195 1196 /* Use the minimum of the small and large buffer method for primary */ 1197 small = ((clock * pixel_size / 1000) * latency_ns) / 1000; 1198 large = line_count * line_size; 1199 1200 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); 1201 *display_wm = entries + display->guard_size; 1202 1203 /* calculate the self-refresh watermark for display cursor */ 1204 entries = line_count * pixel_size * 64; 1205 entries = DIV_ROUND_UP(entries, cursor->cacheline_size); 1206 *cursor_wm = entries + cursor->guard_size; 1207 1208 return g4x_check_srwm(dev, 1209 *display_wm, *cursor_wm, 1210 display, cursor); 1211 } 1212 1213 static bool vlv_compute_drain_latency(struct drm_device *dev, 1214 int plane, 1215 int *plane_prec_mult, 1216 int *plane_dl, 1217 int *cursor_prec_mult, 1218 int *cursor_dl) 1219 { 1220 struct drm_crtc *crtc; 1221 int clock, pixel_size; 1222 int entries; 1223 1224 crtc = intel_get_crtc_for_plane(dev, plane); 1225 if (!intel_crtc_active(crtc)) 1226 return false; 1227 1228 clock = crtc->mode.clock; /* VESA DOT Clock */ 1229 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */ 1230 1231 entries = (clock / 1000) * pixel_size; 1232 *plane_prec_mult = (entries > 256) ? 1233 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16; 1234 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) * 1235 pixel_size); 1236 1237 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */ 1238 *cursor_prec_mult = (entries > 256) ? 1239 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16; 1240 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4); 1241 1242 return true; 1243 } 1244 1245 /* 1246 * Update drain latency registers of memory arbiter 1247 * 1248 * Valleyview SoC has a new memory arbiter and needs drain latency registers 1249 * to be programmed. Each plane has a drain latency multiplier and a drain 1250 * latency value. 1251 */ 1252 1253 static void vlv_update_drain_latency(struct drm_device *dev) 1254 { 1255 struct drm_i915_private *dev_priv = dev->dev_private; 1256 int planea_prec, planea_dl, planeb_prec, planeb_dl; 1257 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl; 1258 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is 1259 either 16 or 32 */ 1260 1261 /* For plane A, Cursor A */ 1262 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl, 1263 &cursor_prec_mult, &cursora_dl)) { 1264 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ? 1265 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16; 1266 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ? 1267 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16; 1268 1269 I915_WRITE(VLV_DDL1, cursora_prec | 1270 (cursora_dl << DDL_CURSORA_SHIFT) | 1271 planea_prec | planea_dl); 1272 } 1273 1274 /* For plane B, Cursor B */ 1275 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl, 1276 &cursor_prec_mult, &cursorb_dl)) { 1277 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ? 1278 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16; 1279 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ? 1280 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16; 1281 1282 I915_WRITE(VLV_DDL2, cursorb_prec | 1283 (cursorb_dl << DDL_CURSORB_SHIFT) | 1284 planeb_prec | planeb_dl); 1285 } 1286 } 1287 1288 #define single_plane_enabled(mask) is_power_of_2(mask) 1289 1290 static void valleyview_update_wm(struct drm_device *dev) 1291 { 1292 static const int sr_latency_ns = 12000; 1293 struct drm_i915_private *dev_priv = dev->dev_private; 1294 int planea_wm, planeb_wm, cursora_wm, cursorb_wm; 1295 int plane_sr, cursor_sr; 1296 int ignore_plane_sr, ignore_cursor_sr; 1297 unsigned int enabled = 0; 1298 1299 vlv_update_drain_latency(dev); 1300 1301 if (g4x_compute_wm0(dev, 0, 1302 &valleyview_wm_info, latency_ns, 1303 &valleyview_cursor_wm_info, latency_ns, 1304 &planea_wm, &cursora_wm)) 1305 enabled |= 1; 1306 1307 if (g4x_compute_wm0(dev, 1, 1308 &valleyview_wm_info, latency_ns, 1309 &valleyview_cursor_wm_info, latency_ns, 1310 &planeb_wm, &cursorb_wm)) 1311 enabled |= 2; 1312 1313 if (single_plane_enabled(enabled) && 1314 g4x_compute_srwm(dev, ffs(enabled) - 1, 1315 sr_latency_ns, 1316 &valleyview_wm_info, 1317 &valleyview_cursor_wm_info, 1318 &plane_sr, &ignore_cursor_sr) && 1319 g4x_compute_srwm(dev, ffs(enabled) - 1, 1320 2*sr_latency_ns, 1321 &valleyview_wm_info, 1322 &valleyview_cursor_wm_info, 1323 &ignore_plane_sr, &cursor_sr)) { 1324 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN); 1325 } else { 1326 I915_WRITE(FW_BLC_SELF_VLV, 1327 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN); 1328 plane_sr = cursor_sr = 0; 1329 } 1330 1331 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n", 1332 planea_wm, cursora_wm, 1333 planeb_wm, cursorb_wm, 1334 plane_sr, cursor_sr); 1335 1336 I915_WRITE(DSPFW1, 1337 (plane_sr << DSPFW_SR_SHIFT) | 1338 (cursorb_wm << DSPFW_CURSORB_SHIFT) | 1339 (planeb_wm << DSPFW_PLANEB_SHIFT) | 1340 planea_wm); 1341 I915_WRITE(DSPFW2, 1342 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) | 1343 (cursora_wm << DSPFW_CURSORA_SHIFT)); 1344 I915_WRITE(DSPFW3, 1345 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) | 1346 (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); 1347 } 1348 1349 static void g4x_update_wm(struct drm_device *dev) 1350 { 1351 static const int sr_latency_ns = 12000; 1352 struct drm_i915_private *dev_priv = dev->dev_private; 1353 int planea_wm, planeb_wm, cursora_wm, cursorb_wm; 1354 int plane_sr, cursor_sr; 1355 unsigned int enabled = 0; 1356 1357 if (g4x_compute_wm0(dev, 0, 1358 &g4x_wm_info, latency_ns, 1359 &g4x_cursor_wm_info, latency_ns, 1360 &planea_wm, &cursora_wm)) 1361 enabled |= 1; 1362 1363 if (g4x_compute_wm0(dev, 1, 1364 &g4x_wm_info, latency_ns, 1365 &g4x_cursor_wm_info, latency_ns, 1366 &planeb_wm, &cursorb_wm)) 1367 enabled |= 2; 1368 1369 if (single_plane_enabled(enabled) && 1370 g4x_compute_srwm(dev, ffs(enabled) - 1, 1371 sr_latency_ns, 1372 &g4x_wm_info, 1373 &g4x_cursor_wm_info, 1374 &plane_sr, &cursor_sr)) { 1375 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); 1376 } else { 1377 I915_WRITE(FW_BLC_SELF, 1378 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); 1379 plane_sr = cursor_sr = 0; 1380 } 1381 1382 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n", 1383 planea_wm, cursora_wm, 1384 planeb_wm, cursorb_wm, 1385 plane_sr, cursor_sr); 1386 1387 I915_WRITE(DSPFW1, 1388 (plane_sr << DSPFW_SR_SHIFT) | 1389 (cursorb_wm << DSPFW_CURSORB_SHIFT) | 1390 (planeb_wm << DSPFW_PLANEB_SHIFT) | 1391 planea_wm); 1392 I915_WRITE(DSPFW2, 1393 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) | 1394 (cursora_wm << DSPFW_CURSORA_SHIFT)); 1395 /* HPLL off in SR has some issues on G4x... disable it */ 1396 I915_WRITE(DSPFW3, 1397 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) | 1398 (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); 1399 } 1400 1401 static void i965_update_wm(struct drm_device *dev) 1402 { 1403 struct drm_i915_private *dev_priv = dev->dev_private; 1404 struct drm_crtc *crtc; 1405 int srwm = 1; 1406 int cursor_sr = 16; 1407 1408 /* Calc sr entries for one plane configs */ 1409 crtc = single_enabled_crtc(dev); 1410 if (crtc) { 1411 /* self-refresh has much higher latency */ 1412 static const int sr_latency_ns = 12000; 1413 int clock = crtc->mode.clock; 1414 int htotal = crtc->mode.htotal; 1415 int hdisplay = crtc->mode.hdisplay; 1416 int pixel_size = crtc->fb->bits_per_pixel / 8; 1417 unsigned long line_time_us; 1418 int entries; 1419 1420 line_time_us = ((htotal * 1000) / clock); 1421 1422 /* Use ns/us then divide to preserve precision */ 1423 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * 1424 pixel_size * hdisplay; 1425 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); 1426 srwm = I965_FIFO_SIZE - entries; 1427 if (srwm < 0) 1428 srwm = 1; 1429 srwm &= 0x1ff; 1430 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n", 1431 entries, srwm); 1432 1433 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * 1434 pixel_size * 64; 1435 entries = DIV_ROUND_UP(entries, 1436 i965_cursor_wm_info.cacheline_size); 1437 cursor_sr = i965_cursor_wm_info.fifo_size - 1438 (entries + i965_cursor_wm_info.guard_size); 1439 1440 if (cursor_sr > i965_cursor_wm_info.max_wm) 1441 cursor_sr = i965_cursor_wm_info.max_wm; 1442 1443 DRM_DEBUG_KMS("self-refresh watermark: display plane %d " 1444 "cursor %d\n", srwm, cursor_sr); 1445 1446 if (IS_CRESTLINE(dev)) 1447 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); 1448 } else { 1449 /* Turn off self refresh if both pipes are enabled */ 1450 if (IS_CRESTLINE(dev)) 1451 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) 1452 & ~FW_BLC_SELF_EN); 1453 } 1454 1455 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", 1456 srwm); 1457 1458 /* 965 has limitations... */ 1459 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | 1460 (8 << 16) | (8 << 8) | (8 << 0)); 1461 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0)); 1462 /* update cursor SR watermark */ 1463 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); 1464 } 1465 1466 static void i9xx_update_wm(struct drm_device *dev) 1467 { 1468 struct drm_i915_private *dev_priv = dev->dev_private; 1469 const struct intel_watermark_params *wm_info; 1470 uint32_t fwater_lo; 1471 uint32_t fwater_hi; 1472 int cwm, srwm = 1; 1473 int fifo_size; 1474 int planea_wm, planeb_wm; 1475 struct drm_crtc *crtc, *enabled = NULL; 1476 1477 if (IS_I945GM(dev)) 1478 wm_info = &i945_wm_info; 1479 else if (!IS_GEN2(dev)) 1480 wm_info = &i915_wm_info; 1481 else 1482 wm_info = &i855_wm_info; 1483 1484 fifo_size = dev_priv->display.get_fifo_size(dev, 0); 1485 crtc = intel_get_crtc_for_plane(dev, 0); 1486 if (intel_crtc_active(crtc)) { 1487 int cpp = crtc->fb->bits_per_pixel / 8; 1488 if (IS_GEN2(dev)) 1489 cpp = 4; 1490 1491 planea_wm = intel_calculate_wm(crtc->mode.clock, 1492 wm_info, fifo_size, cpp, 1493 latency_ns); 1494 enabled = crtc; 1495 } else 1496 planea_wm = fifo_size - wm_info->guard_size; 1497 1498 fifo_size = dev_priv->display.get_fifo_size(dev, 1); 1499 crtc = intel_get_crtc_for_plane(dev, 1); 1500 if (intel_crtc_active(crtc)) { 1501 int cpp = crtc->fb->bits_per_pixel / 8; 1502 if (IS_GEN2(dev)) 1503 cpp = 4; 1504 1505 planeb_wm = intel_calculate_wm(crtc->mode.clock, 1506 wm_info, fifo_size, cpp, 1507 latency_ns); 1508 if (enabled == NULL) 1509 enabled = crtc; 1510 else 1511 enabled = NULL; 1512 } else 1513 planeb_wm = fifo_size - wm_info->guard_size; 1514 1515 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); 1516 1517 /* 1518 * Overlay gets an aggressive default since video jitter is bad. 1519 */ 1520 cwm = 2; 1521 1522 /* Play safe and disable self-refresh before adjusting watermarks. */ 1523 if (IS_I945G(dev) || IS_I945GM(dev)) 1524 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0); 1525 else if (IS_I915GM(dev)) 1526 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN); 1527 1528 /* Calc sr entries for one plane configs */ 1529 if (HAS_FW_BLC(dev) && enabled) { 1530 /* self-refresh has much higher latency */ 1531 static const int sr_latency_ns = 6000; 1532 int clock = enabled->mode.clock; 1533 int htotal = enabled->mode.htotal; 1534 int hdisplay = enabled->mode.hdisplay; 1535 int pixel_size = enabled->fb->bits_per_pixel / 8; 1536 unsigned long line_time_us; 1537 int entries; 1538 1539 line_time_us = (htotal * 1000) / clock; 1540 1541 /* Use ns/us then divide to preserve precision */ 1542 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * 1543 pixel_size * hdisplay; 1544 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); 1545 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries); 1546 srwm = wm_info->fifo_size - entries; 1547 if (srwm < 0) 1548 srwm = 1; 1549 1550 if (IS_I945G(dev) || IS_I945GM(dev)) 1551 I915_WRITE(FW_BLC_SELF, 1552 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); 1553 else if (IS_I915GM(dev)) 1554 I915_WRITE(FW_BLC_SELF, srwm & 0x3f); 1555 } 1556 1557 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", 1558 planea_wm, planeb_wm, cwm, srwm); 1559 1560 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); 1561 fwater_hi = (cwm & 0x1f); 1562 1563 /* Set request length to 8 cachelines per fetch */ 1564 fwater_lo = fwater_lo | (1 << 24) | (1 << 8); 1565 fwater_hi = fwater_hi | (1 << 8); 1566 1567 I915_WRITE(FW_BLC, fwater_lo); 1568 I915_WRITE(FW_BLC2, fwater_hi); 1569 1570 if (HAS_FW_BLC(dev)) { 1571 if (enabled) { 1572 if (IS_I945G(dev) || IS_I945GM(dev)) 1573 I915_WRITE(FW_BLC_SELF, 1574 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN); 1575 else if (IS_I915GM(dev)) 1576 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN); 1577 DRM_DEBUG_KMS("memory self refresh enabled\n"); 1578 } else 1579 DRM_DEBUG_KMS("memory self refresh disabled\n"); 1580 } 1581 } 1582 1583 static void i830_update_wm(struct drm_device *dev) 1584 { 1585 struct drm_i915_private *dev_priv = dev->dev_private; 1586 struct drm_crtc *crtc; 1587 uint32_t fwater_lo; 1588 int planea_wm; 1589 1590 crtc = single_enabled_crtc(dev); 1591 if (crtc == NULL) 1592 return; 1593 1594 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info, 1595 dev_priv->display.get_fifo_size(dev, 0), 1596 4, latency_ns); 1597 fwater_lo = I915_READ(FW_BLC) & ~0xfff; 1598 fwater_lo |= (3<<8) | planea_wm; 1599 1600 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); 1601 1602 I915_WRITE(FW_BLC, fwater_lo); 1603 } 1604 1605 #define ILK_LP0_PLANE_LATENCY 700 1606 #define ILK_LP0_CURSOR_LATENCY 1300 1607 1608 /* 1609 * Check the wm result. 1610 * 1611 * If any calculated watermark values is larger than the maximum value that 1612 * can be programmed into the associated watermark register, that watermark 1613 * must be disabled. 1614 */ 1615 static bool ironlake_check_srwm(struct drm_device *dev, int level, 1616 int fbc_wm, int display_wm, int cursor_wm, 1617 const struct intel_watermark_params *display, 1618 const struct intel_watermark_params *cursor) 1619 { 1620 struct drm_i915_private *dev_priv = dev->dev_private; 1621 1622 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d," 1623 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm); 1624 1625 if (fbc_wm > SNB_FBC_MAX_SRWM) { 1626 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n", 1627 fbc_wm, SNB_FBC_MAX_SRWM, level); 1628 1629 /* fbc has it's own way to disable FBC WM */ 1630 I915_WRITE(DISP_ARB_CTL, 1631 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS); 1632 return false; 1633 } 1634 1635 if (display_wm > display->max_wm) { 1636 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n", 1637 display_wm, SNB_DISPLAY_MAX_SRWM, level); 1638 return false; 1639 } 1640 1641 if (cursor_wm > cursor->max_wm) { 1642 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n", 1643 cursor_wm, SNB_CURSOR_MAX_SRWM, level); 1644 return false; 1645 } 1646 1647 if (!(fbc_wm || display_wm || cursor_wm)) { 1648 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level); 1649 return false; 1650 } 1651 1652 return true; 1653 } 1654 1655 /* 1656 * Compute watermark values of WM[1-3], 1657 */ 1658 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane, 1659 int latency_ns, 1660 const struct intel_watermark_params *display, 1661 const struct intel_watermark_params *cursor, 1662 int *fbc_wm, int *display_wm, int *cursor_wm) 1663 { 1664 struct drm_crtc *crtc; 1665 unsigned long line_time_us; 1666 int hdisplay, htotal, pixel_size, clock; 1667 int line_count, line_size; 1668 int small, large; 1669 int entries; 1670 1671 if (!latency_ns) { 1672 *fbc_wm = *display_wm = *cursor_wm = 0; 1673 return false; 1674 } 1675 1676 crtc = intel_get_crtc_for_plane(dev, plane); 1677 hdisplay = crtc->mode.hdisplay; 1678 htotal = crtc->mode.htotal; 1679 clock = crtc->mode.clock; 1680 pixel_size = crtc->fb->bits_per_pixel / 8; 1681 1682 line_time_us = (htotal * 1000) / clock; 1683 line_count = (latency_ns / line_time_us + 1000) / 1000; 1684 line_size = hdisplay * pixel_size; 1685 1686 /* Use the minimum of the small and large buffer method for primary */ 1687 small = ((clock * pixel_size / 1000) * latency_ns) / 1000; 1688 large = line_count * line_size; 1689 1690 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); 1691 *display_wm = entries + display->guard_size; 1692 1693 /* 1694 * Spec says: 1695 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2 1696 */ 1697 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2; 1698 1699 /* calculate the self-refresh watermark for display cursor */ 1700 entries = line_count * pixel_size * 64; 1701 entries = DIV_ROUND_UP(entries, cursor->cacheline_size); 1702 *cursor_wm = entries + cursor->guard_size; 1703 1704 return ironlake_check_srwm(dev, level, 1705 *fbc_wm, *display_wm, *cursor_wm, 1706 display, cursor); 1707 } 1708 1709 static void ironlake_update_wm(struct drm_device *dev) 1710 { 1711 struct drm_i915_private *dev_priv = dev->dev_private; 1712 int fbc_wm, plane_wm, cursor_wm; 1713 unsigned int enabled; 1714 1715 enabled = 0; 1716 if (g4x_compute_wm0(dev, 0, 1717 &ironlake_display_wm_info, 1718 ILK_LP0_PLANE_LATENCY, 1719 &ironlake_cursor_wm_info, 1720 ILK_LP0_CURSOR_LATENCY, 1721 &plane_wm, &cursor_wm)) { 1722 I915_WRITE(WM0_PIPEA_ILK, 1723 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); 1724 DRM_DEBUG_KMS("FIFO watermarks For pipe A -" 1725 " plane %d, " "cursor: %d\n", 1726 plane_wm, cursor_wm); 1727 enabled |= 1; 1728 } 1729 1730 if (g4x_compute_wm0(dev, 1, 1731 &ironlake_display_wm_info, 1732 ILK_LP0_PLANE_LATENCY, 1733 &ironlake_cursor_wm_info, 1734 ILK_LP0_CURSOR_LATENCY, 1735 &plane_wm, &cursor_wm)) { 1736 I915_WRITE(WM0_PIPEB_ILK, 1737 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); 1738 DRM_DEBUG_KMS("FIFO watermarks For pipe B -" 1739 " plane %d, cursor: %d\n", 1740 plane_wm, cursor_wm); 1741 enabled |= 2; 1742 } 1743 1744 /* 1745 * Calculate and update the self-refresh watermark only when one 1746 * display plane is used. 1747 */ 1748 I915_WRITE(WM3_LP_ILK, 0); 1749 I915_WRITE(WM2_LP_ILK, 0); 1750 I915_WRITE(WM1_LP_ILK, 0); 1751 1752 if (!single_plane_enabled(enabled)) 1753 return; 1754 enabled = ffs(enabled) - 1; 1755 1756 /* WM1 */ 1757 if (!ironlake_compute_srwm(dev, 1, enabled, 1758 ILK_READ_WM1_LATENCY() * 500, 1759 &ironlake_display_srwm_info, 1760 &ironlake_cursor_srwm_info, 1761 &fbc_wm, &plane_wm, &cursor_wm)) 1762 return; 1763 1764 I915_WRITE(WM1_LP_ILK, 1765 WM1_LP_SR_EN | 1766 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | 1767 (fbc_wm << WM1_LP_FBC_SHIFT) | 1768 (plane_wm << WM1_LP_SR_SHIFT) | 1769 cursor_wm); 1770 1771 /* WM2 */ 1772 if (!ironlake_compute_srwm(dev, 2, enabled, 1773 ILK_READ_WM2_LATENCY() * 500, 1774 &ironlake_display_srwm_info, 1775 &ironlake_cursor_srwm_info, 1776 &fbc_wm, &plane_wm, &cursor_wm)) 1777 return; 1778 1779 I915_WRITE(WM2_LP_ILK, 1780 WM2_LP_EN | 1781 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | 1782 (fbc_wm << WM1_LP_FBC_SHIFT) | 1783 (plane_wm << WM1_LP_SR_SHIFT) | 1784 cursor_wm); 1785 1786 /* 1787 * WM3 is unsupported on ILK, probably because we don't have latency 1788 * data for that power state 1789 */ 1790 } 1791 1792 static void sandybridge_update_wm(struct drm_device *dev) 1793 { 1794 struct drm_i915_private *dev_priv = dev->dev_private; 1795 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */ 1796 u32 val; 1797 int fbc_wm, plane_wm, cursor_wm; 1798 unsigned int enabled; 1799 1800 enabled = 0; 1801 if (g4x_compute_wm0(dev, 0, 1802 &sandybridge_display_wm_info, latency, 1803 &sandybridge_cursor_wm_info, latency, 1804 &plane_wm, &cursor_wm)) { 1805 val = I915_READ(WM0_PIPEA_ILK); 1806 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); 1807 I915_WRITE(WM0_PIPEA_ILK, val | 1808 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); 1809 DRM_DEBUG_KMS("FIFO watermarks For pipe A -" 1810 " plane %d, " "cursor: %d\n", 1811 plane_wm, cursor_wm); 1812 enabled |= 1; 1813 } 1814 1815 if (g4x_compute_wm0(dev, 1, 1816 &sandybridge_display_wm_info, latency, 1817 &sandybridge_cursor_wm_info, latency, 1818 &plane_wm, &cursor_wm)) { 1819 val = I915_READ(WM0_PIPEB_ILK); 1820 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); 1821 I915_WRITE(WM0_PIPEB_ILK, val | 1822 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); 1823 DRM_DEBUG_KMS("FIFO watermarks For pipe B -" 1824 " plane %d, cursor: %d\n", 1825 plane_wm, cursor_wm); 1826 enabled |= 2; 1827 } 1828 1829 /* 1830 * Calculate and update the self-refresh watermark only when one 1831 * display plane is used. 1832 * 1833 * SNB support 3 levels of watermark. 1834 * 1835 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order, 1836 * and disabled in the descending order 1837 * 1838 */ 1839 I915_WRITE(WM3_LP_ILK, 0); 1840 I915_WRITE(WM2_LP_ILK, 0); 1841 I915_WRITE(WM1_LP_ILK, 0); 1842 1843 if (!single_plane_enabled(enabled) || 1844 dev_priv->sprite_scaling_enabled) 1845 return; 1846 enabled = ffs(enabled) - 1; 1847 1848 /* WM1 */ 1849 if (!ironlake_compute_srwm(dev, 1, enabled, 1850 SNB_READ_WM1_LATENCY() * 500, 1851 &sandybridge_display_srwm_info, 1852 &sandybridge_cursor_srwm_info, 1853 &fbc_wm, &plane_wm, &cursor_wm)) 1854 return; 1855 1856 I915_WRITE(WM1_LP_ILK, 1857 WM1_LP_SR_EN | 1858 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | 1859 (fbc_wm << WM1_LP_FBC_SHIFT) | 1860 (plane_wm << WM1_LP_SR_SHIFT) | 1861 cursor_wm); 1862 1863 /* WM2 */ 1864 if (!ironlake_compute_srwm(dev, 2, enabled, 1865 SNB_READ_WM2_LATENCY() * 500, 1866 &sandybridge_display_srwm_info, 1867 &sandybridge_cursor_srwm_info, 1868 &fbc_wm, &plane_wm, &cursor_wm)) 1869 return; 1870 1871 I915_WRITE(WM2_LP_ILK, 1872 WM2_LP_EN | 1873 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | 1874 (fbc_wm << WM1_LP_FBC_SHIFT) | 1875 (plane_wm << WM1_LP_SR_SHIFT) | 1876 cursor_wm); 1877 1878 /* WM3 */ 1879 if (!ironlake_compute_srwm(dev, 3, enabled, 1880 SNB_READ_WM3_LATENCY() * 500, 1881 &sandybridge_display_srwm_info, 1882 &sandybridge_cursor_srwm_info, 1883 &fbc_wm, &plane_wm, &cursor_wm)) 1884 return; 1885 1886 I915_WRITE(WM3_LP_ILK, 1887 WM3_LP_EN | 1888 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) | 1889 (fbc_wm << WM1_LP_FBC_SHIFT) | 1890 (plane_wm << WM1_LP_SR_SHIFT) | 1891 cursor_wm); 1892 } 1893 1894 static void ivybridge_update_wm(struct drm_device *dev) 1895 { 1896 struct drm_i915_private *dev_priv = dev->dev_private; 1897 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */ 1898 u32 val; 1899 int fbc_wm, plane_wm, cursor_wm; 1900 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm; 1901 unsigned int enabled; 1902 1903 enabled = 0; 1904 if (g4x_compute_wm0(dev, 0, 1905 &sandybridge_display_wm_info, latency, 1906 &sandybridge_cursor_wm_info, latency, 1907 &plane_wm, &cursor_wm)) { 1908 val = I915_READ(WM0_PIPEA_ILK); 1909 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); 1910 I915_WRITE(WM0_PIPEA_ILK, val | 1911 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); 1912 DRM_DEBUG_KMS("FIFO watermarks For pipe A -" 1913 " plane %d, " "cursor: %d\n", 1914 plane_wm, cursor_wm); 1915 enabled |= 1; 1916 } 1917 1918 if (g4x_compute_wm0(dev, 1, 1919 &sandybridge_display_wm_info, latency, 1920 &sandybridge_cursor_wm_info, latency, 1921 &plane_wm, &cursor_wm)) { 1922 val = I915_READ(WM0_PIPEB_ILK); 1923 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); 1924 I915_WRITE(WM0_PIPEB_ILK, val | 1925 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); 1926 DRM_DEBUG_KMS("FIFO watermarks For pipe B -" 1927 " plane %d, cursor: %d\n", 1928 plane_wm, cursor_wm); 1929 enabled |= 2; 1930 } 1931 1932 if (g4x_compute_wm0(dev, 2, 1933 &sandybridge_display_wm_info, latency, 1934 &sandybridge_cursor_wm_info, latency, 1935 &plane_wm, &cursor_wm)) { 1936 val = I915_READ(WM0_PIPEC_IVB); 1937 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); 1938 I915_WRITE(WM0_PIPEC_IVB, val | 1939 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); 1940 DRM_DEBUG_KMS("FIFO watermarks For pipe C -" 1941 " plane %d, cursor: %d\n", 1942 plane_wm, cursor_wm); 1943 enabled |= 3; 1944 } 1945 1946 /* 1947 * Calculate and update the self-refresh watermark only when one 1948 * display plane is used. 1949 * 1950 * SNB support 3 levels of watermark. 1951 * 1952 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order, 1953 * and disabled in the descending order 1954 * 1955 */ 1956 I915_WRITE(WM3_LP_ILK, 0); 1957 I915_WRITE(WM2_LP_ILK, 0); 1958 I915_WRITE(WM1_LP_ILK, 0); 1959 1960 if (!single_plane_enabled(enabled) || 1961 dev_priv->sprite_scaling_enabled) 1962 return; 1963 enabled = ffs(enabled) - 1; 1964 1965 /* WM1 */ 1966 if (!ironlake_compute_srwm(dev, 1, enabled, 1967 SNB_READ_WM1_LATENCY() * 500, 1968 &sandybridge_display_srwm_info, 1969 &sandybridge_cursor_srwm_info, 1970 &fbc_wm, &plane_wm, &cursor_wm)) 1971 return; 1972 1973 I915_WRITE(WM1_LP_ILK, 1974 WM1_LP_SR_EN | 1975 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | 1976 (fbc_wm << WM1_LP_FBC_SHIFT) | 1977 (plane_wm << WM1_LP_SR_SHIFT) | 1978 cursor_wm); 1979 1980 /* WM2 */ 1981 if (!ironlake_compute_srwm(dev, 2, enabled, 1982 SNB_READ_WM2_LATENCY() * 500, 1983 &sandybridge_display_srwm_info, 1984 &sandybridge_cursor_srwm_info, 1985 &fbc_wm, &plane_wm, &cursor_wm)) 1986 return; 1987 1988 I915_WRITE(WM2_LP_ILK, 1989 WM2_LP_EN | 1990 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | 1991 (fbc_wm << WM1_LP_FBC_SHIFT) | 1992 (plane_wm << WM1_LP_SR_SHIFT) | 1993 cursor_wm); 1994 1995 /* WM3, note we have to correct the cursor latency */ 1996 if (!ironlake_compute_srwm(dev, 3, enabled, 1997 SNB_READ_WM3_LATENCY() * 500, 1998 &sandybridge_display_srwm_info, 1999 &sandybridge_cursor_srwm_info, 2000 &fbc_wm, &plane_wm, &ignore_cursor_wm) || 2001 !ironlake_compute_srwm(dev, 3, enabled, 2002 2 * SNB_READ_WM3_LATENCY() * 500, 2003 &sandybridge_display_srwm_info, 2004 &sandybridge_cursor_srwm_info, 2005 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm)) 2006 return; 2007 2008 I915_WRITE(WM3_LP_ILK, 2009 WM3_LP_EN | 2010 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) | 2011 (fbc_wm << WM1_LP_FBC_SHIFT) | 2012 (plane_wm << WM1_LP_SR_SHIFT) | 2013 cursor_wm); 2014 } 2015 2016 static void 2017 haswell_update_linetime_wm(struct drm_device *dev, int pipe, 2018 struct drm_display_mode *mode) 2019 { 2020 struct drm_i915_private *dev_priv = dev->dev_private; 2021 u32 temp; 2022 2023 temp = I915_READ(PIPE_WM_LINETIME(pipe)); 2024 temp &= ~PIPE_WM_LINETIME_MASK; 2025 2026 /* The WM are computed with base on how long it takes to fill a single 2027 * row at the given clock rate, multiplied by 8. 2028 * */ 2029 temp |= PIPE_WM_LINETIME_TIME( 2030 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8); 2031 2032 /* IPS watermarks are only used by pipe A, and are ignored by 2033 * pipes B and C. They are calculated similarly to the common 2034 * linetime values, except that we are using CD clock frequency 2035 * in MHz instead of pixel rate for the division. 2036 * 2037 * This is a placeholder for the IPS watermark calculation code. 2038 */ 2039 2040 I915_WRITE(PIPE_WM_LINETIME(pipe), temp); 2041 } 2042 2043 static bool 2044 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane, 2045 uint32_t sprite_width, int pixel_size, 2046 const struct intel_watermark_params *display, 2047 int display_latency_ns, int *sprite_wm) 2048 { 2049 struct drm_crtc *crtc; 2050 int clock; 2051 int entries, tlb_miss; 2052 2053 crtc = intel_get_crtc_for_plane(dev, plane); 2054 if (!intel_crtc_active(crtc)) { 2055 *sprite_wm = display->guard_size; 2056 return false; 2057 } 2058 2059 clock = crtc->mode.clock; 2060 2061 /* Use the small buffer method to calculate the sprite watermark */ 2062 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000; 2063 tlb_miss = display->fifo_size*display->cacheline_size - 2064 sprite_width * 8; 2065 if (tlb_miss > 0) 2066 entries += tlb_miss; 2067 entries = DIV_ROUND_UP(entries, display->cacheline_size); 2068 *sprite_wm = entries + display->guard_size; 2069 if (*sprite_wm > (int)display->max_wm) 2070 *sprite_wm = display->max_wm; 2071 2072 return true; 2073 } 2074 2075 static bool 2076 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane, 2077 uint32_t sprite_width, int pixel_size, 2078 const struct intel_watermark_params *display, 2079 int latency_ns, int *sprite_wm) 2080 { 2081 struct drm_crtc *crtc; 2082 unsigned long line_time_us; 2083 int clock; 2084 int line_count, line_size; 2085 int small, large; 2086 int entries; 2087 2088 if (!latency_ns) { 2089 *sprite_wm = 0; 2090 return false; 2091 } 2092 2093 crtc = intel_get_crtc_for_plane(dev, plane); 2094 clock = crtc->mode.clock; 2095 if (!clock) { 2096 *sprite_wm = 0; 2097 return false; 2098 } 2099 2100 line_time_us = (sprite_width * 1000) / clock; 2101 if (!line_time_us) { 2102 *sprite_wm = 0; 2103 return false; 2104 } 2105 2106 line_count = (latency_ns / line_time_us + 1000) / 1000; 2107 line_size = sprite_width * pixel_size; 2108 2109 /* Use the minimum of the small and large buffer method for primary */ 2110 small = ((clock * pixel_size / 1000) * latency_ns) / 1000; 2111 large = line_count * line_size; 2112 2113 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); 2114 *sprite_wm = entries + display->guard_size; 2115 2116 return *sprite_wm > 0x3ff ? false : true; 2117 } 2118 2119 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe, 2120 uint32_t sprite_width, int pixel_size) 2121 { 2122 struct drm_i915_private *dev_priv = dev->dev_private; 2123 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */ 2124 u32 val; 2125 int sprite_wm, reg; 2126 int ret; 2127 2128 switch (pipe) { 2129 case 0: 2130 reg = WM0_PIPEA_ILK; 2131 break; 2132 case 1: 2133 reg = WM0_PIPEB_ILK; 2134 break; 2135 case 2: 2136 reg = WM0_PIPEC_IVB; 2137 break; 2138 default: 2139 return; /* bad pipe */ 2140 } 2141 2142 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size, 2143 &sandybridge_display_wm_info, 2144 latency, &sprite_wm); 2145 if (!ret) { 2146 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n", 2147 pipe); 2148 return; 2149 } 2150 2151 val = I915_READ(reg); 2152 val &= ~WM0_PIPE_SPRITE_MASK; 2153 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT)); 2154 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm); 2155 2156 2157 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, 2158 pixel_size, 2159 &sandybridge_display_srwm_info, 2160 SNB_READ_WM1_LATENCY() * 500, 2161 &sprite_wm); 2162 if (!ret) { 2163 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n", 2164 pipe); 2165 return; 2166 } 2167 I915_WRITE(WM1S_LP_ILK, sprite_wm); 2168 2169 /* Only IVB has two more LP watermarks for sprite */ 2170 if (!IS_IVYBRIDGE(dev)) 2171 return; 2172 2173 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, 2174 pixel_size, 2175 &sandybridge_display_srwm_info, 2176 SNB_READ_WM2_LATENCY() * 500, 2177 &sprite_wm); 2178 if (!ret) { 2179 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n", 2180 pipe); 2181 return; 2182 } 2183 I915_WRITE(WM2S_LP_IVB, sprite_wm); 2184 2185 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, 2186 pixel_size, 2187 &sandybridge_display_srwm_info, 2188 SNB_READ_WM3_LATENCY() * 500, 2189 &sprite_wm); 2190 if (!ret) { 2191 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n", 2192 pipe); 2193 return; 2194 } 2195 I915_WRITE(WM3S_LP_IVB, sprite_wm); 2196 } 2197 2198 /** 2199 * intel_update_watermarks - update FIFO watermark values based on current modes 2200 * 2201 * Calculate watermark values for the various WM regs based on current mode 2202 * and plane configuration. 2203 * 2204 * There are several cases to deal with here: 2205 * - normal (i.e. non-self-refresh) 2206 * - self-refresh (SR) mode 2207 * - lines are large relative to FIFO size (buffer can hold up to 2) 2208 * - lines are small relative to FIFO size (buffer can hold more than 2 2209 * lines), so need to account for TLB latency 2210 * 2211 * The normal calculation is: 2212 * watermark = dotclock * bytes per pixel * latency 2213 * where latency is platform & configuration dependent (we assume pessimal 2214 * values here). 2215 * 2216 * The SR calculation is: 2217 * watermark = (trunc(latency/line time)+1) * surface width * 2218 * bytes per pixel 2219 * where 2220 * line time = htotal / dotclock 2221 * surface width = hdisplay for normal plane and 64 for cursor 2222 * and latency is assumed to be high, as above. 2223 * 2224 * The final value programmed to the register should always be rounded up, 2225 * and include an extra 2 entries to account for clock crossings. 2226 * 2227 * We don't use the sprite, so we can ignore that. And on Crestline we have 2228 * to set the non-SR watermarks to 8. 2229 */ 2230 void intel_update_watermarks(struct drm_device *dev) 2231 { 2232 struct drm_i915_private *dev_priv = dev->dev_private; 2233 2234 if (dev_priv->display.update_wm) 2235 dev_priv->display.update_wm(dev); 2236 } 2237 2238 void intel_update_linetime_watermarks(struct drm_device *dev, 2239 int pipe, struct drm_display_mode *mode) 2240 { 2241 struct drm_i915_private *dev_priv = dev->dev_private; 2242 2243 if (dev_priv->display.update_linetime_wm) 2244 dev_priv->display.update_linetime_wm(dev, pipe, mode); 2245 } 2246 2247 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe, 2248 uint32_t sprite_width, int pixel_size) 2249 { 2250 struct drm_i915_private *dev_priv = dev->dev_private; 2251 2252 if (dev_priv->display.update_sprite_wm) 2253 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width, 2254 pixel_size); 2255 } 2256 2257 static struct drm_i915_gem_object * 2258 intel_alloc_context_page(struct drm_device *dev) 2259 { 2260 struct drm_i915_gem_object *ctx; 2261 int ret; 2262 2263 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 2264 2265 ctx = i915_gem_alloc_object(dev, 4096); 2266 if (!ctx) { 2267 DRM_DEBUG("failed to alloc power context, RC6 disabled\n"); 2268 return NULL; 2269 } 2270 2271 ret = i915_gem_object_pin(ctx, 4096, true, false); 2272 if (ret) { 2273 DRM_ERROR("failed to pin power context: %d\n", ret); 2274 goto err_unref; 2275 } 2276 2277 ret = i915_gem_object_set_to_gtt_domain(ctx, 1); 2278 if (ret) { 2279 DRM_ERROR("failed to set-domain on power context: %d\n", ret); 2280 goto err_unpin; 2281 } 2282 2283 return ctx; 2284 2285 err_unpin: 2286 i915_gem_object_unpin(ctx); 2287 err_unref: 2288 drm_gem_object_unreference(&ctx->base); 2289 mutex_unlock(&dev->struct_mutex); 2290 return NULL; 2291 } 2292 2293 /** 2294 * Lock protecting IPS related data structures 2295 */ 2296 DEFINE_SPINLOCK(mchdev_lock); 2297 2298 /* Global for IPS driver to get at the current i915 device. Protected by 2299 * mchdev_lock. */ 2300 static struct drm_i915_private *i915_mch_dev; 2301 2302 bool ironlake_set_drps(struct drm_device *dev, u8 val) 2303 { 2304 struct drm_i915_private *dev_priv = dev->dev_private; 2305 u16 rgvswctl; 2306 2307 assert_spin_locked(&mchdev_lock); 2308 2309 rgvswctl = I915_READ16(MEMSWCTL); 2310 if (rgvswctl & MEMCTL_CMD_STS) { 2311 DRM_DEBUG("gpu busy, RCS change rejected\n"); 2312 return false; /* still busy with another command */ 2313 } 2314 2315 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | 2316 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; 2317 I915_WRITE16(MEMSWCTL, rgvswctl); 2318 POSTING_READ16(MEMSWCTL); 2319 2320 rgvswctl |= MEMCTL_CMD_STS; 2321 I915_WRITE16(MEMSWCTL, rgvswctl); 2322 2323 return true; 2324 } 2325 2326 static void ironlake_enable_drps(struct drm_device *dev) 2327 { 2328 struct drm_i915_private *dev_priv = dev->dev_private; 2329 u32 rgvmodectl = I915_READ(MEMMODECTL); 2330 u8 fmax, fmin, fstart, vstart; 2331 2332 spin_lock_irq(&mchdev_lock); 2333 2334 /* Enable temp reporting */ 2335 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN); 2336 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE); 2337 2338 /* 100ms RC evaluation intervals */ 2339 I915_WRITE(RCUPEI, 100000); 2340 I915_WRITE(RCDNEI, 100000); 2341 2342 /* Set max/min thresholds to 90ms and 80ms respectively */ 2343 I915_WRITE(RCBMAXAVG, 90000); 2344 I915_WRITE(RCBMINAVG, 80000); 2345 2346 I915_WRITE(MEMIHYST, 1); 2347 2348 /* Set up min, max, and cur for interrupt handling */ 2349 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; 2350 fmin = (rgvmodectl & MEMMODE_FMIN_MASK); 2351 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> 2352 MEMMODE_FSTART_SHIFT; 2353 2354 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >> 2355 PXVFREQ_PX_SHIFT; 2356 2357 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */ 2358 dev_priv->ips.fstart = fstart; 2359 2360 dev_priv->ips.max_delay = fstart; 2361 dev_priv->ips.min_delay = fmin; 2362 dev_priv->ips.cur_delay = fstart; 2363 2364 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", 2365 fmax, fmin, fstart); 2366 2367 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); 2368 2369 /* 2370 * Interrupts will be enabled in ironlake_irq_postinstall 2371 */ 2372 2373 I915_WRITE(VIDSTART, vstart); 2374 POSTING_READ(VIDSTART); 2375 2376 rgvmodectl |= MEMMODE_SWMODE_EN; 2377 I915_WRITE(MEMMODECTL, rgvmodectl); 2378 2379 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) 2380 DRM_ERROR("stuck trying to change perf mode\n"); 2381 mdelay(1); 2382 2383 ironlake_set_drps(dev, fstart); 2384 2385 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) + 2386 I915_READ(0x112e0); 2387 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies); 2388 dev_priv->ips.last_count2 = I915_READ(0x112f4); 2389 getrawmonotonic(&dev_priv->ips.last_time2); 2390 2391 spin_unlock_irq(&mchdev_lock); 2392 } 2393 2394 static void ironlake_disable_drps(struct drm_device *dev) 2395 { 2396 struct drm_i915_private *dev_priv = dev->dev_private; 2397 u16 rgvswctl; 2398 2399 spin_lock_irq(&mchdev_lock); 2400 2401 rgvswctl = I915_READ16(MEMSWCTL); 2402 2403 /* Ack interrupts, disable EFC interrupt */ 2404 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN); 2405 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG); 2406 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT); 2407 I915_WRITE(DEIIR, DE_PCU_EVENT); 2408 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT); 2409 2410 /* Go back to the starting frequency */ 2411 ironlake_set_drps(dev, dev_priv->ips.fstart); 2412 mdelay(1); 2413 rgvswctl |= MEMCTL_CMD_STS; 2414 I915_WRITE(MEMSWCTL, rgvswctl); 2415 mdelay(1); 2416 2417 spin_unlock_irq(&mchdev_lock); 2418 } 2419 2420 /* There's a funny hw issue where the hw returns all 0 when reading from 2421 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value 2422 * ourselves, instead of doing a rmw cycle (which might result in us clearing 2423 * all limits and the gpu stuck at whatever frequency it is at atm). 2424 */ 2425 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val) 2426 { 2427 u32 limits; 2428 2429 limits = 0; 2430 2431 if (*val >= dev_priv->rps.max_delay) 2432 *val = dev_priv->rps.max_delay; 2433 limits |= dev_priv->rps.max_delay << 24; 2434 2435 /* Only set the down limit when we've reached the lowest level to avoid 2436 * getting more interrupts, otherwise leave this clear. This prevents a 2437 * race in the hw when coming out of rc6: There's a tiny window where 2438 * the hw runs at the minimal clock before selecting the desired 2439 * frequency, if the down threshold expires in that window we will not 2440 * receive a down interrupt. */ 2441 if (*val <= dev_priv->rps.min_delay) { 2442 *val = dev_priv->rps.min_delay; 2443 limits |= dev_priv->rps.min_delay << 16; 2444 } 2445 2446 return limits; 2447 } 2448 2449 void gen6_set_rps(struct drm_device *dev, u8 val) 2450 { 2451 struct drm_i915_private *dev_priv = dev->dev_private; 2452 u32 limits = gen6_rps_limits(dev_priv, &val); 2453 2454 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); 2455 WARN_ON(val > dev_priv->rps.max_delay); 2456 WARN_ON(val < dev_priv->rps.min_delay); 2457 2458 if (val == dev_priv->rps.cur_delay) 2459 return; 2460 2461 I915_WRITE(GEN6_RPNSWREQ, 2462 GEN6_FREQUENCY(val) | 2463 GEN6_OFFSET(0) | 2464 GEN6_AGGRESSIVE_TURBO); 2465 2466 /* Make sure we continue to get interrupts 2467 * until we hit the minimum or maximum frequencies. 2468 */ 2469 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits); 2470 2471 POSTING_READ(GEN6_RPNSWREQ); 2472 2473 dev_priv->rps.cur_delay = val; 2474 2475 trace_intel_gpu_freq_change(val * 50); 2476 } 2477 2478 static void gen6_disable_rps(struct drm_device *dev) 2479 { 2480 struct drm_i915_private *dev_priv = dev->dev_private; 2481 2482 I915_WRITE(GEN6_RC_CONTROL, 0); 2483 I915_WRITE(GEN6_RPNSWREQ, 1 << 31); 2484 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff); 2485 I915_WRITE(GEN6_PMIER, 0); 2486 /* Complete PM interrupt masking here doesn't race with the rps work 2487 * item again unmasking PM interrupts because that is using a different 2488 * register (PMIMR) to mask PM interrupts. The only risk is in leaving 2489 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */ 2490 2491 spin_lock_irq(&dev_priv->rps.lock); 2492 dev_priv->rps.pm_iir = 0; 2493 spin_unlock_irq(&dev_priv->rps.lock); 2494 2495 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR)); 2496 } 2497 2498 int intel_enable_rc6(const struct drm_device *dev) 2499 { 2500 /* Respect the kernel parameter if it is set */ 2501 if (i915_enable_rc6 >= 0) 2502 return i915_enable_rc6; 2503 2504 /* Disable RC6 on Ironlake */ 2505 if (INTEL_INFO(dev)->gen == 5) 2506 return 0; 2507 2508 if (IS_HASWELL(dev)) { 2509 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n"); 2510 return INTEL_RC6_ENABLE; 2511 } 2512 2513 /* snb/ivb have more than one rc6 state. */ 2514 if (INTEL_INFO(dev)->gen == 6) { 2515 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n"); 2516 return INTEL_RC6_ENABLE; 2517 } 2518 2519 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n"); 2520 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE); 2521 } 2522 2523 static void gen6_enable_rps(struct drm_device *dev) 2524 { 2525 struct drm_i915_private *dev_priv = dev->dev_private; 2526 struct intel_ring_buffer *ring; 2527 u32 rp_state_cap; 2528 u32 gt_perf_status; 2529 u32 rc6vids, pcu_mbox, rc6_mask = 0; 2530 u32 gtfifodbg; 2531 int rc6_mode; 2532 int i, ret; 2533 2534 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); 2535 2536 /* Here begins a magic sequence of register writes to enable 2537 * auto-downclocking. 2538 * 2539 * Perhaps there might be some value in exposing these to 2540 * userspace... 2541 */ 2542 I915_WRITE(GEN6_RC_STATE, 0); 2543 2544 /* Clear the DBG now so we don't confuse earlier errors */ 2545 if ((gtfifodbg = I915_READ(GTFIFODBG))) { 2546 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg); 2547 I915_WRITE(GTFIFODBG, gtfifodbg); 2548 } 2549 2550 gen6_gt_force_wake_get(dev_priv); 2551 2552 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 2553 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); 2554 2555 /* In units of 100MHz */ 2556 dev_priv->rps.max_delay = rp_state_cap & 0xff; 2557 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16; 2558 dev_priv->rps.cur_delay = 0; 2559 2560 /* disable the counters and set deterministic thresholds */ 2561 I915_WRITE(GEN6_RC_CONTROL, 0); 2562 2563 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); 2564 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); 2565 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30); 2566 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); 2567 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); 2568 2569 for_each_ring(ring, dev_priv, i) 2570 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10); 2571 2572 I915_WRITE(GEN6_RC_SLEEP, 0); 2573 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000); 2574 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); 2575 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000); 2576 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */ 2577 2578 /* Check if we are enabling RC6 */ 2579 rc6_mode = intel_enable_rc6(dev_priv->dev); 2580 if (rc6_mode & INTEL_RC6_ENABLE) 2581 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE; 2582 2583 /* We don't use those on Haswell */ 2584 if (!IS_HASWELL(dev)) { 2585 if (rc6_mode & INTEL_RC6p_ENABLE) 2586 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; 2587 2588 if (rc6_mode & INTEL_RC6pp_ENABLE) 2589 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; 2590 } 2591 2592 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n", 2593 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off", 2594 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off", 2595 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off"); 2596 2597 I915_WRITE(GEN6_RC_CONTROL, 2598 rc6_mask | 2599 GEN6_RC_CTL_EI_MODE(1) | 2600 GEN6_RC_CTL_HW_ENABLE); 2601 2602 I915_WRITE(GEN6_RPNSWREQ, 2603 GEN6_FREQUENCY(10) | 2604 GEN6_OFFSET(0) | 2605 GEN6_AGGRESSIVE_TURBO); 2606 I915_WRITE(GEN6_RC_VIDEO_FREQ, 2607 GEN6_FREQUENCY(12)); 2608 2609 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); 2610 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 2611 dev_priv->rps.max_delay << 24 | 2612 dev_priv->rps.min_delay << 16); 2613 2614 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400); 2615 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000); 2616 I915_WRITE(GEN6_RP_UP_EI, 66000); 2617 I915_WRITE(GEN6_RP_DOWN_EI, 350000); 2618 2619 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); 2620 I915_WRITE(GEN6_RP_CONTROL, 2621 GEN6_RP_MEDIA_TURBO | 2622 GEN6_RP_MEDIA_HW_NORMAL_MODE | 2623 GEN6_RP_MEDIA_IS_GFX | 2624 GEN6_RP_ENABLE | 2625 GEN6_RP_UP_BUSY_AVG | 2626 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT)); 2627 2628 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0); 2629 if (!ret) { 2630 pcu_mbox = 0; 2631 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox); 2632 if (ret && pcu_mbox & (1<<31)) { /* OC supported */ 2633 dev_priv->rps.max_delay = pcu_mbox & 0xff; 2634 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50); 2635 } 2636 } else { 2637 DRM_DEBUG_DRIVER("Failed to set the min frequency\n"); 2638 } 2639 2640 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8); 2641 2642 /* requires MSI enabled */ 2643 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS); 2644 spin_lock_irq(&dev_priv->rps.lock); 2645 WARN_ON(dev_priv->rps.pm_iir != 0); 2646 I915_WRITE(GEN6_PMIMR, 0); 2647 spin_unlock_irq(&dev_priv->rps.lock); 2648 /* enable all PM interrupts */ 2649 I915_WRITE(GEN6_PMINTRMSK, 0); 2650 2651 rc6vids = 0; 2652 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); 2653 if (IS_GEN6(dev) && ret) { 2654 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n"); 2655 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) { 2656 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n", 2657 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450); 2658 rc6vids &= 0xffff00; 2659 rc6vids |= GEN6_ENCODE_RC6_VID(450); 2660 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids); 2661 if (ret) 2662 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n"); 2663 } 2664 2665 gen6_gt_force_wake_put(dev_priv); 2666 } 2667 2668 static void gen6_update_ring_freq(struct drm_device *dev) 2669 { 2670 struct drm_i915_private *dev_priv = dev->dev_private; 2671 int min_freq = 15; 2672 int gpu_freq; 2673 unsigned int ia_freq, max_ia_freq; 2674 int scaling_factor = 180; 2675 2676 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); 2677 2678 max_ia_freq = cpufreq_quick_get_max(0); 2679 /* 2680 * Default to measured freq if none found, PCU will ensure we don't go 2681 * over 2682 */ 2683 if (!max_ia_freq) 2684 max_ia_freq = tsc_khz; 2685 2686 /* Convert from kHz to MHz */ 2687 max_ia_freq /= 1000; 2688 2689 /* 2690 * For each potential GPU frequency, load a ring frequency we'd like 2691 * to use for memory access. We do this by specifying the IA frequency 2692 * the PCU should use as a reference to determine the ring frequency. 2693 */ 2694 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay; 2695 gpu_freq--) { 2696 int diff = dev_priv->rps.max_delay - gpu_freq; 2697 2698 /* 2699 * For GPU frequencies less than 750MHz, just use the lowest 2700 * ring freq. 2701 */ 2702 if (gpu_freq < min_freq) 2703 ia_freq = 800; 2704 else 2705 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2); 2706 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100); 2707 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT; 2708 2709 sandybridge_pcode_write(dev_priv, 2710 GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 2711 ia_freq | gpu_freq); 2712 } 2713 } 2714 2715 void ironlake_teardown_rc6(struct drm_device *dev) 2716 { 2717 struct drm_i915_private *dev_priv = dev->dev_private; 2718 2719 if (dev_priv->ips.renderctx) { 2720 i915_gem_object_unpin(dev_priv->ips.renderctx); 2721 drm_gem_object_unreference(&dev_priv->ips.renderctx->base); 2722 dev_priv->ips.renderctx = NULL; 2723 } 2724 2725 if (dev_priv->ips.pwrctx) { 2726 i915_gem_object_unpin(dev_priv->ips.pwrctx); 2727 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base); 2728 dev_priv->ips.pwrctx = NULL; 2729 } 2730 } 2731 2732 static void ironlake_disable_rc6(struct drm_device *dev) 2733 { 2734 struct drm_i915_private *dev_priv = dev->dev_private; 2735 2736 if (I915_READ(PWRCTXA)) { 2737 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */ 2738 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT); 2739 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON), 2740 50); 2741 2742 I915_WRITE(PWRCTXA, 0); 2743 POSTING_READ(PWRCTXA); 2744 2745 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT); 2746 POSTING_READ(RSTDBYCTL); 2747 } 2748 } 2749 2750 static int ironlake_setup_rc6(struct drm_device *dev) 2751 { 2752 struct drm_i915_private *dev_priv = dev->dev_private; 2753 2754 if (dev_priv->ips.renderctx == NULL) 2755 dev_priv->ips.renderctx = intel_alloc_context_page(dev); 2756 if (!dev_priv->ips.renderctx) 2757 return -ENOMEM; 2758 2759 if (dev_priv->ips.pwrctx == NULL) 2760 dev_priv->ips.pwrctx = intel_alloc_context_page(dev); 2761 if (!dev_priv->ips.pwrctx) { 2762 ironlake_teardown_rc6(dev); 2763 return -ENOMEM; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static void ironlake_enable_rc6(struct drm_device *dev) 2770 { 2771 struct drm_i915_private *dev_priv = dev->dev_private; 2772 struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; 2773 bool was_interruptible; 2774 int ret; 2775 2776 /* rc6 disabled by default due to repeated reports of hanging during 2777 * boot and resume. 2778 */ 2779 if (!intel_enable_rc6(dev)) 2780 return; 2781 2782 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 2783 2784 ret = ironlake_setup_rc6(dev); 2785 if (ret) 2786 return; 2787 2788 was_interruptible = dev_priv->mm.interruptible; 2789 dev_priv->mm.interruptible = false; 2790 2791 /* 2792 * GPU can automatically power down the render unit if given a page 2793 * to save state. 2794 */ 2795 ret = intel_ring_begin(ring, 6); 2796 if (ret) { 2797 ironlake_teardown_rc6(dev); 2798 dev_priv->mm.interruptible = was_interruptible; 2799 return; 2800 } 2801 2802 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN); 2803 intel_ring_emit(ring, MI_SET_CONTEXT); 2804 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset | 2805 MI_MM_SPACE_GTT | 2806 MI_SAVE_EXT_STATE_EN | 2807 MI_RESTORE_EXT_STATE_EN | 2808 MI_RESTORE_INHIBIT); 2809 intel_ring_emit(ring, MI_SUSPEND_FLUSH); 2810 intel_ring_emit(ring, MI_NOOP); 2811 intel_ring_emit(ring, MI_FLUSH); 2812 intel_ring_advance(ring); 2813 2814 /* 2815 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW 2816 * does an implicit flush, combined with MI_FLUSH above, it should be 2817 * safe to assume that renderctx is valid 2818 */ 2819 ret = intel_ring_idle(ring); 2820 dev_priv->mm.interruptible = was_interruptible; 2821 if (ret) { 2822 DRM_ERROR("failed to enable ironlake power power savings\n"); 2823 ironlake_teardown_rc6(dev); 2824 return; 2825 } 2826 2827 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN); 2828 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT); 2829 } 2830 2831 static unsigned long intel_pxfreq(u32 vidfreq) 2832 { 2833 unsigned long freq; 2834 int div = (vidfreq & 0x3f0000) >> 16; 2835 int post = (vidfreq & 0x3000) >> 12; 2836 int pre = (vidfreq & 0x7); 2837 2838 if (!pre) 2839 return 0; 2840 2841 freq = ((div * 133333) / ((1<<post) * pre)); 2842 2843 return freq; 2844 } 2845 2846 static const struct cparams { 2847 u16 i; 2848 u16 t; 2849 u16 m; 2850 u16 c; 2851 } cparams[] = { 2852 { 1, 1333, 301, 28664 }, 2853 { 1, 1066, 294, 24460 }, 2854 { 1, 800, 294, 25192 }, 2855 { 0, 1333, 276, 27605 }, 2856 { 0, 1066, 276, 27605 }, 2857 { 0, 800, 231, 23784 }, 2858 }; 2859 2860 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv) 2861 { 2862 u64 total_count, diff, ret; 2863 u32 count1, count2, count3, m = 0, c = 0; 2864 unsigned long now = jiffies_to_msecs(jiffies), diff1; 2865 int i; 2866 2867 assert_spin_locked(&mchdev_lock); 2868 2869 diff1 = now - dev_priv->ips.last_time1; 2870 2871 /* Prevent division-by-zero if we are asking too fast. 2872 * Also, we don't get interesting results if we are polling 2873 * faster than once in 10ms, so just return the saved value 2874 * in such cases. 2875 */ 2876 if (diff1 <= 10) 2877 return dev_priv->ips.chipset_power; 2878 2879 count1 = I915_READ(DMIEC); 2880 count2 = I915_READ(DDREC); 2881 count3 = I915_READ(CSIEC); 2882 2883 total_count = count1 + count2 + count3; 2884 2885 /* FIXME: handle per-counter overflow */ 2886 if (total_count < dev_priv->ips.last_count1) { 2887 diff = ~0UL - dev_priv->ips.last_count1; 2888 diff += total_count; 2889 } else { 2890 diff = total_count - dev_priv->ips.last_count1; 2891 } 2892 2893 for (i = 0; i < ARRAY_SIZE(cparams); i++) { 2894 if (cparams[i].i == dev_priv->ips.c_m && 2895 cparams[i].t == dev_priv->ips.r_t) { 2896 m = cparams[i].m; 2897 c = cparams[i].c; 2898 break; 2899 } 2900 } 2901 2902 diff = div_u64(diff, diff1); 2903 ret = ((m * diff) + c); 2904 ret = div_u64(ret, 10); 2905 2906 dev_priv->ips.last_count1 = total_count; 2907 dev_priv->ips.last_time1 = now; 2908 2909 dev_priv->ips.chipset_power = ret; 2910 2911 return ret; 2912 } 2913 2914 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv) 2915 { 2916 unsigned long val; 2917 2918 if (dev_priv->info->gen != 5) 2919 return 0; 2920 2921 spin_lock_irq(&mchdev_lock); 2922 2923 val = __i915_chipset_val(dev_priv); 2924 2925 spin_unlock_irq(&mchdev_lock); 2926 2927 return val; 2928 } 2929 2930 unsigned long i915_mch_val(struct drm_i915_private *dev_priv) 2931 { 2932 unsigned long m, x, b; 2933 u32 tsfs; 2934 2935 tsfs = I915_READ(TSFS); 2936 2937 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT); 2938 x = I915_READ8(TR1); 2939 2940 b = tsfs & TSFS_INTR_MASK; 2941 2942 return ((m * x) / 127) - b; 2943 } 2944 2945 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid) 2946 { 2947 static const struct v_table { 2948 u16 vd; /* in .1 mil */ 2949 u16 vm; /* in .1 mil */ 2950 } v_table[] = { 2951 { 0, 0, }, 2952 { 375, 0, }, 2953 { 500, 0, }, 2954 { 625, 0, }, 2955 { 750, 0, }, 2956 { 875, 0, }, 2957 { 1000, 0, }, 2958 { 1125, 0, }, 2959 { 4125, 3000, }, 2960 { 4125, 3000, }, 2961 { 4125, 3000, }, 2962 { 4125, 3000, }, 2963 { 4125, 3000, }, 2964 { 4125, 3000, }, 2965 { 4125, 3000, }, 2966 { 4125, 3000, }, 2967 { 4125, 3000, }, 2968 { 4125, 3000, }, 2969 { 4125, 3000, }, 2970 { 4125, 3000, }, 2971 { 4125, 3000, }, 2972 { 4125, 3000, }, 2973 { 4125, 3000, }, 2974 { 4125, 3000, }, 2975 { 4125, 3000, }, 2976 { 4125, 3000, }, 2977 { 4125, 3000, }, 2978 { 4125, 3000, }, 2979 { 4125, 3000, }, 2980 { 4125, 3000, }, 2981 { 4125, 3000, }, 2982 { 4125, 3000, }, 2983 { 4250, 3125, }, 2984 { 4375, 3250, }, 2985 { 4500, 3375, }, 2986 { 4625, 3500, }, 2987 { 4750, 3625, }, 2988 { 4875, 3750, }, 2989 { 5000, 3875, }, 2990 { 5125, 4000, }, 2991 { 5250, 4125, }, 2992 { 5375, 4250, }, 2993 { 5500, 4375, }, 2994 { 5625, 4500, }, 2995 { 5750, 4625, }, 2996 { 5875, 4750, }, 2997 { 6000, 4875, }, 2998 { 6125, 5000, }, 2999 { 6250, 5125, }, 3000 { 6375, 5250, }, 3001 { 6500, 5375, }, 3002 { 6625, 5500, }, 3003 { 6750, 5625, }, 3004 { 6875, 5750, }, 3005 { 7000, 5875, }, 3006 { 7125, 6000, }, 3007 { 7250, 6125, }, 3008 { 7375, 6250, }, 3009 { 7500, 6375, }, 3010 { 7625, 6500, }, 3011 { 7750, 6625, }, 3012 { 7875, 6750, }, 3013 { 8000, 6875, }, 3014 { 8125, 7000, }, 3015 { 8250, 7125, }, 3016 { 8375, 7250, }, 3017 { 8500, 7375, }, 3018 { 8625, 7500, }, 3019 { 8750, 7625, }, 3020 { 8875, 7750, }, 3021 { 9000, 7875, }, 3022 { 9125, 8000, }, 3023 { 9250, 8125, }, 3024 { 9375, 8250, }, 3025 { 9500, 8375, }, 3026 { 9625, 8500, }, 3027 { 9750, 8625, }, 3028 { 9875, 8750, }, 3029 { 10000, 8875, }, 3030 { 10125, 9000, }, 3031 { 10250, 9125, }, 3032 { 10375, 9250, }, 3033 { 10500, 9375, }, 3034 { 10625, 9500, }, 3035 { 10750, 9625, }, 3036 { 10875, 9750, }, 3037 { 11000, 9875, }, 3038 { 11125, 10000, }, 3039 { 11250, 10125, }, 3040 { 11375, 10250, }, 3041 { 11500, 10375, }, 3042 { 11625, 10500, }, 3043 { 11750, 10625, }, 3044 { 11875, 10750, }, 3045 { 12000, 10875, }, 3046 { 12125, 11000, }, 3047 { 12250, 11125, }, 3048 { 12375, 11250, }, 3049 { 12500, 11375, }, 3050 { 12625, 11500, }, 3051 { 12750, 11625, }, 3052 { 12875, 11750, }, 3053 { 13000, 11875, }, 3054 { 13125, 12000, }, 3055 { 13250, 12125, }, 3056 { 13375, 12250, }, 3057 { 13500, 12375, }, 3058 { 13625, 12500, }, 3059 { 13750, 12625, }, 3060 { 13875, 12750, }, 3061 { 14000, 12875, }, 3062 { 14125, 13000, }, 3063 { 14250, 13125, }, 3064 { 14375, 13250, }, 3065 { 14500, 13375, }, 3066 { 14625, 13500, }, 3067 { 14750, 13625, }, 3068 { 14875, 13750, }, 3069 { 15000, 13875, }, 3070 { 15125, 14000, }, 3071 { 15250, 14125, }, 3072 { 15375, 14250, }, 3073 { 15500, 14375, }, 3074 { 15625, 14500, }, 3075 { 15750, 14625, }, 3076 { 15875, 14750, }, 3077 { 16000, 14875, }, 3078 { 16125, 15000, }, 3079 }; 3080 if (dev_priv->info->is_mobile) 3081 return v_table[pxvid].vm; 3082 else 3083 return v_table[pxvid].vd; 3084 } 3085 3086 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv) 3087 { 3088 struct timespec now, diff1; 3089 u64 diff; 3090 unsigned long diffms; 3091 u32 count; 3092 3093 assert_spin_locked(&mchdev_lock); 3094 3095 getrawmonotonic(&now); 3096 diff1 = timespec_sub(now, dev_priv->ips.last_time2); 3097 3098 /* Don't divide by 0 */ 3099 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000; 3100 if (!diffms) 3101 return; 3102 3103 count = I915_READ(GFXEC); 3104 3105 if (count < dev_priv->ips.last_count2) { 3106 diff = ~0UL - dev_priv->ips.last_count2; 3107 diff += count; 3108 } else { 3109 diff = count - dev_priv->ips.last_count2; 3110 } 3111 3112 dev_priv->ips.last_count2 = count; 3113 dev_priv->ips.last_time2 = now; 3114 3115 /* More magic constants... */ 3116 diff = diff * 1181; 3117 diff = div_u64(diff, diffms * 10); 3118 dev_priv->ips.gfx_power = diff; 3119 } 3120 3121 void i915_update_gfx_val(struct drm_i915_private *dev_priv) 3122 { 3123 if (dev_priv->info->gen != 5) 3124 return; 3125 3126 spin_lock_irq(&mchdev_lock); 3127 3128 __i915_update_gfx_val(dev_priv); 3129 3130 spin_unlock_irq(&mchdev_lock); 3131 } 3132 3133 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv) 3134 { 3135 unsigned long t, corr, state1, corr2, state2; 3136 u32 pxvid, ext_v; 3137 3138 assert_spin_locked(&mchdev_lock); 3139 3140 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4)); 3141 pxvid = (pxvid >> 24) & 0x7f; 3142 ext_v = pvid_to_extvid(dev_priv, pxvid); 3143 3144 state1 = ext_v; 3145 3146 t = i915_mch_val(dev_priv); 3147 3148 /* Revel in the empirically derived constants */ 3149 3150 /* Correction factor in 1/100000 units */ 3151 if (t > 80) 3152 corr = ((t * 2349) + 135940); 3153 else if (t >= 50) 3154 corr = ((t * 964) + 29317); 3155 else /* < 50 */ 3156 corr = ((t * 301) + 1004); 3157 3158 corr = corr * ((150142 * state1) / 10000 - 78642); 3159 corr /= 100000; 3160 corr2 = (corr * dev_priv->ips.corr); 3161 3162 state2 = (corr2 * state1) / 10000; 3163 state2 /= 100; /* convert to mW */ 3164 3165 __i915_update_gfx_val(dev_priv); 3166 3167 return dev_priv->ips.gfx_power + state2; 3168 } 3169 3170 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv) 3171 { 3172 unsigned long val; 3173 3174 if (dev_priv->info->gen != 5) 3175 return 0; 3176 3177 spin_lock_irq(&mchdev_lock); 3178 3179 val = __i915_gfx_val(dev_priv); 3180 3181 spin_unlock_irq(&mchdev_lock); 3182 3183 return val; 3184 } 3185 3186 /** 3187 * i915_read_mch_val - return value for IPS use 3188 * 3189 * Calculate and return a value for the IPS driver to use when deciding whether 3190 * we have thermal and power headroom to increase CPU or GPU power budget. 3191 */ 3192 unsigned long i915_read_mch_val(void) 3193 { 3194 struct drm_i915_private *dev_priv; 3195 unsigned long chipset_val, graphics_val, ret = 0; 3196 3197 spin_lock_irq(&mchdev_lock); 3198 if (!i915_mch_dev) 3199 goto out_unlock; 3200 dev_priv = i915_mch_dev; 3201 3202 chipset_val = __i915_chipset_val(dev_priv); 3203 graphics_val = __i915_gfx_val(dev_priv); 3204 3205 ret = chipset_val + graphics_val; 3206 3207 out_unlock: 3208 spin_unlock_irq(&mchdev_lock); 3209 3210 return ret; 3211 } 3212 EXPORT_SYMBOL_GPL(i915_read_mch_val); 3213 3214 /** 3215 * i915_gpu_raise - raise GPU frequency limit 3216 * 3217 * Raise the limit; IPS indicates we have thermal headroom. 3218 */ 3219 bool i915_gpu_raise(void) 3220 { 3221 struct drm_i915_private *dev_priv; 3222 bool ret = true; 3223 3224 spin_lock_irq(&mchdev_lock); 3225 if (!i915_mch_dev) { 3226 ret = false; 3227 goto out_unlock; 3228 } 3229 dev_priv = i915_mch_dev; 3230 3231 if (dev_priv->ips.max_delay > dev_priv->ips.fmax) 3232 dev_priv->ips.max_delay--; 3233 3234 out_unlock: 3235 spin_unlock_irq(&mchdev_lock); 3236 3237 return ret; 3238 } 3239 EXPORT_SYMBOL_GPL(i915_gpu_raise); 3240 3241 /** 3242 * i915_gpu_lower - lower GPU frequency limit 3243 * 3244 * IPS indicates we're close to a thermal limit, so throttle back the GPU 3245 * frequency maximum. 3246 */ 3247 bool i915_gpu_lower(void) 3248 { 3249 struct drm_i915_private *dev_priv; 3250 bool ret = true; 3251 3252 spin_lock_irq(&mchdev_lock); 3253 if (!i915_mch_dev) { 3254 ret = false; 3255 goto out_unlock; 3256 } 3257 dev_priv = i915_mch_dev; 3258 3259 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay) 3260 dev_priv->ips.max_delay++; 3261 3262 out_unlock: 3263 spin_unlock_irq(&mchdev_lock); 3264 3265 return ret; 3266 } 3267 EXPORT_SYMBOL_GPL(i915_gpu_lower); 3268 3269 /** 3270 * i915_gpu_busy - indicate GPU business to IPS 3271 * 3272 * Tell the IPS driver whether or not the GPU is busy. 3273 */ 3274 bool i915_gpu_busy(void) 3275 { 3276 struct drm_i915_private *dev_priv; 3277 struct intel_ring_buffer *ring; 3278 bool ret = false; 3279 int i; 3280 3281 spin_lock_irq(&mchdev_lock); 3282 if (!i915_mch_dev) 3283 goto out_unlock; 3284 dev_priv = i915_mch_dev; 3285 3286 for_each_ring(ring, dev_priv, i) 3287 ret |= !list_empty(&ring->request_list); 3288 3289 out_unlock: 3290 spin_unlock_irq(&mchdev_lock); 3291 3292 return ret; 3293 } 3294 EXPORT_SYMBOL_GPL(i915_gpu_busy); 3295 3296 /** 3297 * i915_gpu_turbo_disable - disable graphics turbo 3298 * 3299 * Disable graphics turbo by resetting the max frequency and setting the 3300 * current frequency to the default. 3301 */ 3302 bool i915_gpu_turbo_disable(void) 3303 { 3304 struct drm_i915_private *dev_priv; 3305 bool ret = true; 3306 3307 spin_lock_irq(&mchdev_lock); 3308 if (!i915_mch_dev) { 3309 ret = false; 3310 goto out_unlock; 3311 } 3312 dev_priv = i915_mch_dev; 3313 3314 dev_priv->ips.max_delay = dev_priv->ips.fstart; 3315 3316 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart)) 3317 ret = false; 3318 3319 out_unlock: 3320 spin_unlock_irq(&mchdev_lock); 3321 3322 return ret; 3323 } 3324 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); 3325 3326 /** 3327 * Tells the intel_ips driver that the i915 driver is now loaded, if 3328 * IPS got loaded first. 3329 * 3330 * This awkward dance is so that neither module has to depend on the 3331 * other in order for IPS to do the appropriate communication of 3332 * GPU turbo limits to i915. 3333 */ 3334 static void 3335 ips_ping_for_i915_load(void) 3336 { 3337 void (*link)(void); 3338 3339 link = symbol_get(ips_link_to_i915_driver); 3340 if (link) { 3341 link(); 3342 symbol_put(ips_link_to_i915_driver); 3343 } 3344 } 3345 3346 void intel_gpu_ips_init(struct drm_i915_private *dev_priv) 3347 { 3348 /* We only register the i915 ips part with intel-ips once everything is 3349 * set up, to avoid intel-ips sneaking in and reading bogus values. */ 3350 spin_lock_irq(&mchdev_lock); 3351 i915_mch_dev = dev_priv; 3352 spin_unlock_irq(&mchdev_lock); 3353 3354 ips_ping_for_i915_load(); 3355 } 3356 3357 void intel_gpu_ips_teardown(void) 3358 { 3359 spin_lock_irq(&mchdev_lock); 3360 i915_mch_dev = NULL; 3361 spin_unlock_irq(&mchdev_lock); 3362 } 3363 static void intel_init_emon(struct drm_device *dev) 3364 { 3365 struct drm_i915_private *dev_priv = dev->dev_private; 3366 u32 lcfuse; 3367 u8 pxw[16]; 3368 int i; 3369 3370 /* Disable to program */ 3371 I915_WRITE(ECR, 0); 3372 POSTING_READ(ECR); 3373 3374 /* Program energy weights for various events */ 3375 I915_WRITE(SDEW, 0x15040d00); 3376 I915_WRITE(CSIEW0, 0x007f0000); 3377 I915_WRITE(CSIEW1, 0x1e220004); 3378 I915_WRITE(CSIEW2, 0x04000004); 3379 3380 for (i = 0; i < 5; i++) 3381 I915_WRITE(PEW + (i * 4), 0); 3382 for (i = 0; i < 3; i++) 3383 I915_WRITE(DEW + (i * 4), 0); 3384 3385 /* Program P-state weights to account for frequency power adjustment */ 3386 for (i = 0; i < 16; i++) { 3387 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4)); 3388 unsigned long freq = intel_pxfreq(pxvidfreq); 3389 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >> 3390 PXVFREQ_PX_SHIFT; 3391 unsigned long val; 3392 3393 val = vid * vid; 3394 val *= (freq / 1000); 3395 val *= 255; 3396 val /= (127*127*900); 3397 if (val > 0xff) 3398 DRM_ERROR("bad pxval: %ld\n", val); 3399 pxw[i] = val; 3400 } 3401 /* Render standby states get 0 weight */ 3402 pxw[14] = 0; 3403 pxw[15] = 0; 3404 3405 for (i = 0; i < 4; i++) { 3406 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) | 3407 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]); 3408 I915_WRITE(PXW + (i * 4), val); 3409 } 3410 3411 /* Adjust magic regs to magic values (more experimental results) */ 3412 I915_WRITE(OGW0, 0); 3413 I915_WRITE(OGW1, 0); 3414 I915_WRITE(EG0, 0x00007f00); 3415 I915_WRITE(EG1, 0x0000000e); 3416 I915_WRITE(EG2, 0x000e0000); 3417 I915_WRITE(EG3, 0x68000300); 3418 I915_WRITE(EG4, 0x42000000); 3419 I915_WRITE(EG5, 0x00140031); 3420 I915_WRITE(EG6, 0); 3421 I915_WRITE(EG7, 0); 3422 3423 for (i = 0; i < 8; i++) 3424 I915_WRITE(PXWL + (i * 4), 0); 3425 3426 /* Enable PMON + select events */ 3427 I915_WRITE(ECR, 0x80000019); 3428 3429 lcfuse = I915_READ(LCFUSE02); 3430 3431 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK); 3432 } 3433 3434 void intel_disable_gt_powersave(struct drm_device *dev) 3435 { 3436 struct drm_i915_private *dev_priv = dev->dev_private; 3437 3438 if (IS_IRONLAKE_M(dev)) { 3439 ironlake_disable_drps(dev); 3440 ironlake_disable_rc6(dev); 3441 } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) { 3442 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work); 3443 mutex_lock(&dev_priv->rps.hw_lock); 3444 gen6_disable_rps(dev); 3445 mutex_unlock(&dev_priv->rps.hw_lock); 3446 } 3447 } 3448 3449 static void intel_gen6_powersave_work(struct work_struct *work) 3450 { 3451 struct drm_i915_private *dev_priv = 3452 container_of(work, struct drm_i915_private, 3453 rps.delayed_resume_work.work); 3454 struct drm_device *dev = dev_priv->dev; 3455 3456 mutex_lock(&dev_priv->rps.hw_lock); 3457 gen6_enable_rps(dev); 3458 gen6_update_ring_freq(dev); 3459 mutex_unlock(&dev_priv->rps.hw_lock); 3460 } 3461 3462 void intel_enable_gt_powersave(struct drm_device *dev) 3463 { 3464 struct drm_i915_private *dev_priv = dev->dev_private; 3465 3466 if (IS_IRONLAKE_M(dev)) { 3467 ironlake_enable_drps(dev); 3468 ironlake_enable_rc6(dev); 3469 intel_init_emon(dev); 3470 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) { 3471 /* 3472 * PCU communication is slow and this doesn't need to be 3473 * done at any specific time, so do this out of our fast path 3474 * to make resume and init faster. 3475 */ 3476 schedule_delayed_work(&dev_priv->rps.delayed_resume_work, 3477 round_jiffies_up_relative(HZ)); 3478 } 3479 } 3480 3481 static void ibx_init_clock_gating(struct drm_device *dev) 3482 { 3483 struct drm_i915_private *dev_priv = dev->dev_private; 3484 3485 /* 3486 * On Ibex Peak and Cougar Point, we need to disable clock 3487 * gating for the panel power sequencer or it will fail to 3488 * start up when no ports are active. 3489 */ 3490 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); 3491 } 3492 3493 static void ironlake_init_clock_gating(struct drm_device *dev) 3494 { 3495 struct drm_i915_private *dev_priv = dev->dev_private; 3496 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; 3497 3498 /* Required for FBC */ 3499 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE | 3500 ILK_DPFCUNIT_CLOCK_GATE_DISABLE | 3501 ILK_DPFDUNIT_CLOCK_GATE_ENABLE; 3502 3503 I915_WRITE(PCH_3DCGDIS0, 3504 MARIUNIT_CLOCK_GATE_DISABLE | 3505 SVSMUNIT_CLOCK_GATE_DISABLE); 3506 I915_WRITE(PCH_3DCGDIS1, 3507 VFMUNIT_CLOCK_GATE_DISABLE); 3508 3509 /* 3510 * According to the spec the following bits should be set in 3511 * order to enable memory self-refresh 3512 * The bit 22/21 of 0x42004 3513 * The bit 5 of 0x42020 3514 * The bit 15 of 0x45000 3515 */ 3516 I915_WRITE(ILK_DISPLAY_CHICKEN2, 3517 (I915_READ(ILK_DISPLAY_CHICKEN2) | 3518 ILK_DPARB_GATE | ILK_VSDPFD_FULL)); 3519 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE; 3520 I915_WRITE(DISP_ARB_CTL, 3521 (I915_READ(DISP_ARB_CTL) | 3522 DISP_FBC_WM_DIS)); 3523 I915_WRITE(WM3_LP_ILK, 0); 3524 I915_WRITE(WM2_LP_ILK, 0); 3525 I915_WRITE(WM1_LP_ILK, 0); 3526 3527 /* 3528 * Based on the document from hardware guys the following bits 3529 * should be set unconditionally in order to enable FBC. 3530 * The bit 22 of 0x42000 3531 * The bit 22 of 0x42004 3532 * The bit 7,8,9 of 0x42020. 3533 */ 3534 if (IS_IRONLAKE_M(dev)) { 3535 I915_WRITE(ILK_DISPLAY_CHICKEN1, 3536 I915_READ(ILK_DISPLAY_CHICKEN1) | 3537 ILK_FBCQ_DIS); 3538 I915_WRITE(ILK_DISPLAY_CHICKEN2, 3539 I915_READ(ILK_DISPLAY_CHICKEN2) | 3540 ILK_DPARB_GATE); 3541 } 3542 3543 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); 3544 3545 I915_WRITE(ILK_DISPLAY_CHICKEN2, 3546 I915_READ(ILK_DISPLAY_CHICKEN2) | 3547 ILK_ELPIN_409_SELECT); 3548 I915_WRITE(_3D_CHICKEN2, 3549 _3D_CHICKEN2_WM_READ_PIPELINED << 16 | 3550 _3D_CHICKEN2_WM_READ_PIPELINED); 3551 3552 /* WaDisableRenderCachePipelinedFlush */ 3553 I915_WRITE(CACHE_MODE_0, 3554 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE)); 3555 3556 ibx_init_clock_gating(dev); 3557 } 3558 3559 static void cpt_init_clock_gating(struct drm_device *dev) 3560 { 3561 struct drm_i915_private *dev_priv = dev->dev_private; 3562 int pipe; 3563 3564 /* 3565 * On Ibex Peak and Cougar Point, we need to disable clock 3566 * gating for the panel power sequencer or it will fail to 3567 * start up when no ports are active. 3568 */ 3569 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); 3570 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) | 3571 DPLS_EDP_PPS_FIX_DIS); 3572 /* The below fixes the weird display corruption, a few pixels shifted 3573 * downward, on (only) LVDS of some HP laptops with IVY. 3574 */ 3575 for_each_pipe(pipe) 3576 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE); 3577 /* WADP0ClockGatingDisable */ 3578 for_each_pipe(pipe) { 3579 I915_WRITE(TRANS_CHICKEN1(pipe), 3580 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); 3581 } 3582 } 3583 3584 static void gen6_init_clock_gating(struct drm_device *dev) 3585 { 3586 struct drm_i915_private *dev_priv = dev->dev_private; 3587 int pipe; 3588 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; 3589 3590 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); 3591 3592 I915_WRITE(ILK_DISPLAY_CHICKEN2, 3593 I915_READ(ILK_DISPLAY_CHICKEN2) | 3594 ILK_ELPIN_409_SELECT); 3595 3596 /* WaDisableHiZPlanesWhenMSAAEnabled */ 3597 I915_WRITE(_3D_CHICKEN, 3598 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB)); 3599 3600 /* WaSetupGtModeTdRowDispatch */ 3601 if (IS_SNB_GT1(dev)) 3602 I915_WRITE(GEN6_GT_MODE, 3603 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE)); 3604 3605 I915_WRITE(WM3_LP_ILK, 0); 3606 I915_WRITE(WM2_LP_ILK, 0); 3607 I915_WRITE(WM1_LP_ILK, 0); 3608 3609 I915_WRITE(CACHE_MODE_0, 3610 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); 3611 3612 I915_WRITE(GEN6_UCGCTL1, 3613 I915_READ(GEN6_UCGCTL1) | 3614 GEN6_BLBUNIT_CLOCK_GATE_DISABLE | 3615 GEN6_CSUNIT_CLOCK_GATE_DISABLE); 3616 3617 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock 3618 * gating disable must be set. Failure to set it results in 3619 * flickering pixels due to Z write ordering failures after 3620 * some amount of runtime in the Mesa "fire" demo, and Unigine 3621 * Sanctuary and Tropics, and apparently anything else with 3622 * alpha test or pixel discard. 3623 * 3624 * According to the spec, bit 11 (RCCUNIT) must also be set, 3625 * but we didn't debug actual testcases to find it out. 3626 * 3627 * Also apply WaDisableVDSUnitClockGating and 3628 * WaDisableRCPBUnitClockGating. 3629 */ 3630 I915_WRITE(GEN6_UCGCTL2, 3631 GEN7_VDSUNIT_CLOCK_GATE_DISABLE | 3632 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | 3633 GEN6_RCCUNIT_CLOCK_GATE_DISABLE); 3634 3635 /* Bspec says we need to always set all mask bits. */ 3636 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) | 3637 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL); 3638 3639 /* 3640 * According to the spec the following bits should be 3641 * set in order to enable memory self-refresh and fbc: 3642 * The bit21 and bit22 of 0x42000 3643 * The bit21 and bit22 of 0x42004 3644 * The bit5 and bit7 of 0x42020 3645 * The bit14 of 0x70180 3646 * The bit14 of 0x71180 3647 */ 3648 I915_WRITE(ILK_DISPLAY_CHICKEN1, 3649 I915_READ(ILK_DISPLAY_CHICKEN1) | 3650 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); 3651 I915_WRITE(ILK_DISPLAY_CHICKEN2, 3652 I915_READ(ILK_DISPLAY_CHICKEN2) | 3653 ILK_DPARB_GATE | ILK_VSDPFD_FULL); 3654 I915_WRITE(ILK_DSPCLK_GATE_D, 3655 I915_READ(ILK_DSPCLK_GATE_D) | 3656 ILK_DPARBUNIT_CLOCK_GATE_ENABLE | 3657 ILK_DPFDUNIT_CLOCK_GATE_ENABLE); 3658 3659 /* WaMbcDriverBootEnable */ 3660 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) | 3661 GEN6_MBCTL_ENABLE_BOOT_FETCH); 3662 3663 for_each_pipe(pipe) { 3664 I915_WRITE(DSPCNTR(pipe), 3665 I915_READ(DSPCNTR(pipe)) | 3666 DISPPLANE_TRICKLE_FEED_DISABLE); 3667 intel_flush_display_plane(dev_priv, pipe); 3668 } 3669 3670 /* The default value should be 0x200 according to docs, but the two 3671 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */ 3672 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff)); 3673 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI)); 3674 3675 cpt_init_clock_gating(dev); 3676 } 3677 3678 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv) 3679 { 3680 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE); 3681 3682 reg &= ~GEN7_FF_SCHED_MASK; 3683 reg |= GEN7_FF_TS_SCHED_HW; 3684 reg |= GEN7_FF_VS_SCHED_HW; 3685 reg |= GEN7_FF_DS_SCHED_HW; 3686 3687 I915_WRITE(GEN7_FF_THREAD_MODE, reg); 3688 } 3689 3690 static void lpt_init_clock_gating(struct drm_device *dev) 3691 { 3692 struct drm_i915_private *dev_priv = dev->dev_private; 3693 3694 /* 3695 * TODO: this bit should only be enabled when really needed, then 3696 * disabled when not needed anymore in order to save power. 3697 */ 3698 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 3699 I915_WRITE(SOUTH_DSPCLK_GATE_D, 3700 I915_READ(SOUTH_DSPCLK_GATE_D) | 3701 PCH_LP_PARTITION_LEVEL_DISABLE); 3702 } 3703 3704 static void haswell_init_clock_gating(struct drm_device *dev) 3705 { 3706 struct drm_i915_private *dev_priv = dev->dev_private; 3707 int pipe; 3708 3709 I915_WRITE(WM3_LP_ILK, 0); 3710 I915_WRITE(WM2_LP_ILK, 0); 3711 I915_WRITE(WM1_LP_ILK, 0); 3712 3713 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB. 3714 * This implements the WaDisableRCZUnitClockGating workaround. 3715 */ 3716 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE); 3717 3718 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */ 3719 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, 3720 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 3721 3722 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */ 3723 I915_WRITE(GEN7_L3CNTLREG1, 3724 GEN7_WA_FOR_GEN7_L3_CONTROL); 3725 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, 3726 GEN7_WA_L3_CHICKEN_MODE); 3727 3728 /* This is required by WaCatErrorRejectionIssue */ 3729 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, 3730 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | 3731 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); 3732 3733 for_each_pipe(pipe) { 3734 I915_WRITE(DSPCNTR(pipe), 3735 I915_READ(DSPCNTR(pipe)) | 3736 DISPPLANE_TRICKLE_FEED_DISABLE); 3737 intel_flush_display_plane(dev_priv, pipe); 3738 } 3739 3740 gen7_setup_fixed_func_scheduler(dev_priv); 3741 3742 /* WaDisable4x2SubspanOptimization */ 3743 I915_WRITE(CACHE_MODE_1, 3744 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); 3745 3746 /* WaMbcDriverBootEnable */ 3747 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) | 3748 GEN6_MBCTL_ENABLE_BOOT_FETCH); 3749 3750 /* XXX: This is a workaround for early silicon revisions and should be 3751 * removed later. 3752 */ 3753 I915_WRITE(WM_DBG, 3754 I915_READ(WM_DBG) | 3755 WM_DBG_DISALLOW_MULTIPLE_LP | 3756 WM_DBG_DISALLOW_SPRITE | 3757 WM_DBG_DISALLOW_MAXFIFO); 3758 3759 lpt_init_clock_gating(dev); 3760 } 3761 3762 static void ivybridge_init_clock_gating(struct drm_device *dev) 3763 { 3764 struct drm_i915_private *dev_priv = dev->dev_private; 3765 int pipe; 3766 uint32_t snpcr; 3767 3768 I915_WRITE(WM3_LP_ILK, 0); 3769 I915_WRITE(WM2_LP_ILK, 0); 3770 I915_WRITE(WM1_LP_ILK, 0); 3771 3772 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE); 3773 3774 /* WaDisableEarlyCull */ 3775 I915_WRITE(_3D_CHICKEN3, 3776 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL)); 3777 3778 /* WaDisableBackToBackFlipFix */ 3779 I915_WRITE(IVB_CHICKEN3, 3780 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | 3781 CHICKEN3_DGMG_DONE_FIX_DISABLE); 3782 3783 /* WaDisablePSDDualDispatchEnable */ 3784 if (IS_IVB_GT1(dev)) 3785 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1, 3786 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); 3787 else 3788 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2, 3789 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); 3790 3791 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */ 3792 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, 3793 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 3794 3795 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */ 3796 I915_WRITE(GEN7_L3CNTLREG1, 3797 GEN7_WA_FOR_GEN7_L3_CONTROL); 3798 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, 3799 GEN7_WA_L3_CHICKEN_MODE); 3800 if (IS_IVB_GT1(dev)) 3801 I915_WRITE(GEN7_ROW_CHICKEN2, 3802 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); 3803 else 3804 I915_WRITE(GEN7_ROW_CHICKEN2_GT2, 3805 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); 3806 3807 3808 /* WaForceL3Serialization */ 3809 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & 3810 ~L3SQ_URB_READ_CAM_MATCH_DISABLE); 3811 3812 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock 3813 * gating disable must be set. Failure to set it results in 3814 * flickering pixels due to Z write ordering failures after 3815 * some amount of runtime in the Mesa "fire" demo, and Unigine 3816 * Sanctuary and Tropics, and apparently anything else with 3817 * alpha test or pixel discard. 3818 * 3819 * According to the spec, bit 11 (RCCUNIT) must also be set, 3820 * but we didn't debug actual testcases to find it out. 3821 * 3822 * According to the spec, bit 13 (RCZUNIT) must be set on IVB. 3823 * This implements the WaDisableRCZUnitClockGating workaround. 3824 */ 3825 I915_WRITE(GEN6_UCGCTL2, 3826 GEN6_RCZUNIT_CLOCK_GATE_DISABLE | 3827 GEN6_RCCUNIT_CLOCK_GATE_DISABLE); 3828 3829 /* This is required by WaCatErrorRejectionIssue */ 3830 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, 3831 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | 3832 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); 3833 3834 for_each_pipe(pipe) { 3835 I915_WRITE(DSPCNTR(pipe), 3836 I915_READ(DSPCNTR(pipe)) | 3837 DISPPLANE_TRICKLE_FEED_DISABLE); 3838 intel_flush_display_plane(dev_priv, pipe); 3839 } 3840 3841 /* WaMbcDriverBootEnable */ 3842 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) | 3843 GEN6_MBCTL_ENABLE_BOOT_FETCH); 3844 3845 gen7_setup_fixed_func_scheduler(dev_priv); 3846 3847 /* WaDisable4x2SubspanOptimization */ 3848 I915_WRITE(CACHE_MODE_1, 3849 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); 3850 3851 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); 3852 snpcr &= ~GEN6_MBC_SNPCR_MASK; 3853 snpcr |= GEN6_MBC_SNPCR_MED; 3854 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); 3855 3856 cpt_init_clock_gating(dev); 3857 } 3858 3859 static void valleyview_init_clock_gating(struct drm_device *dev) 3860 { 3861 struct drm_i915_private *dev_priv = dev->dev_private; 3862 int pipe; 3863 3864 I915_WRITE(WM3_LP_ILK, 0); 3865 I915_WRITE(WM2_LP_ILK, 0); 3866 I915_WRITE(WM1_LP_ILK, 0); 3867 3868 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE); 3869 3870 /* WaDisableEarlyCull */ 3871 I915_WRITE(_3D_CHICKEN3, 3872 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL)); 3873 3874 /* WaDisableBackToBackFlipFix */ 3875 I915_WRITE(IVB_CHICKEN3, 3876 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | 3877 CHICKEN3_DGMG_DONE_FIX_DISABLE); 3878 3879 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1, 3880 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); 3881 3882 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */ 3883 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, 3884 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 3885 3886 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */ 3887 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS); 3888 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); 3889 3890 /* WaForceL3Serialization */ 3891 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & 3892 ~L3SQ_URB_READ_CAM_MATCH_DISABLE); 3893 3894 /* WaDisableDopClockGating */ 3895 I915_WRITE(GEN7_ROW_CHICKEN2, 3896 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); 3897 3898 /* WaForceL3Serialization */ 3899 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & 3900 ~L3SQ_URB_READ_CAM_MATCH_DISABLE); 3901 3902 /* This is required by WaCatErrorRejectionIssue */ 3903 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, 3904 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | 3905 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); 3906 3907 /* WaMbcDriverBootEnable */ 3908 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) | 3909 GEN6_MBCTL_ENABLE_BOOT_FETCH); 3910 3911 3912 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock 3913 * gating disable must be set. Failure to set it results in 3914 * flickering pixels due to Z write ordering failures after 3915 * some amount of runtime in the Mesa "fire" demo, and Unigine 3916 * Sanctuary and Tropics, and apparently anything else with 3917 * alpha test or pixel discard. 3918 * 3919 * According to the spec, bit 11 (RCCUNIT) must also be set, 3920 * but we didn't debug actual testcases to find it out. 3921 * 3922 * According to the spec, bit 13 (RCZUNIT) must be set on IVB. 3923 * This implements the WaDisableRCZUnitClockGating workaround. 3924 * 3925 * Also apply WaDisableVDSUnitClockGating and 3926 * WaDisableRCPBUnitClockGating. 3927 */ 3928 I915_WRITE(GEN6_UCGCTL2, 3929 GEN7_VDSUNIT_CLOCK_GATE_DISABLE | 3930 GEN7_TDLUNIT_CLOCK_GATE_DISABLE | 3931 GEN6_RCZUNIT_CLOCK_GATE_DISABLE | 3932 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | 3933 GEN6_RCCUNIT_CLOCK_GATE_DISABLE); 3934 3935 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE); 3936 3937 for_each_pipe(pipe) { 3938 I915_WRITE(DSPCNTR(pipe), 3939 I915_READ(DSPCNTR(pipe)) | 3940 DISPPLANE_TRICKLE_FEED_DISABLE); 3941 intel_flush_display_plane(dev_priv, pipe); 3942 } 3943 3944 I915_WRITE(CACHE_MODE_1, 3945 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); 3946 3947 /* 3948 * On ValleyView, the GUnit needs to signal the GT 3949 * when flip and other events complete. So enable 3950 * all the GUnit->GT interrupts here 3951 */ 3952 I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN | 3953 PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN | 3954 SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN | 3955 PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN | 3956 PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN | 3957 SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN | 3958 PLANEA_FLIPDONE_INT_EN); 3959 3960 /* 3961 * WaDisableVLVClockGating_VBIIssue 3962 * Disable clock gating on th GCFG unit to prevent a delay 3963 * in the reporting of vblank events. 3964 */ 3965 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS); 3966 } 3967 3968 static void g4x_init_clock_gating(struct drm_device *dev) 3969 { 3970 struct drm_i915_private *dev_priv = dev->dev_private; 3971 uint32_t dspclk_gate; 3972 3973 I915_WRITE(RENCLK_GATE_D1, 0); 3974 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | 3975 GS_UNIT_CLOCK_GATE_DISABLE | 3976 CL_UNIT_CLOCK_GATE_DISABLE); 3977 I915_WRITE(RAMCLK_GATE_D, 0); 3978 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | 3979 OVRUNIT_CLOCK_GATE_DISABLE | 3980 OVCUNIT_CLOCK_GATE_DISABLE; 3981 if (IS_GM45(dev)) 3982 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; 3983 I915_WRITE(DSPCLK_GATE_D, dspclk_gate); 3984 3985 /* WaDisableRenderCachePipelinedFlush */ 3986 I915_WRITE(CACHE_MODE_0, 3987 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE)); 3988 } 3989 3990 static void crestline_init_clock_gating(struct drm_device *dev) 3991 { 3992 struct drm_i915_private *dev_priv = dev->dev_private; 3993 3994 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); 3995 I915_WRITE(RENCLK_GATE_D2, 0); 3996 I915_WRITE(DSPCLK_GATE_D, 0); 3997 I915_WRITE(RAMCLK_GATE_D, 0); 3998 I915_WRITE16(DEUC, 0); 3999 } 4000 4001 static void broadwater_init_clock_gating(struct drm_device *dev) 4002 { 4003 struct drm_i915_private *dev_priv = dev->dev_private; 4004 4005 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | 4006 I965_RCC_CLOCK_GATE_DISABLE | 4007 I965_RCPB_CLOCK_GATE_DISABLE | 4008 I965_ISC_CLOCK_GATE_DISABLE | 4009 I965_FBC_CLOCK_GATE_DISABLE); 4010 I915_WRITE(RENCLK_GATE_D2, 0); 4011 } 4012 4013 static void gen3_init_clock_gating(struct drm_device *dev) 4014 { 4015 struct drm_i915_private *dev_priv = dev->dev_private; 4016 u32 dstate = I915_READ(D_STATE); 4017 4018 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | 4019 DSTATE_DOT_CLOCK_GATING; 4020 I915_WRITE(D_STATE, dstate); 4021 4022 if (IS_PINEVIEW(dev)) 4023 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY)); 4024 4025 /* IIR "flip pending" means done if this bit is set */ 4026 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE)); 4027 } 4028 4029 static void i85x_init_clock_gating(struct drm_device *dev) 4030 { 4031 struct drm_i915_private *dev_priv = dev->dev_private; 4032 4033 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); 4034 } 4035 4036 static void i830_init_clock_gating(struct drm_device *dev) 4037 { 4038 struct drm_i915_private *dev_priv = dev->dev_private; 4039 4040 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE); 4041 } 4042 4043 void intel_init_clock_gating(struct drm_device *dev) 4044 { 4045 struct drm_i915_private *dev_priv = dev->dev_private; 4046 4047 dev_priv->display.init_clock_gating(dev); 4048 } 4049 4050 /* Starting with Haswell, we have different power wells for 4051 * different parts of the GPU. This attempts to enable them all. 4052 */ 4053 void intel_init_power_wells(struct drm_device *dev) 4054 { 4055 struct drm_i915_private *dev_priv = dev->dev_private; 4056 unsigned long power_wells[] = { 4057 HSW_PWR_WELL_CTL1, 4058 HSW_PWR_WELL_CTL2, 4059 HSW_PWR_WELL_CTL4 4060 }; 4061 int i; 4062 4063 if (!IS_HASWELL(dev)) 4064 return; 4065 4066 mutex_lock(&dev->struct_mutex); 4067 4068 for (i = 0; i < ARRAY_SIZE(power_wells); i++) { 4069 int well = I915_READ(power_wells[i]); 4070 4071 if ((well & HSW_PWR_WELL_STATE) == 0) { 4072 I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE); 4073 if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20)) 4074 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]); 4075 } 4076 } 4077 4078 mutex_unlock(&dev->struct_mutex); 4079 } 4080 4081 /* Set up chip specific power management-related functions */ 4082 void intel_init_pm(struct drm_device *dev) 4083 { 4084 struct drm_i915_private *dev_priv = dev->dev_private; 4085 4086 if (I915_HAS_FBC(dev)) { 4087 if (HAS_PCH_SPLIT(dev)) { 4088 dev_priv->display.fbc_enabled = ironlake_fbc_enabled; 4089 dev_priv->display.enable_fbc = ironlake_enable_fbc; 4090 dev_priv->display.disable_fbc = ironlake_disable_fbc; 4091 } else if (IS_GM45(dev)) { 4092 dev_priv->display.fbc_enabled = g4x_fbc_enabled; 4093 dev_priv->display.enable_fbc = g4x_enable_fbc; 4094 dev_priv->display.disable_fbc = g4x_disable_fbc; 4095 } else if (IS_CRESTLINE(dev)) { 4096 dev_priv->display.fbc_enabled = i8xx_fbc_enabled; 4097 dev_priv->display.enable_fbc = i8xx_enable_fbc; 4098 dev_priv->display.disable_fbc = i8xx_disable_fbc; 4099 } 4100 /* 855GM needs testing */ 4101 } 4102 4103 /* For cxsr */ 4104 if (IS_PINEVIEW(dev)) 4105 i915_pineview_get_mem_freq(dev); 4106 else if (IS_GEN5(dev)) 4107 i915_ironlake_get_mem_freq(dev); 4108 4109 /* For FIFO watermark updates */ 4110 if (HAS_PCH_SPLIT(dev)) { 4111 if (IS_GEN5(dev)) { 4112 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK) 4113 dev_priv->display.update_wm = ironlake_update_wm; 4114 else { 4115 DRM_DEBUG_KMS("Failed to get proper latency. " 4116 "Disable CxSR\n"); 4117 dev_priv->display.update_wm = NULL; 4118 } 4119 dev_priv->display.init_clock_gating = ironlake_init_clock_gating; 4120 } else if (IS_GEN6(dev)) { 4121 if (SNB_READ_WM0_LATENCY()) { 4122 dev_priv->display.update_wm = sandybridge_update_wm; 4123 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm; 4124 } else { 4125 DRM_DEBUG_KMS("Failed to read display plane latency. " 4126 "Disable CxSR\n"); 4127 dev_priv->display.update_wm = NULL; 4128 } 4129 dev_priv->display.init_clock_gating = gen6_init_clock_gating; 4130 } else if (IS_IVYBRIDGE(dev)) { 4131 /* FIXME: detect B0+ stepping and use auto training */ 4132 if (SNB_READ_WM0_LATENCY()) { 4133 dev_priv->display.update_wm = ivybridge_update_wm; 4134 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm; 4135 } else { 4136 DRM_DEBUG_KMS("Failed to read display plane latency. " 4137 "Disable CxSR\n"); 4138 dev_priv->display.update_wm = NULL; 4139 } 4140 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating; 4141 } else if (IS_HASWELL(dev)) { 4142 if (SNB_READ_WM0_LATENCY()) { 4143 dev_priv->display.update_wm = sandybridge_update_wm; 4144 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm; 4145 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm; 4146 } else { 4147 DRM_DEBUG_KMS("Failed to read display plane latency. " 4148 "Disable CxSR\n"); 4149 dev_priv->display.update_wm = NULL; 4150 } 4151 dev_priv->display.init_clock_gating = haswell_init_clock_gating; 4152 } else 4153 dev_priv->display.update_wm = NULL; 4154 } else if (IS_VALLEYVIEW(dev)) { 4155 dev_priv->display.update_wm = valleyview_update_wm; 4156 dev_priv->display.init_clock_gating = 4157 valleyview_init_clock_gating; 4158 } else if (IS_PINEVIEW(dev)) { 4159 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev), 4160 dev_priv->is_ddr3, 4161 dev_priv->fsb_freq, 4162 dev_priv->mem_freq)) { 4163 DRM_INFO("failed to find known CxSR latency " 4164 "(found ddr%s fsb freq %d, mem freq %d), " 4165 "disabling CxSR\n", 4166 (dev_priv->is_ddr3 == 1) ? "3" : "2", 4167 dev_priv->fsb_freq, dev_priv->mem_freq); 4168 /* Disable CxSR and never update its watermark again */ 4169 pineview_disable_cxsr(dev); 4170 dev_priv->display.update_wm = NULL; 4171 } else 4172 dev_priv->display.update_wm = pineview_update_wm; 4173 dev_priv->display.init_clock_gating = gen3_init_clock_gating; 4174 } else if (IS_G4X(dev)) { 4175 dev_priv->display.update_wm = g4x_update_wm; 4176 dev_priv->display.init_clock_gating = g4x_init_clock_gating; 4177 } else if (IS_GEN4(dev)) { 4178 dev_priv->display.update_wm = i965_update_wm; 4179 if (IS_CRESTLINE(dev)) 4180 dev_priv->display.init_clock_gating = crestline_init_clock_gating; 4181 else if (IS_BROADWATER(dev)) 4182 dev_priv->display.init_clock_gating = broadwater_init_clock_gating; 4183 } else if (IS_GEN3(dev)) { 4184 dev_priv->display.update_wm = i9xx_update_wm; 4185 dev_priv->display.get_fifo_size = i9xx_get_fifo_size; 4186 dev_priv->display.init_clock_gating = gen3_init_clock_gating; 4187 } else if (IS_I865G(dev)) { 4188 dev_priv->display.update_wm = i830_update_wm; 4189 dev_priv->display.init_clock_gating = i85x_init_clock_gating; 4190 dev_priv->display.get_fifo_size = i830_get_fifo_size; 4191 } else if (IS_I85X(dev)) { 4192 dev_priv->display.update_wm = i9xx_update_wm; 4193 dev_priv->display.get_fifo_size = i85x_get_fifo_size; 4194 dev_priv->display.init_clock_gating = i85x_init_clock_gating; 4195 } else { 4196 dev_priv->display.update_wm = i830_update_wm; 4197 dev_priv->display.init_clock_gating = i830_init_clock_gating; 4198 if (IS_845G(dev)) 4199 dev_priv->display.get_fifo_size = i845_get_fifo_size; 4200 else 4201 dev_priv->display.get_fifo_size = i830_get_fifo_size; 4202 } 4203 } 4204 4205 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv) 4206 { 4207 u32 gt_thread_status_mask; 4208 4209 if (IS_HASWELL(dev_priv->dev)) 4210 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW; 4211 else 4212 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK; 4213 4214 /* w/a for a sporadic read returning 0 by waiting for the GT 4215 * thread to wake up. 4216 */ 4217 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500)) 4218 DRM_ERROR("GT thread status wait timed out\n"); 4219 } 4220 4221 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv) 4222 { 4223 I915_WRITE_NOTRACE(FORCEWAKE, 0); 4224 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */ 4225 } 4226 4227 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv) 4228 { 4229 u32 forcewake_ack; 4230 4231 if (IS_HASWELL(dev_priv->dev)) 4232 forcewake_ack = FORCEWAKE_ACK_HSW; 4233 else 4234 forcewake_ack = FORCEWAKE_ACK; 4235 4236 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 4237 FORCEWAKE_ACK_TIMEOUT_MS)) 4238 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n"); 4239 4240 I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL); 4241 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */ 4242 4243 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1), 4244 FORCEWAKE_ACK_TIMEOUT_MS)) 4245 DRM_ERROR("Timed out waiting for forcewake to ack request.\n"); 4246 4247 __gen6_gt_wait_for_thread_c0(dev_priv); 4248 } 4249 4250 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv) 4251 { 4252 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff)); 4253 /* something from same cacheline, but !FORCEWAKE_MT */ 4254 POSTING_READ(ECOBUS); 4255 } 4256 4257 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv) 4258 { 4259 u32 forcewake_ack; 4260 4261 if (IS_HASWELL(dev_priv->dev)) 4262 forcewake_ack = FORCEWAKE_ACK_HSW; 4263 else 4264 forcewake_ack = FORCEWAKE_MT_ACK; 4265 4266 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 4267 FORCEWAKE_ACK_TIMEOUT_MS)) 4268 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n"); 4269 4270 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL)); 4271 /* something from same cacheline, but !FORCEWAKE_MT */ 4272 POSTING_READ(ECOBUS); 4273 4274 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1), 4275 FORCEWAKE_ACK_TIMEOUT_MS)) 4276 DRM_ERROR("Timed out waiting for forcewake to ack request.\n"); 4277 4278 __gen6_gt_wait_for_thread_c0(dev_priv); 4279 } 4280 4281 /* 4282 * Generally this is called implicitly by the register read function. However, 4283 * if some sequence requires the GT to not power down then this function should 4284 * be called at the beginning of the sequence followed by a call to 4285 * gen6_gt_force_wake_put() at the end of the sequence. 4286 */ 4287 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv) 4288 { 4289 unsigned long irqflags; 4290 4291 spin_lock_irqsave(&dev_priv->gt_lock, irqflags); 4292 if (dev_priv->forcewake_count++ == 0) 4293 dev_priv->gt.force_wake_get(dev_priv); 4294 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags); 4295 } 4296 4297 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv) 4298 { 4299 u32 gtfifodbg; 4300 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG); 4301 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK, 4302 "MMIO read or write has been dropped %x\n", gtfifodbg)) 4303 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK); 4304 } 4305 4306 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv) 4307 { 4308 I915_WRITE_NOTRACE(FORCEWAKE, 0); 4309 /* something from same cacheline, but !FORCEWAKE */ 4310 POSTING_READ(ECOBUS); 4311 gen6_gt_check_fifodbg(dev_priv); 4312 } 4313 4314 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv) 4315 { 4316 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL)); 4317 /* something from same cacheline, but !FORCEWAKE_MT */ 4318 POSTING_READ(ECOBUS); 4319 gen6_gt_check_fifodbg(dev_priv); 4320 } 4321 4322 /* 4323 * see gen6_gt_force_wake_get() 4324 */ 4325 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv) 4326 { 4327 unsigned long irqflags; 4328 4329 spin_lock_irqsave(&dev_priv->gt_lock, irqflags); 4330 if (--dev_priv->forcewake_count == 0) 4331 dev_priv->gt.force_wake_put(dev_priv); 4332 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags); 4333 } 4334 4335 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv) 4336 { 4337 int ret = 0; 4338 4339 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) { 4340 int loop = 500; 4341 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES); 4342 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) { 4343 udelay(10); 4344 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES); 4345 } 4346 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES)) 4347 ++ret; 4348 dev_priv->gt_fifo_count = fifo; 4349 } 4350 dev_priv->gt_fifo_count--; 4351 4352 return ret; 4353 } 4354 4355 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv) 4356 { 4357 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff)); 4358 /* something from same cacheline, but !FORCEWAKE_VLV */ 4359 POSTING_READ(FORCEWAKE_ACK_VLV); 4360 } 4361 4362 static void vlv_force_wake_get(struct drm_i915_private *dev_priv) 4363 { 4364 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0, 4365 FORCEWAKE_ACK_TIMEOUT_MS)) 4366 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n"); 4367 4368 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL)); 4369 4370 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1), 4371 FORCEWAKE_ACK_TIMEOUT_MS)) 4372 DRM_ERROR("Timed out waiting for forcewake to ack request.\n"); 4373 4374 __gen6_gt_wait_for_thread_c0(dev_priv); 4375 } 4376 4377 static void vlv_force_wake_put(struct drm_i915_private *dev_priv) 4378 { 4379 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL)); 4380 /* something from same cacheline, but !FORCEWAKE_VLV */ 4381 POSTING_READ(FORCEWAKE_ACK_VLV); 4382 gen6_gt_check_fifodbg(dev_priv); 4383 } 4384 4385 void intel_gt_reset(struct drm_device *dev) 4386 { 4387 struct drm_i915_private *dev_priv = dev->dev_private; 4388 4389 if (IS_VALLEYVIEW(dev)) { 4390 vlv_force_wake_reset(dev_priv); 4391 } else if (INTEL_INFO(dev)->gen >= 6) { 4392 __gen6_gt_force_wake_reset(dev_priv); 4393 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) 4394 __gen6_gt_force_wake_mt_reset(dev_priv); 4395 } 4396 } 4397 4398 void intel_gt_init(struct drm_device *dev) 4399 { 4400 struct drm_i915_private *dev_priv = dev->dev_private; 4401 4402 spin_lock_init(&dev_priv->gt_lock); 4403 4404 intel_gt_reset(dev); 4405 4406 if (IS_VALLEYVIEW(dev)) { 4407 dev_priv->gt.force_wake_get = vlv_force_wake_get; 4408 dev_priv->gt.force_wake_put = vlv_force_wake_put; 4409 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { 4410 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get; 4411 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put; 4412 } else if (IS_GEN6(dev)) { 4413 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get; 4414 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put; 4415 } 4416 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work, 4417 intel_gen6_powersave_work); 4418 } 4419 4420 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val) 4421 { 4422 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); 4423 4424 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) { 4425 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n"); 4426 return -EAGAIN; 4427 } 4428 4429 I915_WRITE(GEN6_PCODE_DATA, *val); 4430 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); 4431 4432 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 4433 500)) { 4434 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox); 4435 return -ETIMEDOUT; 4436 } 4437 4438 *val = I915_READ(GEN6_PCODE_DATA); 4439 I915_WRITE(GEN6_PCODE_DATA, 0); 4440 4441 return 0; 4442 } 4443 4444 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val) 4445 { 4446 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); 4447 4448 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) { 4449 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n"); 4450 return -EAGAIN; 4451 } 4452 4453 I915_WRITE(GEN6_PCODE_DATA, val); 4454 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); 4455 4456 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 4457 500)) { 4458 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox); 4459 return -ETIMEDOUT; 4460 } 4461 4462 I915_WRITE(GEN6_PCODE_DATA, 0); 4463 4464 return 0; 4465 } 4466