1 /* $NetBSD: i915_request.c,v 1.16 2021/12/27 13:29:15 riastradh Exp $ */ 2 3 /* 4 * Copyright © 2008-2015 Intel Corporation 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 23 * IN THE SOFTWARE. 24 * 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: i915_request.c,v 1.16 2021/12/27 13:29:15 riastradh Exp $"); 29 30 #include <linux/dma-fence-array.h> 31 #include <linux/irq_work.h> 32 #include <linux/prefetch.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <linux/sched/signal.h> 36 37 #include "gem/i915_gem_context.h" 38 #include "gt/intel_context.h" 39 #include "gt/intel_ring.h" 40 #include "gt/intel_rps.h" 41 42 #include "i915_active.h" 43 #include "i915_drv.h" 44 #include "i915_globals.h" 45 #include "i915_trace.h" 46 #include "intel_pm.h" 47 48 struct execute_cb { 49 struct list_head link; 50 struct irq_work work; 51 struct i915_sw_fence *fence; 52 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 53 struct i915_request *signal; 54 }; 55 56 static struct i915_global_request { 57 struct i915_global base; 58 struct kmem_cache *slab_requests; 59 struct kmem_cache *slab_dependencies; 60 struct kmem_cache *slab_execute_cbs; 61 } global; 62 63 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 64 { 65 return dev_name(to_request(fence)->i915->drm.dev); 66 } 67 68 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 69 { 70 const struct i915_gem_context *ctx; 71 72 /* 73 * The timeline struct (as part of the ppgtt underneath a context) 74 * may be freed when the request is no longer in use by the GPU. 75 * We could extend the life of a context to beyond that of all 76 * fences, possibly keeping the hw resource around indefinitely, 77 * or we just give them a false name. Since 78 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 79 * lie seems justifiable. 80 */ 81 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 82 return "signaled"; 83 84 ctx = i915_request_gem_context(to_request(fence)); 85 if (!ctx) 86 return "[" DRIVER_NAME "]"; 87 88 return ctx->name; 89 } 90 91 static bool i915_fence_signaled(struct dma_fence *fence) 92 { 93 return i915_request_completed(to_request(fence)); 94 } 95 96 static bool i915_fence_enable_signaling(struct dma_fence *fence) 97 { 98 return i915_request_enable_breadcrumb(to_request(fence)); 99 } 100 101 static signed long i915_fence_wait(struct dma_fence *fence, 102 bool interruptible, 103 signed long timeout) 104 { 105 return i915_request_wait(to_request(fence), 106 interruptible | I915_WAIT_PRIORITY, 107 timeout); 108 } 109 110 static void i915_fence_release(struct dma_fence *fence) 111 { 112 struct i915_request *rq = to_request(fence); 113 114 /* 115 * The request is put onto a RCU freelist (i.e. the address 116 * is immediately reused), mark the fences as being freed now. 117 * Otherwise the debugobjects for the fences are only marked as 118 * freed when the slab cache itself is freed, and so we would get 119 * caught trying to reuse dead objects. 120 */ 121 #ifndef __NetBSD__ 122 i915_sw_fence_fini(&rq->submit); 123 i915_sw_fence_fini(&rq->semaphore); 124 #endif 125 126 kmem_cache_free(global.slab_requests, rq); 127 } 128 129 const struct dma_fence_ops i915_fence_ops = { 130 .get_driver_name = i915_fence_get_driver_name, 131 .get_timeline_name = i915_fence_get_timeline_name, 132 .enable_signaling = i915_fence_enable_signaling, 133 .signaled = i915_fence_signaled, 134 .wait = i915_fence_wait, 135 .release = i915_fence_release, 136 }; 137 138 static void irq_execute_cb(struct irq_work *wrk) 139 { 140 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 141 142 i915_sw_fence_complete(cb->fence); 143 kmem_cache_free(global.slab_execute_cbs, cb); 144 } 145 146 static void irq_execute_cb_hook(struct irq_work *wrk) 147 { 148 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 149 150 cb->hook(container_of(cb->fence, struct i915_request, submit), 151 &cb->signal->fence); 152 i915_request_put(cb->signal); 153 154 irq_execute_cb(wrk); 155 } 156 157 static void __notify_execute_cb(struct i915_request *rq) 158 { 159 struct execute_cb *cb; 160 161 lockdep_assert_held(&rq->lock); 162 163 if (list_empty(&rq->execute_cb)) 164 return; 165 166 list_for_each_entry(cb, &rq->execute_cb, link) 167 irq_work_queue(&cb->work); 168 169 /* 170 * XXX Rollback on __i915_request_unsubmit() 171 * 172 * In the future, perhaps when we have an active time-slicing scheduler, 173 * it will be interesting to unsubmit parallel execution and remove 174 * busywaits from the GPU until their master is restarted. This is 175 * quite hairy, we have to carefully rollback the fence and do a 176 * preempt-to-idle cycle on the target engine, all the while the 177 * master execute_cb may refire. 178 */ 179 INIT_LIST_HEAD(&rq->execute_cb); 180 } 181 182 static inline void 183 remove_from_client(struct i915_request *request) 184 { 185 struct drm_i915_file_private *file_priv; 186 187 if (!READ_ONCE(request->file_priv)) 188 return; 189 190 rcu_read_lock(); 191 file_priv = xchg(&request->file_priv, NULL); 192 if (file_priv) { 193 spin_lock(&file_priv->mm.lock); 194 list_del(&request->client_link); 195 spin_unlock(&file_priv->mm.lock); 196 } 197 rcu_read_unlock(); 198 } 199 200 static void free_capture_list(struct i915_request *request) 201 { 202 struct i915_capture_list *capture; 203 204 capture = fetch_and_zero(&request->capture_list); 205 while (capture) { 206 struct i915_capture_list *next = capture->next; 207 208 kfree(capture); 209 capture = next; 210 } 211 } 212 213 static void remove_from_engine(struct i915_request *rq) 214 { 215 struct intel_engine_cs *engine, *locked; 216 217 /* 218 * Virtual engines complicate acquiring the engine timeline lock, 219 * as their rq->engine pointer is not stable until under that 220 * engine lock. The simple ploy we use is to take the lock then 221 * check that the rq still belongs to the newly locked engine. 222 */ 223 locked = READ_ONCE(rq->engine); 224 spin_lock_irq(&locked->active.lock); 225 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 226 spin_unlock(&locked->active.lock); 227 spin_lock(&engine->active.lock); 228 locked = engine; 229 } 230 list_del_init(&rq->sched.link); 231 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 232 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 233 spin_unlock_irq(&locked->active.lock); 234 } 235 236 bool i915_request_retire(struct i915_request *rq) 237 { 238 if (!i915_request_completed(rq)) 239 return false; 240 241 RQ_TRACE(rq, "\n"); 242 243 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 244 trace_i915_request_retire(rq); 245 246 /* 247 * We know the GPU must have read the request to have 248 * sent us the seqno + interrupt, so use the position 249 * of tail of the request to update the last known position 250 * of the GPU head. 251 * 252 * Note this requires that we are always called in request 253 * completion order. 254 */ 255 GEM_BUG_ON(!list_is_first(&rq->link, 256 &i915_request_timeline(rq)->requests)); 257 rq->ring->head = rq->postfix; 258 259 /* 260 * We only loosely track inflight requests across preemption, 261 * and so we may find ourselves attempting to retire a _completed_ 262 * request that we have removed from the HW and put back on a run 263 * queue. 264 */ 265 remove_from_engine(rq); 266 267 spin_lock_irq(&rq->lock); 268 i915_request_mark_complete(rq); 269 if (!i915_request_signaled(rq)) 270 dma_fence_signal_locked(&rq->fence); 271 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 272 i915_request_cancel_breadcrumb(rq); 273 if (i915_request_has_waitboost(rq)) { 274 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 275 atomic_dec(&rq->engine->gt->rps.num_waiters); 276 } 277 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 278 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 279 __notify_execute_cb(rq); 280 } 281 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 282 spin_unlock_irq(&rq->lock); 283 284 remove_from_client(rq); 285 list_del(&rq->link); 286 287 intel_context_exit(rq->context); 288 intel_context_unpin(rq->context); 289 290 free_capture_list(rq); 291 i915_sched_node_fini(&rq->sched); 292 i915_request_put(rq); 293 294 return true; 295 } 296 297 void i915_request_retire_upto(struct i915_request *rq) 298 { 299 struct intel_timeline * const tl = i915_request_timeline(rq); 300 struct i915_request *tmp; 301 302 RQ_TRACE(rq, "\n"); 303 304 GEM_BUG_ON(!i915_request_completed(rq)); 305 306 do { 307 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 308 } while (i915_request_retire(tmp) && tmp != rq); 309 } 310 311 static int 312 __await_execution(struct i915_request *rq, 313 struct i915_request *signal, 314 void (*hook)(struct i915_request *rq, 315 struct dma_fence *signal), 316 gfp_t gfp) 317 { 318 struct execute_cb *cb; 319 320 if (i915_request_is_active(signal)) { 321 if (hook) 322 hook(rq, &signal->fence); 323 return 0; 324 } 325 326 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 327 if (!cb) 328 return -ENOMEM; 329 330 cb->fence = &rq->submit; 331 i915_sw_fence_await(cb->fence); 332 init_irq_work(&cb->work, irq_execute_cb); 333 334 if (hook) { 335 cb->hook = hook; 336 cb->signal = i915_request_get(signal); 337 cb->work.func = irq_execute_cb_hook; 338 } 339 340 spin_lock_irq(&signal->lock); 341 if (i915_request_is_active(signal)) { 342 if (hook) { 343 hook(rq, &signal->fence); 344 i915_request_put(signal); 345 } 346 i915_sw_fence_complete(cb->fence); 347 kmem_cache_free(global.slab_execute_cbs, cb); 348 } else { 349 list_add_tail(&cb->link, &signal->execute_cb); 350 } 351 spin_unlock_irq(&signal->lock); 352 353 /* Copy across semaphore status as we need the same behaviour */ 354 rq->sched.flags |= signal->sched.flags; 355 return 0; 356 } 357 358 bool __i915_request_submit(struct i915_request *request) 359 { 360 struct intel_engine_cs *engine = request->engine; 361 bool result = false; 362 363 RQ_TRACE(request, "\n"); 364 365 GEM_BUG_ON(!irqs_disabled()); 366 lockdep_assert_held(&engine->active.lock); 367 368 /* 369 * With the advent of preempt-to-busy, we frequently encounter 370 * requests that we have unsubmitted from HW, but left running 371 * until the next ack and so have completed in the meantime. On 372 * resubmission of that completed request, we can skip 373 * updating the payload, and execlists can even skip submitting 374 * the request. 375 * 376 * We must remove the request from the caller's priority queue, 377 * and the caller must only call us when the request is in their 378 * priority queue, under the active.lock. This ensures that the 379 * request has *not* yet been retired and we can safely move 380 * the request into the engine->active.list where it will be 381 * dropped upon retiring. (Otherwise if resubmit a *retired* 382 * request, this would be a horrible use-after-free.) 383 */ 384 if (i915_request_completed(request)) 385 goto xfer; 386 387 if (intel_context_is_banned(request->context)) 388 i915_request_skip(request, -EIO); 389 390 /* 391 * Are we using semaphores when the gpu is already saturated? 392 * 393 * Using semaphores incurs a cost in having the GPU poll a 394 * memory location, busywaiting for it to change. The continual 395 * memory reads can have a noticeable impact on the rest of the 396 * system with the extra bus traffic, stalling the cpu as it too 397 * tries to access memory across the bus (perf stat -e bus-cycles). 398 * 399 * If we installed a semaphore on this request and we only submit 400 * the request after the signaler completed, that indicates the 401 * system is overloaded and using semaphores at this time only 402 * increases the amount of work we are doing. If so, we disable 403 * further use of semaphores until we are idle again, whence we 404 * optimistically try again. 405 */ 406 if (request->sched.semaphores && 407 i915_sw_fence_signaled(&request->semaphore)) 408 engine->saturated |= request->sched.semaphores; 409 410 engine->emit_fini_breadcrumb(request, 411 request->ring->vaddr + request->postfix); 412 413 trace_i915_request_execute(request); 414 engine->serial++; 415 result = true; 416 417 xfer: /* We may be recursing from the signal callback of another i915 fence */ 418 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 419 420 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 421 list_move_tail(&request->sched.link, &engine->active.requests); 422 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 423 } 424 425 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 426 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 427 !i915_request_enable_breadcrumb(request)) 428 intel_engine_signal_breadcrumbs(engine); 429 430 __notify_execute_cb(request); 431 432 spin_unlock(&request->lock); 433 434 return result; 435 } 436 437 void i915_request_submit(struct i915_request *request) 438 { 439 struct intel_engine_cs *engine = request->engine; 440 unsigned long flags; 441 442 /* Will be called from irq-context when using foreign fences. */ 443 spin_lock_irqsave(&engine->active.lock, flags); 444 445 __i915_request_submit(request); 446 447 spin_unlock_irqrestore(&engine->active.lock, flags); 448 } 449 450 void __i915_request_unsubmit(struct i915_request *request) 451 { 452 struct intel_engine_cs *engine __lockdep_used = request->engine; 453 454 RQ_TRACE(request, "\n"); 455 456 GEM_BUG_ON(!irqs_disabled()); 457 lockdep_assert_held(&engine->active.lock); 458 459 /* 460 * Only unwind in reverse order, required so that the per-context list 461 * is kept in seqno/ring order. 462 */ 463 464 /* We may be recursing from the signal callback of another i915 fence */ 465 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 466 467 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 468 i915_request_cancel_breadcrumb(request); 469 470 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 471 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 472 473 spin_unlock(&request->lock); 474 475 /* We've already spun, don't charge on resubmitting. */ 476 if (request->sched.semaphores && i915_request_started(request)) { 477 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 478 request->sched.semaphores = 0; 479 } 480 481 /* 482 * We don't need to wake_up any waiters on request->execute, they 483 * will get woken by any other event or us re-adding this request 484 * to the engine timeline (__i915_request_submit()). The waiters 485 * should be quite adapt at finding that the request now has a new 486 * global_seqno to the one they went to sleep on. 487 */ 488 } 489 490 void i915_request_unsubmit(struct i915_request *request) 491 { 492 struct intel_engine_cs *engine = request->engine; 493 unsigned long flags; 494 495 /* Will be called from irq-context when using foreign fences. */ 496 spin_lock_irqsave(&engine->active.lock, flags); 497 498 __i915_request_unsubmit(request); 499 500 spin_unlock_irqrestore(&engine->active.lock, flags); 501 } 502 503 static int __i915_sw_fence_call 504 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 505 { 506 struct i915_request *request = 507 container_of(fence, typeof(*request), submit); 508 509 switch (state) { 510 case FENCE_COMPLETE: 511 trace_i915_request_submit(request); 512 513 if (unlikely(fence->error)) 514 i915_request_skip(request, fence->error); 515 516 /* 517 * We need to serialize use of the submit_request() callback 518 * with its hotplugging performed during an emergency 519 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 520 * critical section in order to force i915_gem_set_wedged() to 521 * wait until the submit_request() is completed before 522 * proceeding. 523 */ 524 rcu_read_lock(); 525 request->engine->submit_request(request); 526 rcu_read_unlock(); 527 break; 528 529 case FENCE_FREE: 530 i915_request_put(request); 531 break; 532 } 533 534 return NOTIFY_DONE; 535 } 536 537 static int __i915_sw_fence_call 538 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 539 { 540 struct i915_request *request = 541 container_of(fence, typeof(*request), semaphore); 542 543 switch (state) { 544 case FENCE_COMPLETE: 545 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 546 break; 547 548 case FENCE_FREE: 549 i915_request_put(request); 550 break; 551 } 552 553 return NOTIFY_DONE; 554 } 555 556 static void retire_requests(struct intel_timeline *tl) 557 { 558 struct i915_request *rq, *rn; 559 560 list_for_each_entry_safe(rq, rn, &tl->requests, link) 561 if (!i915_request_retire(rq)) 562 break; 563 } 564 565 static noinline struct i915_request * 566 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 567 { 568 struct i915_request *rq; 569 570 if (list_empty(&tl->requests)) 571 goto out; 572 573 if (!gfpflags_allow_blocking(gfp)) 574 goto out; 575 576 /* Move our oldest request to the slab-cache (if not in use!) */ 577 rq = list_first_entry(&tl->requests, typeof(*rq), link); 578 i915_request_retire(rq); 579 580 rq = kmem_cache_alloc(global.slab_requests, 581 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 582 if (rq) 583 return rq; 584 585 /* Ratelimit ourselves to prevent oom from malicious clients */ 586 rq = list_last_entry(&tl->requests, typeof(*rq), link); 587 cond_synchronize_rcu(rq->rcustate); 588 589 /* Retire our old requests in the hope that we free some */ 590 retire_requests(tl); 591 592 out: 593 return kmem_cache_alloc(global.slab_requests, gfp); 594 } 595 596 static void __i915_request_ctor(void *arg) 597 { 598 struct i915_request *rq = arg; 599 600 spin_lock_init(&rq->lock); 601 i915_sched_node_init(&rq->sched); 602 i915_sw_fence_init(&rq->submit, submit_notify); 603 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 604 605 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 606 607 rq->file_priv = NULL; 608 rq->capture_list = NULL; 609 610 INIT_LIST_HEAD(&rq->execute_cb); 611 } 612 613 static void __i915_request_dtor(void *arg) 614 { 615 struct i915_request *rq = arg; 616 617 dma_fence_destroy(&rq->fence); 618 #ifdef __NetBSD__ 619 i915_sw_fence_fini(&rq->submit); 620 i915_sw_fence_fini(&rq->semaphore); 621 #endif 622 spin_lock_destroy(&rq->lock); 623 } 624 625 struct i915_request * 626 __i915_request_create(struct intel_context *ce, gfp_t gfp) 627 { 628 struct intel_timeline *tl = ce->timeline; 629 struct i915_request *rq; 630 u32 seqno; 631 int ret; 632 633 might_sleep_if(gfpflags_allow_blocking(gfp)); 634 635 /* Check that the caller provided an already pinned context */ 636 __intel_context_pin(ce); 637 638 /* 639 * Beware: Dragons be flying overhead. 640 * 641 * We use RCU to look up requests in flight. The lookups may 642 * race with the request being allocated from the slab freelist. 643 * That is the request we are writing to here, may be in the process 644 * of being read by __i915_active_request_get_rcu(). As such, 645 * we have to be very careful when overwriting the contents. During 646 * the RCU lookup, we change chase the request->engine pointer, 647 * read the request->global_seqno and increment the reference count. 648 * 649 * The reference count is incremented atomically. If it is zero, 650 * the lookup knows the request is unallocated and complete. Otherwise, 651 * it is either still in use, or has been reallocated and reset 652 * with dma_fence_init(). This increment is safe for release as we 653 * check that the request we have a reference to and matches the active 654 * request. 655 * 656 * Before we increment the refcount, we chase the request->engine 657 * pointer. We must not call kmem_cache_zalloc() or else we set 658 * that pointer to NULL and cause a crash during the lookup. If 659 * we see the request is completed (based on the value of the 660 * old engine and seqno), the lookup is complete and reports NULL. 661 * If we decide the request is not completed (new engine or seqno), 662 * then we grab a reference and double check that it is still the 663 * active request - which it won't be and restart the lookup. 664 * 665 * Do not use kmem_cache_zalloc() here! 666 */ 667 rq = kmem_cache_alloc(global.slab_requests, 668 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 669 if (unlikely(!rq)) { 670 rq = request_alloc_slow(tl, gfp); 671 if (!rq) { 672 ret = -ENOMEM; 673 goto err_unreserve; 674 } 675 } 676 677 rq->i915 = ce->engine->i915; 678 rq->context = ce; 679 rq->engine = ce->engine; 680 rq->ring = ce->ring; 681 rq->execution_mask = ce->engine->mask; 682 683 #ifdef __NetBSD__ 684 dma_fence_reset(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 685 #else 686 kref_init(&rq->fence.refcount); 687 rq->fence.flags = 0; 688 rq->fence.error = 0; 689 INIT_LIST_HEAD(&rq->fence.cb_list); 690 #endif 691 692 ret = intel_timeline_get_seqno(tl, rq, &seqno); 693 if (ret) 694 goto err_free; 695 696 rq->fence.context = tl->fence_context; 697 rq->fence.seqno = seqno; 698 699 RCU_INIT_POINTER(rq->timeline, tl); 700 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 701 rq->hwsp_seqno = tl->hwsp_seqno; 702 703 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 704 705 /* We bump the ref for the fence chain */ 706 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 707 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 708 709 i915_sched_node_reinit(&rq->sched); 710 711 /* No zalloc, everything must be cleared after use */ 712 rq->batch = NULL; 713 GEM_BUG_ON(rq->file_priv); 714 GEM_BUG_ON(rq->capture_list); 715 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 716 717 /* 718 * Reserve space in the ring buffer for all the commands required to 719 * eventually emit this request. This is to guarantee that the 720 * i915_request_add() call can't fail. Note that the reserve may need 721 * to be redone if the request is not actually submitted straight 722 * away, e.g. because a GPU scheduler has deferred it. 723 * 724 * Note that due to how we add reserved_space to intel_ring_begin() 725 * we need to double our request to ensure that if we need to wrap 726 * around inside i915_request_add() there is sufficient space at 727 * the beginning of the ring as well. 728 */ 729 rq->reserved_space = 730 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 731 732 /* 733 * Record the position of the start of the request so that 734 * should we detect the updated seqno part-way through the 735 * GPU processing the request, we never over-estimate the 736 * position of the head. 737 */ 738 rq->head = rq->ring->emit; 739 740 ret = rq->engine->request_alloc(rq); 741 if (ret) 742 goto err_unwind; 743 744 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 745 746 intel_context_mark_active(ce); 747 return rq; 748 749 err_unwind: 750 ce->ring->emit = rq->head; 751 752 /* Make sure we didn't add ourselves to external state before freeing */ 753 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 754 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 755 756 err_free: 757 kmem_cache_free(global.slab_requests, rq); 758 err_unreserve: 759 intel_context_unpin(ce); 760 return ERR_PTR(ret); 761 } 762 763 struct i915_request * 764 i915_request_create(struct intel_context *ce) 765 { 766 struct i915_request *rq; 767 struct intel_timeline *tl; 768 769 tl = intel_context_timeline_lock(ce); 770 if (IS_ERR(tl)) 771 return ERR_CAST(tl); 772 773 /* Move our oldest request to the slab-cache (if not in use!) */ 774 rq = list_first_entry(&tl->requests, typeof(*rq), link); 775 if (!list_is_last(&rq->link, &tl->requests)) 776 i915_request_retire(rq); 777 778 intel_context_enter(ce); 779 rq = __i915_request_create(ce, GFP_KERNEL); 780 intel_context_exit(ce); /* active reference transferred to request */ 781 if (IS_ERR(rq)) 782 goto err_unlock; 783 784 /* Check that we do not interrupt ourselves with a new request */ 785 rq->cookie = lockdep_pin_lock(&tl->mutex); 786 787 return rq; 788 789 err_unlock: 790 intel_context_timeline_unlock(tl); 791 return rq; 792 } 793 794 static int 795 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 796 { 797 struct dma_fence *fence; 798 int err; 799 800 GEM_BUG_ON(i915_request_timeline(rq) == 801 rcu_access_pointer(signal->timeline)); 802 803 fence = NULL; 804 rcu_read_lock(); 805 spin_lock_irq(&signal->lock); 806 if (!i915_request_started(signal) && 807 !list_is_first(&signal->link, 808 &rcu_dereference(signal->timeline)->requests)) { 809 struct i915_request *prev = list_prev_entry(signal, link); 810 811 /* 812 * Peek at the request before us in the timeline. That 813 * request will only be valid before it is retired, so 814 * after acquiring a reference to it, confirm that it is 815 * still part of the signaler's timeline. 816 */ 817 if (i915_request_get_rcu(prev)) { 818 if (list_next_entry(prev, link) == signal) 819 fence = &prev->fence; 820 else 821 i915_request_put(prev); 822 } 823 } 824 spin_unlock_irq(&signal->lock); 825 rcu_read_unlock(); 826 if (!fence) 827 return 0; 828 829 err = 0; 830 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 831 err = i915_sw_fence_await_dma_fence(&rq->submit, 832 fence, 0, 833 I915_FENCE_GFP); 834 dma_fence_put(fence); 835 836 return err; 837 } 838 839 static intel_engine_mask_t 840 already_busywaiting(struct i915_request *rq) 841 { 842 /* 843 * Polling a semaphore causes bus traffic, delaying other users of 844 * both the GPU and CPU. We want to limit the impact on others, 845 * while taking advantage of early submission to reduce GPU 846 * latency. Therefore we restrict ourselves to not using more 847 * than one semaphore from each source, and not using a semaphore 848 * if we have detected the engine is saturated (i.e. would not be 849 * submitted early and cause bus traffic reading an already passed 850 * semaphore). 851 * 852 * See the are-we-too-late? check in __i915_request_submit(). 853 */ 854 return rq->sched.semaphores | rq->engine->saturated; 855 } 856 857 static int 858 __emit_semaphore_wait(struct i915_request *to, 859 struct i915_request *from, 860 u32 seqno) 861 { 862 const int has_token = INTEL_GEN(to->i915) >= 12; 863 u32 hwsp_offset; 864 int len, err; 865 u32 *cs; 866 867 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 868 869 /* We need to pin the signaler's HWSP until we are finished reading. */ 870 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 871 if (err) 872 return err; 873 874 len = 4; 875 if (has_token) 876 len += 2; 877 878 cs = intel_ring_begin(to, len); 879 if (IS_ERR(cs)) 880 return PTR_ERR(cs); 881 882 /* 883 * Using greater-than-or-equal here means we have to worry 884 * about seqno wraparound. To side step that issue, we swap 885 * the timeline HWSP upon wrapping, so that everyone listening 886 * for the old (pre-wrap) values do not see the much smaller 887 * (post-wrap) values than they were expecting (and so wait 888 * forever). 889 */ 890 *cs++ = (MI_SEMAPHORE_WAIT | 891 MI_SEMAPHORE_GLOBAL_GTT | 892 MI_SEMAPHORE_POLL | 893 MI_SEMAPHORE_SAD_GTE_SDD) + 894 has_token; 895 *cs++ = seqno; 896 *cs++ = hwsp_offset; 897 *cs++ = 0; 898 if (has_token) { 899 *cs++ = 0; 900 *cs++ = MI_NOOP; 901 } 902 903 intel_ring_advance(to, cs); 904 return 0; 905 } 906 907 static int 908 emit_semaphore_wait(struct i915_request *to, 909 struct i915_request *from, 910 gfp_t gfp) 911 { 912 /* Just emit the first semaphore we see as request space is limited. */ 913 if (already_busywaiting(to) & from->engine->mask) 914 goto await_fence; 915 916 if (i915_request_await_start(to, from) < 0) 917 goto await_fence; 918 919 /* Only submit our spinner after the signaler is running! */ 920 if (__await_execution(to, from, NULL, gfp)) 921 goto await_fence; 922 923 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 924 goto await_fence; 925 926 to->sched.semaphores |= from->engine->mask; 927 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 928 return 0; 929 930 await_fence: 931 return i915_sw_fence_await_dma_fence(&to->submit, 932 &from->fence, 0, 933 I915_FENCE_GFP); 934 } 935 936 static int 937 i915_request_await_request(struct i915_request *to, struct i915_request *from) 938 { 939 int ret; 940 941 GEM_BUG_ON(to == from); 942 GEM_BUG_ON(to->timeline == from->timeline); 943 944 if (i915_request_completed(from)) 945 return 0; 946 947 if (to->engine->schedule) { 948 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 949 if (ret < 0) 950 return ret; 951 } 952 953 if (to->engine == from->engine) 954 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 955 &from->submit, 956 I915_FENCE_GFP); 957 else if (intel_context_use_semaphores(to->context)) 958 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 959 else 960 ret = i915_sw_fence_await_dma_fence(&to->submit, 961 &from->fence, 0, 962 I915_FENCE_GFP); 963 if (ret < 0) 964 return ret; 965 966 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 967 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 968 &from->fence, 0, 969 I915_FENCE_GFP); 970 if (ret < 0) 971 return ret; 972 } 973 974 return 0; 975 } 976 977 int 978 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 979 { 980 struct dma_fence **child = &fence; 981 unsigned int nchild = 1; 982 int ret; 983 984 /* 985 * Note that if the fence-array was created in signal-on-any mode, 986 * we should *not* decompose it into its individual fences. However, 987 * we don't currently store which mode the fence-array is operating 988 * in. Fortunately, the only user of signal-on-any is private to 989 * amdgpu and we should not see any incoming fence-array from 990 * sync-file being in signal-on-any mode. 991 */ 992 if (dma_fence_is_array(fence)) { 993 struct dma_fence_array *array = to_dma_fence_array(fence); 994 995 child = array->fences; 996 nchild = array->num_fences; 997 GEM_BUG_ON(!nchild); 998 } 999 1000 do { 1001 fence = *child++; 1002 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1003 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1004 continue; 1005 } 1006 1007 /* 1008 * Requests on the same timeline are explicitly ordered, along 1009 * with their dependencies, by i915_request_add() which ensures 1010 * that requests are submitted in-order through each ring. 1011 */ 1012 if (fence->context == rq->fence.context) 1013 continue; 1014 1015 /* Squash repeated waits to the same timelines */ 1016 if (fence->context && 1017 intel_timeline_sync_is_later(i915_request_timeline(rq), 1018 fence)) 1019 continue; 1020 1021 if (dma_fence_is_i915(fence)) 1022 ret = i915_request_await_request(rq, to_request(fence)); 1023 else 1024 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1025 fence->context ? I915_FENCE_TIMEOUT : 0, 1026 I915_FENCE_GFP); 1027 if (ret < 0) 1028 return ret; 1029 1030 /* Record the latest fence used against each timeline */ 1031 if (fence->context) 1032 intel_timeline_sync_set(i915_request_timeline(rq), 1033 fence); 1034 } while (--nchild); 1035 1036 return 0; 1037 } 1038 1039 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1040 struct dma_fence *fence) 1041 { 1042 return __intel_timeline_sync_is_later(tl, 1043 fence->context, 1044 fence->seqno - 1); 1045 } 1046 1047 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1048 const struct dma_fence *fence) 1049 { 1050 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1051 } 1052 1053 static int 1054 __i915_request_await_execution(struct i915_request *to, 1055 struct i915_request *from, 1056 void (*hook)(struct i915_request *rq, 1057 struct dma_fence *signal)) 1058 { 1059 int err; 1060 1061 /* Submit both requests at the same time */ 1062 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1063 if (err) 1064 return err; 1065 1066 /* Squash repeated depenendices to the same timelines */ 1067 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1068 &from->fence)) 1069 return 0; 1070 1071 /* Ensure both start together [after all semaphores in signal] */ 1072 if (intel_engine_has_semaphores(to->engine)) 1073 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1074 else 1075 err = i915_request_await_start(to, from); 1076 if (err < 0) 1077 return err; 1078 1079 /* Couple the dependency tree for PI on this exposed to->fence */ 1080 if (to->engine->schedule) { 1081 err = i915_sched_node_add_dependency(&to->sched, &from->sched); 1082 if (err < 0) 1083 return err; 1084 } 1085 1086 return intel_timeline_sync_set_start(i915_request_timeline(to), 1087 &from->fence); 1088 } 1089 1090 int 1091 i915_request_await_execution(struct i915_request *rq, 1092 struct dma_fence *fence, 1093 void (*hook)(struct i915_request *rq, 1094 struct dma_fence *signal)) 1095 { 1096 struct dma_fence **child = &fence; 1097 unsigned int nchild = 1; 1098 int ret; 1099 1100 if (dma_fence_is_array(fence)) { 1101 struct dma_fence_array *array = to_dma_fence_array(fence); 1102 1103 /* XXX Error for signal-on-any fence arrays */ 1104 1105 child = array->fences; 1106 nchild = array->num_fences; 1107 GEM_BUG_ON(!nchild); 1108 } 1109 1110 do { 1111 fence = *child++; 1112 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1113 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1114 continue; 1115 } 1116 1117 /* 1118 * We don't squash repeated fence dependencies here as we 1119 * want to run our callback in all cases. 1120 */ 1121 1122 if (dma_fence_is_i915(fence)) 1123 ret = __i915_request_await_execution(rq, 1124 to_request(fence), 1125 hook); 1126 else 1127 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1128 I915_FENCE_TIMEOUT, 1129 GFP_KERNEL); 1130 if (ret < 0) 1131 return ret; 1132 } while (--nchild); 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * i915_request_await_object - set this request to (async) wait upon a bo 1139 * @to: request we are wishing to use 1140 * @obj: object which may be in use on another ring. 1141 * @write: whether the wait is on behalf of a writer 1142 * 1143 * This code is meant to abstract object synchronization with the GPU. 1144 * Conceptually we serialise writes between engines inside the GPU. 1145 * We only allow one engine to write into a buffer at any time, but 1146 * multiple readers. To ensure each has a coherent view of memory, we must: 1147 * 1148 * - If there is an outstanding write request to the object, the new 1149 * request must wait for it to complete (either CPU or in hw, requests 1150 * on the same ring will be naturally ordered). 1151 * 1152 * - If we are a write request (pending_write_domain is set), the new 1153 * request must wait for outstanding read requests to complete. 1154 * 1155 * Returns 0 if successful, else propagates up the lower layer error. 1156 */ 1157 int 1158 i915_request_await_object(struct i915_request *to, 1159 struct drm_i915_gem_object *obj, 1160 bool write) 1161 { 1162 struct dma_fence *excl; 1163 int ret = 0; 1164 1165 if (write) { 1166 struct dma_fence **shared; 1167 unsigned int count, i; 1168 1169 ret = dma_resv_get_fences_rcu(obj->base.resv, 1170 &excl, &count, &shared); 1171 if (ret) 1172 return ret; 1173 1174 for (i = 0; i < count; i++) { 1175 ret = i915_request_await_dma_fence(to, shared[i]); 1176 if (ret) 1177 break; 1178 1179 dma_fence_put(shared[i]); 1180 } 1181 1182 for (; i < count; i++) 1183 dma_fence_put(shared[i]); 1184 kfree(shared); 1185 } else { 1186 excl = dma_resv_get_excl_rcu(obj->base.resv); 1187 } 1188 1189 if (excl) { 1190 if (ret == 0) 1191 ret = i915_request_await_dma_fence(to, excl); 1192 1193 dma_fence_put(excl); 1194 } 1195 1196 return ret; 1197 } 1198 1199 void i915_request_skip(struct i915_request *rq, int error) 1200 { 1201 void *vaddr = rq->ring->vaddr; 1202 u32 head; 1203 1204 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1205 dma_fence_set_error(&rq->fence, error); 1206 1207 if (rq->infix == rq->postfix) 1208 return; 1209 1210 /* 1211 * As this request likely depends on state from the lost 1212 * context, clear out all the user operations leaving the 1213 * breadcrumb at the end (so we get the fence notifications). 1214 */ 1215 head = rq->infix; 1216 if (rq->postfix < head) { 1217 memset(vaddr + head, 0, rq->ring->size - head); 1218 head = 0; 1219 } 1220 memset(vaddr + head, 0, rq->postfix - head); 1221 rq->infix = rq->postfix; 1222 } 1223 1224 static struct i915_request * 1225 __i915_request_add_to_timeline(struct i915_request *rq) 1226 { 1227 struct intel_timeline *timeline = i915_request_timeline(rq); 1228 struct i915_request *prev; 1229 1230 /* 1231 * Dependency tracking and request ordering along the timeline 1232 * is special cased so that we can eliminate redundant ordering 1233 * operations while building the request (we know that the timeline 1234 * itself is ordered, and here we guarantee it). 1235 * 1236 * As we know we will need to emit tracking along the timeline, 1237 * we embed the hooks into our request struct -- at the cost of 1238 * having to have specialised no-allocation interfaces (which will 1239 * be beneficial elsewhere). 1240 * 1241 * A second benefit to open-coding i915_request_await_request is 1242 * that we can apply a slight variant of the rules specialised 1243 * for timelines that jump between engines (such as virtual engines). 1244 * If we consider the case of virtual engine, we must emit a dma-fence 1245 * to prevent scheduling of the second request until the first is 1246 * complete (to maximise our greedy late load balancing) and this 1247 * precludes optimising to use semaphores serialisation of a single 1248 * timeline across engines. 1249 */ 1250 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1251 &rq->fence)); 1252 if (prev && !i915_request_completed(prev)) { 1253 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1254 i915_sw_fence_await_sw_fence(&rq->submit, 1255 &prev->submit, 1256 &rq->submitq); 1257 else 1258 __i915_sw_fence_await_dma_fence(&rq->submit, 1259 &prev->fence, 1260 &rq->dmaq); 1261 if (rq->engine->schedule) 1262 __i915_sched_node_add_dependency(&rq->sched, 1263 &prev->sched, 1264 &rq->dep, 1265 0); 1266 } 1267 1268 list_add_tail(&rq->link, &timeline->requests); 1269 1270 /* 1271 * Make sure that no request gazumped us - if it was allocated after 1272 * our i915_request_alloc() and called __i915_request_add() before 1273 * us, the timeline will hold its seqno which is later than ours. 1274 */ 1275 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1276 1277 return prev; 1278 } 1279 1280 /* 1281 * NB: This function is not allowed to fail. Doing so would mean the the 1282 * request is not being tracked for completion but the work itself is 1283 * going to happen on the hardware. This would be a Bad Thing(tm). 1284 */ 1285 struct i915_request *__i915_request_commit(struct i915_request *rq) 1286 { 1287 struct intel_engine_cs *engine = rq->engine; 1288 struct intel_ring *ring = rq->ring; 1289 u32 *cs; 1290 1291 RQ_TRACE(rq, "\n"); 1292 1293 /* 1294 * To ensure that this call will not fail, space for its emissions 1295 * should already have been reserved in the ring buffer. Let the ring 1296 * know that it is time to use that space up. 1297 */ 1298 GEM_BUG_ON(rq->reserved_space > ring->space); 1299 rq->reserved_space = 0; 1300 rq->emitted_jiffies = jiffies; 1301 1302 /* 1303 * Record the position of the start of the breadcrumb so that 1304 * should we detect the updated seqno part-way through the 1305 * GPU processing the request, we never over-estimate the 1306 * position of the ring's HEAD. 1307 */ 1308 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1309 GEM_BUG_ON(IS_ERR(cs)); 1310 rq->postfix = intel_ring_offset(rq, cs); 1311 1312 return __i915_request_add_to_timeline(rq); 1313 } 1314 1315 void __i915_request_queue(struct i915_request *rq, 1316 const struct i915_sched_attr *attr) 1317 { 1318 /* 1319 * Let the backend know a new request has arrived that may need 1320 * to adjust the existing execution schedule due to a high priority 1321 * request - i.e. we may want to preempt the current request in order 1322 * to run a high priority dependency chain *before* we can execute this 1323 * request. 1324 * 1325 * This is called before the request is ready to run so that we can 1326 * decide whether to preempt the entire chain so that it is ready to 1327 * run at the earliest possible convenience. 1328 */ 1329 i915_sw_fence_commit(&rq->semaphore); 1330 if (attr && rq->engine->schedule) 1331 rq->engine->schedule(rq, attr); 1332 i915_sw_fence_commit(&rq->submit); 1333 } 1334 1335 void i915_request_add(struct i915_request *rq) 1336 { 1337 struct intel_timeline * const tl = i915_request_timeline(rq); 1338 struct i915_sched_attr attr = {}; 1339 struct i915_request *prev; 1340 1341 lockdep_assert_held(&tl->mutex); 1342 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1343 1344 trace_i915_request_add(rq); 1345 1346 prev = __i915_request_commit(rq); 1347 1348 if (rcu_access_pointer(rq->context->gem_context)) 1349 attr = i915_request_gem_context(rq)->sched; 1350 1351 /* 1352 * Boost actual workloads past semaphores! 1353 * 1354 * With semaphores we spin on one engine waiting for another, 1355 * simply to reduce the latency of starting our work when 1356 * the signaler completes. However, if there is any other 1357 * work that we could be doing on this engine instead, that 1358 * is better utilisation and will reduce the overall duration 1359 * of the current work. To avoid PI boosting a semaphore 1360 * far in the distance past over useful work, we keep a history 1361 * of any semaphore use along our dependency chain. 1362 */ 1363 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1364 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1365 1366 /* 1367 * Boost priorities to new clients (new request flows). 1368 * 1369 * Allow interactive/synchronous clients to jump ahead of 1370 * the bulk clients. (FQ_CODEL) 1371 */ 1372 if (list_empty(&rq->sched.signalers_list)) 1373 attr.priority |= I915_PRIORITY_WAIT; 1374 1375 #ifdef __NetBSD__ 1376 int s = splsoftserial(); 1377 #else 1378 local_bh_disable(); 1379 #endif 1380 __i915_request_queue(rq, &attr); 1381 #ifdef __NetBSD__ 1382 splx(s); 1383 #else 1384 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1385 #endif 1386 1387 /* 1388 * In typical scenarios, we do not expect the previous request on 1389 * the timeline to be still tracked by timeline->last_request if it 1390 * has been completed. If the completed request is still here, that 1391 * implies that request retirement is a long way behind submission, 1392 * suggesting that we haven't been retiring frequently enough from 1393 * the combination of retire-before-alloc, waiters and the background 1394 * retirement worker. So if the last request on this timeline was 1395 * already completed, do a catch up pass, flushing the retirement queue 1396 * up to this client. Since we have now moved the heaviest operations 1397 * during retirement onto secondary workers, such as freeing objects 1398 * or contexts, retiring a bunch of requests is mostly list management 1399 * (and cache misses), and so we should not be overly penalizing this 1400 * client by performing excess work, though we may still performing 1401 * work on behalf of others -- but instead we should benefit from 1402 * improved resource management. (Well, that's the theory at least.) 1403 */ 1404 if (prev && 1405 i915_request_completed(prev) && 1406 rcu_access_pointer(prev->timeline) == tl) 1407 i915_request_retire_upto(prev); 1408 1409 mutex_unlock(&tl->mutex); 1410 } 1411 1412 static unsigned long local_clock_us(unsigned int *cpu) 1413 { 1414 unsigned long t; 1415 1416 /* 1417 * Cheaply and approximately convert from nanoseconds to microseconds. 1418 * The result and subsequent calculations are also defined in the same 1419 * approximate microseconds units. The principal source of timing 1420 * error here is from the simple truncation. 1421 * 1422 * Note that local_clock() is only defined wrt to the current CPU; 1423 * the comparisons are no longer valid if we switch CPUs. Instead of 1424 * blocking preemption for the entire busywait, we can detect the CPU 1425 * switch and use that as indicator of system load and a reason to 1426 * stop busywaiting, see busywait_stop(). 1427 */ 1428 *cpu = get_cpu(); 1429 t = local_clock() >> 10; 1430 put_cpu(); 1431 1432 return t; 1433 } 1434 1435 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1436 { 1437 unsigned int this_cpu; 1438 1439 if (time_after(local_clock_us(&this_cpu), timeout)) 1440 return true; 1441 1442 return this_cpu != cpu; 1443 } 1444 1445 static bool __i915_spin_request(const struct i915_request * const rq, 1446 int state, unsigned long timeout_us) 1447 { 1448 unsigned int cpu; 1449 1450 /* 1451 * Only wait for the request if we know it is likely to complete. 1452 * 1453 * We don't track the timestamps around requests, nor the average 1454 * request length, so we do not have a good indicator that this 1455 * request will complete within the timeout. What we do know is the 1456 * order in which requests are executed by the context and so we can 1457 * tell if the request has been started. If the request is not even 1458 * running yet, it is a fair assumption that it will not complete 1459 * within our relatively short timeout. 1460 */ 1461 if (!i915_request_is_running(rq)) 1462 return false; 1463 1464 /* 1465 * When waiting for high frequency requests, e.g. during synchronous 1466 * rendering split between the CPU and GPU, the finite amount of time 1467 * required to set up the irq and wait upon it limits the response 1468 * rate. By busywaiting on the request completion for a short while we 1469 * can service the high frequency waits as quick as possible. However, 1470 * if it is a slow request, we want to sleep as quickly as possible. 1471 * The tradeoff between waiting and sleeping is roughly the time it 1472 * takes to sleep on a request, on the order of a microsecond. 1473 */ 1474 1475 timeout_us += local_clock_us(&cpu); 1476 do { 1477 if (i915_request_completed(rq)) 1478 return true; 1479 1480 if (signal_pending_state(state, current)) 1481 break; 1482 1483 if (busywait_stop(timeout_us, cpu)) 1484 break; 1485 1486 cpu_relax(); 1487 } while (!need_resched()); 1488 1489 return false; 1490 } 1491 1492 struct request_wait { 1493 struct dma_fence_cb cb; 1494 #ifdef __NetBSD__ 1495 drm_waitqueue_t wq; 1496 #else 1497 struct task_struct *tsk; 1498 #endif 1499 }; 1500 1501 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1502 { 1503 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1504 1505 #ifdef __NetBSD__ 1506 DRM_SPIN_WAKEUP_ALL(&wait->wq, fence->lock); 1507 #else 1508 wake_up_process(wait->tsk); 1509 #endif 1510 } 1511 1512 /** 1513 * i915_request_wait - wait until execution of request has finished 1514 * @rq: the request to wait upon 1515 * @flags: how to wait 1516 * @timeout: how long to wait in jiffies 1517 * 1518 * i915_request_wait() waits for the request to be completed, for a 1519 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1520 * unbounded wait). 1521 * 1522 * Returns the remaining time (in jiffies) if the request completed, which may 1523 * be zero or -ETIME if the request is unfinished after the timeout expires. 1524 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1525 * pending before the request completes. 1526 */ 1527 long i915_request_wait(struct i915_request *rq, 1528 unsigned int flags, 1529 long timeout) 1530 { 1531 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1532 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1533 struct request_wait wait; 1534 1535 might_sleep(); 1536 GEM_BUG_ON(timeout < 0); 1537 1538 if (dma_fence_is_signaled(&rq->fence)) 1539 return timeout; 1540 1541 if (!timeout) 1542 return -ETIME; 1543 1544 trace_i915_request_wait_begin(rq, flags); 1545 1546 /* 1547 * We must never wait on the GPU while holding a lock as we 1548 * may need to perform a GPU reset. So while we don't need to 1549 * serialise wait/reset with an explicit lock, we do want 1550 * lockdep to detect potential dependency cycles. 1551 */ 1552 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1553 1554 /* 1555 * Optimistic spin before touching IRQs. 1556 * 1557 * We may use a rather large value here to offset the penalty of 1558 * switching away from the active task. Frequently, the client will 1559 * wait upon an old swapbuffer to throttle itself to remain within a 1560 * frame of the gpu. If the client is running in lockstep with the gpu, 1561 * then it should not be waiting long at all, and a sleep now will incur 1562 * extra scheduler latency in producing the next frame. To try to 1563 * avoid adding the cost of enabling/disabling the interrupt to the 1564 * short wait, we first spin to see if the request would have completed 1565 * in the time taken to setup the interrupt. 1566 * 1567 * We need upto 5us to enable the irq, and upto 20us to hide the 1568 * scheduler latency of a context switch, ignoring the secondary 1569 * impacts from a context switch such as cache eviction. 1570 * 1571 * The scheme used for low-latency IO is called "hybrid interrupt 1572 * polling". The suggestion there is to sleep until just before you 1573 * expect to be woken by the device interrupt and then poll for its 1574 * completion. That requires having a good predictor for the request 1575 * duration, which we currently lack. 1576 */ 1577 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) && 1578 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1579 dma_fence_signal(&rq->fence); 1580 goto out; 1581 } 1582 1583 /* 1584 * This client is about to stall waiting for the GPU. In many cases 1585 * this is undesirable and limits the throughput of the system, as 1586 * many clients cannot continue processing user input/output whilst 1587 * blocked. RPS autotuning may take tens of milliseconds to respond 1588 * to the GPU load and thus incurs additional latency for the client. 1589 * We can circumvent that by promoting the GPU frequency to maximum 1590 * before we sleep. This makes the GPU throttle up much more quickly 1591 * (good for benchmarks and user experience, e.g. window animations), 1592 * but at a cost of spending more power processing the workload 1593 * (bad for battery). 1594 */ 1595 if (flags & I915_WAIT_PRIORITY) { 1596 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1597 intel_rps_boost(rq); 1598 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1599 } 1600 1601 #ifdef __NetBSD__ 1602 DRM_INIT_WAITQUEUE(&wait.wq, "i915req"); 1603 #else 1604 wait.tsk = current; 1605 #endif 1606 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1607 goto out; 1608 1609 #ifdef __NetBSD__ 1610 spin_lock(rq->fence.lock); 1611 #define C (i915_request_completed(rq) ? 1 : \ 1612 (spin_unlock(rq->fence.lock), \ 1613 intel_engine_flush_submission(rq->engine), \ 1614 spin_lock(rq->fence.lock), \ 1615 i915_request_completed(rq))) 1616 if (flags & I915_WAIT_INTERRUPTIBLE) { 1617 DRM_SPIN_TIMED_WAIT_UNTIL(timeout, &wait.wq, 1618 rq->fence.lock, timeout, 1619 C); 1620 } else { 1621 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(timeout, &wait.wq, 1622 rq->fence.lock, timeout, 1623 C); 1624 } 1625 #undef C 1626 if (timeout > 0) { /* succeeded before timeout */ 1627 KASSERT(i915_request_completed(rq)); 1628 dma_fence_signal_locked(&rq->fence); 1629 } else if (timeout == 0) { /* timed out */ 1630 timeout = -ETIME; 1631 } 1632 spin_unlock(rq->fence.lock); 1633 DRM_DESTROY_WAITQUEUE(&wait.wq); 1634 #else 1635 for (;;) { 1636 set_current_state(state); 1637 1638 if (i915_request_completed(rq)) { 1639 dma_fence_signal(&rq->fence); 1640 break; 1641 } 1642 1643 if (signal_pending_state(state, current)) { 1644 timeout = -ERESTARTSYS; 1645 break; 1646 } 1647 1648 if (!timeout) { 1649 timeout = -ETIME; 1650 break; 1651 } 1652 1653 intel_engine_flush_submission(rq->engine); 1654 timeout = io_schedule_timeout(timeout); 1655 } 1656 __set_current_state(TASK_RUNNING); 1657 #endif 1658 1659 dma_fence_remove_callback(&rq->fence, &wait.cb); 1660 1661 out: 1662 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1663 trace_i915_request_wait_end(rq); 1664 return timeout; 1665 } 1666 1667 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1668 #include "selftests/mock_request.c" 1669 #include "selftests/i915_request.c" 1670 #endif 1671 1672 static void i915_global_request_shrink(void) 1673 { 1674 kmem_cache_shrink(global.slab_dependencies); 1675 kmem_cache_shrink(global.slab_execute_cbs); 1676 kmem_cache_shrink(global.slab_requests); 1677 } 1678 1679 static void i915_global_request_exit(void) 1680 { 1681 kmem_cache_destroy(global.slab_dependencies); 1682 kmem_cache_destroy(global.slab_execute_cbs); 1683 kmem_cache_destroy(global.slab_requests); 1684 } 1685 1686 static struct i915_global_request global = { { 1687 .shrink = i915_global_request_shrink, 1688 .exit = i915_global_request_exit, 1689 } }; 1690 1691 int __init i915_global_request_init(void) 1692 { 1693 global.slab_requests = 1694 kmem_cache_create_dtor("i915_request", 1695 sizeof(struct i915_request), 1696 __alignof__(struct i915_request), 1697 SLAB_HWCACHE_ALIGN | 1698 SLAB_RECLAIM_ACCOUNT | 1699 SLAB_TYPESAFE_BY_RCU, 1700 __i915_request_ctor, 1701 __i915_request_dtor); 1702 if (!global.slab_requests) 1703 return -ENOMEM; 1704 1705 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1706 SLAB_HWCACHE_ALIGN | 1707 SLAB_RECLAIM_ACCOUNT | 1708 SLAB_TYPESAFE_BY_RCU); 1709 if (!global.slab_execute_cbs) 1710 goto err_requests; 1711 1712 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1713 SLAB_HWCACHE_ALIGN | 1714 SLAB_RECLAIM_ACCOUNT); 1715 if (!global.slab_dependencies) 1716 goto err_execute_cbs; 1717 1718 i915_global_register(&global.base); 1719 return 0; 1720 1721 err_execute_cbs: 1722 kmem_cache_destroy(global.slab_execute_cbs); 1723 err_requests: 1724 kmem_cache_destroy(global.slab_requests); 1725 return -ENOMEM; 1726 } 1727