xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/i915_gem.c (revision eceb233b9bd0dfebb902ed73b531ae6964fa3f9b)
1 /*	$NetBSD: i915_gem.c,v 1.61 2020/02/23 15:46:40 ad Exp $	*/
2 
3 /*
4  * Copyright © 2008-2015 Intel Corporation
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23  * IN THE SOFTWARE.
24  *
25  * Authors:
26  *    Eric Anholt <eric@anholt.net>
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.61 2020/02/23 15:46:40 ad Exp $");
32 
33 #ifdef __NetBSD__
34 #if 0				/* XXX uvmhist option?  */
35 #include "opt_uvmhist.h"
36 #endif
37 
38 #include <sys/types.h>
39 #include <sys/param.h>
40 
41 #include <uvm/uvm.h>
42 #include <uvm/uvm_extern.h>
43 #include <uvm/uvm_fault.h>
44 #include <uvm/uvm_page.h>
45 #include <uvm/uvm_pmap.h>
46 #include <uvm/uvm_prot.h>
47 
48 #include <drm/bus_dma_hacks.h>
49 #endif
50 
51 #include <drm/drmP.h>
52 #include <drm/drm_vma_manager.h>
53 #include <drm/i915_drm.h>
54 #include "i915_drv.h"
55 #include "i915_vgpu.h"
56 #include "i915_trace.h"
57 #include "intel_drv.h"
58 #include <linux/shmem_fs.h>
59 #include <linux/slab.h>
60 #include <linux/swap.h>
61 #include <linux/pci.h>
62 #include <linux/dma-buf.h>
63 #include <asm/page.h>
64 #include <asm/cpufeature.h>
65 
66 #include <linux/nbsd-namespace.h>
67 
68 #define RQ_BUG_ON(expr)
69 
70 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
71 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
72 static void
73 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
74 static void
75 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
76 
77 static bool cpu_cache_is_coherent(struct drm_device *dev,
78 				  enum i915_cache_level level)
79 {
80 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
81 }
82 
83 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
84 {
85 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
86 		return true;
87 
88 	return obj->pin_display;
89 }
90 
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 				  size_t size)
94 {
95 	spin_lock(&dev_priv->mm.object_stat_lock);
96 	dev_priv->mm.object_count++;
97 	dev_priv->mm.object_memory += size;
98 	spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100 
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 				     size_t size)
103 {
104 	spin_lock(&dev_priv->mm.object_stat_lock);
105 	dev_priv->mm.object_count--;
106 	dev_priv->mm.object_memory -= size;
107 	spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109 
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 	int ret;
114 
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 		   i915_terminally_wedged(error))
117 	if (EXIT_COND)
118 		return 0;
119 
120 	/*
121 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 	 * userspace. If it takes that long something really bad is going on and
123 	 * we should simply try to bail out and fail as gracefully as possible.
124 	 */
125 #ifdef __NetBSD__
126 	spin_lock(&error->reset_lock);
127 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &error->reset_queue, &error->reset_lock,
128 	    10*HZ, EXIT_COND);
129 	spin_unlock(&error->reset_lock);
130 #else
131 	ret = wait_event_interruptible_timeout(error->reset_queue,
132 					       EXIT_COND,
133 					       10*HZ);
134 #endif
135 	if (ret == 0) {
136 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
137 		return -EIO;
138 	} else if (ret < 0) {
139 		return ret;
140 	}
141 #undef EXIT_COND
142 
143 	return 0;
144 }
145 
146 int i915_mutex_lock_interruptible(struct drm_device *dev)
147 {
148 	struct drm_i915_private *dev_priv = dev->dev_private;
149 	int ret;
150 
151 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
152 	if (ret)
153 		return ret;
154 
155 	ret = mutex_lock_interruptible(&dev->struct_mutex);
156 	if (ret)
157 		return ret;
158 
159 	WARN_ON(i915_verify_lists(dev));
160 	return 0;
161 }
162 
163 int
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 			    struct drm_file *file)
166 {
167 	struct drm_i915_private *dev_priv = dev->dev_private;
168 	struct drm_i915_gem_get_aperture *args = data;
169 	struct i915_gtt *ggtt = &dev_priv->gtt;
170 	struct i915_vma *vma;
171 	size_t pinned;
172 
173 	pinned = 0;
174 	mutex_lock(&dev->struct_mutex);
175 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
176 		if (vma->pin_count)
177 			pinned += vma->node.size;
178 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
179 		if (vma->pin_count)
180 			pinned += vma->node.size;
181 	mutex_unlock(&dev->struct_mutex);
182 
183 	args->aper_size = dev_priv->gtt.base.total;
184 	args->aper_available_size = args->aper_size - pinned;
185 
186 	return 0;
187 }
188 
189 static int
190 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
191 {
192 #ifndef __NetBSD__
193 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
194 #endif
195 	char *vaddr = obj->phys_handle->vaddr;
196 #ifndef __NetBSD__
197 	struct sg_table *st;
198 	struct scatterlist *sg;
199 #endif
200 	int i;
201 
202 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
203 		return -EINVAL;
204 
205 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
206 		struct page *page;
207 		char *src;
208 
209 #ifdef __NetBSD__
210 		struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
211 		int ret;
212 		/* XXX errno NetBSD->Linux */
213 		ret = -uvm_obj_wirepages(obj->base.filp, i*PAGE_SIZE,
214 		    (i + 1)*PAGE_SIZE, &pages);
215 		if (ret)
216 			return ret;
217 		page = container_of(TAILQ_FIRST(&pages), struct page, p_vmp);
218 #else
219 		page = shmem_read_mapping_page(mapping, i);
220 		if (IS_ERR(page))
221 			return PTR_ERR(page);
222 #endif
223 
224 		src = kmap_atomic(page);
225 		memcpy(vaddr, src, PAGE_SIZE);
226 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
227 		kunmap_atomic(src);
228 
229 #ifdef __NetBSD__
230 		uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
231 		    (i + 1)*PAGE_SIZE);
232 #else
233 		page_cache_release(page);
234 #endif
235 		vaddr += PAGE_SIZE;
236 	}
237 
238 	i915_gem_chipset_flush(obj->base.dev);
239 
240 #ifdef __NetBSD__
241 	obj->pages = obj->phys_handle->dmah_map;
242 #else
243 	st = kmalloc(sizeof(*st), GFP_KERNEL);
244 	if (st == NULL)
245 		return -ENOMEM;
246 
247 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
248 		kfree(st);
249 		return -ENOMEM;
250 	}
251 
252 	sg = st->sgl;
253 	sg->offset = 0;
254 	sg->length = obj->base.size;
255 
256 	sg_dma_address(sg) = obj->phys_handle->busaddr;
257 	sg_dma_len(sg) = obj->base.size;
258 
259 	obj->pages = st;
260 #endif
261 	return 0;
262 }
263 
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
266 {
267 	int ret;
268 
269 	BUG_ON(obj->madv == __I915_MADV_PURGED);
270 
271 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
272 	if (ret) {
273 		/* In the event of a disaster, abandon all caches and
274 		 * hope for the best.
275 		 */
276 		WARN_ON(ret != -EIO);
277 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
278 	}
279 
280 	if (obj->madv == I915_MADV_DONTNEED)
281 		obj->dirty = 0;
282 
283 	if (obj->dirty) {
284 #ifndef __NetBSD__
285 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
286 #endif
287 		const char *vaddr = obj->phys_handle->vaddr;
288 		int i;
289 
290 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
291 			struct page *page;
292 			char *dst;
293 
294 #ifdef __NetBSD__
295 			struct pglist pages = TAILQ_HEAD_INITIALIZER(pages);
296 			/* XXX errno NetBSD->Linux */
297 			ret = -uvm_obj_wirepages(obj->base.filp,
298 			    i*PAGE_SIZE, (i + 1)*PAGE_SIZE, &pages);
299 			if (ret)
300 				continue;
301 			page = container_of(TAILQ_FIRST(&pages), struct page,
302 			    p_vmp);
303 #endif
304 
305 			dst = kmap_atomic(page);
306 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
307 			memcpy(dst, vaddr, PAGE_SIZE);
308 			kunmap_atomic(dst);
309 
310 			set_page_dirty(page);
311 #ifdef __NetBSD__
312 			/* XXX mark page accessed */
313 			uvm_obj_unwirepages(obj->base.filp, i*PAGE_SIZE,
314 			    (i+1)*PAGE_SIZE);
315 #else
316 			if (obj->madv == I915_MADV_WILLNEED)
317 				mark_page_accessed(page);
318 			page_cache_release(page);
319 #endif
320 			vaddr += PAGE_SIZE;
321 		}
322 		obj->dirty = 0;
323 	}
324 
325 #ifdef __NetBSD__
326 	obj->pages = NULL;
327 #else
328 	sg_free_table(obj->pages);
329 	kfree(obj->pages);
330 #endif
331 }
332 
333 static void
334 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
335 {
336 	drm_pci_free(obj->base.dev, obj->phys_handle);
337 }
338 
339 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
340 	.get_pages = i915_gem_object_get_pages_phys,
341 	.put_pages = i915_gem_object_put_pages_phys,
342 	.release = i915_gem_object_release_phys,
343 };
344 
345 static int
346 drop_pages(struct drm_i915_gem_object *obj)
347 {
348 	struct i915_vma *vma, *next;
349 	int ret;
350 
351 	drm_gem_object_reference(&obj->base);
352 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
353 		if (i915_vma_unbind(vma))
354 			break;
355 
356 	ret = i915_gem_object_put_pages(obj);
357 	drm_gem_object_unreference(&obj->base);
358 
359 	return ret;
360 }
361 
362 int
363 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
364 			    int align)
365 {
366 	drm_dma_handle_t *phys;
367 	int ret;
368 
369 	if (obj->phys_handle) {
370 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
371 			return -EBUSY;
372 
373 		return 0;
374 	}
375 
376 	if (obj->madv != I915_MADV_WILLNEED)
377 		return -EFAULT;
378 
379 	if (obj->base.filp == NULL)
380 		return -EINVAL;
381 
382 	ret = drop_pages(obj);
383 	if (ret)
384 		return ret;
385 
386 	/* create a new object */
387 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
388 	if (!phys)
389 		return -ENOMEM;
390 
391 	obj->phys_handle = phys;
392 	obj->ops = &i915_gem_phys_ops;
393 
394 	return i915_gem_object_get_pages(obj);
395 }
396 
397 static int
398 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
399 		     struct drm_i915_gem_pwrite *args,
400 		     struct drm_file *file_priv)
401 {
402 	struct drm_device *dev = obj->base.dev;
403 	void *vaddr = obj->phys_handle->vaddr + args->offset;
404 	char __user *user_data = to_user_ptr(args->data_ptr);
405 	int ret = 0;
406 
407 	/* We manually control the domain here and pretend that it
408 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
409 	 */
410 	ret = i915_gem_object_wait_rendering(obj, false);
411 	if (ret)
412 		return ret;
413 
414 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
415 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
416 		unsigned long unwritten;
417 
418 		/* The physical object once assigned is fixed for the lifetime
419 		 * of the obj, so we can safely drop the lock and continue
420 		 * to access vaddr.
421 		 */
422 		mutex_unlock(&dev->struct_mutex);
423 		unwritten = copy_from_user(vaddr, user_data, args->size);
424 		mutex_lock(&dev->struct_mutex);
425 		if (unwritten) {
426 			ret = -EFAULT;
427 			goto out;
428 		}
429 	}
430 
431 	drm_clflush_virt_range(vaddr, args->size);
432 	i915_gem_chipset_flush(dev);
433 
434 out:
435 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
436 	return ret;
437 }
438 
439 void *i915_gem_object_alloc(struct drm_device *dev)
440 {
441 	struct drm_i915_private *dev_priv = dev->dev_private;
442 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
443 }
444 
445 void i915_gem_object_free(struct drm_i915_gem_object *obj)
446 {
447 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
448 	kmem_cache_free(dev_priv->objects, obj);
449 }
450 
451 static int
452 i915_gem_create(struct drm_file *file,
453 		struct drm_device *dev,
454 		uint64_t size,
455 		uint32_t *handle_p)
456 {
457 	struct drm_i915_gem_object *obj;
458 	int ret;
459 	u32 handle;
460 
461 	size = roundup(size, PAGE_SIZE);
462 	if (size == 0)
463 		return -EINVAL;
464 
465 	/* Allocate the new object */
466 	obj = i915_gem_alloc_object(dev, size);
467 	if (obj == NULL)
468 		return -ENOMEM;
469 
470 	ret = drm_gem_handle_create(file, &obj->base, &handle);
471 	/* drop reference from allocate - handle holds it now */
472 	drm_gem_object_unreference_unlocked(&obj->base);
473 	if (ret)
474 		return ret;
475 
476 	*handle_p = handle;
477 	return 0;
478 }
479 
480 int
481 i915_gem_dumb_create(struct drm_file *file,
482 		     struct drm_device *dev,
483 		     struct drm_mode_create_dumb *args)
484 {
485 	/* have to work out size/pitch and return them */
486 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
487 	args->size = args->pitch * args->height;
488 	return i915_gem_create(file, dev,
489 			       args->size, &args->handle);
490 }
491 
492 /**
493  * Creates a new mm object and returns a handle to it.
494  */
495 int
496 i915_gem_create_ioctl(struct drm_device *dev, void *data,
497 		      struct drm_file *file)
498 {
499 	struct drm_i915_gem_create *args = data;
500 
501 	return i915_gem_create(file, dev,
502 			       args->size, &args->handle);
503 }
504 
505 static inline int
506 __copy_to_user_swizzled(char __user *cpu_vaddr,
507 			const char *gpu_vaddr, int gpu_offset,
508 			int length)
509 {
510 	int ret, cpu_offset = 0;
511 
512 	while (length > 0) {
513 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
514 		int this_length = min(cacheline_end - gpu_offset, length);
515 		int swizzled_gpu_offset = gpu_offset ^ 64;
516 
517 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
518 				     gpu_vaddr + swizzled_gpu_offset,
519 				     this_length);
520 		if (ret)
521 			return ret + length;
522 
523 		cpu_offset += this_length;
524 		gpu_offset += this_length;
525 		length -= this_length;
526 	}
527 
528 	return 0;
529 }
530 
531 static inline int
532 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
533 			  const char __user *cpu_vaddr,
534 			  int length)
535 {
536 	int ret, cpu_offset = 0;
537 
538 	while (length > 0) {
539 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
540 		int this_length = min(cacheline_end - gpu_offset, length);
541 		int swizzled_gpu_offset = gpu_offset ^ 64;
542 
543 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
544 				       cpu_vaddr + cpu_offset,
545 				       this_length);
546 		if (ret)
547 			return ret + length;
548 
549 		cpu_offset += this_length;
550 		gpu_offset += this_length;
551 		length -= this_length;
552 	}
553 
554 	return 0;
555 }
556 
557 /*
558  * Pins the specified object's pages and synchronizes the object with
559  * GPU accesses. Sets needs_clflush to non-zero if the caller should
560  * flush the object from the CPU cache.
561  */
562 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
563 				    int *needs_clflush)
564 {
565 	int ret;
566 
567 	*needs_clflush = 0;
568 
569 	if (!obj->base.filp)
570 		return -EINVAL;
571 
572 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
573 		/* If we're not in the cpu read domain, set ourself into the gtt
574 		 * read domain and manually flush cachelines (if required). This
575 		 * optimizes for the case when the gpu will dirty the data
576 		 * anyway again before the next pread happens. */
577 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
578 							obj->cache_level);
579 		ret = i915_gem_object_wait_rendering(obj, true);
580 		if (ret)
581 			return ret;
582 	}
583 
584 	ret = i915_gem_object_get_pages(obj);
585 	if (ret)
586 		return ret;
587 
588 	i915_gem_object_pin_pages(obj);
589 
590 	return ret;
591 }
592 
593 /* Per-page copy function for the shmem pread fastpath.
594  * Flushes invalid cachelines before reading the target if
595  * needs_clflush is set. */
596 static int
597 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
598 		 char __user *user_data,
599 		 bool page_do_bit17_swizzling, bool needs_clflush)
600 {
601 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
602 	return -EFAULT;
603 #else
604 	char *vaddr;
605 	int ret;
606 
607 	if (unlikely(page_do_bit17_swizzling))
608 		return -EINVAL;
609 
610 	vaddr = kmap_atomic(page);
611 	if (needs_clflush)
612 		drm_clflush_virt_range(vaddr + shmem_page_offset,
613 				       page_length);
614 	ret = __copy_to_user_inatomic(user_data,
615 				      vaddr + shmem_page_offset,
616 				      page_length);
617 	kunmap_atomic(vaddr);
618 
619 	return ret ? -EFAULT : 0;
620 #endif
621 }
622 
623 static void
624 shmem_clflush_swizzled_range(char *addr, unsigned long length,
625 			     bool swizzled)
626 {
627 	if (unlikely(swizzled)) {
628 		unsigned long start = (unsigned long) addr;
629 		unsigned long end = (unsigned long) addr + length;
630 
631 		/* For swizzling simply ensure that we always flush both
632 		 * channels. Lame, but simple and it works. Swizzled
633 		 * pwrite/pread is far from a hotpath - current userspace
634 		 * doesn't use it at all. */
635 		start = round_down(start, 128);
636 		end = round_up(end, 128);
637 
638 		drm_clflush_virt_range((void *)start, end - start);
639 	} else {
640 		drm_clflush_virt_range(addr, length);
641 	}
642 
643 }
644 
645 /* Only difference to the fast-path function is that this can handle bit17
646  * and uses non-atomic copy and kmap functions. */
647 static int
648 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
649 		 char __user *user_data,
650 		 bool page_do_bit17_swizzling, bool needs_clflush)
651 {
652 	char *vaddr;
653 	int ret;
654 
655 	vaddr = kmap(page);
656 	if (needs_clflush)
657 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
658 					     page_length,
659 					     page_do_bit17_swizzling);
660 
661 	if (page_do_bit17_swizzling)
662 		ret = __copy_to_user_swizzled(user_data,
663 					      vaddr, shmem_page_offset,
664 					      page_length);
665 	else
666 		ret = __copy_to_user(user_data,
667 				     vaddr + shmem_page_offset,
668 				     page_length);
669 	kunmap(page);
670 
671 	return ret ? - EFAULT : 0;
672 }
673 
674 static int
675 i915_gem_shmem_pread(struct drm_device *dev,
676 		     struct drm_i915_gem_object *obj,
677 		     struct drm_i915_gem_pread *args,
678 		     struct drm_file *file)
679 {
680 	char __user *user_data;
681 	ssize_t remain;
682 	loff_t offset;
683 	int shmem_page_offset, page_length, ret = 0;
684 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
685 #ifndef __NetBSD__		/* XXX */
686 	int prefaulted = 0;
687 #endif
688 	int needs_clflush = 0;
689 #ifndef __NetBSD__
690 	struct sg_page_iter sg_iter;
691 #endif
692 
693 	user_data = to_user_ptr(args->data_ptr);
694 	remain = args->size;
695 
696 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
697 
698 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
699 	if (ret)
700 		return ret;
701 
702 	offset = args->offset;
703 
704 #ifdef __NetBSD__
705 	while (0 < remain)
706 #else
707 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
708 			 offset >> PAGE_SHIFT)
709 #endif
710 	{
711 #ifdef __NetBSD__
712 		struct page *const page = i915_gem_object_get_page(obj,
713 		    atop(offset));
714 #else
715 		struct page *page = sg_page_iter_page(&sg_iter);
716 
717 		if (remain <= 0)
718 			break;
719 #endif
720 
721 		/* Operation in this page
722 		 *
723 		 * shmem_page_offset = offset within page in shmem file
724 		 * page_length = bytes to copy for this page
725 		 */
726 		shmem_page_offset = offset_in_page(offset);
727 		page_length = remain;
728 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
729 			page_length = PAGE_SIZE - shmem_page_offset;
730 
731 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
732 			(page_to_phys(page) & (1 << 17)) != 0;
733 
734 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
735 				       user_data, page_do_bit17_swizzling,
736 				       needs_clflush);
737 		if (ret == 0)
738 			goto next_page;
739 
740 		mutex_unlock(&dev->struct_mutex);
741 #ifndef __NetBSD__
742 		if (likely(!i915.prefault_disable) && !prefaulted) {
743 			ret = fault_in_multipages_writeable(user_data, remain);
744 			/* Userspace is tricking us, but we've already clobbered
745 			 * its pages with the prefault and promised to write the
746 			 * data up to the first fault. Hence ignore any errors
747 			 * and just continue. */
748 			(void)ret;
749 			prefaulted = 1;
750 		}
751 #endif
752 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
753 				       user_data, page_do_bit17_swizzling,
754 				       needs_clflush);
755 
756 		mutex_lock(&dev->struct_mutex);
757 
758 		if (ret)
759 			goto out;
760 
761 next_page:
762 		remain -= page_length;
763 		user_data += page_length;
764 		offset += page_length;
765 	}
766 
767 out:
768 	i915_gem_object_unpin_pages(obj);
769 
770 	return ret;
771 }
772 
773 /**
774  * Reads data from the object referenced by handle.
775  *
776  * On error, the contents of *data are undefined.
777  */
778 int
779 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
780 		     struct drm_file *file)
781 {
782 	struct drm_i915_gem_pread *args = data;
783 	struct drm_gem_object *gobj;
784 	struct drm_i915_gem_object *obj;
785 	int ret = 0;
786 
787 	if (args->size == 0)
788 		return 0;
789 
790 	if (!access_ok(VERIFY_WRITE,
791 		       to_user_ptr(args->data_ptr),
792 		       args->size))
793 		return -EFAULT;
794 
795 	ret = i915_mutex_lock_interruptible(dev);
796 	if (ret)
797 		return ret;
798 
799 	gobj = drm_gem_object_lookup(dev, file, args->handle);
800 	if (gobj == NULL) {
801 		ret = -ENOENT;
802 		goto unlock;
803 	}
804 	obj = to_intel_bo(gobj);
805 
806 	/* Bounds check source.  */
807 	if (args->offset > obj->base.size ||
808 	    args->size > obj->base.size - args->offset) {
809 		ret = -EINVAL;
810 		goto out;
811 	}
812 
813 	/* prime objects have no backing filp to GEM pread/pwrite
814 	 * pages from.
815 	 */
816 	if (!obj->base.filp) {
817 		ret = -EINVAL;
818 		goto out;
819 	}
820 
821 	trace_i915_gem_object_pread(obj, args->offset, args->size);
822 
823 	ret = i915_gem_shmem_pread(dev, obj, args, file);
824 
825 out:
826 	drm_gem_object_unreference(&obj->base);
827 unlock:
828 	mutex_unlock(&dev->struct_mutex);
829 	return ret;
830 }
831 
832 /* This is the fast write path which cannot handle
833  * page faults in the source data
834  */
835 
836 static inline int
837 fast_user_write(struct io_mapping *mapping,
838 		loff_t page_base, int page_offset,
839 		char __user *user_data,
840 		int length)
841 {
842 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
843 	return -EFAULT;
844 #else
845 	void __iomem *vaddr_atomic;
846 	void *vaddr;
847 	unsigned long unwritten;
848 
849 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
850 	/* We can use the cpu mem copy function because this is X86. */
851 	vaddr = (void __force*)vaddr_atomic + page_offset;
852 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
853 						      user_data, length);
854 	io_mapping_unmap_atomic(vaddr_atomic);
855 	return unwritten;
856 #endif
857 }
858 
859 /**
860  * This is the fast pwrite path, where we copy the data directly from the
861  * user into the GTT, uncached.
862  */
863 static int
864 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
865 			 struct drm_i915_gem_object *obj,
866 			 struct drm_i915_gem_pwrite *args,
867 			 struct drm_file *file)
868 {
869 	struct drm_i915_private *dev_priv = dev->dev_private;
870 	ssize_t remain;
871 	loff_t offset, page_base;
872 	char __user *user_data;
873 	int page_offset, page_length, ret;
874 
875 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
876 	if (ret)
877 		goto out;
878 
879 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
880 	if (ret)
881 		goto out_unpin;
882 
883 	ret = i915_gem_object_put_fence(obj);
884 	if (ret)
885 		goto out_unpin;
886 
887 	user_data = to_user_ptr(args->data_ptr);
888 	remain = args->size;
889 
890 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
891 
892 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
893 
894 	while (remain > 0) {
895 		/* Operation in this page
896 		 *
897 		 * page_base = page offset within aperture
898 		 * page_offset = offset within page
899 		 * page_length = bytes to copy for this page
900 		 */
901 		page_base = offset & PAGE_MASK;
902 		page_offset = offset_in_page(offset);
903 		page_length = remain;
904 		if ((page_offset + remain) > PAGE_SIZE)
905 			page_length = PAGE_SIZE - page_offset;
906 
907 		/* If we get a fault while copying data, then (presumably) our
908 		 * source page isn't available.  Return the error and we'll
909 		 * retry in the slow path.
910 		 */
911 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
912 				    page_offset, user_data, page_length)) {
913 			ret = -EFAULT;
914 			goto out_flush;
915 		}
916 
917 		remain -= page_length;
918 		user_data += page_length;
919 		offset += page_length;
920 	}
921 
922 out_flush:
923 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
924 out_unpin:
925 	i915_gem_object_ggtt_unpin(obj);
926 out:
927 	return ret;
928 }
929 
930 /* Per-page copy function for the shmem pwrite fastpath.
931  * Flushes invalid cachelines before writing to the target if
932  * needs_clflush_before is set and flushes out any written cachelines after
933  * writing if needs_clflush is set. */
934 static int
935 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
936 		  char __user *user_data,
937 		  bool page_do_bit17_swizzling,
938 		  bool needs_clflush_before,
939 		  bool needs_clflush_after)
940 {
941 #ifdef __NetBSD__
942 	return -EFAULT;
943 #else
944 	char *vaddr;
945 	int ret;
946 
947 	if (unlikely(page_do_bit17_swizzling))
948 		return -EINVAL;
949 
950 	vaddr = kmap_atomic(page);
951 	if (needs_clflush_before)
952 		drm_clflush_virt_range(vaddr + shmem_page_offset,
953 				       page_length);
954 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
955 					user_data, page_length);
956 	if (needs_clflush_after)
957 		drm_clflush_virt_range(vaddr + shmem_page_offset,
958 				       page_length);
959 	kunmap_atomic(vaddr);
960 
961 	return ret ? -EFAULT : 0;
962 #endif
963 }
964 
965 /* Only difference to the fast-path function is that this can handle bit17
966  * and uses non-atomic copy and kmap functions. */
967 static int
968 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
969 		  char __user *user_data,
970 		  bool page_do_bit17_swizzling,
971 		  bool needs_clflush_before,
972 		  bool needs_clflush_after)
973 {
974 	char *vaddr;
975 	int ret;
976 
977 	vaddr = kmap(page);
978 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
979 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
980 					     page_length,
981 					     page_do_bit17_swizzling);
982 	if (page_do_bit17_swizzling)
983 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
984 						user_data,
985 						page_length);
986 	else
987 		ret = __copy_from_user(vaddr + shmem_page_offset,
988 				       user_data,
989 				       page_length);
990 	if (needs_clflush_after)
991 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
992 					     page_length,
993 					     page_do_bit17_swizzling);
994 	kunmap(page);
995 
996 	return ret ? -EFAULT : 0;
997 }
998 
999 static int
1000 i915_gem_shmem_pwrite(struct drm_device *dev,
1001 		      struct drm_i915_gem_object *obj,
1002 		      struct drm_i915_gem_pwrite *args,
1003 		      struct drm_file *file)
1004 {
1005 	ssize_t remain;
1006 	loff_t offset;
1007 	char __user *user_data;
1008 	int shmem_page_offset, page_length, ret = 0;
1009 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1010 	int hit_slowpath = 0;
1011 	int needs_clflush_after = 0;
1012 	int needs_clflush_before = 0;
1013 #ifndef __NetBSD__
1014 	struct sg_page_iter sg_iter;
1015 	int flush_mask = boot_cpu_data.x86_clflush_size - 1;
1016 #else
1017 	int flush_mask = cpu_info_primary.ci_cflush_lsize - 1;
1018 #endif
1019 
1020 	user_data = to_user_ptr(args->data_ptr);
1021 	remain = args->size;
1022 
1023 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1024 
1025 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1026 		/* If we're not in the cpu write domain, set ourself into the gtt
1027 		 * write domain and manually flush cachelines (if required). This
1028 		 * optimizes for the case when the gpu will use the data
1029 		 * right away and we therefore have to clflush anyway. */
1030 		needs_clflush_after = cpu_write_needs_clflush(obj);
1031 		ret = i915_gem_object_wait_rendering(obj, false);
1032 		if (ret)
1033 			return ret;
1034 	}
1035 	/* Same trick applies to invalidate partially written cachelines read
1036 	 * before writing. */
1037 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1038 		needs_clflush_before =
1039 			!cpu_cache_is_coherent(dev, obj->cache_level);
1040 
1041 	ret = i915_gem_object_get_pages(obj);
1042 	if (ret)
1043 		return ret;
1044 
1045 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1046 
1047 	i915_gem_object_pin_pages(obj);
1048 
1049 	offset = args->offset;
1050 	obj->dirty = 1;
1051 
1052 #ifdef __NetBSD__
1053 	while (0 < remain)
1054 #else
1055 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1056 			 offset >> PAGE_SHIFT)
1057 #endif
1058 	{
1059 #ifdef __NetBSD__
1060 		struct page *const page = i915_gem_object_get_page(obj,
1061 		    atop(offset));
1062 #else
1063 		struct page *page = sg_page_iter_page(&sg_iter);
1064 
1065 		if (remain <= 0)
1066 			break;
1067 #endif
1068 
1069 		/* Operation in this page
1070 		 *
1071 		 * shmem_page_offset = offset within page in shmem file
1072 		 * page_length = bytes to copy for this page
1073 		 */
1074 		shmem_page_offset = offset_in_page(offset);
1075 
1076 		page_length = remain;
1077 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
1078 			page_length = PAGE_SIZE - shmem_page_offset;
1079 
1080 		/* If we don't overwrite a cacheline completely we need to be
1081 		 * careful to have up-to-date data by first clflushing. Don't
1082 		 * overcomplicate things and flush the entire patch. */
1083 		const int partial_cacheline_write = needs_clflush_before &&
1084 			((shmem_page_offset | page_length) & flush_mask);
1085 
1086 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1087 			(page_to_phys(page) & (1 << 17)) != 0;
1088 
1089 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1090 					user_data, page_do_bit17_swizzling,
1091 					partial_cacheline_write,
1092 					needs_clflush_after);
1093 		if (ret == 0)
1094 			goto next_page;
1095 
1096 		hit_slowpath = 1;
1097 		mutex_unlock(&dev->struct_mutex);
1098 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1099 					user_data, page_do_bit17_swizzling,
1100 					partial_cacheline_write,
1101 					needs_clflush_after);
1102 
1103 		mutex_lock(&dev->struct_mutex);
1104 
1105 		if (ret)
1106 			goto out;
1107 
1108 next_page:
1109 		remain -= page_length;
1110 		user_data += page_length;
1111 		offset += page_length;
1112 	}
1113 
1114 out:
1115 	i915_gem_object_unpin_pages(obj);
1116 
1117 	if (hit_slowpath) {
1118 		/*
1119 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1120 		 * cachelines in-line while writing and the object moved
1121 		 * out of the cpu write domain while we've dropped the lock.
1122 		 */
1123 		if (!needs_clflush_after &&
1124 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1125 			if (i915_gem_clflush_object(obj, obj->pin_display))
1126 				needs_clflush_after = true;
1127 		}
1128 	}
1129 
1130 	if (needs_clflush_after)
1131 		i915_gem_chipset_flush(dev);
1132 	else
1133 		obj->cache_dirty = true;
1134 
1135 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1136 	return ret;
1137 }
1138 
1139 /**
1140  * Writes data to the object referenced by handle.
1141  *
1142  * On error, the contents of the buffer that were to be modified are undefined.
1143  */
1144 int
1145 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1146 		      struct drm_file *file)
1147 {
1148 	struct drm_i915_private *dev_priv = dev->dev_private;
1149 	struct drm_i915_gem_pwrite *args = data;
1150 	struct drm_gem_object *gobj;
1151 	struct drm_i915_gem_object *obj;
1152 	int ret;
1153 
1154 	if (args->size == 0)
1155 		return 0;
1156 
1157 	if (!access_ok(VERIFY_READ,
1158 		       to_user_ptr(args->data_ptr),
1159 		       args->size))
1160 		return -EFAULT;
1161 
1162 #ifndef __NetBSD__		/* XXX prefault */
1163 	if (likely(!i915.prefault_disable)) {
1164 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1165 						   args->size);
1166 		if (ret)
1167 			return -EFAULT;
1168 	}
1169 #endif
1170 
1171 	intel_runtime_pm_get(dev_priv);
1172 
1173 	ret = i915_mutex_lock_interruptible(dev);
1174 	if (ret)
1175 		goto put_rpm;
1176 
1177 	gobj = drm_gem_object_lookup(dev, file, args->handle);
1178 	if (gobj == NULL) {
1179 		ret = -ENOENT;
1180 		goto unlock;
1181 	}
1182 	obj = to_intel_bo(gobj);
1183 
1184 	/* Bounds check destination. */
1185 	if (args->offset > obj->base.size ||
1186 	    args->size > obj->base.size - args->offset) {
1187 		ret = -EINVAL;
1188 		goto out;
1189 	}
1190 
1191 	/* prime objects have no backing filp to GEM pread/pwrite
1192 	 * pages from.
1193 	 */
1194 	if (!obj->base.filp) {
1195 		ret = -EINVAL;
1196 		goto out;
1197 	}
1198 
1199 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1200 
1201 	ret = -EFAULT;
1202 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1203 	 * it would end up going through the fenced access, and we'll get
1204 	 * different detiling behavior between reading and writing.
1205 	 * pread/pwrite currently are reading and writing from the CPU
1206 	 * perspective, requiring manual detiling by the client.
1207 	 */
1208 	if (obj->tiling_mode == I915_TILING_NONE &&
1209 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1210 	    cpu_write_needs_clflush(obj)) {
1211 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1212 		/* Note that the gtt paths might fail with non-page-backed user
1213 		 * pointers (e.g. gtt mappings when moving data between
1214 		 * textures). Fallback to the shmem path in that case. */
1215 	}
1216 
1217 	if (ret == -EFAULT || ret == -ENOSPC) {
1218 		if (obj->phys_handle)
1219 			ret = i915_gem_phys_pwrite(obj, args, file);
1220 		else
1221 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1222 	}
1223 
1224 out:
1225 	drm_gem_object_unreference(&obj->base);
1226 unlock:
1227 	mutex_unlock(&dev->struct_mutex);
1228 put_rpm:
1229 	intel_runtime_pm_put(dev_priv);
1230 
1231 	return ret;
1232 }
1233 
1234 int
1235 i915_gem_check_wedge(struct i915_gpu_error *error,
1236 		     bool interruptible)
1237 {
1238 	if (i915_reset_in_progress(error)) {
1239 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1240 		 * -EIO unconditionally for these. */
1241 		if (!interruptible)
1242 			return -EIO;
1243 
1244 		/* Recovery complete, but the reset failed ... */
1245 		if (i915_terminally_wedged(error))
1246 			return -EIO;
1247 
1248 		/*
1249 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1250 		 * to work properly to reinit the hw state while the gpu is
1251 		 * still marked as reset-in-progress. Handle this with a flag.
1252 		 */
1253 		if (!error->reload_in_reset)
1254 			return -EAGAIN;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 #ifndef __NetBSD__
1261 static void fake_irq(unsigned long data)
1262 {
1263 	wake_up_process((struct task_struct *)data);
1264 }
1265 #endif
1266 
1267 static bool missed_irq(struct drm_i915_private *dev_priv,
1268 		       struct intel_engine_cs *ring)
1269 {
1270 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1271 }
1272 
1273 #ifndef __NetBSD__
1274 static unsigned long local_clock_us(unsigned *cpu)
1275 {
1276 	unsigned long t;
1277 
1278 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1279 	 * The result and subsequent calculations are also defined in the same
1280 	 * approximate microseconds units. The principal source of timing
1281 	 * error here is from the simple truncation.
1282 	 *
1283 	 * Note that local_clock() is only defined wrt to the current CPU;
1284 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1285 	 * blocking preemption for the entire busywait, we can detect the CPU
1286 	 * switch and use that as indicator of system load and a reason to
1287 	 * stop busywaiting, see busywait_stop().
1288 	 */
1289 	*cpu = get_cpu();
1290 	t = local_clock() >> 10;
1291 	put_cpu();
1292 
1293 	return t;
1294 }
1295 
1296 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1297 {
1298 	unsigned this_cpu;
1299 
1300 	if (time_after(local_clock_us(&this_cpu), timeout))
1301 		return true;
1302 
1303 	return this_cpu != cpu;
1304 }
1305 #endif
1306 
1307 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1308 {
1309 #ifndef __NetBSD__
1310 	unsigned long timeout;
1311 	unsigned cpu;
1312 #endif
1313 
1314 	/* When waiting for high frequency requests, e.g. during synchronous
1315 	 * rendering split between the CPU and GPU, the finite amount of time
1316 	 * required to set up the irq and wait upon it limits the response
1317 	 * rate. By busywaiting on the request completion for a short while we
1318 	 * can service the high frequency waits as quick as possible. However,
1319 	 * if it is a slow request, we want to sleep as quickly as possible.
1320 	 * The tradeoff between waiting and sleeping is roughly the time it
1321 	 * takes to sleep on a request, on the order of a microsecond.
1322 	 */
1323 
1324 	if (req->ring->irq_refcount)
1325 		return -EBUSY;
1326 
1327 	/* Only spin if we know the GPU is processing this request */
1328 	if (!i915_gem_request_started(req, true))
1329 		return -EAGAIN;
1330 
1331 #ifndef __NetBSD__		/* XXX No local clock in usec.  */
1332 	timeout = local_clock_us(&cpu) + 5;
1333 	while (!need_resched()) {
1334 		if (i915_gem_request_completed(req, true))
1335 			return 0;
1336 
1337 		if (signal_pending_state(state, current))
1338 			break;
1339 
1340 		if (busywait_stop(timeout, cpu))
1341 			break;
1342 
1343 		cpu_relax_lowlatency();
1344 	}
1345 #endif
1346 
1347 	if (i915_gem_request_completed(req, false))
1348 		return 0;
1349 
1350 	return -EAGAIN;
1351 }
1352 
1353 /**
1354  * __i915_wait_request - wait until execution of request has finished
1355  * @req: duh!
1356  * @reset_counter: reset sequence associated with the given request
1357  * @interruptible: do an interruptible wait (normally yes)
1358  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1359  *
1360  * Note: It is of utmost importance that the passed in seqno and reset_counter
1361  * values have been read by the caller in an smp safe manner. Where read-side
1362  * locks are involved, it is sufficient to read the reset_counter before
1363  * unlocking the lock that protects the seqno. For lockless tricks, the
1364  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1365  * inserted.
1366  *
1367  * Returns 0 if the request was found within the alloted time. Else returns the
1368  * errno with remaining time filled in timeout argument.
1369  */
1370 int __i915_wait_request(struct drm_i915_gem_request *req,
1371 			unsigned reset_counter,
1372 			bool interruptible,
1373 			s64 *timeout,
1374 			struct intel_rps_client *rps)
1375 {
1376 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1377 	struct drm_device *dev = ring->dev;
1378 	struct drm_i915_private *dev_priv = dev->dev_private;
1379 	const bool irq_test_in_progress =
1380 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1381 #ifdef __NetBSD__
1382 	int state = 0;
1383 	bool wedged;
1384 #else
1385 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1386 	DEFINE_WAIT(wait);
1387 	unsigned long timeout_expire;
1388 #endif
1389 	s64 before, now;
1390 	int ret;
1391 
1392 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1393 
1394 	if (list_empty(&req->list))
1395 		return 0;
1396 
1397 	if (i915_gem_request_completed(req, true))
1398 		return 0;
1399 
1400 #ifndef __NetBSD__
1401 	timeout_expire = 0;
1402 	if (timeout) {
1403 		if (WARN_ON(*timeout < 0))
1404 			return -EINVAL;
1405 
1406 		if (*timeout == 0)
1407 			return -ETIME;
1408 
1409 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1410 	}
1411 #endif
1412 
1413 	if (INTEL_INFO(dev_priv)->gen >= 6)
1414 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1415 
1416 	/* Record current time in case interrupted by signal, or wedged */
1417 	trace_i915_gem_request_wait_begin(req);
1418 	before = ktime_get_raw_ns();
1419 
1420 	/* Optimistic spin for the next jiffie before touching IRQs */
1421 	ret = __i915_spin_request(req, state);
1422 	if (ret == 0)
1423 		goto out;
1424 
1425 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1426 		ret = -ENODEV;
1427 		goto out;
1428 	}
1429 
1430 #ifdef __NetBSD__
1431 #  define	EXIT_COND						      \
1432 	((wedged = (reset_counter !=					      \
1433 		atomic_read(&dev_priv->gpu_error.reset_counter))) ||	      \
1434 	    i915_gem_request_completed(req, false))
1435 	spin_lock(&dev_priv->irq_lock);
1436 	if (timeout) {
1437 		int ticks = missed_irq(dev_priv, ring) ? 1 :
1438 		    nsecs_to_jiffies_timeout(*timeout);
1439 		if (interruptible) {
1440 			DRM_SPIN_TIMED_WAIT_UNTIL(ret, &ring->irq_queue,
1441 			    &dev_priv->irq_lock, ticks, EXIT_COND);
1442 		} else {
1443 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1444 			    &dev_priv->irq_lock, ticks, EXIT_COND);
1445 		}
1446 		if (ret < 0)	/* Failure: return negative error as is.  */
1447 			;
1448 		else if (ret == 0) /* Timed out: return -ETIME.  */
1449 			ret = -ETIME;
1450 		else		/* Succeeded (ret > 0): return 0.  */
1451 			ret = 0;
1452 	} else {
1453 		if (interruptible) {
1454 			DRM_SPIN_WAIT_UNTIL(ret, &ring->irq_queue,
1455 			    &dev_priv->irq_lock, EXIT_COND);
1456 		} else {
1457 			DRM_SPIN_WAIT_NOINTR_UNTIL(ret, &ring->irq_queue,
1458 			    &dev_priv->irq_lock, EXIT_COND);
1459 		}
1460 		/* ret is negative on failure or zero on success.  */
1461 	}
1462 	spin_unlock(&dev_priv->irq_lock);
1463 	if (wedged) {
1464 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1465 		if (ret == 0)
1466 			ret = -EAGAIN;
1467 	}
1468 #else
1469 	for (;;) {
1470 		struct timer_list timer;
1471 
1472 		prepare_to_wait(&ring->irq_queue, &wait, state);
1473 
1474 		/* We need to check whether any gpu reset happened in between
1475 		 * the caller grabbing the seqno and now ... */
1476 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1477 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1478 			 * is truely gone. */
1479 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1480 			if (ret == 0)
1481 				ret = -EAGAIN;
1482 			break;
1483 		}
1484 
1485 		if (i915_gem_request_completed(req, false)) {
1486 			ret = 0;
1487 			break;
1488 		}
1489 
1490 		if (signal_pending_state(state, current)) {
1491 			ret = -ERESTARTSYS;
1492 			break;
1493 		}
1494 
1495 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1496 			ret = -ETIME;
1497 			break;
1498 		}
1499 
1500 		timer.function = NULL;
1501 		if (timeout || missed_irq(dev_priv, ring)) {
1502 			unsigned long expire;
1503 
1504 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1505 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1506 			mod_timer(&timer, expire);
1507 		}
1508 
1509 		io_schedule();
1510 
1511 		if (timer.function) {
1512 			del_singleshot_timer_sync(&timer);
1513 			destroy_timer_on_stack(&timer);
1514 		}
1515 	}
1516 #endif
1517 	if (!irq_test_in_progress)
1518 		ring->irq_put(ring);
1519 
1520 #ifndef __NetBSD__
1521 	finish_wait(&ring->irq_queue, &wait);
1522 #endif
1523 
1524 out:
1525 	now = ktime_get_raw_ns();
1526 	trace_i915_gem_request_wait_end(req);
1527 
1528 	if (timeout) {
1529 		s64 tres = *timeout - (now - before);
1530 
1531 		*timeout = tres < 0 ? 0 : tres;
1532 
1533 		/*
1534 		 * Apparently ktime isn't accurate enough and occasionally has a
1535 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1536 		 * things up to make the test happy. We allow up to 1 jiffy.
1537 		 *
1538 		 * This is a regrssion from the timespec->ktime conversion.
1539 		 */
1540 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1541 			*timeout = 0;
1542 	}
1543 
1544 	return ret;
1545 }
1546 
1547 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1548 				   struct drm_file *file)
1549 {
1550 	struct drm_i915_private *dev_private __unused;
1551 	struct drm_i915_file_private *file_priv;
1552 
1553 	WARN_ON(!req || !file || req->file_priv);
1554 
1555 	if (!req || !file)
1556 		return -EINVAL;
1557 
1558 	if (req->file_priv)
1559 		return -EINVAL;
1560 
1561 	dev_private = req->ring->dev->dev_private;
1562 	file_priv = file->driver_priv;
1563 
1564 	spin_lock(&file_priv->mm.lock);
1565 	req->file_priv = file_priv;
1566 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1567 	spin_unlock(&file_priv->mm.lock);
1568 
1569 #ifndef __NetBSD__
1570 	req->pid = get_pid(task_pid(current));
1571 #endif
1572 
1573 	return 0;
1574 }
1575 
1576 static inline void
1577 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1578 {
1579 	struct drm_i915_file_private *file_priv = request->file_priv;
1580 
1581 	if (!file_priv)
1582 		return;
1583 
1584 	spin_lock(&file_priv->mm.lock);
1585 	list_del(&request->client_list);
1586 	request->file_priv = NULL;
1587 	spin_unlock(&file_priv->mm.lock);
1588 
1589 #ifndef __NetBSD__
1590 	put_pid(request->pid);
1591 	request->pid = NULL;
1592 #endif
1593 }
1594 
1595 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1596 {
1597 	trace_i915_gem_request_retire(request);
1598 
1599 	/* We know the GPU must have read the request to have
1600 	 * sent us the seqno + interrupt, so use the position
1601 	 * of tail of the request to update the last known position
1602 	 * of the GPU head.
1603 	 *
1604 	 * Note this requires that we are always called in request
1605 	 * completion order.
1606 	 */
1607 	request->ringbuf->last_retired_head = request->postfix;
1608 
1609 	list_del_init(&request->list);
1610 	i915_gem_request_remove_from_client(request);
1611 
1612 	i915_gem_request_unreference(request);
1613 }
1614 
1615 static void
1616 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1617 {
1618 	struct intel_engine_cs *engine = req->ring;
1619 	struct drm_i915_gem_request *tmp;
1620 
1621 	lockdep_assert_held(&engine->dev->struct_mutex);
1622 
1623 	if (list_empty(&req->list))
1624 		return;
1625 
1626 	do {
1627 		tmp = list_first_entry(&engine->request_list,
1628 				       typeof(*tmp), list);
1629 
1630 		i915_gem_request_retire(tmp);
1631 	} while (tmp != req);
1632 
1633 	WARN_ON(i915_verify_lists(engine->dev));
1634 }
1635 
1636 /**
1637  * Waits for a request to be signaled, and cleans up the
1638  * request and object lists appropriately for that event.
1639  */
1640 int
1641 i915_wait_request(struct drm_i915_gem_request *req)
1642 {
1643 	struct drm_device *dev;
1644 	struct drm_i915_private *dev_priv;
1645 	bool interruptible;
1646 	int ret;
1647 
1648 	BUG_ON(req == NULL);
1649 
1650 	dev = req->ring->dev;
1651 	dev_priv = dev->dev_private;
1652 	interruptible = dev_priv->mm.interruptible;
1653 
1654 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1655 
1656 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1657 	if (ret)
1658 		return ret;
1659 
1660 	ret = __i915_wait_request(req,
1661 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1662 				  interruptible, NULL, NULL);
1663 	if (ret)
1664 		return ret;
1665 
1666 	__i915_gem_request_retire__upto(req);
1667 	return 0;
1668 }
1669 
1670 /**
1671  * Ensures that all rendering to the object has completed and the object is
1672  * safe to unbind from the GTT or access from the CPU.
1673  */
1674 int
1675 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1676 			       bool readonly)
1677 {
1678 	int ret, i;
1679 
1680 	if (!obj->active)
1681 		return 0;
1682 
1683 	if (readonly) {
1684 		if (obj->last_write_req != NULL) {
1685 			ret = i915_wait_request(obj->last_write_req);
1686 			if (ret)
1687 				return ret;
1688 
1689 			i = obj->last_write_req->ring->id;
1690 			if (obj->last_read_req[i] == obj->last_write_req)
1691 				i915_gem_object_retire__read(obj, i);
1692 			else
1693 				i915_gem_object_retire__write(obj);
1694 		}
1695 	} else {
1696 		for (i = 0; i < I915_NUM_RINGS; i++) {
1697 			if (obj->last_read_req[i] == NULL)
1698 				continue;
1699 
1700 			ret = i915_wait_request(obj->last_read_req[i]);
1701 			if (ret)
1702 				return ret;
1703 
1704 			i915_gem_object_retire__read(obj, i);
1705 		}
1706 		RQ_BUG_ON(obj->active);
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 static void
1713 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1714 			       struct drm_i915_gem_request *req)
1715 {
1716 	int ring = req->ring->id;
1717 
1718 	if (obj->last_read_req[ring] == req)
1719 		i915_gem_object_retire__read(obj, ring);
1720 	else if (obj->last_write_req == req)
1721 		i915_gem_object_retire__write(obj);
1722 
1723 	__i915_gem_request_retire__upto(req);
1724 }
1725 
1726 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1727  * as the object state may change during this call.
1728  */
1729 static __must_check int
1730 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1731 					    struct intel_rps_client *rps,
1732 					    bool readonly)
1733 {
1734 	struct drm_device *dev = obj->base.dev;
1735 	struct drm_i915_private *dev_priv = dev->dev_private;
1736 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1737 	unsigned reset_counter;
1738 	int ret, i, n = 0;
1739 
1740 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1741 	BUG_ON(!dev_priv->mm.interruptible);
1742 
1743 	if (!obj->active)
1744 		return 0;
1745 
1746 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1747 	if (ret)
1748 		return ret;
1749 
1750 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1751 
1752 	if (readonly) {
1753 		struct drm_i915_gem_request *req;
1754 
1755 		req = obj->last_write_req;
1756 		if (req == NULL)
1757 			return 0;
1758 
1759 		requests[n++] = i915_gem_request_reference(req);
1760 	} else {
1761 		for (i = 0; i < I915_NUM_RINGS; i++) {
1762 			struct drm_i915_gem_request *req;
1763 
1764 			req = obj->last_read_req[i];
1765 			if (req == NULL)
1766 				continue;
1767 
1768 			requests[n++] = i915_gem_request_reference(req);
1769 		}
1770 	}
1771 
1772 	mutex_unlock(&dev->struct_mutex);
1773 	for (i = 0; ret == 0 && i < n; i++)
1774 		ret = __i915_wait_request(requests[i], reset_counter, true,
1775 					  NULL, rps);
1776 	mutex_lock(&dev->struct_mutex);
1777 
1778 	for (i = 0; i < n; i++) {
1779 		if (ret == 0)
1780 			i915_gem_object_retire_request(obj, requests[i]);
1781 		i915_gem_request_unreference(requests[i]);
1782 	}
1783 
1784 	return ret;
1785 }
1786 
1787 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1788 {
1789 	struct drm_i915_file_private *fpriv = file->driver_priv;
1790 	return &fpriv->rps;
1791 }
1792 
1793 /**
1794  * Called when user space prepares to use an object with the CPU, either
1795  * through the mmap ioctl's mapping or a GTT mapping.
1796  */
1797 int
1798 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1799 			  struct drm_file *file)
1800 {
1801 	struct drm_i915_gem_set_domain *args = data;
1802 	struct drm_gem_object *gobj;
1803 	struct drm_i915_gem_object *obj;
1804 	uint32_t read_domains = args->read_domains;
1805 	uint32_t write_domain = args->write_domain;
1806 	int ret;
1807 
1808 	/* Only handle setting domains to types used by the CPU. */
1809 	if (write_domain & I915_GEM_GPU_DOMAINS)
1810 		return -EINVAL;
1811 
1812 	if (read_domains & I915_GEM_GPU_DOMAINS)
1813 		return -EINVAL;
1814 
1815 	/* Having something in the write domain implies it's in the read
1816 	 * domain, and only that read domain.  Enforce that in the request.
1817 	 */
1818 	if (write_domain != 0 && read_domains != write_domain)
1819 		return -EINVAL;
1820 
1821 	ret = i915_mutex_lock_interruptible(dev);
1822 	if (ret)
1823 		return ret;
1824 
1825 	gobj = drm_gem_object_lookup(dev, file, args->handle);
1826 	if (gobj == NULL) {
1827 		ret = -ENOENT;
1828 		goto unlock;
1829 	}
1830 	obj = to_intel_bo(gobj);
1831 
1832 	/* Try to flush the object off the GPU without holding the lock.
1833 	 * We will repeat the flush holding the lock in the normal manner
1834 	 * to catch cases where we are gazumped.
1835 	 */
1836 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1837 							  to_rps_client(file),
1838 							  !write_domain);
1839 	if (ret)
1840 		goto unref;
1841 
1842 	if (read_domains & I915_GEM_DOMAIN_GTT)
1843 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1844 	else
1845 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1846 
1847 	if (write_domain != 0)
1848 		intel_fb_obj_invalidate(obj,
1849 					write_domain == I915_GEM_DOMAIN_GTT ?
1850 					ORIGIN_GTT : ORIGIN_CPU);
1851 
1852 unref:
1853 	drm_gem_object_unreference(&obj->base);
1854 unlock:
1855 	mutex_unlock(&dev->struct_mutex);
1856 	return ret;
1857 }
1858 
1859 /**
1860  * Called when user space has done writes to this buffer
1861  */
1862 int
1863 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1864 			 struct drm_file *file)
1865 {
1866 	struct drm_i915_gem_sw_finish *args = data;
1867 	struct drm_gem_object *gobj;
1868 	struct drm_i915_gem_object *obj;
1869 	int ret = 0;
1870 
1871 	ret = i915_mutex_lock_interruptible(dev);
1872 	if (ret)
1873 		return ret;
1874 
1875 	gobj = drm_gem_object_lookup(dev, file, args->handle);
1876 	if (gobj == NULL) {
1877 		ret = -ENOENT;
1878 		goto unlock;
1879 	}
1880 	obj = to_intel_bo(gobj);
1881 
1882 	/* Pinned buffers may be scanout, so flush the cache */
1883 	if (obj->pin_display)
1884 		i915_gem_object_flush_cpu_write_domain(obj);
1885 
1886 	drm_gem_object_unreference(&obj->base);
1887 unlock:
1888 	mutex_unlock(&dev->struct_mutex);
1889 	return ret;
1890 }
1891 
1892 /**
1893  * Maps the contents of an object, returning the address it is mapped
1894  * into.
1895  *
1896  * While the mapping holds a reference on the contents of the object, it doesn't
1897  * imply a ref on the object itself.
1898  *
1899  * IMPORTANT:
1900  *
1901  * DRM driver writers who look a this function as an example for how to do GEM
1902  * mmap support, please don't implement mmap support like here. The modern way
1903  * to implement DRM mmap support is with an mmap offset ioctl (like
1904  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1905  * That way debug tooling like valgrind will understand what's going on, hiding
1906  * the mmap call in a driver private ioctl will break that. The i915 driver only
1907  * does cpu mmaps this way because we didn't know better.
1908  */
1909 int
1910 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1911 		    struct drm_file *file)
1912 {
1913 	struct drm_i915_gem_mmap *args = data;
1914 	struct drm_gem_object *obj;
1915 	unsigned long addr;
1916 #ifdef __NetBSD__
1917 	struct drm_i915_private *dev_priv = dev->dev_private;
1918 	int ret;
1919 
1920 	if ((dev_priv->quirks & QUIRK_NETBSD_VERSION_CALLED) == 0)
1921 		args->flags = 0;
1922 #endif
1923 
1924 	if (args->flags & ~(I915_MMAP_WC))
1925 		return -EINVAL;
1926 
1927 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1928 		return -ENODEV;
1929 
1930 	obj = drm_gem_object_lookup(dev, file, args->handle);
1931 	if (obj == NULL)
1932 		return -ENOENT;
1933 
1934 	/* prime objects have no backing filp to GEM mmap
1935 	 * pages from.
1936 	 */
1937 	if (!obj->filp) {
1938 		drm_gem_object_unreference_unlocked(obj);
1939 		return -EINVAL;
1940 	}
1941 
1942 #ifdef __NetBSD__
1943 	/* Acquire a reference for uvm_map to consume.  */
1944 	uao_reference(obj->filp);
1945 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1946 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size,
1947 	    curproc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1948 	/* XXX errno NetBSD->Linux */
1949 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1950 	    obj->filp, args->offset, 0,
1951 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1952 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1953 		0));
1954 	if (ret) {
1955 		uao_detach(obj->filp);
1956 		drm_gem_object_unreference_unlocked(obj);
1957 		return ret;
1958 	}
1959 	drm_gem_object_unreference_unlocked(obj);
1960 #else
1961 	addr = vm_mmap(obj->filp, 0, args->size,
1962 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1963 		       args->offset);
1964 	if (args->flags & I915_MMAP_WC) {
1965 		struct mm_struct *mm = current->mm;
1966 		struct vm_area_struct *vma;
1967 
1968 		down_write(&mm->mmap_sem);
1969 		vma = find_vma(mm, addr);
1970 		if (vma)
1971 			vma->vm_page_prot =
1972 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1973 		else
1974 			addr = -ENOMEM;
1975 		up_write(&mm->mmap_sem);
1976 	}
1977 	drm_gem_object_unreference_unlocked(obj);
1978 	if (IS_ERR((void *)addr))
1979 		return addr;
1980 #endif
1981 
1982 	args->addr_ptr = (uint64_t) addr;
1983 
1984 	return 0;
1985 }
1986 
1987 #ifdef __NetBSD__		/* XXX gem gtt fault */
1988 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1989 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1990 
1991 int
1992 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1993     int npages, int centeridx, vm_prot_t access_type, int flags)
1994 {
1995 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1996 	struct drm_gem_object *gem_obj =
1997 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1998 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1999 	struct drm_device *dev = obj->base.dev;
2000 	struct drm_i915_private *dev_priv = dev->dev_private;
2001 	voff_t byte_offset;
2002 	pgoff_t page_offset;
2003 	int ret = 0;
2004 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
2005 
2006 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
2007 	KASSERT(byte_offset <= obj->base.size);
2008 	page_offset = (byte_offset >> PAGE_SHIFT);
2009 
2010 	intel_runtime_pm_get(dev_priv);
2011 
2012 	/* Thanks, uvm, but we don't need this lock.  */
2013 	rw_exit(uobj->vmobjlock);
2014 
2015 	ret = i915_mutex_lock_interruptible(dev);
2016 	if (ret)
2017 		goto out;
2018 
2019 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2020 
2021 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2022 	if (ret)
2023 		goto unlock;
2024 
2025 	if ((obj->cache_level != I915_CACHE_NONE) && !HAS_LLC(dev)) {
2026 		ret = -EINVAL;
2027 		goto unlock;
2028 	}
2029 
2030 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
2031 	if (ret)
2032 		goto unlock;
2033 
2034 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2035 	if (ret)
2036 		goto unpin;
2037 
2038 	ret = i915_gem_object_get_fence(obj);
2039 	if (ret)
2040 		goto unpin;
2041 
2042 	obj->fault_mappable = true;
2043 
2044 	/* XXX errno NetBSD->Linux */
2045 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
2046 	    flags,
2047 	    (dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj)));
2048 unpin:
2049 	i915_gem_object_ggtt_unpin(obj);
2050 unlock:
2051 	mutex_unlock(&dev->struct_mutex);
2052 out:
2053 	rw_enter(uobj->vmobjlock, RW_WRITER);
2054 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
2055 
2056 	/*
2057 	 * Remap EINTR to success, so that we return to userland.
2058 	 * On the way out, we'll deliver the signal, and if the signal
2059 	 * is not fatal then the user code which faulted will most likely
2060 	 * fault again, and we'll come back here for another try.
2061 	 */
2062 	if (ret == -EINTR)
2063 		ret = 0;
2064 	/* XXX Deal with GPU hangs here...  */
2065 	intel_runtime_pm_put(dev_priv);
2066 	/* XXX errno Linux->NetBSD */
2067 	return -ret;
2068 }
2069 
2070 /*
2071  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
2072  *
2073  * XXX pmap_enter_default instead of pmap_enter because of a problem
2074  * with using weak aliases in kernel modules or something.
2075  */
2076 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
2077 
2078 static int
2079 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
2080     int npages, int centeridx, vm_prot_t access_type, int flags,
2081     paddr_t gtt_paddr)
2082 {
2083 	struct vm_map_entry *entry = ufi->entry;
2084 	vaddr_t curr_va;
2085 	off_t curr_offset;
2086 	paddr_t paddr;
2087 	u_int mmapflags;
2088 	int lcv;
2089 	vm_prot_t mapprot;
2090 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
2091 	UVMHIST_LOG(maphist,"  flags=%jd", flags,0,0,0);
2092 
2093 	/*
2094 	 * we do not allow device mappings to be mapped copy-on-write
2095 	 * so we kill any attempt to do so here.
2096 	 */
2097 
2098 	if (UVM_ET_ISCOPYONWRITE(entry)) {
2099 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%jx)",
2100 		entry->etype, 0,0,0);
2101 		return(EIO);
2102 	}
2103 
2104 	/*
2105 	 * now we must determine the offset in udv to use and the VA to
2106 	 * use for pmap_enter.  note that we always use orig_map's pmap
2107 	 * for pmap_enter (even if we have a submap).   since virtual
2108 	 * addresses in a submap must match the main map, this is ok.
2109 	 */
2110 
2111 	/* udv offset = (offset from start of entry) + entry's offset */
2112 	curr_offset = entry->offset + (vaddr - entry->start);
2113 	/* pmap va = vaddr (virtual address of pps[0]) */
2114 	curr_va = vaddr;
2115 
2116 	/*
2117 	 * loop over the page range entering in as needed
2118 	 */
2119 
2120 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
2121 	    curr_va += PAGE_SIZE) {
2122 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
2123 			continue;
2124 
2125 		if (pps[lcv] == PGO_DONTCARE)
2126 			continue;
2127 
2128 		paddr = (gtt_paddr + curr_offset);
2129 		mmapflags = 0;
2130 		mapprot = ufi->entry->protection;
2131 		UVMHIST_LOG(maphist,
2132 		    "  MAPPING: device: pm=0x%#jx, va=0x%jx, pa=0x%jx, at=%jd",
2133 		    (uintptr_t)ufi->orig_map->pmap, curr_va, paddr, mapprot);
2134 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
2135 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
2136 			/*
2137 			 * pmap_enter() didn't have the resource to
2138 			 * enter this mapping.  Unlock everything,
2139 			 * wait for the pagedaemon to free up some
2140 			 * pages, and then tell uvm_fault() to start
2141 			 * the fault again.
2142 			 *
2143 			 * XXX Needs some rethinking for the PGO_ALLPAGES
2144 			 * XXX case.
2145 			 */
2146 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
2147 			return ENOMEM;
2148 		}
2149 	}
2150 
2151 	pmap_update(ufi->orig_map->pmap);
2152 	return 0;
2153 }
2154 #else
2155 /**
2156  * i915_gem_fault - fault a page into the GTT
2157  * @vma: VMA in question
2158  * @vmf: fault info
2159  *
2160  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2161  * from userspace.  The fault handler takes care of binding the object to
2162  * the GTT (if needed), allocating and programming a fence register (again,
2163  * only if needed based on whether the old reg is still valid or the object
2164  * is tiled) and inserting a new PTE into the faulting process.
2165  *
2166  * Note that the faulting process may involve evicting existing objects
2167  * from the GTT and/or fence registers to make room.  So performance may
2168  * suffer if the GTT working set is large or there are few fence registers
2169  * left.
2170  */
2171 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2172 {
2173 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2174 	struct drm_device *dev = obj->base.dev;
2175 	struct drm_i915_private *dev_priv = dev->dev_private;
2176 	struct i915_ggtt_view view = i915_ggtt_view_normal;
2177 	pgoff_t page_offset;
2178 	unsigned long pfn;
2179 	int ret = 0;
2180 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2181 
2182 	intel_runtime_pm_get(dev_priv);
2183 
2184 	/* We don't use vmf->pgoff since that has the fake offset */
2185 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2186 		PAGE_SHIFT;
2187 
2188 	ret = i915_mutex_lock_interruptible(dev);
2189 	if (ret)
2190 		goto out;
2191 
2192 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2193 
2194 	/* Try to flush the object off the GPU first without holding the lock.
2195 	 * Upon reacquiring the lock, we will perform our sanity checks and then
2196 	 * repeat the flush holding the lock in the normal manner to catch cases
2197 	 * where we are gazumped.
2198 	 */
2199 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2200 	if (ret)
2201 		goto unlock;
2202 
2203 	/* Access to snoopable pages through the GTT is incoherent. */
2204 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2205 		ret = -EFAULT;
2206 		goto unlock;
2207 	}
2208 
2209 	/* Use a partial view if the object is bigger than the aperture. */
2210 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
2211 	    obj->tiling_mode == I915_TILING_NONE) {
2212 		static const unsigned int chunk_size = 256; // 1 MiB
2213 
2214 		memset(&view, 0, sizeof(view));
2215 		view.type = I915_GGTT_VIEW_PARTIAL;
2216 		view.params.partial.offset = rounddown(page_offset, chunk_size);
2217 		view.params.partial.size =
2218 			min_t(unsigned int,
2219 			      chunk_size,
2220 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2221 			      view.params.partial.offset);
2222 	}
2223 
2224 	/* Now pin it into the GTT if needed */
2225 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2226 	if (ret)
2227 		goto unlock;
2228 
2229 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2230 	if (ret)
2231 		goto unpin;
2232 
2233 	ret = i915_gem_object_get_fence(obj);
2234 	if (ret)
2235 		goto unpin;
2236 
2237 	/* Finally, remap it using the new GTT offset */
2238 	pfn = dev_priv->gtt.mappable_base +
2239 		i915_gem_obj_ggtt_offset_view(obj, &view);
2240 	pfn >>= PAGE_SHIFT;
2241 
2242 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2243 		/* Overriding existing pages in partial view does not cause
2244 		 * us any trouble as TLBs are still valid because the fault
2245 		 * is due to userspace losing part of the mapping or never
2246 		 * having accessed it before (at this partials' range).
2247 		 */
2248 		unsigned long base = vma->vm_start +
2249 				     (view.params.partial.offset << PAGE_SHIFT);
2250 		unsigned int i;
2251 
2252 		for (i = 0; i < view.params.partial.size; i++) {
2253 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2254 			if (ret)
2255 				break;
2256 		}
2257 
2258 		obj->fault_mappable = true;
2259 	} else {
2260 		if (!obj->fault_mappable) {
2261 			unsigned long size = min_t(unsigned long,
2262 						   vma->vm_end - vma->vm_start,
2263 						   obj->base.size);
2264 			int i;
2265 
2266 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
2267 				ret = vm_insert_pfn(vma,
2268 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
2269 						    pfn + i);
2270 				if (ret)
2271 					break;
2272 			}
2273 
2274 			obj->fault_mappable = true;
2275 		} else
2276 			ret = vm_insert_pfn(vma,
2277 					    (unsigned long)vmf->virtual_address,
2278 					    pfn + page_offset);
2279 	}
2280 unpin:
2281 	i915_gem_object_ggtt_unpin_view(obj, &view);
2282 unlock:
2283 	mutex_unlock(&dev->struct_mutex);
2284 out:
2285 	switch (ret) {
2286 	case -EIO:
2287 		/*
2288 		 * We eat errors when the gpu is terminally wedged to avoid
2289 		 * userspace unduly crashing (gl has no provisions for mmaps to
2290 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2291 		 * and so needs to be reported.
2292 		 */
2293 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2294 			ret = VM_FAULT_SIGBUS;
2295 			break;
2296 		}
2297 	case -EAGAIN:
2298 		/*
2299 		 * EAGAIN means the gpu is hung and we'll wait for the error
2300 		 * handler to reset everything when re-faulting in
2301 		 * i915_mutex_lock_interruptible.
2302 		 */
2303 	case 0:
2304 	case -ERESTARTSYS:
2305 	case -EINTR:
2306 	case -EBUSY:
2307 		/*
2308 		 * EBUSY is ok: this just means that another thread
2309 		 * already did the job.
2310 		 */
2311 		ret = VM_FAULT_NOPAGE;
2312 		break;
2313 	case -ENOMEM:
2314 		ret = VM_FAULT_OOM;
2315 		break;
2316 	case -ENOSPC:
2317 	case -EFAULT:
2318 		ret = VM_FAULT_SIGBUS;
2319 		break;
2320 	default:
2321 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2322 		ret = VM_FAULT_SIGBUS;
2323 		break;
2324 	}
2325 
2326 	intel_runtime_pm_put(dev_priv);
2327 	return ret;
2328 }
2329 #endif
2330 
2331 /**
2332  * i915_gem_release_mmap - remove physical page mappings
2333  * @obj: obj in question
2334  *
2335  * Preserve the reservation of the mmapping with the DRM core code, but
2336  * relinquish ownership of the pages back to the system.
2337  *
2338  * It is vital that we remove the page mapping if we have mapped a tiled
2339  * object through the GTT and then lose the fence register due to
2340  * resource pressure. Similarly if the object has been moved out of the
2341  * aperture, than pages mapped into userspace must be revoked. Removing the
2342  * mapping will then trigger a page fault on the next user access, allowing
2343  * fixup by i915_gem_fault().
2344  */
2345 void
2346 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2347 {
2348 	if (!obj->fault_mappable)
2349 		return;
2350 
2351 #ifdef __NetBSD__		/* XXX gem gtt fault */
2352 	{
2353 		struct drm_device *const dev = obj->base.dev;
2354 		struct drm_i915_private *const dev_priv = dev->dev_private;
2355 		const paddr_t start = dev_priv->gtt.mappable_base +
2356 		    i915_gem_obj_ggtt_offset(obj);
2357 		const size_t size = obj->base.size;
2358 		const paddr_t end = start + size;
2359 		paddr_t pa;
2360 
2361 		KASSERT((start & (PAGE_SIZE - 1)) == 0);
2362 		KASSERT((size & (PAGE_SIZE - 1)) == 0);
2363 
2364 		for (pa = start; pa < end; pa += PAGE_SIZE)
2365 			pmap_pv_protect(pa, VM_PROT_NONE);
2366 	}
2367 #else
2368 	drm_vma_node_unmap(&obj->base.vma_node,
2369 			   obj->base.dev->anon_inode->i_mapping);
2370 #endif
2371 	obj->fault_mappable = false;
2372 }
2373 
2374 void
2375 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2376 {
2377 	struct drm_i915_gem_object *obj;
2378 
2379 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2380 		i915_gem_release_mmap(obj);
2381 }
2382 
2383 uint32_t
2384 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2385 {
2386 	uint32_t gtt_size;
2387 
2388 	if (INTEL_INFO(dev)->gen >= 4 ||
2389 	    tiling_mode == I915_TILING_NONE)
2390 		return size;
2391 
2392 	/* Previous chips need a power-of-two fence region when tiling */
2393 	if (INTEL_INFO(dev)->gen == 3)
2394 		gtt_size = 1024*1024;
2395 	else
2396 		gtt_size = 512*1024;
2397 
2398 	while (gtt_size < size)
2399 		gtt_size <<= 1;
2400 
2401 	return gtt_size;
2402 }
2403 
2404 /**
2405  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2406  * @obj: object to check
2407  *
2408  * Return the required GTT alignment for an object, taking into account
2409  * potential fence register mapping.
2410  */
2411 uint32_t
2412 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2413 			   int tiling_mode, bool fenced)
2414 {
2415 	/*
2416 	 * Minimum alignment is 4k (GTT page size), but might be greater
2417 	 * if a fence register is needed for the object.
2418 	 */
2419 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2420 	    tiling_mode == I915_TILING_NONE)
2421 		return 4096;
2422 
2423 	/*
2424 	 * Previous chips need to be aligned to the size of the smallest
2425 	 * fence register that can contain the object.
2426 	 */
2427 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2428 }
2429 
2430 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2431 {
2432 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2433 	int ret;
2434 
2435 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2436 		return 0;
2437 
2438 	dev_priv->mm.shrinker_no_lock_stealing = true;
2439 
2440 	ret = drm_gem_create_mmap_offset(&obj->base);
2441 	if (ret != -ENOSPC)
2442 		goto out;
2443 
2444 	/* Badly fragmented mmap space? The only way we can recover
2445 	 * space is by destroying unwanted objects. We can't randomly release
2446 	 * mmap_offsets as userspace expects them to be persistent for the
2447 	 * lifetime of the objects. The closest we can is to release the
2448 	 * offsets on purgeable objects by truncating it and marking it purged,
2449 	 * which prevents userspace from ever using that object again.
2450 	 */
2451 	i915_gem_shrink(dev_priv,
2452 			obj->base.size >> PAGE_SHIFT,
2453 			I915_SHRINK_BOUND |
2454 			I915_SHRINK_UNBOUND |
2455 			I915_SHRINK_PURGEABLE);
2456 	ret = drm_gem_create_mmap_offset(&obj->base);
2457 	if (ret != -ENOSPC)
2458 		goto out;
2459 
2460 	i915_gem_shrink_all(dev_priv);
2461 	ret = drm_gem_create_mmap_offset(&obj->base);
2462 out:
2463 	dev_priv->mm.shrinker_no_lock_stealing = false;
2464 
2465 	return ret;
2466 }
2467 
2468 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2469 {
2470 	drm_gem_free_mmap_offset(&obj->base);
2471 }
2472 
2473 int
2474 i915_gem_mmap_gtt(struct drm_file *file,
2475 		  struct drm_device *dev,
2476 		  uint32_t handle,
2477 		  uint64_t *offset)
2478 {
2479 	struct drm_gem_object *gobj;
2480 	struct drm_i915_gem_object *obj;
2481 	int ret;
2482 
2483 	ret = i915_mutex_lock_interruptible(dev);
2484 	if (ret)
2485 		return ret;
2486 
2487 	gobj = drm_gem_object_lookup(dev, file, handle);
2488 	if (gobj == NULL) {
2489 		ret = -ENOENT;
2490 		goto unlock;
2491 	}
2492 	obj = to_intel_bo(gobj);
2493 
2494 	if (obj->madv != I915_MADV_WILLNEED) {
2495 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2496 		ret = -EFAULT;
2497 		goto out;
2498 	}
2499 
2500 	ret = i915_gem_object_create_mmap_offset(obj);
2501 	if (ret)
2502 		goto out;
2503 
2504 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2505 
2506 out:
2507 	drm_gem_object_unreference(&obj->base);
2508 unlock:
2509 	mutex_unlock(&dev->struct_mutex);
2510 	return ret;
2511 }
2512 
2513 /**
2514  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2515  * @dev: DRM device
2516  * @data: GTT mapping ioctl data
2517  * @file: GEM object info
2518  *
2519  * Simply returns the fake offset to userspace so it can mmap it.
2520  * The mmap call will end up in drm_gem_mmap(), which will set things
2521  * up so we can get faults in the handler above.
2522  *
2523  * The fault handler will take care of binding the object into the GTT
2524  * (since it may have been evicted to make room for something), allocating
2525  * a fence register, and mapping the appropriate aperture address into
2526  * userspace.
2527  */
2528 int
2529 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2530 			struct drm_file *file)
2531 {
2532 	struct drm_i915_gem_mmap_gtt *args = data;
2533 
2534 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2535 }
2536 
2537 /* Immediately discard the backing storage */
2538 static void
2539 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2540 {
2541 	i915_gem_object_free_mmap_offset(obj);
2542 
2543 	if (obj->base.filp == NULL)
2544 		return;
2545 
2546 #ifdef __NetBSD__
2547 	{
2548 		struct uvm_object *const uobj = obj->base.filp;
2549 
2550 		if (uobj != NULL) {
2551 			/* XXX Calling pgo_put like this is bogus.  */
2552 			rw_enter(uobj->vmobjlock, RW_WRITER);
2553 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2554 			    (PGO_ALLPAGES | PGO_FREE));
2555 		}
2556 	}
2557 #else
2558 	/* Our goal here is to return as much of the memory as
2559 	 * is possible back to the system as we are called from OOM.
2560 	 * To do this we must instruct the shmfs to drop all of its
2561 	 * backing pages, *now*.
2562 	 */
2563 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2564 #endif
2565 	obj->madv = __I915_MADV_PURGED;
2566 }
2567 
2568 /* Try to discard unwanted pages */
2569 static void
2570 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2571 {
2572 #ifdef __NetBSD__
2573 	struct uvm_object *uobj;
2574 #else
2575 	struct address_space *mapping;
2576 #endif
2577 
2578 	switch (obj->madv) {
2579 	case I915_MADV_DONTNEED:
2580 		i915_gem_object_truncate(obj);
2581 	case __I915_MADV_PURGED:
2582 		return;
2583 	}
2584 
2585 	if (obj->base.filp == NULL)
2586 		return;
2587 
2588 #ifdef __NetBSD__
2589 	uobj = obj->base.filp;
2590 	rw_enter(uobj->vmobjlock, RW_WRITER);
2591 	(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2592 	    PGO_ALLPAGES|PGO_DEACTIVATE|PGO_CLEANIT);
2593 #else
2594 	mapping = file_inode(obj->base.filp)->i_mapping,
2595 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2596 #endif
2597 }
2598 
2599 static void
2600 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2601 {
2602 #ifdef __NetBSD__
2603 	struct drm_device *const dev = obj->base.dev;
2604 	struct vm_page *page;
2605 	int ret;
2606 
2607 	/* XXX Cargo-culted from the Linux code.  */
2608 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2609 
2610 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2611 	if (ret) {
2612 		WARN_ON(ret != -EIO);
2613 		i915_gem_clflush_object(obj, true);
2614 		obj->base.read_domains = obj->base.write_domain =
2615 		    I915_GEM_DOMAIN_CPU;
2616 	}
2617 
2618 	i915_gem_gtt_finish_object(obj);
2619 
2620 	if (i915_gem_object_needs_bit17_swizzle(obj))
2621 		i915_gem_object_save_bit_17_swizzle(obj);
2622 
2623 	if (obj->madv == I915_MADV_DONTNEED)
2624 		obj->dirty = 0;
2625 
2626 	if (obj->dirty) {
2627 		rw_enter(obj->base.filp->vmobjlock, RW_WRITER);
2628 		TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
2629 			uvm_pagemarkdirty(page, UVM_PAGE_STATUS_DIRTY);
2630 			/* XXX mark page accessed */
2631 		}
2632 		rw_exit(obj->base.filp->vmobjlock);
2633 	}
2634 	obj->dirty = 0;
2635 
2636 	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
2637 	bus_dmamap_destroy(dev->dmat, obj->pages);
2638 #else
2639 	struct sg_page_iter sg_iter;
2640 	int ret;
2641 
2642 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2643 
2644 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2645 	if (ret) {
2646 		/* In the event of a disaster, abandon all caches and
2647 		 * hope for the best.
2648 		 */
2649 		WARN_ON(ret != -EIO);
2650 		i915_gem_clflush_object(obj, true);
2651 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2652 	}
2653 
2654 	i915_gem_gtt_finish_object(obj);
2655 
2656 	if (i915_gem_object_needs_bit17_swizzle(obj))
2657 		i915_gem_object_save_bit_17_swizzle(obj);
2658 
2659 	if (obj->madv == I915_MADV_DONTNEED)
2660 		obj->dirty = 0;
2661 
2662 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2663 		struct page *page = sg_page_iter_page(&sg_iter);
2664 
2665 		if (obj->dirty)
2666 			set_page_dirty(page);
2667 
2668 		if (obj->madv == I915_MADV_WILLNEED)
2669 			mark_page_accessed(page);
2670 
2671 		page_cache_release(page);
2672 	}
2673 	obj->dirty = 0;
2674 
2675 	sg_free_table(obj->pages);
2676 	kfree(obj->pages);
2677 #endif
2678 }
2679 
2680 int
2681 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2682 {
2683 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2684 
2685 	if (obj->pages == NULL)
2686 		return 0;
2687 
2688 	if (obj->pages_pin_count)
2689 		return -EBUSY;
2690 
2691 	BUG_ON(i915_gem_obj_bound_any(obj));
2692 
2693 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2694 	 * array, hence protect them from being reaped by removing them from gtt
2695 	 * lists early. */
2696 	list_del(&obj->global_list);
2697 
2698 	ops->put_pages(obj);
2699 	obj->pages = NULL;
2700 
2701 	i915_gem_object_invalidate(obj);
2702 
2703 	return 0;
2704 }
2705 
2706 static int
2707 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2708 {
2709 #ifdef __NetBSD__
2710 	struct drm_device *const dev = obj->base.dev;
2711 	struct drm_i915_private *dev_priv = dev->dev_private;
2712 	struct vm_page *page;
2713 	int ret;
2714 
2715 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2716 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2717 
2718 	KASSERT(obj->pages == NULL);
2719 	TAILQ_INIT(&obj->pageq);
2720 
2721 	/* XXX errno NetBSD->Linux */
2722 	ret = -bus_dmamap_create(dev->dmat, obj->base.size,
2723 	    obj->base.size/PAGE_SIZE, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
2724 	    &obj->pages);
2725 	if (ret)
2726 		goto fail0;
2727 
2728 	/* XXX errno NetBSD->Linux */
2729 	ret = -uvm_obj_wirepages(obj->base.filp, 0, obj->base.size,
2730 	    &obj->pageq);
2731 	if (ret)		/* XXX Try purge, shrink.  */
2732 		goto fail1;
2733 
2734 	/*
2735 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2736 	 *
2737 	 * XXX This should be unnecessary: the uao should guarantee
2738 	 * this constraint after uao_set_pgfl.
2739 	 *
2740 	 * XXX This should also be expanded for newer devices.
2741 	 */
2742 	TAILQ_FOREACH(page, &obj->pageq, pageq.queue) {
2743 		const uint64_t mask =
2744 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2745 			0xffffffffULL : 0xffffffffffULL);
2746 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
2747 			DRM_ERROR("GEM physical address exceeds %u bits"
2748 			    ": %"PRIxMAX"\n",
2749 			    popcount64(mask),
2750 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
2751 			ret = -EIO;
2752 			goto fail2;
2753 		}
2754 	}
2755 
2756 	ret = i915_gem_gtt_prepare_object(obj);
2757 	if (ret)
2758 		goto fail2;
2759 
2760 	if (i915_gem_object_needs_bit17_swizzle(obj))
2761 		i915_gem_object_do_bit_17_swizzle(obj);
2762 
2763 	if (obj->tiling_mode != I915_TILING_NONE &&
2764 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2765 		i915_gem_object_pin_pages(obj);
2766 
2767 	/* Success!  */
2768 	return 0;
2769 
2770 fail3: __unused
2771 	i915_gem_gtt_finish_object(obj);
2772 fail2:	uvm_obj_unwirepages(obj->base.filp, 0, obj->base.size);
2773 fail1:	bus_dmamap_destroy(dev->dmat, obj->pages);
2774 	obj->pages = NULL;
2775 fail0:	KASSERT(ret);
2776 	return ret;
2777 #else
2778 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2779 	int page_count, i;
2780 	struct address_space *mapping;
2781 	struct sg_table *st;
2782 	struct scatterlist *sg;
2783 	struct sg_page_iter sg_iter;
2784 	struct page *page;
2785 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2786 	int ret;
2787 	gfp_t gfp;
2788 
2789 	/* Assert that the object is not currently in any GPU domain. As it
2790 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2791 	 * a GPU cache
2792 	 */
2793 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2794 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2795 
2796 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2797 	if (st == NULL)
2798 		return -ENOMEM;
2799 
2800 	page_count = obj->base.size / PAGE_SIZE;
2801 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2802 		kfree(st);
2803 		return -ENOMEM;
2804 	}
2805 
2806 	/* Get the list of pages out of our struct file.  They'll be pinned
2807 	 * at this point until we release them.
2808 	 *
2809 	 * Fail silently without starting the shrinker
2810 	 */
2811 	mapping = file_inode(obj->base.filp)->i_mapping;
2812 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2813 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2814 	sg = st->sgl;
2815 	st->nents = 0;
2816 	for (i = 0; i < page_count; i++) {
2817 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2818 		if (IS_ERR(page)) {
2819 			i915_gem_shrink(dev_priv,
2820 					page_count,
2821 					I915_SHRINK_BOUND |
2822 					I915_SHRINK_UNBOUND |
2823 					I915_SHRINK_PURGEABLE);
2824 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2825 		}
2826 		if (IS_ERR(page)) {
2827 			/* We've tried hard to allocate the memory by reaping
2828 			 * our own buffer, now let the real VM do its job and
2829 			 * go down in flames if truly OOM.
2830 			 */
2831 			i915_gem_shrink_all(dev_priv);
2832 			page = shmem_read_mapping_page(mapping, i);
2833 			if (IS_ERR(page)) {
2834 				ret = PTR_ERR(page);
2835 				goto err_pages;
2836 			}
2837 		}
2838 #ifdef CONFIG_SWIOTLB
2839 		if (swiotlb_nr_tbl()) {
2840 			st->nents++;
2841 			sg_set_page(sg, page, PAGE_SIZE, 0);
2842 			sg = sg_next(sg);
2843 			continue;
2844 		}
2845 #endif
2846 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2847 			if (i)
2848 				sg = sg_next(sg);
2849 			st->nents++;
2850 			sg_set_page(sg, page, PAGE_SIZE, 0);
2851 		} else {
2852 			sg->length += PAGE_SIZE;
2853 		}
2854 		last_pfn = page_to_pfn(page);
2855 
2856 		/* Check that the i965g/gm workaround works. */
2857 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2858 	}
2859 #ifdef CONFIG_SWIOTLB
2860 	if (!swiotlb_nr_tbl())
2861 #endif
2862 		sg_mark_end(sg);
2863 	obj->pages = st;
2864 
2865 	ret = i915_gem_gtt_prepare_object(obj);
2866 	if (ret)
2867 		goto err_pages;
2868 
2869 	if (i915_gem_object_needs_bit17_swizzle(obj))
2870 		i915_gem_object_do_bit_17_swizzle(obj);
2871 
2872 	if (obj->tiling_mode != I915_TILING_NONE &&
2873 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2874 		i915_gem_object_pin_pages(obj);
2875 
2876 	return 0;
2877 
2878 err_pages:
2879 	sg_mark_end(sg);
2880 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2881 		page_cache_release(sg_page_iter_page(&sg_iter));
2882 	sg_free_table(st);
2883 	kfree(st);
2884 
2885 	/* shmemfs first checks if there is enough memory to allocate the page
2886 	 * and reports ENOSPC should there be insufficient, along with the usual
2887 	 * ENOMEM for a genuine allocation failure.
2888 	 *
2889 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2890 	 * space and so want to translate the error from shmemfs back to our
2891 	 * usual understanding of ENOMEM.
2892 	 */
2893 	if (ret == -ENOSPC)
2894 		ret = -ENOMEM;
2895 
2896 	return ret;
2897 #endif
2898 }
2899 
2900 /* Ensure that the associated pages are gathered from the backing storage
2901  * and pinned into our object. i915_gem_object_get_pages() may be called
2902  * multiple times before they are released by a single call to
2903  * i915_gem_object_put_pages() - once the pages are no longer referenced
2904  * either as a result of memory pressure (reaping pages under the shrinker)
2905  * or as the object is itself released.
2906  */
2907 int
2908 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2909 {
2910 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2911 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2912 	int ret;
2913 
2914 	if (obj->pages)
2915 		return 0;
2916 
2917 	if (obj->madv != I915_MADV_WILLNEED) {
2918 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2919 		return -EFAULT;
2920 	}
2921 
2922 	BUG_ON(obj->pages_pin_count);
2923 
2924 	ret = ops->get_pages(obj);
2925 	if (ret)
2926 		return ret;
2927 
2928 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2929 
2930 #ifndef __NetBSD__
2931 	obj->get_page.sg = obj->pages->sgl;
2932 	obj->get_page.last = 0;
2933 #endif
2934 
2935 	return 0;
2936 }
2937 
2938 void i915_vma_move_to_active(struct i915_vma *vma,
2939 			     struct drm_i915_gem_request *req)
2940 {
2941 	struct drm_i915_gem_object *obj = vma->obj;
2942 	struct intel_engine_cs *ring;
2943 
2944 	ring = i915_gem_request_get_ring(req);
2945 
2946 	/* Add a reference if we're newly entering the active list. */
2947 	if (obj->active == 0)
2948 		drm_gem_object_reference(&obj->base);
2949 	obj->active |= intel_ring_flag(ring);
2950 
2951 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2952 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2953 
2954 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2955 }
2956 
2957 static void
2958 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2959 {
2960 	RQ_BUG_ON(obj->last_write_req == NULL);
2961 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2962 
2963 	i915_gem_request_assign(&obj->last_write_req, NULL);
2964 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2965 }
2966 
2967 static void
2968 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2969 {
2970 	struct i915_vma *vma;
2971 
2972 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2973 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2974 
2975 	list_del_init(&obj->ring_list[ring]);
2976 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2977 
2978 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2979 		i915_gem_object_retire__write(obj);
2980 
2981 	obj->active &= ~(1 << ring);
2982 	if (obj->active)
2983 		return;
2984 
2985 	/* Bump our place on the bound list to keep it roughly in LRU order
2986 	 * so that we don't steal from recently used but inactive objects
2987 	 * (unless we are forced to ofc!)
2988 	 */
2989 	list_move_tail(&obj->global_list,
2990 		       &to_i915(obj->base.dev)->mm.bound_list);
2991 
2992 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2993 		if (!list_empty(&vma->mm_list))
2994 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2995 	}
2996 
2997 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2998 	drm_gem_object_unreference(&obj->base);
2999 }
3000 
3001 static int
3002 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
3003 {
3004 	struct drm_i915_private *dev_priv = dev->dev_private;
3005 	struct intel_engine_cs *ring;
3006 	int ret, i, j;
3007 
3008 	/* Carefully retire all requests without writing to the rings */
3009 	for_each_ring(ring, dev_priv, i) {
3010 		ret = intel_ring_idle(ring);
3011 		if (ret)
3012 			return ret;
3013 	}
3014 	i915_gem_retire_requests(dev);
3015 
3016 	/* Finally reset hw state */
3017 	for_each_ring(ring, dev_priv, i) {
3018 		intel_ring_init_seqno(ring, seqno);
3019 
3020 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
3021 			ring->semaphore.sync_seqno[j] = 0;
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
3028 {
3029 	struct drm_i915_private *dev_priv = dev->dev_private;
3030 	int ret;
3031 
3032 	if (seqno == 0)
3033 		return -EINVAL;
3034 
3035 	/* HWS page needs to be set less than what we
3036 	 * will inject to ring
3037 	 */
3038 	ret = i915_gem_init_seqno(dev, seqno - 1);
3039 	if (ret)
3040 		return ret;
3041 
3042 	/* Carefully set the last_seqno value so that wrap
3043 	 * detection still works
3044 	 */
3045 	dev_priv->next_seqno = seqno;
3046 	dev_priv->last_seqno = seqno - 1;
3047 	if (dev_priv->last_seqno == 0)
3048 		dev_priv->last_seqno--;
3049 
3050 	return 0;
3051 }
3052 
3053 int
3054 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
3055 {
3056 	struct drm_i915_private *dev_priv = dev->dev_private;
3057 
3058 	/* reserve 0 for non-seqno */
3059 	if (dev_priv->next_seqno == 0) {
3060 		int ret = i915_gem_init_seqno(dev, 0);
3061 		if (ret)
3062 			return ret;
3063 
3064 		dev_priv->next_seqno = 1;
3065 	}
3066 
3067 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3068 	return 0;
3069 }
3070 
3071 /*
3072  * NB: This function is not allowed to fail. Doing so would mean the the
3073  * request is not being tracked for completion but the work itself is
3074  * going to happen on the hardware. This would be a Bad Thing(tm).
3075  */
3076 void __i915_add_request(struct drm_i915_gem_request *request,
3077 			struct drm_i915_gem_object *obj,
3078 			bool flush_caches)
3079 {
3080 	struct intel_engine_cs *ring;
3081 	struct drm_i915_private *dev_priv;
3082 	struct intel_ringbuffer *ringbuf;
3083 	u32 request_start;
3084 	int ret;
3085 
3086 	if (WARN_ON(request == NULL))
3087 		return;
3088 
3089 	ring = request->ring;
3090 	dev_priv = ring->dev->dev_private;
3091 	ringbuf = request->ringbuf;
3092 
3093 	/*
3094 	 * To ensure that this call will not fail, space for its emissions
3095 	 * should already have been reserved in the ring buffer. Let the ring
3096 	 * know that it is time to use that space up.
3097 	 */
3098 	intel_ring_reserved_space_use(ringbuf);
3099 
3100 	request_start = intel_ring_get_tail(ringbuf);
3101 	/*
3102 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
3103 	 * after having emitted the batchbuffer command. Hence we need to fix
3104 	 * things up similar to emitting the lazy request. The difference here
3105 	 * is that the flush _must_ happen before the next request, no matter
3106 	 * what.
3107 	 */
3108 	if (flush_caches) {
3109 		if (i915.enable_execlists)
3110 			ret = logical_ring_flush_all_caches(request);
3111 		else
3112 			ret = intel_ring_flush_all_caches(request);
3113 		/* Not allowed to fail! */
3114 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
3115 	}
3116 
3117 	/* Record the position of the start of the request so that
3118 	 * should we detect the updated seqno part-way through the
3119 	 * GPU processing the request, we never over-estimate the
3120 	 * position of the head.
3121 	 */
3122 	request->postfix = intel_ring_get_tail(ringbuf);
3123 
3124 	if (i915.enable_execlists)
3125 		ret = ring->emit_request(request);
3126 	else {
3127 		ret = ring->add_request(request);
3128 
3129 		request->tail = intel_ring_get_tail(ringbuf);
3130 	}
3131 	/* Not allowed to fail! */
3132 	WARN(ret, "emit|add_request failed: %d!\n", ret);
3133 
3134 	request->head = request_start;
3135 
3136 	/* Whilst this request exists, batch_obj will be on the
3137 	 * active_list, and so will hold the active reference. Only when this
3138 	 * request is retired will the the batch_obj be moved onto the
3139 	 * inactive_list and lose its active reference. Hence we do not need
3140 	 * to explicitly hold another reference here.
3141 	 */
3142 	request->batch_obj = obj;
3143 
3144 	request->emitted_jiffies = jiffies;
3145 	request->previous_seqno = ring->last_submitted_seqno;
3146 	ring->last_submitted_seqno = request->seqno;
3147 	list_add_tail(&request->list, &ring->request_list);
3148 
3149 	trace_i915_gem_request_add(request);
3150 
3151 	i915_queue_hangcheck(ring->dev);
3152 
3153 	queue_delayed_work(dev_priv->wq,
3154 			   &dev_priv->mm.retire_work,
3155 			   round_jiffies_up_relative(HZ));
3156 	intel_mark_busy(dev_priv->dev);
3157 
3158 	/* Sanity check that the reserved size was large enough. */
3159 	intel_ring_reserved_space_end(ringbuf);
3160 }
3161 
3162 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
3163 				   const struct intel_context *ctx)
3164 {
3165 	unsigned long elapsed;
3166 
3167 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
3168 
3169 	if (ctx->hang_stats.banned)
3170 		return true;
3171 
3172 	if (ctx->hang_stats.ban_period_seconds &&
3173 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
3174 		if (!i915_gem_context_is_default(ctx)) {
3175 			DRM_DEBUG("context hanging too fast, banning!\n");
3176 			return true;
3177 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
3178 			if (i915_stop_ring_allow_warn(dev_priv))
3179 				DRM_ERROR("gpu hanging too fast, banning!\n");
3180 			return true;
3181 		}
3182 	}
3183 
3184 	return false;
3185 }
3186 
3187 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
3188 				  struct intel_context *ctx,
3189 				  const bool guilty)
3190 {
3191 	struct i915_ctx_hang_stats *hs;
3192 
3193 	if (WARN_ON(!ctx))
3194 		return;
3195 
3196 	hs = &ctx->hang_stats;
3197 
3198 	if (guilty) {
3199 		hs->banned = i915_context_is_banned(dev_priv, ctx);
3200 		hs->batch_active++;
3201 		hs->guilty_ts = get_seconds();
3202 	} else {
3203 		hs->batch_pending++;
3204 	}
3205 }
3206 
3207 void i915_gem_request_free(struct kref *req_ref)
3208 {
3209 	struct drm_i915_gem_request *req = container_of(req_ref,
3210 						 typeof(*req), ref);
3211 	struct intel_context *ctx = req->ctx;
3212 
3213 	if (req->file_priv)
3214 		i915_gem_request_remove_from_client(req);
3215 
3216 	if (ctx) {
3217 		if (i915.enable_execlists) {
3218 			if (ctx != req->ring->default_context)
3219 				intel_lr_context_unpin(req);
3220 		}
3221 
3222 		i915_gem_context_unreference(ctx);
3223 	}
3224 
3225 	kmem_cache_free(req->i915->requests, req);
3226 }
3227 
3228 int i915_gem_request_alloc(struct intel_engine_cs *ring,
3229 			   struct intel_context *ctx,
3230 			   struct drm_i915_gem_request **req_out)
3231 {
3232 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
3233 	struct drm_i915_gem_request *req;
3234 	int ret;
3235 
3236 	if (!req_out)
3237 		return -EINVAL;
3238 
3239 	*req_out = NULL;
3240 
3241 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3242 	if (req == NULL)
3243 		return -ENOMEM;
3244 
3245 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
3246 	if (ret)
3247 		goto err;
3248 
3249 	kref_init(&req->ref);
3250 	req->i915 = dev_priv;
3251 	req->ring = ring;
3252 	req->ctx  = ctx;
3253 	i915_gem_context_reference(req->ctx);
3254 
3255 	if (i915.enable_execlists)
3256 		ret = intel_logical_ring_alloc_request_extras(req);
3257 	else
3258 		ret = intel_ring_alloc_request_extras(req);
3259 	if (ret) {
3260 		i915_gem_context_unreference(req->ctx);
3261 		goto err;
3262 	}
3263 
3264 	/*
3265 	 * Reserve space in the ring buffer for all the commands required to
3266 	 * eventually emit this request. This is to guarantee that the
3267 	 * i915_add_request() call can't fail. Note that the reserve may need
3268 	 * to be redone if the request is not actually submitted straight
3269 	 * away, e.g. because a GPU scheduler has deferred it.
3270 	 */
3271 	if (i915.enable_execlists)
3272 		ret = intel_logical_ring_reserve_space(req);
3273 	else
3274 		ret = intel_ring_reserve_space(req);
3275 	if (ret) {
3276 		/*
3277 		 * At this point, the request is fully allocated even if not
3278 		 * fully prepared. Thus it can be cleaned up using the proper
3279 		 * free code.
3280 		 */
3281 		i915_gem_request_cancel(req);
3282 		return ret;
3283 	}
3284 
3285 	*req_out = req;
3286 	return 0;
3287 
3288 err:
3289 	kmem_cache_free(dev_priv->requests, req);
3290 	return ret;
3291 }
3292 
3293 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
3294 {
3295 	intel_ring_reserved_space_cancel(req->ringbuf);
3296 
3297 	i915_gem_request_unreference(req);
3298 }
3299 
3300 struct drm_i915_gem_request *
3301 i915_gem_find_active_request(struct intel_engine_cs *ring)
3302 {
3303 	struct drm_i915_gem_request *request;
3304 
3305 	list_for_each_entry(request, &ring->request_list, list) {
3306 		if (i915_gem_request_completed(request, false))
3307 			continue;
3308 
3309 		return request;
3310 	}
3311 
3312 	return NULL;
3313 }
3314 
3315 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3316 				       struct intel_engine_cs *ring)
3317 {
3318 	struct drm_i915_gem_request *request;
3319 	bool ring_hung;
3320 
3321 	request = i915_gem_find_active_request(ring);
3322 
3323 	if (request == NULL)
3324 		return;
3325 
3326 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3327 
3328 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3329 
3330 	list_for_each_entry_continue(request, &ring->request_list, list)
3331 		i915_set_reset_status(dev_priv, request->ctx, false);
3332 }
3333 
3334 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
3335 					struct intel_engine_cs *ring)
3336 {
3337 	while (!list_empty(&ring->active_list)) {
3338 		struct drm_i915_gem_object *obj;
3339 
3340 		obj = list_first_entry(&ring->active_list,
3341 				       struct drm_i915_gem_object,
3342 				       ring_list[ring->id]);
3343 
3344 		i915_gem_object_retire__read(obj, ring->id);
3345 	}
3346 
3347 	/*
3348 	 * Clear the execlists queue up before freeing the requests, as those
3349 	 * are the ones that keep the context and ringbuffer backing objects
3350 	 * pinned in place.
3351 	 */
3352 	while (!list_empty(&ring->execlist_queue)) {
3353 		struct drm_i915_gem_request *submit_req;
3354 
3355 		submit_req = list_first_entry(&ring->execlist_queue,
3356 				struct drm_i915_gem_request,
3357 				execlist_link);
3358 		list_del(&submit_req->execlist_link);
3359 
3360 		if (submit_req->ctx != ring->default_context)
3361 			intel_lr_context_unpin(submit_req);
3362 
3363 		i915_gem_request_unreference(submit_req);
3364 	}
3365 
3366 	/*
3367 	 * We must free the requests after all the corresponding objects have
3368 	 * been moved off active lists. Which is the same order as the normal
3369 	 * retire_requests function does. This is important if object hold
3370 	 * implicit references on things like e.g. ppgtt address spaces through
3371 	 * the request.
3372 	 */
3373 	while (!list_empty(&ring->request_list)) {
3374 		struct drm_i915_gem_request *request;
3375 
3376 		request = list_first_entry(&ring->request_list,
3377 					   struct drm_i915_gem_request,
3378 					   list);
3379 
3380 		i915_gem_request_retire(request);
3381 	}
3382 }
3383 
3384 void i915_gem_reset(struct drm_device *dev)
3385 {
3386 	struct drm_i915_private *dev_priv = dev->dev_private;
3387 	struct intel_engine_cs *ring;
3388 	int i;
3389 
3390 	/*
3391 	 * Before we free the objects from the requests, we need to inspect
3392 	 * them for finding the guilty party. As the requests only borrow
3393 	 * their reference to the objects, the inspection must be done first.
3394 	 */
3395 	for_each_ring(ring, dev_priv, i)
3396 		i915_gem_reset_ring_status(dev_priv, ring);
3397 
3398 	for_each_ring(ring, dev_priv, i)
3399 		i915_gem_reset_ring_cleanup(dev_priv, ring);
3400 
3401 	i915_gem_context_reset(dev);
3402 
3403 	i915_gem_restore_fences(dev);
3404 
3405 	WARN_ON(i915_verify_lists(dev));
3406 }
3407 
3408 /**
3409  * This function clears the request list as sequence numbers are passed.
3410  */
3411 void
3412 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
3413 {
3414 	WARN_ON(i915_verify_lists(ring->dev));
3415 
3416 	/* Retire requests first as we use it above for the early return.
3417 	 * If we retire requests last, we may use a later seqno and so clear
3418 	 * the requests lists without clearing the active list, leading to
3419 	 * confusion.
3420 	 */
3421 	while (!list_empty(&ring->request_list)) {
3422 		struct drm_i915_gem_request *request;
3423 
3424 		request = list_first_entry(&ring->request_list,
3425 					   struct drm_i915_gem_request,
3426 					   list);
3427 
3428 		if (!i915_gem_request_completed(request, true))
3429 			break;
3430 
3431 		i915_gem_request_retire(request);
3432 	}
3433 
3434 	/* Move any buffers on the active list that are no longer referenced
3435 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
3436 	 * before we free the context associated with the requests.
3437 	 */
3438 	while (!list_empty(&ring->active_list)) {
3439 		struct drm_i915_gem_object *obj;
3440 
3441 		obj = list_first_entry(&ring->active_list,
3442 				      struct drm_i915_gem_object,
3443 				      ring_list[ring->id]);
3444 
3445 		if (!list_empty(&obj->last_read_req[ring->id]->list))
3446 			break;
3447 
3448 		i915_gem_object_retire__read(obj, ring->id);
3449 	}
3450 
3451 	if (unlikely(ring->trace_irq_req &&
3452 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
3453 		ring->irq_put(ring);
3454 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
3455 	}
3456 
3457 	WARN_ON(i915_verify_lists(ring->dev));
3458 }
3459 
3460 bool
3461 i915_gem_retire_requests(struct drm_device *dev)
3462 {
3463 	struct drm_i915_private *dev_priv = dev->dev_private;
3464 	struct intel_engine_cs *ring;
3465 	bool idle = true;
3466 	int i;
3467 
3468 	for_each_ring(ring, dev_priv, i) {
3469 		i915_gem_retire_requests_ring(ring);
3470 		idle &= list_empty(&ring->request_list);
3471 		if (i915.enable_execlists) {
3472 			unsigned long flags;
3473 
3474 			spin_lock_irqsave(&ring->execlist_lock, flags);
3475 			idle &= list_empty(&ring->execlist_queue);
3476 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
3477 
3478 			intel_execlists_retire_requests(ring);
3479 		}
3480 	}
3481 
3482 	if (idle)
3483 		mod_delayed_work(dev_priv->wq,
3484 				   &dev_priv->mm.idle_work,
3485 				   msecs_to_jiffies(100));
3486 
3487 	return idle;
3488 }
3489 
3490 static void
3491 i915_gem_retire_work_handler(struct work_struct *work)
3492 {
3493 	struct drm_i915_private *dev_priv =
3494 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
3495 	struct drm_device *dev = dev_priv->dev;
3496 	bool idle;
3497 
3498 	/* Come back later if the device is busy... */
3499 	idle = false;
3500 	if (mutex_trylock(&dev->struct_mutex)) {
3501 		idle = i915_gem_retire_requests(dev);
3502 		mutex_unlock(&dev->struct_mutex);
3503 	}
3504 	if (!idle)
3505 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3506 				   round_jiffies_up_relative(HZ));
3507 }
3508 
3509 static void
3510 i915_gem_idle_work_handler(struct work_struct *work)
3511 {
3512 	struct drm_i915_private *dev_priv =
3513 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3514 	struct drm_device *dev = dev_priv->dev;
3515 	struct intel_engine_cs *ring;
3516 	int i;
3517 
3518 	for_each_ring(ring, dev_priv, i)
3519 		if (!list_empty(&ring->request_list))
3520 			return;
3521 
3522 	intel_mark_idle(dev);
3523 
3524 	if (mutex_trylock(&dev->struct_mutex)) {
3525 		struct intel_engine_cs *ring;
3526 		int i;
3527 
3528 		for_each_ring(ring, dev_priv, i)
3529 			i915_gem_batch_pool_fini(&ring->batch_pool);
3530 
3531 		mutex_unlock(&dev->struct_mutex);
3532 	}
3533 }
3534 
3535 /**
3536  * Ensures that an object will eventually get non-busy by flushing any required
3537  * write domains, emitting any outstanding lazy request and retiring and
3538  * completed requests.
3539  */
3540 static int
3541 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3542 {
3543 	int i;
3544 
3545 	if (!obj->active)
3546 		return 0;
3547 
3548 	for (i = 0; i < I915_NUM_RINGS; i++) {
3549 		struct drm_i915_gem_request *req;
3550 
3551 		req = obj->last_read_req[i];
3552 		if (req == NULL)
3553 			continue;
3554 
3555 		if (list_empty(&req->list))
3556 			goto retire;
3557 
3558 		if (i915_gem_request_completed(req, true)) {
3559 			__i915_gem_request_retire__upto(req);
3560 retire:
3561 			i915_gem_object_retire__read(obj, i);
3562 		}
3563 	}
3564 
3565 	return 0;
3566 }
3567 
3568 /**
3569  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3570  * @DRM_IOCTL_ARGS: standard ioctl arguments
3571  *
3572  * Returns 0 if successful, else an error is returned with the remaining time in
3573  * the timeout parameter.
3574  *  -ETIME: object is still busy after timeout
3575  *  -ERESTARTSYS: signal interrupted the wait
3576  *  -ENONENT: object doesn't exist
3577  * Also possible, but rare:
3578  *  -EAGAIN: GPU wedged
3579  *  -ENOMEM: damn
3580  *  -ENODEV: Internal IRQ fail
3581  *  -E?: The add request failed
3582  *
3583  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3584  * non-zero timeout parameter the wait ioctl will wait for the given number of
3585  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3586  * without holding struct_mutex the object may become re-busied before this
3587  * function completes. A similar but shorter * race condition exists in the busy
3588  * ioctl
3589  */
3590 int
3591 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3592 {
3593 	struct drm_i915_private *dev_priv = dev->dev_private;
3594 	struct drm_i915_gem_wait *args = data;
3595 	struct drm_gem_object *gobj;
3596 	struct drm_i915_gem_object *obj;
3597 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3598 	unsigned reset_counter;
3599 	int i, n = 0;
3600 	int ret;
3601 
3602 	if (args->flags != 0)
3603 		return -EINVAL;
3604 
3605 	ret = i915_mutex_lock_interruptible(dev);
3606 	if (ret)
3607 		return ret;
3608 
3609 	gobj = drm_gem_object_lookup(dev, file, args->bo_handle);
3610 	if (gobj == NULL) {
3611 		mutex_unlock(&dev->struct_mutex);
3612 		return -ENOENT;
3613 	}
3614 	obj = to_intel_bo(gobj);
3615 
3616 	/* Need to make sure the object gets inactive eventually. */
3617 	ret = i915_gem_object_flush_active(obj);
3618 	if (ret)
3619 		goto out;
3620 
3621 	if (!obj->active)
3622 		goto out;
3623 
3624 	/* Do this after OLR check to make sure we make forward progress polling
3625 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3626 	 */
3627 	if (args->timeout_ns == 0) {
3628 		ret = -ETIME;
3629 		goto out;
3630 	}
3631 
3632 	drm_gem_object_unreference(&obj->base);
3633 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3634 
3635 	for (i = 0; i < I915_NUM_RINGS; i++) {
3636 		if (obj->last_read_req[i] == NULL)
3637 			continue;
3638 
3639 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3640 	}
3641 
3642 	mutex_unlock(&dev->struct_mutex);
3643 
3644 	for (i = 0; i < n; i++) {
3645 		if (ret == 0)
3646 			ret = __i915_wait_request(req[i], reset_counter, true,
3647 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3648 						  file->driver_priv);
3649 		i915_gem_request_unreference__unlocked(req[i]);
3650 	}
3651 	return ret;
3652 
3653 out:
3654 	drm_gem_object_unreference(&obj->base);
3655 	mutex_unlock(&dev->struct_mutex);
3656 	return ret;
3657 }
3658 
3659 static int
3660 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3661 		       struct intel_engine_cs *to,
3662 		       struct drm_i915_gem_request *from_req,
3663 		       struct drm_i915_gem_request **to_req)
3664 {
3665 	struct intel_engine_cs *from;
3666 	int ret;
3667 
3668 	from = i915_gem_request_get_ring(from_req);
3669 	if (to == from)
3670 		return 0;
3671 
3672 	if (i915_gem_request_completed(from_req, true))
3673 		return 0;
3674 
3675 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3676 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3677 		ret = __i915_wait_request(from_req,
3678 					  atomic_read(&i915->gpu_error.reset_counter),
3679 					  i915->mm.interruptible,
3680 					  NULL,
3681 					  &i915->rps.semaphores);
3682 		if (ret)
3683 			return ret;
3684 
3685 		i915_gem_object_retire_request(obj, from_req);
3686 	} else {
3687 		int idx = intel_ring_sync_index(from, to);
3688 		u32 seqno = i915_gem_request_get_seqno(from_req);
3689 
3690 		WARN_ON(!to_req);
3691 
3692 		if (seqno <= from->semaphore.sync_seqno[idx])
3693 			return 0;
3694 
3695 		if (*to_req == NULL) {
3696 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3697 			if (ret)
3698 				return ret;
3699 		}
3700 
3701 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3702 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3703 		if (ret)
3704 			return ret;
3705 
3706 		/* We use last_read_req because sync_to()
3707 		 * might have just caused seqno wrap under
3708 		 * the radar.
3709 		 */
3710 		from->semaphore.sync_seqno[idx] =
3711 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3712 	}
3713 
3714 	return 0;
3715 }
3716 
3717 /**
3718  * i915_gem_object_sync - sync an object to a ring.
3719  *
3720  * @obj: object which may be in use on another ring.
3721  * @to: ring we wish to use the object on. May be NULL.
3722  * @to_req: request we wish to use the object for. See below.
3723  *          This will be allocated and returned if a request is
3724  *          required but not passed in.
3725  *
3726  * This code is meant to abstract object synchronization with the GPU.
3727  * Calling with NULL implies synchronizing the object with the CPU
3728  * rather than a particular GPU ring. Conceptually we serialise writes
3729  * between engines inside the GPU. We only allow one engine to write
3730  * into a buffer at any time, but multiple readers. To ensure each has
3731  * a coherent view of memory, we must:
3732  *
3733  * - If there is an outstanding write request to the object, the new
3734  *   request must wait for it to complete (either CPU or in hw, requests
3735  *   on the same ring will be naturally ordered).
3736  *
3737  * - If we are a write request (pending_write_domain is set), the new
3738  *   request must wait for outstanding read requests to complete.
3739  *
3740  * For CPU synchronisation (NULL to) no request is required. For syncing with
3741  * rings to_req must be non-NULL. However, a request does not have to be
3742  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3743  * request will be allocated automatically and returned through *to_req. Note
3744  * that it is not guaranteed that commands will be emitted (because the system
3745  * might already be idle). Hence there is no need to create a request that
3746  * might never have any work submitted. Note further that if a request is
3747  * returned in *to_req, it is the responsibility of the caller to submit
3748  * that request (after potentially adding more work to it).
3749  *
3750  * Returns 0 if successful, else propagates up the lower layer error.
3751  */
3752 int
3753 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3754 		     struct intel_engine_cs *to,
3755 		     struct drm_i915_gem_request **to_req)
3756 {
3757 	const bool readonly = obj->base.pending_write_domain == 0;
3758 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3759 	int ret, i, n;
3760 
3761 	if (!obj->active)
3762 		return 0;
3763 
3764 	if (to == NULL)
3765 		return i915_gem_object_wait_rendering(obj, readonly);
3766 
3767 	n = 0;
3768 	if (readonly) {
3769 		if (obj->last_write_req)
3770 			req[n++] = obj->last_write_req;
3771 	} else {
3772 		for (i = 0; i < I915_NUM_RINGS; i++)
3773 			if (obj->last_read_req[i])
3774 				req[n++] = obj->last_read_req[i];
3775 	}
3776 	for (i = 0; i < n; i++) {
3777 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3778 		if (ret)
3779 			return ret;
3780 	}
3781 
3782 	return 0;
3783 }
3784 
3785 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3786 {
3787 	u32 old_write_domain, old_read_domains;
3788 
3789 	/* Force a pagefault for domain tracking on next user access */
3790 	i915_gem_release_mmap(obj);
3791 
3792 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3793 		return;
3794 
3795 	/* Wait for any direct GTT access to complete */
3796 	mb();
3797 
3798 	old_read_domains = obj->base.read_domains;
3799 	old_write_domain = obj->base.write_domain;
3800 
3801 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3802 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3803 
3804 	trace_i915_gem_object_change_domain(obj,
3805 					    old_read_domains,
3806 					    old_write_domain);
3807 }
3808 
3809 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3810 {
3811 	struct drm_i915_gem_object *obj = vma->obj;
3812 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3813 	int ret;
3814 
3815 	if (list_empty(&vma->vma_link))
3816 		return 0;
3817 
3818 	if (!drm_mm_node_allocated(&vma->node)) {
3819 		i915_gem_vma_destroy(vma);
3820 		return 0;
3821 	}
3822 
3823 	if (vma->pin_count)
3824 		return -EBUSY;
3825 
3826 	BUG_ON(obj->pages == NULL);
3827 
3828 	if (wait) {
3829 		ret = i915_gem_object_wait_rendering(obj, false);
3830 		if (ret)
3831 			return ret;
3832 	}
3833 
3834 	if (i915_is_ggtt(vma->vm) &&
3835 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3836 		i915_gem_object_finish_gtt(obj);
3837 
3838 		/* release the fence reg _after_ flushing */
3839 		ret = i915_gem_object_put_fence(obj);
3840 		if (ret)
3841 			return ret;
3842 	}
3843 
3844 	trace_i915_vma_unbind(vma);
3845 
3846 	vma->vm->unbind_vma(vma);
3847 	vma->bound = 0;
3848 
3849 	list_del_init(&vma->mm_list);
3850 	if (i915_is_ggtt(vma->vm)) {
3851 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3852 			obj->map_and_fenceable = false;
3853 		} else if (vma->ggtt_view.pages) {
3854 #ifdef __NetBSD__
3855 			panic("rotated/partial views can't happen");
3856 #else
3857 			sg_free_table(vma->ggtt_view.pages);
3858 			kfree(vma->ggtt_view.pages);
3859 #endif
3860 		}
3861 		vma->ggtt_view.pages = NULL;
3862 	}
3863 
3864 	drm_mm_remove_node(&vma->node);
3865 	i915_gem_vma_destroy(vma);
3866 
3867 	/* Since the unbound list is global, only move to that list if
3868 	 * no more VMAs exist. */
3869 	if (list_empty(&obj->vma_list))
3870 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3871 
3872 	/* And finally now the object is completely decoupled from this vma,
3873 	 * we can drop its hold on the backing storage and allow it to be
3874 	 * reaped by the shrinker.
3875 	 */
3876 	i915_gem_object_unpin_pages(obj);
3877 
3878 	return 0;
3879 }
3880 
3881 int i915_vma_unbind(struct i915_vma *vma)
3882 {
3883 	return __i915_vma_unbind(vma, true);
3884 }
3885 
3886 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3887 {
3888 	return __i915_vma_unbind(vma, false);
3889 }
3890 
3891 int i915_gpu_idle(struct drm_device *dev)
3892 {
3893 	struct drm_i915_private *dev_priv = dev->dev_private;
3894 	struct intel_engine_cs *ring;
3895 	int ret, i;
3896 
3897 	/* Flush everything onto the inactive list. */
3898 	for_each_ring(ring, dev_priv, i) {
3899 		if (!i915.enable_execlists) {
3900 			struct drm_i915_gem_request *req;
3901 
3902 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3903 			if (ret)
3904 				return ret;
3905 
3906 			ret = i915_switch_context(req);
3907 			if (ret) {
3908 				i915_gem_request_cancel(req);
3909 				return ret;
3910 			}
3911 
3912 			i915_add_request_no_flush(req);
3913 		}
3914 
3915 		ret = intel_ring_idle(ring);
3916 		if (ret)
3917 			return ret;
3918 	}
3919 
3920 	WARN_ON(i915_verify_lists(dev));
3921 	return 0;
3922 }
3923 
3924 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3925 				     unsigned long cache_level)
3926 {
3927 	struct drm_mm_node *gtt_space = &vma->node;
3928 	struct drm_mm_node *other;
3929 
3930 	/*
3931 	 * On some machines we have to be careful when putting differing types
3932 	 * of snoopable memory together to avoid the prefetcher crossing memory
3933 	 * domains and dying. During vm initialisation, we decide whether or not
3934 	 * these constraints apply and set the drm_mm.color_adjust
3935 	 * appropriately.
3936 	 */
3937 	if (vma->vm->mm.color_adjust == NULL)
3938 		return true;
3939 
3940 	if (!drm_mm_node_allocated(gtt_space))
3941 		return true;
3942 
3943 	if (list_empty(&gtt_space->node_list))
3944 		return true;
3945 
3946 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3947 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3948 		return false;
3949 
3950 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3951 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3952 		return false;
3953 
3954 	return true;
3955 }
3956 
3957 /**
3958  * Finds free space in the GTT aperture and binds the object or a view of it
3959  * there.
3960  */
3961 static struct i915_vma *
3962 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3963 			   struct i915_address_space *vm,
3964 			   const struct i915_ggtt_view *ggtt_view,
3965 			   unsigned alignment,
3966 			   uint64_t flags)
3967 {
3968 	struct drm_device *dev = obj->base.dev;
3969 	struct drm_i915_private *dev_priv = dev->dev_private;
3970 	u32 fence_alignment, unfenced_alignment;
3971 	u32 search_flag, alloc_flag;
3972 	u64 start, end;
3973 	u64 size, fence_size;
3974 	struct i915_vma *vma;
3975 	int ret;
3976 
3977 	if (i915_is_ggtt(vm)) {
3978 		u32 view_size;
3979 
3980 		if (WARN_ON(!ggtt_view))
3981 			return ERR_PTR(-EINVAL);
3982 
3983 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3984 
3985 		fence_size = i915_gem_get_gtt_size(dev,
3986 						   view_size,
3987 						   obj->tiling_mode);
3988 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3989 							     view_size,
3990 							     obj->tiling_mode,
3991 							     true);
3992 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3993 								view_size,
3994 								obj->tiling_mode,
3995 								false);
3996 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3997 	} else {
3998 		fence_size = i915_gem_get_gtt_size(dev,
3999 						   obj->base.size,
4000 						   obj->tiling_mode);
4001 		fence_alignment = i915_gem_get_gtt_alignment(dev,
4002 							     obj->base.size,
4003 							     obj->tiling_mode,
4004 							     true);
4005 		unfenced_alignment =
4006 			i915_gem_get_gtt_alignment(dev,
4007 						   obj->base.size,
4008 						   obj->tiling_mode,
4009 						   false);
4010 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
4011 	}
4012 
4013 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
4014 	end = vm->total;
4015 	if (flags & PIN_MAPPABLE)
4016 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
4017 	if (flags & PIN_ZONE_4G)
4018 		end = min_t(u64, end, (1ULL << 32));
4019 
4020 	if (alignment == 0)
4021 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
4022 						unfenced_alignment;
4023 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
4024 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
4025 			  ggtt_view ? ggtt_view->type : 0,
4026 			  alignment);
4027 		return ERR_PTR(-EINVAL);
4028 	}
4029 
4030 	/* If binding the object/GGTT view requires more space than the entire
4031 	 * aperture has, reject it early before evicting everything in a vain
4032 	 * attempt to find space.
4033 	 */
4034 	if (size > end) {
4035 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%"PRIx64" > %s aperture=%"PRIx64"\n",
4036 			  ggtt_view ? ggtt_view->type : 0,
4037 			  size,
4038 			  flags & PIN_MAPPABLE ? "mappable" : "total",
4039 			  end);
4040 		return ERR_PTR(-E2BIG);
4041 	}
4042 
4043 	ret = i915_gem_object_get_pages(obj);
4044 	if (ret)
4045 		return ERR_PTR(ret);
4046 
4047 	i915_gem_object_pin_pages(obj);
4048 
4049 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
4050 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
4051 
4052 	if (IS_ERR(vma))
4053 		goto err_unpin;
4054 
4055 	if (flags & PIN_HIGH) {
4056 		search_flag = DRM_MM_SEARCH_BELOW;
4057 		alloc_flag = DRM_MM_CREATE_TOP;
4058 	} else {
4059 		search_flag = DRM_MM_SEARCH_DEFAULT;
4060 		alloc_flag = DRM_MM_CREATE_DEFAULT;
4061 	}
4062 
4063 search_free:
4064 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
4065 						  size, alignment,
4066 						  obj->cache_level,
4067 						  start, end,
4068 						  search_flag,
4069 						  alloc_flag);
4070 	if (ret) {
4071 		ret = i915_gem_evict_something(dev, vm, size, alignment,
4072 					       obj->cache_level,
4073 					       start, end,
4074 					       flags);
4075 		if (ret == 0)
4076 			goto search_free;
4077 
4078 		goto err_free_vma;
4079 	}
4080 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
4081 		ret = -EINVAL;
4082 		goto err_remove_node;
4083 	}
4084 
4085 	trace_i915_vma_bind(vma, flags);
4086 	ret = i915_vma_bind(vma, obj->cache_level, flags);
4087 	if (ret)
4088 		goto err_remove_node;
4089 
4090 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
4091 	list_add_tail(&vma->mm_list, &vm->inactive_list);
4092 
4093 	return vma;
4094 
4095 err_remove_node:
4096 	drm_mm_remove_node(&vma->node);
4097 err_free_vma:
4098 	i915_gem_vma_destroy(vma);
4099 	vma = ERR_PTR(ret);
4100 err_unpin:
4101 	i915_gem_object_unpin_pages(obj);
4102 	return vma;
4103 }
4104 
4105 bool
4106 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
4107 			bool force)
4108 {
4109 	/* If we don't have a page list set up, then we're not pinned
4110 	 * to GPU, and we can ignore the cache flush because it'll happen
4111 	 * again at bind time.
4112 	 */
4113 	if (obj->pages == NULL)
4114 		return false;
4115 
4116 	/*
4117 	 * Stolen memory is always coherent with the GPU as it is explicitly
4118 	 * marked as wc by the system, or the system is cache-coherent.
4119 	 */
4120 	if (obj->stolen || obj->phys_handle)
4121 		return false;
4122 
4123 	/* If the GPU is snooping the contents of the CPU cache,
4124 	 * we do not need to manually clear the CPU cache lines.  However,
4125 	 * the caches are only snooped when the render cache is
4126 	 * flushed/invalidated.  As we always have to emit invalidations
4127 	 * and flushes when moving into and out of the RENDER domain, correct
4128 	 * snooping behaviour occurs naturally as the result of our domain
4129 	 * tracking.
4130 	 */
4131 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
4132 		obj->cache_dirty = true;
4133 		return false;
4134 	}
4135 
4136 	trace_i915_gem_object_clflush(obj);
4137 #ifdef __NetBSD__
4138 	drm_clflush_pglist(&obj->pageq);
4139 #else
4140 	drm_clflush_sg(obj->pages);
4141 #endif
4142 	obj->cache_dirty = false;
4143 
4144 	return true;
4145 }
4146 
4147 /** Flushes the GTT write domain for the object if it's dirty. */
4148 static void
4149 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
4150 {
4151 	uint32_t old_write_domain;
4152 
4153 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
4154 		return;
4155 
4156 	/* No actual flushing is required for the GTT write domain.  Writes
4157 	 * to it immediately go to main memory as far as we know, so there's
4158 	 * no chipset flush.  It also doesn't land in render cache.
4159 	 *
4160 	 * However, we do have to enforce the order so that all writes through
4161 	 * the GTT land before any writes to the device, such as updates to
4162 	 * the GATT itself.
4163 	 */
4164 	wmb();
4165 
4166 	old_write_domain = obj->base.write_domain;
4167 	obj->base.write_domain = 0;
4168 
4169 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
4170 
4171 	trace_i915_gem_object_change_domain(obj,
4172 					    obj->base.read_domains,
4173 					    old_write_domain);
4174 }
4175 
4176 /** Flushes the CPU write domain for the object if it's dirty. */
4177 static void
4178 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4179 {
4180 	uint32_t old_write_domain;
4181 
4182 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4183 		return;
4184 
4185 	if (i915_gem_clflush_object(obj, obj->pin_display))
4186 		i915_gem_chipset_flush(obj->base.dev);
4187 
4188 	old_write_domain = obj->base.write_domain;
4189 	obj->base.write_domain = 0;
4190 
4191 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4192 
4193 	trace_i915_gem_object_change_domain(obj,
4194 					    obj->base.read_domains,
4195 					    old_write_domain);
4196 }
4197 
4198 /**
4199  * Moves a single object to the GTT read, and possibly write domain.
4200  *
4201  * This function returns when the move is complete, including waiting on
4202  * flushes to occur.
4203  */
4204 int
4205 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4206 {
4207 	uint32_t old_write_domain, old_read_domains;
4208 	struct i915_vma *vma;
4209 	int ret;
4210 
4211 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4212 		return 0;
4213 
4214 	ret = i915_gem_object_wait_rendering(obj, !write);
4215 	if (ret)
4216 		return ret;
4217 
4218 	/* Flush and acquire obj->pages so that we are coherent through
4219 	 * direct access in memory with previous cached writes through
4220 	 * shmemfs and that our cache domain tracking remains valid.
4221 	 * For example, if the obj->filp was moved to swap without us
4222 	 * being notified and releasing the pages, we would mistakenly
4223 	 * continue to assume that the obj remained out of the CPU cached
4224 	 * domain.
4225 	 */
4226 	ret = i915_gem_object_get_pages(obj);
4227 	if (ret)
4228 		return ret;
4229 
4230 	i915_gem_object_flush_cpu_write_domain(obj);
4231 
4232 	/* Serialise direct access to this object with the barriers for
4233 	 * coherent writes from the GPU, by effectively invalidating the
4234 	 * GTT domain upon first access.
4235 	 */
4236 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4237 		mb();
4238 
4239 	old_write_domain = obj->base.write_domain;
4240 	old_read_domains = obj->base.read_domains;
4241 
4242 	/* It should now be out of any other write domains, and we can update
4243 	 * the domain values for our changes.
4244 	 */
4245 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4246 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4247 	if (write) {
4248 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4249 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4250 		obj->dirty = 1;
4251 	}
4252 
4253 	trace_i915_gem_object_change_domain(obj,
4254 					    old_read_domains,
4255 					    old_write_domain);
4256 
4257 	/* And bump the LRU for this access */
4258 	vma = i915_gem_obj_to_ggtt(obj);
4259 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4260 		list_move_tail(&vma->mm_list,
4261 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
4262 
4263 	return 0;
4264 }
4265 
4266 /**
4267  * Changes the cache-level of an object across all VMA.
4268  *
4269  * After this function returns, the object will be in the new cache-level
4270  * across all GTT and the contents of the backing storage will be coherent,
4271  * with respect to the new cache-level. In order to keep the backing storage
4272  * coherent for all users, we only allow a single cache level to be set
4273  * globally on the object and prevent it from being changed whilst the
4274  * hardware is reading from the object. That is if the object is currently
4275  * on the scanout it will be set to uncached (or equivalent display
4276  * cache coherency) and all non-MOCS GPU access will also be uncached so
4277  * that all direct access to the scanout remains coherent.
4278  */
4279 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4280 				    enum i915_cache_level cache_level)
4281 {
4282 	struct drm_device *dev = obj->base.dev;
4283 	struct i915_vma *vma, *next;
4284 	bool bound = false;
4285 	int ret = 0;
4286 
4287 	if (obj->cache_level == cache_level)
4288 		goto out;
4289 
4290 	/* Inspect the list of currently bound VMA and unbind any that would
4291 	 * be invalid given the new cache-level. This is principally to
4292 	 * catch the issue of the CS prefetch crossing page boundaries and
4293 	 * reading an invalid PTE on older architectures.
4294 	 */
4295 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4296 		if (!drm_mm_node_allocated(&vma->node))
4297 			continue;
4298 
4299 		if (vma->pin_count) {
4300 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4301 			return -EBUSY;
4302 		}
4303 
4304 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4305 			ret = i915_vma_unbind(vma);
4306 			if (ret)
4307 				return ret;
4308 		} else
4309 			bound = true;
4310 	}
4311 
4312 	/* We can reuse the existing drm_mm nodes but need to change the
4313 	 * cache-level on the PTE. We could simply unbind them all and
4314 	 * rebind with the correct cache-level on next use. However since
4315 	 * we already have a valid slot, dma mapping, pages etc, we may as
4316 	 * rewrite the PTE in the belief that doing so tramples upon less
4317 	 * state and so involves less work.
4318 	 */
4319 	if (bound) {
4320 		/* Before we change the PTE, the GPU must not be accessing it.
4321 		 * If we wait upon the object, we know that all the bound
4322 		 * VMA are no longer active.
4323 		 */
4324 		ret = i915_gem_object_wait_rendering(obj, false);
4325 		if (ret)
4326 			return ret;
4327 
4328 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4329 			/* Access to snoopable pages through the GTT is
4330 			 * incoherent and on some machines causes a hard
4331 			 * lockup. Relinquish the CPU mmaping to force
4332 			 * userspace to refault in the pages and we can
4333 			 * then double check if the GTT mapping is still
4334 			 * valid for that pointer access.
4335 			 */
4336 			i915_gem_release_mmap(obj);
4337 
4338 			/* As we no longer need a fence for GTT access,
4339 			 * we can relinquish it now (and so prevent having
4340 			 * to steal a fence from someone else on the next
4341 			 * fence request). Note GPU activity would have
4342 			 * dropped the fence as all snoopable access is
4343 			 * supposed to be linear.
4344 			 */
4345 			ret = i915_gem_object_put_fence(obj);
4346 			if (ret)
4347 				return ret;
4348 		} else {
4349 			/* We either have incoherent backing store and
4350 			 * so no GTT access or the architecture is fully
4351 			 * coherent. In such cases, existing GTT mmaps
4352 			 * ignore the cache bit in the PTE and we can
4353 			 * rewrite it without confusing the GPU or having
4354 			 * to force userspace to fault back in its mmaps.
4355 			 */
4356 		}
4357 
4358 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
4359 			if (!drm_mm_node_allocated(&vma->node))
4360 				continue;
4361 
4362 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4363 			if (ret)
4364 				return ret;
4365 		}
4366 	}
4367 
4368 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4369 		vma->node.color = cache_level;
4370 	obj->cache_level = cache_level;
4371 
4372 out:
4373 	/* Flush the dirty CPU caches to the backing storage so that the
4374 	 * object is now coherent at its new cache level (with respect
4375 	 * to the access domain).
4376 	 */
4377 	if (obj->cache_dirty &&
4378 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4379 	    cpu_write_needs_clflush(obj)) {
4380 		if (i915_gem_clflush_object(obj, true))
4381 			i915_gem_chipset_flush(obj->base.dev);
4382 	}
4383 
4384 	return 0;
4385 }
4386 
4387 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4388 			       struct drm_file *file)
4389 {
4390 	struct drm_i915_gem_caching *args = data;
4391 	struct drm_gem_object *gobj;
4392 	struct drm_i915_gem_object *obj;
4393 
4394 	gobj = drm_gem_object_lookup(dev, file, args->handle);
4395 	if (gobj == NULL)
4396 		return -ENOENT;
4397 	obj = to_intel_bo(gobj);
4398 
4399 	switch (obj->cache_level) {
4400 	case I915_CACHE_LLC:
4401 	case I915_CACHE_L3_LLC:
4402 		args->caching = I915_CACHING_CACHED;
4403 		break;
4404 
4405 	case I915_CACHE_WT:
4406 		args->caching = I915_CACHING_DISPLAY;
4407 		break;
4408 
4409 	default:
4410 		args->caching = I915_CACHING_NONE;
4411 		break;
4412 	}
4413 
4414 	drm_gem_object_unreference_unlocked(&obj->base);
4415 	return 0;
4416 }
4417 
4418 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4419 			       struct drm_file *file)
4420 {
4421 	struct drm_i915_private *dev_priv = dev->dev_private;
4422 	struct drm_i915_gem_caching *args = data;
4423 	struct drm_gem_object *gobj;
4424 	struct drm_i915_gem_object *obj;
4425 	enum i915_cache_level level;
4426 	int ret;
4427 
4428 	switch (args->caching) {
4429 	case I915_CACHING_NONE:
4430 		level = I915_CACHE_NONE;
4431 		break;
4432 	case I915_CACHING_CACHED:
4433 		/*
4434 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4435 		 * snooped mapping may leave stale data in a corresponding CPU
4436 		 * cacheline, whereas normally such cachelines would get
4437 		 * invalidated.
4438 		 */
4439 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
4440 			return -ENODEV;
4441 
4442 		level = I915_CACHE_LLC;
4443 		break;
4444 	case I915_CACHING_DISPLAY:
4445 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4446 		break;
4447 	default:
4448 		return -EINVAL;
4449 	}
4450 
4451 	intel_runtime_pm_get(dev_priv);
4452 
4453 	ret = i915_mutex_lock_interruptible(dev);
4454 	if (ret)
4455 		goto rpm_put;
4456 
4457 	gobj = drm_gem_object_lookup(dev, file, args->handle);
4458 	if (gobj == NULL) {
4459 		ret = -ENOENT;
4460 		goto unlock;
4461 	}
4462 	obj = to_intel_bo(gobj);
4463 
4464 	ret = i915_gem_object_set_cache_level(obj, level);
4465 
4466 	drm_gem_object_unreference(&obj->base);
4467 unlock:
4468 	mutex_unlock(&dev->struct_mutex);
4469 rpm_put:
4470 	intel_runtime_pm_put(dev_priv);
4471 
4472 	return ret;
4473 }
4474 
4475 /*
4476  * Prepare buffer for display plane (scanout, cursors, etc).
4477  * Can be called from an uninterruptible phase (modesetting) and allows
4478  * any flushes to be pipelined (for pageflips).
4479  */
4480 int
4481 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4482 				     u32 alignment,
4483 				     struct intel_engine_cs *pipelined,
4484 				     struct drm_i915_gem_request **pipelined_request,
4485 				     const struct i915_ggtt_view *view)
4486 {
4487 	u32 old_read_domains, old_write_domain;
4488 	int ret;
4489 
4490 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4491 	if (ret)
4492 		return ret;
4493 
4494 	/* Mark the pin_display early so that we account for the
4495 	 * display coherency whilst setting up the cache domains.
4496 	 */
4497 	obj->pin_display++;
4498 
4499 	/* The display engine is not coherent with the LLC cache on gen6.  As
4500 	 * a result, we make sure that the pinning that is about to occur is
4501 	 * done with uncached PTEs. This is lowest common denominator for all
4502 	 * chipsets.
4503 	 *
4504 	 * However for gen6+, we could do better by using the GFDT bit instead
4505 	 * of uncaching, which would allow us to flush all the LLC-cached data
4506 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4507 	 */
4508 	ret = i915_gem_object_set_cache_level(obj,
4509 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4510 	if (ret)
4511 		goto err_unpin_display;
4512 
4513 	/* As the user may map the buffer once pinned in the display plane
4514 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4515 	 * always use map_and_fenceable for all scanout buffers.
4516 	 */
4517 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4518 				       view->type == I915_GGTT_VIEW_NORMAL ?
4519 				       PIN_MAPPABLE : 0);
4520 	if (ret)
4521 		goto err_unpin_display;
4522 
4523 	i915_gem_object_flush_cpu_write_domain(obj);
4524 
4525 	old_write_domain = obj->base.write_domain;
4526 	old_read_domains = obj->base.read_domains;
4527 
4528 	/* It should now be out of any other write domains, and we can update
4529 	 * the domain values for our changes.
4530 	 */
4531 	obj->base.write_domain = 0;
4532 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4533 
4534 	trace_i915_gem_object_change_domain(obj,
4535 					    old_read_domains,
4536 					    old_write_domain);
4537 
4538 	return 0;
4539 
4540 err_unpin_display:
4541 	obj->pin_display--;
4542 	return ret;
4543 }
4544 
4545 void
4546 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4547 					 const struct i915_ggtt_view *view)
4548 {
4549 	if (WARN_ON(obj->pin_display == 0))
4550 		return;
4551 
4552 	i915_gem_object_ggtt_unpin_view(obj, view);
4553 
4554 	obj->pin_display--;
4555 }
4556 
4557 /**
4558  * Moves a single object to the CPU read, and possibly write domain.
4559  *
4560  * This function returns when the move is complete, including waiting on
4561  * flushes to occur.
4562  */
4563 int
4564 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4565 {
4566 	uint32_t old_write_domain, old_read_domains;
4567 	int ret;
4568 
4569 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4570 		return 0;
4571 
4572 	ret = i915_gem_object_wait_rendering(obj, !write);
4573 	if (ret)
4574 		return ret;
4575 
4576 	i915_gem_object_flush_gtt_write_domain(obj);
4577 
4578 	old_write_domain = obj->base.write_domain;
4579 	old_read_domains = obj->base.read_domains;
4580 
4581 	/* Flush the CPU cache if it's still invalid. */
4582 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4583 		i915_gem_clflush_object(obj, false);
4584 
4585 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4586 	}
4587 
4588 	/* It should now be out of any other write domains, and we can update
4589 	 * the domain values for our changes.
4590 	 */
4591 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4592 
4593 	/* If we're writing through the CPU, then the GPU read domains will
4594 	 * need to be invalidated at next use.
4595 	 */
4596 	if (write) {
4597 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4598 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4599 	}
4600 
4601 	trace_i915_gem_object_change_domain(obj,
4602 					    old_read_domains,
4603 					    old_write_domain);
4604 
4605 	return 0;
4606 }
4607 
4608 /* Throttle our rendering by waiting until the ring has completed our requests
4609  * emitted over 20 msec ago.
4610  *
4611  * Note that if we were to use the current jiffies each time around the loop,
4612  * we wouldn't escape the function with any frames outstanding if the time to
4613  * render a frame was over 20ms.
4614  *
4615  * This should get us reasonable parallelism between CPU and GPU but also
4616  * relatively low latency when blocking on a particular request to finish.
4617  */
4618 static int
4619 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4620 {
4621 	struct drm_i915_private *dev_priv = dev->dev_private;
4622 	struct drm_i915_file_private *file_priv = file->driver_priv;
4623 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4624 	struct drm_i915_gem_request *request, *target = NULL;
4625 	unsigned reset_counter;
4626 	int ret;
4627 
4628 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4629 	if (ret)
4630 		return ret;
4631 
4632 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4633 	if (ret)
4634 		return ret;
4635 
4636 	spin_lock(&file_priv->mm.lock);
4637 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4638 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4639 			break;
4640 
4641 		/*
4642 		 * Note that the request might not have been submitted yet.
4643 		 * In which case emitted_jiffies will be zero.
4644 		 */
4645 		if (!request->emitted_jiffies)
4646 			continue;
4647 
4648 		target = request;
4649 	}
4650 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4651 	if (target)
4652 		i915_gem_request_reference(target);
4653 	spin_unlock(&file_priv->mm.lock);
4654 
4655 	if (target == NULL)
4656 		return 0;
4657 
4658 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4659 	if (ret == 0)
4660 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4661 
4662 	i915_gem_request_unreference__unlocked(target);
4663 
4664 	return ret;
4665 }
4666 
4667 static bool
4668 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4669 {
4670 	struct drm_i915_gem_object *obj = vma->obj;
4671 
4672 	if (alignment &&
4673 	    vma->node.start & (alignment - 1))
4674 		return true;
4675 
4676 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4677 		return true;
4678 
4679 	if (flags & PIN_OFFSET_BIAS &&
4680 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4681 		return true;
4682 
4683 	return false;
4684 }
4685 
4686 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4687 {
4688 	struct drm_i915_gem_object *obj = vma->obj;
4689 	bool mappable, fenceable;
4690 	u32 fence_size, fence_alignment;
4691 
4692 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4693 					   obj->base.size,
4694 					   obj->tiling_mode);
4695 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4696 						     obj->base.size,
4697 						     obj->tiling_mode,
4698 						     true);
4699 
4700 	fenceable = (vma->node.size == fence_size &&
4701 		     (vma->node.start & (fence_alignment - 1)) == 0);
4702 
4703 	mappable = (vma->node.start + fence_size <=
4704 		    to_i915(obj->base.dev)->gtt.mappable_end);
4705 
4706 	obj->map_and_fenceable = mappable && fenceable;
4707 }
4708 
4709 static int
4710 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4711 		       struct i915_address_space *vm,
4712 		       const struct i915_ggtt_view *ggtt_view,
4713 		       uint32_t alignment,
4714 		       uint64_t flags)
4715 {
4716 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4717 	struct i915_vma *vma;
4718 	unsigned bound;
4719 	int ret;
4720 
4721 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4722 		return -ENODEV;
4723 
4724 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4725 		return -EINVAL;
4726 
4727 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4728 		return -EINVAL;
4729 
4730 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4731 		return -EINVAL;
4732 
4733 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4734 			  i915_gem_obj_to_vma(obj, vm);
4735 
4736 	if (IS_ERR(vma))
4737 		return PTR_ERR(vma);
4738 
4739 	if (vma) {
4740 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4741 			return -EBUSY;
4742 
4743 		if (i915_vma_misplaced(vma, alignment, flags)) {
4744 			WARN(vma->pin_count,
4745 			     "bo is already pinned in %s with incorrect alignment:"
4746 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4747 			     " obj->map_and_fenceable=%d\n",
4748 			     ggtt_view ? "ggtt" : "ppgtt",
4749 			     upper_32_bits(vma->node.start),
4750 			     lower_32_bits(vma->node.start),
4751 			     alignment,
4752 			     !!(flags & PIN_MAPPABLE),
4753 			     obj->map_and_fenceable);
4754 			ret = i915_vma_unbind(vma);
4755 			if (ret)
4756 				return ret;
4757 
4758 			vma = NULL;
4759 		}
4760 	}
4761 
4762 	bound = vma ? vma->bound : 0;
4763 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4764 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4765 						 flags);
4766 		if (IS_ERR(vma))
4767 			return PTR_ERR(vma);
4768 	} else {
4769 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4770 		if (ret)
4771 			return ret;
4772 	}
4773 
4774 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4775 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4776 		__i915_vma_set_map_and_fenceable(vma);
4777 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4778 	}
4779 
4780 	vma->pin_count++;
4781 	return 0;
4782 }
4783 
4784 int
4785 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4786 		    struct i915_address_space *vm,
4787 		    uint32_t alignment,
4788 		    uint64_t flags)
4789 {
4790 	return i915_gem_object_do_pin(obj, vm,
4791 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4792 				      alignment, flags);
4793 }
4794 
4795 int
4796 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4797 			 const struct i915_ggtt_view *view,
4798 			 uint32_t alignment,
4799 			 uint64_t flags)
4800 {
4801 	if (WARN_ONCE(!view, "no view specified"))
4802 		return -EINVAL;
4803 
4804 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4805 				      alignment, flags | PIN_GLOBAL);
4806 }
4807 
4808 void
4809 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4810 				const struct i915_ggtt_view *view)
4811 {
4812 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4813 
4814 	BUG_ON(!vma);
4815 	WARN_ON(vma->pin_count == 0);
4816 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4817 
4818 	--vma->pin_count;
4819 }
4820 
4821 int
4822 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4823 		    struct drm_file *file)
4824 {
4825 	struct drm_i915_gem_busy *args = data;
4826 	struct drm_gem_object *gobj;
4827 	struct drm_i915_gem_object *obj;
4828 	int ret;
4829 
4830 	ret = i915_mutex_lock_interruptible(dev);
4831 	if (ret)
4832 		return ret;
4833 
4834 	gobj = drm_gem_object_lookup(dev, file, args->handle);
4835 	if (gobj == NULL) {
4836 		ret = -ENOENT;
4837 		goto unlock;
4838 	}
4839 	obj = to_intel_bo(gobj);
4840 
4841 	/* Count all active objects as busy, even if they are currently not used
4842 	 * by the gpu. Users of this interface expect objects to eventually
4843 	 * become non-busy without any further actions, therefore emit any
4844 	 * necessary flushes here.
4845 	 */
4846 	ret = i915_gem_object_flush_active(obj);
4847 	if (ret)
4848 		goto unref;
4849 
4850 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4851 	args->busy = obj->active << 16;
4852 	if (obj->last_write_req)
4853 		args->busy |= obj->last_write_req->ring->id;
4854 
4855 unref:
4856 	drm_gem_object_unreference(&obj->base);
4857 unlock:
4858 	mutex_unlock(&dev->struct_mutex);
4859 	return ret;
4860 }
4861 
4862 int
4863 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4864 			struct drm_file *file_priv)
4865 {
4866 	return i915_gem_ring_throttle(dev, file_priv);
4867 }
4868 
4869 int
4870 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4871 		       struct drm_file *file_priv)
4872 {
4873 	struct drm_i915_private *dev_priv = dev->dev_private;
4874 	struct drm_i915_gem_madvise *args = data;
4875 	struct drm_gem_object *gobj;
4876 	struct drm_i915_gem_object *obj;
4877 	int ret;
4878 
4879 	switch (args->madv) {
4880 	case I915_MADV_DONTNEED:
4881 	case I915_MADV_WILLNEED:
4882 	    break;
4883 	default:
4884 	    return -EINVAL;
4885 	}
4886 
4887 	ret = i915_mutex_lock_interruptible(dev);
4888 	if (ret)
4889 		return ret;
4890 
4891 	gobj = drm_gem_object_lookup(dev, file_priv, args->handle);
4892 	if (gobj == NULL) {
4893 		ret = -ENOENT;
4894 		goto unlock;
4895 	}
4896 	obj = to_intel_bo(gobj);
4897 
4898 	if (i915_gem_obj_is_pinned(obj)) {
4899 		ret = -EINVAL;
4900 		goto out;
4901 	}
4902 
4903 	if (obj->pages &&
4904 	    obj->tiling_mode != I915_TILING_NONE &&
4905 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4906 		if (obj->madv == I915_MADV_WILLNEED)
4907 			i915_gem_object_unpin_pages(obj);
4908 		if (args->madv == I915_MADV_WILLNEED)
4909 			i915_gem_object_pin_pages(obj);
4910 	}
4911 
4912 	if (obj->madv != __I915_MADV_PURGED)
4913 		obj->madv = args->madv;
4914 
4915 	/* if the object is no longer attached, discard its backing storage */
4916 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4917 		i915_gem_object_truncate(obj);
4918 
4919 	args->retained = obj->madv != __I915_MADV_PURGED;
4920 
4921 out:
4922 	drm_gem_object_unreference(&obj->base);
4923 unlock:
4924 	mutex_unlock(&dev->struct_mutex);
4925 	return ret;
4926 }
4927 
4928 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4929 			  const struct drm_i915_gem_object_ops *ops)
4930 {
4931 	int i;
4932 
4933 	INIT_LIST_HEAD(&obj->global_list);
4934 	for (i = 0; i < I915_NUM_RINGS; i++)
4935 		INIT_LIST_HEAD(&obj->ring_list[i]);
4936 	INIT_LIST_HEAD(&obj->obj_exec_link);
4937 	INIT_LIST_HEAD(&obj->vma_list);
4938 	INIT_LIST_HEAD(&obj->batch_pool_link);
4939 
4940 	obj->ops = ops;
4941 
4942 	obj->fence_reg = I915_FENCE_REG_NONE;
4943 	obj->madv = I915_MADV_WILLNEED;
4944 
4945 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4946 }
4947 
4948 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4949 	.get_pages = i915_gem_object_get_pages_gtt,
4950 	.put_pages = i915_gem_object_put_pages_gtt,
4951 };
4952 
4953 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4954 						  size_t size)
4955 {
4956 #ifdef __NetBSD__
4957 	struct drm_i915_private *const dev_priv = dev->dev_private;
4958 #endif
4959 	struct drm_i915_gem_object *obj;
4960 #ifndef __NetBSD__
4961 	struct address_space *mapping;
4962 	gfp_t mask;
4963 #endif
4964 
4965 	obj = i915_gem_object_alloc(dev);
4966 	if (obj == NULL)
4967 		return NULL;
4968 
4969 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4970 		i915_gem_object_free(obj);
4971 		return NULL;
4972 	}
4973 
4974 #ifdef __NetBSD__
4975 	uao_set_pgfl(obj->base.filp, dev_priv->gtt.pgfl);
4976 #else
4977 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4978 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4979 		/* 965gm cannot relocate objects above 4GiB. */
4980 		mask &= ~__GFP_HIGHMEM;
4981 		mask |= __GFP_DMA32;
4982 	}
4983 
4984 	mapping = file_inode(obj->base.filp)->i_mapping;
4985 	mapping_set_gfp_mask(mapping, mask);
4986 #endif
4987 
4988 	i915_gem_object_init(obj, &i915_gem_object_ops);
4989 
4990 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4991 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4992 
4993 	if (HAS_LLC(dev)) {
4994 		/* On some devices, we can have the GPU use the LLC (the CPU
4995 		 * cache) for about a 10% performance improvement
4996 		 * compared to uncached.  Graphics requests other than
4997 		 * display scanout are coherent with the CPU in
4998 		 * accessing this cache.  This means in this mode we
4999 		 * don't need to clflush on the CPU side, and on the
5000 		 * GPU side we only need to flush internal caches to
5001 		 * get data visible to the CPU.
5002 		 *
5003 		 * However, we maintain the display planes as UC, and so
5004 		 * need to rebind when first used as such.
5005 		 */
5006 		obj->cache_level = I915_CACHE_LLC;
5007 	} else
5008 		obj->cache_level = I915_CACHE_NONE;
5009 
5010 	trace_i915_gem_object_create(obj);
5011 
5012 	return obj;
5013 }
5014 
5015 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
5016 {
5017 	/* If we are the last user of the backing storage (be it shmemfs
5018 	 * pages or stolen etc), we know that the pages are going to be
5019 	 * immediately released. In this case, we can then skip copying
5020 	 * back the contents from the GPU.
5021 	 */
5022 
5023 	if (obj->madv != I915_MADV_WILLNEED)
5024 		return false;
5025 
5026 	if (obj->base.filp == NULL)
5027 		return true;
5028 
5029 	/* At first glance, this looks racy, but then again so would be
5030 	 * userspace racing mmap against close. However, the first external
5031 	 * reference to the filp can only be obtained through the
5032 	 * i915_gem_mmap_ioctl() which safeguards us against the user
5033 	 * acquiring such a reference whilst we are in the middle of
5034 	 * freeing the object.
5035 	 */
5036 #ifdef __NetBSD__
5037 	/* XXX This number might be a fencepost.  */
5038 	return obj->base.filp->uo_refs == 1;
5039 #else
5040 	return atomic_long_read(&obj->base.filp->f_count) == 1;
5041 #endif
5042 }
5043 
5044 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5045 {
5046 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5047 	struct drm_device *dev = obj->base.dev;
5048 	struct drm_i915_private *dev_priv = dev->dev_private;
5049 	struct i915_vma *vma, *next;
5050 
5051 	intel_runtime_pm_get(dev_priv);
5052 
5053 	trace_i915_gem_object_destroy(obj);
5054 
5055 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
5056 		int ret;
5057 
5058 		vma->pin_count = 0;
5059 		ret = i915_vma_unbind(vma);
5060 		if (WARN_ON(ret == -ERESTARTSYS)) {
5061 			bool was_interruptible;
5062 
5063 			was_interruptible = dev_priv->mm.interruptible;
5064 			dev_priv->mm.interruptible = false;
5065 
5066 			WARN_ON(i915_vma_unbind(vma));
5067 
5068 			dev_priv->mm.interruptible = was_interruptible;
5069 		}
5070 	}
5071 
5072 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
5073 	 * before progressing. */
5074 	if (obj->stolen)
5075 		i915_gem_object_unpin_pages(obj);
5076 
5077 	WARN_ON(obj->frontbuffer_bits);
5078 
5079 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
5080 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
5081 	    obj->tiling_mode != I915_TILING_NONE)
5082 		i915_gem_object_unpin_pages(obj);
5083 
5084 	if (WARN_ON(obj->pages_pin_count))
5085 		obj->pages_pin_count = 0;
5086 	if (discard_backing_storage(obj))
5087 		obj->madv = I915_MADV_DONTNEED;
5088 	i915_gem_object_put_pages(obj);
5089 	i915_gem_object_free_mmap_offset(obj);
5090 
5091 	BUG_ON(obj->pages);
5092 
5093 	if (obj->base.import_attach)
5094 		drm_prime_gem_destroy(&obj->base, NULL);
5095 
5096 	if (obj->ops->release)
5097 		obj->ops->release(obj);
5098 
5099 	drm_gem_object_release(&obj->base);
5100 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
5101 
5102 	kfree(obj->bit_17);
5103 	i915_gem_object_free(obj);
5104 
5105 	intel_runtime_pm_put(dev_priv);
5106 }
5107 
5108 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
5109 				     struct i915_address_space *vm)
5110 {
5111 	struct i915_vma *vma;
5112 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
5113 		if (i915_is_ggtt(vma->vm) &&
5114 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5115 			continue;
5116 		if (vma->vm == vm)
5117 			return vma;
5118 	}
5119 	return NULL;
5120 }
5121 
5122 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
5123 					   const struct i915_ggtt_view *view)
5124 {
5125 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5126 	struct i915_vma *vma;
5127 
5128 	if (WARN_ONCE(!view, "no view specified"))
5129 		return ERR_PTR(-EINVAL);
5130 
5131 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5132 		if (vma->vm == ggtt &&
5133 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5134 			return vma;
5135 	return NULL;
5136 }
5137 
5138 void i915_gem_vma_destroy(struct i915_vma *vma)
5139 {
5140 	struct i915_address_space *vm = NULL;
5141 	WARN_ON(vma->node.allocated);
5142 
5143 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
5144 	if (!list_empty(&vma->exec_list))
5145 		return;
5146 
5147 	vm = vma->vm;
5148 
5149 	if (!i915_is_ggtt(vm))
5150 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
5151 
5152 	list_del(&vma->vma_link);
5153 
5154 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
5155 }
5156 
5157 static void
5158 i915_gem_stop_ringbuffers(struct drm_device *dev)
5159 {
5160 	struct drm_i915_private *dev_priv = dev->dev_private;
5161 	struct intel_engine_cs *ring;
5162 	int i;
5163 
5164 	for_each_ring(ring, dev_priv, i)
5165 		dev_priv->gt.stop_ring(ring);
5166 }
5167 
5168 int
5169 i915_gem_suspend(struct drm_device *dev)
5170 {
5171 	struct drm_i915_private *dev_priv = dev->dev_private;
5172 	int ret = 0;
5173 
5174 	mutex_lock(&dev->struct_mutex);
5175 	ret = i915_gpu_idle(dev);
5176 	if (ret)
5177 		goto err;
5178 
5179 	i915_gem_retire_requests(dev);
5180 
5181 	i915_gem_stop_ringbuffers(dev);
5182 	mutex_unlock(&dev->struct_mutex);
5183 
5184 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5185 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5186 	flush_delayed_work(&dev_priv->mm.idle_work);
5187 
5188 	/* Assert that we sucessfully flushed all the work and
5189 	 * reset the GPU back to its idle, low power state.
5190 	 */
5191 	WARN_ON(dev_priv->mm.busy);
5192 
5193 	return 0;
5194 
5195 err:
5196 	mutex_unlock(&dev->struct_mutex);
5197 	return ret;
5198 }
5199 
5200 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
5201 {
5202 	struct intel_engine_cs *ring = req->ring;
5203 	struct drm_device *dev = ring->dev;
5204 	struct drm_i915_private *dev_priv = dev->dev_private;
5205 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
5206 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
5207 	int i, ret;
5208 
5209 	if (!HAS_L3_DPF(dev) || !remap_info)
5210 		return 0;
5211 
5212 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
5213 	if (ret)
5214 		return ret;
5215 
5216 	/*
5217 	 * Note: We do not worry about the concurrent register cacheline hang
5218 	 * here because no other code should access these registers other than
5219 	 * at initialization time.
5220 	 */
5221 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
5222 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
5223 		intel_ring_emit(ring, reg_base + i);
5224 		intel_ring_emit(ring, remap_info[i/4]);
5225 	}
5226 
5227 	intel_ring_advance(ring);
5228 
5229 	return ret;
5230 }
5231 
5232 void i915_gem_init_swizzling(struct drm_device *dev)
5233 {
5234 	struct drm_i915_private *dev_priv = dev->dev_private;
5235 
5236 	if (INTEL_INFO(dev)->gen < 5 ||
5237 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5238 		return;
5239 
5240 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5241 				 DISP_TILE_SURFACE_SWIZZLING);
5242 
5243 	if (IS_GEN5(dev))
5244 		return;
5245 
5246 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5247 	if (IS_GEN6(dev))
5248 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5249 	else if (IS_GEN7(dev))
5250 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5251 	else if (IS_GEN8(dev))
5252 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5253 	else
5254 		BUG();
5255 }
5256 
5257 static void init_unused_ring(struct drm_device *dev, u32 base)
5258 {
5259 	struct drm_i915_private *dev_priv = dev->dev_private;
5260 
5261 	I915_WRITE(RING_CTL(base), 0);
5262 	I915_WRITE(RING_HEAD(base), 0);
5263 	I915_WRITE(RING_TAIL(base), 0);
5264 	I915_WRITE(RING_START(base), 0);
5265 }
5266 
5267 static void init_unused_rings(struct drm_device *dev)
5268 {
5269 	if (IS_I830(dev)) {
5270 		init_unused_ring(dev, PRB1_BASE);
5271 		init_unused_ring(dev, SRB0_BASE);
5272 		init_unused_ring(dev, SRB1_BASE);
5273 		init_unused_ring(dev, SRB2_BASE);
5274 		init_unused_ring(dev, SRB3_BASE);
5275 	} else if (IS_GEN2(dev)) {
5276 		init_unused_ring(dev, SRB0_BASE);
5277 		init_unused_ring(dev, SRB1_BASE);
5278 	} else if (IS_GEN3(dev)) {
5279 		init_unused_ring(dev, PRB1_BASE);
5280 		init_unused_ring(dev, PRB2_BASE);
5281 	}
5282 }
5283 
5284 int i915_gem_init_rings(struct drm_device *dev)
5285 {
5286 	struct drm_i915_private *dev_priv = dev->dev_private;
5287 	int ret;
5288 
5289 	ret = intel_init_render_ring_buffer(dev);
5290 	if (ret)
5291 		return ret;
5292 
5293 	if (HAS_BSD(dev)) {
5294 		ret = intel_init_bsd_ring_buffer(dev);
5295 		if (ret)
5296 			goto cleanup_render_ring;
5297 	}
5298 
5299 	if (HAS_BLT(dev)) {
5300 		ret = intel_init_blt_ring_buffer(dev);
5301 		if (ret)
5302 			goto cleanup_bsd_ring;
5303 	}
5304 
5305 	if (HAS_VEBOX(dev)) {
5306 		ret = intel_init_vebox_ring_buffer(dev);
5307 		if (ret)
5308 			goto cleanup_blt_ring;
5309 	}
5310 
5311 	if (HAS_BSD2(dev)) {
5312 		ret = intel_init_bsd2_ring_buffer(dev);
5313 		if (ret)
5314 			goto cleanup_vebox_ring;
5315 	}
5316 
5317 	return 0;
5318 
5319 cleanup_vebox_ring:
5320 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5321 cleanup_blt_ring:
5322 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5323 cleanup_bsd_ring:
5324 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5325 cleanup_render_ring:
5326 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5327 
5328 	return ret;
5329 }
5330 
5331 int
5332 i915_gem_init_hw(struct drm_device *dev)
5333 {
5334 	struct drm_i915_private *dev_priv = dev->dev_private;
5335 	struct intel_engine_cs *ring;
5336 	int ret, i, j;
5337 
5338 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5339 		return -EIO;
5340 
5341 	/* Double layer security blanket, see i915_gem_init() */
5342 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5343 
5344 	if (dev_priv->ellc_size)
5345 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5346 
5347 	if (IS_HASWELL(dev))
5348 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5349 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5350 
5351 	if (HAS_PCH_NOP(dev)) {
5352 		if (IS_IVYBRIDGE(dev)) {
5353 			u32 temp = I915_READ(GEN7_MSG_CTL);
5354 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5355 			I915_WRITE(GEN7_MSG_CTL, temp);
5356 		} else if (INTEL_INFO(dev)->gen >= 7) {
5357 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5358 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5359 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5360 		}
5361 	}
5362 
5363 	i915_gem_init_swizzling(dev);
5364 
5365 	/*
5366 	 * At least 830 can leave some of the unused rings
5367 	 * "active" (ie. head != tail) after resume which
5368 	 * will prevent c3 entry. Makes sure all unused rings
5369 	 * are totally idle.
5370 	 */
5371 	init_unused_rings(dev);
5372 
5373 	BUG_ON(!dev_priv->ring[RCS].default_context);
5374 
5375 	ret = i915_ppgtt_init_hw(dev);
5376 	if (ret) {
5377 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5378 		goto out;
5379 	}
5380 
5381 	/* Need to do basic initialisation of all rings first: */
5382 	for_each_ring(ring, dev_priv, i) {
5383 		ret = ring->init_hw(ring);
5384 		if (ret)
5385 			goto out;
5386 	}
5387 
5388 	/* We can't enable contexts until all firmware is loaded */
5389 	if (HAS_GUC_UCODE(dev)) {
5390 		ret = intel_guc_ucode_load(dev);
5391 		if (ret) {
5392 			/*
5393 			 * If we got an error and GuC submission is enabled, map
5394 			 * the error to -EIO so the GPU will be declared wedged.
5395 			 * OTOH, if we didn't intend to use the GuC anyway, just
5396 			 * discard the error and carry on.
5397 			 */
5398 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
5399 				  i915.enable_guc_submission ? "" :
5400 				  " (ignored)");
5401 			ret = i915.enable_guc_submission ? -EIO : 0;
5402 			if (ret)
5403 				goto out;
5404 		}
5405 	}
5406 
5407 	/*
5408 	 * Increment the next seqno by 0x100 so we have a visible break
5409 	 * on re-initialisation
5410 	 */
5411 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5412 	if (ret)
5413 		goto out;
5414 
5415 	/* Now it is safe to go back round and do everything else: */
5416 	for_each_ring(ring, dev_priv, i) {
5417 		struct drm_i915_gem_request *req;
5418 
5419 		WARN_ON(!ring->default_context);
5420 
5421 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5422 		if (ret) {
5423 			i915_gem_cleanup_ringbuffer(dev);
5424 			goto out;
5425 		}
5426 
5427 		if (ring->id == RCS) {
5428 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
5429 				i915_gem_l3_remap(req, j);
5430 		}
5431 
5432 		ret = i915_ppgtt_init_ring(req);
5433 		if (ret && ret != -EIO) {
5434 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5435 			i915_gem_request_cancel(req);
5436 			i915_gem_cleanup_ringbuffer(dev);
5437 			goto out;
5438 		}
5439 
5440 		ret = i915_gem_context_enable(req);
5441 		if (ret && ret != -EIO) {
5442 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5443 			i915_gem_request_cancel(req);
5444 			i915_gem_cleanup_ringbuffer(dev);
5445 			goto out;
5446 		}
5447 
5448 		i915_add_request_no_flush(req);
5449 	}
5450 
5451 out:
5452 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5453 	return ret;
5454 }
5455 
5456 int i915_gem_init(struct drm_device *dev)
5457 {
5458 	struct drm_i915_private *dev_priv = dev->dev_private;
5459 	int ret;
5460 
5461 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5462 			i915.enable_execlists);
5463 
5464 	idr_preload(GFP_KERNEL);	/* gem context */
5465 	mutex_lock(&dev->struct_mutex);
5466 
5467 	if (IS_VALLEYVIEW(dev)) {
5468 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5469 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5470 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5471 			      VLV_GTLC_ALLOWWAKEACK), 10))
5472 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5473 	}
5474 
5475 	if (!i915.enable_execlists) {
5476 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5477 		dev_priv->gt.init_rings = i915_gem_init_rings;
5478 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5479 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5480 	} else {
5481 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5482 		dev_priv->gt.init_rings = intel_logical_rings_init;
5483 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5484 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5485 	}
5486 
5487 	/* This is just a security blanket to placate dragons.
5488 	 * On some systems, we very sporadically observe that the first TLBs
5489 	 * used by the CS may be stale, despite us poking the TLB reset. If
5490 	 * we hold the forcewake during initialisation these problems
5491 	 * just magically go away.
5492 	 */
5493 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5494 
5495 	ret = i915_gem_init_userptr(dev);
5496 	if (ret)
5497 		goto out_unlock;
5498 
5499 	i915_gem_init_global_gtt(dev);
5500 
5501 	ret = i915_gem_context_init(dev);
5502 	if (ret)
5503 		goto out_unlock;
5504 
5505 	ret = dev_priv->gt.init_rings(dev);
5506 	if (ret)
5507 		goto out_unlock;
5508 
5509 	ret = i915_gem_init_hw(dev);
5510 	if (ret == -EIO) {
5511 		/* Allow ring initialisation to fail by marking the GPU as
5512 		 * wedged. But we only want to do this where the GPU is angry,
5513 		 * for all other failure, such as an allocation failure, bail.
5514 		 */
5515 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5516 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5517 		ret = 0;
5518 	}
5519 
5520 out_unlock:
5521 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5522 	mutex_unlock(&dev->struct_mutex);
5523 	idr_preload_end();
5524 
5525 	return ret;
5526 }
5527 
5528 void
5529 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5530 {
5531 	struct drm_i915_private *dev_priv = dev->dev_private;
5532 	struct intel_engine_cs *ring;
5533 	int i;
5534 
5535 	for_each_ring(ring, dev_priv, i)
5536 		dev_priv->gt.cleanup_ring(ring);
5537 
5538     if (i915.enable_execlists)
5539             /*
5540              * Neither the BIOS, ourselves or any other kernel
5541              * expects the system to be in execlists mode on startup,
5542              * so we need to reset the GPU back to legacy mode.
5543              */
5544             intel_gpu_reset(dev);
5545 }
5546 
5547 static void
5548 init_ring_lists(struct intel_engine_cs *ring)
5549 {
5550 	INIT_LIST_HEAD(&ring->active_list);
5551 	INIT_LIST_HEAD(&ring->request_list);
5552 }
5553 
5554 void
5555 i915_gem_load(struct drm_device *dev)
5556 {
5557 	struct drm_i915_private *dev_priv = dev->dev_private;
5558 	int i;
5559 
5560 	dev_priv->objects =
5561 		kmem_cache_create("i915_gem_object",
5562 				  sizeof(struct drm_i915_gem_object), 0,
5563 				  SLAB_HWCACHE_ALIGN,
5564 				  NULL);
5565 	dev_priv->vmas =
5566 		kmem_cache_create("i915_gem_vma",
5567 				  sizeof(struct i915_vma), 0,
5568 				  SLAB_HWCACHE_ALIGN,
5569 				  NULL);
5570 	dev_priv->requests =
5571 		kmem_cache_create("i915_gem_request",
5572 				  sizeof(struct drm_i915_gem_request), 0,
5573 				  SLAB_HWCACHE_ALIGN,
5574 				  NULL);
5575 
5576 	INIT_LIST_HEAD(&dev_priv->vm_list);
5577 	INIT_LIST_HEAD(&dev_priv->context_list);
5578 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5579 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5580 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5581 	for (i = 0; i < I915_NUM_RINGS; i++)
5582 		init_ring_lists(&dev_priv->ring[i]);
5583 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5584 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5585 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5586 			  i915_gem_retire_work_handler);
5587 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5588 			  i915_gem_idle_work_handler);
5589 #ifdef __NetBSD__
5590 	spin_lock_init(&dev_priv->gpu_error.reset_lock);
5591 	DRM_INIT_WAITQUEUE(&dev_priv->gpu_error.reset_queue, "i915errst");
5592 #else
5593 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5594 #endif
5595 
5596 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5597 
5598 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5599 		dev_priv->num_fence_regs = 32;
5600 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5601 		dev_priv->num_fence_regs = 16;
5602 	else
5603 		dev_priv->num_fence_regs = 8;
5604 
5605 	if (intel_vgpu_active(dev))
5606 		dev_priv->num_fence_regs =
5607 				I915_READ(vgtif_reg(avail_rs.fence_num));
5608 
5609 	/*
5610 	 * Set initial sequence number for requests.
5611 	 * Using this number allows the wraparound to happen early,
5612 	 * catching any obvious problems.
5613 	 */
5614 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5615 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5616 
5617 	/* Initialize fence registers to zero */
5618 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5619 	i915_gem_restore_fences(dev);
5620 
5621 	i915_gem_detect_bit_6_swizzle(dev);
5622 #ifdef __NetBSD__
5623 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
5624 	spin_lock_init(&dev_priv->pending_flip_lock);
5625 #else
5626 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5627 #endif
5628 
5629 	dev_priv->mm.interruptible = true;
5630 
5631 	i915_gem_shrinker_init(dev_priv);
5632 	mutex_init(&dev_priv->fb_tracking.lock);
5633 }
5634 
5635 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5636 {
5637 	struct drm_i915_file_private *file_priv = file->driver_priv;
5638 
5639 	/* Clean up our request list when the client is going away, so that
5640 	 * later retire_requests won't dereference our soon-to-be-gone
5641 	 * file_priv.
5642 	 */
5643 	spin_lock(&file_priv->mm.lock);
5644 	while (!list_empty(&file_priv->mm.request_list)) {
5645 		struct drm_i915_gem_request *request;
5646 
5647 		request = list_first_entry(&file_priv->mm.request_list,
5648 					   struct drm_i915_gem_request,
5649 					   client_list);
5650 		list_del(&request->client_list);
5651 		request->file_priv = NULL;
5652 	}
5653 	spin_unlock(&file_priv->mm.lock);
5654 
5655 	if (!list_empty(&file_priv->rps.link)) {
5656 		spin_lock(&to_i915(dev)->rps.client_lock);
5657 		list_del(&file_priv->rps.link);
5658 		spin_unlock(&to_i915(dev)->rps.client_lock);
5659 	}
5660 }
5661 
5662 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5663 {
5664 	struct drm_i915_file_private *file_priv;
5665 	int ret;
5666 
5667 	DRM_DEBUG_DRIVER("\n");
5668 
5669 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5670 	if (!file_priv)
5671 		return -ENOMEM;
5672 
5673 	file->driver_priv = file_priv;
5674 	file_priv->dev_priv = dev->dev_private;
5675 	file_priv->file = file;
5676 	INIT_LIST_HEAD(&file_priv->rps.link);
5677 
5678 	spin_lock_init(&file_priv->mm.lock);
5679 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5680 
5681 	ret = i915_gem_context_open(dev, file);
5682 	if (ret)
5683 		kfree(file_priv);
5684 
5685 	return ret;
5686 }
5687 
5688 /**
5689  * i915_gem_track_fb - update frontbuffer tracking
5690  * @old: current GEM buffer for the frontbuffer slots
5691  * @new: new GEM buffer for the frontbuffer slots
5692  * @frontbuffer_bits: bitmask of frontbuffer slots
5693  *
5694  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5695  * from @old and setting them in @new. Both @old and @new can be NULL.
5696  */
5697 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5698 		       struct drm_i915_gem_object *new,
5699 		       unsigned frontbuffer_bits)
5700 {
5701 	if (old) {
5702 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5703 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5704 		old->frontbuffer_bits &= ~frontbuffer_bits;
5705 	}
5706 
5707 	if (new) {
5708 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5709 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5710 		new->frontbuffer_bits |= frontbuffer_bits;
5711 	}
5712 }
5713 
5714 /* All the new VM stuff */
5715 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5716 			struct i915_address_space *vm)
5717 {
5718 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5719 	struct i915_vma *vma;
5720 
5721 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5722 
5723 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5724 		if (i915_is_ggtt(vma->vm) &&
5725 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5726 			continue;
5727 		if (vma->vm == vm)
5728 			return vma->node.start;
5729 	}
5730 
5731 	WARN(1, "%s vma for this object not found.\n",
5732 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5733 	return -1;
5734 }
5735 
5736 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5737 				  const struct i915_ggtt_view *view)
5738 {
5739 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5740 	struct i915_vma *vma;
5741 
5742 	list_for_each_entry(vma, &o->vma_list, vma_link)
5743 		if (vma->vm == ggtt &&
5744 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5745 			return vma->node.start;
5746 
5747 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5748 	return -1;
5749 }
5750 
5751 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5752 			struct i915_address_space *vm)
5753 {
5754 	struct i915_vma *vma;
5755 
5756 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5757 		if (i915_is_ggtt(vma->vm) &&
5758 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5759 			continue;
5760 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5761 			return true;
5762 	}
5763 
5764 	return false;
5765 }
5766 
5767 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5768 				  const struct i915_ggtt_view *view)
5769 {
5770 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5771 	struct i915_vma *vma;
5772 
5773 	list_for_each_entry(vma, &o->vma_list, vma_link)
5774 		if (vma->vm == ggtt &&
5775 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5776 		    drm_mm_node_allocated(&vma->node))
5777 			return true;
5778 
5779 	return false;
5780 }
5781 
5782 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5783 {
5784 	struct i915_vma *vma;
5785 
5786 	list_for_each_entry(vma, &o->vma_list, vma_link)
5787 		if (drm_mm_node_allocated(&vma->node))
5788 			return true;
5789 
5790 	return false;
5791 }
5792 
5793 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5794 				struct i915_address_space *vm)
5795 {
5796 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5797 	struct i915_vma *vma;
5798 
5799 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5800 
5801 	BUG_ON(list_empty(&o->vma_list));
5802 
5803 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5804 		if (i915_is_ggtt(vma->vm) &&
5805 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5806 			continue;
5807 		if (vma->vm == vm)
5808 			return vma->node.size;
5809 	}
5810 	return 0;
5811 }
5812 
5813 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5814 {
5815 	struct i915_vma *vma;
5816 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5817 		if (vma->pin_count > 0)
5818 			return true;
5819 
5820 	return false;
5821 }
5822 
5823 /* Allocate a new GEM object and fill it with the supplied data */
5824 struct drm_i915_gem_object *
5825 i915_gem_object_create_from_data(struct drm_device *dev,
5826 			         const void *data, size_t size)
5827 {
5828 	struct drm_i915_gem_object *obj;
5829 #ifdef __NetBSD__
5830 	struct iovec iov = { .iov_base = __UNCONST(data), .iov_len = size };
5831 	struct uio uio = {
5832 	    .uio_iov = &iov,
5833 	    .uio_iovcnt = 1,
5834 	    .uio_offset = 0,
5835 	    .uio_resid = size,
5836 	    .uio_rw = UIO_WRITE,
5837 	};
5838 #else
5839 	struct sg_table *sg;
5840 #endif
5841 	size_t bytes;
5842 	int ret;
5843 
5844 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5845 	if (IS_ERR_OR_NULL(obj))
5846 		return obj;
5847 
5848 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5849 	if (ret)
5850 		goto fail;
5851 
5852 	ret = i915_gem_object_get_pages(obj);
5853 	if (ret)
5854 		goto fail;
5855 
5856 	i915_gem_object_pin_pages(obj);
5857 #ifdef __NetBSD__
5858 	UIO_SETUP_SYSSPACE(&uio);
5859 	/* XXX errno NetBSD->Linux */
5860 	ret = -ubc_uiomove(obj->base.filp, &uio, size, UVM_ADV_NORMAL,
5861 	    UBC_WRITE);
5862 	if (ret)
5863 		goto fail;
5864 	bytes = size - uio.uio_resid;
5865 #else
5866 	sg = obj->pages;
5867 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5868 #endif
5869 	i915_gem_object_unpin_pages(obj);
5870 
5871 	if (WARN_ON(bytes != size)) {
5872 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5873 		ret = -EFAULT;
5874 		goto fail;
5875 	}
5876 
5877 	return obj;
5878 
5879 fail:
5880 	drm_gem_object_unreference(&obj->base);
5881 	return ERR_PTR(ret);
5882 }
5883