xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/i915_gem.c (revision d11b170b9000ada93db553723522a63d5deac310)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #ifdef __NetBSD__
29 #if 0				/* XXX uvmhist option?  */
30 #include "opt_uvmhist.h"
31 #endif
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 
36 #include <uvm/uvm.h>
37 #include <uvm/uvm_extern.h>
38 #include <uvm/uvm_fault.h>
39 #include <uvm/uvm_page.h>
40 #include <uvm/uvm_pmap.h>
41 #include <uvm/uvm_prot.h>
42 #endif
43 
44 #include <drm/drmP.h>
45 #include <drm/i915_drm.h>
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_drv.h"
49 #include <linux/shmem_fs.h>
50 #include <linux/slab.h>
51 #include <linux/swap.h>
52 #include <linux/pci.h>
53 #include <linux/dma-buf.h>
54 #include <linux/errno.h>
55 #include <linux/time.h>
56 #include <linux/err.h>
57 #include <asm/param.h>
58 
59 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
60 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
62 						    unsigned alignment,
63 						    bool map_and_fenceable,
64 						    bool nonblocking);
65 static int i915_gem_phys_pwrite(struct drm_device *dev,
66 				struct drm_i915_gem_object *obj,
67 				struct drm_i915_gem_pwrite *args,
68 				struct drm_file *file);
69 
70 static void i915_gem_write_fence(struct drm_device *dev, int reg,
71 				 struct drm_i915_gem_object *obj);
72 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
73 					 struct drm_i915_fence_reg *fence,
74 					 bool enable);
75 
76 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
77 				    struct shrink_control *sc);
78 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
79 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
81 
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84 	if (obj->tiling_mode)
85 		i915_gem_release_mmap(obj);
86 
87 	/* As we do not have an associated fence register, we will force
88 	 * a tiling change if we ever need to acquire one.
89 	 */
90 	obj->fence_dirty = false;
91 	obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93 
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 				  size_t size)
97 {
98 	dev_priv->mm.object_count++;
99 	dev_priv->mm.object_memory += size;
100 }
101 
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 				     size_t size)
104 {
105 	dev_priv->mm.object_count--;
106 	dev_priv->mm.object_memory -= size;
107 }
108 
109 static int
110 i915_gem_wait_for_error(struct drm_device *dev)
111 {
112 	struct drm_i915_private *dev_priv = dev->dev_private;
113 	struct completion *x = &dev_priv->error_completion;
114 #ifndef __NetBSD__
115 	unsigned long flags;
116 #endif
117 	int ret;
118 
119 	if (!atomic_read(&dev_priv->mm.wedged))
120 		return 0;
121 
122 	/*
123 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
124 	 * userspace. If it takes that long something really bad is going on and
125 	 * we should simply try to bail out and fail as gracefully as possible.
126 	 */
127 	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
128 	if (ret == 0) {
129 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 		return -EIO;
131 	} else if (ret < 0) {
132 		return ret;
133 	}
134 
135 	if (atomic_read(&dev_priv->mm.wedged)) {
136 		/* GPU is hung, bump the completion count to account for
137 		 * the token we just consumed so that we never hit zero and
138 		 * end up waiting upon a subsequent completion event that
139 		 * will never happen.
140 		 */
141 #ifdef __NetBSD__
142 		/* XXX Hope it's not a problem that we might wake someone.  */
143 		complete(x);
144 #else
145 		spin_lock_irqsave(&x->wait.lock, flags);
146 		x->done++;
147 		spin_unlock_irqrestore(&x->wait.lock, flags);
148 #endif
149 	}
150 	return 0;
151 }
152 
153 int i915_mutex_lock_interruptible(struct drm_device *dev)
154 {
155 	int ret;
156 
157 	ret = i915_gem_wait_for_error(dev);
158 	if (ret)
159 		return ret;
160 
161 	ret = mutex_lock_interruptible(&dev->struct_mutex);
162 	if (ret)
163 		return ret;
164 
165 	WARN_ON(i915_verify_lists(dev));
166 	return 0;
167 }
168 
169 static inline bool
170 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
171 {
172 	return obj->gtt_space && !obj->active;
173 }
174 
175 int
176 i915_gem_init_ioctl(struct drm_device *dev, void *data,
177 		    struct drm_file *file)
178 {
179 	struct drm_i915_gem_init *args = data;
180 
181 	if (drm_core_check_feature(dev, DRIVER_MODESET))
182 		return -ENODEV;
183 
184 	if (args->gtt_start >= args->gtt_end ||
185 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
186 		return -EINVAL;
187 
188 	/* GEM with user mode setting was never supported on ilk and later. */
189 	if (INTEL_INFO(dev)->gen >= 5)
190 		return -ENODEV;
191 
192 	mutex_lock(&dev->struct_mutex);
193 	i915_gem_init_global_gtt(dev, args->gtt_start,
194 				 args->gtt_end, args->gtt_end);
195 	mutex_unlock(&dev->struct_mutex);
196 
197 	return 0;
198 }
199 
200 int
201 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
202 			    struct drm_file *file)
203 {
204 	struct drm_i915_private *dev_priv = dev->dev_private;
205 	struct drm_i915_gem_get_aperture *args = data;
206 	struct drm_i915_gem_object *obj;
207 	size_t pinned;
208 
209 	pinned = 0;
210 	mutex_lock(&dev->struct_mutex);
211 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
212 		if (obj->pin_count)
213 			pinned += obj->gtt_space->size;
214 	mutex_unlock(&dev->struct_mutex);
215 
216 	args->aper_size = dev_priv->mm.gtt_total;
217 	args->aper_available_size = args->aper_size - pinned;
218 
219 	return 0;
220 }
221 
222 static int
223 i915_gem_create(struct drm_file *file,
224 		struct drm_device *dev,
225 		uint64_t size,
226 		uint32_t *handle_p)
227 {
228 	struct drm_i915_gem_object *obj;
229 	int ret;
230 	u32 handle;
231 
232 	size = roundup(size, PAGE_SIZE);
233 	if (size == 0)
234 		return -EINVAL;
235 
236 	/* Allocate the new object */
237 	obj = i915_gem_alloc_object(dev, size);
238 	if (obj == NULL)
239 		return -ENOMEM;
240 
241 	ret = drm_gem_handle_create(file, &obj->base, &handle);
242 	if (ret) {
243 		drm_gem_object_release(&obj->base);
244 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
245 		kfree(obj);
246 		return ret;
247 	}
248 
249 	/* drop reference from allocate - handle holds it now */
250 	drm_gem_object_unreference(&obj->base);
251 	trace_i915_gem_object_create(obj);
252 
253 	*handle_p = handle;
254 	return 0;
255 }
256 
257 int
258 i915_gem_dumb_create(struct drm_file *file,
259 		     struct drm_device *dev,
260 		     struct drm_mode_create_dumb *args)
261 {
262 	/* have to work out size/pitch and return them */
263 #ifdef __NetBSD__		/* ALIGN already means something.  */
264 	args->pitch = round_up(args->width * ((args->bpp + 7) / 8), 64);
265 #else
266 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
267 #endif
268 	args->size = args->pitch * args->height;
269 	return i915_gem_create(file, dev,
270 			       args->size, &args->handle);
271 }
272 
273 int i915_gem_dumb_destroy(struct drm_file *file,
274 			  struct drm_device *dev,
275 			  uint32_t handle)
276 {
277 	return drm_gem_handle_delete(file, handle);
278 }
279 
280 /**
281  * Creates a new mm object and returns a handle to it.
282  */
283 int
284 i915_gem_create_ioctl(struct drm_device *dev, void *data,
285 		      struct drm_file *file)
286 {
287 	struct drm_i915_gem_create *args = data;
288 
289 	return i915_gem_create(file, dev,
290 			       args->size, &args->handle);
291 }
292 
293 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
294 {
295 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
296 
297 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
298 		obj->tiling_mode != I915_TILING_NONE;
299 }
300 
301 static inline int
302 __copy_to_user_swizzled(char __user *cpu_vaddr,
303 			const char *gpu_vaddr, int gpu_offset,
304 			int length)
305 {
306 	int ret, cpu_offset = 0;
307 
308 	while (length > 0) {
309 #ifdef __NetBSD__
310 		int cacheline_end = round_up(gpu_offset + 1, 64);
311 #else
312 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 #endif
314 		int this_length = min(cacheline_end - gpu_offset, length);
315 		int swizzled_gpu_offset = gpu_offset ^ 64;
316 
317 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
318 				     gpu_vaddr + swizzled_gpu_offset,
319 				     this_length);
320 		if (ret)
321 			return ret + length;
322 
323 		cpu_offset += this_length;
324 		gpu_offset += this_length;
325 		length -= this_length;
326 	}
327 
328 	return 0;
329 }
330 
331 static inline int
332 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
333 			  const char __user *cpu_vaddr,
334 			  int length)
335 {
336 	int ret, cpu_offset = 0;
337 
338 	while (length > 0) {
339 #ifdef __NetBSD__
340 		int cacheline_end = round_up(gpu_offset + 1, 64);
341 #else
342 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
343 #endif
344 		int this_length = min(cacheline_end - gpu_offset, length);
345 		int swizzled_gpu_offset = gpu_offset ^ 64;
346 
347 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
348 				       cpu_vaddr + cpu_offset,
349 				       this_length);
350 		if (ret)
351 			return ret + length;
352 
353 		cpu_offset += this_length;
354 		gpu_offset += this_length;
355 		length -= this_length;
356 	}
357 
358 	return 0;
359 }
360 
361 /* Per-page copy function for the shmem pread fastpath.
362  * Flushes invalid cachelines before reading the target if
363  * needs_clflush is set. */
364 static int
365 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
366 		 char __user *user_data,
367 		 bool page_do_bit17_swizzling, bool needs_clflush)
368 {
369 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
370 	return -EFAULT;
371 #else
372 	char *vaddr;
373 	int ret;
374 
375 	if (unlikely(page_do_bit17_swizzling))
376 		return -EINVAL;
377 
378 	vaddr = kmap_atomic(page);
379 	if (needs_clflush)
380 		drm_clflush_virt_range(vaddr + shmem_page_offset,
381 				       page_length);
382 	ret = __copy_to_user_inatomic(user_data,
383 				      vaddr + shmem_page_offset,
384 				      page_length);
385 	kunmap_atomic(vaddr);
386 
387 	return ret ? -EFAULT : 0;
388 #endif
389 }
390 
391 static void
392 shmem_clflush_swizzled_range(char *addr, unsigned long length,
393 			     bool swizzled)
394 {
395 	if (unlikely(swizzled)) {
396 		unsigned long start = (unsigned long) addr;
397 		unsigned long end = (unsigned long) addr + length;
398 
399 		/* For swizzling simply ensure that we always flush both
400 		 * channels. Lame, but simple and it works. Swizzled
401 		 * pwrite/pread is far from a hotpath - current userspace
402 		 * doesn't use it at all. */
403 		start = round_down(start, 128);
404 		end = round_up(end, 128);
405 
406 		drm_clflush_virt_range((void *)start, end - start);
407 	} else {
408 		drm_clflush_virt_range(addr, length);
409 	}
410 
411 }
412 
413 /* Only difference to the fast-path function is that this can handle bit17
414  * and uses non-atomic copy and kmap functions. */
415 static int
416 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
417 		 char __user *user_data,
418 		 bool page_do_bit17_swizzling, bool needs_clflush)
419 {
420 	char *vaddr;
421 	int ret;
422 
423 	vaddr = kmap(page);
424 	if (needs_clflush)
425 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
426 					     page_length,
427 					     page_do_bit17_swizzling);
428 
429 	if (page_do_bit17_swizzling)
430 		ret = __copy_to_user_swizzled(user_data,
431 					      vaddr, shmem_page_offset,
432 					      page_length);
433 	else
434 		ret = __copy_to_user(user_data,
435 				     vaddr + shmem_page_offset,
436 				     page_length);
437 	kunmap(page);
438 
439 	return ret ? - EFAULT : 0;
440 }
441 
442 static int
443 i915_gem_shmem_pread(struct drm_device *dev,
444 		     struct drm_i915_gem_object *obj,
445 		     struct drm_i915_gem_pread *args,
446 		     struct drm_file *file)
447 {
448 	char __user *user_data;
449 	ssize_t remain;
450 	loff_t offset;
451 	int shmem_page_offset, page_length, ret = 0;
452 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
453 	int hit_slowpath = 0;
454 #ifndef __NetBSD__		/* XXX */
455 	int prefaulted = 0;
456 #endif
457 	int needs_clflush = 0;
458 #ifndef __NetBSD__
459 	struct scatterlist *sg;
460 	int i;
461 #endif
462 
463 	user_data = (char __user *) (uintptr_t) args->data_ptr;
464 	remain = args->size;
465 
466 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
467 
468 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
469 		/* If we're not in the cpu read domain, set ourself into the gtt
470 		 * read domain and manually flush cachelines (if required). This
471 		 * optimizes for the case when the gpu will dirty the data
472 		 * anyway again before the next pread happens. */
473 		if (obj->cache_level == I915_CACHE_NONE)
474 			needs_clflush = 1;
475 		if (obj->gtt_space) {
476 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
477 			if (ret)
478 				return ret;
479 		}
480 	}
481 
482 	ret = i915_gem_object_get_pages(obj);
483 	if (ret)
484 		return ret;
485 
486 	i915_gem_object_pin_pages(obj);
487 
488 	offset = args->offset;
489 
490 #ifdef __NetBSD__
491 	/*
492 	 * XXX This is a big #ifdef with a lot of duplicated code, but
493 	 * factoring out the loop head -- which is all that
494 	 * substantially differs -- is probably more trouble than it's
495 	 * worth at the moment.
496 	 */
497 	while (0 < remain) {
498 		/* Get the next page.  */
499 		shmem_page_offset = offset_in_page(offset);
500 		KASSERT(shmem_page_offset < PAGE_SIZE);
501 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
502 		struct page *const page = i915_gem_object_get_page(obj,
503 		    atop(offset));
504 
505 		/* Decide whether to swizzle bit 17.  */
506 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
507 		    (page_to_phys(page) & (1 << 17)) != 0;
508 
509 		/* Try the fast path.  */
510 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
511 		    user_data, page_do_bit17_swizzling, needs_clflush);
512 		if (ret == 0)
513 			goto next_page;
514 
515 		/* Fast path failed.  Try the slow path.  */
516 		hit_slowpath = 1;
517 		mutex_unlock(&dev->struct_mutex);
518 		/* XXX prefault */
519 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
520 		    user_data, page_do_bit17_swizzling, needs_clflush);
521 		mutex_lock(&dev->struct_mutex);
522 
523 next_page:
524 		/* XXX mark page accessed */
525 		if (ret)
526 			goto out;
527 
528 		KASSERT(page_length <= remain);
529 		remain -= page_length;
530 		user_data += page_length;
531 		offset += page_length;
532 	}
533 #else
534 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
535 		struct page *page;
536 
537 		if (i < offset >> PAGE_SHIFT)
538 			continue;
539 
540 		if (remain <= 0)
541 			break;
542 
543 		/* Operation in this page
544 		 *
545 		 * shmem_page_offset = offset within page in shmem file
546 		 * page_length = bytes to copy for this page
547 		 */
548 		shmem_page_offset = offset_in_page(offset);
549 		page_length = remain;
550 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
551 			page_length = PAGE_SIZE - shmem_page_offset;
552 
553 		page = sg_page(sg);
554 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
555 			(page_to_phys(page) & (1 << 17)) != 0;
556 
557 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
558 				       user_data, page_do_bit17_swizzling,
559 				       needs_clflush);
560 		if (ret == 0)
561 			goto next_page;
562 
563 		hit_slowpath = 1;
564 		mutex_unlock(&dev->struct_mutex);
565 
566 		if (!prefaulted) {
567 			ret = fault_in_multipages_writeable(user_data, remain);
568 			/* Userspace is tricking us, but we've already clobbered
569 			 * its pages with the prefault and promised to write the
570 			 * data up to the first fault. Hence ignore any errors
571 			 * and just continue. */
572 			(void)ret;
573 			prefaulted = 1;
574 		}
575 
576 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
577 				       user_data, page_do_bit17_swizzling,
578 				       needs_clflush);
579 
580 		mutex_lock(&dev->struct_mutex);
581 
582 next_page:
583 		mark_page_accessed(page);
584 
585 		if (ret)
586 			goto out;
587 
588 		remain -= page_length;
589 		user_data += page_length;
590 		offset += page_length;
591 	}
592 #endif
593 
594 out:
595 	i915_gem_object_unpin_pages(obj);
596 
597 	if (hit_slowpath) {
598 		/* Fixup: Kill any reinstated backing storage pages */
599 		if (obj->madv == __I915_MADV_PURGED)
600 			i915_gem_object_truncate(obj);
601 	}
602 
603 	return ret;
604 }
605 
606 /**
607  * Reads data from the object referenced by handle.
608  *
609  * On error, the contents of *data are undefined.
610  */
611 int
612 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
613 		     struct drm_file *file)
614 {
615 	struct drm_i915_gem_pread *args = data;
616 	struct drm_i915_gem_object *obj;
617 	int ret = 0;
618 
619 	if (args->size == 0)
620 		return 0;
621 
622 	if (!access_ok(VERIFY_WRITE,
623 		       (char __user *)(uintptr_t)args->data_ptr,
624 		       args->size))
625 		return -EFAULT;
626 
627 	ret = i915_mutex_lock_interruptible(dev);
628 	if (ret)
629 		return ret;
630 
631 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
632 	if (&obj->base == NULL) {
633 		ret = -ENOENT;
634 		goto unlock;
635 	}
636 
637 	/* Bounds check source.  */
638 	if (args->offset > obj->base.size ||
639 	    args->size > obj->base.size - args->offset) {
640 		ret = -EINVAL;
641 		goto out;
642 	}
643 
644 #ifndef __NetBSD__		/* XXX drm prime */
645 	/* prime objects have no backing filp to GEM pread/pwrite
646 	 * pages from.
647 	 */
648 	if (!obj->base.filp) {
649 		ret = -EINVAL;
650 		goto out;
651 	}
652 #endif
653 
654 	trace_i915_gem_object_pread(obj, args->offset, args->size);
655 
656 	ret = i915_gem_shmem_pread(dev, obj, args, file);
657 
658 out:
659 	drm_gem_object_unreference(&obj->base);
660 unlock:
661 	mutex_unlock(&dev->struct_mutex);
662 	return ret;
663 }
664 
665 /* This is the fast write path which cannot handle
666  * page faults in the source data
667  */
668 
669 static inline int
670 fast_user_write(struct io_mapping *mapping,
671 		loff_t page_base, int page_offset,
672 		char __user *user_data,
673 		int length)
674 {
675 #ifdef __NetBSD__		/* XXX atomic shmem fast path */
676 	return -EFAULT;
677 #else
678 	void __iomem *vaddr_atomic;
679 	void *vaddr;
680 	unsigned long unwritten;
681 
682 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
683 	/* We can use the cpu mem copy function because this is X86. */
684 	vaddr = (void __force*)vaddr_atomic + page_offset;
685 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
686 						      user_data, length);
687 	io_mapping_unmap_atomic(vaddr_atomic);
688 	return unwritten;
689 #endif
690 }
691 
692 /**
693  * This is the fast pwrite path, where we copy the data directly from the
694  * user into the GTT, uncached.
695  */
696 static int
697 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
698 			 struct drm_i915_gem_object *obj,
699 			 struct drm_i915_gem_pwrite *args,
700 			 struct drm_file *file)
701 {
702 	drm_i915_private_t *dev_priv = dev->dev_private;
703 	ssize_t remain;
704 	loff_t offset, page_base;
705 	char __user *user_data;
706 	int page_offset, page_length, ret;
707 
708 	ret = i915_gem_object_pin(obj, 0, true, true);
709 	if (ret)
710 		goto out;
711 
712 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
713 	if (ret)
714 		goto out_unpin;
715 
716 	ret = i915_gem_object_put_fence(obj);
717 	if (ret)
718 		goto out_unpin;
719 
720 	user_data = (char __user *) (uintptr_t) args->data_ptr;
721 	remain = args->size;
722 
723 	offset = obj->gtt_offset + args->offset;
724 
725 	while (remain > 0) {
726 		/* Operation in this page
727 		 *
728 		 * page_base = page offset within aperture
729 		 * page_offset = offset within page
730 		 * page_length = bytes to copy for this page
731 		 */
732 		page_base = offset & PAGE_MASK;
733 		page_offset = offset_in_page(offset);
734 		page_length = remain;
735 		if ((page_offset + remain) > PAGE_SIZE)
736 			page_length = PAGE_SIZE - page_offset;
737 
738 		/* If we get a fault while copying data, then (presumably) our
739 		 * source page isn't available.  Return the error and we'll
740 		 * retry in the slow path.
741 		 */
742 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
743 				    page_offset, user_data, page_length)) {
744 			ret = -EFAULT;
745 			goto out_unpin;
746 		}
747 
748 		remain -= page_length;
749 		user_data += page_length;
750 		offset += page_length;
751 	}
752 
753 out_unpin:
754 	i915_gem_object_unpin(obj);
755 out:
756 	return ret;
757 }
758 
759 /* Per-page copy function for the shmem pwrite fastpath.
760  * Flushes invalid cachelines before writing to the target if
761  * needs_clflush_before is set and flushes out any written cachelines after
762  * writing if needs_clflush is set. */
763 static int
764 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
765 		  char __user *user_data,
766 		  bool page_do_bit17_swizzling,
767 		  bool needs_clflush_before,
768 		  bool needs_clflush_after)
769 {
770 #ifdef __NetBSD__
771 	return -EFAULT;
772 #else
773 	char *vaddr;
774 	int ret;
775 
776 	if (unlikely(page_do_bit17_swizzling))
777 		return -EINVAL;
778 
779 	vaddr = kmap_atomic(page);
780 	if (needs_clflush_before)
781 		drm_clflush_virt_range(vaddr + shmem_page_offset,
782 				       page_length);
783 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
784 						user_data,
785 						page_length);
786 	if (needs_clflush_after)
787 		drm_clflush_virt_range(vaddr + shmem_page_offset,
788 				       page_length);
789 	kunmap_atomic(vaddr);
790 
791 	return ret ? -EFAULT : 0;
792 #endif
793 }
794 
795 /* Only difference to the fast-path function is that this can handle bit17
796  * and uses non-atomic copy and kmap functions. */
797 static int
798 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
799 		  char __user *user_data,
800 		  bool page_do_bit17_swizzling,
801 		  bool needs_clflush_before,
802 		  bool needs_clflush_after)
803 {
804 	char *vaddr;
805 	int ret;
806 
807 	vaddr = kmap(page);
808 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
809 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
810 					     page_length,
811 					     page_do_bit17_swizzling);
812 	if (page_do_bit17_swizzling)
813 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
814 						user_data,
815 						page_length);
816 	else
817 		ret = __copy_from_user(vaddr + shmem_page_offset,
818 				       user_data,
819 				       page_length);
820 	if (needs_clflush_after)
821 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
822 					     page_length,
823 					     page_do_bit17_swizzling);
824 	kunmap(page);
825 
826 	return ret ? -EFAULT : 0;
827 }
828 
829 static int
830 i915_gem_shmem_pwrite(struct drm_device *dev,
831 		      struct drm_i915_gem_object *obj,
832 		      struct drm_i915_gem_pwrite *args,
833 		      struct drm_file *file)
834 {
835 	ssize_t remain;
836 	loff_t offset;
837 	char __user *user_data;
838 	int shmem_page_offset, page_length, ret = 0;
839 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
840 	int hit_slowpath = 0;
841 	int needs_clflush_after = 0;
842 	int needs_clflush_before = 0;
843 #ifndef __NetBSD__
844 	int i;
845 	struct scatterlist *sg;
846 #endif
847 
848 	user_data = (char __user *) (uintptr_t) args->data_ptr;
849 	remain = args->size;
850 
851 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852 
853 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
854 		/* If we're not in the cpu write domain, set ourself into the gtt
855 		 * write domain and manually flush cachelines (if required). This
856 		 * optimizes for the case when the gpu will use the data
857 		 * right away and we therefore have to clflush anyway. */
858 		if (obj->cache_level == I915_CACHE_NONE)
859 			needs_clflush_after = 1;
860 		if (obj->gtt_space) {
861 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
862 			if (ret)
863 				return ret;
864 		}
865 	}
866 	/* Same trick applies for invalidate partially written cachelines before
867 	 * writing.  */
868 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
869 	    && obj->cache_level == I915_CACHE_NONE)
870 		needs_clflush_before = 1;
871 
872 	ret = i915_gem_object_get_pages(obj);
873 	if (ret)
874 		return ret;
875 
876 	i915_gem_object_pin_pages(obj);
877 
878 	offset = args->offset;
879 	obj->dirty = 1;
880 
881 #ifdef __NetBSD__
882 	while (0 < remain) {
883 		/* Get the next page.  */
884 		shmem_page_offset = offset_in_page(offset);
885 		KASSERT(shmem_page_offset < PAGE_SIZE);
886 		page_length = MIN(remain, (PAGE_SIZE - shmem_page_offset));
887 		struct page *const page = i915_gem_object_get_page(obj,
888 		    atop(offset));
889 
890 		/* Decide whether to flush the cache or swizzle bit 17.  */
891 		const bool partial_cacheline_write = needs_clflush_before &&
892 		    ((shmem_page_offset | page_length)
893 			& (cpu_info_primary.ci_cflush_lsize - 1));
894 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
895 		    (page_to_phys(page) & (1 << 17)) != 0;
896 
897 		/* Try the fast path.  */
898 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
899 		    user_data, page_do_bit17_swizzling,
900 		    partial_cacheline_write, needs_clflush_after);
901 		if (ret == 0)
902 			goto next_page;
903 
904 		/* Fast path failed.  Try the slow path.  */
905 		hit_slowpath = 1;
906 		mutex_unlock(&dev->struct_mutex);
907 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
908 		    user_data, page_do_bit17_swizzling,
909 		    partial_cacheline_write, needs_clflush_after);
910 		mutex_lock(&dev->struct_mutex);
911 
912 next_page:
913 		page->p_vmp.flags &= ~PG_CLEAN;
914 		/* XXX mark page accessed */
915 		if (ret)
916 			goto out;
917 
918 		KASSERT(page_length <= remain);
919 		remain -= page_length;
920 		user_data += page_length;
921 		offset += page_length;
922 	}
923 #else
924 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
925 		struct page *page;
926 		int partial_cacheline_write;
927 
928 		if (i < offset >> PAGE_SHIFT)
929 			continue;
930 
931 		if (remain <= 0)
932 			break;
933 
934 		/* Operation in this page
935 		 *
936 		 * shmem_page_offset = offset within page in shmem file
937 		 * page_length = bytes to copy for this page
938 		 */
939 		shmem_page_offset = offset_in_page(offset);
940 
941 		page_length = remain;
942 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
943 			page_length = PAGE_SIZE - shmem_page_offset;
944 
945 		/* If we don't overwrite a cacheline completely we need to be
946 		 * careful to have up-to-date data by first clflushing. Don't
947 		 * overcomplicate things and flush the entire patch. */
948 		partial_cacheline_write = needs_clflush_before &&
949 			((shmem_page_offset | page_length)
950 				& (boot_cpu_data.x86_clflush_size - 1));
951 
952 		page = sg_page(sg);
953 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
954 			(page_to_phys(page) & (1 << 17)) != 0;
955 
956 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
957 					user_data, page_do_bit17_swizzling,
958 					partial_cacheline_write,
959 					needs_clflush_after);
960 		if (ret == 0)
961 			goto next_page;
962 
963 		hit_slowpath = 1;
964 		mutex_unlock(&dev->struct_mutex);
965 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
966 					user_data, page_do_bit17_swizzling,
967 					partial_cacheline_write,
968 					needs_clflush_after);
969 
970 		mutex_lock(&dev->struct_mutex);
971 
972 next_page:
973 		set_page_dirty(page);
974 		mark_page_accessed(page);
975 
976 		if (ret)
977 			goto out;
978 
979 		remain -= page_length;
980 		user_data += page_length;
981 		offset += page_length;
982 	}
983 #endif
984 
985 out:
986 	i915_gem_object_unpin_pages(obj);
987 
988 	if (hit_slowpath) {
989 		/* Fixup: Kill any reinstated backing storage pages */
990 		if (obj->madv == __I915_MADV_PURGED)
991 			i915_gem_object_truncate(obj);
992 		/* and flush dirty cachelines in case the object isn't in the cpu write
993 		 * domain anymore. */
994 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
995 			i915_gem_clflush_object(obj);
996 			i915_gem_chipset_flush(dev);
997 		}
998 	}
999 
1000 	if (needs_clflush_after)
1001 		i915_gem_chipset_flush(dev);
1002 
1003 	return ret;
1004 }
1005 
1006 /**
1007  * Writes data to the object referenced by handle.
1008  *
1009  * On error, the contents of the buffer that were to be modified are undefined.
1010  */
1011 int
1012 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1013 		      struct drm_file *file)
1014 {
1015 	struct drm_i915_gem_pwrite *args = data;
1016 	struct drm_i915_gem_object *obj;
1017 	int ret;
1018 
1019 	if (args->size == 0)
1020 		return 0;
1021 
1022 	if (!access_ok(VERIFY_READ,
1023 		       (char __user *)(uintptr_t)args->data_ptr,
1024 		       args->size))
1025 		return -EFAULT;
1026 
1027 #ifndef __NetBSD__		/* XXX prefault */
1028 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
1029 					   args->size);
1030 	if (ret)
1031 		return -EFAULT;
1032 #endif
1033 
1034 	ret = i915_mutex_lock_interruptible(dev);
1035 	if (ret)
1036 		return ret;
1037 
1038 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1039 	if (&obj->base == NULL) {
1040 		ret = -ENOENT;
1041 		goto unlock;
1042 	}
1043 
1044 	/* Bounds check destination. */
1045 	if (args->offset > obj->base.size ||
1046 	    args->size > obj->base.size - args->offset) {
1047 		ret = -EINVAL;
1048 		goto out;
1049 	}
1050 
1051 #ifndef __NetBSD__		/* XXX drm prime */
1052 	/* prime objects have no backing filp to GEM pread/pwrite
1053 	 * pages from.
1054 	 */
1055 	if (!obj->base.filp) {
1056 		ret = -EINVAL;
1057 		goto out;
1058 	}
1059 #endif
1060 
1061 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1062 
1063 	ret = -EFAULT;
1064 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1065 	 * it would end up going through the fenced access, and we'll get
1066 	 * different detiling behavior between reading and writing.
1067 	 * pread/pwrite currently are reading and writing from the CPU
1068 	 * perspective, requiring manual detiling by the client.
1069 	 */
1070 	if (obj->phys_obj) {
1071 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1072 		goto out;
1073 	}
1074 
1075 	if (obj->cache_level == I915_CACHE_NONE &&
1076 	    obj->tiling_mode == I915_TILING_NONE &&
1077 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1078 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1079 		/* Note that the gtt paths might fail with non-page-backed user
1080 		 * pointers (e.g. gtt mappings when moving data between
1081 		 * textures). Fallback to the shmem path in that case. */
1082 	}
1083 
1084 	if (ret == -EFAULT || ret == -ENOSPC)
1085 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1086 
1087 out:
1088 	drm_gem_object_unreference(&obj->base);
1089 unlock:
1090 	mutex_unlock(&dev->struct_mutex);
1091 	return ret;
1092 }
1093 
1094 int
1095 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1096 		     bool interruptible)
1097 {
1098 	if (atomic_read(&dev_priv->mm.wedged)) {
1099 		struct completion *x = &dev_priv->error_completion;
1100 		bool recovery_complete;
1101 #ifndef __NetBSD__
1102 		unsigned long flags;
1103 #endif
1104 
1105 #ifdef __NetBSD__
1106 		/*
1107 		 * XXX This is a horrible kludge.  Reading internal
1108 		 * fields is no good, nor is reading them unlocked, and
1109 		 * neither is locking it and then unlocking it before
1110 		 * making a decision.
1111 		 */
1112 		recovery_complete = x->c_done > 0;
1113 #else
1114 		/* Give the error handler a chance to run. */
1115 		spin_lock_irqsave(&x->wait.lock, flags);
1116 		recovery_complete = x->done > 0;
1117 		spin_unlock_irqrestore(&x->wait.lock, flags);
1118 #endif
1119 
1120 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1121 		 * -EIO unconditionally for these. */
1122 		if (!interruptible)
1123 			return -EIO;
1124 
1125 		/* Recovery complete, but still wedged means reset failure. */
1126 		if (recovery_complete)
1127 			return -EIO;
1128 
1129 		return -EAGAIN;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /*
1136  * Compare seqno against outstanding lazy request. Emit a request if they are
1137  * equal.
1138  */
1139 static int
1140 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1141 {
1142 	int ret;
1143 
1144 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1145 
1146 	ret = 0;
1147 	if (seqno == ring->outstanding_lazy_request)
1148 		ret = i915_add_request(ring, NULL, NULL);
1149 
1150 	return ret;
1151 }
1152 
1153 /**
1154  * __wait_seqno - wait until execution of seqno has finished
1155  * @ring: the ring expected to report seqno
1156  * @seqno: duh!
1157  * @interruptible: do an interruptible wait (normally yes)
1158  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1159  *
1160  * Returns 0 if the seqno was found within the alloted time. Else returns the
1161  * errno with remaining time filled in timeout argument.
1162  */
1163 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1164 			bool interruptible, struct timespec *timeout)
1165 {
1166 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1167 	struct timespec before, now, wait_time={1,0};
1168 	unsigned long timeout_jiffies;
1169 	long end;
1170 	bool wait_forever = true;
1171 	int ret;
1172 
1173 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1174 		return 0;
1175 
1176 	trace_i915_gem_request_wait_begin(ring, seqno);
1177 
1178 	if (timeout != NULL) {
1179 		wait_time = *timeout;
1180 		wait_forever = false;
1181 	}
1182 
1183 	timeout_jiffies = timespec_to_jiffies(&wait_time);
1184 
1185 	if (WARN_ON(!ring->irq_get(ring)))
1186 		return -ENODEV;
1187 
1188 	/* Record current time in case interrupted by signal, or wedged * */
1189 	getrawmonotonic(&before);
1190 
1191 #define EXIT_COND \
1192 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1193 	atomic_read(&dev_priv->mm.wedged))
1194 	do {
1195 #ifdef __NetBSD__
1196 		unsigned long flags;
1197 		spin_lock_irqsave(&dev_priv->irq_lock, flags);
1198 		if (interruptible)
1199 			DRM_SPIN_TIMED_WAIT_UNTIL(end, &ring->irq_queue,
1200 			    &dev_priv->irq_lock,
1201 			    timeout_jiffies,
1202 			    EXIT_COND);
1203 		else
1204 			DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(end, &ring->irq_queue,
1205 			    &dev_priv->irq_lock,
1206 			    timeout_jiffies,
1207 			    EXIT_COND);
1208 		spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1209 #else
1210 		if (interruptible)
1211 			end = wait_event_interruptible_timeout(ring->irq_queue,
1212 							       EXIT_COND,
1213 							       timeout_jiffies);
1214 		else
1215 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1216 						 timeout_jiffies);
1217 
1218 #endif
1219 		ret = i915_gem_check_wedge(dev_priv, interruptible);
1220 		if (ret)
1221 			end = ret;
1222 	} while (end == 0 && wait_forever);
1223 
1224 	getrawmonotonic(&now);
1225 
1226 	ring->irq_put(ring);
1227 	trace_i915_gem_request_wait_end(ring, seqno);
1228 #undef EXIT_COND
1229 
1230 	if (timeout) {
1231 		struct timespec sleep_time = timespec_sub(now, before);
1232 		*timeout = timespec_sub(*timeout, sleep_time);
1233 	}
1234 
1235 	switch (end) {
1236 	case -EIO:
1237 	case -EAGAIN: /* Wedged */
1238 	case -ERESTARTSYS: /* Signal */
1239 	case -EINTR:
1240 		return (int)end;
1241 	case 0: /* Timeout */
1242 		if (timeout)
1243 			set_normalized_timespec(timeout, 0, 0);
1244 		return -ETIME;
1245 	default: /* Completed */
1246 		WARN_ON(end < 0); /* We're not aware of other errors */
1247 		return 0;
1248 	}
1249 }
1250 
1251 /**
1252  * Waits for a sequence number to be signaled, and cleans up the
1253  * request and object lists appropriately for that event.
1254  */
1255 int
1256 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1257 {
1258 	struct drm_device *dev = ring->dev;
1259 	struct drm_i915_private *dev_priv = dev->dev_private;
1260 	bool interruptible = dev_priv->mm.interruptible;
1261 	int ret;
1262 
1263 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 	BUG_ON(seqno == 0);
1265 
1266 	ret = i915_gem_check_wedge(dev_priv, interruptible);
1267 	if (ret)
1268 		return ret;
1269 
1270 	ret = i915_gem_check_olr(ring, seqno);
1271 	if (ret)
1272 		return ret;
1273 
1274 	return __wait_seqno(ring, seqno, interruptible, NULL);
1275 }
1276 
1277 /**
1278  * Ensures that all rendering to the object has completed and the object is
1279  * safe to unbind from the GTT or access from the CPU.
1280  */
1281 static __must_check int
1282 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1283 			       bool readonly)
1284 {
1285 	struct intel_ring_buffer *ring = obj->ring;
1286 	u32 seqno;
1287 	int ret;
1288 
1289 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1290 	if (seqno == 0)
1291 		return 0;
1292 
1293 	ret = i915_wait_seqno(ring, seqno);
1294 	if (ret)
1295 		return ret;
1296 
1297 	i915_gem_retire_requests_ring(ring);
1298 
1299 	/* Manually manage the write flush as we may have not yet
1300 	 * retired the buffer.
1301 	 */
1302 	if (obj->last_write_seqno &&
1303 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1304 		obj->last_write_seqno = 0;
1305 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1312  * as the object state may change during this call.
1313  */
1314 static __must_check int
1315 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1316 					    bool readonly)
1317 {
1318 	struct drm_device *dev = obj->base.dev;
1319 	struct drm_i915_private *dev_priv = dev->dev_private;
1320 	struct intel_ring_buffer *ring = obj->ring;
1321 	u32 seqno;
1322 	int ret;
1323 
1324 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1325 	BUG_ON(!dev_priv->mm.interruptible);
1326 
1327 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1328 	if (seqno == 0)
1329 		return 0;
1330 
1331 	ret = i915_gem_check_wedge(dev_priv, true);
1332 	if (ret)
1333 		return ret;
1334 
1335 	ret = i915_gem_check_olr(ring, seqno);
1336 	if (ret)
1337 		return ret;
1338 
1339 	mutex_unlock(&dev->struct_mutex);
1340 	ret = __wait_seqno(ring, seqno, true, NULL);
1341 	mutex_lock(&dev->struct_mutex);
1342 
1343 	i915_gem_retire_requests_ring(ring);
1344 
1345 	/* Manually manage the write flush as we may have not yet
1346 	 * retired the buffer.
1347 	 */
1348 	if (obj->last_write_seqno &&
1349 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1350 		obj->last_write_seqno = 0;
1351 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1352 	}
1353 
1354 	return ret;
1355 }
1356 
1357 /**
1358  * Called when user space prepares to use an object with the CPU, either
1359  * through the mmap ioctl's mapping or a GTT mapping.
1360  */
1361 int
1362 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1363 			  struct drm_file *file)
1364 {
1365 	struct drm_i915_gem_set_domain *args = data;
1366 	struct drm_i915_gem_object *obj;
1367 	uint32_t read_domains = args->read_domains;
1368 	uint32_t write_domain = args->write_domain;
1369 	int ret;
1370 
1371 	/* Only handle setting domains to types used by the CPU. */
1372 	if (write_domain & I915_GEM_GPU_DOMAINS)
1373 		return -EINVAL;
1374 
1375 	if (read_domains & I915_GEM_GPU_DOMAINS)
1376 		return -EINVAL;
1377 
1378 	/* Having something in the write domain implies it's in the read
1379 	 * domain, and only that read domain.  Enforce that in the request.
1380 	 */
1381 	if (write_domain != 0 && read_domains != write_domain)
1382 		return -EINVAL;
1383 
1384 	ret = i915_mutex_lock_interruptible(dev);
1385 	if (ret)
1386 		return ret;
1387 
1388 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1389 	if (&obj->base == NULL) {
1390 		ret = -ENOENT;
1391 		goto unlock;
1392 	}
1393 
1394 	/* Try to flush the object off the GPU without holding the lock.
1395 	 * We will repeat the flush holding the lock in the normal manner
1396 	 * to catch cases where we are gazumped.
1397 	 */
1398 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1399 	if (ret)
1400 		goto unref;
1401 
1402 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1403 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1404 
1405 		/* Silently promote "you're not bound, there was nothing to do"
1406 		 * to success, since the client was just asking us to
1407 		 * make sure everything was done.
1408 		 */
1409 		if (ret == -EINVAL)
1410 			ret = 0;
1411 	} else {
1412 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1413 	}
1414 
1415 unref:
1416 	drm_gem_object_unreference(&obj->base);
1417 unlock:
1418 	mutex_unlock(&dev->struct_mutex);
1419 	return ret;
1420 }
1421 
1422 /**
1423  * Called when user space has done writes to this buffer
1424  */
1425 int
1426 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1427 			 struct drm_file *file)
1428 {
1429 	struct drm_i915_gem_sw_finish *args = data;
1430 	struct drm_i915_gem_object *obj;
1431 	int ret = 0;
1432 
1433 	ret = i915_mutex_lock_interruptible(dev);
1434 	if (ret)
1435 		return ret;
1436 
1437 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1438 	if (&obj->base == NULL) {
1439 		ret = -ENOENT;
1440 		goto unlock;
1441 	}
1442 
1443 	/* Pinned buffers may be scanout, so flush the cache */
1444 	if (obj->pin_count)
1445 		i915_gem_object_flush_cpu_write_domain(obj);
1446 
1447 	drm_gem_object_unreference(&obj->base);
1448 unlock:
1449 	mutex_unlock(&dev->struct_mutex);
1450 	return ret;
1451 }
1452 
1453 /**
1454  * Maps the contents of an object, returning the address it is mapped
1455  * into.
1456  *
1457  * While the mapping holds a reference on the contents of the object, it doesn't
1458  * imply a ref on the object itself.
1459  */
1460 int
1461 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1462 		    struct drm_file *file)
1463 {
1464 	struct drm_i915_gem_mmap *args = data;
1465 	struct drm_gem_object *obj;
1466 	unsigned long addr;
1467 #ifdef __NetBSD__
1468 	int ret;
1469 #endif
1470 
1471 	obj = drm_gem_object_lookup(dev, file, args->handle);
1472 	if (obj == NULL)
1473 		return -ENOENT;
1474 
1475 #ifndef __NetBSD__    /* XXX drm prime */
1476 	/* prime objects have no backing filp to GEM mmap
1477 	 * pages from.
1478 	 */
1479 	if (!obj->filp) {
1480 		drm_gem_object_unreference_unlocked(obj);
1481 		return -EINVAL;
1482 	}
1483 #endif
1484 
1485 #ifdef __NetBSD__
1486 	addr = (*curproc->p_emul->e_vm_default_addr)(curproc,
1487 	    (vaddr_t)curproc->p_vmspace->vm_daddr, args->size);
1488 	/* XXX errno NetBSD->Linux */
1489 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, args->size,
1490 	    obj->gemo_shm_uao, args->offset, 0,
1491 	    UVM_MAPFLAG((VM_PROT_READ | VM_PROT_WRITE),
1492 		(VM_PROT_READ | VM_PROT_WRITE), UVM_INH_COPY, UVM_ADV_NORMAL,
1493 		0));
1494 	if (ret) {
1495 		drm_gem_object_unreference_unlocked(obj);
1496 		return ret;
1497 	}
1498 	uao_reference(obj->gemo_shm_uao);
1499 	drm_gem_object_unreference_unlocked(obj);
1500 #else
1501 	addr = vm_mmap(obj->filp, 0, args->size,
1502 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1503 		       args->offset);
1504 	drm_gem_object_unreference_unlocked(obj);
1505 	if (IS_ERR((void *)addr))
1506 		return addr;
1507 #endif
1508 
1509 	args->addr_ptr = (uint64_t) addr;
1510 
1511 	return 0;
1512 }
1513 
1514 #ifdef __NetBSD__		/* XXX gem gtt fault */
1515 static int	i915_udv_fault(struct uvm_faultinfo *, vaddr_t,
1516 		    struct vm_page **, int, int, vm_prot_t, int, paddr_t);
1517 
1518 int
1519 i915_gem_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1520     int npages, int centeridx, vm_prot_t access_type, int flags)
1521 {
1522 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1523 	struct drm_gem_object *gem_obj =
1524 	    container_of(uobj, struct drm_gem_object, gemo_uvmobj);
1525 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1526 	struct drm_device *dev = obj->base.dev;
1527 	struct drm_i915_private *dev_priv = dev->dev_private;
1528 	voff_t byte_offset;
1529 	pgoff_t page_offset;
1530 	int ret = 0;
1531 	bool write = ISSET(access_type, VM_PROT_WRITE)? 1 : 0;
1532 
1533 	byte_offset = (ufi->entry->offset + (vaddr - ufi->entry->start));
1534 	KASSERT(byte_offset <= obj->base.size);
1535 	page_offset = (byte_offset >> PAGE_SHIFT);
1536 
1537 	ret = i915_mutex_lock_interruptible(dev);
1538 	if (ret)
1539 		goto out;
1540 
1541 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1542 
1543 	/* Now bind it into the GTT if needed */
1544 	ret = i915_gem_object_pin(obj, 0, true, false);
1545 	if (ret)
1546 		goto unlock;
1547 
1548 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549 	if (ret)
1550 		goto unpin;
1551 
1552 	ret = i915_gem_object_get_fence(obj);
1553 	if (ret)
1554 		goto unpin;
1555 
1556 	obj->fault_mappable = true;
1557 
1558 	/* Finally, remap it using the new GTT offset */
1559 	/* XXX errno NetBSD->Linux */
1560 	ret = -i915_udv_fault(ufi, vaddr, pps, npages, centeridx, access_type,
1561 	    flags, (dev_priv->mm.gtt_base_addr + obj->gtt_offset));
1562 unpin:
1563 	i915_gem_object_unpin(obj);
1564 unlock:
1565 	mutex_unlock(&dev->struct_mutex);
1566 out:
1567 	return ret;
1568 }
1569 
1570 /*
1571  * XXX i915_udv_fault is copypasta of udv_fault from uvm_device.c.
1572  *
1573  * XXX pmap_enter_default instead of pmap_enter because of a problem
1574  * with using weak aliases in kernel modules or something.
1575  */
1576 int	pmap_enter_default(pmap_t, vaddr_t, paddr_t, vm_prot_t, unsigned);
1577 
1578 static int
1579 i915_udv_fault(struct uvm_faultinfo *ufi, vaddr_t vaddr, struct vm_page **pps,
1580     int npages, int centeridx, vm_prot_t access_type, int flags,
1581     paddr_t gtt_paddr)
1582 {
1583 	struct vm_map_entry *entry = ufi->entry;
1584 	struct uvm_object *uobj = entry->object.uvm_obj;
1585 	vaddr_t curr_va;
1586 	off_t curr_offset;
1587 	paddr_t paddr;
1588 	u_int mmapflags;
1589 	int lcv, retval;
1590 	vm_prot_t mapprot;
1591 	UVMHIST_FUNC("i915_udv_fault"); UVMHIST_CALLED(maphist);
1592 	UVMHIST_LOG(maphist,"  flags=%d", flags,0,0,0);
1593 
1594 	/*
1595 	 * we do not allow device mappings to be mapped copy-on-write
1596 	 * so we kill any attempt to do so here.
1597 	 */
1598 
1599 	if (UVM_ET_ISCOPYONWRITE(entry)) {
1600 		UVMHIST_LOG(maphist, "<- failed -- COW entry (etype=0x%x)",
1601 		entry->etype, 0,0,0);
1602 		uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1603 		return(EIO);
1604 	}
1605 
1606 	/*
1607 	 * now we must determine the offset in udv to use and the VA to
1608 	 * use for pmap_enter.  note that we always use orig_map's pmap
1609 	 * for pmap_enter (even if we have a submap).   since virtual
1610 	 * addresses in a submap must match the main map, this is ok.
1611 	 */
1612 
1613 	/* udv offset = (offset from start of entry) + entry's offset */
1614 	curr_offset = entry->offset + (vaddr - entry->start);
1615 	/* pmap va = vaddr (virtual address of pps[0]) */
1616 	curr_va = vaddr;
1617 
1618 	/*
1619 	 * loop over the page range entering in as needed
1620 	 */
1621 
1622 	retval = 0;
1623 	for (lcv = 0 ; lcv < npages ; lcv++, curr_offset += PAGE_SIZE,
1624 	    curr_va += PAGE_SIZE) {
1625 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1626 			continue;
1627 
1628 		if (pps[lcv] == PGO_DONTCARE)
1629 			continue;
1630 
1631 		paddr = (gtt_paddr + curr_offset);
1632 		mmapflags = 0;
1633 		mapprot = ufi->entry->protection;
1634 		UVMHIST_LOG(maphist,
1635 		    "  MAPPING: device: pm=0x%x, va=0x%x, pa=0x%lx, at=%d",
1636 		    ufi->orig_map->pmap, curr_va, paddr, mapprot);
1637 		if (pmap_enter_default(ufi->orig_map->pmap, curr_va, paddr, mapprot,
1638 		    PMAP_CANFAIL | mapprot | mmapflags) != 0) {
1639 			/*
1640 			 * pmap_enter() didn't have the resource to
1641 			 * enter this mapping.  Unlock everything,
1642 			 * wait for the pagedaemon to free up some
1643 			 * pages, and then tell uvm_fault() to start
1644 			 * the fault again.
1645 			 *
1646 			 * XXX Needs some rethinking for the PGO_ALLPAGES
1647 			 * XXX case.
1648 			 */
1649 			pmap_update(ufi->orig_map->pmap);	/* sync what we have so far */
1650 			uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
1651 			    uobj);
1652 			uvm_wait("i915flt");
1653 			return (ERESTART);
1654 		}
1655 	}
1656 
1657 	pmap_update(ufi->orig_map->pmap);
1658 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, uobj);
1659 	return (retval);
1660 }
1661 #else
1662 /**
1663  * i915_gem_fault - fault a page into the GTT
1664  * vma: VMA in question
1665  * vmf: fault info
1666  *
1667  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1668  * from userspace.  The fault handler takes care of binding the object to
1669  * the GTT (if needed), allocating and programming a fence register (again,
1670  * only if needed based on whether the old reg is still valid or the object
1671  * is tiled) and inserting a new PTE into the faulting process.
1672  *
1673  * Note that the faulting process may involve evicting existing objects
1674  * from the GTT and/or fence registers to make room.  So performance may
1675  * suffer if the GTT working set is large or there are few fence registers
1676  * left.
1677  */
1678 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1679 {
1680 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1681 	struct drm_device *dev = obj->base.dev;
1682 	drm_i915_private_t *dev_priv = dev->dev_private;
1683 	pgoff_t page_offset;
1684 	unsigned long pfn;
1685 	int ret = 0;
1686 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1687 
1688 	/* We don't use vmf->pgoff since that has the fake offset */
1689 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1690 		PAGE_SHIFT;
1691 
1692 	ret = i915_mutex_lock_interruptible(dev);
1693 	if (ret)
1694 		goto out;
1695 
1696 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1697 
1698 	/* Now bind it into the GTT if needed */
1699 	ret = i915_gem_object_pin(obj, 0, true, false);
1700 	if (ret)
1701 		goto unlock;
1702 
1703 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1704 	if (ret)
1705 		goto unpin;
1706 
1707 	ret = i915_gem_object_get_fence(obj);
1708 	if (ret)
1709 		goto unpin;
1710 
1711 	obj->fault_mappable = true;
1712 
1713 	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1714 		page_offset;
1715 
1716 	/* Finally, remap it using the new GTT offset */
1717 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1718 unpin:
1719 	i915_gem_object_unpin(obj);
1720 unlock:
1721 	mutex_unlock(&dev->struct_mutex);
1722 out:
1723 	switch (ret) {
1724 	case -EIO:
1725 		/* If this -EIO is due to a gpu hang, give the reset code a
1726 		 * chance to clean up the mess. Otherwise return the proper
1727 		 * SIGBUS. */
1728 		if (!atomic_read(&dev_priv->mm.wedged))
1729 			return VM_FAULT_SIGBUS;
1730 	case -EAGAIN:
1731 		/* Give the error handler a chance to run and move the
1732 		 * objects off the GPU active list. Next time we service the
1733 		 * fault, we should be able to transition the page into the
1734 		 * GTT without touching the GPU (and so avoid further
1735 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1736 		 * with coherency, just lost writes.
1737 		 */
1738 		set_need_resched();
1739 	case 0:
1740 	case -ERESTARTSYS:
1741 	case -EINTR:
1742 	case -EBUSY:
1743 		/*
1744 		 * EBUSY is ok: this just means that another thread
1745 		 * already did the job.
1746 		 */
1747 		return VM_FAULT_NOPAGE;
1748 	case -ENOMEM:
1749 		return VM_FAULT_OOM;
1750 	case -ENOSPC:
1751 		return VM_FAULT_SIGBUS;
1752 	default:
1753 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1754 		return VM_FAULT_SIGBUS;
1755 	}
1756 }
1757 #endif
1758 
1759 /**
1760  * i915_gem_release_mmap - remove physical page mappings
1761  * @obj: obj in question
1762  *
1763  * Preserve the reservation of the mmapping with the DRM core code, but
1764  * relinquish ownership of the pages back to the system.
1765  *
1766  * It is vital that we remove the page mapping if we have mapped a tiled
1767  * object through the GTT and then lose the fence register due to
1768  * resource pressure. Similarly if the object has been moved out of the
1769  * aperture, than pages mapped into userspace must be revoked. Removing the
1770  * mapping will then trigger a page fault on the next user access, allowing
1771  * fixup by i915_gem_fault().
1772  */
1773 void
1774 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1775 {
1776 	if (!obj->fault_mappable)
1777 		return;
1778 
1779 #ifdef __NetBSD__		/* XXX gem gtt fault */
1780 	{
1781 		struct vm_page *page;
1782 
1783 		mutex_enter(obj->base.gemo_shm_uao->vmobjlock);
1784 		KASSERT(obj->pages != NULL);
1785 		/* Force a fresh fault for each page.  */
1786 		TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue)
1787 			pmap_page_protect(page, VM_PROT_NONE);
1788 		mutex_exit(obj->base.gemo_shm_uao->vmobjlock);
1789 	}
1790 #else
1791 	if (obj->base.dev->dev_mapping)
1792 		unmap_mapping_range(obj->base.dev->dev_mapping,
1793 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1794 				    obj->base.size, 1);
1795 #endif
1796 
1797 	obj->fault_mappable = false;
1798 }
1799 
1800 static uint32_t
1801 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1802 {
1803 	uint32_t gtt_size;
1804 
1805 	if (INTEL_INFO(dev)->gen >= 4 ||
1806 	    tiling_mode == I915_TILING_NONE)
1807 		return size;
1808 
1809 	/* Previous chips need a power-of-two fence region when tiling */
1810 	if (INTEL_INFO(dev)->gen == 3)
1811 		gtt_size = 1024*1024;
1812 	else
1813 		gtt_size = 512*1024;
1814 
1815 	while (gtt_size < size)
1816 		gtt_size <<= 1;
1817 
1818 	return gtt_size;
1819 }
1820 
1821 /**
1822  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1823  * @obj: object to check
1824  *
1825  * Return the required GTT alignment for an object, taking into account
1826  * potential fence register mapping.
1827  */
1828 static uint32_t
1829 i915_gem_get_gtt_alignment(struct drm_device *dev,
1830 			   uint32_t size,
1831 			   int tiling_mode)
1832 {
1833 	/*
1834 	 * Minimum alignment is 4k (GTT page size), but might be greater
1835 	 * if a fence register is needed for the object.
1836 	 */
1837 	if (INTEL_INFO(dev)->gen >= 4 ||
1838 	    tiling_mode == I915_TILING_NONE)
1839 		return 4096;
1840 
1841 	/*
1842 	 * Previous chips need to be aligned to the size of the smallest
1843 	 * fence register that can contain the object.
1844 	 */
1845 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1846 }
1847 
1848 /**
1849  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1850  *					 unfenced object
1851  * @dev: the device
1852  * @size: size of the object
1853  * @tiling_mode: tiling mode of the object
1854  *
1855  * Return the required GTT alignment for an object, only taking into account
1856  * unfenced tiled surface requirements.
1857  */
1858 uint32_t
1859 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1860 				    uint32_t size,
1861 				    int tiling_mode)
1862 {
1863 	/*
1864 	 * Minimum alignment is 4k (GTT page size) for sane hw.
1865 	 */
1866 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1867 	    tiling_mode == I915_TILING_NONE)
1868 		return 4096;
1869 
1870 	/* Previous hardware however needs to be aligned to a power-of-two
1871 	 * tile height. The simplest method for determining this is to reuse
1872 	 * the power-of-tile object size.
1873 	 */
1874 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1875 }
1876 
1877 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1878 {
1879 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1880 	int ret;
1881 
1882 	if (obj->base.map_list.map)
1883 		return 0;
1884 
1885 	dev_priv->mm.shrinker_no_lock_stealing = true;
1886 
1887 	ret = drm_gem_create_mmap_offset(&obj->base);
1888 	if (ret != -ENOSPC)
1889 		goto out;
1890 
1891 	/* Badly fragmented mmap space? The only way we can recover
1892 	 * space is by destroying unwanted objects. We can't randomly release
1893 	 * mmap_offsets as userspace expects them to be persistent for the
1894 	 * lifetime of the objects. The closest we can is to release the
1895 	 * offsets on purgeable objects by truncating it and marking it purged,
1896 	 * which prevents userspace from ever using that object again.
1897 	 */
1898 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1899 	ret = drm_gem_create_mmap_offset(&obj->base);
1900 	if (ret != -ENOSPC)
1901 		goto out;
1902 
1903 	i915_gem_shrink_all(dev_priv);
1904 	ret = drm_gem_create_mmap_offset(&obj->base);
1905 out:
1906 	dev_priv->mm.shrinker_no_lock_stealing = false;
1907 
1908 	return ret;
1909 }
1910 
1911 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1912 {
1913 	if (!obj->base.map_list.map)
1914 		return;
1915 
1916 	drm_gem_free_mmap_offset(&obj->base);
1917 }
1918 
1919 int
1920 i915_gem_mmap_gtt(struct drm_file *file,
1921 		  struct drm_device *dev,
1922 		  uint32_t handle,
1923 		  uint64_t *offset)
1924 {
1925 	struct drm_i915_private *dev_priv = dev->dev_private;
1926 	struct drm_i915_gem_object *obj;
1927 	int ret;
1928 
1929 	ret = i915_mutex_lock_interruptible(dev);
1930 	if (ret)
1931 		return ret;
1932 
1933 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1934 	if (&obj->base == NULL) {
1935 		ret = -ENOENT;
1936 		goto unlock;
1937 	}
1938 
1939 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1940 		ret = -E2BIG;
1941 		goto out;
1942 	}
1943 
1944 	if (obj->madv != I915_MADV_WILLNEED) {
1945 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1946 		ret = -EINVAL;
1947 		goto out;
1948 	}
1949 
1950 	ret = i915_gem_object_create_mmap_offset(obj);
1951 	if (ret)
1952 		goto out;
1953 
1954 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1955 
1956 out:
1957 	drm_gem_object_unreference(&obj->base);
1958 unlock:
1959 	mutex_unlock(&dev->struct_mutex);
1960 	return ret;
1961 }
1962 
1963 /**
1964  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1965  * @dev: DRM device
1966  * @data: GTT mapping ioctl data
1967  * @file: GEM object info
1968  *
1969  * Simply returns the fake offset to userspace so it can mmap it.
1970  * The mmap call will end up in drm_gem_mmap(), which will set things
1971  * up so we can get faults in the handler above.
1972  *
1973  * The fault handler will take care of binding the object into the GTT
1974  * (since it may have been evicted to make room for something), allocating
1975  * a fence register, and mapping the appropriate aperture address into
1976  * userspace.
1977  */
1978 int
1979 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1980 			struct drm_file *file)
1981 {
1982 	struct drm_i915_gem_mmap_gtt *args = data;
1983 
1984 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1985 }
1986 
1987 /* Immediately discard the backing storage */
1988 static void
1989 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1990 {
1991 #ifndef __NetBSD__
1992 	struct inode *inode;
1993 #endif
1994 
1995 	i915_gem_object_free_mmap_offset(obj);
1996 
1997 #ifdef __NetBSD__
1998 	{
1999 		struct uvm_object *const uobj = obj->base.gemo_shm_uao;
2000 
2001 		if (uobj != NULL) {
2002 			/* XXX Calling pgo_put like this is bogus.  */
2003 			mutex_enter(uobj->vmobjlock);
2004 			(*uobj->pgops->pgo_put)(uobj, 0, obj->base.size,
2005 			    (PGO_ALLPAGES | PGO_FREE));
2006 		}
2007 	}
2008 #else
2009 	if (obj->base.filp == NULL)
2010 		return;
2011 
2012 	/* Our goal here is to return as much of the memory as
2013 	 * is possible back to the system as we are called from OOM.
2014 	 * To do this we must instruct the shmfs to drop all of its
2015 	 * backing pages, *now*.
2016 	 */
2017 	inode = obj->base.filp->f_path.dentry->d_inode;
2018 	shmem_truncate_range(inode, 0, (loff_t)-1);
2019 #endif
2020 
2021 	obj->madv = __I915_MADV_PURGED;
2022 }
2023 
2024 static inline int
2025 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2026 {
2027 	return obj->madv == I915_MADV_DONTNEED;
2028 }
2029 
2030 #ifdef __NetBSD__
2031 static void
2032 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2033 {
2034 	struct drm_device *const dev = obj->base.dev;
2035 	int ret;
2036 
2037 	/* XXX Cargo-culted from the Linux code.  */
2038 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2039 
2040 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2041 	if (ret) {
2042 		WARN_ON(ret != -EIO);
2043 		i915_gem_clflush_object(obj);
2044 		obj->base.read_domains = obj->base.write_domain =
2045 		    I915_GEM_DOMAIN_CPU;
2046 	}
2047 
2048 	if (i915_gem_object_needs_bit17_swizzle(obj))
2049 		i915_gem_object_save_bit_17_swizzle(obj);
2050 
2051 	/* XXX Maintain dirty flag?  */
2052 
2053 	bus_dmamap_destroy(dev->dmat, obj->igo_dmamap);
2054 	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2055 	    obj->base.size, obj->pages, obj->igo_nsegs);
2056 
2057 	kfree(obj->pages);
2058 }
2059 #else
2060 static void
2061 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2062 {
2063 	int page_count = obj->base.size / PAGE_SIZE;
2064 	struct scatterlist *sg;
2065 	int ret, i;
2066 
2067 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2068 
2069 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2070 	if (ret) {
2071 		/* In the event of a disaster, abandon all caches and
2072 		 * hope for the best.
2073 		 */
2074 		WARN_ON(ret != -EIO);
2075 		i915_gem_clflush_object(obj);
2076 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2077 	}
2078 
2079 	if (i915_gem_object_needs_bit17_swizzle(obj))
2080 		i915_gem_object_save_bit_17_swizzle(obj);
2081 
2082 	if (obj->madv == I915_MADV_DONTNEED)
2083 		obj->dirty = 0;
2084 
2085 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
2086 		struct page *page = sg_page(sg);
2087 
2088 		if (obj->dirty)
2089 			set_page_dirty(page);
2090 
2091 		if (obj->madv == I915_MADV_WILLNEED)
2092 			mark_page_accessed(page);
2093 
2094 		page_cache_release(page);
2095 	}
2096 	obj->dirty = 0;
2097 
2098 	sg_free_table(obj->pages);
2099 	kfree(obj->pages);
2100 }
2101 #endif
2102 
2103 static int
2104 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2105 {
2106 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2107 
2108 	if (obj->pages == NULL)
2109 		return 0;
2110 
2111 	BUG_ON(obj->gtt_space);
2112 
2113 	if (obj->pages_pin_count)
2114 		return -EBUSY;
2115 
2116 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2117 	 * array, hence protect them from being reaped by removing them from gtt
2118 	 * lists early. */
2119 	list_del(&obj->gtt_list);
2120 
2121 	ops->put_pages(obj);
2122 	obj->pages = NULL;
2123 
2124 	if (i915_gem_object_is_purgeable(obj))
2125 		i915_gem_object_truncate(obj);
2126 
2127 	return 0;
2128 }
2129 
2130 static long
2131 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2132 		  bool purgeable_only)
2133 {
2134 	struct drm_i915_gem_object *obj, *next;
2135 	long count = 0;
2136 
2137 	list_for_each_entry_safe(obj, next,
2138 				 &dev_priv->mm.unbound_list,
2139 				 gtt_list) {
2140 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2141 		    i915_gem_object_put_pages(obj) == 0) {
2142 			count += obj->base.size >> PAGE_SHIFT;
2143 			if (count >= target)
2144 				return count;
2145 		}
2146 	}
2147 
2148 	list_for_each_entry_safe(obj, next,
2149 				 &dev_priv->mm.inactive_list,
2150 				 mm_list) {
2151 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
2152 		    i915_gem_object_unbind(obj) == 0 &&
2153 		    i915_gem_object_put_pages(obj) == 0) {
2154 			count += obj->base.size >> PAGE_SHIFT;
2155 			if (count >= target)
2156 				return count;
2157 		}
2158 	}
2159 
2160 	return count;
2161 }
2162 
2163 static long
2164 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2165 {
2166 	return __i915_gem_shrink(dev_priv, target, true);
2167 }
2168 
2169 static void
2170 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2171 {
2172 	struct drm_i915_gem_object *obj, *next;
2173 
2174 	i915_gem_evict_everything(dev_priv->dev);
2175 
2176 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
2177 		i915_gem_object_put_pages(obj);
2178 }
2179 
2180 #ifdef __NetBSD__
2181 static int
2182 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2183 {
2184 	struct drm_device *const dev = obj->base.dev;
2185 	struct vm_page *page;
2186 	int error;
2187 
2188 	/* XXX Cargo-culted from the Linux code.  */
2189 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2190 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2191 
2192 	KASSERT(obj->pages == NULL);
2193 	TAILQ_INIT(&obj->igo_pageq);
2194 	obj->pages = kcalloc((obj->base.size / PAGE_SIZE),
2195 	    sizeof(obj->pages[0]), GFP_KERNEL);
2196 	if (obj->pages == NULL) {
2197 		error = -ENOMEM;
2198 		goto fail0;
2199 	}
2200 
2201 	/* XXX errno NetBSD->Linux */
2202 	error = -bus_dmamem_wire_uvm_object(dev->dmat, obj->base.gemo_shm_uao,
2203 	    0, obj->base.size, &obj->igo_pageq, PAGE_SIZE, 0, obj->pages,
2204 	    (obj->base.size / PAGE_SIZE), &obj->igo_nsegs, BUS_DMA_NOWAIT);
2205 	if (error)
2206 		/* XXX Try i915_gem_purge, i915_gem_shrink_all.  */
2207 		goto fail1;
2208 	KASSERT(0 < obj->igo_nsegs);
2209 	KASSERT(obj->igo_nsegs <= (obj->base.size / PAGE_SIZE));
2210 
2211 	/*
2212 	 * Check that the paddrs will fit in 40 bits, or 32 bits on i965.
2213 	 *
2214 	 * XXX This is wrong; we ought to pass this constraint to
2215 	 * bus_dmamem_wire_uvm_object instead.
2216 	 */
2217 	TAILQ_FOREACH(page, &obj->igo_pageq, pageq.queue) {
2218 		const uint64_t mask =
2219 		    (IS_BROADWATER(dev) || IS_CRESTLINE(dev)?
2220 			0xffffffffULL : 0xffffffffffULL);
2221 		if (VM_PAGE_TO_PHYS(page) & ~mask) {
2222 			DRM_ERROR("GEM physical address exceeds %u bits"
2223 			    ": %"PRIxMAX"\n",
2224 			    popcount64(mask),
2225 			    (uintmax_t)VM_PAGE_TO_PHYS(page));
2226 			error = -EIO;
2227 			goto fail2;
2228 		}
2229 	}
2230 
2231 	/* XXX errno NetBSD->Linux */
2232 	error = -bus_dmamap_create(dev->dmat, obj->base.size, obj->igo_nsegs,
2233 	    PAGE_SIZE, 0, BUS_DMA_NOWAIT, &obj->igo_dmamap);
2234 	if (error)
2235 		goto fail2;
2236 
2237 	/* XXX Cargo-culted from the Linux code.  */
2238 	if (i915_gem_object_needs_bit17_swizzle(obj))
2239 		i915_gem_object_do_bit_17_swizzle(obj);
2240 
2241 	/* Success!  */
2242 	return 0;
2243 
2244 fail2:	bus_dmamem_unwire_uvm_object(dev->dmat, obj->base.gemo_shm_uao, 0,
2245 	    obj->base.size, obj->pages, (obj->base.size / PAGE_SIZE));
2246 fail1:	kfree(obj->pages);
2247 	obj->pages = NULL;
2248 fail0:	KASSERT(error);
2249 	return error;
2250 }
2251 #else
2252 static int
2253 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2254 {
2255 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2256 	int page_count, i;
2257 	struct address_space *mapping;
2258 	struct sg_table *st;
2259 	struct scatterlist *sg;
2260 	struct page *page;
2261 	gfp_t gfp;
2262 
2263 	/* Assert that the object is not currently in any GPU domain. As it
2264 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2265 	 * a GPU cache
2266 	 */
2267 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2268 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2269 
2270 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2271 	if (st == NULL)
2272 		return -ENOMEM;
2273 
2274 	page_count = obj->base.size / PAGE_SIZE;
2275 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2276 		sg_free_table(st);
2277 		kfree(st);
2278 		return -ENOMEM;
2279 	}
2280 
2281 	/* Get the list of pages out of our struct file.  They'll be pinned
2282 	 * at this point until we release them.
2283 	 *
2284 	 * Fail silently without starting the shrinker
2285 	 */
2286 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
2287 	gfp = mapping_gfp_mask(mapping);
2288 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2289 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2290 	for_each_sg(st->sgl, sg, page_count, i) {
2291 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2292 		if (IS_ERR(page)) {
2293 			i915_gem_purge(dev_priv, page_count);
2294 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2295 		}
2296 		if (IS_ERR(page)) {
2297 			/* We've tried hard to allocate the memory by reaping
2298 			 * our own buffer, now let the real VM do its job and
2299 			 * go down in flames if truly OOM.
2300 			 */
2301 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2302 			gfp |= __GFP_IO | __GFP_WAIT;
2303 
2304 			i915_gem_shrink_all(dev_priv);
2305 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2306 			if (IS_ERR(page))
2307 				goto err_pages;
2308 
2309 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2310 			gfp &= ~(__GFP_IO | __GFP_WAIT);
2311 		}
2312 
2313 		sg_set_page(sg, page, PAGE_SIZE, 0);
2314 	}
2315 
2316 	obj->pages = st;
2317 
2318 	if (i915_gem_object_needs_bit17_swizzle(obj))
2319 		i915_gem_object_do_bit_17_swizzle(obj);
2320 
2321 	return 0;
2322 
2323 err_pages:
2324 	for_each_sg(st->sgl, sg, i, page_count)
2325 		page_cache_release(sg_page(sg));
2326 	sg_free_table(st);
2327 	kfree(st);
2328 	return PTR_ERR(page);
2329 }
2330 #endif
2331 
2332 /* Ensure that the associated pages are gathered from the backing storage
2333  * and pinned into our object. i915_gem_object_get_pages() may be called
2334  * multiple times before they are released by a single call to
2335  * i915_gem_object_put_pages() - once the pages are no longer referenced
2336  * either as a result of memory pressure (reaping pages under the shrinker)
2337  * or as the object is itself released.
2338  */
2339 int
2340 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2341 {
2342 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2343 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2344 	int ret;
2345 
2346 	if (obj->pages)
2347 		return 0;
2348 
2349 	BUG_ON(obj->pages_pin_count);
2350 
2351 	ret = ops->get_pages(obj);
2352 	if (ret)
2353 		return ret;
2354 
2355 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2356 	return 0;
2357 }
2358 
2359 void
2360 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2361 			       struct intel_ring_buffer *ring)
2362 {
2363 	struct drm_device *dev = obj->base.dev;
2364 	struct drm_i915_private *dev_priv = dev->dev_private;
2365 	u32 seqno = intel_ring_get_seqno(ring);
2366 
2367 	BUG_ON(ring == NULL);
2368 	obj->ring = ring;
2369 
2370 	/* Add a reference if we're newly entering the active list. */
2371 	if (!obj->active) {
2372 		drm_gem_object_reference(&obj->base);
2373 		obj->active = 1;
2374 	}
2375 
2376 	/* Move from whatever list we were on to the tail of execution. */
2377 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
2378 	list_move_tail(&obj->ring_list, &ring->active_list);
2379 
2380 	obj->last_read_seqno = seqno;
2381 
2382 	if (obj->fenced_gpu_access) {
2383 		obj->last_fenced_seqno = seqno;
2384 
2385 		/* Bump MRU to take account of the delayed flush */
2386 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2387 			struct drm_i915_fence_reg *reg;
2388 
2389 			reg = &dev_priv->fence_regs[obj->fence_reg];
2390 			list_move_tail(&reg->lru_list,
2391 				       &dev_priv->mm.fence_list);
2392 		}
2393 	}
2394 }
2395 
2396 static void
2397 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2398 {
2399 	struct drm_device *dev = obj->base.dev;
2400 	struct drm_i915_private *dev_priv = dev->dev_private;
2401 
2402 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2403 	BUG_ON(!obj->active);
2404 
2405 	if (obj->pin_count) /* are we a framebuffer? */
2406 		intel_mark_fb_idle(obj);
2407 
2408 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2409 
2410 	list_del_init(&obj->ring_list);
2411 	obj->ring = NULL;
2412 
2413 	obj->last_read_seqno = 0;
2414 	obj->last_write_seqno = 0;
2415 	obj->base.write_domain = 0;
2416 
2417 	obj->last_fenced_seqno = 0;
2418 	obj->fenced_gpu_access = false;
2419 
2420 	obj->active = 0;
2421 	drm_gem_object_unreference(&obj->base);
2422 
2423 	WARN_ON(i915_verify_lists(dev));
2424 }
2425 
2426 static int
2427 i915_gem_handle_seqno_wrap(struct drm_device *dev)
2428 {
2429 	struct drm_i915_private *dev_priv = dev->dev_private;
2430 	struct intel_ring_buffer *ring;
2431 	int ret, i, j;
2432 
2433 	/* The hardware uses various monotonic 32-bit counters, if we
2434 	 * detect that they will wraparound we need to idle the GPU
2435 	 * and reset those counters.
2436 	 */
2437 	ret = 0;
2438 	for_each_ring(ring, dev_priv, i) {
2439 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2440 			ret |= ring->sync_seqno[j] != 0;
2441 	}
2442 	if (ret == 0)
2443 		return ret;
2444 
2445 	ret = i915_gpu_idle(dev);
2446 	if (ret)
2447 		return ret;
2448 
2449 	i915_gem_retire_requests(dev);
2450 	for_each_ring(ring, dev_priv, i) {
2451 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2452 			ring->sync_seqno[j] = 0;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 int
2459 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2460 {
2461 	struct drm_i915_private *dev_priv = dev->dev_private;
2462 
2463 	/* reserve 0 for non-seqno */
2464 	if (dev_priv->next_seqno == 0) {
2465 		int ret = i915_gem_handle_seqno_wrap(dev);
2466 		if (ret)
2467 			return ret;
2468 
2469 		dev_priv->next_seqno = 1;
2470 	}
2471 
2472 	*seqno = dev_priv->next_seqno++;
2473 	return 0;
2474 }
2475 
2476 int
2477 i915_add_request(struct intel_ring_buffer *ring,
2478 		 struct drm_file *file,
2479 		 u32 *out_seqno)
2480 {
2481 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2482 	struct drm_i915_gem_request *request;
2483 	u32 request_ring_position;
2484 	int was_empty;
2485 	int ret;
2486 
2487 	/*
2488 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2489 	 * after having emitted the batchbuffer command. Hence we need to fix
2490 	 * things up similar to emitting the lazy request. The difference here
2491 	 * is that the flush _must_ happen before the next request, no matter
2492 	 * what.
2493 	 */
2494 	ret = intel_ring_flush_all_caches(ring);
2495 	if (ret)
2496 		return ret;
2497 
2498 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2499 	if (request == NULL)
2500 		return -ENOMEM;
2501 
2502 
2503 	/* Record the position of the start of the request so that
2504 	 * should we detect the updated seqno part-way through the
2505 	 * GPU processing the request, we never over-estimate the
2506 	 * position of the head.
2507 	 */
2508 	request_ring_position = intel_ring_get_tail(ring);
2509 
2510 	ret = ring->add_request(ring);
2511 	if (ret) {
2512 		kfree(request);
2513 		return ret;
2514 	}
2515 
2516 	request->seqno = intel_ring_get_seqno(ring);
2517 	request->ring = ring;
2518 	request->tail = request_ring_position;
2519 	request->emitted_jiffies = jiffies;
2520 	was_empty = list_empty(&ring->request_list);
2521 	list_add_tail(&request->list, &ring->request_list);
2522 	request->file_priv = NULL;
2523 
2524 	if (file) {
2525 		struct drm_i915_file_private *file_priv = file->driver_priv;
2526 
2527 		spin_lock(&file_priv->mm.lock);
2528 		request->file_priv = file_priv;
2529 		list_add_tail(&request->client_list,
2530 			      &file_priv->mm.request_list);
2531 		spin_unlock(&file_priv->mm.lock);
2532 	}
2533 
2534 	trace_i915_gem_request_add(ring, request->seqno);
2535 	ring->outstanding_lazy_request = 0;
2536 
2537 	if (!dev_priv->mm.suspended) {
2538 		if (i915_enable_hangcheck) {
2539 			mod_timer(&dev_priv->hangcheck_timer,
2540 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2541 		}
2542 		if (was_empty) {
2543 			queue_delayed_work(dev_priv->wq,
2544 					   &dev_priv->mm.retire_work,
2545 					   round_jiffies_up_relative(HZ));
2546 			intel_mark_busy(dev_priv->dev);
2547 		}
2548 	}
2549 
2550 	if (out_seqno)
2551 		*out_seqno = request->seqno;
2552 	return 0;
2553 }
2554 
2555 static inline void
2556 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2557 {
2558 	struct drm_i915_file_private *file_priv = request->file_priv;
2559 
2560 	if (!file_priv)
2561 		return;
2562 
2563 	spin_lock(&file_priv->mm.lock);
2564 	if (request->file_priv) {
2565 		list_del(&request->client_list);
2566 		request->file_priv = NULL;
2567 	}
2568 	spin_unlock(&file_priv->mm.lock);
2569 }
2570 
2571 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2572 				      struct intel_ring_buffer *ring)
2573 {
2574 	while (!list_empty(&ring->request_list)) {
2575 		struct drm_i915_gem_request *request;
2576 
2577 		request = list_first_entry(&ring->request_list,
2578 					   struct drm_i915_gem_request,
2579 					   list);
2580 
2581 		list_del(&request->list);
2582 		i915_gem_request_remove_from_client(request);
2583 		kfree(request);
2584 	}
2585 
2586 	while (!list_empty(&ring->active_list)) {
2587 		struct drm_i915_gem_object *obj;
2588 
2589 		obj = list_first_entry(&ring->active_list,
2590 				       struct drm_i915_gem_object,
2591 				       ring_list);
2592 
2593 		i915_gem_object_move_to_inactive(obj);
2594 	}
2595 }
2596 
2597 static void i915_gem_reset_fences(struct drm_device *dev)
2598 {
2599 	struct drm_i915_private *dev_priv = dev->dev_private;
2600 	int i;
2601 
2602 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2603 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2604 
2605 		i915_gem_write_fence(dev, i, NULL);
2606 
2607 		if (reg->obj)
2608 			i915_gem_object_fence_lost(reg->obj);
2609 
2610 		reg->pin_count = 0;
2611 		reg->obj = NULL;
2612 		INIT_LIST_HEAD(&reg->lru_list);
2613 	}
2614 
2615 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2616 }
2617 
2618 void i915_gem_reset(struct drm_device *dev)
2619 {
2620 	struct drm_i915_private *dev_priv = dev->dev_private;
2621 	struct drm_i915_gem_object *obj;
2622 	struct intel_ring_buffer *ring;
2623 	int i;
2624 
2625 	for_each_ring(ring, dev_priv, i)
2626 		i915_gem_reset_ring_lists(dev_priv, ring);
2627 
2628 	/* Move everything out of the GPU domains to ensure we do any
2629 	 * necessary invalidation upon reuse.
2630 	 */
2631 	list_for_each_entry(obj,
2632 			    &dev_priv->mm.inactive_list,
2633 			    mm_list)
2634 	{
2635 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2636 	}
2637 
2638 	/* The fence registers are invalidated so clear them out */
2639 	i915_gem_reset_fences(dev);
2640 }
2641 
2642 /**
2643  * This function clears the request list as sequence numbers are passed.
2644  */
2645 void
2646 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2647 {
2648 	uint32_t seqno;
2649 
2650 	if (list_empty(&ring->request_list))
2651 		return;
2652 
2653 	WARN_ON(i915_verify_lists(ring->dev));
2654 
2655 	seqno = ring->get_seqno(ring, true);
2656 
2657 	while (!list_empty(&ring->request_list)) {
2658 		struct drm_i915_gem_request *request;
2659 
2660 		request = list_first_entry(&ring->request_list,
2661 					   struct drm_i915_gem_request,
2662 					   list);
2663 
2664 		if (!i915_seqno_passed(seqno, request->seqno))
2665 			break;
2666 
2667 		trace_i915_gem_request_retire(ring, request->seqno);
2668 		/* We know the GPU must have read the request to have
2669 		 * sent us the seqno + interrupt, so use the position
2670 		 * of tail of the request to update the last known position
2671 		 * of the GPU head.
2672 		 */
2673 		ring->last_retired_head = request->tail;
2674 
2675 		list_del(&request->list);
2676 		i915_gem_request_remove_from_client(request);
2677 		kfree(request);
2678 	}
2679 
2680 	/* Move any buffers on the active list that are no longer referenced
2681 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2682 	 */
2683 	while (!list_empty(&ring->active_list)) {
2684 		struct drm_i915_gem_object *obj;
2685 
2686 		obj = list_first_entry(&ring->active_list,
2687 				      struct drm_i915_gem_object,
2688 				      ring_list);
2689 
2690 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2691 			break;
2692 
2693 		i915_gem_object_move_to_inactive(obj);
2694 	}
2695 
2696 	if (unlikely(ring->trace_irq_seqno &&
2697 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2698 		ring->irq_put(ring);
2699 		ring->trace_irq_seqno = 0;
2700 	}
2701 
2702 	WARN_ON(i915_verify_lists(ring->dev));
2703 }
2704 
2705 void
2706 i915_gem_retire_requests(struct drm_device *dev)
2707 {
2708 	drm_i915_private_t *dev_priv = dev->dev_private;
2709 	struct intel_ring_buffer *ring;
2710 	int i;
2711 
2712 	for_each_ring(ring, dev_priv, i)
2713 		i915_gem_retire_requests_ring(ring);
2714 }
2715 
2716 static void
2717 i915_gem_retire_work_handler(struct work_struct *work)
2718 {
2719 	drm_i915_private_t *dev_priv;
2720 	struct drm_device *dev;
2721 	struct intel_ring_buffer *ring;
2722 	bool idle;
2723 	int i;
2724 
2725 	dev_priv = container_of(work, drm_i915_private_t,
2726 				mm.retire_work.work);
2727 	dev = dev_priv->dev;
2728 
2729 	/* Come back later if the device is busy... */
2730 	if (!mutex_trylock(&dev->struct_mutex)) {
2731 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2732 				   round_jiffies_up_relative(HZ));
2733 		return;
2734 	}
2735 
2736 	i915_gem_retire_requests(dev);
2737 
2738 	/* Send a periodic flush down the ring so we don't hold onto GEM
2739 	 * objects indefinitely.
2740 	 */
2741 	idle = true;
2742 	for_each_ring(ring, dev_priv, i) {
2743 		if (ring->gpu_caches_dirty)
2744 			i915_add_request(ring, NULL, NULL);
2745 
2746 		idle &= list_empty(&ring->request_list);
2747 	}
2748 
2749 	if (!dev_priv->mm.suspended && !idle)
2750 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2751 				   round_jiffies_up_relative(HZ));
2752 	if (idle)
2753 		intel_mark_idle(dev);
2754 
2755 	mutex_unlock(&dev->struct_mutex);
2756 }
2757 
2758 /**
2759  * Ensures that an object will eventually get non-busy by flushing any required
2760  * write domains, emitting any outstanding lazy request and retiring and
2761  * completed requests.
2762  */
2763 static int
2764 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2765 {
2766 	int ret;
2767 
2768 	if (obj->active) {
2769 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2770 		if (ret)
2771 			return ret;
2772 
2773 		i915_gem_retire_requests_ring(obj->ring);
2774 	}
2775 
2776 	return 0;
2777 }
2778 
2779 /**
2780  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2781  * @DRM_IOCTL_ARGS: standard ioctl arguments
2782  *
2783  * Returns 0 if successful, else an error is returned with the remaining time in
2784  * the timeout parameter.
2785  *  -ETIME: object is still busy after timeout
2786  *  -ERESTARTSYS: signal interrupted the wait
2787  *  -ENONENT: object doesn't exist
2788  * Also possible, but rare:
2789  *  -EAGAIN: GPU wedged
2790  *  -ENOMEM: damn
2791  *  -ENODEV: Internal IRQ fail
2792  *  -E?: The add request failed
2793  *
2794  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2795  * non-zero timeout parameter the wait ioctl will wait for the given number of
2796  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2797  * without holding struct_mutex the object may become re-busied before this
2798  * function completes. A similar but shorter * race condition exists in the busy
2799  * ioctl
2800  */
2801 int
2802 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2803 {
2804 	struct drm_i915_gem_wait *args = data;
2805 	struct drm_i915_gem_object *obj;
2806 	struct intel_ring_buffer *ring = NULL;
2807 	struct timespec timeout_stack, *timeout = NULL;
2808 	u32 seqno = 0;
2809 	int ret = 0;
2810 
2811 	if (args->timeout_ns >= 0) {
2812 		timeout_stack = ns_to_timespec(args->timeout_ns);
2813 		timeout = &timeout_stack;
2814 	}
2815 
2816 	ret = i915_mutex_lock_interruptible(dev);
2817 	if (ret)
2818 		return ret;
2819 
2820 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2821 	if (&obj->base == NULL) {
2822 		mutex_unlock(&dev->struct_mutex);
2823 		return -ENOENT;
2824 	}
2825 
2826 	/* Need to make sure the object gets inactive eventually. */
2827 	ret = i915_gem_object_flush_active(obj);
2828 	if (ret)
2829 		goto out;
2830 
2831 	if (obj->active) {
2832 		seqno = obj->last_read_seqno;
2833 		ring = obj->ring;
2834 	}
2835 
2836 	if (seqno == 0)
2837 		 goto out;
2838 
2839 	/* Do this after OLR check to make sure we make forward progress polling
2840 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2841 	 */
2842 	if (!args->timeout_ns) {
2843 		ret = -ETIME;
2844 		goto out;
2845 	}
2846 
2847 	drm_gem_object_unreference(&obj->base);
2848 	mutex_unlock(&dev->struct_mutex);
2849 
2850 	ret = __wait_seqno(ring, seqno, true, timeout);
2851 	if (timeout) {
2852 		WARN_ON(!timespec_valid(timeout));
2853 		args->timeout_ns = timespec_to_ns(timeout);
2854 	}
2855 	return ret;
2856 
2857 out:
2858 	drm_gem_object_unreference(&obj->base);
2859 	mutex_unlock(&dev->struct_mutex);
2860 	return ret;
2861 }
2862 
2863 /**
2864  * i915_gem_object_sync - sync an object to a ring.
2865  *
2866  * @obj: object which may be in use on another ring.
2867  * @to: ring we wish to use the object on. May be NULL.
2868  *
2869  * This code is meant to abstract object synchronization with the GPU.
2870  * Calling with NULL implies synchronizing the object with the CPU
2871  * rather than a particular GPU ring.
2872  *
2873  * Returns 0 if successful, else propagates up the lower layer error.
2874  */
2875 int
2876 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2877 		     struct intel_ring_buffer *to)
2878 {
2879 	struct intel_ring_buffer *from = obj->ring;
2880 	u32 seqno;
2881 	int ret, idx;
2882 
2883 	if (from == NULL || to == from)
2884 		return 0;
2885 
2886 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2887 		return i915_gem_object_wait_rendering(obj, false);
2888 
2889 	idx = intel_ring_sync_index(from, to);
2890 
2891 	seqno = obj->last_read_seqno;
2892 	if (seqno <= from->sync_seqno[idx])
2893 		return 0;
2894 
2895 	ret = i915_gem_check_olr(obj->ring, seqno);
2896 	if (ret)
2897 		return ret;
2898 
2899 	ret = to->sync_to(to, from, seqno);
2900 	if (!ret)
2901 		/* We use last_read_seqno because sync_to()
2902 		 * might have just caused seqno wrap under
2903 		 * the radar.
2904 		 */
2905 		from->sync_seqno[idx] = obj->last_read_seqno;
2906 
2907 	return ret;
2908 }
2909 
2910 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2911 {
2912 	u32 old_write_domain, old_read_domains;
2913 
2914 	/* Act a barrier for all accesses through the GTT */
2915 	mb();
2916 
2917 	/* Force a pagefault for domain tracking on next user access */
2918 	i915_gem_release_mmap(obj);
2919 
2920 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2921 		return;
2922 
2923 	old_read_domains = obj->base.read_domains;
2924 	old_write_domain = obj->base.write_domain;
2925 
2926 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2927 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2928 
2929 	trace_i915_gem_object_change_domain(obj,
2930 					    old_read_domains,
2931 					    old_write_domain);
2932 }
2933 
2934 /**
2935  * Unbinds an object from the GTT aperture.
2936  */
2937 int
2938 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2939 {
2940 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2941 	int ret = 0;
2942 
2943 	if (obj->gtt_space == NULL)
2944 		return 0;
2945 
2946 	if (obj->pin_count)
2947 		return -EBUSY;
2948 
2949 	BUG_ON(obj->pages == NULL);
2950 
2951 	ret = i915_gem_object_finish_gpu(obj);
2952 	if (ret)
2953 		return ret;
2954 	/* Continue on if we fail due to EIO, the GPU is hung so we
2955 	 * should be safe and we need to cleanup or else we might
2956 	 * cause memory corruption through use-after-free.
2957 	 */
2958 
2959 	i915_gem_object_finish_gtt(obj);
2960 
2961 	/* release the fence reg _after_ flushing */
2962 	ret = i915_gem_object_put_fence(obj);
2963 	if (ret)
2964 		return ret;
2965 
2966 	trace_i915_gem_object_unbind(obj);
2967 
2968 	if (obj->has_global_gtt_mapping)
2969 		i915_gem_gtt_unbind_object(obj);
2970 	if (obj->has_aliasing_ppgtt_mapping) {
2971 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2972 		obj->has_aliasing_ppgtt_mapping = 0;
2973 	}
2974 	i915_gem_gtt_finish_object(obj);
2975 
2976 	list_del(&obj->mm_list);
2977 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2978 	/* Avoid an unnecessary call to unbind on rebind. */
2979 	obj->map_and_fenceable = true;
2980 
2981 	drm_mm_put_block(obj->gtt_space);
2982 	obj->gtt_space = NULL;
2983 	obj->gtt_offset = 0;
2984 
2985 	return 0;
2986 }
2987 
2988 int i915_gpu_idle(struct drm_device *dev)
2989 {
2990 	drm_i915_private_t *dev_priv = dev->dev_private;
2991 	struct intel_ring_buffer *ring;
2992 	int ret, i;
2993 
2994 	/* Flush everything onto the inactive list. */
2995 	for_each_ring(ring, dev_priv, i) {
2996 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2997 		if (ret)
2998 			return ret;
2999 
3000 		ret = intel_ring_idle(ring);
3001 		if (ret)
3002 			return ret;
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
3009 					struct drm_i915_gem_object *obj)
3010 {
3011 	drm_i915_private_t *dev_priv = dev->dev_private;
3012 	uint64_t val;
3013 
3014 	if (obj) {
3015 		u32 size = obj->gtt_space->size;
3016 
3017 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
3018 				 0xfffff000) << 32;
3019 		val |= obj->gtt_offset & 0xfffff000;
3020 		val |= (uint64_t)((obj->stride / 128) - 1) <<
3021 			SANDYBRIDGE_FENCE_PITCH_SHIFT;
3022 
3023 		if (obj->tiling_mode == I915_TILING_Y)
3024 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3025 		val |= I965_FENCE_REG_VALID;
3026 	} else
3027 		val = 0;
3028 
3029 	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
3030 	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
3031 }
3032 
3033 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3034 				 struct drm_i915_gem_object *obj)
3035 {
3036 	drm_i915_private_t *dev_priv = dev->dev_private;
3037 	uint64_t val;
3038 
3039 	if (obj) {
3040 		u32 size = obj->gtt_space->size;
3041 
3042 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
3043 				 0xfffff000) << 32;
3044 		val |= obj->gtt_offset & 0xfffff000;
3045 		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
3046 		if (obj->tiling_mode == I915_TILING_Y)
3047 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3048 		val |= I965_FENCE_REG_VALID;
3049 	} else
3050 		val = 0;
3051 
3052 	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
3053 	POSTING_READ(FENCE_REG_965_0 + reg * 8);
3054 }
3055 
3056 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3057 				 struct drm_i915_gem_object *obj)
3058 {
3059 	drm_i915_private_t *dev_priv = dev->dev_private;
3060 	u32 val;
3061 
3062 	if (obj) {
3063 		u32 size = obj->gtt_space->size;
3064 		int pitch_val;
3065 		int tile_width;
3066 
3067 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
3068 		     (size & -size) != size ||
3069 		     (obj->gtt_offset & (size - 1)),
3070 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3071 		     obj->gtt_offset, obj->map_and_fenceable, size);
3072 
3073 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3074 			tile_width = 128;
3075 		else
3076 			tile_width = 512;
3077 
3078 		/* Note: pitch better be a power of two tile widths */
3079 		pitch_val = obj->stride / tile_width;
3080 		pitch_val = ffs(pitch_val) - 1;
3081 
3082 		val = obj->gtt_offset;
3083 		if (obj->tiling_mode == I915_TILING_Y)
3084 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3085 		val |= I915_FENCE_SIZE_BITS(size);
3086 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3087 		val |= I830_FENCE_REG_VALID;
3088 	} else
3089 		val = 0;
3090 
3091 	if (reg < 8)
3092 		reg = FENCE_REG_830_0 + reg * 4;
3093 	else
3094 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3095 
3096 	I915_WRITE(reg, val);
3097 	POSTING_READ(reg);
3098 }
3099 
3100 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3101 				struct drm_i915_gem_object *obj)
3102 {
3103 	drm_i915_private_t *dev_priv = dev->dev_private;
3104 	uint32_t val;
3105 
3106 	if (obj) {
3107 		u32 size = obj->gtt_space->size;
3108 		uint32_t pitch_val;
3109 
3110 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
3111 		     (size & -size) != size ||
3112 		     (obj->gtt_offset & (size - 1)),
3113 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
3114 		     obj->gtt_offset, size);
3115 
3116 		pitch_val = obj->stride / 128;
3117 		pitch_val = ffs(pitch_val) - 1;
3118 
3119 		val = obj->gtt_offset;
3120 		if (obj->tiling_mode == I915_TILING_Y)
3121 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3122 		val |= I830_FENCE_SIZE_BITS(size);
3123 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3124 		val |= I830_FENCE_REG_VALID;
3125 	} else
3126 		val = 0;
3127 
3128 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3129 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3130 }
3131 
3132 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3133 				 struct drm_i915_gem_object *obj)
3134 {
3135 	switch (INTEL_INFO(dev)->gen) {
3136 	case 7:
3137 	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
3138 	case 5:
3139 	case 4: i965_write_fence_reg(dev, reg, obj); break;
3140 	case 3: i915_write_fence_reg(dev, reg, obj); break;
3141 	case 2: i830_write_fence_reg(dev, reg, obj); break;
3142 	default: break;
3143 	}
3144 }
3145 
3146 static inline int fence_number(struct drm_i915_private *dev_priv,
3147 			       struct drm_i915_fence_reg *fence)
3148 {
3149 	return fence - dev_priv->fence_regs;
3150 }
3151 
3152 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3153 					 struct drm_i915_fence_reg *fence,
3154 					 bool enable)
3155 {
3156 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3157 	int reg = fence_number(dev_priv, fence);
3158 
3159 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3160 
3161 	if (enable) {
3162 		obj->fence_reg = reg;
3163 		fence->obj = obj;
3164 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3165 	} else {
3166 		obj->fence_reg = I915_FENCE_REG_NONE;
3167 		fence->obj = NULL;
3168 		list_del_init(&fence->lru_list);
3169 	}
3170 }
3171 
3172 static int
3173 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
3174 {
3175 	if (obj->last_fenced_seqno) {
3176 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3177 		if (ret)
3178 			return ret;
3179 
3180 		obj->last_fenced_seqno = 0;
3181 	}
3182 
3183 	/* Ensure that all CPU reads are completed before installing a fence
3184 	 * and all writes before removing the fence.
3185 	 */
3186 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
3187 		mb();
3188 
3189 	obj->fenced_gpu_access = false;
3190 	return 0;
3191 }
3192 
3193 int
3194 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3195 {
3196 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3197 	int ret;
3198 
3199 	ret = i915_gem_object_flush_fence(obj);
3200 	if (ret)
3201 		return ret;
3202 
3203 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3204 		return 0;
3205 
3206 	i915_gem_object_update_fence(obj,
3207 				     &dev_priv->fence_regs[obj->fence_reg],
3208 				     false);
3209 	i915_gem_object_fence_lost(obj);
3210 
3211 	return 0;
3212 }
3213 
3214 static struct drm_i915_fence_reg *
3215 i915_find_fence_reg(struct drm_device *dev)
3216 {
3217 	struct drm_i915_private *dev_priv = dev->dev_private;
3218 	struct drm_i915_fence_reg *reg, *avail;
3219 	int i;
3220 
3221 	/* First try to find a free reg */
3222 	avail = NULL;
3223 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3224 		reg = &dev_priv->fence_regs[i];
3225 		if (!reg->obj)
3226 			return reg;
3227 
3228 		if (!reg->pin_count)
3229 			avail = reg;
3230 	}
3231 
3232 	if (avail == NULL)
3233 		return NULL;
3234 
3235 	/* None available, try to steal one or wait for a user to finish */
3236 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3237 		if (reg->pin_count)
3238 			continue;
3239 
3240 		return reg;
3241 	}
3242 
3243 	return NULL;
3244 }
3245 
3246 /**
3247  * i915_gem_object_get_fence - set up fencing for an object
3248  * @obj: object to map through a fence reg
3249  *
3250  * When mapping objects through the GTT, userspace wants to be able to write
3251  * to them without having to worry about swizzling if the object is tiled.
3252  * This function walks the fence regs looking for a free one for @obj,
3253  * stealing one if it can't find any.
3254  *
3255  * It then sets up the reg based on the object's properties: address, pitch
3256  * and tiling format.
3257  *
3258  * For an untiled surface, this removes any existing fence.
3259  */
3260 int
3261 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3262 {
3263 	struct drm_device *dev = obj->base.dev;
3264 	struct drm_i915_private *dev_priv = dev->dev_private;
3265 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3266 	struct drm_i915_fence_reg *reg;
3267 	int ret;
3268 
3269 	/* Have we updated the tiling parameters upon the object and so
3270 	 * will need to serialise the write to the associated fence register?
3271 	 */
3272 	if (obj->fence_dirty) {
3273 		ret = i915_gem_object_flush_fence(obj);
3274 		if (ret)
3275 			return ret;
3276 	}
3277 
3278 	/* Just update our place in the LRU if our fence is getting reused. */
3279 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3280 		reg = &dev_priv->fence_regs[obj->fence_reg];
3281 		if (!obj->fence_dirty) {
3282 			list_move_tail(&reg->lru_list,
3283 				       &dev_priv->mm.fence_list);
3284 			return 0;
3285 		}
3286 	} else if (enable) {
3287 		reg = i915_find_fence_reg(dev);
3288 		if (reg == NULL)
3289 			return -EDEADLK;
3290 
3291 		if (reg->obj) {
3292 			struct drm_i915_gem_object *old = reg->obj;
3293 
3294 			ret = i915_gem_object_flush_fence(old);
3295 			if (ret)
3296 				return ret;
3297 
3298 			i915_gem_object_fence_lost(old);
3299 		}
3300 	} else
3301 		return 0;
3302 
3303 	i915_gem_object_update_fence(obj, reg, enable);
3304 	obj->fence_dirty = false;
3305 
3306 	return 0;
3307 }
3308 
3309 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3310 				     struct drm_mm_node *gtt_space,
3311 				     unsigned long cache_level)
3312 {
3313 	struct drm_mm_node *other;
3314 
3315 	/* On non-LLC machines we have to be careful when putting differing
3316 	 * types of snoopable memory together to avoid the prefetcher
3317 	 * crossing memory domains and dieing.
3318 	 */
3319 	if (HAS_LLC(dev))
3320 		return true;
3321 
3322 	if (gtt_space == NULL)
3323 		return true;
3324 
3325 	if (list_empty(&gtt_space->node_list))
3326 		return true;
3327 
3328 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3329 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3330 		return false;
3331 
3332 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3333 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3334 		return false;
3335 
3336 	return true;
3337 }
3338 
3339 static void i915_gem_verify_gtt(struct drm_device *dev)
3340 {
3341 #if WATCH_GTT
3342 	struct drm_i915_private *dev_priv = dev->dev_private;
3343 	struct drm_i915_gem_object *obj;
3344 	int err = 0;
3345 
3346 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
3347 		if (obj->gtt_space == NULL) {
3348 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3349 			err++;
3350 			continue;
3351 		}
3352 
3353 		if (obj->cache_level != obj->gtt_space->color) {
3354 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3355 			       obj->gtt_space->start,
3356 			       obj->gtt_space->start + obj->gtt_space->size,
3357 			       obj->cache_level,
3358 			       obj->gtt_space->color);
3359 			err++;
3360 			continue;
3361 		}
3362 
3363 		if (!i915_gem_valid_gtt_space(dev,
3364 					      obj->gtt_space,
3365 					      obj->cache_level)) {
3366 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3367 			       obj->gtt_space->start,
3368 			       obj->gtt_space->start + obj->gtt_space->size,
3369 			       obj->cache_level);
3370 			err++;
3371 			continue;
3372 		}
3373 	}
3374 
3375 	WARN_ON(err);
3376 #endif
3377 }
3378 
3379 /**
3380  * Finds free space in the GTT aperture and binds the object there.
3381  */
3382 static int
3383 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3384 			    unsigned alignment,
3385 			    bool map_and_fenceable,
3386 			    bool nonblocking)
3387 {
3388 	struct drm_device *dev = obj->base.dev;
3389 	drm_i915_private_t *dev_priv = dev->dev_private;
3390 	struct drm_mm_node *node;
3391 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3392 	bool mappable, fenceable;
3393 	int ret;
3394 
3395 	if (obj->madv != I915_MADV_WILLNEED) {
3396 		DRM_ERROR("Attempting to bind a purgeable object\n");
3397 		return -EINVAL;
3398 	}
3399 
3400 	fence_size = i915_gem_get_gtt_size(dev,
3401 					   obj->base.size,
3402 					   obj->tiling_mode);
3403 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3404 						     obj->base.size,
3405 						     obj->tiling_mode);
3406 	unfenced_alignment =
3407 		i915_gem_get_unfenced_gtt_alignment(dev,
3408 						    obj->base.size,
3409 						    obj->tiling_mode);
3410 
3411 	if (alignment == 0)
3412 		alignment = map_and_fenceable ? fence_alignment :
3413 						unfenced_alignment;
3414 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3415 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3416 		return -EINVAL;
3417 	}
3418 
3419 	size = map_and_fenceable ? fence_size : obj->base.size;
3420 
3421 	/* If the object is bigger than the entire aperture, reject it early
3422 	 * before evicting everything in a vain attempt to find space.
3423 	 */
3424 	if (obj->base.size >
3425 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
3426 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
3427 		return -E2BIG;
3428 	}
3429 
3430 	ret = i915_gem_object_get_pages(obj);
3431 	if (ret)
3432 		return ret;
3433 
3434 	i915_gem_object_pin_pages(obj);
3435 
3436 	node = kzalloc(sizeof(*node), GFP_KERNEL);
3437 	if (node == NULL) {
3438 		i915_gem_object_unpin_pages(obj);
3439 		return -ENOMEM;
3440 	}
3441 
3442  search_free:
3443 	if (map_and_fenceable)
3444 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3445 							  size, alignment, obj->cache_level,
3446 							  0, dev_priv->mm.gtt_mappable_end);
3447 	else
3448 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
3449 						 size, alignment, obj->cache_level);
3450 	if (ret) {
3451 		ret = i915_gem_evict_something(dev, size, alignment,
3452 					       obj->cache_level,
3453 					       map_and_fenceable,
3454 					       nonblocking);
3455 		if (ret == 0)
3456 			goto search_free;
3457 
3458 		i915_gem_object_unpin_pages(obj);
3459 		kfree(node);
3460 		return ret;
3461 	}
3462 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3463 		i915_gem_object_unpin_pages(obj);
3464 		drm_mm_put_block(node);
3465 		return -EINVAL;
3466 	}
3467 
3468 	ret = i915_gem_gtt_prepare_object(obj);
3469 	if (ret) {
3470 		i915_gem_object_unpin_pages(obj);
3471 		drm_mm_put_block(node);
3472 		return ret;
3473 	}
3474 
3475 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3476 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3477 
3478 	obj->gtt_space = node;
3479 	obj->gtt_offset = node->start;
3480 
3481 	fenceable =
3482 		node->size == fence_size &&
3483 		(node->start & (fence_alignment - 1)) == 0;
3484 
3485 	mappable =
3486 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3487 
3488 	obj->map_and_fenceable = mappable && fenceable;
3489 
3490 	i915_gem_object_unpin_pages(obj);
3491 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3492 	i915_gem_verify_gtt(dev);
3493 	return 0;
3494 }
3495 
3496 void
3497 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3498 {
3499 	/* If we don't have a page list set up, then we're not pinned
3500 	 * to GPU, and we can ignore the cache flush because it'll happen
3501 	 * again at bind time.
3502 	 */
3503 	if (obj->pages == NULL)
3504 		return;
3505 
3506 	/* If the GPU is snooping the contents of the CPU cache,
3507 	 * we do not need to manually clear the CPU cache lines.  However,
3508 	 * the caches are only snooped when the render cache is
3509 	 * flushed/invalidated.  As we always have to emit invalidations
3510 	 * and flushes when moving into and out of the RENDER domain, correct
3511 	 * snooping behaviour occurs naturally as the result of our domain
3512 	 * tracking.
3513 	 */
3514 	if (obj->cache_level != I915_CACHE_NONE)
3515 		return;
3516 
3517 	trace_i915_gem_object_clflush(obj);
3518 
3519 #ifdef __NetBSD__
3520 	drm_clflush_pglist(&obj->igo_pageq);
3521 #else
3522 	drm_clflush_sg(obj->pages);
3523 #endif
3524 }
3525 
3526 /** Flushes the GTT write domain for the object if it's dirty. */
3527 static void
3528 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3529 {
3530 	uint32_t old_write_domain;
3531 
3532 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3533 		return;
3534 
3535 	/* No actual flushing is required for the GTT write domain.  Writes
3536 	 * to it immediately go to main memory as far as we know, so there's
3537 	 * no chipset flush.  It also doesn't land in render cache.
3538 	 *
3539 	 * However, we do have to enforce the order so that all writes through
3540 	 * the GTT land before any writes to the device, such as updates to
3541 	 * the GATT itself.
3542 	 */
3543 	wmb();
3544 
3545 	old_write_domain = obj->base.write_domain;
3546 	obj->base.write_domain = 0;
3547 
3548 	trace_i915_gem_object_change_domain(obj,
3549 					    obj->base.read_domains,
3550 					    old_write_domain);
3551 }
3552 
3553 /** Flushes the CPU write domain for the object if it's dirty. */
3554 static void
3555 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3556 {
3557 	uint32_t old_write_domain;
3558 
3559 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3560 		return;
3561 
3562 	i915_gem_clflush_object(obj);
3563 	i915_gem_chipset_flush(obj->base.dev);
3564 	old_write_domain = obj->base.write_domain;
3565 	obj->base.write_domain = 0;
3566 
3567 	trace_i915_gem_object_change_domain(obj,
3568 					    obj->base.read_domains,
3569 					    old_write_domain);
3570 }
3571 
3572 /**
3573  * Moves a single object to the GTT read, and possibly write domain.
3574  *
3575  * This function returns when the move is complete, including waiting on
3576  * flushes to occur.
3577  */
3578 int
3579 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3580 {
3581 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3582 	uint32_t old_write_domain, old_read_domains;
3583 	int ret;
3584 
3585 	/* Not valid to be called on unbound objects. */
3586 	if (obj->gtt_space == NULL)
3587 		return -EINVAL;
3588 
3589 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3590 		return 0;
3591 
3592 	ret = i915_gem_object_wait_rendering(obj, !write);
3593 	if (ret)
3594 		return ret;
3595 
3596 	i915_gem_object_flush_cpu_write_domain(obj);
3597 
3598 	old_write_domain = obj->base.write_domain;
3599 	old_read_domains = obj->base.read_domains;
3600 
3601 	/* It should now be out of any other write domains, and we can update
3602 	 * the domain values for our changes.
3603 	 */
3604 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3605 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3606 	if (write) {
3607 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3608 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3609 		obj->dirty = 1;
3610 	}
3611 
3612 	trace_i915_gem_object_change_domain(obj,
3613 					    old_read_domains,
3614 					    old_write_domain);
3615 
3616 	/* And bump the LRU for this access */
3617 	if (i915_gem_object_is_inactive(obj))
3618 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3619 
3620 	return 0;
3621 }
3622 
3623 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3624 				    enum i915_cache_level cache_level)
3625 {
3626 	struct drm_device *dev = obj->base.dev;
3627 	drm_i915_private_t *dev_priv = dev->dev_private;
3628 	int ret;
3629 
3630 	if (obj->cache_level == cache_level)
3631 		return 0;
3632 
3633 	if (obj->pin_count) {
3634 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3635 		return -EBUSY;
3636 	}
3637 
3638 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3639 		ret = i915_gem_object_unbind(obj);
3640 		if (ret)
3641 			return ret;
3642 	}
3643 
3644 	if (obj->gtt_space) {
3645 		ret = i915_gem_object_finish_gpu(obj);
3646 		if (ret)
3647 			return ret;
3648 
3649 		i915_gem_object_finish_gtt(obj);
3650 
3651 		/* Before SandyBridge, you could not use tiling or fence
3652 		 * registers with snooped memory, so relinquish any fences
3653 		 * currently pointing to our region in the aperture.
3654 		 */
3655 		if (INTEL_INFO(dev)->gen < 6) {
3656 			ret = i915_gem_object_put_fence(obj);
3657 			if (ret)
3658 				return ret;
3659 		}
3660 
3661 		if (obj->has_global_gtt_mapping)
3662 			i915_gem_gtt_bind_object(obj, cache_level);
3663 		if (obj->has_aliasing_ppgtt_mapping)
3664 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3665 					       obj, cache_level);
3666 
3667 		obj->gtt_space->color = cache_level;
3668 	}
3669 
3670 	if (cache_level == I915_CACHE_NONE) {
3671 		u32 old_read_domains, old_write_domain;
3672 
3673 		/* If we're coming from LLC cached, then we haven't
3674 		 * actually been tracking whether the data is in the
3675 		 * CPU cache or not, since we only allow one bit set
3676 		 * in obj->write_domain and have been skipping the clflushes.
3677 		 * Just set it to the CPU cache for now.
3678 		 */
3679 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3680 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3681 
3682 		old_read_domains = obj->base.read_domains;
3683 		old_write_domain = obj->base.write_domain;
3684 
3685 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3686 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3687 
3688 		trace_i915_gem_object_change_domain(obj,
3689 						    old_read_domains,
3690 						    old_write_domain);
3691 	}
3692 
3693 	obj->cache_level = cache_level;
3694 	i915_gem_verify_gtt(dev);
3695 	return 0;
3696 }
3697 
3698 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3699 			       struct drm_file *file)
3700 {
3701 	struct drm_i915_gem_caching *args = data;
3702 	struct drm_i915_gem_object *obj;
3703 	int ret;
3704 
3705 	ret = i915_mutex_lock_interruptible(dev);
3706 	if (ret)
3707 		return ret;
3708 
3709 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3710 	if (&obj->base == NULL) {
3711 		ret = -ENOENT;
3712 		goto unlock;
3713 	}
3714 
3715 	args->caching = obj->cache_level != I915_CACHE_NONE;
3716 
3717 	drm_gem_object_unreference(&obj->base);
3718 unlock:
3719 	mutex_unlock(&dev->struct_mutex);
3720 	return ret;
3721 }
3722 
3723 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3724 			       struct drm_file *file)
3725 {
3726 	struct drm_i915_gem_caching *args = data;
3727 	struct drm_i915_gem_object *obj;
3728 	enum i915_cache_level level;
3729 	int ret;
3730 
3731 	switch (args->caching) {
3732 	case I915_CACHING_NONE:
3733 		level = I915_CACHE_NONE;
3734 		break;
3735 	case I915_CACHING_CACHED:
3736 		level = I915_CACHE_LLC;
3737 		break;
3738 	default:
3739 		return -EINVAL;
3740 	}
3741 
3742 	ret = i915_mutex_lock_interruptible(dev);
3743 	if (ret)
3744 		return ret;
3745 
3746 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3747 	if (&obj->base == NULL) {
3748 		ret = -ENOENT;
3749 		goto unlock;
3750 	}
3751 
3752 	ret = i915_gem_object_set_cache_level(obj, level);
3753 
3754 	drm_gem_object_unreference(&obj->base);
3755 unlock:
3756 	mutex_unlock(&dev->struct_mutex);
3757 	return ret;
3758 }
3759 
3760 /*
3761  * Prepare buffer for display plane (scanout, cursors, etc).
3762  * Can be called from an uninterruptible phase (modesetting) and allows
3763  * any flushes to be pipelined (for pageflips).
3764  */
3765 int
3766 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3767 				     u32 alignment,
3768 				     struct intel_ring_buffer *pipelined)
3769 {
3770 	u32 old_read_domains, old_write_domain;
3771 	int ret;
3772 
3773 	if (pipelined != obj->ring) {
3774 		ret = i915_gem_object_sync(obj, pipelined);
3775 		if (ret)
3776 			return ret;
3777 	}
3778 
3779 	/* The display engine is not coherent with the LLC cache on gen6.  As
3780 	 * a result, we make sure that the pinning that is about to occur is
3781 	 * done with uncached PTEs. This is lowest common denominator for all
3782 	 * chipsets.
3783 	 *
3784 	 * However for gen6+, we could do better by using the GFDT bit instead
3785 	 * of uncaching, which would allow us to flush all the LLC-cached data
3786 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3787 	 */
3788 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3789 	if (ret)
3790 		return ret;
3791 
3792 	/* As the user may map the buffer once pinned in the display plane
3793 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3794 	 * always use map_and_fenceable for all scanout buffers.
3795 	 */
3796 	ret = i915_gem_object_pin(obj, alignment, true, false);
3797 	if (ret)
3798 		return ret;
3799 
3800 	i915_gem_object_flush_cpu_write_domain(obj);
3801 
3802 	old_write_domain = obj->base.write_domain;
3803 	old_read_domains = obj->base.read_domains;
3804 
3805 	/* It should now be out of any other write domains, and we can update
3806 	 * the domain values for our changes.
3807 	 */
3808 	obj->base.write_domain = 0;
3809 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3810 
3811 	trace_i915_gem_object_change_domain(obj,
3812 					    old_read_domains,
3813 					    old_write_domain);
3814 
3815 	return 0;
3816 }
3817 
3818 int
3819 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3820 {
3821 	int ret;
3822 
3823 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3824 		return 0;
3825 
3826 	ret = i915_gem_object_wait_rendering(obj, false);
3827 	if (ret)
3828 		return ret;
3829 
3830 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3831 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3832 	return 0;
3833 }
3834 
3835 /**
3836  * Moves a single object to the CPU read, and possibly write domain.
3837  *
3838  * This function returns when the move is complete, including waiting on
3839  * flushes to occur.
3840  */
3841 int
3842 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3843 {
3844 	uint32_t old_write_domain, old_read_domains;
3845 	int ret;
3846 
3847 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3848 		return 0;
3849 
3850 	ret = i915_gem_object_wait_rendering(obj, !write);
3851 	if (ret)
3852 		return ret;
3853 
3854 	i915_gem_object_flush_gtt_write_domain(obj);
3855 
3856 	old_write_domain = obj->base.write_domain;
3857 	old_read_domains = obj->base.read_domains;
3858 
3859 	/* Flush the CPU cache if it's still invalid. */
3860 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3861 		i915_gem_clflush_object(obj);
3862 
3863 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3864 	}
3865 
3866 	/* It should now be out of any other write domains, and we can update
3867 	 * the domain values for our changes.
3868 	 */
3869 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3870 
3871 	/* If we're writing through the CPU, then the GPU read domains will
3872 	 * need to be invalidated at next use.
3873 	 */
3874 	if (write) {
3875 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3876 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3877 	}
3878 
3879 	trace_i915_gem_object_change_domain(obj,
3880 					    old_read_domains,
3881 					    old_write_domain);
3882 
3883 	return 0;
3884 }
3885 
3886 /* Throttle our rendering by waiting until the ring has completed our requests
3887  * emitted over 20 msec ago.
3888  *
3889  * Note that if we were to use the current jiffies each time around the loop,
3890  * we wouldn't escape the function with any frames outstanding if the time to
3891  * render a frame was over 20ms.
3892  *
3893  * This should get us reasonable parallelism between CPU and GPU but also
3894  * relatively low latency when blocking on a particular request to finish.
3895  */
3896 static int
3897 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3898 {
3899 	struct drm_i915_private *dev_priv = dev->dev_private;
3900 	struct drm_i915_file_private *file_priv = file->driver_priv;
3901 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3902 	struct drm_i915_gem_request *request;
3903 	struct intel_ring_buffer *ring = NULL;
3904 	u32 seqno = 0;
3905 	int ret;
3906 
3907 	if (atomic_read(&dev_priv->mm.wedged))
3908 		return -EIO;
3909 
3910 	spin_lock(&file_priv->mm.lock);
3911 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3912 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3913 			break;
3914 
3915 		ring = request->ring;
3916 		seqno = request->seqno;
3917 	}
3918 	spin_unlock(&file_priv->mm.lock);
3919 
3920 	if (seqno == 0)
3921 		return 0;
3922 
3923 	ret = __wait_seqno(ring, seqno, true, NULL);
3924 	if (ret == 0)
3925 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3926 
3927 	return ret;
3928 }
3929 
3930 int
3931 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3932 		    uint32_t alignment,
3933 		    bool map_and_fenceable,
3934 		    bool nonblocking)
3935 {
3936 	int ret;
3937 
3938 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3939 		return -EBUSY;
3940 
3941 	if (obj->gtt_space != NULL) {
3942 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3943 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3944 			WARN(obj->pin_count,
3945 			     "bo is already pinned with incorrect alignment:"
3946 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3947 			     " obj->map_and_fenceable=%d\n",
3948 			     obj->gtt_offset, alignment,
3949 			     map_and_fenceable,
3950 			     obj->map_and_fenceable);
3951 			ret = i915_gem_object_unbind(obj);
3952 			if (ret)
3953 				return ret;
3954 		}
3955 	}
3956 
3957 	if (obj->gtt_space == NULL) {
3958 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3959 
3960 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3961 						  map_and_fenceable,
3962 						  nonblocking);
3963 		if (ret)
3964 			return ret;
3965 
3966 		if (!dev_priv->mm.aliasing_ppgtt)
3967 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3968 	}
3969 
3970 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3971 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3972 
3973 	obj->pin_count++;
3974 	obj->pin_mappable |= map_and_fenceable;
3975 
3976 	return 0;
3977 }
3978 
3979 void
3980 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3981 {
3982 	BUG_ON(obj->pin_count == 0);
3983 	BUG_ON(obj->gtt_space == NULL);
3984 
3985 	if (--obj->pin_count == 0)
3986 		obj->pin_mappable = false;
3987 }
3988 
3989 int
3990 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3991 		   struct drm_file *file)
3992 {
3993 	struct drm_i915_gem_pin *args = data;
3994 	struct drm_i915_gem_object *obj;
3995 	int ret;
3996 
3997 	ret = i915_mutex_lock_interruptible(dev);
3998 	if (ret)
3999 		return ret;
4000 
4001 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4002 	if (&obj->base == NULL) {
4003 		ret = -ENOENT;
4004 		goto unlock;
4005 	}
4006 
4007 	if (obj->madv != I915_MADV_WILLNEED) {
4008 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4009 		ret = -EINVAL;
4010 		goto out;
4011 	}
4012 
4013 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4014 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4015 			  args->handle);
4016 		ret = -EINVAL;
4017 		goto out;
4018 	}
4019 
4020 	if (obj->user_pin_count == 0) {
4021 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
4022 		if (ret)
4023 			goto out;
4024 	}
4025 
4026 	obj->user_pin_count++;
4027 	obj->pin_filp = file;
4028 
4029 	/* XXX - flush the CPU caches for pinned objects
4030 	 * as the X server doesn't manage domains yet
4031 	 */
4032 	i915_gem_object_flush_cpu_write_domain(obj);
4033 	args->offset = obj->gtt_offset;
4034 out:
4035 	drm_gem_object_unreference(&obj->base);
4036 unlock:
4037 	mutex_unlock(&dev->struct_mutex);
4038 	return ret;
4039 }
4040 
4041 int
4042 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4043 		     struct drm_file *file)
4044 {
4045 	struct drm_i915_gem_pin *args = data;
4046 	struct drm_i915_gem_object *obj;
4047 	int ret;
4048 
4049 	ret = i915_mutex_lock_interruptible(dev);
4050 	if (ret)
4051 		return ret;
4052 
4053 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4054 	if (&obj->base == NULL) {
4055 		ret = -ENOENT;
4056 		goto unlock;
4057 	}
4058 
4059 	if (obj->pin_filp != file) {
4060 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4061 			  args->handle);
4062 		ret = -EINVAL;
4063 		goto out;
4064 	}
4065 	obj->user_pin_count--;
4066 	if (obj->user_pin_count == 0) {
4067 		obj->pin_filp = NULL;
4068 		i915_gem_object_unpin(obj);
4069 	}
4070 
4071 out:
4072 	drm_gem_object_unreference(&obj->base);
4073 unlock:
4074 	mutex_unlock(&dev->struct_mutex);
4075 	return ret;
4076 }
4077 
4078 int
4079 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4080 		    struct drm_file *file)
4081 {
4082 	struct drm_i915_gem_busy *args = data;
4083 	struct drm_i915_gem_object *obj;
4084 	int ret;
4085 
4086 	ret = i915_mutex_lock_interruptible(dev);
4087 	if (ret)
4088 		return ret;
4089 
4090 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4091 	if (&obj->base == NULL) {
4092 		ret = -ENOENT;
4093 		goto unlock;
4094 	}
4095 
4096 	/* Count all active objects as busy, even if they are currently not used
4097 	 * by the gpu. Users of this interface expect objects to eventually
4098 	 * become non-busy without any further actions, therefore emit any
4099 	 * necessary flushes here.
4100 	 */
4101 	ret = i915_gem_object_flush_active(obj);
4102 
4103 	args->busy = obj->active;
4104 	if (obj->ring) {
4105 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4106 		args->busy |= intel_ring_flag(obj->ring) << 16;
4107 	}
4108 
4109 	drm_gem_object_unreference(&obj->base);
4110 unlock:
4111 	mutex_unlock(&dev->struct_mutex);
4112 	return ret;
4113 }
4114 
4115 int
4116 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4117 			struct drm_file *file_priv)
4118 {
4119 	return i915_gem_ring_throttle(dev, file_priv);
4120 }
4121 
4122 int
4123 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4124 		       struct drm_file *file_priv)
4125 {
4126 	struct drm_i915_gem_madvise *args = data;
4127 	struct drm_i915_gem_object *obj;
4128 	int ret;
4129 
4130 	switch (args->madv) {
4131 	case I915_MADV_DONTNEED:
4132 	case I915_MADV_WILLNEED:
4133 	    break;
4134 	default:
4135 	    return -EINVAL;
4136 	}
4137 
4138 	ret = i915_mutex_lock_interruptible(dev);
4139 	if (ret)
4140 		return ret;
4141 
4142 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4143 	if (&obj->base == NULL) {
4144 		ret = -ENOENT;
4145 		goto unlock;
4146 	}
4147 
4148 	if (obj->pin_count) {
4149 		ret = -EINVAL;
4150 		goto out;
4151 	}
4152 
4153 	if (obj->madv != __I915_MADV_PURGED)
4154 		obj->madv = args->madv;
4155 
4156 	/* if the object is no longer attached, discard its backing storage */
4157 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4158 		i915_gem_object_truncate(obj);
4159 
4160 	args->retained = obj->madv != __I915_MADV_PURGED;
4161 
4162 out:
4163 	drm_gem_object_unreference(&obj->base);
4164 unlock:
4165 	mutex_unlock(&dev->struct_mutex);
4166 	return ret;
4167 }
4168 
4169 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4170 			  const struct drm_i915_gem_object_ops *ops)
4171 {
4172 	INIT_LIST_HEAD(&obj->mm_list);
4173 	INIT_LIST_HEAD(&obj->gtt_list);
4174 	INIT_LIST_HEAD(&obj->ring_list);
4175 	INIT_LIST_HEAD(&obj->exec_list);
4176 
4177 	obj->ops = ops;
4178 
4179 	obj->fence_reg = I915_FENCE_REG_NONE;
4180 	obj->madv = I915_MADV_WILLNEED;
4181 	/* Avoid an unnecessary call to unbind on the first bind. */
4182 	obj->map_and_fenceable = true;
4183 
4184 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4185 }
4186 
4187 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4188 	.get_pages = i915_gem_object_get_pages_gtt,
4189 	.put_pages = i915_gem_object_put_pages_gtt,
4190 };
4191 
4192 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4193 						  size_t size)
4194 {
4195 	struct drm_i915_gem_object *obj;
4196 #ifndef __NetBSD__		/* XXX >32bit dma?  */
4197 	struct address_space *mapping;
4198 	u32 mask;
4199 #endif
4200 
4201 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4202 	if (obj == NULL)
4203 		return NULL;
4204 
4205 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4206 		kfree(obj);
4207 		return NULL;
4208 	}
4209 
4210 #ifndef __NetBSD__		/* XXX >32bit dma?  */
4211 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4212 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4213 		/* 965gm cannot relocate objects above 4GiB. */
4214 		mask &= ~__GFP_HIGHMEM;
4215 		mask |= __GFP_DMA32;
4216 	}
4217 
4218 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4219 	mapping_set_gfp_mask(mapping, mask);
4220 #endif
4221 
4222 	i915_gem_object_init(obj, &i915_gem_object_ops);
4223 
4224 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4225 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4226 
4227 	if (HAS_LLC(dev)) {
4228 		/* On some devices, we can have the GPU use the LLC (the CPU
4229 		 * cache) for about a 10% performance improvement
4230 		 * compared to uncached.  Graphics requests other than
4231 		 * display scanout are coherent with the CPU in
4232 		 * accessing this cache.  This means in this mode we
4233 		 * don't need to clflush on the CPU side, and on the
4234 		 * GPU side we only need to flush internal caches to
4235 		 * get data visible to the CPU.
4236 		 *
4237 		 * However, we maintain the display planes as UC, and so
4238 		 * need to rebind when first used as such.
4239 		 */
4240 		obj->cache_level = I915_CACHE_LLC;
4241 	} else
4242 		obj->cache_level = I915_CACHE_NONE;
4243 
4244 	return obj;
4245 }
4246 
4247 int i915_gem_init_object(struct drm_gem_object *obj)
4248 {
4249 	BUG();
4250 
4251 	return 0;
4252 }
4253 
4254 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4255 {
4256 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4257 	struct drm_device *dev = obj->base.dev;
4258 	drm_i915_private_t *dev_priv = dev->dev_private;
4259 
4260 	trace_i915_gem_object_destroy(obj);
4261 
4262 	if (obj->phys_obj)
4263 		i915_gem_detach_phys_object(dev, obj);
4264 
4265 	obj->pin_count = 0;
4266 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
4267 		bool was_interruptible;
4268 
4269 		was_interruptible = dev_priv->mm.interruptible;
4270 		dev_priv->mm.interruptible = false;
4271 
4272 		WARN_ON(i915_gem_object_unbind(obj));
4273 
4274 		dev_priv->mm.interruptible = was_interruptible;
4275 	}
4276 
4277 	obj->pages_pin_count = 0;
4278 	i915_gem_object_put_pages(obj);
4279 	i915_gem_object_free_mmap_offset(obj);
4280 
4281 	BUG_ON(obj->pages);
4282 
4283 #ifndef __NetBSD__		/* XXX drm prime */
4284 	if (obj->base.import_attach)
4285 		drm_prime_gem_destroy(&obj->base, NULL);
4286 #endif
4287 
4288 	drm_gem_object_release(&obj->base);
4289 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4290 
4291 	kfree(obj->bit_17);
4292 	kfree(obj);
4293 }
4294 
4295 int
4296 i915_gem_idle(struct drm_device *dev)
4297 {
4298 	drm_i915_private_t *dev_priv = dev->dev_private;
4299 	int ret;
4300 
4301 	mutex_lock(&dev->struct_mutex);
4302 
4303 	if (dev_priv->mm.suspended) {
4304 		mutex_unlock(&dev->struct_mutex);
4305 		return 0;
4306 	}
4307 
4308 	ret = i915_gpu_idle(dev);
4309 	if (ret) {
4310 		mutex_unlock(&dev->struct_mutex);
4311 		return ret;
4312 	}
4313 	i915_gem_retire_requests(dev);
4314 
4315 	/* Under UMS, be paranoid and evict. */
4316 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4317 		i915_gem_evict_everything(dev);
4318 
4319 	i915_gem_reset_fences(dev);
4320 
4321 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4322 	 * We need to replace this with a semaphore, or something.
4323 	 * And not confound mm.suspended!
4324 	 */
4325 	dev_priv->mm.suspended = 1;
4326 	del_timer_sync(&dev_priv->hangcheck_timer);
4327 
4328 	i915_kernel_lost_context(dev);
4329 	i915_gem_cleanup_ringbuffer(dev);
4330 
4331 	mutex_unlock(&dev->struct_mutex);
4332 
4333 	/* Cancel the retire work handler, which should be idle now. */
4334 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4335 
4336 	return 0;
4337 }
4338 
4339 void i915_gem_l3_remap(struct drm_device *dev)
4340 {
4341 	drm_i915_private_t *dev_priv = dev->dev_private;
4342 	u32 misccpctl;
4343 	int i;
4344 
4345 	if (!IS_IVYBRIDGE(dev))
4346 		return;
4347 
4348 	if (!dev_priv->l3_parity.remap_info)
4349 		return;
4350 
4351 	misccpctl = I915_READ(GEN7_MISCCPCTL);
4352 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4353 	POSTING_READ(GEN7_MISCCPCTL);
4354 
4355 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4356 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4357 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4358 			DRM_DEBUG("0x%x was already programmed to %x\n",
4359 				  GEN7_L3LOG_BASE + i, remap);
4360 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
4361 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
4362 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4363 	}
4364 
4365 	/* Make sure all the writes land before disabling dop clock gating */
4366 	POSTING_READ(GEN7_L3LOG_BASE);
4367 
4368 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4369 }
4370 
4371 void i915_gem_init_swizzling(struct drm_device *dev)
4372 {
4373 	drm_i915_private_t *dev_priv = dev->dev_private;
4374 
4375 	if (INTEL_INFO(dev)->gen < 5 ||
4376 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4377 		return;
4378 
4379 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4380 				 DISP_TILE_SURFACE_SWIZZLING);
4381 
4382 	if (IS_GEN5(dev))
4383 		return;
4384 
4385 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4386 	if (IS_GEN6(dev))
4387 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4388 	else
4389 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4390 }
4391 
4392 static bool
4393 intel_enable_blt(struct drm_device *dev)
4394 {
4395 	if (!HAS_BLT(dev))
4396 		return false;
4397 
4398 	/* The blitter was dysfunctional on early prototypes */
4399 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4400 		DRM_INFO("BLT not supported on this pre-production hardware;"
4401 			 " graphics performance will be degraded.\n");
4402 		return false;
4403 	}
4404 
4405 	return true;
4406 }
4407 
4408 int
4409 i915_gem_init_hw(struct drm_device *dev)
4410 {
4411 	drm_i915_private_t *dev_priv = dev->dev_private;
4412 	int ret;
4413 
4414 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4415 		return -EIO;
4416 
4417 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4418 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4419 
4420 	i915_gem_l3_remap(dev);
4421 
4422 	i915_gem_init_swizzling(dev);
4423 
4424 	ret = intel_init_render_ring_buffer(dev);
4425 	if (ret)
4426 		return ret;
4427 
4428 	if (HAS_BSD(dev)) {
4429 		ret = intel_init_bsd_ring_buffer(dev);
4430 		if (ret)
4431 			goto cleanup_render_ring;
4432 	}
4433 
4434 	if (intel_enable_blt(dev)) {
4435 		ret = intel_init_blt_ring_buffer(dev);
4436 		if (ret)
4437 			goto cleanup_bsd_ring;
4438 	}
4439 
4440 	dev_priv->next_seqno = 1;
4441 
4442 	/*
4443 	 * XXX: There was some w/a described somewhere suggesting loading
4444 	 * contexts before PPGTT.
4445 	 */
4446 	i915_gem_context_init(dev);
4447 	i915_gem_init_ppgtt(dev);
4448 
4449 	return 0;
4450 
4451 cleanup_bsd_ring:
4452 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4453 cleanup_render_ring:
4454 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4455 	return ret;
4456 }
4457 
4458 static bool
4459 intel_enable_ppgtt(struct drm_device *dev)
4460 {
4461 #ifdef __NetBSD__		/* XXX ppgtt */
4462 	return false;
4463 #else
4464 	if (i915_enable_ppgtt >= 0)
4465 		return i915_enable_ppgtt;
4466 
4467 #ifdef CONFIG_INTEL_IOMMU
4468 	/* Disable ppgtt on SNB if VT-d is on. */
4469 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4470 		return false;
4471 #endif
4472 
4473 	return true;
4474 #endif
4475 }
4476 
4477 int i915_gem_init(struct drm_device *dev)
4478 {
4479 	struct drm_i915_private *dev_priv = dev->dev_private;
4480 	unsigned long gtt_size, mappable_size;
4481 	int ret;
4482 
4483 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4484 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4485 
4486 	mutex_lock(&dev->struct_mutex);
4487 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4488 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
4489 		 * aperture accordingly when using aliasing ppgtt. */
4490 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4491 
4492 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4493 
4494 		ret = i915_gem_init_aliasing_ppgtt(dev);
4495 		if (ret) {
4496 			i915_gem_fini_global_gtt(dev);
4497 			mutex_unlock(&dev->struct_mutex);
4498 			return ret;
4499 		}
4500 	} else {
4501 		/* Let GEM Manage all of the aperture.
4502 		 *
4503 		 * However, leave one page at the end still bound to the scratch
4504 		 * page.  There are a number of places where the hardware
4505 		 * apparently prefetches past the end of the object, and we've
4506 		 * seen multiple hangs with the GPU head pointer stuck in a
4507 		 * batchbuffer bound at the last page of the aperture.  One page
4508 		 * should be enough to keep any prefetching inside of the
4509 		 * aperture.
4510 		 */
4511 		i915_gem_init_global_gtt(dev, 0, mappable_size,
4512 					 gtt_size);
4513 	}
4514 
4515 	ret = i915_gem_init_hw(dev);
4516 #ifdef __NetBSD__		/* XXX fini global gtt */
4517 	if (ret)
4518 		i915_gem_fini_global_gtt(dev);
4519 #endif
4520 	mutex_unlock(&dev->struct_mutex);
4521 	if (ret) {
4522 		i915_gem_cleanup_aliasing_ppgtt(dev);
4523 		return ret;
4524 	}
4525 
4526 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4527 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4528 		dev_priv->dri1.allow_batchbuffer = 1;
4529 	return 0;
4530 }
4531 
4532 void
4533 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4534 {
4535 	drm_i915_private_t *dev_priv = dev->dev_private;
4536 	struct intel_ring_buffer *ring;
4537 	int i;
4538 
4539 	for_each_ring(ring, dev_priv, i)
4540 		intel_cleanup_ring_buffer(ring);
4541 }
4542 
4543 int
4544 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4545 		       struct drm_file *file_priv)
4546 {
4547 	drm_i915_private_t *dev_priv = dev->dev_private;
4548 	int ret;
4549 
4550 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4551 		return 0;
4552 
4553 	if (atomic_read(&dev_priv->mm.wedged)) {
4554 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4555 		atomic_set(&dev_priv->mm.wedged, 0);
4556 	}
4557 
4558 	mutex_lock(&dev->struct_mutex);
4559 	dev_priv->mm.suspended = 0;
4560 
4561 	ret = i915_gem_init_hw(dev);
4562 	if (ret != 0) {
4563 		mutex_unlock(&dev->struct_mutex);
4564 		return ret;
4565 	}
4566 
4567 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4568 	mutex_unlock(&dev->struct_mutex);
4569 
4570 	ret = drm_irq_install(dev);
4571 	if (ret)
4572 		goto cleanup_ringbuffer;
4573 
4574 	return 0;
4575 
4576 cleanup_ringbuffer:
4577 	mutex_lock(&dev->struct_mutex);
4578 	i915_gem_cleanup_ringbuffer(dev);
4579 	dev_priv->mm.suspended = 1;
4580 	mutex_unlock(&dev->struct_mutex);
4581 
4582 	return ret;
4583 }
4584 
4585 int
4586 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4587 		       struct drm_file *file_priv)
4588 {
4589 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4590 		return 0;
4591 
4592 	drm_irq_uninstall(dev);
4593 	return i915_gem_idle(dev);
4594 }
4595 
4596 void
4597 i915_gem_lastclose(struct drm_device *dev)
4598 {
4599 	int ret;
4600 
4601 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4602 		return;
4603 
4604 	ret = i915_gem_idle(dev);
4605 	if (ret)
4606 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4607 }
4608 
4609 static void
4610 init_ring_lists(struct intel_ring_buffer *ring)
4611 {
4612 	INIT_LIST_HEAD(&ring->active_list);
4613 	INIT_LIST_HEAD(&ring->request_list);
4614 }
4615 
4616 void
4617 i915_gem_load(struct drm_device *dev)
4618 {
4619 	int i;
4620 	drm_i915_private_t *dev_priv = dev->dev_private;
4621 
4622 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4623 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4624 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4625 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4626 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4627 	for (i = 0; i < I915_NUM_RINGS; i++)
4628 		init_ring_lists(&dev_priv->ring[i]);
4629 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4630 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4631 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4632 			  i915_gem_retire_work_handler);
4633 	init_completion(&dev_priv->error_completion);
4634 
4635 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4636 	if (IS_GEN3(dev)) {
4637 		I915_WRITE(MI_ARB_STATE,
4638 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4639 	}
4640 
4641 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4642 
4643 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4644 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4645 		dev_priv->fence_reg_start = 3;
4646 
4647 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4648 		dev_priv->num_fence_regs = 16;
4649 	else
4650 		dev_priv->num_fence_regs = 8;
4651 
4652 	/* Initialize fence registers to zero */
4653 	i915_gem_reset_fences(dev);
4654 
4655 	i915_gem_detect_bit_6_swizzle(dev);
4656 #ifdef __NetBSD__
4657 	DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, "i915flip");
4658 	spin_lock_init(&dev_priv->pending_flip_lock);
4659 #else
4660 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4661 #endif
4662 
4663 	dev_priv->mm.interruptible = true;
4664 
4665 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4666 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4667 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4668 }
4669 
4670 /*
4671  * Create a physically contiguous memory object for this object
4672  * e.g. for cursor + overlay regs
4673  */
4674 static int i915_gem_init_phys_object(struct drm_device *dev,
4675 				     int id, int size, int align)
4676 {
4677 	drm_i915_private_t *dev_priv = dev->dev_private;
4678 	struct drm_i915_gem_phys_object *phys_obj;
4679 	int ret;
4680 
4681 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4682 		return 0;
4683 
4684 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4685 	if (!phys_obj)
4686 		return -ENOMEM;
4687 
4688 	phys_obj->id = id;
4689 
4690 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4691 	if (!phys_obj->handle) {
4692 		ret = -ENOMEM;
4693 		goto kfree_obj;
4694 	}
4695 #ifndef __NetBSD__		/* XXX x86 wc?  */
4696 #ifdef CONFIG_X86
4697 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4698 #endif
4699 #endif
4700 
4701 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4702 
4703 	return 0;
4704 kfree_obj:
4705 	kfree(phys_obj);
4706 	return ret;
4707 }
4708 
4709 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4710 {
4711 	drm_i915_private_t *dev_priv = dev->dev_private;
4712 	struct drm_i915_gem_phys_object *phys_obj;
4713 
4714 	if (!dev_priv->mm.phys_objs[id - 1])
4715 		return;
4716 
4717 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4718 	if (phys_obj->cur_obj) {
4719 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4720 	}
4721 
4722 #ifndef __NetBSD__		/* XXX x86 wb?  */
4723 #ifdef CONFIG_X86
4724 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4725 #endif
4726 #endif
4727 	drm_pci_free(dev, phys_obj->handle);
4728 	kfree(phys_obj);
4729 	dev_priv->mm.phys_objs[id - 1] = NULL;
4730 }
4731 
4732 void i915_gem_free_all_phys_object(struct drm_device *dev)
4733 {
4734 	int i;
4735 
4736 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4737 		i915_gem_free_phys_object(dev, i);
4738 }
4739 
4740 void i915_gem_detach_phys_object(struct drm_device *dev,
4741 				 struct drm_i915_gem_object *obj)
4742 {
4743 #ifndef __NetBSD__
4744 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4745 #endif
4746 	char *vaddr;
4747 	int i;
4748 	int page_count;
4749 
4750 	if (!obj->phys_obj)
4751 		return;
4752 	vaddr = obj->phys_obj->handle->vaddr;
4753 
4754 	page_count = obj->base.size / PAGE_SIZE;
4755 	for (i = 0; i < page_count; i++) {
4756 #ifdef __NetBSD__
4757 		/* XXX Just use ubc_uiomove?  */
4758 		struct pglist pages;
4759 		int error;
4760 
4761 		TAILQ_INIT(&pages);
4762 		error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4763 		    (i+1)*PAGE_SIZE, &pages);
4764 		if (error) {
4765 			printf("unable to map page %d of i915 gem obj: %d\n",
4766 			    i, error);
4767 			continue;
4768 		}
4769 
4770 		KASSERT(!TAILQ_EMPTY(&pages));
4771 		struct vm_page *const page = TAILQ_FIRST(&pages);
4772 		TAILQ_REMOVE(&pages, page, pageq.queue);
4773 		KASSERT(TAILQ_EMPTY(&pages));
4774 
4775 		char *const dst = kmap_atomic(container_of(page, struct page,
4776 			p_vmp));
4777 		(void)memcpy(dst, vaddr + (i*PAGE_SIZE), PAGE_SIZE);
4778 		kunmap_atomic(dst);
4779 
4780 		drm_clflush_page(container_of(page, struct page, p_vmp));
4781 		page->flags &= ~PG_CLEAN;
4782 		/* XXX mark page accessed */
4783 		uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4784 		    (i+1)*PAGE_SIZE);
4785 #else
4786 		struct page *page = shmem_read_mapping_page(mapping, i);
4787 		if (!IS_ERR(page)) {
4788 			char *dst = kmap_atomic(page);
4789 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4790 			kunmap_atomic(dst);
4791 
4792 			drm_clflush_pages(&page, 1);
4793 
4794 			set_page_dirty(page);
4795 			mark_page_accessed(page);
4796 			page_cache_release(page);
4797 		}
4798 #endif
4799 	}
4800 	i915_gem_chipset_flush(dev);
4801 
4802 	obj->phys_obj->cur_obj = NULL;
4803 	obj->phys_obj = NULL;
4804 }
4805 
4806 int
4807 i915_gem_attach_phys_object(struct drm_device *dev,
4808 			    struct drm_i915_gem_object *obj,
4809 			    int id,
4810 			    int align)
4811 {
4812 #ifndef __NetBSD__
4813 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4814 #endif
4815 	drm_i915_private_t *dev_priv = dev->dev_private;
4816 	int ret = 0;
4817 	int page_count;
4818 	int i;
4819 
4820 	if (id > I915_MAX_PHYS_OBJECT)
4821 		return -EINVAL;
4822 
4823 	if (obj->phys_obj) {
4824 		if (obj->phys_obj->id == id)
4825 			return 0;
4826 		i915_gem_detach_phys_object(dev, obj);
4827 	}
4828 
4829 	/* create a new object */
4830 	if (!dev_priv->mm.phys_objs[id - 1]) {
4831 		ret = i915_gem_init_phys_object(dev, id,
4832 						obj->base.size, align);
4833 		if (ret) {
4834 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4835 				  id, obj->base.size);
4836 			return ret;
4837 		}
4838 	}
4839 
4840 	/* bind to the object */
4841 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4842 	obj->phys_obj->cur_obj = obj;
4843 
4844 	page_count = obj->base.size / PAGE_SIZE;
4845 
4846 	for (i = 0; i < page_count; i++) {
4847 #ifdef __NetBSD__
4848 		char *const vaddr = obj->phys_obj->handle->vaddr;
4849 		struct pglist pages;
4850 		int error;
4851 
4852 		TAILQ_INIT(&pages);
4853 		error = uvm_obj_wirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4854 		    (i+1)*PAGE_SIZE, &pages);
4855 		if (error)
4856 			/* XXX errno NetBSD->Linux */
4857 			return -error;
4858 
4859 		KASSERT(!TAILQ_EMPTY(&pages));
4860 		struct vm_page *const page = TAILQ_FIRST(&pages);
4861 		TAILQ_REMOVE(&pages, page, pageq.queue);
4862 		KASSERT(TAILQ_EMPTY(&pages));
4863 
4864 		char *const src = kmap_atomic(container_of(page, struct page,
4865 			p_vmp));
4866 		(void)memcpy(vaddr + (i*PAGE_SIZE), src, PAGE_SIZE);
4867 		kunmap_atomic(src);
4868 
4869 		/* XXX mark page accessed */
4870 		uvm_obj_unwirepages(obj->base.gemo_shm_uao, i*PAGE_SIZE,
4871 		    (i+1)*PAGE_SIZE);
4872 #else
4873 		struct page *page;
4874 		char *dst, *src;
4875 
4876 		page = shmem_read_mapping_page(mapping, i);
4877 		if (IS_ERR(page))
4878 			return PTR_ERR(page);
4879 
4880 		src = kmap_atomic(page);
4881 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4882 		memcpy(dst, src, PAGE_SIZE);
4883 		kunmap_atomic(src);
4884 
4885 		mark_page_accessed(page);
4886 		page_cache_release(page);
4887 #endif
4888 	}
4889 
4890 	return 0;
4891 }
4892 
4893 static int
4894 i915_gem_phys_pwrite(struct drm_device *dev,
4895 		     struct drm_i915_gem_object *obj,
4896 		     struct drm_i915_gem_pwrite *args,
4897 		     struct drm_file *file_priv)
4898 {
4899 	void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4900 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4901 
4902 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4903 		unsigned long unwritten;
4904 
4905 		/* The physical object once assigned is fixed for the lifetime
4906 		 * of the obj, so we can safely drop the lock and continue
4907 		 * to access vaddr.
4908 		 */
4909 		mutex_unlock(&dev->struct_mutex);
4910 		unwritten = copy_from_user(vaddr, user_data, args->size);
4911 		mutex_lock(&dev->struct_mutex);
4912 		if (unwritten)
4913 			return -EFAULT;
4914 	}
4915 
4916 	i915_gem_chipset_flush(dev);
4917 	return 0;
4918 }
4919 
4920 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4921 {
4922 	struct drm_i915_file_private *file_priv = file->driver_priv;
4923 
4924 	/* Clean up our request list when the client is going away, so that
4925 	 * later retire_requests won't dereference our soon-to-be-gone
4926 	 * file_priv.
4927 	 */
4928 	spin_lock(&file_priv->mm.lock);
4929 	while (!list_empty(&file_priv->mm.request_list)) {
4930 		struct drm_i915_gem_request *request;
4931 
4932 		request = list_first_entry(&file_priv->mm.request_list,
4933 					   struct drm_i915_gem_request,
4934 					   client_list);
4935 		list_del(&request->client_list);
4936 		request->file_priv = NULL;
4937 	}
4938 	spin_unlock(&file_priv->mm.lock);
4939 }
4940 
4941 #ifndef __NetBSD__		/* XXX */
4942 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4943 {
4944 	if (!mutex_is_locked(mutex))
4945 		return false;
4946 
4947 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4948 	return mutex->owner == task;
4949 #else
4950 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4951 	return false;
4952 #endif
4953 }
4954 #endif
4955 
4956 static int
4957 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4958 {
4959 #ifdef __NetBSD__		/* XXX shrinkers */
4960 	return 0;
4961 #else
4962 	struct drm_i915_private *dev_priv =
4963 		container_of(shrinker,
4964 			     struct drm_i915_private,
4965 			     mm.inactive_shrinker);
4966 	struct drm_device *dev = dev_priv->dev;
4967 	struct drm_i915_gem_object *obj;
4968 	int nr_to_scan = sc->nr_to_scan;
4969 	bool unlock = true;
4970 	int cnt;
4971 
4972 	if (!mutex_trylock(&dev->struct_mutex)) {
4973 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4974 			return 0;
4975 
4976 		if (dev_priv->mm.shrinker_no_lock_stealing)
4977 			return 0;
4978 
4979 		unlock = false;
4980 	}
4981 
4982 	if (nr_to_scan) {
4983 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4984 		if (nr_to_scan > 0)
4985 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4986 							false);
4987 		if (nr_to_scan > 0)
4988 			i915_gem_shrink_all(dev_priv);
4989 	}
4990 
4991 	cnt = 0;
4992 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4993 		if (obj->pages_pin_count == 0)
4994 			cnt += obj->base.size >> PAGE_SHIFT;
4995 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4996 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4997 			cnt += obj->base.size >> PAGE_SHIFT;
4998 
4999 	if (unlock)
5000 		mutex_unlock(&dev->struct_mutex);
5001 	return cnt;
5002 #endif
5003 }
5004