1 /* 2 * Copyright © 1997-2003 by The XFree86 Project, Inc. 3 * Copyright © 2007 Dave Airlie 4 * Copyright © 2007-2008 Intel Corporation 5 * Jesse Barnes <jesse.barnes@intel.com> 6 * Copyright 2005-2006 Luc Verhaegen 7 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice shall be included in 17 * all copies or substantial portions of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 23 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 24 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 25 * OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * Except as contained in this notice, the name of the copyright holder(s) 28 * and author(s) shall not be used in advertising or otherwise to promote 29 * the sale, use or other dealings in this Software without prior written 30 * authorization from the copyright holder(s) and author(s). 31 */ 32 33 #include <linux/list.h> 34 #include <linux/list_sort.h> 35 #include <linux/export.h> 36 #include <drm/drmP.h> 37 #include <drm/drm_crtc.h> 38 #ifdef CONFIG_VIDEOMODE_HELPERS 39 #ifdef CONFIG_OF 40 #include <video/of_videomode.h> 41 #endif 42 #include <video/videomode.h> 43 #endif 44 #include <drm/drm_modes.h> 45 46 #include "drm_crtc_internal.h" 47 48 /** 49 * drm_mode_debug_printmodeline - print a mode to dmesg 50 * @mode: mode to print 51 * 52 * Describe @mode using DRM_DEBUG. 53 */ 54 void drm_mode_debug_printmodeline(const struct drm_display_mode *mode) 55 { 56 DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d " 57 "0x%x 0x%x\n", 58 mode->base.id, mode->name, mode->vrefresh, mode->clock, 59 mode->hdisplay, mode->hsync_start, 60 mode->hsync_end, mode->htotal, 61 mode->vdisplay, mode->vsync_start, 62 mode->vsync_end, mode->vtotal, mode->type, mode->flags); 63 } 64 EXPORT_SYMBOL(drm_mode_debug_printmodeline); 65 66 /** 67 * drm_mode_create - create a new display mode 68 * @dev: DRM device 69 * 70 * Create a new, cleared drm_display_mode with kzalloc, allocate an ID for it 71 * and return it. 72 * 73 * Returns: 74 * Pointer to new mode on success, NULL on error. 75 */ 76 struct drm_display_mode *drm_mode_create(struct drm_device *dev) 77 { 78 struct drm_display_mode *nmode; 79 80 nmode = kzalloc(sizeof(struct drm_display_mode), GFP_KERNEL); 81 if (!nmode) 82 return NULL; 83 84 if (drm_mode_object_get(dev, &nmode->base, DRM_MODE_OBJECT_MODE)) { 85 kfree(nmode); 86 return NULL; 87 } 88 89 return nmode; 90 } 91 EXPORT_SYMBOL(drm_mode_create); 92 93 /** 94 * drm_mode_destroy - remove a mode 95 * @dev: DRM device 96 * @mode: mode to remove 97 * 98 * Release @mode's unique ID, then free it @mode structure itself using kfree. 99 */ 100 void drm_mode_destroy(struct drm_device *dev, struct drm_display_mode *mode) 101 { 102 if (!mode) 103 return; 104 105 drm_mode_object_put(dev, &mode->base); 106 107 kfree(mode); 108 } 109 EXPORT_SYMBOL(drm_mode_destroy); 110 111 /** 112 * drm_mode_probed_add - add a mode to a connector's probed_mode list 113 * @connector: connector the new mode 114 * @mode: mode data 115 * 116 * Add @mode to @connector's probed_mode list for later use. This list should 117 * then in a second step get filtered and all the modes actually supported by 118 * the hardware moved to the @connector's modes list. 119 */ 120 void drm_mode_probed_add(struct drm_connector *connector, 121 struct drm_display_mode *mode) 122 { 123 WARN_ON(!mutex_is_locked(&connector->dev->mode_config.mutex)); 124 125 list_add_tail(&mode->head, &connector->probed_modes); 126 } 127 EXPORT_SYMBOL(drm_mode_probed_add); 128 129 /** 130 * drm_cvt_mode -create a modeline based on the CVT algorithm 131 * @dev: drm device 132 * @hdisplay: hdisplay size 133 * @vdisplay: vdisplay size 134 * @vrefresh: vrefresh rate 135 * @reduced: whether to use reduced blanking 136 * @interlaced: whether to compute an interlaced mode 137 * @margins: whether to add margins (borders) 138 * 139 * This function is called to generate the modeline based on CVT algorithm 140 * according to the hdisplay, vdisplay, vrefresh. 141 * It is based from the VESA(TM) Coordinated Video Timing Generator by 142 * Graham Loveridge April 9, 2003 available at 143 * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls 144 * 145 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c. 146 * What I have done is to translate it by using integer calculation. 147 * 148 * Returns: 149 * The modeline based on the CVT algorithm stored in a drm_display_mode object. 150 * The display mode object is allocated with drm_mode_create(). Returns NULL 151 * when no mode could be allocated. 152 */ 153 struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay, 154 int vdisplay, int vrefresh, 155 bool reduced, bool interlaced, bool margins) 156 { 157 #define HV_FACTOR 1000 158 /* 1) top/bottom margin size (% of height) - default: 1.8, */ 159 #define CVT_MARGIN_PERCENTAGE 18 160 /* 2) character cell horizontal granularity (pixels) - default 8 */ 161 #define CVT_H_GRANULARITY 8 162 /* 3) Minimum vertical porch (lines) - default 3 */ 163 #define CVT_MIN_V_PORCH 3 164 /* 4) Minimum number of vertical back porch lines - default 6 */ 165 #define CVT_MIN_V_BPORCH 6 166 /* Pixel Clock step (kHz) */ 167 #define CVT_CLOCK_STEP 250 168 struct drm_display_mode *drm_mode; 169 unsigned int vfieldrate, hperiod; 170 int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync; 171 int interlace; 172 173 /* allocate the drm_display_mode structure. If failure, we will 174 * return directly 175 */ 176 drm_mode = drm_mode_create(dev); 177 if (!drm_mode) 178 return NULL; 179 180 /* the CVT default refresh rate is 60Hz */ 181 if (!vrefresh) 182 vrefresh = 60; 183 184 /* the required field fresh rate */ 185 if (interlaced) 186 vfieldrate = vrefresh * 2; 187 else 188 vfieldrate = vrefresh; 189 190 /* horizontal pixels */ 191 hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY); 192 193 /* determine the left&right borders */ 194 hmargin = 0; 195 if (margins) { 196 hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000; 197 hmargin -= hmargin % CVT_H_GRANULARITY; 198 } 199 /* find the total active pixels */ 200 drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin; 201 202 /* find the number of lines per field */ 203 if (interlaced) 204 vdisplay_rnd = vdisplay / 2; 205 else 206 vdisplay_rnd = vdisplay; 207 208 /* find the top & bottom borders */ 209 vmargin = 0; 210 if (margins) 211 vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000; 212 213 drm_mode->vdisplay = vdisplay + 2 * vmargin; 214 215 /* Interlaced */ 216 if (interlaced) 217 interlace = 1; 218 else 219 interlace = 0; 220 221 /* Determine VSync Width from aspect ratio */ 222 if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay)) 223 vsync = 4; 224 else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay)) 225 vsync = 5; 226 else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay)) 227 vsync = 6; 228 else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay)) 229 vsync = 7; 230 else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay)) 231 vsync = 7; 232 else /* custom */ 233 vsync = 10; 234 235 if (!reduced) { 236 /* simplify the GTF calculation */ 237 /* 4) Minimum time of vertical sync + back porch interval (µs) 238 * default 550.0 239 */ 240 int tmp1, tmp2; 241 #define CVT_MIN_VSYNC_BP 550 242 /* 3) Nominal HSync width (% of line period) - default 8 */ 243 #define CVT_HSYNC_PERCENTAGE 8 244 unsigned int hblank_percentage; 245 int vsyncandback_porch, vback_porch __unused, hblank; 246 247 /* estimated the horizontal period */ 248 tmp1 = HV_FACTOR * 1000000 - 249 CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate; 250 tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 + 251 interlace; 252 hperiod = tmp1 * 2 / (tmp2 * vfieldrate); 253 254 tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1; 255 /* 9. Find number of lines in sync + backporch */ 256 if (tmp1 < (vsync + CVT_MIN_V_PORCH)) 257 vsyncandback_porch = vsync + CVT_MIN_V_PORCH; 258 else 259 vsyncandback_porch = tmp1; 260 /* 10. Find number of lines in back porch */ 261 vback_porch = vsyncandback_porch - vsync; 262 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + 263 vsyncandback_porch + CVT_MIN_V_PORCH; 264 /* 5) Definition of Horizontal blanking time limitation */ 265 /* Gradient (%/kHz) - default 600 */ 266 #define CVT_M_FACTOR 600 267 /* Offset (%) - default 40 */ 268 #define CVT_C_FACTOR 40 269 /* Blanking time scaling factor - default 128 */ 270 #define CVT_K_FACTOR 128 271 /* Scaling factor weighting - default 20 */ 272 #define CVT_J_FACTOR 20 273 #define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256) 274 #define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \ 275 CVT_J_FACTOR) 276 /* 12. Find ideal blanking duty cycle from formula */ 277 hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME * 278 hperiod / 1000; 279 /* 13. Blanking time */ 280 if (hblank_percentage < 20 * HV_FACTOR) 281 hblank_percentage = 20 * HV_FACTOR; 282 hblank = drm_mode->hdisplay * hblank_percentage / 283 (100 * HV_FACTOR - hblank_percentage); 284 hblank -= hblank % (2 * CVT_H_GRANULARITY); 285 /* 14. find the total pixes per line */ 286 drm_mode->htotal = drm_mode->hdisplay + hblank; 287 drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2; 288 drm_mode->hsync_start = drm_mode->hsync_end - 289 (drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100; 290 drm_mode->hsync_start += CVT_H_GRANULARITY - 291 drm_mode->hsync_start % CVT_H_GRANULARITY; 292 /* fill the Vsync values */ 293 drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH; 294 drm_mode->vsync_end = drm_mode->vsync_start + vsync; 295 } else { 296 /* Reduced blanking */ 297 /* Minimum vertical blanking interval time (µs)- default 460 */ 298 #define CVT_RB_MIN_VBLANK 460 299 /* Fixed number of clocks for horizontal sync */ 300 #define CVT_RB_H_SYNC 32 301 /* Fixed number of clocks for horizontal blanking */ 302 #define CVT_RB_H_BLANK 160 303 /* Fixed number of lines for vertical front porch - default 3*/ 304 #define CVT_RB_VFPORCH 3 305 int vbilines; 306 int tmp1, tmp2; 307 /* 8. Estimate Horizontal period. */ 308 tmp1 = HV_FACTOR * 1000000 - 309 CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate; 310 tmp2 = vdisplay_rnd + 2 * vmargin; 311 hperiod = tmp1 / (tmp2 * vfieldrate); 312 /* 9. Find number of lines in vertical blanking */ 313 vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1; 314 /* 10. Check if vertical blanking is sufficient */ 315 if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH)) 316 vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH; 317 /* 11. Find total number of lines in vertical field */ 318 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines; 319 /* 12. Find total number of pixels in a line */ 320 drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK; 321 /* Fill in HSync values */ 322 drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2; 323 drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC; 324 /* Fill in VSync values */ 325 drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH; 326 drm_mode->vsync_end = drm_mode->vsync_start + vsync; 327 } 328 /* 15/13. Find pixel clock frequency (kHz for xf86) */ 329 drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod; 330 drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP; 331 /* 18/16. Find actual vertical frame frequency */ 332 /* ignore - just set the mode flag for interlaced */ 333 if (interlaced) { 334 drm_mode->vtotal *= 2; 335 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE; 336 } 337 /* Fill the mode line name */ 338 drm_mode_set_name(drm_mode); 339 if (reduced) 340 drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC | 341 DRM_MODE_FLAG_NVSYNC); 342 else 343 drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC | 344 DRM_MODE_FLAG_NHSYNC); 345 346 return drm_mode; 347 } 348 EXPORT_SYMBOL(drm_cvt_mode); 349 350 /** 351 * drm_gtf_mode_complex - create the modeline based on the full GTF algorithm 352 * @dev: drm device 353 * @hdisplay: hdisplay size 354 * @vdisplay: vdisplay size 355 * @vrefresh: vrefresh rate. 356 * @interlaced: whether to compute an interlaced mode 357 * @margins: desired margin (borders) size 358 * @GTF_M: extended GTF formula parameters 359 * @GTF_2C: extended GTF formula parameters 360 * @GTF_K: extended GTF formula parameters 361 * @GTF_2J: extended GTF formula parameters 362 * 363 * GTF feature blocks specify C and J in multiples of 0.5, so we pass them 364 * in here multiplied by two. For a C of 40, pass in 80. 365 * 366 * Returns: 367 * The modeline based on the full GTF algorithm stored in a drm_display_mode object. 368 * The display mode object is allocated with drm_mode_create(). Returns NULL 369 * when no mode could be allocated. 370 */ 371 struct drm_display_mode * 372 drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay, 373 int vrefresh, bool interlaced, int margins, 374 int GTF_M, int GTF_2C, int GTF_K, int GTF_2J) 375 { /* 1) top/bottom margin size (% of height) - default: 1.8, */ 376 #define GTF_MARGIN_PERCENTAGE 18 377 /* 2) character cell horizontal granularity (pixels) - default 8 */ 378 #define GTF_CELL_GRAN 8 379 /* 3) Minimum vertical porch (lines) - default 3 */ 380 #define GTF_MIN_V_PORCH 1 381 /* width of vsync in lines */ 382 #define V_SYNC_RQD 3 383 /* width of hsync as % of total line */ 384 #define H_SYNC_PERCENT 8 385 /* min time of vsync + back porch (microsec) */ 386 #define MIN_VSYNC_PLUS_BP 550 387 /* C' and M' are part of the Blanking Duty Cycle computation */ 388 #define GTF_C_PRIME ((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2) 389 #define GTF_M_PRIME (GTF_K * GTF_M / 256) 390 struct drm_display_mode *drm_mode; 391 unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd; 392 int top_margin, bottom_margin; 393 int interlace; 394 unsigned int hfreq_est; 395 int vsync_plus_bp, vback_porch __unused; 396 unsigned int vtotal_lines, vfieldrate_est __unused, hperiod __unused; 397 unsigned int vfield_rate, vframe_rate __unused; 398 int left_margin, right_margin; 399 unsigned int total_active_pixels, ideal_duty_cycle; 400 unsigned int hblank, total_pixels, pixel_freq; 401 int hsync, hfront_porch, vodd_front_porch_lines; 402 unsigned int tmp1, tmp2; 403 404 drm_mode = drm_mode_create(dev); 405 if (!drm_mode) 406 return NULL; 407 408 /* 1. In order to give correct results, the number of horizontal 409 * pixels requested is first processed to ensure that it is divisible 410 * by the character size, by rounding it to the nearest character 411 * cell boundary: 412 */ 413 hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN; 414 hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN; 415 416 /* 2. If interlace is requested, the number of vertical lines assumed 417 * by the calculation must be halved, as the computation calculates 418 * the number of vertical lines per field. 419 */ 420 if (interlaced) 421 vdisplay_rnd = vdisplay / 2; 422 else 423 vdisplay_rnd = vdisplay; 424 425 /* 3. Find the frame rate required: */ 426 if (interlaced) 427 vfieldrate_rqd = vrefresh * 2; 428 else 429 vfieldrate_rqd = vrefresh; 430 431 /* 4. Find number of lines in Top margin: */ 432 top_margin = 0; 433 if (margins) 434 top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) / 435 1000; 436 /* 5. Find number of lines in bottom margin: */ 437 bottom_margin = top_margin; 438 439 /* 6. If interlace is required, then set variable interlace: */ 440 if (interlaced) 441 interlace = 1; 442 else 443 interlace = 0; 444 445 /* 7. Estimate the Horizontal frequency */ 446 { 447 tmp1 = (1000000 - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500; 448 tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) * 449 2 + interlace; 450 hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1; 451 } 452 453 /* 8. Find the number of lines in V sync + back porch */ 454 /* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */ 455 vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000; 456 vsync_plus_bp = (vsync_plus_bp + 500) / 1000; 457 /* 9. Find the number of lines in V back porch alone: */ 458 vback_porch = vsync_plus_bp - V_SYNC_RQD; 459 /* 10. Find the total number of lines in Vertical field period: */ 460 vtotal_lines = vdisplay_rnd + top_margin + bottom_margin + 461 vsync_plus_bp + GTF_MIN_V_PORCH; 462 /* 11. Estimate the Vertical field frequency: */ 463 vfieldrate_est = hfreq_est / vtotal_lines; 464 /* 12. Find the actual horizontal period: */ 465 hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines); 466 467 /* 13. Find the actual Vertical field frequency: */ 468 vfield_rate = hfreq_est / vtotal_lines; 469 /* 14. Find the Vertical frame frequency: */ 470 if (interlaced) 471 vframe_rate = vfield_rate / 2; 472 else 473 vframe_rate = vfield_rate; 474 /* 15. Find number of pixels in left margin: */ 475 if (margins) 476 left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) / 477 1000; 478 else 479 left_margin = 0; 480 481 /* 16.Find number of pixels in right margin: */ 482 right_margin = left_margin; 483 /* 17.Find total number of active pixels in image and left and right */ 484 total_active_pixels = hdisplay_rnd + left_margin + right_margin; 485 /* 18.Find the ideal blanking duty cycle from blanking duty cycle */ 486 ideal_duty_cycle = GTF_C_PRIME * 1000 - 487 (GTF_M_PRIME * 1000000 / hfreq_est); 488 /* 19.Find the number of pixels in the blanking time to the nearest 489 * double character cell: */ 490 hblank = total_active_pixels * ideal_duty_cycle / 491 (100000 - ideal_duty_cycle); 492 hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN); 493 hblank = hblank * 2 * GTF_CELL_GRAN; 494 /* 20.Find total number of pixels: */ 495 total_pixels = total_active_pixels + hblank; 496 /* 21.Find pixel clock frequency: */ 497 pixel_freq = total_pixels * hfreq_est / 1000; 498 /* Stage 1 computations are now complete; I should really pass 499 * the results to another function and do the Stage 2 computations, 500 * but I only need a few more values so I'll just append the 501 * computations here for now */ 502 /* 17. Find the number of pixels in the horizontal sync period: */ 503 hsync = H_SYNC_PERCENT * total_pixels / 100; 504 hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN; 505 hsync = hsync * GTF_CELL_GRAN; 506 /* 18. Find the number of pixels in horizontal front porch period */ 507 hfront_porch = hblank / 2 - hsync; 508 /* 36. Find the number of lines in the odd front porch period: */ 509 vodd_front_porch_lines = GTF_MIN_V_PORCH ; 510 511 /* finally, pack the results in the mode struct */ 512 drm_mode->hdisplay = hdisplay_rnd; 513 drm_mode->hsync_start = hdisplay_rnd + hfront_porch; 514 drm_mode->hsync_end = drm_mode->hsync_start + hsync; 515 drm_mode->htotal = total_pixels; 516 drm_mode->vdisplay = vdisplay_rnd; 517 drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines; 518 drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD; 519 drm_mode->vtotal = vtotal_lines; 520 521 drm_mode->clock = pixel_freq; 522 523 if (interlaced) { 524 drm_mode->vtotal *= 2; 525 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE; 526 } 527 528 drm_mode_set_name(drm_mode); 529 if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40) 530 drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC; 531 else 532 drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC; 533 534 return drm_mode; 535 } 536 EXPORT_SYMBOL(drm_gtf_mode_complex); 537 538 /** 539 * drm_gtf_mode - create the modeline based on the GTF algorithm 540 * @dev: drm device 541 * @hdisplay: hdisplay size 542 * @vdisplay: vdisplay size 543 * @vrefresh: vrefresh rate. 544 * @interlaced: whether to compute an interlaced mode 545 * @margins: desired margin (borders) size 546 * 547 * return the modeline based on GTF algorithm 548 * 549 * This function is to create the modeline based on the GTF algorithm. 550 * Generalized Timing Formula is derived from: 551 * GTF Spreadsheet by Andy Morrish (1/5/97) 552 * available at http://www.vesa.org 553 * 554 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c. 555 * What I have done is to translate it by using integer calculation. 556 * I also refer to the function of fb_get_mode in the file of 557 * drivers/video/fbmon.c 558 * 559 * Standard GTF parameters: 560 * M = 600 561 * C = 40 562 * K = 128 563 * J = 20 564 * 565 * Returns: 566 * The modeline based on the GTF algorithm stored in a drm_display_mode object. 567 * The display mode object is allocated with drm_mode_create(). Returns NULL 568 * when no mode could be allocated. 569 */ 570 struct drm_display_mode * 571 drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh, 572 bool interlaced, int margins) 573 { 574 return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, 575 interlaced, margins, 576 600, 40 * 2, 128, 20 * 2); 577 } 578 EXPORT_SYMBOL(drm_gtf_mode); 579 580 #ifdef CONFIG_VIDEOMODE_HELPERS 581 /** 582 * drm_display_mode_from_videomode - fill in @dmode using @vm, 583 * @vm: videomode structure to use as source 584 * @dmode: drm_display_mode structure to use as destination 585 * 586 * Fills out @dmode using the display mode specified in @vm. 587 */ 588 void drm_display_mode_from_videomode(const struct videomode *vm, 589 struct drm_display_mode *dmode) 590 { 591 dmode->hdisplay = vm->hactive; 592 dmode->hsync_start = dmode->hdisplay + vm->hfront_porch; 593 dmode->hsync_end = dmode->hsync_start + vm->hsync_len; 594 dmode->htotal = dmode->hsync_end + vm->hback_porch; 595 596 dmode->vdisplay = vm->vactive; 597 dmode->vsync_start = dmode->vdisplay + vm->vfront_porch; 598 dmode->vsync_end = dmode->vsync_start + vm->vsync_len; 599 dmode->vtotal = dmode->vsync_end + vm->vback_porch; 600 601 dmode->clock = vm->pixelclock / 1000; 602 603 dmode->flags = 0; 604 if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH) 605 dmode->flags |= DRM_MODE_FLAG_PHSYNC; 606 else if (vm->flags & DISPLAY_FLAGS_HSYNC_LOW) 607 dmode->flags |= DRM_MODE_FLAG_NHSYNC; 608 if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH) 609 dmode->flags |= DRM_MODE_FLAG_PVSYNC; 610 else if (vm->flags & DISPLAY_FLAGS_VSYNC_LOW) 611 dmode->flags |= DRM_MODE_FLAG_NVSYNC; 612 if (vm->flags & DISPLAY_FLAGS_INTERLACED) 613 dmode->flags |= DRM_MODE_FLAG_INTERLACE; 614 if (vm->flags & DISPLAY_FLAGS_DOUBLESCAN) 615 dmode->flags |= DRM_MODE_FLAG_DBLSCAN; 616 if (vm->flags & DISPLAY_FLAGS_DOUBLECLK) 617 dmode->flags |= DRM_MODE_FLAG_DBLCLK; 618 drm_mode_set_name(dmode); 619 } 620 EXPORT_SYMBOL_GPL(drm_display_mode_from_videomode); 621 622 #ifdef CONFIG_OF 623 /** 624 * of_get_drm_display_mode - get a drm_display_mode from devicetree 625 * @np: device_node with the timing specification 626 * @dmode: will be set to the return value 627 * @index: index into the list of display timings in devicetree 628 * 629 * This function is expensive and should only be used, if only one mode is to be 630 * read from DT. To get multiple modes start with of_get_display_timings and 631 * work with that instead. 632 * 633 * Returns: 634 * 0 on success, a negative errno code when no of videomode node was found. 635 */ 636 int of_get_drm_display_mode(struct device_node *np, 637 struct drm_display_mode *dmode, int index) 638 { 639 struct videomode vm; 640 int ret; 641 642 ret = of_get_videomode(np, &vm, index); 643 if (ret) 644 return ret; 645 646 drm_display_mode_from_videomode(&vm, dmode); 647 648 pr_debug("%s: got %dx%d display mode from %s\n", 649 of_node_full_name(np), vm.hactive, vm.vactive, np->name); 650 drm_mode_debug_printmodeline(dmode); 651 652 return 0; 653 } 654 EXPORT_SYMBOL_GPL(of_get_drm_display_mode); 655 #endif /* CONFIG_OF */ 656 #endif /* CONFIG_VIDEOMODE_HELPERS */ 657 658 /** 659 * drm_mode_set_name - set the name on a mode 660 * @mode: name will be set in this mode 661 * 662 * Set the name of @mode to a standard format which is <hdisplay>x<vdisplay> 663 * with an optional 'i' suffix for interlaced modes. 664 */ 665 void drm_mode_set_name(struct drm_display_mode *mode) 666 { 667 bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); 668 669 snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s", 670 mode->hdisplay, mode->vdisplay, 671 interlaced ? "i" : ""); 672 } 673 EXPORT_SYMBOL(drm_mode_set_name); 674 675 /** drm_mode_hsync - get the hsync of a mode 676 * @mode: mode 677 * 678 * Returns: 679 * @modes's hsync rate in kHz, rounded to the nearest integer. Calculates the 680 * value first if it is not yet set. 681 */ 682 int drm_mode_hsync(const struct drm_display_mode *mode) 683 { 684 unsigned int calc_val; 685 686 if (mode->hsync) 687 return mode->hsync; 688 689 if (mode->htotal < 0) 690 return 0; 691 692 calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */ 693 calc_val += 500; /* round to 1000Hz */ 694 calc_val /= 1000; /* truncate to kHz */ 695 696 return calc_val; 697 } 698 EXPORT_SYMBOL(drm_mode_hsync); 699 700 /** 701 * drm_mode_vrefresh - get the vrefresh of a mode 702 * @mode: mode 703 * 704 * Returns: 705 * @modes's vrefresh rate in Hz, rounded to the nearest integer. Calculates the 706 * value first if it is not yet set. 707 */ 708 int drm_mode_vrefresh(const struct drm_display_mode *mode) 709 { 710 int refresh = 0; 711 unsigned int calc_val; 712 713 if (mode->vrefresh > 0) 714 refresh = mode->vrefresh; 715 else if (mode->htotal > 0 && mode->vtotal > 0) { 716 int vtotal; 717 vtotal = mode->vtotal; 718 /* work out vrefresh the value will be x1000 */ 719 calc_val = (mode->clock * 1000); 720 calc_val /= mode->htotal; 721 refresh = (calc_val + vtotal / 2) / vtotal; 722 723 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 724 refresh *= 2; 725 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 726 refresh /= 2; 727 if (mode->vscan > 1) 728 refresh /= mode->vscan; 729 } 730 return refresh; 731 } 732 EXPORT_SYMBOL(drm_mode_vrefresh); 733 734 /** 735 * drm_mode_set_crtcinfo - set CRTC modesetting timing parameters 736 * @p: mode 737 * @adjust_flags: a combination of adjustment flags 738 * 739 * Setup the CRTC modesetting timing parameters for @p, adjusting if necessary. 740 * 741 * - The CRTC_INTERLACE_HALVE_V flag can be used to halve vertical timings of 742 * interlaced modes. 743 * - The CRTC_STEREO_DOUBLE flag can be used to compute the timings for 744 * buffers containing two eyes (only adjust the timings when needed, eg. for 745 * "frame packing" or "side by side full"). 746 */ 747 void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags) 748 { 749 if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN)) 750 return; 751 752 p->crtc_clock = p->clock; 753 p->crtc_hdisplay = p->hdisplay; 754 p->crtc_hsync_start = p->hsync_start; 755 p->crtc_hsync_end = p->hsync_end; 756 p->crtc_htotal = p->htotal; 757 p->crtc_hskew = p->hskew; 758 p->crtc_vdisplay = p->vdisplay; 759 p->crtc_vsync_start = p->vsync_start; 760 p->crtc_vsync_end = p->vsync_end; 761 p->crtc_vtotal = p->vtotal; 762 763 if (p->flags & DRM_MODE_FLAG_INTERLACE) { 764 if (adjust_flags & CRTC_INTERLACE_HALVE_V) { 765 p->crtc_vdisplay /= 2; 766 p->crtc_vsync_start /= 2; 767 p->crtc_vsync_end /= 2; 768 p->crtc_vtotal /= 2; 769 } 770 } 771 772 if (p->flags & DRM_MODE_FLAG_DBLSCAN) { 773 p->crtc_vdisplay *= 2; 774 p->crtc_vsync_start *= 2; 775 p->crtc_vsync_end *= 2; 776 p->crtc_vtotal *= 2; 777 } 778 779 if (p->vscan > 1) { 780 p->crtc_vdisplay *= p->vscan; 781 p->crtc_vsync_start *= p->vscan; 782 p->crtc_vsync_end *= p->vscan; 783 p->crtc_vtotal *= p->vscan; 784 } 785 786 if (adjust_flags & CRTC_STEREO_DOUBLE) { 787 unsigned int layout = p->flags & DRM_MODE_FLAG_3D_MASK; 788 789 switch (layout) { 790 case DRM_MODE_FLAG_3D_FRAME_PACKING: 791 p->crtc_clock *= 2; 792 p->crtc_vdisplay += p->crtc_vtotal; 793 p->crtc_vsync_start += p->crtc_vtotal; 794 p->crtc_vsync_end += p->crtc_vtotal; 795 p->crtc_vtotal += p->crtc_vtotal; 796 break; 797 } 798 } 799 800 p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay); 801 p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal); 802 p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay); 803 p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal); 804 } 805 EXPORT_SYMBOL(drm_mode_set_crtcinfo); 806 807 /** 808 * drm_mode_copy - copy the mode 809 * @dst: mode to overwrite 810 * @src: mode to copy 811 * 812 * Copy an existing mode into another mode, preserving the object id and 813 * list head of the destination mode. 814 */ 815 void drm_mode_copy(struct drm_display_mode *dst, const struct drm_display_mode *src) 816 { 817 int id = dst->base.id; 818 struct list_head head = dst->head; 819 820 *dst = *src; 821 dst->base.id = id; 822 dst->head = head; 823 } 824 EXPORT_SYMBOL(drm_mode_copy); 825 826 /** 827 * drm_mode_duplicate - allocate and duplicate an existing mode 828 * @dev: drm_device to allocate the duplicated mode for 829 * @mode: mode to duplicate 830 * 831 * Just allocate a new mode, copy the existing mode into it, and return 832 * a pointer to it. Used to create new instances of established modes. 833 * 834 * Returns: 835 * Pointer to duplicated mode on success, NULL on error. 836 */ 837 struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev, 838 const struct drm_display_mode *mode) 839 { 840 struct drm_display_mode *nmode; 841 842 nmode = drm_mode_create(dev); 843 if (!nmode) 844 return NULL; 845 846 drm_mode_copy(nmode, mode); 847 848 return nmode; 849 } 850 EXPORT_SYMBOL(drm_mode_duplicate); 851 852 /** 853 * drm_mode_equal - test modes for equality 854 * @mode1: first mode 855 * @mode2: second mode 856 * 857 * Check to see if @mode1 and @mode2 are equivalent. 858 * 859 * Returns: 860 * True if the modes are equal, false otherwise. 861 */ 862 bool drm_mode_equal(const struct drm_display_mode *mode1, const struct drm_display_mode *mode2) 863 { 864 /* do clock check convert to PICOS so fb modes get matched 865 * the same */ 866 if (mode1->clock && mode2->clock) { 867 if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock)) 868 return false; 869 } else if (mode1->clock != mode2->clock) 870 return false; 871 872 if ((mode1->flags & DRM_MODE_FLAG_3D_MASK) != 873 (mode2->flags & DRM_MODE_FLAG_3D_MASK)) 874 return false; 875 876 return drm_mode_equal_no_clocks_no_stereo(mode1, mode2); 877 } 878 EXPORT_SYMBOL(drm_mode_equal); 879 880 /** 881 * drm_mode_equal_no_clocks_no_stereo - test modes for equality 882 * @mode1: first mode 883 * @mode2: second mode 884 * 885 * Check to see if @mode1 and @mode2 are equivalent, but 886 * don't check the pixel clocks nor the stereo layout. 887 * 888 * Returns: 889 * True if the modes are equal, false otherwise. 890 */ 891 bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode *mode1, 892 const struct drm_display_mode *mode2) 893 { 894 if (mode1->hdisplay == mode2->hdisplay && 895 mode1->hsync_start == mode2->hsync_start && 896 mode1->hsync_end == mode2->hsync_end && 897 mode1->htotal == mode2->htotal && 898 mode1->hskew == mode2->hskew && 899 mode1->vdisplay == mode2->vdisplay && 900 mode1->vsync_start == mode2->vsync_start && 901 mode1->vsync_end == mode2->vsync_end && 902 mode1->vtotal == mode2->vtotal && 903 mode1->vscan == mode2->vscan && 904 (mode1->flags & ~DRM_MODE_FLAG_3D_MASK) == 905 (mode2->flags & ~DRM_MODE_FLAG_3D_MASK)) 906 return true; 907 908 return false; 909 } 910 EXPORT_SYMBOL(drm_mode_equal_no_clocks_no_stereo); 911 912 /** 913 * drm_mode_validate_size - make sure modes adhere to size constraints 914 * @dev: DRM device 915 * @mode_list: list of modes to check 916 * @maxX: maximum width 917 * @maxY: maximum height 918 * 919 * This function is a helper which can be used to validate modes against size 920 * limitations of the DRM device/connector. If a mode is too big its status 921 * memeber is updated with the appropriate validation failure code. The list 922 * itself is not changed. 923 */ 924 void drm_mode_validate_size(struct drm_device *dev, 925 struct list_head *mode_list, 926 int maxX, int maxY) 927 { 928 struct drm_display_mode *mode; 929 930 list_for_each_entry(mode, mode_list, head) { 931 if (maxX > 0 && mode->hdisplay > maxX) 932 mode->status = MODE_VIRTUAL_X; 933 934 if (maxY > 0 && mode->vdisplay > maxY) 935 mode->status = MODE_VIRTUAL_Y; 936 } 937 } 938 EXPORT_SYMBOL(drm_mode_validate_size); 939 940 /** 941 * drm_mode_prune_invalid - remove invalid modes from mode list 942 * @dev: DRM device 943 * @mode_list: list of modes to check 944 * @verbose: be verbose about it 945 * 946 * This helper function can be used to prune a display mode list after 947 * validation has been completed. All modes who's status is not MODE_OK will be 948 * removed from the list, and if @verbose the status code and mode name is also 949 * printed to dmesg. 950 */ 951 void drm_mode_prune_invalid(struct drm_device *dev, 952 struct list_head *mode_list, bool verbose) 953 { 954 struct drm_display_mode *mode, *t; 955 956 list_for_each_entry_safe(mode, t, mode_list, head) { 957 if (mode->status != MODE_OK) { 958 list_del(&mode->head); 959 if (verbose) { 960 drm_mode_debug_printmodeline(mode); 961 DRM_DEBUG_KMS("Not using %s mode %d\n", 962 mode->name, mode->status); 963 } 964 drm_mode_destroy(dev, mode); 965 } 966 } 967 } 968 EXPORT_SYMBOL(drm_mode_prune_invalid); 969 970 /** 971 * drm_mode_compare - compare modes for favorability 972 * @priv: unused 973 * @lh_a: list_head for first mode 974 * @lh_b: list_head for second mode 975 * 976 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating 977 * which is better. 978 * 979 * Returns: 980 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or 981 * positive if @lh_b is better than @lh_a. 982 */ 983 static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b) 984 { 985 struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head); 986 struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head); 987 int diff; 988 989 diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) - 990 ((a->type & DRM_MODE_TYPE_PREFERRED) != 0); 991 if (diff) 992 return diff; 993 diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay; 994 if (diff) 995 return diff; 996 997 diff = b->vrefresh - a->vrefresh; 998 if (diff) 999 return diff; 1000 1001 diff = b->clock - a->clock; 1002 return diff; 1003 } 1004 1005 /** 1006 * drm_mode_sort - sort mode list 1007 * @mode_list: list of drm_display_mode structures to sort 1008 * 1009 * Sort @mode_list by favorability, moving good modes to the head of the list. 1010 */ 1011 void drm_mode_sort(struct list_head *mode_list) 1012 { 1013 list_sort(NULL, mode_list, drm_mode_compare); 1014 } 1015 EXPORT_SYMBOL(drm_mode_sort); 1016 1017 /** 1018 * drm_mode_connector_list_update - update the mode list for the connector 1019 * @connector: the connector to update 1020 * 1021 * This moves the modes from the @connector probed_modes list 1022 * to the actual mode list. It compares the probed mode against the current 1023 * list and only adds different/new modes. 1024 * 1025 * This is just a helper functions doesn't validate any modes itself and also 1026 * doesn't prune any invalid modes. Callers need to do that themselves. 1027 */ 1028 void drm_mode_connector_list_update(struct drm_connector *connector) 1029 { 1030 struct drm_display_mode *mode; 1031 struct drm_display_mode *pmode, *pt; 1032 int found_it; 1033 1034 WARN_ON(!mutex_is_locked(&connector->dev->mode_config.mutex)); 1035 1036 list_for_each_entry_safe(pmode, pt, &connector->probed_modes, 1037 head) { 1038 found_it = 0; 1039 /* go through current modes checking for the new probed mode */ 1040 list_for_each_entry(mode, &connector->modes, head) { 1041 if (drm_mode_equal(pmode, mode)) { 1042 found_it = 1; 1043 /* if equal delete the probed mode */ 1044 mode->status = pmode->status; 1045 /* Merge type bits together */ 1046 mode->type |= pmode->type; 1047 list_del(&pmode->head); 1048 drm_mode_destroy(connector->dev, pmode); 1049 break; 1050 } 1051 } 1052 1053 if (!found_it) { 1054 list_move_tail(&pmode->head, &connector->modes); 1055 } 1056 } 1057 } 1058 EXPORT_SYMBOL(drm_mode_connector_list_update); 1059 1060 /** 1061 * drm_mode_parse_command_line_for_connector - parse command line modeline for connector 1062 * @mode_option: optional per connector mode option 1063 * @connector: connector to parse modeline for 1064 * @mode: preallocated drm_cmdline_mode structure to fill out 1065 * 1066 * This parses @mode_option command line modeline for modes and options to 1067 * configure the connector. If @mode_option is NULL the default command line 1068 * modeline in fb_mode_option will be parsed instead. 1069 * 1070 * This uses the same parameters as the fb modedb.c, except for an extra 1071 * force-enable, force-enable-digital and force-disable bit at the end: 1072 * 1073 * <xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd] 1074 * 1075 * The intermediate drm_cmdline_mode structure is required to store additional 1076 * options from the command line modline like the force-enabel/disable flag. 1077 * 1078 * Returns: 1079 * True if a valid modeline has been parsed, false otherwise. 1080 */ 1081 bool drm_mode_parse_command_line_for_connector(const char *mode_option, 1082 struct drm_connector *connector, 1083 struct drm_cmdline_mode *mode) 1084 { 1085 const char *name; 1086 unsigned int namelen; 1087 bool res_specified = false, bpp_specified = false, refresh_specified = false; 1088 long xres = 0, yres = 0, bpp = 32, refresh = 0; 1089 bool yres_specified = false, cvt = false, rb = false; 1090 bool interlace = false, margins = false, was_digit = false; 1091 int i; 1092 enum drm_connector_force force = DRM_FORCE_UNSPECIFIED; 1093 1094 #if !defined(__NetBSD__) 1095 #ifdef CONFIG_FB 1096 if (!mode_option) 1097 mode_option = fb_mode_option; 1098 #endif 1099 #endif 1100 1101 if (!mode_option) { 1102 mode->specified = false; 1103 return false; 1104 } 1105 1106 name = mode_option; 1107 namelen = strlen(name); 1108 for (i = namelen-1; i >= 0; i--) { 1109 switch (name[i]) { 1110 case '@': 1111 if (!refresh_specified && !bpp_specified && 1112 !yres_specified && !cvt && !rb && was_digit) { 1113 if (kstrtol(&name[i+1], 10, &refresh) == 0) { 1114 refresh_specified = true; 1115 was_digit = false; 1116 } else { 1117 goto done; 1118 } 1119 } else 1120 goto done; 1121 break; 1122 case '-': 1123 if (!bpp_specified && !yres_specified && !cvt && 1124 !rb && was_digit) { 1125 if (kstrtol(&name[i+1], 10, &bpp) == 0) { 1126 bpp_specified = true; 1127 was_digit = false; 1128 } else { 1129 goto done; 1130 } 1131 } else 1132 goto done; 1133 break; 1134 case 'x': 1135 if (!yres_specified && was_digit) { 1136 if (kstrtol(&name[i+1], 10, &yres) == 0) { 1137 yres_specified = true; 1138 was_digit = false; 1139 } else { 1140 goto done; 1141 } 1142 } else 1143 goto done; 1144 break; 1145 case '0' ... '9': 1146 was_digit = true; 1147 break; 1148 case 'M': 1149 if (yres_specified || cvt || was_digit) 1150 goto done; 1151 cvt = true; 1152 break; 1153 case 'R': 1154 if (yres_specified || cvt || rb || was_digit) 1155 goto done; 1156 rb = true; 1157 break; 1158 case 'm': 1159 if (cvt || yres_specified || was_digit) 1160 goto done; 1161 margins = true; 1162 break; 1163 case 'i': 1164 if (cvt || yres_specified || was_digit) 1165 goto done; 1166 interlace = true; 1167 break; 1168 case 'e': 1169 if (yres_specified || bpp_specified || refresh_specified || 1170 was_digit || (force != DRM_FORCE_UNSPECIFIED)) 1171 goto done; 1172 1173 force = DRM_FORCE_ON; 1174 break; 1175 case 'D': 1176 if (yres_specified || bpp_specified || refresh_specified || 1177 was_digit || (force != DRM_FORCE_UNSPECIFIED)) 1178 goto done; 1179 1180 if ((connector->connector_type != DRM_MODE_CONNECTOR_DVII) && 1181 (connector->connector_type != DRM_MODE_CONNECTOR_HDMIB)) 1182 force = DRM_FORCE_ON; 1183 else 1184 force = DRM_FORCE_ON_DIGITAL; 1185 break; 1186 case 'd': 1187 if (yres_specified || bpp_specified || refresh_specified || 1188 was_digit || (force != DRM_FORCE_UNSPECIFIED)) 1189 goto done; 1190 1191 force = DRM_FORCE_OFF; 1192 break; 1193 default: 1194 goto done; 1195 } 1196 } 1197 1198 if (i < 0 && yres_specified) { 1199 char *ch = NULL; 1200 xres = strtoll(name, &ch, 10); 1201 if ((ch != NULL) && (*ch == 'x')) 1202 res_specified = true; 1203 else 1204 i = ch - name; 1205 } else if (!yres_specified && was_digit) { 1206 /* catch mode that begins with digits but has no 'x' */ 1207 i = 0; 1208 } 1209 done: 1210 if (i >= 0) { 1211 DRM_ERROR( 1212 "parse error at position %i in video mode '%s'\n", 1213 i, name); 1214 mode->specified = false; 1215 return false; 1216 } 1217 1218 if (res_specified) { 1219 mode->specified = true; 1220 mode->xres = xres; 1221 mode->yres = yres; 1222 } 1223 1224 if (refresh_specified) { 1225 mode->refresh_specified = true; 1226 mode->refresh = refresh; 1227 } 1228 1229 if (bpp_specified) { 1230 mode->bpp_specified = true; 1231 mode->bpp = bpp; 1232 } 1233 mode->rb = rb; 1234 mode->cvt = cvt; 1235 mode->interlace = interlace; 1236 mode->margins = margins; 1237 mode->force = force; 1238 1239 return true; 1240 } 1241 EXPORT_SYMBOL(drm_mode_parse_command_line_for_connector); 1242 1243 /** 1244 * drm_mode_create_from_cmdline_mode - convert a command line modeline into a DRM display mode 1245 * @dev: DRM device to create the new mode for 1246 * @cmd: input command line modeline 1247 * 1248 * Returns: 1249 * Pointer to converted mode on success, NULL on error. 1250 */ 1251 struct drm_display_mode * 1252 drm_mode_create_from_cmdline_mode(struct drm_device *dev, 1253 struct drm_cmdline_mode *cmd) 1254 { 1255 struct drm_display_mode *mode; 1256 1257 if (cmd->cvt) 1258 mode = drm_cvt_mode(dev, 1259 cmd->xres, cmd->yres, 1260 cmd->refresh_specified ? cmd->refresh : 60, 1261 cmd->rb, cmd->interlace, 1262 cmd->margins); 1263 else 1264 mode = drm_gtf_mode(dev, 1265 cmd->xres, cmd->yres, 1266 cmd->refresh_specified ? cmd->refresh : 60, 1267 cmd->interlace, 1268 cmd->margins); 1269 if (!mode) 1270 return NULL; 1271 1272 drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V); 1273 return mode; 1274 } 1275 EXPORT_SYMBOL(drm_mode_create_from_cmdline_mode); 1276