xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/drm_edid.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/export.h>
37 #include <linux/printk.h>
38 #include <linux/device.h>
39 #include <linux/string.h>
40 #include <linux/errno.h>
41 #include <asm/byteorder.h>
42 #include <drm/drmP.h>
43 #include <drm/drm_edid.h>
44 
45 #define version_greater(edid, maj, min) \
46 	(((edid)->version > (maj)) || \
47 	 ((edid)->version == (maj) && (edid)->revision > (min)))
48 
49 #define EDID_EST_TIMINGS 16
50 #define EDID_STD_TIMINGS 8
51 #define EDID_DETAILED_TIMINGS 4
52 
53 /*
54  * EDID blocks out in the wild have a variety of bugs, try to collect
55  * them here (note that userspace may work around broken monitors first,
56  * but fixes should make their way here so that the kernel "just works"
57  * on as many displays as possible).
58  */
59 
60 /* First detailed mode wrong, use largest 60Hz mode */
61 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
62 /* Reported 135MHz pixel clock is too high, needs adjustment */
63 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
64 /* Prefer the largest mode at 75 Hz */
65 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
66 /* Detail timing is in cm not mm */
67 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
68 /* Detailed timing descriptors have bogus size values, so just take the
69  * maximum size and use that.
70  */
71 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
72 /* Monitor forgot to set the first detailed is preferred bit. */
73 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
74 /* use +hsync +vsync for detailed mode */
75 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
76 /* Force reduced-blanking timings for detailed modes */
77 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
78 /* Force 8bpc */
79 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
80 
81 struct detailed_mode_closure {
82 	struct drm_connector *connector;
83 	struct edid *edid;
84 	bool preferred;
85 	u32 quirks;
86 	int modes;
87 };
88 
89 #define LEVEL_DMT	0
90 #define LEVEL_GTF	1
91 #define LEVEL_GTF2	2
92 #define LEVEL_CVT	3
93 
94 static struct edid_quirk {
95 	char vendor[4];
96 	int product_id;
97 	u32 quirks;
98 } edid_quirk_list[] = {
99 	/* Acer AL1706 */
100 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
101 	/* Acer F51 */
102 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
103 	/* Unknown Acer */
104 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
105 
106 	/* Belinea 10 15 55 */
107 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
108 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
109 
110 	/* Envision Peripherals, Inc. EN-7100e */
111 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
112 	/* Envision EN2028 */
113 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
114 
115 	/* Funai Electronics PM36B */
116 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
117 	  EDID_QUIRK_DETAILED_IN_CM },
118 
119 	/* LG Philips LCD LP154W01-A5 */
120 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
121 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
122 
123 	/* Philips 107p5 CRT */
124 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
125 
126 	/* Proview AY765C */
127 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
128 
129 	/* Samsung SyncMaster 205BW.  Note: irony */
130 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
131 	/* Samsung SyncMaster 22[5-6]BW */
132 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
133 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
134 
135 	/* ViewSonic VA2026w */
136 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
137 
138 	/* Medion MD 30217 PG */
139 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
140 
141 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
142 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
143 };
144 
145 /*
146  * Autogenerated from the DMT spec.
147  * This table is copied from xfree86/modes/xf86EdidModes.c.
148  */
149 static const struct drm_display_mode drm_dmt_modes[] = {
150 	/* 640x350@85Hz */
151 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
152 		   736, 832, 0, 350, 382, 385, 445, 0,
153 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
154 	/* 640x400@85Hz */
155 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
156 		   736, 832, 0, 400, 401, 404, 445, 0,
157 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
158 	/* 720x400@85Hz */
159 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
160 		   828, 936, 0, 400, 401, 404, 446, 0,
161 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
162 	/* 640x480@60Hz */
163 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
164 		   752, 800, 0, 480, 489, 492, 525, 0,
165 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
166 	/* 640x480@72Hz */
167 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
168 		   704, 832, 0, 480, 489, 492, 520, 0,
169 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
170 	/* 640x480@75Hz */
171 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
172 		   720, 840, 0, 480, 481, 484, 500, 0,
173 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
174 	/* 640x480@85Hz */
175 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
176 		   752, 832, 0, 480, 481, 484, 509, 0,
177 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
178 	/* 800x600@56Hz */
179 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
180 		   896, 1024, 0, 600, 601, 603, 625, 0,
181 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
182 	/* 800x600@60Hz */
183 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
184 		   968, 1056, 0, 600, 601, 605, 628, 0,
185 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
186 	/* 800x600@72Hz */
187 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
188 		   976, 1040, 0, 600, 637, 643, 666, 0,
189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
190 	/* 800x600@75Hz */
191 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
192 		   896, 1056, 0, 600, 601, 604, 625, 0,
193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
194 	/* 800x600@85Hz */
195 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
196 		   896, 1048, 0, 600, 601, 604, 631, 0,
197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
198 	/* 800x600@120Hz RB */
199 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
200 		   880, 960, 0, 600, 603, 607, 636, 0,
201 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
202 	/* 848x480@60Hz */
203 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
204 		   976, 1088, 0, 480, 486, 494, 517, 0,
205 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
206 	/* 1024x768@43Hz, interlace */
207 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
208 		   1208, 1264, 0, 768, 768, 772, 817, 0,
209 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
210 			DRM_MODE_FLAG_INTERLACE) },
211 	/* 1024x768@60Hz */
212 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
213 		   1184, 1344, 0, 768, 771, 777, 806, 0,
214 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
215 	/* 1024x768@70Hz */
216 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
217 		   1184, 1328, 0, 768, 771, 777, 806, 0,
218 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
219 	/* 1024x768@75Hz */
220 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
221 		   1136, 1312, 0, 768, 769, 772, 800, 0,
222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
223 	/* 1024x768@85Hz */
224 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
225 		   1168, 1376, 0, 768, 769, 772, 808, 0,
226 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
227 	/* 1024x768@120Hz RB */
228 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
229 		   1104, 1184, 0, 768, 771, 775, 813, 0,
230 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
231 	/* 1152x864@75Hz */
232 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
233 		   1344, 1600, 0, 864, 865, 868, 900, 0,
234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
235 	/* 1280x768@60Hz RB */
236 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
237 		   1360, 1440, 0, 768, 771, 778, 790, 0,
238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
239 	/* 1280x768@60Hz */
240 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
241 		   1472, 1664, 0, 768, 771, 778, 798, 0,
242 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
243 	/* 1280x768@75Hz */
244 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
245 		   1488, 1696, 0, 768, 771, 778, 805, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
247 	/* 1280x768@85Hz */
248 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
249 		   1496, 1712, 0, 768, 771, 778, 809, 0,
250 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
251 	/* 1280x768@120Hz RB */
252 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
253 		   1360, 1440, 0, 768, 771, 778, 813, 0,
254 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
255 	/* 1280x800@60Hz RB */
256 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
257 		   1360, 1440, 0, 800, 803, 809, 823, 0,
258 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
259 	/* 1280x800@60Hz */
260 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
261 		   1480, 1680, 0, 800, 803, 809, 831, 0,
262 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 	/* 1280x800@75Hz */
264 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
265 		   1488, 1696, 0, 800, 803, 809, 838, 0,
266 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
267 	/* 1280x800@85Hz */
268 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
269 		   1496, 1712, 0, 800, 803, 809, 843, 0,
270 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
271 	/* 1280x800@120Hz RB */
272 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
273 		   1360, 1440, 0, 800, 803, 809, 847, 0,
274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 	/* 1280x960@60Hz */
276 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
277 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 1280x960@85Hz */
280 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
281 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 1280x960@120Hz RB */
284 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
285 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
287 	/* 1280x1024@60Hz */
288 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
289 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 	/* 1280x1024@75Hz */
292 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
293 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 1280x1024@85Hz */
296 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
297 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
299 	/* 1280x1024@120Hz RB */
300 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
301 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
303 	/* 1360x768@60Hz */
304 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
305 		   1536, 1792, 0, 768, 771, 777, 795, 0,
306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
307 	/* 1360x768@120Hz RB */
308 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
309 		   1440, 1520, 0, 768, 771, 776, 813, 0,
310 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
311 	/* 1400x1050@60Hz RB */
312 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
313 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
314 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
315 	/* 1400x1050@60Hz */
316 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
317 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
318 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
319 	/* 1400x1050@75Hz */
320 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
321 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
322 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
323 	/* 1400x1050@85Hz */
324 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
325 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
326 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
327 	/* 1400x1050@120Hz RB */
328 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
329 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
330 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
331 	/* 1440x900@60Hz RB */
332 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
333 		   1520, 1600, 0, 900, 903, 909, 926, 0,
334 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
335 	/* 1440x900@60Hz */
336 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
337 		   1672, 1904, 0, 900, 903, 909, 934, 0,
338 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
339 	/* 1440x900@75Hz */
340 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
341 		   1688, 1936, 0, 900, 903, 909, 942, 0,
342 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
343 	/* 1440x900@85Hz */
344 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
345 		   1696, 1952, 0, 900, 903, 909, 948, 0,
346 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
347 	/* 1440x900@120Hz RB */
348 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
349 		   1520, 1600, 0, 900, 903, 909, 953, 0,
350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
351 	/* 1600x1200@60Hz */
352 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
353 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
355 	/* 1600x1200@65Hz */
356 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
357 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
358 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
359 	/* 1600x1200@70Hz */
360 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
361 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
362 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
363 	/* 1600x1200@75Hz */
364 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
365 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
367 	/* 1600x1200@85Hz */
368 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
369 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
370 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
371 	/* 1600x1200@120Hz RB */
372 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
373 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
375 	/* 1680x1050@60Hz RB */
376 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
377 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
378 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
379 	/* 1680x1050@60Hz */
380 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
381 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
382 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
383 	/* 1680x1050@75Hz */
384 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
385 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
386 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
387 	/* 1680x1050@85Hz */
388 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
389 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
391 	/* 1680x1050@120Hz RB */
392 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
393 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
395 	/* 1792x1344@60Hz */
396 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
397 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
398 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
399 	/* 1792x1344@75Hz */
400 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
401 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
402 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
403 	/* 1792x1344@120Hz RB */
404 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
405 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
406 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
407 	/* 1856x1392@60Hz */
408 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
409 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
410 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
411 	/* 1856x1392@75Hz */
412 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
413 		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
414 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
415 	/* 1856x1392@120Hz RB */
416 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
417 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
418 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
419 	/* 1920x1200@60Hz RB */
420 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
421 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
422 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
423 	/* 1920x1200@60Hz */
424 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
425 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
426 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
427 	/* 1920x1200@75Hz */
428 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
429 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
430 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
431 	/* 1920x1200@85Hz */
432 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
433 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
434 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
435 	/* 1920x1200@120Hz RB */
436 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
437 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
438 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
439 	/* 1920x1440@60Hz */
440 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
441 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
442 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
443 	/* 1920x1440@75Hz */
444 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
445 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
446 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
447 	/* 1920x1440@120Hz RB */
448 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
449 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
450 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
451 	/* 2560x1600@60Hz RB */
452 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
453 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
454 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
455 	/* 2560x1600@60Hz */
456 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
457 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
458 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
459 	/* 2560x1600@75HZ */
460 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
461 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
462 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
463 	/* 2560x1600@85HZ */
464 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
465 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
466 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
467 	/* 2560x1600@120Hz RB */
468 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
469 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
470 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
471 };
472 
473 /*
474  * These more or less come from the DMT spec.  The 720x400 modes are
475  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
476  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
477  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
478  * mode.
479  *
480  * The DMT modes have been fact-checked; the rest are mild guesses.
481  */
482 static const struct drm_display_mode edid_est_modes[] = {
483 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
484 		   968, 1056, 0, 600, 601, 605, 628, 0,
485 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
486 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
487 		   896, 1024, 0, 600, 601, 603,  625, 0,
488 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
489 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
490 		   720, 840, 0, 480, 481, 484, 500, 0,
491 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
492 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
493 		   704,  832, 0, 480, 489, 491, 520, 0,
494 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
495 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
496 		   768,  864, 0, 480, 483, 486, 525, 0,
497 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
498 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
499 		   752, 800, 0, 480, 490, 492, 525, 0,
500 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
501 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
502 		   846, 900, 0, 400, 421, 423,  449, 0,
503 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
504 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
505 		   846,  900, 0, 400, 412, 414, 449, 0,
506 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
507 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
508 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
510 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
511 		   1136, 1312, 0,  768, 769, 772, 800, 0,
512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
513 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
514 		   1184, 1328, 0,  768, 771, 777, 806, 0,
515 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
516 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
517 		   1184, 1344, 0,  768, 771, 777, 806, 0,
518 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
519 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
520 		   1208, 1264, 0, 768, 768, 776, 817, 0,
521 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
522 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
523 		   928, 1152, 0, 624, 625, 628, 667, 0,
524 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
525 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
526 		   896, 1056, 0, 600, 601, 604,  625, 0,
527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
528 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
529 		   976, 1040, 0, 600, 637, 643, 666, 0,
530 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
531 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
532 		   1344, 1600, 0,  864, 865, 868, 900, 0,
533 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
534 };
535 
536 struct minimode {
537 	short w;
538 	short h;
539 	short r;
540 	short rb;
541 };
542 
543 static const struct minimode est3_modes[] = {
544 	/* byte 6 */
545 	{ 640, 350, 85, 0 },
546 	{ 640, 400, 85, 0 },
547 	{ 720, 400, 85, 0 },
548 	{ 640, 480, 85, 0 },
549 	{ 848, 480, 60, 0 },
550 	{ 800, 600, 85, 0 },
551 	{ 1024, 768, 85, 0 },
552 	{ 1152, 864, 75, 0 },
553 	/* byte 7 */
554 	{ 1280, 768, 60, 1 },
555 	{ 1280, 768, 60, 0 },
556 	{ 1280, 768, 75, 0 },
557 	{ 1280, 768, 85, 0 },
558 	{ 1280, 960, 60, 0 },
559 	{ 1280, 960, 85, 0 },
560 	{ 1280, 1024, 60, 0 },
561 	{ 1280, 1024, 85, 0 },
562 	/* byte 8 */
563 	{ 1360, 768, 60, 0 },
564 	{ 1440, 900, 60, 1 },
565 	{ 1440, 900, 60, 0 },
566 	{ 1440, 900, 75, 0 },
567 	{ 1440, 900, 85, 0 },
568 	{ 1400, 1050, 60, 1 },
569 	{ 1400, 1050, 60, 0 },
570 	{ 1400, 1050, 75, 0 },
571 	/* byte 9 */
572 	{ 1400, 1050, 85, 0 },
573 	{ 1680, 1050, 60, 1 },
574 	{ 1680, 1050, 60, 0 },
575 	{ 1680, 1050, 75, 0 },
576 	{ 1680, 1050, 85, 0 },
577 	{ 1600, 1200, 60, 0 },
578 	{ 1600, 1200, 65, 0 },
579 	{ 1600, 1200, 70, 0 },
580 	/* byte 10 */
581 	{ 1600, 1200, 75, 0 },
582 	{ 1600, 1200, 85, 0 },
583 	{ 1792, 1344, 60, 0 },
584 	{ 1792, 1344, 75, 0 },
585 	{ 1856, 1392, 60, 0 },
586 	{ 1856, 1392, 75, 0 },
587 	{ 1920, 1200, 60, 1 },
588 	{ 1920, 1200, 60, 0 },
589 	/* byte 11 */
590 	{ 1920, 1200, 75, 0 },
591 	{ 1920, 1200, 85, 0 },
592 	{ 1920, 1440, 60, 0 },
593 	{ 1920, 1440, 75, 0 },
594 };
595 
596 static const struct minimode extra_modes[] = {
597 	{ 1024, 576,  60, 0 },
598 	{ 1366, 768,  60, 0 },
599 	{ 1600, 900,  60, 0 },
600 	{ 1680, 945,  60, 0 },
601 	{ 1920, 1080, 60, 0 },
602 	{ 2048, 1152, 60, 0 },
603 	{ 2048, 1536, 60, 0 },
604 };
605 
606 /*
607  * Probably taken from CEA-861 spec.
608  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
609  */
610 static const struct drm_display_mode edid_cea_modes[] = {
611 	/* 1 - 640x480@60Hz */
612 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
613 		   752, 800, 0, 480, 490, 492, 525, 0,
614 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
615 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
616 	/* 2 - 720x480@60Hz */
617 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
618 		   798, 858, 0, 480, 489, 495, 525, 0,
619 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
620 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
621 	/* 3 - 720x480@60Hz */
622 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
623 		   798, 858, 0, 480, 489, 495, 525, 0,
624 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
625 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
626 	/* 4 - 1280x720@60Hz */
627 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
628 		   1430, 1650, 0, 720, 725, 730, 750, 0,
629 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
630 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
631 	/* 5 - 1920x1080i@60Hz */
632 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
633 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
634 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
635 			DRM_MODE_FLAG_INTERLACE),
636 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
637 	/* 6 - 1440x480i@60Hz */
638 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
639 		   1602, 1716, 0, 480, 488, 494, 525, 0,
640 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
641 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
642 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
643 	/* 7 - 1440x480i@60Hz */
644 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
645 		   1602, 1716, 0, 480, 488, 494, 525, 0,
646 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
647 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
648 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
649 	/* 8 - 1440x240@60Hz */
650 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
651 		   1602, 1716, 0, 240, 244, 247, 262, 0,
652 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
653 			DRM_MODE_FLAG_DBLCLK),
654 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
655 	/* 9 - 1440x240@60Hz */
656 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
657 		   1602, 1716, 0, 240, 244, 247, 262, 0,
658 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
659 			DRM_MODE_FLAG_DBLCLK),
660 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
661 	/* 10 - 2880x480i@60Hz */
662 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
663 		   3204, 3432, 0, 480, 488, 494, 525, 0,
664 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
665 			DRM_MODE_FLAG_INTERLACE),
666 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
667 	/* 11 - 2880x480i@60Hz */
668 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
669 		   3204, 3432, 0, 480, 488, 494, 525, 0,
670 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
671 			DRM_MODE_FLAG_INTERLACE),
672 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
673 	/* 12 - 2880x240@60Hz */
674 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
675 		   3204, 3432, 0, 240, 244, 247, 262, 0,
676 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
677 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
678 	/* 13 - 2880x240@60Hz */
679 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
680 		   3204, 3432, 0, 240, 244, 247, 262, 0,
681 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
682 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
683 	/* 14 - 1440x480@60Hz */
684 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
685 		   1596, 1716, 0, 480, 489, 495, 525, 0,
686 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
687 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
688 	/* 15 - 1440x480@60Hz */
689 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
690 		   1596, 1716, 0, 480, 489, 495, 525, 0,
691 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
692 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
693 	/* 16 - 1920x1080@60Hz */
694 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
695 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
696 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
697 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
698 	/* 17 - 720x576@50Hz */
699 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
700 		   796, 864, 0, 576, 581, 586, 625, 0,
701 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
702 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
703 	/* 18 - 720x576@50Hz */
704 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
705 		   796, 864, 0, 576, 581, 586, 625, 0,
706 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
707 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
708 	/* 19 - 1280x720@50Hz */
709 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
710 		   1760, 1980, 0, 720, 725, 730, 750, 0,
711 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
712 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
713 	/* 20 - 1920x1080i@50Hz */
714 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
715 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
716 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
717 			DRM_MODE_FLAG_INTERLACE),
718 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
719 	/* 21 - 1440x576i@50Hz */
720 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
721 		   1590, 1728, 0, 576, 580, 586, 625, 0,
722 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
723 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
724 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
725 	/* 22 - 1440x576i@50Hz */
726 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
727 		   1590, 1728, 0, 576, 580, 586, 625, 0,
728 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
729 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
730 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
731 	/* 23 - 1440x288@50Hz */
732 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
733 		   1590, 1728, 0, 288, 290, 293, 312, 0,
734 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
735 			DRM_MODE_FLAG_DBLCLK),
736 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
737 	/* 24 - 1440x288@50Hz */
738 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
739 		   1590, 1728, 0, 288, 290, 293, 312, 0,
740 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
741 			DRM_MODE_FLAG_DBLCLK),
742 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
743 	/* 25 - 2880x576i@50Hz */
744 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
745 		   3180, 3456, 0, 576, 580, 586, 625, 0,
746 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
747 			DRM_MODE_FLAG_INTERLACE),
748 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
749 	/* 26 - 2880x576i@50Hz */
750 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
751 		   3180, 3456, 0, 576, 580, 586, 625, 0,
752 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
753 			DRM_MODE_FLAG_INTERLACE),
754 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
755 	/* 27 - 2880x288@50Hz */
756 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
757 		   3180, 3456, 0, 288, 290, 293, 312, 0,
758 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
759 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
760 	/* 28 - 2880x288@50Hz */
761 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
762 		   3180, 3456, 0, 288, 290, 293, 312, 0,
763 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
764 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
765 	/* 29 - 1440x576@50Hz */
766 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
767 		   1592, 1728, 0, 576, 581, 586, 625, 0,
768 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
769 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
770 	/* 30 - 1440x576@50Hz */
771 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
772 		   1592, 1728, 0, 576, 581, 586, 625, 0,
773 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
774 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
775 	/* 31 - 1920x1080@50Hz */
776 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
777 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
778 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
779 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
780 	/* 32 - 1920x1080@24Hz */
781 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
782 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
783 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
784 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
785 	/* 33 - 1920x1080@25Hz */
786 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
787 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
788 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
789 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
790 	/* 34 - 1920x1080@30Hz */
791 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
792 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
793 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
794 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
795 	/* 35 - 2880x480@60Hz */
796 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
797 		   3192, 3432, 0, 480, 489, 495, 525, 0,
798 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
799 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
800 	/* 36 - 2880x480@60Hz */
801 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
802 		   3192, 3432, 0, 480, 489, 495, 525, 0,
803 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
804 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
805 	/* 37 - 2880x576@50Hz */
806 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
807 		   3184, 3456, 0, 576, 581, 586, 625, 0,
808 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
809 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
810 	/* 38 - 2880x576@50Hz */
811 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
812 		   3184, 3456, 0, 576, 581, 586, 625, 0,
813 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
814 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
815 	/* 39 - 1920x1080i@50Hz */
816 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
817 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
818 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
819 			DRM_MODE_FLAG_INTERLACE),
820 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
821 	/* 40 - 1920x1080i@100Hz */
822 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
823 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
824 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
825 			DRM_MODE_FLAG_INTERLACE),
826 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
827 	/* 41 - 1280x720@100Hz */
828 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
829 		   1760, 1980, 0, 720, 725, 730, 750, 0,
830 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
831 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
832 	/* 42 - 720x576@100Hz */
833 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
834 		   796, 864, 0, 576, 581, 586, 625, 0,
835 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
836 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
837 	/* 43 - 720x576@100Hz */
838 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
839 		   796, 864, 0, 576, 581, 586, 625, 0,
840 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
841 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
842 	/* 44 - 1440x576i@100Hz */
843 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
844 		   1590, 1728, 0, 576, 580, 586, 625, 0,
845 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
846 			DRM_MODE_FLAG_DBLCLK),
847 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
848 	/* 45 - 1440x576i@100Hz */
849 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
850 		   1590, 1728, 0, 576, 580, 586, 625, 0,
851 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
852 			DRM_MODE_FLAG_DBLCLK),
853 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 	/* 46 - 1920x1080i@120Hz */
855 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
856 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
857 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
858 			DRM_MODE_FLAG_INTERLACE),
859 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
860 	/* 47 - 1280x720@120Hz */
861 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
862 		   1430, 1650, 0, 720, 725, 730, 750, 0,
863 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
864 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
865 	/* 48 - 720x480@120Hz */
866 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
867 		   798, 858, 0, 480, 489, 495, 525, 0,
868 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
869 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
870 	/* 49 - 720x480@120Hz */
871 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
872 		   798, 858, 0, 480, 489, 495, 525, 0,
873 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
874 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
875 	/* 50 - 1440x480i@120Hz */
876 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
877 		   1602, 1716, 0, 480, 488, 494, 525, 0,
878 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
879 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
880 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
881 	/* 51 - 1440x480i@120Hz */
882 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
883 		   1602, 1716, 0, 480, 488, 494, 525, 0,
884 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
885 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
886 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
887 	/* 52 - 720x576@200Hz */
888 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
889 		   796, 864, 0, 576, 581, 586, 625, 0,
890 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
891 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
892 	/* 53 - 720x576@200Hz */
893 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
894 		   796, 864, 0, 576, 581, 586, 625, 0,
895 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
896 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
897 	/* 54 - 1440x576i@200Hz */
898 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
899 		   1590, 1728, 0, 576, 580, 586, 625, 0,
900 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
901 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
902 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
903 	/* 55 - 1440x576i@200Hz */
904 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
905 		   1590, 1728, 0, 576, 580, 586, 625, 0,
906 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
907 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
908 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
909 	/* 56 - 720x480@240Hz */
910 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
911 		   798, 858, 0, 480, 489, 495, 525, 0,
912 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
913 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
914 	/* 57 - 720x480@240Hz */
915 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
916 		   798, 858, 0, 480, 489, 495, 525, 0,
917 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
918 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 	/* 58 - 1440x480i@240 */
920 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
921 		   1602, 1716, 0, 480, 488, 494, 525, 0,
922 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
923 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
924 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
925 	/* 59 - 1440x480i@240 */
926 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
927 		   1602, 1716, 0, 480, 488, 494, 525, 0,
928 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
929 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
930 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
931 	/* 60 - 1280x720@24Hz */
932 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
933 		   3080, 3300, 0, 720, 725, 730, 750, 0,
934 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
935 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
936 	/* 61 - 1280x720@25Hz */
937 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
938 		   3740, 3960, 0, 720, 725, 730, 750, 0,
939 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
940 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
941 	/* 62 - 1280x720@30Hz */
942 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
943 		   3080, 3300, 0, 720, 725, 730, 750, 0,
944 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
945 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
946 	/* 63 - 1920x1080@120Hz */
947 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
948 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
949 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
950 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 	/* 64 - 1920x1080@100Hz */
952 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
953 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
955 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
956 };
957 
958 /*
959  * HDMI 1.4 4k modes.
960  */
961 static const struct drm_display_mode edid_4k_modes[] = {
962 	/* 1 - 3840x2160@30Hz */
963 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
964 		   3840, 4016, 4104, 4400, 0,
965 		   2160, 2168, 2178, 2250, 0,
966 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
967 	  .vrefresh = 30, },
968 	/* 2 - 3840x2160@25Hz */
969 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
970 		   3840, 4896, 4984, 5280, 0,
971 		   2160, 2168, 2178, 2250, 0,
972 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
973 	  .vrefresh = 25, },
974 	/* 3 - 3840x2160@24Hz */
975 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
976 		   3840, 5116, 5204, 5500, 0,
977 		   2160, 2168, 2178, 2250, 0,
978 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
979 	  .vrefresh = 24, },
980 	/* 4 - 4096x2160@24Hz (SMPTE) */
981 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
982 		   4096, 5116, 5204, 5500, 0,
983 		   2160, 2168, 2178, 2250, 0,
984 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
985 	  .vrefresh = 24, },
986 };
987 
988 /*** DDC fetch and block validation ***/
989 
990 static const u8 edid_header[] = {
991 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
992 };
993 
994  /*
995  * Sanity check the header of the base EDID block.  Return 8 if the header
996  * is perfect, down to 0 if it's totally wrong.
997  */
998 int drm_edid_header_is_valid(const u8 *raw_edid)
999 {
1000 	int i, score = 0;
1001 
1002 	for (i = 0; i < sizeof(edid_header); i++)
1003 		if (raw_edid[i] == edid_header[i])
1004 			score++;
1005 
1006 	return score;
1007 }
1008 EXPORT_SYMBOL(drm_edid_header_is_valid);
1009 
1010 static int edid_fixup __read_mostly = 6;
1011 module_param_named(edid_fixup, edid_fixup, int, 0400);
1012 MODULE_PARM_DESC(edid_fixup,
1013 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1014 
1015 /*
1016  * Sanity check the EDID block (base or extension).  Return 0 if the block
1017  * doesn't check out, or 1 if it's valid.
1018  */
1019 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
1020 {
1021 	int i;
1022 	u8 csum = 0;
1023 	struct edid *edid = (struct edid *)raw_edid;
1024 
1025 	if (WARN_ON(!raw_edid))
1026 		return false;
1027 
1028 	if (edid_fixup > 8 || edid_fixup < 0)
1029 		edid_fixup = 6;
1030 
1031 	if (block == 0) {
1032 		int score = drm_edid_header_is_valid(raw_edid);
1033 		if (score == 8) ;
1034 		else if (score >= edid_fixup) {
1035 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1036 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1037 		} else {
1038 			goto bad;
1039 		}
1040 	}
1041 
1042 	for (i = 0; i < EDID_LENGTH; i++)
1043 		csum += raw_edid[i];
1044 	if (csum) {
1045 		if (print_bad_edid) {
1046 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1047 		}
1048 
1049 		/* allow CEA to slide through, switches mangle this */
1050 		if (raw_edid[0] != 0x02)
1051 			goto bad;
1052 	}
1053 
1054 	/* per-block-type checks */
1055 	switch (raw_edid[0]) {
1056 	case 0: /* base */
1057 		if (edid->version != 1) {
1058 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1059 			goto bad;
1060 		}
1061 
1062 		if (edid->revision > 4)
1063 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1064 		break;
1065 
1066 	default:
1067 		break;
1068 	}
1069 
1070 	return true;
1071 
1072 bad:
1073 	if (print_bad_edid) {
1074 		printk(KERN_ERR "Raw EDID:\n");
1075 		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1076 			       raw_edid, EDID_LENGTH, false);
1077 	}
1078 	return false;
1079 }
1080 EXPORT_SYMBOL(drm_edid_block_valid);
1081 
1082 /**
1083  * drm_edid_is_valid - sanity check EDID data
1084  * @edid: EDID data
1085  *
1086  * Sanity-check an entire EDID record (including extensions)
1087  */
1088 bool drm_edid_is_valid(struct edid *edid)
1089 {
1090 	int i;
1091 	u8 *raw = (u8 *)edid;
1092 
1093 	if (!edid)
1094 		return false;
1095 
1096 	for (i = 0; i <= edid->extensions; i++)
1097 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1098 			return false;
1099 
1100 	return true;
1101 }
1102 EXPORT_SYMBOL(drm_edid_is_valid);
1103 
1104 #define DDC_SEGMENT_ADDR 0x30
1105 /**
1106  * Get EDID information via I2C.
1107  *
1108  * @adapter : i2c device adaptor
1109  * @buf: EDID data buffer to be filled
1110  * @block: 128 byte EDID block to start fetching from
1111  * @len: EDID data buffer length to fetch
1112  *
1113  * Returns:
1114  *
1115  * 0 on success or -1 on failure.
1116  *
1117  * Try to fetch EDID information by calling i2c driver function.
1118  */
1119 static int
1120 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1121 		      int block, int len)
1122 {
1123 	unsigned char start = block * EDID_LENGTH;
1124 	unsigned char segment = block >> 1;
1125 	unsigned char xfers = segment ? 3 : 2;
1126 	int ret, retries = 5;
1127 
1128 	/* The core i2c driver will automatically retry the transfer if the
1129 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1130 	 * are susceptible to errors under a heavily loaded machine and
1131 	 * generate spurious NAKs and timeouts. Retrying the transfer
1132 	 * of the individual block a few times seems to overcome this.
1133 	 */
1134 	do {
1135 		struct i2c_msg msgs[] = {
1136 			{
1137 				.addr	= DDC_SEGMENT_ADDR,
1138 				.flags	= 0,
1139 				.len	= 1,
1140 				.buf	= &segment,
1141 			}, {
1142 				.addr	= DDC_ADDR,
1143 				.flags	= 0,
1144 				.len	= 1,
1145 				.buf	= &start,
1146 			}, {
1147 				.addr	= DDC_ADDR,
1148 				.flags	= I2C_M_RD,
1149 				.len	= len,
1150 				.buf	= buf,
1151 			}
1152 		};
1153 
1154 	/*
1155 	 * Avoid sending the segment addr to not upset non-compliant ddc
1156 	 * monitors.
1157 	 */
1158 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1159 
1160 		if (ret == -ENXIO) {
1161 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1162 					adapter->name);
1163 			break;
1164 		}
1165 	} while (ret != xfers && --retries);
1166 
1167 	return ret == xfers ? 0 : -1;
1168 }
1169 
1170 static bool drm_edid_is_zero(u8 *in_edid, int length)
1171 {
1172 	if (memchr_inv(in_edid, 0, length))
1173 		return false;
1174 
1175 	return true;
1176 }
1177 
1178 static u8 *
1179 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1180 {
1181 	int i, j = 0, valid_extensions = 0;
1182 	u8 *block, *new;
1183 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1184 
1185 	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1186 		return NULL;
1187 
1188 	/* base block fetch */
1189 	for (i = 0; i < 4; i++) {
1190 		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1191 			goto out;
1192 		if (drm_edid_block_valid(block, 0, print_bad_edid))
1193 			break;
1194 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1195 			connector->null_edid_counter++;
1196 			goto carp;
1197 		}
1198 	}
1199 	if (i == 4)
1200 		goto carp;
1201 
1202 	/* if there's no extensions, we're done */
1203 	if (block[0x7e] == 0)
1204 		return block;
1205 
1206 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1207 	if (!new)
1208 		goto out;
1209 	block = new;
1210 
1211 	for (j = 1; j <= block[0x7e]; j++) {
1212 		for (i = 0; i < 4; i++) {
1213 			if (drm_do_probe_ddc_edid(adapter,
1214 				  block + (valid_extensions + 1) * EDID_LENGTH,
1215 				  j, EDID_LENGTH))
1216 				goto out;
1217 			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1218 				valid_extensions++;
1219 				break;
1220 			}
1221 		}
1222 
1223 		if (i == 4 && print_bad_edid) {
1224 			dev_warn(connector->dev->dev,
1225 			 "%s: Ignoring invalid EDID block %d.\n",
1226 			 drm_get_connector_name(connector), j);
1227 
1228 			connector->bad_edid_counter++;
1229 		}
1230 	}
1231 
1232 	if (valid_extensions != block[0x7e]) {
1233 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1234 		block[0x7e] = valid_extensions;
1235 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1236 		if (!new)
1237 			goto out;
1238 		block = new;
1239 	}
1240 
1241 	return block;
1242 
1243 carp:
1244 	if (print_bad_edid) {
1245 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1246 			 drm_get_connector_name(connector), j);
1247 	}
1248 	connector->bad_edid_counter++;
1249 
1250 out:
1251 	kfree(block);
1252 	return NULL;
1253 }
1254 
1255 /**
1256  * Probe DDC presence.
1257  * @adapter: i2c adapter to probe
1258  *
1259  * Returns:
1260  *
1261  * 1 on success
1262  */
1263 bool
1264 drm_probe_ddc(struct i2c_adapter *adapter)
1265 {
1266 	unsigned char out;
1267 
1268 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1269 }
1270 EXPORT_SYMBOL(drm_probe_ddc);
1271 
1272 /**
1273  * drm_get_edid - get EDID data, if available
1274  * @connector: connector we're probing
1275  * @adapter: i2c adapter to use for DDC
1276  *
1277  * Poke the given i2c channel to grab EDID data if possible.  If found,
1278  * attach it to the connector.
1279  *
1280  * Return edid data or NULL if we couldn't find any.
1281  */
1282 struct edid *drm_get_edid(struct drm_connector *connector,
1283 			  struct i2c_adapter *adapter)
1284 {
1285 	struct edid *edid = NULL;
1286 
1287 	if (drm_probe_ddc(adapter))
1288 		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1289 
1290 	return edid;
1291 }
1292 EXPORT_SYMBOL(drm_get_edid);
1293 
1294 /**
1295  * drm_edid_duplicate - duplicate an EDID and the extensions
1296  * @edid: EDID to duplicate
1297  *
1298  * Return duplicate edid or NULL on allocation failure.
1299  */
1300 struct edid *drm_edid_duplicate(const struct edid *edid)
1301 {
1302 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1303 }
1304 EXPORT_SYMBOL(drm_edid_duplicate);
1305 
1306 /*** EDID parsing ***/
1307 
1308 /**
1309  * edid_vendor - match a string against EDID's obfuscated vendor field
1310  * @edid: EDID to match
1311  * @vendor: vendor string
1312  *
1313  * Returns true if @vendor is in @edid, false otherwise
1314  */
1315 static bool edid_vendor(struct edid *edid, char *vendor)
1316 {
1317 	char edid_vendor[3];
1318 
1319 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1320 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1321 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1322 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1323 
1324 	return !strncmp(edid_vendor, vendor, 3);
1325 }
1326 
1327 /**
1328  * edid_get_quirks - return quirk flags for a given EDID
1329  * @edid: EDID to process
1330  *
1331  * This tells subsequent routines what fixes they need to apply.
1332  */
1333 static u32 edid_get_quirks(struct edid *edid)
1334 {
1335 	struct edid_quirk *quirk;
1336 	int i;
1337 
1338 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1339 		quirk = &edid_quirk_list[i];
1340 
1341 		if (edid_vendor(edid, quirk->vendor) &&
1342 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1343 			return quirk->quirks;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1350 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1351 
1352 /**
1353  * edid_fixup_preferred - set preferred modes based on quirk list
1354  * @connector: has mode list to fix up
1355  * @quirks: quirks list
1356  *
1357  * Walk the mode list for @connector, clearing the preferred status
1358  * on existing modes and setting it anew for the right mode ala @quirks.
1359  */
1360 static void edid_fixup_preferred(struct drm_connector *connector,
1361 				 u32 quirks)
1362 {
1363 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1364 	int target_refresh = 0;
1365 	int cur_vrefresh, preferred_vrefresh;
1366 
1367 	if (list_empty(&connector->probed_modes))
1368 		return;
1369 
1370 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1371 		target_refresh = 60;
1372 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1373 		target_refresh = 75;
1374 
1375 	preferred_mode = list_first_entry(&connector->probed_modes,
1376 					  struct drm_display_mode, head);
1377 
1378 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1379 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1380 
1381 		if (cur_mode == preferred_mode)
1382 			continue;
1383 
1384 		/* Largest mode is preferred */
1385 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1386 			preferred_mode = cur_mode;
1387 
1388 		cur_vrefresh = cur_mode->vrefresh ?
1389 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1390 		preferred_vrefresh = preferred_mode->vrefresh ?
1391 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1392 		/* At a given size, try to get closest to target refresh */
1393 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1394 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1395 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1396 			preferred_mode = cur_mode;
1397 		}
1398 	}
1399 
1400 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1401 }
1402 
1403 static bool
1404 mode_is_rb(const struct drm_display_mode *mode)
1405 {
1406 	return (mode->htotal - mode->hdisplay == 160) &&
1407 	       (mode->hsync_end - mode->hdisplay == 80) &&
1408 	       (mode->hsync_end - mode->hsync_start == 32) &&
1409 	       (mode->vsync_start - mode->vdisplay == 3);
1410 }
1411 
1412 /*
1413  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1414  * @dev: Device to duplicate against
1415  * @hsize: Mode width
1416  * @vsize: Mode height
1417  * @fresh: Mode refresh rate
1418  * @rb: Mode reduced-blanking-ness
1419  *
1420  * Walk the DMT mode list looking for a match for the given parameters.
1421  * Return a newly allocated copy of the mode, or NULL if not found.
1422  */
1423 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1424 					   int hsize, int vsize, int fresh,
1425 					   bool rb)
1426 {
1427 	int i;
1428 
1429 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1430 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1431 		if (hsize != ptr->hdisplay)
1432 			continue;
1433 		if (vsize != ptr->vdisplay)
1434 			continue;
1435 		if (fresh != drm_mode_vrefresh(ptr))
1436 			continue;
1437 		if (rb != mode_is_rb(ptr))
1438 			continue;
1439 
1440 		return drm_mode_duplicate(dev, ptr);
1441 	}
1442 
1443 	return NULL;
1444 }
1445 EXPORT_SYMBOL(drm_mode_find_dmt);
1446 
1447 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1448 
1449 static void
1450 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1451 {
1452 	int i, n = 0;
1453 	u8 d = ext[0x02];
1454 	u8 *det_base = ext + d;
1455 
1456 	n = (127 - d) / 18;
1457 	for (i = 0; i < n; i++)
1458 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1459 }
1460 
1461 static void
1462 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1463 {
1464 	unsigned int i, n = min((int)ext[0x02], 6);
1465 	u8 *det_base = ext + 5;
1466 
1467 	if (ext[0x01] != 1)
1468 		return; /* unknown version */
1469 
1470 	for (i = 0; i < n; i++)
1471 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1472 }
1473 
1474 static void
1475 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1476 {
1477 	int i;
1478 	struct edid *edid = (struct edid *)raw_edid;
1479 
1480 	if (edid == NULL)
1481 		return;
1482 
1483 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1484 		cb(&(edid->detailed_timings[i]), closure);
1485 
1486 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1487 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1488 		switch (*ext) {
1489 		case CEA_EXT:
1490 			cea_for_each_detailed_block(ext, cb, closure);
1491 			break;
1492 		case VTB_EXT:
1493 			vtb_for_each_detailed_block(ext, cb, closure);
1494 			break;
1495 		default:
1496 			break;
1497 		}
1498 	}
1499 }
1500 
1501 static void
1502 is_rb(struct detailed_timing *t, void *data)
1503 {
1504 	u8 *r = (u8 *)t;
1505 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1506 		if (r[15] & 0x10)
1507 			*(bool *)data = true;
1508 }
1509 
1510 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1511 static bool
1512 drm_monitor_supports_rb(struct edid *edid)
1513 {
1514 	if (edid->revision >= 4) {
1515 		bool ret = false;
1516 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1517 		return ret;
1518 	}
1519 
1520 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1521 }
1522 
1523 static void
1524 find_gtf2(struct detailed_timing *t, void *data)
1525 {
1526 	u8 *r = (u8 *)t;
1527 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1528 		*(u8 **)data = r;
1529 }
1530 
1531 /* Secondary GTF curve kicks in above some break frequency */
1532 static int
1533 drm_gtf2_hbreak(struct edid *edid)
1534 {
1535 	u8 *r = NULL;
1536 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1537 	return r ? (r[12] * 2) : 0;
1538 }
1539 
1540 static int
1541 drm_gtf2_2c(struct edid *edid)
1542 {
1543 	u8 *r = NULL;
1544 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1545 	return r ? r[13] : 0;
1546 }
1547 
1548 static int
1549 drm_gtf2_m(struct edid *edid)
1550 {
1551 	u8 *r = NULL;
1552 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1553 	return r ? (r[15] << 8) + r[14] : 0;
1554 }
1555 
1556 static int
1557 drm_gtf2_k(struct edid *edid)
1558 {
1559 	u8 *r = NULL;
1560 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1561 	return r ? r[16] : 0;
1562 }
1563 
1564 static int
1565 drm_gtf2_2j(struct edid *edid)
1566 {
1567 	u8 *r = NULL;
1568 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1569 	return r ? r[17] : 0;
1570 }
1571 
1572 /**
1573  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1574  * @edid: EDID block to scan
1575  */
1576 static int standard_timing_level(struct edid *edid)
1577 {
1578 	if (edid->revision >= 2) {
1579 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1580 			return LEVEL_CVT;
1581 		if (drm_gtf2_hbreak(edid))
1582 			return LEVEL_GTF2;
1583 		return LEVEL_GTF;
1584 	}
1585 	return LEVEL_DMT;
1586 }
1587 
1588 /*
1589  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1590  * monitors fill with ascii space (0x20) instead.
1591  */
1592 static int
1593 bad_std_timing(u8 a, u8 b)
1594 {
1595 	return (a == 0x00 && b == 0x00) ||
1596 	       (a == 0x01 && b == 0x01) ||
1597 	       (a == 0x20 && b == 0x20);
1598 }
1599 
1600 /**
1601  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1602  * @connector: connector of for the EDID block
1603  * @edid: EDID block to scan
1604  * @t: standard timing params
1605  * @revision: standard timing level
1606  *
1607  * Take the standard timing params (in this case width, aspect, and refresh)
1608  * and convert them into a real mode using CVT/GTF/DMT.
1609  */
1610 static struct drm_display_mode *
1611 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1612 	     struct std_timing *t, int revision)
1613 {
1614 	struct drm_device *dev = connector->dev;
1615 	struct drm_display_mode *m, *mode = NULL;
1616 	int hsize, vsize;
1617 	int vrefresh_rate;
1618 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1619 		>> EDID_TIMING_ASPECT_SHIFT;
1620 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1621 		>> EDID_TIMING_VFREQ_SHIFT;
1622 	int timing_level = standard_timing_level(edid);
1623 
1624 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1625 		return NULL;
1626 
1627 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1628 	hsize = t->hsize * 8 + 248;
1629 	/* vrefresh_rate = vfreq + 60 */
1630 	vrefresh_rate = vfreq + 60;
1631 	/* the vdisplay is calculated based on the aspect ratio */
1632 	if (aspect_ratio == 0) {
1633 		if (revision < 3)
1634 			vsize = hsize;
1635 		else
1636 			vsize = (hsize * 10) / 16;
1637 	} else if (aspect_ratio == 1)
1638 		vsize = (hsize * 3) / 4;
1639 	else if (aspect_ratio == 2)
1640 		vsize = (hsize * 4) / 5;
1641 	else
1642 		vsize = (hsize * 9) / 16;
1643 
1644 	/* HDTV hack, part 1 */
1645 	if (vrefresh_rate == 60 &&
1646 	    ((hsize == 1360 && vsize == 765) ||
1647 	     (hsize == 1368 && vsize == 769))) {
1648 		hsize = 1366;
1649 		vsize = 768;
1650 	}
1651 
1652 	/*
1653 	 * If this connector already has a mode for this size and refresh
1654 	 * rate (because it came from detailed or CVT info), use that
1655 	 * instead.  This way we don't have to guess at interlace or
1656 	 * reduced blanking.
1657 	 */
1658 	list_for_each_entry(m, &connector->probed_modes, head)
1659 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1660 		    drm_mode_vrefresh(m) == vrefresh_rate)
1661 			return NULL;
1662 
1663 	/* HDTV hack, part 2 */
1664 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1665 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1666 				    false);
1667 		mode->hdisplay = 1366;
1668 		mode->hsync_start = mode->hsync_start - 1;
1669 		mode->hsync_end = mode->hsync_end - 1;
1670 		return mode;
1671 	}
1672 
1673 	/* check whether it can be found in default mode table */
1674 	if (drm_monitor_supports_rb(edid)) {
1675 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1676 					 true);
1677 		if (mode)
1678 			return mode;
1679 	}
1680 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1681 	if (mode)
1682 		return mode;
1683 
1684 	/* okay, generate it */
1685 	switch (timing_level) {
1686 	case LEVEL_DMT:
1687 		break;
1688 	case LEVEL_GTF:
1689 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1690 		break;
1691 	case LEVEL_GTF2:
1692 		/*
1693 		 * This is potentially wrong if there's ever a monitor with
1694 		 * more than one ranges section, each claiming a different
1695 		 * secondary GTF curve.  Please don't do that.
1696 		 */
1697 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1698 		if (!mode)
1699 			return NULL;
1700 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1701 			drm_mode_destroy(dev, mode);
1702 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1703 						    vrefresh_rate, 0, 0,
1704 						    drm_gtf2_m(edid),
1705 						    drm_gtf2_2c(edid),
1706 						    drm_gtf2_k(edid),
1707 						    drm_gtf2_2j(edid));
1708 		}
1709 		break;
1710 	case LEVEL_CVT:
1711 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1712 				    false);
1713 		break;
1714 	}
1715 	return mode;
1716 }
1717 
1718 /*
1719  * EDID is delightfully ambiguous about how interlaced modes are to be
1720  * encoded.  Our internal representation is of frame height, but some
1721  * HDTV detailed timings are encoded as field height.
1722  *
1723  * The format list here is from CEA, in frame size.  Technically we
1724  * should be checking refresh rate too.  Whatever.
1725  */
1726 static void
1727 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1728 			    struct detailed_pixel_timing *pt)
1729 {
1730 	int i;
1731 	static const struct {
1732 		int w, h;
1733 	} cea_interlaced[] = {
1734 		{ 1920, 1080 },
1735 		{  720,  480 },
1736 		{ 1440,  480 },
1737 		{ 2880,  480 },
1738 		{  720,  576 },
1739 		{ 1440,  576 },
1740 		{ 2880,  576 },
1741 	};
1742 
1743 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1744 		return;
1745 
1746 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1747 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1748 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1749 			mode->vdisplay *= 2;
1750 			mode->vsync_start *= 2;
1751 			mode->vsync_end *= 2;
1752 			mode->vtotal *= 2;
1753 			mode->vtotal |= 1;
1754 		}
1755 	}
1756 
1757 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1758 }
1759 
1760 /**
1761  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1762  * @dev: DRM device (needed to create new mode)
1763  * @edid: EDID block
1764  * @timing: EDID detailed timing info
1765  * @quirks: quirks to apply
1766  *
1767  * An EDID detailed timing block contains enough info for us to create and
1768  * return a new struct drm_display_mode.
1769  */
1770 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1771 						  struct edid *edid,
1772 						  struct detailed_timing *timing,
1773 						  u32 quirks)
1774 {
1775 	struct drm_display_mode *mode;
1776 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1777 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1778 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1779 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1780 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1781 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1782 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1783 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1784 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1785 
1786 	/* ignore tiny modes */
1787 	if (hactive < 64 || vactive < 64)
1788 		return NULL;
1789 
1790 	if (pt->misc & DRM_EDID_PT_STEREO) {
1791 		DRM_DEBUG_KMS("stereo mode not supported\n");
1792 		return NULL;
1793 	}
1794 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1795 		DRM_DEBUG_KMS("composite sync not supported\n");
1796 	}
1797 
1798 	/* it is incorrect if hsync/vsync width is zero */
1799 	if (!hsync_pulse_width || !vsync_pulse_width) {
1800 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1801 				"Wrong Hsync/Vsync pulse width\n");
1802 		return NULL;
1803 	}
1804 
1805 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1806 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1807 		if (!mode)
1808 			return NULL;
1809 
1810 		goto set_size;
1811 	}
1812 
1813 	mode = drm_mode_create(dev);
1814 	if (!mode)
1815 		return NULL;
1816 
1817 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1818 		timing->pixel_clock = cpu_to_le16(1088);
1819 
1820 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1821 
1822 	mode->hdisplay = hactive;
1823 	mode->hsync_start = mode->hdisplay + hsync_offset;
1824 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1825 	mode->htotal = mode->hdisplay + hblank;
1826 
1827 	mode->vdisplay = vactive;
1828 	mode->vsync_start = mode->vdisplay + vsync_offset;
1829 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1830 	mode->vtotal = mode->vdisplay + vblank;
1831 
1832 	/* Some EDIDs have bogus h/vtotal values */
1833 	if (mode->hsync_end > mode->htotal)
1834 		mode->htotal = mode->hsync_end + 1;
1835 	if (mode->vsync_end > mode->vtotal)
1836 		mode->vtotal = mode->vsync_end + 1;
1837 
1838 	drm_mode_do_interlace_quirk(mode, pt);
1839 
1840 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1841 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1842 	}
1843 
1844 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1845 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1846 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1847 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1848 
1849 set_size:
1850 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1851 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1852 
1853 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1854 		mode->width_mm *= 10;
1855 		mode->height_mm *= 10;
1856 	}
1857 
1858 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1859 		mode->width_mm = edid->width_cm * 10;
1860 		mode->height_mm = edid->height_cm * 10;
1861 	}
1862 
1863 	mode->type = DRM_MODE_TYPE_DRIVER;
1864 	mode->vrefresh = drm_mode_vrefresh(mode);
1865 	drm_mode_set_name(mode);
1866 
1867 	return mode;
1868 }
1869 
1870 static bool
1871 mode_in_hsync_range(const struct drm_display_mode *mode,
1872 		    struct edid *edid, u8 *t)
1873 {
1874 	int hsync, hmin, hmax;
1875 
1876 	hmin = t[7];
1877 	if (edid->revision >= 4)
1878 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1879 	hmax = t[8];
1880 	if (edid->revision >= 4)
1881 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1882 	hsync = drm_mode_hsync(mode);
1883 
1884 	return (hsync <= hmax && hsync >= hmin);
1885 }
1886 
1887 static bool
1888 mode_in_vsync_range(const struct drm_display_mode *mode,
1889 		    struct edid *edid, u8 *t)
1890 {
1891 	int vsync, vmin, vmax;
1892 
1893 	vmin = t[5];
1894 	if (edid->revision >= 4)
1895 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1896 	vmax = t[6];
1897 	if (edid->revision >= 4)
1898 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1899 	vsync = drm_mode_vrefresh(mode);
1900 
1901 	return (vsync <= vmax && vsync >= vmin);
1902 }
1903 
1904 static u32
1905 range_pixel_clock(struct edid *edid, u8 *t)
1906 {
1907 	/* unspecified */
1908 	if (t[9] == 0 || t[9] == 255)
1909 		return 0;
1910 
1911 	/* 1.4 with CVT support gives us real precision, yay */
1912 	if (edid->revision >= 4 && t[10] == 0x04)
1913 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1914 
1915 	/* 1.3 is pathetic, so fuzz up a bit */
1916 	return t[9] * 10000 + 5001;
1917 }
1918 
1919 static bool
1920 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1921 	      struct detailed_timing *timing)
1922 {
1923 	u32 max_clock;
1924 	u8 *t = (u8 *)timing;
1925 
1926 	if (!mode_in_hsync_range(mode, edid, t))
1927 		return false;
1928 
1929 	if (!mode_in_vsync_range(mode, edid, t))
1930 		return false;
1931 
1932 	if ((max_clock = range_pixel_clock(edid, t)))
1933 		if (mode->clock > max_clock)
1934 			return false;
1935 
1936 	/* 1.4 max horizontal check */
1937 	if (edid->revision >= 4 && t[10] == 0x04)
1938 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1939 			return false;
1940 
1941 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1942 		return false;
1943 
1944 	return true;
1945 }
1946 
1947 static bool valid_inferred_mode(const struct drm_connector *connector,
1948 				const struct drm_display_mode *mode)
1949 {
1950 	struct drm_display_mode *m;
1951 	bool ok = false;
1952 
1953 	list_for_each_entry(m, &connector->probed_modes, head) {
1954 		if (mode->hdisplay == m->hdisplay &&
1955 		    mode->vdisplay == m->vdisplay &&
1956 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1957 			return false; /* duplicated */
1958 		if (mode->hdisplay <= m->hdisplay &&
1959 		    mode->vdisplay <= m->vdisplay)
1960 			ok = true;
1961 	}
1962 	return ok;
1963 }
1964 
1965 static int
1966 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1967 			struct detailed_timing *timing)
1968 {
1969 	int i, modes = 0;
1970 	struct drm_display_mode *newmode;
1971 	struct drm_device *dev = connector->dev;
1972 
1973 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1974 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1975 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1976 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1977 			if (newmode) {
1978 				drm_mode_probed_add(connector, newmode);
1979 				modes++;
1980 			}
1981 		}
1982 	}
1983 
1984 	return modes;
1985 }
1986 
1987 /* fix up 1366x768 mode from 1368x768;
1988  * GFT/CVT can't express 1366 width which isn't dividable by 8
1989  */
1990 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1991 {
1992 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1993 		mode->hdisplay = 1366;
1994 		mode->hsync_start--;
1995 		mode->hsync_end--;
1996 		drm_mode_set_name(mode);
1997 	}
1998 }
1999 
2000 static int
2001 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2002 			struct detailed_timing *timing)
2003 {
2004 	int i, modes = 0;
2005 	struct drm_display_mode *newmode;
2006 	struct drm_device *dev = connector->dev;
2007 
2008 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2009 		const struct minimode *m = &extra_modes[i];
2010 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2011 		if (!newmode)
2012 			return modes;
2013 
2014 		fixup_mode_1366x768(newmode);
2015 		if (!mode_in_range(newmode, edid, timing) ||
2016 		    !valid_inferred_mode(connector, newmode)) {
2017 			drm_mode_destroy(dev, newmode);
2018 			continue;
2019 		}
2020 
2021 		drm_mode_probed_add(connector, newmode);
2022 		modes++;
2023 	}
2024 
2025 	return modes;
2026 }
2027 
2028 static int
2029 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2030 			struct detailed_timing *timing)
2031 {
2032 	int i, modes = 0;
2033 	struct drm_display_mode *newmode;
2034 	struct drm_device *dev = connector->dev;
2035 	bool rb = drm_monitor_supports_rb(edid);
2036 
2037 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2038 		const struct minimode *m = &extra_modes[i];
2039 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2040 		if (!newmode)
2041 			return modes;
2042 
2043 		fixup_mode_1366x768(newmode);
2044 		if (!mode_in_range(newmode, edid, timing) ||
2045 		    !valid_inferred_mode(connector, newmode)) {
2046 			drm_mode_destroy(dev, newmode);
2047 			continue;
2048 		}
2049 
2050 		drm_mode_probed_add(connector, newmode);
2051 		modes++;
2052 	}
2053 
2054 	return modes;
2055 }
2056 
2057 static void
2058 do_inferred_modes(struct detailed_timing *timing, void *c)
2059 {
2060 	struct detailed_mode_closure *closure = c;
2061 	struct detailed_non_pixel *data = &timing->data.other_data;
2062 	struct detailed_data_monitor_range *range = &data->data.range;
2063 
2064 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2065 		return;
2066 
2067 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2068 						  closure->edid,
2069 						  timing);
2070 
2071 	if (!version_greater(closure->edid, 1, 1))
2072 		return; /* GTF not defined yet */
2073 
2074 	switch (range->flags) {
2075 	case 0x02: /* secondary gtf, XXX could do more */
2076 	case 0x00: /* default gtf */
2077 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2078 							  closure->edid,
2079 							  timing);
2080 		break;
2081 	case 0x04: /* cvt, only in 1.4+ */
2082 		if (!version_greater(closure->edid, 1, 3))
2083 			break;
2084 
2085 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2086 							  closure->edid,
2087 							  timing);
2088 		break;
2089 	case 0x01: /* just the ranges, no formula */
2090 	default:
2091 		break;
2092 	}
2093 }
2094 
2095 static int
2096 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2097 {
2098 	struct detailed_mode_closure closure = {
2099 		connector, edid, 0, 0, 0
2100 	};
2101 
2102 	if (version_greater(edid, 1, 0))
2103 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2104 					    &closure);
2105 
2106 	return closure.modes;
2107 }
2108 
2109 static int
2110 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2111 {
2112 	int i, j, m, modes = 0;
2113 	struct drm_display_mode *mode;
2114 	u8 *est = ((u8 *)timing) + 5;
2115 
2116 	for (i = 0; i < 6; i++) {
2117 		for (j = 7; j >= 0; j--) {
2118 			m = (i * 8) + (7 - j);
2119 			if (m >= ARRAY_SIZE(est3_modes))
2120 				break;
2121 			if (est[i] & (1 << j)) {
2122 				mode = drm_mode_find_dmt(connector->dev,
2123 							 est3_modes[m].w,
2124 							 est3_modes[m].h,
2125 							 est3_modes[m].r,
2126 							 est3_modes[m].rb);
2127 				if (mode) {
2128 					drm_mode_probed_add(connector, mode);
2129 					modes++;
2130 				}
2131 			}
2132 		}
2133 	}
2134 
2135 	return modes;
2136 }
2137 
2138 static void
2139 do_established_modes(struct detailed_timing *timing, void *c)
2140 {
2141 	struct detailed_mode_closure *closure = c;
2142 	struct detailed_non_pixel *data = &timing->data.other_data;
2143 
2144 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2145 		closure->modes += drm_est3_modes(closure->connector, timing);
2146 }
2147 
2148 /**
2149  * add_established_modes - get est. modes from EDID and add them
2150  * @connector: connector of for the EDID block
2151  * @edid: EDID block to scan
2152  *
2153  * Each EDID block contains a bitmap of the supported "established modes" list
2154  * (defined above).  Tease them out and add them to the global modes list.
2155  */
2156 static int
2157 add_established_modes(struct drm_connector *connector, struct edid *edid)
2158 {
2159 	struct drm_device *dev = connector->dev;
2160 	unsigned long est_bits = edid->established_timings.t1 |
2161 		(edid->established_timings.t2 << 8) |
2162 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2163 	int i, modes = 0;
2164 	struct detailed_mode_closure closure = {
2165 		connector, edid, 0, 0, 0
2166 	};
2167 
2168 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2169 		if (est_bits & (1<<i)) {
2170 			struct drm_display_mode *newmode;
2171 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2172 			if (newmode) {
2173 				drm_mode_probed_add(connector, newmode);
2174 				modes++;
2175 			}
2176 		}
2177 	}
2178 
2179 	if (version_greater(edid, 1, 0))
2180 		    drm_for_each_detailed_block((u8 *)edid,
2181 						do_established_modes, &closure);
2182 
2183 	return modes + closure.modes;
2184 }
2185 
2186 static void
2187 do_standard_modes(struct detailed_timing *timing, void *c)
2188 {
2189 	struct detailed_mode_closure *closure = c;
2190 	struct detailed_non_pixel *data = &timing->data.other_data;
2191 	struct drm_connector *connector = closure->connector;
2192 	struct edid *edid = closure->edid;
2193 
2194 	if (data->type == EDID_DETAIL_STD_MODES) {
2195 		int i;
2196 		for (i = 0; i < 6; i++) {
2197 			struct std_timing *std;
2198 			struct drm_display_mode *newmode;
2199 
2200 			std = &data->data.timings[i];
2201 			newmode = drm_mode_std(connector, edid, std,
2202 					       edid->revision);
2203 			if (newmode) {
2204 				drm_mode_probed_add(connector, newmode);
2205 				closure->modes++;
2206 			}
2207 		}
2208 	}
2209 }
2210 
2211 /**
2212  * add_standard_modes - get std. modes from EDID and add them
2213  * @connector: connector of for the EDID block
2214  * @edid: EDID block to scan
2215  *
2216  * Standard modes can be calculated using the appropriate standard (DMT,
2217  * GTF or CVT. Grab them from @edid and add them to the list.
2218  */
2219 static int
2220 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2221 {
2222 	int i, modes = 0;
2223 	struct detailed_mode_closure closure = {
2224 		connector, edid, 0, 0, 0
2225 	};
2226 
2227 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2228 		struct drm_display_mode *newmode;
2229 
2230 		newmode = drm_mode_std(connector, edid,
2231 				       &edid->standard_timings[i],
2232 				       edid->revision);
2233 		if (newmode) {
2234 			drm_mode_probed_add(connector, newmode);
2235 			modes++;
2236 		}
2237 	}
2238 
2239 	if (version_greater(edid, 1, 0))
2240 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2241 					    &closure);
2242 
2243 	/* XXX should also look for standard codes in VTB blocks */
2244 
2245 	return modes + closure.modes;
2246 }
2247 
2248 static int drm_cvt_modes(struct drm_connector *connector,
2249 			 struct detailed_timing *timing)
2250 {
2251 	int i, j, modes = 0;
2252 	struct drm_display_mode *newmode;
2253 	struct drm_device *dev = connector->dev;
2254 	struct cvt_timing *cvt;
2255 	const int rates[] = { 60, 85, 75, 60, 50 };
2256 	const u8 empty[3] = { 0, 0, 0 };
2257 
2258 	for (i = 0; i < 4; i++) {
2259 		int uninitialized_var(width), height;
2260 		cvt = &(timing->data.other_data.data.cvt[i]);
2261 
2262 		if (!memcmp(cvt->code, empty, 3))
2263 			continue;
2264 
2265 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2266 		switch (cvt->code[1] & 0x0c) {
2267 		case 0x00:
2268 			width = height * 4 / 3;
2269 			break;
2270 		case 0x04:
2271 			width = height * 16 / 9;
2272 			break;
2273 		case 0x08:
2274 			width = height * 16 / 10;
2275 			break;
2276 		case 0x0c:
2277 			width = height * 15 / 9;
2278 			break;
2279 		}
2280 
2281 		for (j = 1; j < 5; j++) {
2282 			if (cvt->code[2] & (1 << j)) {
2283 				newmode = drm_cvt_mode(dev, width, height,
2284 						       rates[j], j == 0,
2285 						       false, false);
2286 				if (newmode) {
2287 					drm_mode_probed_add(connector, newmode);
2288 					modes++;
2289 				}
2290 			}
2291 		}
2292 	}
2293 
2294 	return modes;
2295 }
2296 
2297 static void
2298 do_cvt_mode(struct detailed_timing *timing, void *c)
2299 {
2300 	struct detailed_mode_closure *closure = c;
2301 	struct detailed_non_pixel *data = &timing->data.other_data;
2302 
2303 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2304 		closure->modes += drm_cvt_modes(closure->connector, timing);
2305 }
2306 
2307 static int
2308 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2309 {
2310 	struct detailed_mode_closure closure = {
2311 		connector, edid, 0, 0, 0
2312 	};
2313 
2314 	if (version_greater(edid, 1, 2))
2315 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2316 
2317 	/* XXX should also look for CVT codes in VTB blocks */
2318 
2319 	return closure.modes;
2320 }
2321 
2322 static void
2323 do_detailed_mode(struct detailed_timing *timing, void *c)
2324 {
2325 	struct detailed_mode_closure *closure = c;
2326 	struct drm_display_mode *newmode;
2327 
2328 	if (timing->pixel_clock) {
2329 		newmode = drm_mode_detailed(closure->connector->dev,
2330 					    closure->edid, timing,
2331 					    closure->quirks);
2332 		if (!newmode)
2333 			return;
2334 
2335 		if (closure->preferred)
2336 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2337 
2338 		drm_mode_probed_add(closure->connector, newmode);
2339 		closure->modes++;
2340 		closure->preferred = 0;
2341 	}
2342 }
2343 
2344 /*
2345  * add_detailed_modes - Add modes from detailed timings
2346  * @connector: attached connector
2347  * @edid: EDID block to scan
2348  * @quirks: quirks to apply
2349  */
2350 static int
2351 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2352 		   u32 quirks)
2353 {
2354 	struct detailed_mode_closure closure = {
2355 		connector,
2356 		edid,
2357 		1,
2358 		quirks,
2359 		0
2360 	};
2361 
2362 	if (closure.preferred && !version_greater(edid, 1, 3))
2363 		closure.preferred =
2364 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2365 
2366 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2367 
2368 	return closure.modes;
2369 }
2370 
2371 #define AUDIO_BLOCK	0x01
2372 #define VIDEO_BLOCK     0x02
2373 #define VENDOR_BLOCK    0x03
2374 #define SPEAKER_BLOCK	0x04
2375 #define VIDEO_CAPABILITY_BLOCK	0x07
2376 #define EDID_BASIC_AUDIO	(1 << 6)
2377 #define EDID_CEA_YCRCB444	(1 << 5)
2378 #define EDID_CEA_YCRCB422	(1 << 4)
2379 #define EDID_CEA_VCDB_QS	(1 << 6)
2380 
2381 /*
2382  * Search EDID for CEA extension block.
2383  */
2384 static u8 *drm_find_cea_extension(struct edid *edid)
2385 {
2386 	u8 *edid_ext = NULL;
2387 	int i;
2388 
2389 	/* No EDID or EDID extensions */
2390 	if (edid == NULL || edid->extensions == 0)
2391 		return NULL;
2392 
2393 	/* Find CEA extension */
2394 	for (i = 0; i < edid->extensions; i++) {
2395 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2396 		if (edid_ext[0] == CEA_EXT)
2397 			break;
2398 	}
2399 
2400 	if (i == edid->extensions)
2401 		return NULL;
2402 
2403 	return edid_ext;
2404 }
2405 
2406 /*
2407  * Calculate the alternate clock for the CEA mode
2408  * (60Hz vs. 59.94Hz etc.)
2409  */
2410 static unsigned int
2411 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2412 {
2413 	unsigned int clock = cea_mode->clock;
2414 
2415 	if (cea_mode->vrefresh % 6 != 0)
2416 		return clock;
2417 
2418 	/*
2419 	 * edid_cea_modes contains the 59.94Hz
2420 	 * variant for 240 and 480 line modes,
2421 	 * and the 60Hz variant otherwise.
2422 	 */
2423 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2424 		clock = clock * 1001 / 1000;
2425 	else
2426 		clock = DIV_ROUND_UP(clock * 1000, 1001);
2427 
2428 	return clock;
2429 }
2430 
2431 /**
2432  * drm_match_cea_mode - look for a CEA mode matching given mode
2433  * @to_match: display mode
2434  *
2435  * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2436  * mode.
2437  */
2438 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2439 {
2440 	u8 mode;
2441 
2442 	if (!to_match->clock)
2443 		return 0;
2444 
2445 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2446 		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2447 		unsigned int clock1, clock2;
2448 
2449 		/* Check both 60Hz and 59.94Hz */
2450 		clock1 = cea_mode->clock;
2451 		clock2 = cea_mode_alternate_clock(cea_mode);
2452 
2453 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2454 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2455 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2456 			return mode + 1;
2457 	}
2458 	return 0;
2459 }
2460 EXPORT_SYMBOL(drm_match_cea_mode);
2461 
2462 /*
2463  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2464  * specific block).
2465  *
2466  * It's almost like cea_mode_alternate_clock(), we just need to add an
2467  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2468  * one.
2469  */
2470 static unsigned int
2471 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2472 {
2473 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2474 		return hdmi_mode->clock;
2475 
2476 	return cea_mode_alternate_clock(hdmi_mode);
2477 }
2478 
2479 /*
2480  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2481  * @to_match: display mode
2482  *
2483  * An HDMI mode is one defined in the HDMI vendor specific block.
2484  *
2485  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2486  */
2487 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2488 {
2489 	u8 mode;
2490 
2491 	if (!to_match->clock)
2492 		return 0;
2493 
2494 	for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2495 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2496 		unsigned int clock1, clock2;
2497 
2498 		/* Make sure to also match alternate clocks */
2499 		clock1 = hdmi_mode->clock;
2500 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2501 
2502 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2503 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2504 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2505 			return mode + 1;
2506 	}
2507 	return 0;
2508 }
2509 
2510 static int
2511 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2512 {
2513 	struct drm_device *dev = connector->dev;
2514 	struct drm_display_mode *mode, *tmp;
2515 	struct list_head list = LIST_HEAD_INIT(list);
2516 	int modes = 0;
2517 
2518 	/* Don't add CEA modes if the CEA extension block is missing */
2519 	if (!drm_find_cea_extension(edid))
2520 		return 0;
2521 
2522 	/*
2523 	 * Go through all probed modes and create a new mode
2524 	 * with the alternate clock for certain CEA modes.
2525 	 */
2526 	list_for_each_entry(mode, &connector->probed_modes, head) {
2527 		const struct drm_display_mode *cea_mode = NULL;
2528 		struct drm_display_mode *newmode;
2529 		u8 mode_idx = drm_match_cea_mode(mode) - 1;
2530 		unsigned int clock1, clock2;
2531 
2532 		if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2533 			cea_mode = &edid_cea_modes[mode_idx];
2534 			clock2 = cea_mode_alternate_clock(cea_mode);
2535 		} else {
2536 			mode_idx = drm_match_hdmi_mode(mode) - 1;
2537 			if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2538 				cea_mode = &edid_4k_modes[mode_idx];
2539 				clock2 = hdmi_mode_alternate_clock(cea_mode);
2540 			}
2541 		}
2542 
2543 		if (!cea_mode)
2544 			continue;
2545 
2546 		clock1 = cea_mode->clock;
2547 
2548 		if (clock1 == clock2)
2549 			continue;
2550 
2551 		if (mode->clock != clock1 && mode->clock != clock2)
2552 			continue;
2553 
2554 		newmode = drm_mode_duplicate(dev, cea_mode);
2555 		if (!newmode)
2556 			continue;
2557 
2558 		/* Carry over the stereo flags */
2559 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2560 
2561 		/*
2562 		 * The current mode could be either variant. Make
2563 		 * sure to pick the "other" clock for the new mode.
2564 		 */
2565 		if (mode->clock != clock1)
2566 			newmode->clock = clock1;
2567 		else
2568 			newmode->clock = clock2;
2569 
2570 		list_add_tail(&newmode->head, &list);
2571 	}
2572 
2573 	list_for_each_entry_safe(mode, tmp, &list, head) {
2574 		list_del(&mode->head);
2575 		drm_mode_probed_add(connector, mode);
2576 		modes++;
2577 	}
2578 
2579 	return modes;
2580 }
2581 
2582 static struct drm_display_mode *
2583 drm_display_mode_from_vic_index(struct drm_connector *connector,
2584 				const u8 *video_db, u8 video_len,
2585 				u8 video_index)
2586 {
2587 	struct drm_device *dev = connector->dev;
2588 	struct drm_display_mode *newmode;
2589 	u8 cea_mode;
2590 
2591 	if (video_db == NULL || video_index >= video_len)
2592 		return NULL;
2593 
2594 	/* CEA modes are numbered 1..127 */
2595 	cea_mode = (video_db[video_index] & 127) - 1;
2596 	if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2597 		return NULL;
2598 
2599 	newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2600 	if (!newmode)
2601 		return NULL;
2602 
2603 	newmode->vrefresh = 0;
2604 
2605 	return newmode;
2606 }
2607 
2608 static int
2609 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2610 {
2611 	int i, modes = 0;
2612 
2613 	for (i = 0; i < len; i++) {
2614 		struct drm_display_mode *mode;
2615 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
2616 		if (mode) {
2617 			drm_mode_probed_add(connector, mode);
2618 			modes++;
2619 		}
2620 	}
2621 
2622 	return modes;
2623 }
2624 
2625 struct stereo_mandatory_mode {
2626 	int width, height, vrefresh;
2627 	unsigned int flags;
2628 };
2629 
2630 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2631 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2632 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2633 	{ 1920, 1080, 50,
2634 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2635 	{ 1920, 1080, 60,
2636 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2637 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2638 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2639 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2640 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2641 };
2642 
2643 static bool
2644 stereo_match_mandatory(const struct drm_display_mode *mode,
2645 		       const struct stereo_mandatory_mode *stereo_mode)
2646 {
2647 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2648 
2649 	return mode->hdisplay == stereo_mode->width &&
2650 	       mode->vdisplay == stereo_mode->height &&
2651 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2652 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2653 }
2654 
2655 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2656 {
2657 	struct drm_device *dev = connector->dev;
2658 	const struct drm_display_mode *mode;
2659 	struct list_head stereo_modes;
2660 	int modes = 0, i;
2661 
2662 	INIT_LIST_HEAD(&stereo_modes);
2663 
2664 	list_for_each_entry(mode, &connector->probed_modes, head) {
2665 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2666 			const struct stereo_mandatory_mode *mandatory;
2667 			struct drm_display_mode *new_mode;
2668 
2669 			if (!stereo_match_mandatory(mode,
2670 						    &stereo_mandatory_modes[i]))
2671 				continue;
2672 
2673 			mandatory = &stereo_mandatory_modes[i];
2674 			new_mode = drm_mode_duplicate(dev, mode);
2675 			if (!new_mode)
2676 				continue;
2677 
2678 			new_mode->flags |= mandatory->flags;
2679 			list_add_tail(&new_mode->head, &stereo_modes);
2680 			modes++;
2681 		}
2682 	}
2683 
2684 	list_splice_tail(&stereo_modes, &connector->probed_modes);
2685 
2686 	return modes;
2687 }
2688 
2689 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2690 {
2691 	struct drm_device *dev = connector->dev;
2692 	struct drm_display_mode *newmode;
2693 
2694 	vic--; /* VICs start at 1 */
2695 	if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2696 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2697 		return 0;
2698 	}
2699 
2700 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2701 	if (!newmode)
2702 		return 0;
2703 
2704 	drm_mode_probed_add(connector, newmode);
2705 
2706 	return 1;
2707 }
2708 
2709 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2710 			       const u8 *video_db, u8 video_len, u8 video_index)
2711 {
2712 	struct drm_display_mode *newmode;
2713 	int modes = 0;
2714 
2715 	if (structure & (1 << 0)) {
2716 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2717 							  video_len,
2718 							  video_index);
2719 		if (newmode) {
2720 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2721 			drm_mode_probed_add(connector, newmode);
2722 			modes++;
2723 		}
2724 	}
2725 	if (structure & (1 << 6)) {
2726 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2727 							  video_len,
2728 							  video_index);
2729 		if (newmode) {
2730 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2731 			drm_mode_probed_add(connector, newmode);
2732 			modes++;
2733 		}
2734 	}
2735 	if (structure & (1 << 8)) {
2736 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2737 							  video_len,
2738 							  video_index);
2739 		if (newmode) {
2740 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2741 			drm_mode_probed_add(connector, newmode);
2742 			modes++;
2743 		}
2744 	}
2745 
2746 	return modes;
2747 }
2748 
2749 /*
2750  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2751  * @connector: connector corresponding to the HDMI sink
2752  * @db: start of the CEA vendor specific block
2753  * @len: length of the CEA block payload, ie. one can access up to db[len]
2754  *
2755  * Parses the HDMI VSDB looking for modes to add to @connector. This function
2756  * also adds the stereo 3d modes when applicable.
2757  */
2758 static int
2759 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2760 		   const u8 *video_db, u8 video_len)
2761 {
2762 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2763 	u8 vic_len, hdmi_3d_len = 0;
2764 	u16 mask;
2765 	u16 structure_all;
2766 
2767 	if (len < 8)
2768 		goto out;
2769 
2770 	/* no HDMI_Video_Present */
2771 	if (!(db[8] & (1 << 5)))
2772 		goto out;
2773 
2774 	/* Latency_Fields_Present */
2775 	if (db[8] & (1 << 7))
2776 		offset += 2;
2777 
2778 	/* I_Latency_Fields_Present */
2779 	if (db[8] & (1 << 6))
2780 		offset += 2;
2781 
2782 	/* the declared length is not long enough for the 2 first bytes
2783 	 * of additional video format capabilities */
2784 	if (len < (8 + offset + 2))
2785 		goto out;
2786 
2787 	/* 3D_Present */
2788 	offset++;
2789 	if (db[8 + offset] & (1 << 7)) {
2790 		modes += add_hdmi_mandatory_stereo_modes(connector);
2791 
2792 		/* 3D_Multi_present */
2793 		multi_present = (db[8 + offset] & 0x60) >> 5;
2794 	}
2795 
2796 	offset++;
2797 	vic_len = db[8 + offset] >> 5;
2798 	hdmi_3d_len = db[8 + offset] & 0x1f;
2799 
2800 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2801 		u8 vic;
2802 
2803 		vic = db[9 + offset + i];
2804 		modes += add_hdmi_mode(connector, vic);
2805 	}
2806 	offset += 1 + vic_len;
2807 
2808 	if (multi_present == 1)
2809 		multi_len = 2;
2810 	else if (multi_present == 2)
2811 		multi_len = 4;
2812 	else
2813 		multi_len = 0;
2814 
2815 	if (len < (8 + offset + hdmi_3d_len - 1))
2816 		goto out;
2817 
2818 	if (hdmi_3d_len < multi_len)
2819 		goto out;
2820 
2821 	if (multi_present == 1 || multi_present == 2) {
2822 		/* 3D_Structure_ALL */
2823 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
2824 
2825 		/* check if 3D_MASK is present */
2826 		if (multi_present == 2)
2827 			mask = (db[10 + offset] << 8) | db[11 + offset];
2828 		else
2829 			mask = 0xffff;
2830 
2831 		for (i = 0; i < 16; i++) {
2832 			if (mask & (1 << i))
2833 				modes += add_3d_struct_modes(connector,
2834 						structure_all,
2835 						video_db,
2836 						video_len, i);
2837 		}
2838 	}
2839 
2840 	offset += multi_len;
2841 
2842 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2843 		int vic_index;
2844 		struct drm_display_mode *newmode = NULL;
2845 		unsigned int newflag = 0;
2846 		bool detail_present;
2847 
2848 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2849 
2850 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2851 			break;
2852 
2853 		/* 2D_VIC_order_X */
2854 		vic_index = db[8 + offset + i] >> 4;
2855 
2856 		/* 3D_Structure_X */
2857 		switch (db[8 + offset + i] & 0x0f) {
2858 		case 0:
2859 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2860 			break;
2861 		case 6:
2862 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2863 			break;
2864 		case 8:
2865 			/* 3D_Detail_X */
2866 			if ((db[9 + offset + i] >> 4) == 1)
2867 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2868 			break;
2869 		}
2870 
2871 		if (newflag != 0) {
2872 			newmode = drm_display_mode_from_vic_index(connector,
2873 								  video_db,
2874 								  video_len,
2875 								  vic_index);
2876 
2877 			if (newmode) {
2878 				newmode->flags |= newflag;
2879 				drm_mode_probed_add(connector, newmode);
2880 				modes++;
2881 			}
2882 		}
2883 
2884 		if (detail_present)
2885 			i++;
2886 	}
2887 
2888 out:
2889 	return modes;
2890 }
2891 
2892 static int
2893 cea_db_payload_len(const u8 *db)
2894 {
2895 	return db[0] & 0x1f;
2896 }
2897 
2898 static int
2899 cea_db_tag(const u8 *db)
2900 {
2901 	return db[0] >> 5;
2902 }
2903 
2904 static int
2905 cea_revision(const u8 *cea)
2906 {
2907 	return cea[1];
2908 }
2909 
2910 static int
2911 cea_db_offsets(const u8 *cea, int *start, int *end)
2912 {
2913 	/* Data block offset in CEA extension block */
2914 	*start = 4;
2915 	*end = cea[2];
2916 	if (*end == 0)
2917 		*end = 127;
2918 	if (*end < 4 || *end > 127)
2919 		return -ERANGE;
2920 	return 0;
2921 }
2922 
2923 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2924 {
2925 	int hdmi_id;
2926 
2927 	if (cea_db_tag(db) != VENDOR_BLOCK)
2928 		return false;
2929 
2930 	if (cea_db_payload_len(db) < 5)
2931 		return false;
2932 
2933 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2934 
2935 	return hdmi_id == HDMI_IEEE_OUI;
2936 }
2937 
2938 #define for_each_cea_db(cea, i, start, end) \
2939 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2940 
2941 static int
2942 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2943 {
2944 	const u8 *cea = drm_find_cea_extension(edid);
2945 	const u8 *db, *hdmi = NULL, *video = NULL;
2946 	u8 dbl, hdmi_len, video_len = 0;
2947 	int modes = 0;
2948 
2949 	if (cea && cea_revision(cea) >= 3) {
2950 		int i, start, end;
2951 
2952 		if (cea_db_offsets(cea, &start, &end))
2953 			return 0;
2954 
2955 		for_each_cea_db(cea, i, start, end) {
2956 			db = &cea[i];
2957 			dbl = cea_db_payload_len(db);
2958 
2959 			if (cea_db_tag(db) == VIDEO_BLOCK) {
2960 				video = db + 1;
2961 				video_len = dbl;
2962 				modes += do_cea_modes(connector, video, dbl);
2963 			}
2964 			else if (cea_db_is_hdmi_vsdb(db)) {
2965 				hdmi = db;
2966 				hdmi_len = dbl;
2967 			}
2968 		}
2969 	}
2970 
2971 	/*
2972 	 * We parse the HDMI VSDB after having added the cea modes as we will
2973 	 * be patching their flags when the sink supports stereo 3D.
2974 	 */
2975 	if (hdmi)
2976 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
2977 					    video_len);
2978 
2979 	return modes;
2980 }
2981 
2982 static void
2983 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2984 {
2985 	u8 len = cea_db_payload_len(db);
2986 
2987 	if (len >= 5) {
2988 		connector->physical_address = (db[4] << 8) | db[5];
2989 	}
2990 	if (len >= 6) {
2991 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2992 		connector->dvi_dual = db[6] & 1;
2993 	}
2994 	if (len >= 7)
2995 		connector->max_tmds_clock = db[7] * 5;
2996 	if (len >= 8) {
2997 		connector->latency_present[0] = db[8] >> 7;
2998 		connector->latency_present[1] = (db[8] >> 6) & 1;
2999 	}
3000 	if (len >= 9)
3001 		connector->video_latency[0] = db[9];
3002 	if (len >= 10)
3003 		connector->audio_latency[0] = db[10];
3004 	if (len >= 11)
3005 		connector->video_latency[1] = db[11];
3006 	if (len >= 12)
3007 		connector->audio_latency[1] = db[12];
3008 
3009 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3010 		    "max TMDS clock %d, "
3011 		    "latency present %d %d, "
3012 		    "video latency %d %d, "
3013 		    "audio latency %d %d\n",
3014 		    connector->dvi_dual,
3015 		    connector->max_tmds_clock,
3016 	      (int) connector->latency_present[0],
3017 	      (int) connector->latency_present[1],
3018 		    connector->video_latency[0],
3019 		    connector->video_latency[1],
3020 		    connector->audio_latency[0],
3021 		    connector->audio_latency[1]);
3022 }
3023 
3024 static void
3025 monitor_name(struct detailed_timing *t, void *data)
3026 {
3027 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3028 		*(u8 **)data = t->data.other_data.data.str.str;
3029 }
3030 
3031 /**
3032  * drm_edid_to_eld - build ELD from EDID
3033  * @connector: connector corresponding to the HDMI/DP sink
3034  * @edid: EDID to parse
3035  *
3036  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
3037  * Some ELD fields are left to the graphics driver caller:
3038  * - Conn_Type
3039  * - HDCP
3040  * - Port_ID
3041  */
3042 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3043 {
3044 	uint8_t *eld = connector->eld;
3045 	u8 *cea;
3046 	u8 *name;
3047 	u8 *db;
3048 	int sad_count = 0;
3049 	int mnl;
3050 	int dbl;
3051 
3052 	memset(eld, 0, sizeof(connector->eld));
3053 
3054 	cea = drm_find_cea_extension(edid);
3055 	if (!cea) {
3056 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3057 		return;
3058 	}
3059 
3060 	name = NULL;
3061 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3062 	for (mnl = 0; name && mnl < 13; mnl++) {
3063 		if (name[mnl] == 0x0a)
3064 			break;
3065 		eld[20 + mnl] = name[mnl];
3066 	}
3067 	eld[4] = (cea[1] << 5) | mnl;
3068 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3069 
3070 	eld[0] = 2 << 3;		/* ELD version: 2 */
3071 
3072 	eld[16] = edid->mfg_id[0];
3073 	eld[17] = edid->mfg_id[1];
3074 	eld[18] = edid->prod_code[0];
3075 	eld[19] = edid->prod_code[1];
3076 
3077 	if (cea_revision(cea) >= 3) {
3078 		int i, start, end;
3079 
3080 		if (cea_db_offsets(cea, &start, &end)) {
3081 			start = 0;
3082 			end = 0;
3083 		}
3084 
3085 		for_each_cea_db(cea, i, start, end) {
3086 			db = &cea[i];
3087 			dbl = cea_db_payload_len(db);
3088 
3089 			switch (cea_db_tag(db)) {
3090 			case AUDIO_BLOCK:
3091 				/* Audio Data Block, contains SADs */
3092 				sad_count = dbl / 3;
3093 				if (dbl >= 1)
3094 					memcpy(eld + 20 + mnl, &db[1], dbl);
3095 				break;
3096 			case SPEAKER_BLOCK:
3097 				/* Speaker Allocation Data Block */
3098 				if (dbl >= 1)
3099 					eld[7] = db[1];
3100 				break;
3101 			case VENDOR_BLOCK:
3102 				/* HDMI Vendor-Specific Data Block */
3103 				if (cea_db_is_hdmi_vsdb(db))
3104 					parse_hdmi_vsdb(connector, db);
3105 				break;
3106 			default:
3107 				break;
3108 			}
3109 		}
3110 	}
3111 	eld[5] |= sad_count << 4;
3112 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
3113 
3114 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
3115 }
3116 EXPORT_SYMBOL(drm_edid_to_eld);
3117 
3118 /**
3119  * drm_edid_to_sad - extracts SADs from EDID
3120  * @edid: EDID to parse
3121  * @sads: pointer that will be set to the extracted SADs
3122  *
3123  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3124  * Note: returned pointer needs to be kfreed
3125  *
3126  * Return number of found SADs or negative number on error.
3127  */
3128 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3129 {
3130 	int count = 0;
3131 	int i, start, end, dbl;
3132 	u8 *cea;
3133 
3134 	cea = drm_find_cea_extension(edid);
3135 	if (!cea) {
3136 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3137 		return -ENOENT;
3138 	}
3139 
3140 	if (cea_revision(cea) < 3) {
3141 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3142 		return -ENOTSUPP;
3143 	}
3144 
3145 	if (cea_db_offsets(cea, &start, &end)) {
3146 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3147 		return -EPROTO;
3148 	}
3149 
3150 	for_each_cea_db(cea, i, start, end) {
3151 		u8 *db = &cea[i];
3152 
3153 		if (cea_db_tag(db) == AUDIO_BLOCK) {
3154 			int j;
3155 			dbl = cea_db_payload_len(db);
3156 
3157 			count = dbl / 3; /* SAD is 3B */
3158 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3159 			if (!*sads)
3160 				return -ENOMEM;
3161 			for (j = 0; j < count; j++) {
3162 				u8 *sad = &db[1 + j * 3];
3163 
3164 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3165 				(*sads)[j].channels = sad[0] & 0x7;
3166 				(*sads)[j].freq = sad[1] & 0x7F;
3167 				(*sads)[j].byte2 = sad[2];
3168 			}
3169 			break;
3170 		}
3171 	}
3172 
3173 	return count;
3174 }
3175 EXPORT_SYMBOL(drm_edid_to_sad);
3176 
3177 /**
3178  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3179  * @edid: EDID to parse
3180  * @sadb: pointer to the speaker block
3181  *
3182  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3183  * Note: returned pointer needs to be kfreed
3184  *
3185  * Return number of found Speaker Allocation Blocks or negative number on error.
3186  */
3187 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3188 {
3189 	int count = 0;
3190 	int i, start, end, dbl;
3191 	const u8 *cea;
3192 
3193 	cea = drm_find_cea_extension(edid);
3194 	if (!cea) {
3195 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3196 		return -ENOENT;
3197 	}
3198 
3199 	if (cea_revision(cea) < 3) {
3200 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3201 		return -ENOTSUPP;
3202 	}
3203 
3204 	if (cea_db_offsets(cea, &start, &end)) {
3205 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3206 		return -EPROTO;
3207 	}
3208 
3209 	for_each_cea_db(cea, i, start, end) {
3210 		const u8 *db = &cea[i];
3211 
3212 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3213 			dbl = cea_db_payload_len(db);
3214 
3215 			/* Speaker Allocation Data Block */
3216 			if (dbl == 3) {
3217 				*sadb = kmalloc(dbl, GFP_KERNEL);
3218 				if (!*sadb)
3219 					return -ENOMEM;
3220 				memcpy(*sadb, &db[1], dbl);
3221 				count = dbl;
3222 				break;
3223 			}
3224 		}
3225 	}
3226 
3227 	return count;
3228 }
3229 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3230 
3231 /**
3232  * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
3233  * @connector: connector associated with the HDMI/DP sink
3234  * @mode: the display mode
3235  */
3236 int drm_av_sync_delay(struct drm_connector *connector,
3237 		      struct drm_display_mode *mode)
3238 {
3239 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3240 	int a, v;
3241 
3242 	if (!connector->latency_present[0])
3243 		return 0;
3244 	if (!connector->latency_present[1])
3245 		i = 0;
3246 
3247 	a = connector->audio_latency[i];
3248 	v = connector->video_latency[i];
3249 
3250 	/*
3251 	 * HDMI/DP sink doesn't support audio or video?
3252 	 */
3253 	if (a == 255 || v == 255)
3254 		return 0;
3255 
3256 	/*
3257 	 * Convert raw EDID values to millisecond.
3258 	 * Treat unknown latency as 0ms.
3259 	 */
3260 	if (a)
3261 		a = min(2 * (a - 1), 500);
3262 	if (v)
3263 		v = min(2 * (v - 1), 500);
3264 
3265 	return max(v - a, 0);
3266 }
3267 EXPORT_SYMBOL(drm_av_sync_delay);
3268 
3269 /**
3270  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3271  * @encoder: the encoder just changed display mode
3272  * @mode: the adjusted display mode
3273  *
3274  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3275  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3276  */
3277 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3278 				     struct drm_display_mode *mode)
3279 {
3280 	struct drm_connector *connector;
3281 	struct drm_device *dev = encoder->dev;
3282 
3283 	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
3284 		if (connector->encoder == encoder && connector->eld[0])
3285 			return connector;
3286 
3287 	return NULL;
3288 }
3289 EXPORT_SYMBOL(drm_select_eld);
3290 
3291 /**
3292  * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3293  * @edid: monitor EDID information
3294  *
3295  * Parse the CEA extension according to CEA-861-B.
3296  * Return true if HDMI, false if not or unknown.
3297  */
3298 bool drm_detect_hdmi_monitor(struct edid *edid)
3299 {
3300 	u8 *edid_ext;
3301 	int i;
3302 	int start_offset, end_offset;
3303 
3304 	edid_ext = drm_find_cea_extension(edid);
3305 	if (!edid_ext)
3306 		return false;
3307 
3308 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3309 		return false;
3310 
3311 	/*
3312 	 * Because HDMI identifier is in Vendor Specific Block,
3313 	 * search it from all data blocks of CEA extension.
3314 	 */
3315 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3316 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3317 			return true;
3318 	}
3319 
3320 	return false;
3321 }
3322 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3323 
3324 /**
3325  * drm_detect_monitor_audio - check monitor audio capability
3326  * @edid: EDID block to scan
3327  *
3328  * Monitor should have CEA extension block.
3329  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3330  * audio' only. If there is any audio extension block and supported
3331  * audio format, assume at least 'basic audio' support, even if 'basic
3332  * audio' is not defined in EDID.
3333  *
3334  */
3335 bool drm_detect_monitor_audio(struct edid *edid)
3336 {
3337 	u8 *edid_ext;
3338 	int i, j;
3339 	bool has_audio = false;
3340 	int start_offset, end_offset;
3341 
3342 	edid_ext = drm_find_cea_extension(edid);
3343 	if (!edid_ext)
3344 		goto end;
3345 
3346 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3347 
3348 	if (has_audio) {
3349 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3350 		goto end;
3351 	}
3352 
3353 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3354 		goto end;
3355 
3356 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3357 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3358 			has_audio = true;
3359 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3360 				DRM_DEBUG_KMS("CEA audio format %d\n",
3361 					      (edid_ext[i + j] >> 3) & 0xf);
3362 			goto end;
3363 		}
3364 	}
3365 end:
3366 	return has_audio;
3367 }
3368 EXPORT_SYMBOL(drm_detect_monitor_audio);
3369 
3370 /**
3371  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3372  * @edid: EDID block to scan
3373  *
3374  * Check whether the monitor reports the RGB quantization range selection
3375  * as supported. The AVI infoframe can then be used to inform the monitor
3376  * which quantization range (full or limited) is used.
3377  */
3378 bool drm_rgb_quant_range_selectable(struct edid *edid)
3379 {
3380 	u8 *edid_ext;
3381 	int i, start, end;
3382 
3383 	edid_ext = drm_find_cea_extension(edid);
3384 	if (!edid_ext)
3385 		return false;
3386 
3387 	if (cea_db_offsets(edid_ext, &start, &end))
3388 		return false;
3389 
3390 	for_each_cea_db(edid_ext, i, start, end) {
3391 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3392 		    cea_db_payload_len(&edid_ext[i]) == 2) {
3393 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3394 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3395 		}
3396 	}
3397 
3398 	return false;
3399 }
3400 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3401 
3402 /**
3403  * drm_add_display_info - pull display info out if present
3404  * @edid: EDID data
3405  * @info: display info (attached to connector)
3406  *
3407  * Grab any available display info and stuff it into the drm_display_info
3408  * structure that's part of the connector.  Useful for tracking bpp and
3409  * color spaces.
3410  */
3411 static void drm_add_display_info(struct edid *edid,
3412 				 struct drm_display_info *info)
3413 {
3414 	u8 *edid_ext;
3415 
3416 	info->width_mm = edid->width_cm * 10;
3417 	info->height_mm = edid->height_cm * 10;
3418 
3419 	/* driver figures it out in this case */
3420 	info->bpc = 0;
3421 	info->color_formats = 0;
3422 
3423 	if (edid->revision < 3)
3424 		return;
3425 
3426 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3427 		return;
3428 
3429 	/* Get data from CEA blocks if present */
3430 	edid_ext = drm_find_cea_extension(edid);
3431 	if (edid_ext) {
3432 		info->cea_rev = edid_ext[1];
3433 
3434 		/* The existence of a CEA block should imply RGB support */
3435 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3436 		if (edid_ext[3] & EDID_CEA_YCRCB444)
3437 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3438 		if (edid_ext[3] & EDID_CEA_YCRCB422)
3439 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3440 	}
3441 
3442 	/* Only defined for 1.4 with digital displays */
3443 	if (edid->revision < 4)
3444 		return;
3445 
3446 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3447 	case DRM_EDID_DIGITAL_DEPTH_6:
3448 		info->bpc = 6;
3449 		break;
3450 	case DRM_EDID_DIGITAL_DEPTH_8:
3451 		info->bpc = 8;
3452 		break;
3453 	case DRM_EDID_DIGITAL_DEPTH_10:
3454 		info->bpc = 10;
3455 		break;
3456 	case DRM_EDID_DIGITAL_DEPTH_12:
3457 		info->bpc = 12;
3458 		break;
3459 	case DRM_EDID_DIGITAL_DEPTH_14:
3460 		info->bpc = 14;
3461 		break;
3462 	case DRM_EDID_DIGITAL_DEPTH_16:
3463 		info->bpc = 16;
3464 		break;
3465 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3466 	default:
3467 		info->bpc = 0;
3468 		break;
3469 	}
3470 
3471 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3472 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3473 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3474 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3475 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3476 }
3477 
3478 /**
3479  * drm_add_edid_modes - add modes from EDID data, if available
3480  * @connector: connector we're probing
3481  * @edid: edid data
3482  *
3483  * Add the specified modes to the connector's mode list.
3484  *
3485  * Return number of modes added or 0 if we couldn't find any.
3486  */
3487 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3488 {
3489 	int num_modes = 0;
3490 	u32 quirks;
3491 
3492 	if (edid == NULL) {
3493 		return 0;
3494 	}
3495 	if (!drm_edid_is_valid(edid)) {
3496 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3497 			 drm_get_connector_name(connector));
3498 		return 0;
3499 	}
3500 
3501 	quirks = edid_get_quirks(edid);
3502 
3503 	/*
3504 	 * EDID spec says modes should be preferred in this order:
3505 	 * - preferred detailed mode
3506 	 * - other detailed modes from base block
3507 	 * - detailed modes from extension blocks
3508 	 * - CVT 3-byte code modes
3509 	 * - standard timing codes
3510 	 * - established timing codes
3511 	 * - modes inferred from GTF or CVT range information
3512 	 *
3513 	 * We get this pretty much right.
3514 	 *
3515 	 * XXX order for additional mode types in extension blocks?
3516 	 */
3517 	num_modes += add_detailed_modes(connector, edid, quirks);
3518 	num_modes += add_cvt_modes(connector, edid);
3519 	num_modes += add_standard_modes(connector, edid);
3520 	num_modes += add_established_modes(connector, edid);
3521 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3522 		num_modes += add_inferred_modes(connector, edid);
3523 	num_modes += add_cea_modes(connector, edid);
3524 	num_modes += add_alternate_cea_modes(connector, edid);
3525 
3526 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3527 		edid_fixup_preferred(connector, quirks);
3528 
3529 	drm_add_display_info(edid, &connector->display_info);
3530 
3531 	if (quirks & EDID_QUIRK_FORCE_8BPC)
3532 		connector->display_info.bpc = 8;
3533 
3534 	return num_modes;
3535 }
3536 EXPORT_SYMBOL(drm_add_edid_modes);
3537 
3538 /**
3539  * drm_add_modes_noedid - add modes for the connectors without EDID
3540  * @connector: connector we're probing
3541  * @hdisplay: the horizontal display limit
3542  * @vdisplay: the vertical display limit
3543  *
3544  * Add the specified modes to the connector's mode list. Only when the
3545  * hdisplay/vdisplay is not beyond the given limit, it will be added.
3546  *
3547  * Return number of modes added or 0 if we couldn't find any.
3548  */
3549 int drm_add_modes_noedid(struct drm_connector *connector,
3550 			int hdisplay, int vdisplay)
3551 {
3552 	int i, count, num_modes = 0;
3553 	struct drm_display_mode *mode;
3554 	struct drm_device *dev = connector->dev;
3555 
3556 	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3557 	if (hdisplay < 0)
3558 		hdisplay = 0;
3559 	if (vdisplay < 0)
3560 		vdisplay = 0;
3561 
3562 	for (i = 0; i < count; i++) {
3563 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3564 		if (hdisplay && vdisplay) {
3565 			/*
3566 			 * Only when two are valid, they will be used to check
3567 			 * whether the mode should be added to the mode list of
3568 			 * the connector.
3569 			 */
3570 			if (ptr->hdisplay > hdisplay ||
3571 					ptr->vdisplay > vdisplay)
3572 				continue;
3573 		}
3574 		if (drm_mode_vrefresh(ptr) > 61)
3575 			continue;
3576 		mode = drm_mode_duplicate(dev, ptr);
3577 		if (mode) {
3578 			drm_mode_probed_add(connector, mode);
3579 			num_modes++;
3580 		}
3581 	}
3582 	return num_modes;
3583 }
3584 EXPORT_SYMBOL(drm_add_modes_noedid);
3585 
3586 void drm_set_preferred_mode(struct drm_connector *connector,
3587 			   int hpref, int vpref)
3588 {
3589 	struct drm_display_mode *mode;
3590 
3591 	list_for_each_entry(mode, &connector->probed_modes, head) {
3592 		if (mode->hdisplay  == hpref &&
3593 		    mode->vdisplay == vpref)
3594 			mode->type |= DRM_MODE_TYPE_PREFERRED;
3595 	}
3596 }
3597 EXPORT_SYMBOL(drm_set_preferred_mode);
3598 
3599 /**
3600  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3601  *                                              data from a DRM display mode
3602  * @frame: HDMI AVI infoframe
3603  * @mode: DRM display mode
3604  *
3605  * Returns 0 on success or a negative error code on failure.
3606  */
3607 int
3608 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3609 					 const struct drm_display_mode *mode)
3610 {
3611 	int err;
3612 
3613 	if (!frame || !mode)
3614 		return -EINVAL;
3615 
3616 	err = hdmi_avi_infoframe_init(frame);
3617 	if (err < 0)
3618 		return err;
3619 
3620 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3621 		frame->pixel_repeat = 1;
3622 
3623 	frame->video_code = drm_match_cea_mode(mode);
3624 
3625 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3626 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3627 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
3628 
3629 	return 0;
3630 }
3631 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3632 
3633 static enum hdmi_3d_structure
3634 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3635 {
3636 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3637 
3638 	switch (layout) {
3639 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
3640 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
3641 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3642 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3643 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3644 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3645 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3646 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3647 	case DRM_MODE_FLAG_3D_L_DEPTH:
3648 		return HDMI_3D_STRUCTURE_L_DEPTH;
3649 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3650 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3651 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3652 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3653 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3654 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3655 	default:
3656 		return HDMI_3D_STRUCTURE_INVALID;
3657 	}
3658 }
3659 
3660 /**
3661  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3662  * data from a DRM display mode
3663  * @frame: HDMI vendor infoframe
3664  * @mode: DRM display mode
3665  *
3666  * Note that there's is a need to send HDMI vendor infoframes only when using a
3667  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3668  * function will return -EINVAL, error that can be safely ignored.
3669  *
3670  * Returns 0 on success or a negative error code on failure.
3671  */
3672 int
3673 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3674 					    const struct drm_display_mode *mode)
3675 {
3676 	int err;
3677 	u32 s3d_flags;
3678 	u8 vic;
3679 
3680 	if (!frame || !mode)
3681 		return -EINVAL;
3682 
3683 	vic = drm_match_hdmi_mode(mode);
3684 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
3685 
3686 	if (!vic && !s3d_flags)
3687 		return -EINVAL;
3688 
3689 	if (vic && s3d_flags)
3690 		return -EINVAL;
3691 
3692 	err = hdmi_vendor_infoframe_init(frame);
3693 	if (err < 0)
3694 		return err;
3695 
3696 	if (vic)
3697 		frame->vic = vic;
3698 	else
3699 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
3700 
3701 	return 0;
3702 }
3703 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
3704