xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/amdkfd/kfd_interrupt.c (revision 9fb66d812c00ebfb445c0b47dea128f32aa6fe96)
1 /*	$NetBSD: kfd_interrupt.c,v 1.2 2018/08/27 04:58:20 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2014 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 /*
26  * KFD Interrupts.
27  *
28  * AMD GPUs deliver interrupts by pushing an interrupt description onto the
29  * interrupt ring and then sending an interrupt. KGD receives the interrupt
30  * in ISR and sends us a pointer to each new entry on the interrupt ring.
31  *
32  * We generally can't process interrupt-signaled events from ISR, so we call
33  * out to each interrupt client module (currently only the scheduler) to ask if
34  * each interrupt is interesting. If they return true, then it requires further
35  * processing so we copy it to an internal interrupt ring and call each
36  * interrupt client again from a work-queue.
37  *
38  * There's no acknowledgment for the interrupts we use. The hardware simply
39  * queues a new interrupt each time without waiting.
40  *
41  * The fixed-size internal queue means that it's possible for us to lose
42  * interrupts because we have no back-pressure to the hardware.
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kfd_interrupt.c,v 1.2 2018/08/27 04:58:20 riastradh Exp $");
47 
48 #include <linux/slab.h>
49 #include <linux/device.h>
50 #include "kfd_priv.h"
51 
52 #define KFD_INTERRUPT_RING_SIZE 1024
53 
54 static void interrupt_wq(struct work_struct *);
55 
56 int kfd_interrupt_init(struct kfd_dev *kfd)
57 {
58 	void *interrupt_ring = kmalloc_array(KFD_INTERRUPT_RING_SIZE,
59 					kfd->device_info->ih_ring_entry_size,
60 					GFP_KERNEL);
61 	if (!interrupt_ring)
62 		return -ENOMEM;
63 
64 	kfd->interrupt_ring = interrupt_ring;
65 	kfd->interrupt_ring_size =
66 		KFD_INTERRUPT_RING_SIZE * kfd->device_info->ih_ring_entry_size;
67 	atomic_set(&kfd->interrupt_ring_wptr, 0);
68 	atomic_set(&kfd->interrupt_ring_rptr, 0);
69 
70 	spin_lock_init(&kfd->interrupt_lock);
71 
72 	INIT_WORK(&kfd->interrupt_work, interrupt_wq);
73 
74 	kfd->interrupts_active = true;
75 
76 	/*
77 	 * After this function returns, the interrupt will be enabled. This
78 	 * barrier ensures that the interrupt running on a different processor
79 	 * sees all the above writes.
80 	 */
81 	smp_wmb();
82 
83 	return 0;
84 }
85 
86 void kfd_interrupt_exit(struct kfd_dev *kfd)
87 {
88 	/*
89 	 * Stop the interrupt handler from writing to the ring and scheduling
90 	 * workqueue items. The spinlock ensures that any interrupt running
91 	 * after we have unlocked sees interrupts_active = false.
92 	 */
93 	unsigned long flags;
94 
95 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
96 	kfd->interrupts_active = false;
97 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
98 
99 	/*
100 	 * Flush_scheduled_work ensures that there are no outstanding
101 	 * work-queue items that will access interrupt_ring. New work items
102 	 * can't be created because we stopped interrupt handling above.
103 	 */
104 	flush_scheduled_work();
105 
106 	kfree(kfd->interrupt_ring);
107 }
108 
109 /*
110  * This assumes that it can't be called concurrently with itself
111  * but only with dequeue_ih_ring_entry.
112  */
113 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry)
114 {
115 	unsigned int rptr = atomic_read(&kfd->interrupt_ring_rptr);
116 	unsigned int wptr = atomic_read(&kfd->interrupt_ring_wptr);
117 
118 	if ((rptr - wptr) % kfd->interrupt_ring_size ==
119 					kfd->device_info->ih_ring_entry_size) {
120 		/* This is very bad, the system is likely to hang. */
121 		dev_err_ratelimited(kfd_chardev(),
122 			"Interrupt ring overflow, dropping interrupt.\n");
123 		return false;
124 	}
125 
126 	memcpy(kfd->interrupt_ring + wptr, ih_ring_entry,
127 			kfd->device_info->ih_ring_entry_size);
128 
129 	wptr = (wptr + kfd->device_info->ih_ring_entry_size) %
130 			kfd->interrupt_ring_size;
131 	smp_wmb(); /* Ensure memcpy'd data is visible before wptr update. */
132 	atomic_set(&kfd->interrupt_ring_wptr, wptr);
133 
134 	return true;
135 }
136 
137 /*
138  * This assumes that it can't be called concurrently with itself
139  * but only with enqueue_ih_ring_entry.
140  */
141 static bool dequeue_ih_ring_entry(struct kfd_dev *kfd, void *ih_ring_entry)
142 {
143 	/*
144 	 * Assume that wait queues have an implicit barrier, i.e. anything that
145 	 * happened in the ISR before it queued work is visible.
146 	 */
147 
148 	unsigned int wptr = atomic_read(&kfd->interrupt_ring_wptr);
149 	unsigned int rptr = atomic_read(&kfd->interrupt_ring_rptr);
150 
151 	if (rptr == wptr)
152 		return false;
153 
154 	memcpy(ih_ring_entry, kfd->interrupt_ring + rptr,
155 			kfd->device_info->ih_ring_entry_size);
156 
157 	rptr = (rptr + kfd->device_info->ih_ring_entry_size) %
158 			kfd->interrupt_ring_size;
159 
160 	/*
161 	 * Ensure the rptr write update is not visible until
162 	 * memcpy has finished reading.
163 	 */
164 	smp_mb();
165 	atomic_set(&kfd->interrupt_ring_rptr, rptr);
166 
167 	return true;
168 }
169 
170 static void interrupt_wq(struct work_struct *work)
171 {
172 	struct kfd_dev *dev = container_of(work, struct kfd_dev,
173 						interrupt_work);
174 
175 	uint32_t ih_ring_entry[DIV_ROUND_UP(
176 				dev->device_info->ih_ring_entry_size,
177 				sizeof(uint32_t))];
178 
179 	while (dequeue_ih_ring_entry(dev, ih_ring_entry))
180 		dev->device_info->event_interrupt_class->interrupt_wq(dev,
181 								ih_ring_entry);
182 }
183 
184 bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry)
185 {
186 	/* integer and bitwise OR so there is no boolean short-circuiting */
187 	unsigned wanted = 0;
188 
189 	wanted |= dev->device_info->event_interrupt_class->interrupt_isr(dev,
190 								ih_ring_entry);
191 
192 	return wanted != 0;
193 }
194