xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/amdgpu/amdgpu_ttm.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: amdgpu_ttm.c,v 1.10 2021/12/19 12:31:45 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2009 Jerome Glisse.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * The above copyright notice and this permission notice (including the
24  * next paragraph) shall be included in all copies or substantial portions
25  * of the Software.
26  *
27  */
28 /*
29  * Authors:
30  *    Jerome Glisse <glisse@freedesktop.org>
31  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
32  *    Dave Airlie
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.10 2021/12/19 12:31:45 riastradh Exp $");
37 
38 #include <linux/dma-mapping.h>
39 #include <linux/iommu.h>
40 #include <linux/hmm.h>
41 #include <linux/pagemap.h>
42 #include <linux/sched/task.h>
43 #include <linux/sched/mm.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/swap.h>
47 #include <linux/swiotlb.h>
48 #include <linux/dma-buf.h>
49 #include <linux/sizes.h>
50 
51 #include <drm/ttm/ttm_bo_api.h>
52 #include <drm/ttm/ttm_bo_driver.h>
53 #include <drm/ttm/ttm_placement.h>
54 #include <drm/ttm/ttm_module.h>
55 #include <drm/ttm/ttm_page_alloc.h>
56 
57 #include <drm/drm_debugfs.h>
58 #include <drm/amdgpu_drm.h>
59 
60 #include "amdgpu.h"
61 #include "amdgpu_object.h"
62 #include "amdgpu_trace.h"
63 #include "amdgpu_amdkfd.h"
64 #include "amdgpu_sdma.h"
65 #include "amdgpu_ras.h"
66 #include "bif/bif_4_1_d.h"
67 
68 #include <linux/nbsd-namespace.h>
69 
70 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
71 			     struct ttm_mem_reg *mem, unsigned num_pages,
72 			     uint64_t offset, unsigned window,
73 			     struct amdgpu_ring *ring,
74 			     uint64_t *addr);
75 
76 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
77 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
78 
79 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
80 {
81 	return 0;
82 }
83 
84 /**
85  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
86  * memory request.
87  *
88  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
89  * @type: The type of memory requested
90  * @man: The memory type manager for each domain
91  *
92  * This is called by ttm_bo_init_mm() when a buffer object is being
93  * initialized.
94  */
95 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
96 				struct ttm_mem_type_manager *man)
97 {
98 	struct amdgpu_device *adev;
99 
100 	adev = amdgpu_ttm_adev(bdev);
101 
102 	switch (type) {
103 	case TTM_PL_SYSTEM:
104 		/* System memory */
105 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
106 		man->available_caching = TTM_PL_MASK_CACHING;
107 		man->default_caching = TTM_PL_FLAG_CACHED;
108 		break;
109 	case TTM_PL_TT:
110 		/* GTT memory  */
111 		man->func = &amdgpu_gtt_mgr_func;
112 		man->gpu_offset = adev->gmc.gart_start;
113 		man->available_caching = TTM_PL_MASK_CACHING;
114 		man->default_caching = TTM_PL_FLAG_CACHED;
115 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
116 		break;
117 	case TTM_PL_VRAM:
118 		/* "On-card" video ram */
119 		man->func = &amdgpu_vram_mgr_func;
120 		man->gpu_offset = adev->gmc.vram_start;
121 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
122 			     TTM_MEMTYPE_FLAG_MAPPABLE;
123 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
124 		man->default_caching = TTM_PL_FLAG_WC;
125 		break;
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 		/* On-chip GDS memory*/
130 		man->func = &ttm_bo_manager_func;
131 		man->gpu_offset = 0;
132 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
133 		man->available_caching = TTM_PL_FLAG_UNCACHED;
134 		man->default_caching = TTM_PL_FLAG_UNCACHED;
135 		break;
136 	default:
137 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
138 		return -EINVAL;
139 	}
140 	return 0;
141 }
142 
143 /**
144  * amdgpu_evict_flags - Compute placement flags
145  *
146  * @bo: The buffer object to evict
147  * @placement: Possible destination(s) for evicted BO
148  *
149  * Fill in placement data when ttm_bo_evict() is called
150  */
151 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
152 				struct ttm_placement *placement)
153 {
154 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
155 	struct amdgpu_bo *abo;
156 	static const struct ttm_place placements = {
157 		.fpfn = 0,
158 		.lpfn = 0,
159 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
160 	};
161 
162 	/* Don't handle scatter gather BOs */
163 	if (bo->type == ttm_bo_type_sg) {
164 		placement->num_placement = 0;
165 		placement->num_busy_placement = 0;
166 		return;
167 	}
168 
169 	/* Object isn't an AMDGPU object so ignore */
170 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
171 		placement->placement = &placements;
172 		placement->busy_placement = &placements;
173 		placement->num_placement = 1;
174 		placement->num_busy_placement = 1;
175 		return;
176 	}
177 
178 	abo = ttm_to_amdgpu_bo(bo);
179 	switch (bo->mem.mem_type) {
180 	case AMDGPU_PL_GDS:
181 	case AMDGPU_PL_GWS:
182 	case AMDGPU_PL_OA:
183 		placement->num_placement = 0;
184 		placement->num_busy_placement = 0;
185 		return;
186 
187 	case TTM_PL_VRAM:
188 		if (!adev->mman.buffer_funcs_enabled) {
189 			/* Move to system memory */
190 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
191 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
192 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
193 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
194 
195 			/* Try evicting to the CPU inaccessible part of VRAM
196 			 * first, but only set GTT as busy placement, so this
197 			 * BO will be evicted to GTT rather than causing other
198 			 * BOs to be evicted from VRAM
199 			 */
200 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
201 							 AMDGPU_GEM_DOMAIN_GTT);
202 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
203 			abo->placements[0].lpfn = 0;
204 			abo->placement.busy_placement = &abo->placements[1];
205 			abo->placement.num_busy_placement = 1;
206 		} else {
207 			/* Move to GTT memory */
208 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
209 		}
210 		break;
211 	case TTM_PL_TT:
212 	default:
213 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
214 		break;
215 	}
216 	*placement = abo->placement;
217 }
218 
219 /**
220  * amdgpu_verify_access - Verify access for a mmap call
221  *
222  * @bo:	The buffer object to map
223  * @filp: The file pointer from the process performing the mmap
224  *
225  * This is called by ttm_bo_mmap() to verify whether a process
226  * has the right to mmap a BO to their process space.
227  */
228 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
229 {
230 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
231 
232 	/*
233 	 * Don't verify access for KFD BOs. They don't have a GEM
234 	 * object associated with them.
235 	 */
236 	if (abo->kfd_bo)
237 		return 0;
238 
239 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
240 		return -EPERM;
241 #ifdef __NetBSD__
242 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
243 					  filp->f_data);
244 #else
245 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
246 					  filp->private_data);
247 #endif
248 }
249 
250 /**
251  * amdgpu_move_null - Register memory for a buffer object
252  *
253  * @bo: The bo to assign the memory to
254  * @new_mem: The memory to be assigned.
255  *
256  * Assign the memory from new_mem to the memory of the buffer object bo.
257  */
258 static void amdgpu_move_null(struct ttm_buffer_object *bo,
259 			     struct ttm_mem_reg *new_mem)
260 {
261 	struct ttm_mem_reg *old_mem = &bo->mem;
262 
263 	BUG_ON(old_mem->mm_node != NULL);
264 	*old_mem = *new_mem;
265 	new_mem->mm_node = NULL;
266 }
267 
268 /**
269  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
270  *
271  * @bo: The bo to assign the memory to.
272  * @mm_node: Memory manager node for drm allocator.
273  * @mem: The region where the bo resides.
274  *
275  */
276 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
277 				    struct drm_mm_node *mm_node,
278 				    struct ttm_mem_reg *mem)
279 {
280 	uint64_t addr = 0;
281 
282 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
283 		addr = mm_node->start << PAGE_SHIFT;
284 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
285 	}
286 	return addr;
287 }
288 
289 /**
290  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
291  * @offset. It also modifies the offset to be within the drm_mm_node returned
292  *
293  * @mem: The region where the bo resides.
294  * @offset: The offset that drm_mm_node is used for finding.
295  *
296  */
297 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
298 					       unsigned long *offset)
299 {
300 	struct drm_mm_node *mm_node = mem->mm_node;
301 
302 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
303 		*offset -= (mm_node->size << PAGE_SHIFT);
304 		++mm_node;
305 	}
306 	return mm_node;
307 }
308 
309 /**
310  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
311  *
312  * The function copies @size bytes from {src->mem + src->offset} to
313  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
314  * move and different for a BO to BO copy.
315  *
316  * @f: Returns the last fence if multiple jobs are submitted.
317  */
318 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
319 			       struct amdgpu_copy_mem *src,
320 			       struct amdgpu_copy_mem *dst,
321 			       uint64_t size,
322 			       struct dma_resv *resv,
323 			       struct dma_fence **f)
324 {
325 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
326 	struct drm_mm_node *src_mm, *dst_mm;
327 	uint64_t src_node_start, dst_node_start, src_node_size,
328 		 dst_node_size, src_page_offset, dst_page_offset;
329 	struct dma_fence *fence = NULL;
330 	int r = 0;
331 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
332 					AMDGPU_GPU_PAGE_SIZE);
333 
334 	if (!adev->mman.buffer_funcs_enabled) {
335 		DRM_ERROR("Trying to move memory with ring turned off.\n");
336 		return -EINVAL;
337 	}
338 
339 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
340 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
341 					     src->offset;
342 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
343 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
344 
345 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
346 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
347 					     dst->offset;
348 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
349 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
350 
351 	mutex_lock(&adev->mman.gtt_window_lock);
352 
353 	while (size) {
354 		unsigned long cur_size;
355 		uint64_t from = src_node_start, to = dst_node_start;
356 		struct dma_fence *next;
357 
358 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
359 		 * begins at an offset, then adjust the size accordingly
360 		 */
361 		cur_size = min3(min(src_node_size, dst_node_size), size,
362 				GTT_MAX_BYTES);
363 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
364 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
365 			cur_size -= max(src_page_offset, dst_page_offset);
366 
367 		/* Map only what needs to be accessed. Map src to window 0 and
368 		 * dst to window 1
369 		 */
370 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
371 			r = amdgpu_map_buffer(src->bo, src->mem,
372 					PFN_UP(cur_size + src_page_offset),
373 					src_node_start, 0, ring,
374 					&from);
375 			if (r)
376 				goto error;
377 			/* Adjust the offset because amdgpu_map_buffer returns
378 			 * start of mapped page
379 			 */
380 			from += src_page_offset;
381 		}
382 
383 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
384 			r = amdgpu_map_buffer(dst->bo, dst->mem,
385 					PFN_UP(cur_size + dst_page_offset),
386 					dst_node_start, 1, ring,
387 					&to);
388 			if (r)
389 				goto error;
390 			to += dst_page_offset;
391 		}
392 
393 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
394 				       resv, &next, false, true);
395 		if (r)
396 			goto error;
397 
398 		dma_fence_put(fence);
399 		fence = next;
400 
401 		size -= cur_size;
402 		if (!size)
403 			break;
404 
405 		src_node_size -= cur_size;
406 		if (!src_node_size) {
407 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
408 							     src->mem);
409 			src_node_size = (src_mm->size << PAGE_SHIFT);
410 			src_page_offset = 0;
411 		} else {
412 			src_node_start += cur_size;
413 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
414 		}
415 		dst_node_size -= cur_size;
416 		if (!dst_node_size) {
417 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
418 							     dst->mem);
419 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
420 			dst_page_offset = 0;
421 		} else {
422 			dst_node_start += cur_size;
423 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
424 		}
425 	}
426 error:
427 	mutex_unlock(&adev->mman.gtt_window_lock);
428 	if (f)
429 		*f = dma_fence_get(fence);
430 	dma_fence_put(fence);
431 	return r;
432 }
433 
434 /**
435  * amdgpu_move_blit - Copy an entire buffer to another buffer
436  *
437  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
438  * help move buffers to and from VRAM.
439  */
440 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
441 			    bool evict, bool no_wait_gpu,
442 			    struct ttm_mem_reg *new_mem,
443 			    struct ttm_mem_reg *old_mem)
444 {
445 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
446 	struct amdgpu_copy_mem src, dst;
447 	struct dma_fence *fence = NULL;
448 	int r;
449 
450 	src.bo = bo;
451 	dst.bo = bo;
452 	src.mem = old_mem;
453 	dst.mem = new_mem;
454 	src.offset = 0;
455 	dst.offset = 0;
456 
457 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
458 				       new_mem->num_pages << PAGE_SHIFT,
459 				       bo->base.resv, &fence);
460 	if (r)
461 		goto error;
462 
463 	/* clear the space being freed */
464 	if (old_mem->mem_type == TTM_PL_VRAM &&
465 	    (ttm_to_amdgpu_bo(bo)->flags &
466 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
467 		struct dma_fence *wipe_fence = NULL;
468 
469 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
470 				       NULL, &wipe_fence);
471 		if (r) {
472 			goto error;
473 		} else if (wipe_fence) {
474 			dma_fence_put(fence);
475 			fence = wipe_fence;
476 		}
477 	}
478 
479 	/* Always block for VM page tables before committing the new location */
480 	if (bo->type == ttm_bo_type_kernel)
481 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
482 	else
483 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
484 	dma_fence_put(fence);
485 	return r;
486 
487 error:
488 	if (fence)
489 		dma_fence_wait(fence, false);
490 	dma_fence_put(fence);
491 	return r;
492 }
493 
494 /**
495  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
496  *
497  * Called by amdgpu_bo_move().
498  */
499 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
500 				struct ttm_operation_ctx *ctx,
501 				struct ttm_mem_reg *new_mem)
502 {
503 	struct ttm_mem_reg *old_mem = &bo->mem;
504 	struct ttm_mem_reg tmp_mem;
505 	struct ttm_place placements;
506 	struct ttm_placement placement;
507 	int r;
508 
509 	/* create space/pages for new_mem in GTT space */
510 	tmp_mem = *new_mem;
511 	tmp_mem.mm_node = NULL;
512 	placement.num_placement = 1;
513 	placement.placement = &placements;
514 	placement.num_busy_placement = 1;
515 	placement.busy_placement = &placements;
516 	placements.fpfn = 0;
517 	placements.lpfn = 0;
518 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
519 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
520 	if (unlikely(r)) {
521 		pr_err("Failed to find GTT space for blit from VRAM\n");
522 		return r;
523 	}
524 
525 	/* set caching flags */
526 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
527 	if (unlikely(r)) {
528 		goto out_cleanup;
529 	}
530 
531 	/* Bind the memory to the GTT space */
532 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
533 	if (unlikely(r)) {
534 		goto out_cleanup;
535 	}
536 
537 	/* blit VRAM to GTT */
538 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
539 	if (unlikely(r)) {
540 		goto out_cleanup;
541 	}
542 
543 	/* move BO (in tmp_mem) to new_mem */
544 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
545 out_cleanup:
546 	ttm_bo_mem_put(bo, &tmp_mem);
547 	return r;
548 }
549 
550 /**
551  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
552  *
553  * Called by amdgpu_bo_move().
554  */
555 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
556 				struct ttm_operation_ctx *ctx,
557 				struct ttm_mem_reg *new_mem)
558 {
559 	struct ttm_mem_reg *old_mem = &bo->mem;
560 	struct ttm_mem_reg tmp_mem;
561 	struct ttm_placement placement;
562 	struct ttm_place placements;
563 	int r;
564 
565 	/* make space in GTT for old_mem buffer */
566 	tmp_mem = *new_mem;
567 	tmp_mem.mm_node = NULL;
568 	placement.num_placement = 1;
569 	placement.placement = &placements;
570 	placement.num_busy_placement = 1;
571 	placement.busy_placement = &placements;
572 	placements.fpfn = 0;
573 	placements.lpfn = 0;
574 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
575 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
576 	if (unlikely(r)) {
577 		pr_err("Failed to find GTT space for blit to VRAM\n");
578 		return r;
579 	}
580 
581 	/* move/bind old memory to GTT space */
582 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
583 	if (unlikely(r)) {
584 		goto out_cleanup;
585 	}
586 
587 	/* copy to VRAM */
588 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
589 	if (unlikely(r)) {
590 		goto out_cleanup;
591 	}
592 out_cleanup:
593 	ttm_bo_mem_put(bo, &tmp_mem);
594 	return r;
595 }
596 
597 /**
598  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
599  *
600  * Called by amdgpu_bo_move()
601  */
602 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
603 			       struct ttm_mem_reg *mem)
604 {
605 	struct drm_mm_node *nodes = mem->mm_node;
606 
607 	if (mem->mem_type == TTM_PL_SYSTEM ||
608 	    mem->mem_type == TTM_PL_TT)
609 		return true;
610 	if (mem->mem_type != TTM_PL_VRAM)
611 		return false;
612 
613 	/* ttm_mem_reg_ioremap only supports contiguous memory */
614 	if (nodes->size != mem->num_pages)
615 		return false;
616 
617 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
618 		<= adev->gmc.visible_vram_size;
619 }
620 
621 /**
622  * amdgpu_bo_move - Move a buffer object to a new memory location
623  *
624  * Called by ttm_bo_handle_move_mem()
625  */
626 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
627 			  struct ttm_operation_ctx *ctx,
628 			  struct ttm_mem_reg *new_mem)
629 {
630 	struct amdgpu_device *adev;
631 	struct amdgpu_bo *abo;
632 	struct ttm_mem_reg *old_mem = &bo->mem;
633 	int r;
634 
635 	/* Can't move a pinned BO */
636 	abo = ttm_to_amdgpu_bo(bo);
637 	if (WARN_ON_ONCE(abo->pin_count > 0))
638 		return -EINVAL;
639 
640 	adev = amdgpu_ttm_adev(bo->bdev);
641 
642 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
643 		amdgpu_move_null(bo, new_mem);
644 		return 0;
645 	}
646 	if ((old_mem->mem_type == TTM_PL_TT &&
647 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
648 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
649 	     new_mem->mem_type == TTM_PL_TT)) {
650 		/* bind is enough */
651 		amdgpu_move_null(bo, new_mem);
652 		return 0;
653 	}
654 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
655 	    old_mem->mem_type == AMDGPU_PL_GWS ||
656 	    old_mem->mem_type == AMDGPU_PL_OA ||
657 	    new_mem->mem_type == AMDGPU_PL_GDS ||
658 	    new_mem->mem_type == AMDGPU_PL_GWS ||
659 	    new_mem->mem_type == AMDGPU_PL_OA) {
660 		/* Nothing to save here */
661 		amdgpu_move_null(bo, new_mem);
662 		return 0;
663 	}
664 
665 	if (!adev->mman.buffer_funcs_enabled) {
666 		r = -ENODEV;
667 		goto memcpy;
668 	}
669 
670 	if (old_mem->mem_type == TTM_PL_VRAM &&
671 	    new_mem->mem_type == TTM_PL_SYSTEM) {
672 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
673 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
674 		   new_mem->mem_type == TTM_PL_VRAM) {
675 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
676 	} else {
677 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
678 				     new_mem, old_mem);
679 	}
680 
681 	if (r) {
682 memcpy:
683 		/* Check that all memory is CPU accessible */
684 		if (!amdgpu_mem_visible(adev, old_mem) ||
685 		    !amdgpu_mem_visible(adev, new_mem)) {
686 			pr_err("Move buffer fallback to memcpy unavailable\n");
687 			return r;
688 		}
689 
690 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
691 		if (r)
692 			return r;
693 	}
694 
695 	if (bo->type == ttm_bo_type_device &&
696 	    new_mem->mem_type == TTM_PL_VRAM &&
697 	    old_mem->mem_type != TTM_PL_VRAM) {
698 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
699 		 * accesses the BO after it's moved.
700 		 */
701 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
702 	}
703 
704 	/* update statistics */
705 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
706 	return 0;
707 }
708 
709 /**
710  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
711  *
712  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
713  */
714 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
715 {
716 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
717 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
718 	struct drm_mm_node *mm_node = mem->mm_node;
719 
720 	mem->bus.addr = NULL;
721 	mem->bus.offset = 0;
722 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
723 	mem->bus.base = 0;
724 	mem->bus.is_iomem = false;
725 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
726 		return -EINVAL;
727 	switch (mem->mem_type) {
728 	case TTM_PL_SYSTEM:
729 		/* system memory */
730 		return 0;
731 	case TTM_PL_TT:
732 		break;
733 	case TTM_PL_VRAM:
734 		mem->bus.offset = mem->start << PAGE_SHIFT;
735 		/* check if it's visible */
736 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
737 			return -EINVAL;
738 		/* Only physically contiguous buffers apply. In a contiguous
739 		 * buffer, size of the first mm_node would match the number of
740 		 * pages in ttm_mem_reg.
741 		 */
742 		if (adev->mman.aper_base_kaddr &&
743 		    (mm_node->size == mem->num_pages))
744 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
745 					mem->bus.offset;
746 
747 		mem->bus.base = adev->gmc.aper_base;
748 		mem->bus.is_iomem = true;
749 		break;
750 	default:
751 		return -EINVAL;
752 	}
753 	return 0;
754 }
755 
756 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
757 {
758 }
759 
760 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
761 					   unsigned long page_offset)
762 {
763 	struct drm_mm_node *mm;
764 	unsigned long offset = (page_offset << PAGE_SHIFT);
765 
766 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
767 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
768 		(offset >> PAGE_SHIFT);
769 }
770 
771 /*
772  * TTM backend functions.
773  */
774 struct amdgpu_ttm_tt {
775 	struct ttm_dma_tt	ttm;
776 	struct drm_gem_object	*gobj;
777 	u64			offset;
778 	uint64_t		userptr;
779 #ifdef __NetBSD__
780 	struct proc		*usertask;
781 #else
782 	struct task_struct	*usertask;
783 #endif
784 	uint32_t		userflags;
785 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
786 	struct hmm_range	*range;
787 #endif
788 };
789 
790 #ifdef CONFIG_DRM_AMDGPU_USERPTR
791 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
792 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
793 	(1 << 0), /* HMM_PFN_VALID */
794 	(1 << 1), /* HMM_PFN_WRITE */
795 	0 /* HMM_PFN_DEVICE_PRIVATE */
796 };
797 
798 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
799 	0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
800 	0, /* HMM_PFN_NONE */
801 	0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
802 };
803 
804 /**
805  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
806  * memory and start HMM tracking CPU page table update
807  *
808  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
809  * once afterwards to stop HMM tracking
810  */
811 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
812 {
813 	struct ttm_tt *ttm = bo->tbo.ttm;
814 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
815 	unsigned long start = gtt->userptr;
816 	struct vm_area_struct *vma;
817 	struct hmm_range *range;
818 	unsigned long timeout;
819 	struct mm_struct *mm;
820 	unsigned long i;
821 	int r = 0;
822 
823 	mm = bo->notifier.mm;
824 	if (unlikely(!mm)) {
825 		DRM_DEBUG_DRIVER("BO is not registered?\n");
826 		return -EFAULT;
827 	}
828 
829 	/* Another get_user_pages is running at the same time?? */
830 	if (WARN_ON(gtt->range))
831 		return -EFAULT;
832 
833 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
834 		return -ESRCH;
835 
836 	range = kzalloc(sizeof(*range), GFP_KERNEL);
837 	if (unlikely(!range)) {
838 		r = -ENOMEM;
839 		goto out;
840 	}
841 	range->notifier = &bo->notifier;
842 	range->flags = hmm_range_flags;
843 	range->values = hmm_range_values;
844 	range->pfn_shift = PAGE_SHIFT;
845 	range->start = bo->notifier.interval_tree.start;
846 	range->end = bo->notifier.interval_tree.last + 1;
847 	range->default_flags = hmm_range_flags[HMM_PFN_VALID];
848 	if (!amdgpu_ttm_tt_is_readonly(ttm))
849 		range->default_flags |= range->flags[HMM_PFN_WRITE];
850 
851 	range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
852 				     GFP_KERNEL);
853 	if (unlikely(!range->pfns)) {
854 		r = -ENOMEM;
855 		goto out_free_ranges;
856 	}
857 
858 	down_read(&mm->mmap_sem);
859 	vma = find_vma(mm, start);
860 	if (unlikely(!vma || start < vma->vm_start)) {
861 		r = -EFAULT;
862 		goto out_unlock;
863 	}
864 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
865 		vma->vm_file)) {
866 		r = -EPERM;
867 		goto out_unlock;
868 	}
869 	up_read(&mm->mmap_sem);
870 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
871 
872 retry:
873 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
874 
875 	down_read(&mm->mmap_sem);
876 	r = hmm_range_fault(range, 0);
877 	up_read(&mm->mmap_sem);
878 	if (unlikely(r <= 0)) {
879 		/*
880 		 * FIXME: This timeout should encompass the retry from
881 		 * mmu_interval_read_retry() as well.
882 		 */
883 		if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
884 			goto retry;
885 		goto out_free_pfns;
886 	}
887 
888 	for (i = 0; i < ttm->num_pages; i++) {
889 		/* FIXME: The pages cannot be touched outside the notifier_lock */
890 		pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
891 		if (unlikely(!pages[i])) {
892 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
893 			       i, range->pfns[i]);
894 			r = -ENOMEM;
895 
896 			goto out_free_pfns;
897 		}
898 	}
899 
900 	gtt->range = range;
901 	mmput(mm);
902 
903 	return 0;
904 
905 out_unlock:
906 	up_read(&mm->mmap_sem);
907 out_free_pfns:
908 	kvfree(range->pfns);
909 out_free_ranges:
910 	kfree(range);
911 out:
912 	mmput(mm);
913 	return r;
914 }
915 
916 /**
917  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
918  * Check if the pages backing this ttm range have been invalidated
919  *
920  * Returns: true if pages are still valid
921  */
922 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
923 {
924 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
925 	bool r = false;
926 
927 	if (!gtt || !gtt->userptr)
928 		return false;
929 
930 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
931 		gtt->userptr, ttm->num_pages);
932 
933 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
934 		"No user pages to check\n");
935 
936 	if (gtt->range) {
937 		/*
938 		 * FIXME: Must always hold notifier_lock for this, and must
939 		 * not ignore the return code.
940 		 */
941 		r = mmu_interval_read_retry(gtt->range->notifier,
942 					 gtt->range->notifier_seq);
943 		kvfree(gtt->range->pfns);
944 		kfree(gtt->range);
945 		gtt->range = NULL;
946 	}
947 
948 	return !r;
949 }
950 #endif
951 
952 /**
953  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
954  *
955  * Called by amdgpu_cs_list_validate(). This creates the page list
956  * that backs user memory and will ultimately be mapped into the device
957  * address space.
958  */
959 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
960 {
961 	unsigned long i;
962 
963 	for (i = 0; i < ttm->num_pages; ++i)
964 		ttm->pages[i] = pages ? pages[i] : NULL;
965 }
966 
967 /**
968  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
969  *
970  * Called by amdgpu_ttm_backend_bind()
971  **/
972 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
973 {
974 #ifdef __NetBSD__		/* XXX amdgpu userptr */
975 	return -ENODEV;
976 #else
977 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
978 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
979 	unsigned nents;
980 	int r;
981 
982 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
983 	enum dma_data_direction direction = write ?
984 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
985 
986 	/* Allocate an SG array and squash pages into it */
987 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
988 				      ttm->num_pages << PAGE_SHIFT,
989 				      GFP_KERNEL);
990 	if (r)
991 		goto release_sg;
992 
993 	/* Map SG to device */
994 	r = -ENOMEM;
995 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
996 	if (nents != ttm->sg->nents)
997 		goto release_sg;
998 
999 	/* convert SG to linear array of pages and dma addresses */
1000 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1001 					 gtt->ttm.dma_address, ttm->num_pages);
1002 
1003 	return 0;
1004 
1005 release_sg:
1006 	kfree(ttm->sg);
1007 	return r;
1008 #endif
1009 }
1010 
1011 /**
1012  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1013  */
1014 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1015 {
1016 #ifndef __NetBSD__		/* XXX amdgpu userptr */
1017 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1018 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1019 
1020 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1021 	enum dma_data_direction direction = write ?
1022 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1023 
1024 	/* double check that we don't free the table twice */
1025 	if (!ttm->sg->sgl)
1026 		return;
1027 
1028 	/* unmap the pages mapped to the device */
1029 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1030 
1031 	sg_free_table(ttm->sg);
1032 
1033 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1034 	if (gtt->range) {
1035 		unsigned long i;
1036 
1037 		for (i = 0; i < ttm->num_pages; i++) {
1038 			if (ttm->pages[i] !=
1039 				hmm_device_entry_to_page(gtt->range,
1040 					      gtt->range->pfns[i]))
1041 				break;
1042 		}
1043 
1044 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1045 	}
1046 #endif
1047 #endif
1048 }
1049 
1050 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1051 				struct ttm_buffer_object *tbo,
1052 				uint64_t flags)
1053 {
1054 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1055 	struct ttm_tt *ttm = tbo->ttm;
1056 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1057 	int r;
1058 
1059 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1060 		uint64_t page_idx = 1;
1061 
1062 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1063 				ttm->pages, gtt->ttm.dma_address, flags);
1064 		if (r)
1065 			goto gart_bind_fail;
1066 
1067 		/* Patch mtype of the second part BO */
1068 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1069 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1070 
1071 		r = amdgpu_gart_bind(adev,
1072 				gtt->offset + (page_idx << PAGE_SHIFT),
1073 				ttm->num_pages - page_idx,
1074 				&ttm->pages[page_idx],
1075 				&(gtt->ttm.dma_address[page_idx]), flags);
1076 	} else {
1077 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1078 				     ttm->pages, gtt->ttm.dma_address, flags);
1079 	}
1080 
1081 gart_bind_fail:
1082 	if (r)
1083 		DRM_ERROR("failed to bind %lu pages at 0x%08"PRIX64"\n",
1084 			  ttm->num_pages, gtt->offset);
1085 
1086 	return r;
1087 }
1088 
1089 /**
1090  * amdgpu_ttm_backend_bind - Bind GTT memory
1091  *
1092  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1093  * This handles binding GTT memory to the device address space.
1094  */
1095 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1096 				   struct ttm_mem_reg *bo_mem)
1097 {
1098 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1099 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1100 	uint64_t flags;
1101 	int r = 0;
1102 
1103 	if (gtt->userptr) {
1104 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1105 		if (r) {
1106 			DRM_ERROR("failed to pin userptr\n");
1107 			return r;
1108 		}
1109 	}
1110 	if (!ttm->num_pages) {
1111 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1112 		     ttm->num_pages, bo_mem, ttm);
1113 	}
1114 
1115 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1116 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1117 	    bo_mem->mem_type == AMDGPU_PL_OA)
1118 		return -EINVAL;
1119 
1120 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1121 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1122 		return 0;
1123 	}
1124 
1125 	/* compute PTE flags relevant to this BO memory */
1126 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1127 
1128 	/* bind pages into GART page tables */
1129 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1130 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1131 		ttm->pages, gtt->ttm.dma_address, flags);
1132 
1133 	if (r)
1134 		DRM_ERROR("failed to bind %lu pages at 0x%08"PRIX64"\n",
1135 			  ttm->num_pages, gtt->offset);
1136 	return r;
1137 }
1138 
1139 /**
1140  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1141  */
1142 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1143 {
1144 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1145 	struct ttm_operation_ctx ctx = { false, false };
1146 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1147 	struct ttm_mem_reg tmp;
1148 	struct ttm_placement placement;
1149 	struct ttm_place placements;
1150 	uint64_t addr, flags;
1151 	int r;
1152 
1153 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1154 		return 0;
1155 
1156 	addr = amdgpu_gmc_agp_addr(bo);
1157 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1158 		bo->mem.start = addr >> PAGE_SHIFT;
1159 	} else {
1160 
1161 		/* allocate GART space */
1162 		tmp = bo->mem;
1163 		tmp.mm_node = NULL;
1164 		placement.num_placement = 1;
1165 		placement.placement = &placements;
1166 		placement.num_busy_placement = 1;
1167 		placement.busy_placement = &placements;
1168 		placements.fpfn = 0;
1169 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1170 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1171 			TTM_PL_FLAG_TT;
1172 
1173 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1174 		if (unlikely(r))
1175 			return r;
1176 
1177 		/* compute PTE flags for this buffer object */
1178 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1179 
1180 		/* Bind pages */
1181 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1182 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1183 		if (unlikely(r)) {
1184 			ttm_bo_mem_put(bo, &tmp);
1185 			return r;
1186 		}
1187 
1188 		ttm_bo_mem_put(bo, &bo->mem);
1189 		bo->mem = tmp;
1190 	}
1191 
1192 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1193 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1194 
1195 	return 0;
1196 }
1197 
1198 /**
1199  * amdgpu_ttm_recover_gart - Rebind GTT pages
1200  *
1201  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1202  * rebind GTT pages during a GPU reset.
1203  */
1204 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1205 {
1206 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1207 	uint64_t flags;
1208 	int r;
1209 
1210 	if (!tbo->ttm)
1211 		return 0;
1212 
1213 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1214 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1215 
1216 	return r;
1217 }
1218 
1219 /**
1220  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1221  *
1222  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1223  * ttm_tt_destroy().
1224  */
1225 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1226 {
1227 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1228 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1229 	int r;
1230 
1231 	/* if the pages have userptr pinning then clear that first */
1232 	if (gtt->userptr)
1233 		amdgpu_ttm_tt_unpin_userptr(ttm);
1234 
1235 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1236 		return 0;
1237 
1238 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1239 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1240 	if (r)
1241 		DRM_ERROR("failed to unbind %lu pages at 0x%08"PRIX64"\n",
1242 			  gtt->ttm.ttm.num_pages, gtt->offset);
1243 	return r;
1244 }
1245 
1246 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1247 {
1248 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249 
1250 #ifndef __NetBSD__		/* XXX amdgpu userptr */
1251 	if (gtt->usertask)
1252 		put_task_struct(gtt->usertask);
1253 #endif
1254 
1255 	ttm_dma_tt_fini(&gtt->ttm);
1256 	kfree(gtt);
1257 }
1258 
1259 static struct ttm_backend_func amdgpu_backend_func = {
1260 	.bind = &amdgpu_ttm_backend_bind,
1261 	.unbind = &amdgpu_ttm_backend_unbind,
1262 	.destroy = &amdgpu_ttm_backend_destroy,
1263 };
1264 
1265 /**
1266  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1267  *
1268  * @bo: The buffer object to create a GTT ttm_tt object around
1269  *
1270  * Called by ttm_tt_create().
1271  */
1272 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1273 					   uint32_t page_flags)
1274 {
1275 	struct amdgpu_ttm_tt *gtt;
1276 
1277 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1278 	if (gtt == NULL) {
1279 		return NULL;
1280 	}
1281 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1282 	gtt->gobj = &bo->base;
1283 
1284 	/* allocate space for the uninitialized page entries */
1285 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1286 		kfree(gtt);
1287 		return NULL;
1288 	}
1289 	return &gtt->ttm.ttm;
1290 }
1291 
1292 /**
1293  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1294  *
1295  * Map the pages of a ttm_tt object to an address space visible
1296  * to the underlying device.
1297  */
1298 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1299 			struct ttm_operation_ctx *ctx)
1300 {
1301 #ifndef __NetBSD__
1302 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1303 #endif
1304 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1305 
1306 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1307 	if (gtt && gtt->userptr) {
1308 #ifdef __NetBSD__
1309 		ttm->sg = NULL;
1310 #else
1311 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1312 		if (!ttm->sg)
1313 			return -ENOMEM;
1314 #endif
1315 
1316 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1317 		ttm->state = tt_unbound;
1318 		return 0;
1319 	}
1320 
1321 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1322 		if (!ttm->sg) {
1323 			struct dma_buf_attachment *attach;
1324 			struct sg_table *sgt;
1325 
1326 			attach = gtt->gobj->import_attach;
1327 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1328 			if (IS_ERR(sgt))
1329 				return PTR_ERR(sgt);
1330 
1331 			ttm->sg = sgt;
1332 		}
1333 
1334 #ifdef __NetBSD__
1335 		int r = drm_prime_bus_dmamap_load_sgt(ttm->bdev->dmat,
1336 		    gtt->ttm.dma_address, ttm->sg);
1337 		if (r)
1338 			return r;
1339 #else
1340 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1341 						 gtt->ttm.dma_address,
1342 						 ttm->num_pages);
1343 #endif
1344 		ttm->state = tt_unbound;
1345 		return 0;
1346 	}
1347 
1348 #ifdef __NetBSD__
1349 	/* XXX errno NetBSD->Linux */
1350 	return ttm_bus_dma_populate(&gtt->ttm);
1351 #else
1352 #ifdef CONFIG_SWIOTLB
1353 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1354 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1355 	}
1356 #endif
1357 
1358 	/* fall back to generic helper to populate the page array
1359 	 * and map them to the device */
1360 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1361 #endif
1362 }
1363 
1364 /**
1365  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1366  *
1367  * Unmaps pages of a ttm_tt object from the device address space and
1368  * unpopulates the page array backing it.
1369  */
1370 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1371 {
1372 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1373 #ifndef __NetBSD__
1374 	struct amdgpu_device *adev;
1375 #endif
1376 
1377 	if (gtt && gtt->userptr) {
1378 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1379 		kfree(ttm->sg);
1380 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1381 		return;
1382 	}
1383 
1384 	if (ttm->sg && gtt->gobj->import_attach) {
1385 		struct dma_buf_attachment *attach;
1386 
1387 		attach = gtt->gobj->import_attach;
1388 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1389 		ttm->sg = NULL;
1390 		return;
1391 	}
1392 
1393 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1394 		return;
1395 
1396 #ifdef __NetBSD__
1397 	ttm_bus_dma_unpopulate(&gtt->ttm);
1398 	return;
1399 #else
1400 	adev = amdgpu_ttm_adev(ttm->bdev);
1401 
1402 #ifdef CONFIG_SWIOTLB
1403 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1404 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1405 		return;
1406 	}
1407 #endif
1408 
1409 	/* fall back to generic helper to unmap and unpopulate array */
1410 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1411 #endif	/* __NetBSD__ */
1412 }
1413 
1414 #ifdef __NetBSD__
1415 static void amdgpu_ttm_tt_swapout(struct ttm_tt *ttm)
1416 {
1417 	struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
1418 	    ttm.ttm);
1419 	struct ttm_dma_tt *ttm_dma = &gtt->ttm;
1420 
1421 	ttm_bus_dma_swapout(ttm_dma);
1422 }
1423 
1424 static const struct uvm_pagerops amdgpu_uvm_ops = {
1425 	.pgo_reference = &ttm_bo_uvm_reference,
1426 	.pgo_detach = &ttm_bo_uvm_detach,
1427 	.pgo_fault = &ttm_bo_uvm_fault,
1428 };
1429 #endif
1430 
1431 /**
1432  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1433  * task
1434  *
1435  * @ttm: The ttm_tt object to bind this userptr object to
1436  * @addr:  The address in the current tasks VM space to use
1437  * @flags: Requirements of userptr object.
1438  *
1439  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1440  * to current task
1441  */
1442 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1443 			      uint32_t flags)
1444 {
1445 #ifdef __NetBSD__		/* XXX amdgpu userptr */
1446 	return -ENODEV;
1447 #else
1448 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1449 
1450 	if (gtt == NULL)
1451 		return -EINVAL;
1452 
1453 	gtt->userptr = addr;
1454 	gtt->userflags = flags;
1455 
1456 	if (gtt->usertask)
1457 		put_task_struct(gtt->usertask);
1458 	gtt->usertask = current->group_leader;
1459 	get_task_struct(gtt->usertask);
1460 
1461 	return 0;
1462 #endif
1463 }
1464 
1465 /**
1466  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1467  */
1468 #ifdef __NetBSD__
1469 struct vmspace *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1470 #else
1471 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1472 #endif
1473 {
1474 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1475 
1476 	if (gtt == NULL)
1477 		return NULL;
1478 
1479 	if (gtt->usertask == NULL)
1480 		return NULL;
1481 
1482 #ifdef __NetBSD__
1483 	return gtt->usertask->p_vmspace;
1484 #else
1485 	return gtt->usertask->mm;
1486 #endif
1487 }
1488 
1489 /**
1490  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1491  * address range for the current task.
1492  *
1493  */
1494 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1495 				  unsigned long end)
1496 {
1497 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1498 	unsigned long size;
1499 
1500 	if (gtt == NULL || !gtt->userptr)
1501 		return false;
1502 
1503 	/* Return false if no part of the ttm_tt object lies within
1504 	 * the range
1505 	 */
1506 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1507 	if (gtt->userptr > end || gtt->userptr + size <= start)
1508 		return false;
1509 
1510 	return true;
1511 }
1512 
1513 /**
1514  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1515  */
1516 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1517 {
1518 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1519 
1520 	if (gtt == NULL || !gtt->userptr)
1521 		return false;
1522 
1523 	return true;
1524 }
1525 
1526 /**
1527  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1528  */
1529 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1530 {
1531 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1532 
1533 	if (gtt == NULL)
1534 		return false;
1535 
1536 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1537 }
1538 
1539 /**
1540  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1541  *
1542  * @ttm: The ttm_tt object to compute the flags for
1543  * @mem: The memory registry backing this ttm_tt object
1544  *
1545  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1546  */
1547 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1548 {
1549 	uint64_t flags = 0;
1550 
1551 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1552 		flags |= AMDGPU_PTE_VALID;
1553 
1554 	if (mem && mem->mem_type == TTM_PL_TT) {
1555 		flags |= AMDGPU_PTE_SYSTEM;
1556 
1557 		if (ttm->caching_state == tt_cached)
1558 			flags |= AMDGPU_PTE_SNOOPED;
1559 	}
1560 
1561 	return flags;
1562 }
1563 
1564 /**
1565  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1566  *
1567  * @ttm: The ttm_tt object to compute the flags for
1568  * @mem: The memory registry backing this ttm_tt object
1569 
1570  * Figure out the flags to use for a VM PTE (Page Table Entry).
1571  */
1572 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1573 				 struct ttm_mem_reg *mem)
1574 {
1575 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1576 
1577 	flags |= adev->gart.gart_pte_flags;
1578 	flags |= AMDGPU_PTE_READABLE;
1579 
1580 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1581 		flags |= AMDGPU_PTE_WRITEABLE;
1582 
1583 	return flags;
1584 }
1585 
1586 /**
1587  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1588  * object.
1589  *
1590  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1591  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1592  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1593  * used to clean out a memory space.
1594  */
1595 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1596 					    const struct ttm_place *place)
1597 {
1598 	unsigned long num_pages = bo->mem.num_pages;
1599 	struct drm_mm_node *node = bo->mem.mm_node;
1600 	struct dma_resv_list *flist;
1601 	struct dma_fence *f;
1602 	int i;
1603 
1604 	if (bo->type == ttm_bo_type_kernel &&
1605 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1606 		return false;
1607 
1608 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1609 	 * If true, then return false as any KFD process needs all its BOs to
1610 	 * be resident to run successfully
1611 	 */
1612 #ifdef __NetBSD__		/* XXX amdgpu kfd */
1613 	__USE(flist);
1614 	__USE(f);
1615 	__USE(i);
1616 #else
1617 	flist = dma_resv_get_list(bo->base.resv);
1618 	if (flist) {
1619 		for (i = 0; i < flist->shared_count; ++i) {
1620 			f = rcu_dereference_protected(flist->shared[i],
1621 				dma_resv_held(bo->base.resv));
1622 			if (amdkfd_fence_check_mm(f, current->mm))
1623 				return false;
1624 		}
1625 	}
1626 #endif
1627 
1628 	switch (bo->mem.mem_type) {
1629 	case TTM_PL_TT:
1630 		return true;
1631 
1632 	case TTM_PL_VRAM:
1633 		/* Check each drm MM node individually */
1634 		while (num_pages) {
1635 			if (place->fpfn < (node->start + node->size) &&
1636 			    !(place->lpfn && place->lpfn <= node->start))
1637 				return true;
1638 
1639 			num_pages -= node->size;
1640 			++node;
1641 		}
1642 		return false;
1643 
1644 	default:
1645 		break;
1646 	}
1647 
1648 	return ttm_bo_eviction_valuable(bo, place);
1649 }
1650 
1651 /**
1652  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1653  *
1654  * @bo:  The buffer object to read/write
1655  * @offset:  Offset into buffer object
1656  * @buf:  Secondary buffer to write/read from
1657  * @len: Length in bytes of access
1658  * @write:  true if writing
1659  *
1660  * This is used to access VRAM that backs a buffer object via MMIO
1661  * access for debugging purposes.
1662  */
1663 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1664 				    unsigned long offset,
1665 				    void *buf, int len, int write)
1666 {
1667 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1668 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1669 	struct drm_mm_node *nodes;
1670 	uint32_t value = 0;
1671 	int ret = 0;
1672 	uint64_t pos;
1673 	unsigned long flags;
1674 
1675 	if (bo->mem.mem_type != TTM_PL_VRAM)
1676 		return -EIO;
1677 
1678 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1679 	pos = (nodes->start << PAGE_SHIFT) + offset;
1680 
1681 	while (len && pos < adev->gmc.mc_vram_size) {
1682 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1683 		uint32_t bytes = 4 - (pos & 3);
1684 		uint32_t shift = (pos & 3) * 8;
1685 		uint32_t mask = 0xffffffff << shift;
1686 
1687 		if (len < bytes) {
1688 			mask &= 0xffffffff >> (bytes - len) * 8;
1689 			bytes = len;
1690 		}
1691 
1692 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1693 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1694 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1695 		if (!write || mask != 0xffffffff)
1696 			value = RREG32_NO_KIQ(mmMM_DATA);
1697 		if (write) {
1698 			value &= ~mask;
1699 			value |= (*(uint32_t *)buf << shift) & mask;
1700 			WREG32_NO_KIQ(mmMM_DATA, value);
1701 		}
1702 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1703 		if (!write) {
1704 			value = (value & mask) >> shift;
1705 			memcpy(buf, &value, bytes);
1706 		}
1707 
1708 		ret += bytes;
1709 		buf = (uint8_t *)buf + bytes;
1710 		pos += bytes;
1711 		len -= bytes;
1712 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1713 			++nodes;
1714 			pos = (nodes->start << PAGE_SHIFT);
1715 		}
1716 	}
1717 
1718 	return ret;
1719 }
1720 
1721 static struct ttm_bo_driver amdgpu_bo_driver = {
1722 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1723 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1724 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1725 #ifdef __NetBSD__
1726 	.ttm_tt_swapout = &amdgpu_ttm_tt_swapout,
1727 	.ttm_uvm_ops = &amdgpu_uvm_ops,
1728 #endif
1729 	.invalidate_caches = &amdgpu_invalidate_caches,
1730 	.init_mem_type = &amdgpu_init_mem_type,
1731 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1732 	.evict_flags = &amdgpu_evict_flags,
1733 	.move = &amdgpu_bo_move,
1734 	.verify_access = &amdgpu_verify_access,
1735 	.move_notify = &amdgpu_bo_move_notify,
1736 	.release_notify = &amdgpu_bo_release_notify,
1737 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1738 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1739 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1740 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1741 	.access_memory = &amdgpu_ttm_access_memory,
1742 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1743 };
1744 
1745 /*
1746  * Firmware Reservation functions
1747  */
1748 /**
1749  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1750  *
1751  * @adev: amdgpu_device pointer
1752  *
1753  * free fw reserved vram if it has been reserved.
1754  */
1755 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1756 {
1757 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1758 		NULL, &adev->fw_vram_usage.va);
1759 }
1760 
1761 /**
1762  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1763  *
1764  * @adev: amdgpu_device pointer
1765  *
1766  * create bo vram reservation from fw.
1767  */
1768 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1769 {
1770 	uint64_t vram_size = adev->gmc.visible_vram_size;
1771 
1772 	adev->fw_vram_usage.va = NULL;
1773 	adev->fw_vram_usage.reserved_bo = NULL;
1774 
1775 	if (adev->fw_vram_usage.size == 0 ||
1776 	    adev->fw_vram_usage.size > vram_size)
1777 		return 0;
1778 
1779 	return amdgpu_bo_create_kernel_at(adev,
1780 					  adev->fw_vram_usage.start_offset,
1781 					  adev->fw_vram_usage.size,
1782 					  AMDGPU_GEM_DOMAIN_VRAM,
1783 					  &adev->fw_vram_usage.reserved_bo,
1784 					  &adev->fw_vram_usage.va);
1785 }
1786 
1787 /*
1788  * Memoy training reservation functions
1789  */
1790 
1791 /**
1792  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1793  *
1794  * @adev: amdgpu_device pointer
1795  *
1796  * free memory training reserved vram if it has been reserved.
1797  */
1798 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1799 {
1800 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1801 
1802 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1803 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1804 	ctx->c2p_bo = NULL;
1805 
1806 	return 0;
1807 }
1808 
1809 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1810 {
1811        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1812                vram_size -= SZ_1M;
1813 
1814        return ALIGN(vram_size, SZ_1M);
1815 }
1816 
1817 /**
1818  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1819  *
1820  * @adev: amdgpu_device pointer
1821  *
1822  * create bo vram reservation from memory training.
1823  */
1824 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1825 {
1826 	int ret;
1827 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1828 
1829 	memset(ctx, 0, sizeof(*ctx));
1830 	if (!adev->fw_vram_usage.mem_train_support) {
1831 		DRM_DEBUG("memory training does not support!\n");
1832 		return 0;
1833 	}
1834 
1835 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1836 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1837 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1838 
1839 	DRM_DEBUG("train_data_size:%"PRIx64",p2c_train_data_offset:%"PRIx64",c2p_train_data_offset:%"PRIx64".\n",
1840 		  ctx->train_data_size,
1841 		  ctx->p2c_train_data_offset,
1842 		  ctx->c2p_train_data_offset);
1843 
1844 	ret = amdgpu_bo_create_kernel_at(adev,
1845 					 ctx->c2p_train_data_offset,
1846 					 ctx->train_data_size,
1847 					 AMDGPU_GEM_DOMAIN_VRAM,
1848 					 &ctx->c2p_bo,
1849 					 NULL);
1850 	if (ret) {
1851 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1852 		amdgpu_ttm_training_reserve_vram_fini(adev);
1853 		return ret;
1854 	}
1855 
1856 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1857 	return 0;
1858 }
1859 
1860 /**
1861  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1862  * gtt/vram related fields.
1863  *
1864  * This initializes all of the memory space pools that the TTM layer
1865  * will need such as the GTT space (system memory mapped to the device),
1866  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1867  * can be mapped per VMID.
1868  */
1869 int amdgpu_ttm_init(struct amdgpu_device *adev)
1870 {
1871 	uint64_t gtt_size;
1872 	int r;
1873 	u64 vis_vram_limit;
1874 	void *stolen_vga_buf;
1875 
1876 	mutex_init(&adev->mman.gtt_window_lock);
1877 
1878 	/* No others user of address space so set it to 0 */
1879 	r = ttm_bo_device_init(&adev->mman.bdev,
1880 			       &amdgpu_bo_driver,
1881 #ifdef __NetBSD__
1882 			       adev->ddev->bst,
1883 			       adev->ddev->dmat,
1884 #else
1885 			       adev->ddev->anon_inode->i_mapping,
1886 #endif
1887 			       adev->ddev->vma_offset_manager,
1888 			       dma_addressing_limited(adev->dev));
1889 	if (r) {
1890 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1891 		return r;
1892 	}
1893 	adev->mman.initialized = true;
1894 
1895 	/* We opt to avoid OOM on system pages allocations */
1896 	adev->mman.bdev.no_retry = true;
1897 
1898 	/* Initialize VRAM pool with all of VRAM divided into pages */
1899 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1900 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1901 	if (r) {
1902 		DRM_ERROR("Failed initializing VRAM heap.\n");
1903 		return r;
1904 	}
1905 
1906 	/* Reduce size of CPU-visible VRAM if requested */
1907 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1908 	if (amdgpu_vis_vram_limit > 0 &&
1909 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1910 		adev->gmc.visible_vram_size = vis_vram_limit;
1911 
1912 	/* Change the size here instead of the init above so only lpfn is affected */
1913 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1914 #ifdef __NetBSD__
1915 #ifdef _LP64
1916 	if (bus_space_map(adev->gmc.aper_tag, adev->gmc.aper_base,
1917 		adev->gmc.visible_vram_size,
1918 		BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_PREFETCHABLE,
1919 		&adev->mman.aper_base_handle)) {
1920 		return -EIO;
1921 	}
1922 	adev->mman.aper_base_kaddr = bus_space_vaddr(adev->gmc.aper_tag,
1923 	    adev->mman.aper_base_handle);
1924 	KASSERT(adev->mman.aper_base_kaddr != NULL);
1925 #endif	/* _LP64 */
1926 #else	/* __NetBSD__ */
1927 #ifdef CONFIG_64BIT
1928 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1929 						adev->gmc.visible_vram_size);
1930 #endif
1931 #endif
1932 
1933 	/*
1934 	 *The reserved vram for firmware must be pinned to the specified
1935 	 *place on the VRAM, so reserve it early.
1936 	 */
1937 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1938 	if (r) {
1939 		return r;
1940 	}
1941 
1942 	/*
1943 	 *The reserved vram for memory training must be pinned to the specified
1944 	 *place on the VRAM, so reserve it early.
1945 	 */
1946 	r = amdgpu_ttm_training_reserve_vram_init(adev);
1947 	if (r)
1948 		return r;
1949 
1950 	/* allocate memory as required for VGA
1951 	 * This is used for VGA emulation and pre-OS scanout buffers to
1952 	 * avoid display artifacts while transitioning between pre-OS
1953 	 * and driver.  */
1954 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1955 				    AMDGPU_GEM_DOMAIN_VRAM,
1956 				    &adev->stolen_vga_memory,
1957 				    NULL, &stolen_vga_buf);
1958 	if (r)
1959 		return r;
1960 
1961 	/*
1962 	 * reserve one TMR (64K) memory at the top of VRAM which holds
1963 	 * IP Discovery data and is protected by PSP.
1964 	 */
1965 	r = amdgpu_bo_create_kernel_at(adev,
1966 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1967 				       DISCOVERY_TMR_SIZE,
1968 				       AMDGPU_GEM_DOMAIN_VRAM,
1969 				       &adev->discovery_memory,
1970 				       NULL);
1971 	if (r)
1972 		return r;
1973 
1974 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1975 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1976 
1977 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1978 	 * or whatever the user passed on module init */
1979 	if (amdgpu_gtt_size == -1) {
1980 		struct sysinfo si;
1981 
1982 		si_meminfo(&si);
1983 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1984 			       adev->gmc.mc_vram_size),
1985 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1986 	}
1987 	else
1988 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1989 
1990 	/* Initialize GTT memory pool */
1991 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1992 	if (r) {
1993 		DRM_ERROR("Failed initializing GTT heap.\n");
1994 		return r;
1995 	}
1996 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1997 		 (unsigned)(gtt_size / (1024 * 1024)));
1998 
1999 	/* Initialize various on-chip memory pools */
2000 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
2001 			   adev->gds.gds_size);
2002 	if (r) {
2003 		DRM_ERROR("Failed initializing GDS heap.\n");
2004 		return r;
2005 	}
2006 
2007 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2008 			   adev->gds.gws_size);
2009 	if (r) {
2010 		DRM_ERROR("Failed initializing gws heap.\n");
2011 		return r;
2012 	}
2013 
2014 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2015 			   adev->gds.oa_size);
2016 	if (r) {
2017 		DRM_ERROR("Failed initializing oa heap.\n");
2018 		return r;
2019 	}
2020 
2021 	/* Register debugfs entries for amdgpu_ttm */
2022 	r = amdgpu_ttm_debugfs_init(adev);
2023 	if (r) {
2024 		DRM_ERROR("Failed to init debugfs\n");
2025 		return r;
2026 	}
2027 	return 0;
2028 }
2029 
2030 /**
2031  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2032  */
2033 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2034 {
2035 	void *stolen_vga_buf;
2036 	/* return the VGA stolen memory (if any) back to VRAM */
2037 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2038 }
2039 
2040 /**
2041  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2042  */
2043 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2044 {
2045 	if (!adev->mman.initialized)
2046 		return;
2047 
2048 	amdgpu_ttm_debugfs_fini(adev);
2049 	amdgpu_ttm_training_reserve_vram_fini(adev);
2050 	/* return the IP Discovery TMR memory back to VRAM */
2051 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2052 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2053 
2054 #ifdef __NetBSD__
2055 	if (adev->mman.aper_base_handle) {
2056 		bus_space_unmap(adev->gmc.aper_tag,
2057 		    adev->mman.aper_base_handle, adev->gmc.visible_vram_size);
2058 	}
2059 #else
2060 	if (adev->mman.aper_base_kaddr)
2061 		iounmap(adev->mman.aper_base_kaddr);
2062 #endif
2063 	adev->mman.aper_base_kaddr = NULL;
2064 
2065 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2066 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2067 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2068 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2069 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2070 	ttm_bo_device_release(&adev->mman.bdev);
2071 	adev->mman.initialized = false;
2072 	mutex_destroy(&adev->mman.gtt_window_lock);
2073 	DRM_INFO("amdgpu: ttm finalized\n");
2074 }
2075 
2076 /**
2077  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2078  *
2079  * @adev: amdgpu_device pointer
2080  * @enable: true when we can use buffer functions.
2081  *
2082  * Enable/disable use of buffer functions during suspend/resume. This should
2083  * only be called at bootup or when userspace isn't running.
2084  */
2085 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2086 {
2087 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2088 	uint64_t size;
2089 	int r;
2090 
2091 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2092 	    adev->mman.buffer_funcs_enabled == enable)
2093 		return;
2094 
2095 	if (enable) {
2096 		struct amdgpu_ring *ring;
2097 		struct drm_gpu_scheduler *sched;
2098 
2099 		ring = adev->mman.buffer_funcs_ring;
2100 		sched = &ring->sched;
2101 		r = drm_sched_entity_init(&adev->mman.entity,
2102 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2103 					  1, NULL);
2104 		if (r) {
2105 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2106 				  r);
2107 			return;
2108 		}
2109 	} else {
2110 		drm_sched_entity_destroy(&adev->mman.entity);
2111 		dma_fence_put(man->move);
2112 		man->move = NULL;
2113 	}
2114 
2115 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2116 	if (enable)
2117 		size = adev->gmc.real_vram_size;
2118 	else
2119 		size = adev->gmc.visible_vram_size;
2120 	man->size = size >> PAGE_SHIFT;
2121 	adev->mman.buffer_funcs_enabled = enable;
2122 }
2123 
2124 #ifdef __NetBSD__
2125 
2126 int
2127 amdgpu_mmap_object(struct drm_device *dev, off_t offset, size_t size,
2128     vm_prot_t prot, struct uvm_object **uobjp, voff_t *uoffsetp,
2129     struct file *file)
2130 {
2131 	struct amdgpu_device *adev = dev->dev_private;
2132 
2133 	KASSERT(0 == (offset & (PAGE_SIZE - 1)));
2134 
2135 	if (__predict_false(adev == NULL))	/* XXX How?? */
2136 		return -EINVAL;
2137 
2138 	return ttm_bo_mmap_object(&adev->mman.bdev, offset, size, prot,
2139 	    uobjp, uoffsetp, file);
2140 }
2141 
2142 #else  /* __NetBSD__ */
2143 
2144 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2145 {
2146 	struct drm_file *file_priv = filp->private_data;
2147 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2148 
2149 	if (adev == NULL)
2150 		return -EINVAL;
2151 
2152 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2153 }
2154 
2155 #endif	/* __NetBSD__ */
2156 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2157 			     struct ttm_mem_reg *mem, unsigned num_pages,
2158 			     uint64_t offset, unsigned window,
2159 			     struct amdgpu_ring *ring,
2160 			     uint64_t *addr)
2161 {
2162 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2163 	struct amdgpu_device *adev = ring->adev;
2164 	struct ttm_tt *ttm = bo->ttm;
2165 	struct amdgpu_job *job;
2166 	unsigned num_dw, num_bytes;
2167 	dma_addr_t *dma_address;
2168 	struct dma_fence *fence;
2169 	uint64_t src_addr, dst_addr;
2170 	uint64_t flags;
2171 	int r;
2172 
2173 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2174 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2175 
2176 	*addr = adev->gmc.gart_start;
2177 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2178 		AMDGPU_GPU_PAGE_SIZE;
2179 
2180 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2181 	num_bytes = num_pages * 8;
2182 
2183 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2184 	if (r)
2185 		return r;
2186 
2187 	src_addr = num_dw * 4;
2188 	src_addr += job->ibs[0].gpu_addr;
2189 
2190 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2191 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2192 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2193 				dst_addr, num_bytes);
2194 
2195 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2196 	WARN_ON(job->ibs[0].length_dw > num_dw);
2197 
2198 #ifdef __NetBSD__
2199 	__USE(dma_address);
2200 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2201 	r = amdgpu_gart_map(adev, 0, num_pages, offset, gtt->ttm.dma_address,
2202 	    flags, &job->ibs[0].ptr[num_dw]);
2203 #else
2204 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2205 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2206 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2207 			    &job->ibs[0].ptr[num_dw]);
2208 #endif
2209 	if (r)
2210 		goto error_free;
2211 
2212 	r = amdgpu_job_submit(job, &adev->mman.entity,
2213 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2214 	if (r)
2215 		goto error_free;
2216 
2217 	dma_fence_put(fence);
2218 
2219 	return r;
2220 
2221 error_free:
2222 	amdgpu_job_free(job);
2223 	return r;
2224 }
2225 
2226 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2227 		       uint64_t dst_offset, uint32_t byte_count,
2228 		       struct dma_resv *resv,
2229 		       struct dma_fence **fence, bool direct_submit,
2230 		       bool vm_needs_flush)
2231 {
2232 	struct amdgpu_device *adev = ring->adev;
2233 	struct amdgpu_job *job;
2234 
2235 	uint32_t max_bytes;
2236 	unsigned num_loops, num_dw;
2237 	unsigned i;
2238 	int r;
2239 
2240 	if (direct_submit && !ring->sched.ready) {
2241 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2242 		return -EINVAL;
2243 	}
2244 
2245 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2246 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2247 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2248 
2249 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2250 	if (r)
2251 		return r;
2252 
2253 	if (vm_needs_flush) {
2254 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2255 		job->vm_needs_flush = true;
2256 	}
2257 	if (resv) {
2258 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2259 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2260 				     false);
2261 		if (r) {
2262 			DRM_ERROR("sync failed (%d).\n", r);
2263 			goto error_free;
2264 		}
2265 	}
2266 
2267 	for (i = 0; i < num_loops; i++) {
2268 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2269 
2270 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2271 					dst_offset, cur_size_in_bytes);
2272 
2273 		src_offset += cur_size_in_bytes;
2274 		dst_offset += cur_size_in_bytes;
2275 		byte_count -= cur_size_in_bytes;
2276 	}
2277 
2278 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2279 	WARN_ON(job->ibs[0].length_dw > num_dw);
2280 	if (direct_submit)
2281 		r = amdgpu_job_submit_direct(job, ring, fence);
2282 	else
2283 		r = amdgpu_job_submit(job, &adev->mman.entity,
2284 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2285 	if (r)
2286 		goto error_free;
2287 
2288 	return r;
2289 
2290 error_free:
2291 	amdgpu_job_free(job);
2292 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2293 	return r;
2294 }
2295 
2296 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2297 		       uint32_t src_data,
2298 		       struct dma_resv *resv,
2299 		       struct dma_fence **fence)
2300 {
2301 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2302 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2303 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2304 
2305 	struct drm_mm_node *mm_node;
2306 	unsigned long num_pages;
2307 	unsigned int num_loops, num_dw;
2308 
2309 	struct amdgpu_job *job;
2310 	int r;
2311 
2312 	if (!adev->mman.buffer_funcs_enabled) {
2313 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2314 		return -EINVAL;
2315 	}
2316 
2317 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2318 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2319 		if (r)
2320 			return r;
2321 	}
2322 
2323 	num_pages = bo->tbo.num_pages;
2324 	mm_node = bo->tbo.mem.mm_node;
2325 	num_loops = 0;
2326 	while (num_pages) {
2327 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2328 
2329 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2330 		num_pages -= mm_node->size;
2331 		++mm_node;
2332 	}
2333 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2334 
2335 	/* for IB padding */
2336 	num_dw += 64;
2337 
2338 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2339 	if (r)
2340 		return r;
2341 
2342 	if (resv) {
2343 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2344 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2345 		if (r) {
2346 			DRM_ERROR("sync failed (%d).\n", r);
2347 			goto error_free;
2348 		}
2349 	}
2350 
2351 	num_pages = bo->tbo.num_pages;
2352 	mm_node = bo->tbo.mem.mm_node;
2353 
2354 	while (num_pages) {
2355 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2356 		uint64_t dst_addr;
2357 
2358 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2359 		while (byte_count) {
2360 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2361 							   max_bytes);
2362 
2363 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2364 						dst_addr, cur_size_in_bytes);
2365 
2366 			dst_addr += cur_size_in_bytes;
2367 			byte_count -= cur_size_in_bytes;
2368 		}
2369 
2370 		num_pages -= mm_node->size;
2371 		++mm_node;
2372 	}
2373 
2374 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2375 	WARN_ON(job->ibs[0].length_dw > num_dw);
2376 	r = amdgpu_job_submit(job, &adev->mman.entity,
2377 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2378 	if (r)
2379 		goto error_free;
2380 
2381 	return 0;
2382 
2383 error_free:
2384 	amdgpu_job_free(job);
2385 	return r;
2386 }
2387 
2388 #if defined(CONFIG_DEBUG_FS)
2389 
2390 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2391 {
2392 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2393 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2394 	struct drm_device *dev = node->minor->dev;
2395 	struct amdgpu_device *adev = dev->dev_private;
2396 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2397 	struct drm_printer p = drm_seq_file_printer(m);
2398 
2399 	man->func->debug(man, &p);
2400 	return 0;
2401 }
2402 
2403 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2404 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2405 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2406 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2407 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2408 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2409 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2410 #ifdef CONFIG_SWIOTLB
2411 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2412 #endif
2413 };
2414 
2415 /**
2416  * amdgpu_ttm_vram_read - Linear read access to VRAM
2417  *
2418  * Accesses VRAM via MMIO for debugging purposes.
2419  */
2420 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2421 				    size_t size, loff_t *pos)
2422 {
2423 	struct amdgpu_device *adev = file_inode(f)->i_private;
2424 	ssize_t result = 0;
2425 	int r;
2426 
2427 	if (size & 0x3 || *pos & 0x3)
2428 		return -EINVAL;
2429 
2430 	if (*pos >= adev->gmc.mc_vram_size)
2431 		return -ENXIO;
2432 
2433 	while (size) {
2434 		unsigned long flags;
2435 		uint32_t value;
2436 
2437 		if (*pos >= adev->gmc.mc_vram_size)
2438 			return result;
2439 
2440 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2441 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2442 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2443 		value = RREG32_NO_KIQ(mmMM_DATA);
2444 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2445 
2446 		r = put_user(value, (uint32_t *)buf);
2447 		if (r)
2448 			return r;
2449 
2450 		result += 4;
2451 		buf += 4;
2452 		*pos += 4;
2453 		size -= 4;
2454 	}
2455 
2456 	return result;
2457 }
2458 
2459 /**
2460  * amdgpu_ttm_vram_write - Linear write access to VRAM
2461  *
2462  * Accesses VRAM via MMIO for debugging purposes.
2463  */
2464 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2465 				    size_t size, loff_t *pos)
2466 {
2467 	struct amdgpu_device *adev = file_inode(f)->i_private;
2468 	ssize_t result = 0;
2469 	int r;
2470 
2471 	if (size & 0x3 || *pos & 0x3)
2472 		return -EINVAL;
2473 
2474 	if (*pos >= adev->gmc.mc_vram_size)
2475 		return -ENXIO;
2476 
2477 	while (size) {
2478 		unsigned long flags;
2479 		uint32_t value;
2480 
2481 		if (*pos >= adev->gmc.mc_vram_size)
2482 			return result;
2483 
2484 		r = get_user(value, (uint32_t *)buf);
2485 		if (r)
2486 			return r;
2487 
2488 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2489 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2490 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2491 		WREG32_NO_KIQ(mmMM_DATA, value);
2492 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2493 
2494 		result += 4;
2495 		buf += 4;
2496 		*pos += 4;
2497 		size -= 4;
2498 	}
2499 
2500 	return result;
2501 }
2502 
2503 static const struct file_operations amdgpu_ttm_vram_fops = {
2504 	.owner = THIS_MODULE,
2505 	.read = amdgpu_ttm_vram_read,
2506 	.write = amdgpu_ttm_vram_write,
2507 	.llseek = default_llseek,
2508 };
2509 
2510 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2511 
2512 /**
2513  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2514  */
2515 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2516 				   size_t size, loff_t *pos)
2517 {
2518 	struct amdgpu_device *adev = file_inode(f)->i_private;
2519 	ssize_t result = 0;
2520 	int r;
2521 
2522 	while (size) {
2523 		loff_t p = *pos / PAGE_SIZE;
2524 		unsigned off = *pos & ~PAGE_MASK;
2525 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2526 		struct page *page;
2527 		void *ptr;
2528 
2529 		if (p >= adev->gart.num_cpu_pages)
2530 			return result;
2531 
2532 		page = adev->gart.pages[p];
2533 		if (page) {
2534 			ptr = kmap(page);
2535 			ptr += off;
2536 
2537 			r = copy_to_user(buf, ptr, cur_size);
2538 			kunmap(adev->gart.pages[p]);
2539 		} else
2540 			r = clear_user(buf, cur_size);
2541 
2542 		if (r)
2543 			return -EFAULT;
2544 
2545 		result += cur_size;
2546 		buf += cur_size;
2547 		*pos += cur_size;
2548 		size -= cur_size;
2549 	}
2550 
2551 	return result;
2552 }
2553 
2554 static const struct file_operations amdgpu_ttm_gtt_fops = {
2555 	.owner = THIS_MODULE,
2556 	.read = amdgpu_ttm_gtt_read,
2557 	.llseek = default_llseek
2558 };
2559 
2560 #endif
2561 
2562 /**
2563  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2564  *
2565  * This function is used to read memory that has been mapped to the
2566  * GPU and the known addresses are not physical addresses but instead
2567  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2568  */
2569 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2570 				 size_t size, loff_t *pos)
2571 {
2572 	struct amdgpu_device *adev = file_inode(f)->i_private;
2573 	struct iommu_domain *dom;
2574 	ssize_t result = 0;
2575 	int r;
2576 
2577 	/* retrieve the IOMMU domain if any for this device */
2578 	dom = iommu_get_domain_for_dev(adev->dev);
2579 
2580 	while (size) {
2581 		phys_addr_t addr = *pos & PAGE_MASK;
2582 		loff_t off = *pos & ~PAGE_MASK;
2583 		size_t bytes = PAGE_SIZE - off;
2584 		unsigned long pfn;
2585 		struct page *p;
2586 		void *ptr;
2587 
2588 		bytes = bytes < size ? bytes : size;
2589 
2590 		/* Translate the bus address to a physical address.  If
2591 		 * the domain is NULL it means there is no IOMMU active
2592 		 * and the address translation is the identity
2593 		 */
2594 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2595 
2596 		pfn = addr >> PAGE_SHIFT;
2597 		if (!pfn_valid(pfn))
2598 			return -EPERM;
2599 
2600 		p = pfn_to_page(pfn);
2601 		if (p->mapping != adev->mman.bdev.dev_mapping)
2602 			return -EPERM;
2603 
2604 		ptr = kmap(p);
2605 		r = copy_to_user(buf, ptr + off, bytes);
2606 		kunmap(p);
2607 		if (r)
2608 			return -EFAULT;
2609 
2610 		size -= bytes;
2611 		*pos += bytes;
2612 		result += bytes;
2613 	}
2614 
2615 	return result;
2616 }
2617 
2618 /**
2619  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2620  *
2621  * This function is used to write memory that has been mapped to the
2622  * GPU and the known addresses are not physical addresses but instead
2623  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2624  */
2625 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2626 				 size_t size, loff_t *pos)
2627 {
2628 	struct amdgpu_device *adev = file_inode(f)->i_private;
2629 	struct iommu_domain *dom;
2630 	ssize_t result = 0;
2631 	int r;
2632 
2633 	dom = iommu_get_domain_for_dev(adev->dev);
2634 
2635 	while (size) {
2636 		phys_addr_t addr = *pos & PAGE_MASK;
2637 		loff_t off = *pos & ~PAGE_MASK;
2638 		size_t bytes = PAGE_SIZE - off;
2639 		unsigned long pfn;
2640 		struct page *p;
2641 		void *ptr;
2642 
2643 		bytes = bytes < size ? bytes : size;
2644 
2645 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2646 
2647 		pfn = addr >> PAGE_SHIFT;
2648 		if (!pfn_valid(pfn))
2649 			return -EPERM;
2650 
2651 		p = pfn_to_page(pfn);
2652 		if (p->mapping != adev->mman.bdev.dev_mapping)
2653 			return -EPERM;
2654 
2655 		ptr = kmap(p);
2656 		r = copy_from_user(ptr + off, buf, bytes);
2657 		kunmap(p);
2658 		if (r)
2659 			return -EFAULT;
2660 
2661 		size -= bytes;
2662 		*pos += bytes;
2663 		result += bytes;
2664 	}
2665 
2666 	return result;
2667 }
2668 
2669 static const struct file_operations amdgpu_ttm_iomem_fops = {
2670 	.owner = THIS_MODULE,
2671 	.read = amdgpu_iomem_read,
2672 	.write = amdgpu_iomem_write,
2673 	.llseek = default_llseek
2674 };
2675 
2676 static const struct {
2677 	char *name;
2678 	const struct file_operations *fops;
2679 	int domain;
2680 } ttm_debugfs_entries[] = {
2681 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2682 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2683 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2684 #endif
2685 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2686 };
2687 
2688 #endif
2689 
2690 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2691 {
2692 #if defined(CONFIG_DEBUG_FS)
2693 	unsigned count;
2694 
2695 	struct drm_minor *minor = adev->ddev->primary;
2696 	struct dentry *ent, *root = minor->debugfs_root;
2697 
2698 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2699 		ent = debugfs_create_file(
2700 				ttm_debugfs_entries[count].name,
2701 				S_IFREG | S_IRUGO, root,
2702 				adev,
2703 				ttm_debugfs_entries[count].fops);
2704 		if (IS_ERR(ent))
2705 			return PTR_ERR(ent);
2706 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2707 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2708 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2709 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2710 		adev->mman.debugfs_entries[count] = ent;
2711 	}
2712 
2713 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2714 
2715 #ifdef CONFIG_SWIOTLB
2716 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2717 		--count;
2718 #endif
2719 
2720 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2721 #else
2722 	return 0;
2723 #endif
2724 }
2725 
2726 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2727 {
2728 #if defined(CONFIG_DEBUG_FS)
2729 	unsigned i;
2730 
2731 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2732 		debugfs_remove(adev->mman.debugfs_entries[i]);
2733 #endif
2734 }
2735