xref: /netbsd-src/sys/external/bsd/compiler_rt/dist/lib/builtins/fp_lib.h (revision 48fb7bfab72acd4281a53bbee5ccf3f809019e75)
1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a configuration header for soft-float routines in compiler-rt.
11 // This file does not provide any part of the compiler-rt interface, but defines
12 // many useful constants and utility routines that are used in the
13 // implementation of the soft-float routines in compiler-rt.
14 //
15 // Assumes that float and double correspond to the IEEE-754 binary32 and
16 // binary64 types, respectively, and that integer endianness matches floating
17 // point endianness on the target platform.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef FP_LIB_HEADER
22 #define FP_LIB_HEADER
23 
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include <limits.h>
27 #include "int_lib.h"
28 
29 #if defined SINGLE_PRECISION
30 
31 typedef uint32_t rep_t;
32 typedef int32_t srep_t;
33 typedef float fp_t;
34 #define REP_C UINT32_C
35 #define significandBits 23
36 
37 static inline int rep_clz(rep_t a) {
38     return __builtin_clz(a);
39 }
40 
41 // 32x32 --> 64 bit multiply
42 static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
43     const uint64_t product = (uint64_t)a*b;
44     *hi = product >> 32;
45     *lo = product;
46 }
47 
48 #elif defined DOUBLE_PRECISION
49 
50 typedef uint64_t rep_t;
51 typedef int64_t srep_t;
52 typedef double fp_t;
53 #define REP_C UINT64_C
54 #define significandBits 52
55 
56 static inline int rep_clz(rep_t a) {
57 #if defined __LP64__
58     return __builtin_clzl(a);
59 #else
60     if (a & REP_C(0xffffffff00000000))
61         return __builtin_clz(a >> 32);
62     else
63         return 32 + __builtin_clz(a & REP_C(0xffffffff));
64 #endif
65 }
66 
67 #define loWord(a) (a & 0xffffffffU)
68 #define hiWord(a) (a >> 32)
69 
70 // 64x64 -> 128 wide multiply for platforms that don't have such an operation;
71 // many 64-bit platforms have this operation, but they tend to have hardware
72 // floating-point, so we don't bother with a special case for them here.
73 static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
74     // Each of the component 32x32 -> 64 products
75     const uint64_t plolo = loWord(a) * loWord(b);
76     const uint64_t plohi = loWord(a) * hiWord(b);
77     const uint64_t philo = hiWord(a) * loWord(b);
78     const uint64_t phihi = hiWord(a) * hiWord(b);
79     // Sum terms that contribute to lo in a way that allows us to get the carry
80     const uint64_t r0 = loWord(plolo);
81     const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
82     *lo = r0 + (r1 << 32);
83     // Sum terms contributing to hi with the carry from lo
84     *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
85 }
86 #undef loWord
87 #undef hiWord
88 
89 #else
90 #error Either SINGLE_PRECISION or DOUBLE_PRECISION must be defined.
91 #endif
92 
93 #define typeWidth       (sizeof(rep_t)*CHAR_BIT)
94 #define exponentBits    (typeWidth - significandBits - 1)
95 #define maxExponent     ((1 << exponentBits) - 1)
96 #define exponentBias    (maxExponent >> 1)
97 
98 #define implicitBit     (REP_C(1) << significandBits)
99 #define significandMask (implicitBit - 1U)
100 #define signBit         (REP_C(1) << (significandBits + exponentBits))
101 #define absMask         (signBit - 1U)
102 #define exponentMask    (absMask ^ significandMask)
103 #define oneRep          ((rep_t)exponentBias << significandBits)
104 #define infRep          exponentMask
105 #define quietBit        (implicitBit >> 1)
106 #define qnanRep         (exponentMask | quietBit)
107 
108 static inline rep_t toRep(fp_t x) {
109     const union { fp_t f; rep_t i; } rep = {.f = x};
110     return rep.i;
111 }
112 
113 static inline fp_t fromRep(rep_t x) {
114     const union { fp_t f; rep_t i; } rep = {.i = x};
115     return rep.f;
116 }
117 
118 static inline int normalize(rep_t *significand) {
119     const int shift = rep_clz(*significand) - rep_clz(implicitBit);
120     *significand <<= shift;
121     return 1 - shift;
122 }
123 
124 static inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
125     *hi = *hi << count | *lo >> (typeWidth - count);
126     *lo = *lo << count;
127 }
128 
129 static inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, unsigned int count) {
130     if (count < typeWidth) {
131         const bool sticky = *lo << (typeWidth - count);
132         *lo = *hi << (typeWidth - count) | *lo >> count | sticky;
133         *hi = *hi >> count;
134     }
135     else if (count < 2*typeWidth) {
136         const bool sticky = *hi << (2*typeWidth - count) | *lo;
137         *lo = *hi >> (count - typeWidth) | sticky;
138         *hi = 0;
139     } else {
140         const bool sticky = *hi | *lo;
141         *lo = sticky;
142         *hi = 0;
143     }
144 }
145 
146 #endif // FP_LIB_HEADER
147