xref: /netbsd-src/sys/external/bsd/compiler_rt/dist/lib/builtins/extendsfdf2.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 //===-- lib/extendsfdf2.c - single -> double conversion -----------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a fairly generic conversion from a narrower to a wider
11 // IEEE-754 floating-point type.  The constants and types defined following the
12 // includes below parameterize the conversion.
13 //
14 // This routine can be trivially adapted to support conversions from
15 // half-precision or to quad-precision. It does not support types that don't
16 // use the usual IEEE-754 interchange formats; specifically, some work would be
17 // needed to adapt it to (for example) the Intel 80-bit format or PowerPC
18 // double-double format.
19 //
20 // Note please, however, that this implementation is only intended to support
21 // *widening* operations; if you need to convert to a *narrower* floating-point
22 // type (e.g. double -> float), then this routine will not do what you want it
23 // to.
24 //
25 // It also requires that integer types at least as large as both formats
26 // are available on the target platform; this may pose a problem when trying
27 // to add support for quad on some 32-bit systems, for example.  You also may
28 // run into trouble finding an appropriate CLZ function for wide source types;
29 // you will likely need to roll your own on some platforms.
30 //
31 // Finally, the following assumptions are made:
32 //
33 // 1. floating-point types and integer types have the same endianness on the
34 //    target platform
35 //
36 // 2. quiet NaNs, if supported, are indicated by the leading bit of the
37 //    significand field being set
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "int_lib.h"
42 
43 typedef float src_t;
44 typedef uint32_t src_rep_t;
45 #define SRC_REP_C UINT32_C
46 static const int srcSigBits = 23;
47 #define src_rep_t_clz __builtin_clz
48 
49 typedef double dst_t;
50 typedef uint64_t dst_rep_t;
51 #define DST_REP_C UINT64_C
52 static const int dstSigBits = 52;
53 
54 // End of specialization parameters.  Two helper routines for conversion to and
55 // from the representation of floating-point data as integer values follow.
56 
57 static inline src_rep_t srcToRep(src_t x) {
58     const union { src_t f; src_rep_t i; } rep = {.f = x};
59     return rep.i;
60 }
61 
62 static inline dst_t dstFromRep(dst_rep_t x) {
63     const union { dst_t f; dst_rep_t i; } rep = {.i = x};
64     return rep.f;
65 }
66 
67 // End helper routines.  Conversion implementation follows.
68 
69 ARM_EABI_FNALIAS(f2d, extendsfdf2)
70 
71 COMPILER_RT_ABI dst_t
72 __extendsfdf2(src_t a) {
73 
74     // Various constants whose values follow from the type parameters.
75     // Any reasonable optimizer will fold and propagate all of these.
76     const int srcBits = sizeof(src_t)*CHAR_BIT;
77     const int srcExpBits = srcBits - srcSigBits - 1;
78     const int srcInfExp = (1 << srcExpBits) - 1;
79     const int srcExpBias = srcInfExp >> 1;
80 
81     const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
82     const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
83     const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
84     const src_rep_t srcAbsMask = srcSignMask - 1;
85     const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
86     const src_rep_t srcNaNCode = srcQNaN - 1;
87 
88     const int dstBits = sizeof(dst_t)*CHAR_BIT;
89     const int dstExpBits = dstBits - dstSigBits - 1;
90     const int dstInfExp = (1 << dstExpBits) - 1;
91     const int dstExpBias = dstInfExp >> 1;
92 
93     const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
94 
95     // Break a into a sign and representation of the absolute value
96     const src_rep_t aRep = srcToRep(a);
97     const src_rep_t aAbs = aRep & srcAbsMask;
98     const src_rep_t sign = aRep & srcSignMask;
99     dst_rep_t absResult;
100 
101     if (aAbs - srcMinNormal < srcInfinity - srcMinNormal) {
102         // a is a normal number.
103         // Extend to the destination type by shifting the significand and
104         // exponent into the proper position and rebiasing the exponent.
105         absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
106         absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
107     }
108 
109     else if (aAbs >= srcInfinity) {
110         // a is NaN or infinity.
111         // Conjure the result by beginning with infinity, then setting the qNaN
112         // bit (if needed) and right-aligning the rest of the trailing NaN
113         // payload field.
114         absResult = (dst_rep_t)dstInfExp << dstSigBits;
115         absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
116         absResult |= aAbs & srcNaNCode;
117     }
118 
119     else if (aAbs) {
120         // a is denormal.
121         // renormalize the significand and clear the leading bit, then insert
122         // the correct adjusted exponent in the destination type.
123         const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
124         absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
125         absResult ^= dstMinNormal;
126         const int resultExponent = dstExpBias - srcExpBias - scale + 1;
127         absResult |= (dst_rep_t)resultExponent << dstSigBits;
128     }
129 
130     else {
131         // a is zero.
132         absResult = 0;
133     }
134 
135     // Apply the signbit to (dst_t)abs(a).
136     const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
137     return dstFromRep(result);
138 }
139