1 //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is dual licensed under the MIT and the University of Illinois Open 6 // Source Licenses. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements single-precision soft-float division 11 // with the IEEE-754 default rounding (to nearest, ties to even). 12 // 13 // For simplicity, this implementation currently flushes denormals to zero. 14 // It should be a fairly straightforward exercise to implement gradual 15 // underflow with correct rounding. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define SINGLE_PRECISION 20 #include "fp_lib.h" 21 22 COMPILER_RT_ABI fp_t 23 __divsf3(fp_t a, fp_t b) { 24 25 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; 26 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; 27 const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; 28 29 rep_t aSignificand = toRep(a) & significandMask; 30 rep_t bSignificand = toRep(b) & significandMask; 31 int scale = 0; 32 33 // Detect if a or b is zero, denormal, infinity, or NaN. 34 if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { 35 36 const rep_t aAbs = toRep(a) & absMask; 37 const rep_t bAbs = toRep(b) & absMask; 38 39 // NaN / anything = qNaN 40 if (aAbs > infRep) return fromRep(toRep(a) | quietBit); 41 // anything / NaN = qNaN 42 if (bAbs > infRep) return fromRep(toRep(b) | quietBit); 43 44 if (aAbs == infRep) { 45 // infinity / infinity = NaN 46 if (bAbs == infRep) return fromRep(qnanRep); 47 // infinity / anything else = +/- infinity 48 else return fromRep(aAbs | quotientSign); 49 } 50 51 // anything else / infinity = +/- 0 52 if (bAbs == infRep) return fromRep(quotientSign); 53 54 if (!aAbs) { 55 // zero / zero = NaN 56 if (!bAbs) return fromRep(qnanRep); 57 // zero / anything else = +/- zero 58 else return fromRep(quotientSign); 59 } 60 // anything else / zero = +/- infinity 61 if (!bAbs) return fromRep(infRep | quotientSign); 62 63 // one or both of a or b is denormal, the other (if applicable) is a 64 // normal number. Renormalize one or both of a and b, and set scale to 65 // include the necessary exponent adjustment. 66 if (aAbs < implicitBit) scale += normalize(&aSignificand); 67 if (bAbs < implicitBit) scale -= normalize(&bSignificand); 68 } 69 70 // Or in the implicit significand bit. (If we fell through from the 71 // denormal path it was already set by normalize( ), but setting it twice 72 // won't hurt anything.) 73 aSignificand |= implicitBit; 74 bSignificand |= implicitBit; 75 int quotientExponent = aExponent - bExponent + scale; 76 77 // Align the significand of b as a Q31 fixed-point number in the range 78 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax 79 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This 80 // is accurate to about 3.5 binary digits. 81 uint32_t q31b = bSignificand << 8; 82 uint32_t reciprocal = UINT32_C(0x7504f333) - q31b; 83 84 // Now refine the reciprocal estimate using a Newton-Raphson iteration: 85 // 86 // x1 = x0 * (2 - x0 * b) 87 // 88 // This doubles the number of correct binary digits in the approximation 89 // with each iteration, so after three iterations, we have about 28 binary 90 // digits of accuracy. 91 uint32_t correction; 92 correction = -((uint64_t)reciprocal * q31b >> 32); 93 reciprocal = (uint64_t)reciprocal * correction >> 31; 94 correction = -((uint64_t)reciprocal * q31b >> 32); 95 reciprocal = (uint64_t)reciprocal * correction >> 31; 96 correction = -((uint64_t)reciprocal * q31b >> 32); 97 reciprocal = (uint64_t)reciprocal * correction >> 31; 98 99 // Exhaustive testing shows that the error in reciprocal after three steps 100 // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our 101 // expectations. We bump the reciprocal by a tiny value to force the error 102 // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to 103 // be specific). This also causes 1/1 to give a sensible approximation 104 // instead of zero (due to overflow). 105 reciprocal -= 2; 106 107 // The numerical reciprocal is accurate to within 2^-28, lies in the 108 // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller 109 // than the true reciprocal of b. Multiplying a by this reciprocal thus 110 // gives a numerical q = a/b in Q24 with the following properties: 111 // 112 // 1. q < a/b 113 // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0) 114 // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes 115 // from the fact that we truncate the product, and the 2^27 term 116 // is the error in the reciprocal of b scaled by the maximum 117 // possible value of a. As a consequence of this error bound, 118 // either q or nextafter(q) is the correctly rounded 119 rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32; 120 121 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). 122 // In either case, we are going to compute a residual of the form 123 // 124 // r = a - q*b 125 // 126 // We know from the construction of q that r satisfies: 127 // 128 // 0 <= r < ulp(q)*b 129 // 130 // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we 131 // already have the correct result. The exact halfway case cannot occur. 132 // We also take this time to right shift quotient if it falls in the [1,2) 133 // range and adjust the exponent accordingly. 134 rep_t residual; 135 if (quotient < (implicitBit << 1)) { 136 residual = (aSignificand << 24) - quotient * bSignificand; 137 quotientExponent--; 138 } else { 139 quotient >>= 1; 140 residual = (aSignificand << 23) - quotient * bSignificand; 141 } 142 143 const int writtenExponent = quotientExponent + exponentBias; 144 145 if (writtenExponent >= maxExponent) { 146 // If we have overflowed the exponent, return infinity. 147 return fromRep(infRep | quotientSign); 148 } 149 150 else if (writtenExponent < 1) { 151 // Flush denormals to zero. In the future, it would be nice to add 152 // code to round them correctly. 153 return fromRep(quotientSign); 154 } 155 156 else { 157 const bool round = (residual << 1) > bSignificand; 158 // Clear the implicit bit 159 rep_t absResult = quotient & significandMask; 160 // Insert the exponent 161 absResult |= (rep_t)writtenExponent << significandBits; 162 // Round 163 absResult += round; 164 // Insert the sign and return 165 return fromRep(absResult | quotientSign); 166 } 167 } 168 169 #if defined(__ARM_EABI__) 170 #if defined(COMPILER_RT_ARMHF_TARGET) 171 AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) { 172 return __divsf3(a, b); 173 } 174 #else 175 AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) COMPILER_RT_ALIAS(__divsf3); 176 #endif 177 #endif 178