1 //===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is dual licensed under the MIT and the University of Illinois Open 6 // Source Licenses. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements double-precision soft-float division 11 // with the IEEE-754 default rounding (to nearest, ties to even). 12 // 13 // For simplicity, this implementation currently flushes denormals to zero. 14 // It should be a fairly straightforward exercise to implement gradual 15 // underflow with correct rounding. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define DOUBLE_PRECISION 20 #include "fp_lib.h" 21 22 COMPILER_RT_ABI fp_t 23 __divdf3(fp_t a, fp_t b) { 24 25 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; 26 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; 27 const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; 28 29 rep_t aSignificand = toRep(a) & significandMask; 30 rep_t bSignificand = toRep(b) & significandMask; 31 int scale = 0; 32 33 // Detect if a or b is zero, denormal, infinity, or NaN. 34 if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { 35 36 const rep_t aAbs = toRep(a) & absMask; 37 const rep_t bAbs = toRep(b) & absMask; 38 39 // NaN / anything = qNaN 40 if (aAbs > infRep) return fromRep(toRep(a) | quietBit); 41 // anything / NaN = qNaN 42 if (bAbs > infRep) return fromRep(toRep(b) | quietBit); 43 44 if (aAbs == infRep) { 45 // infinity / infinity = NaN 46 if (bAbs == infRep) return fromRep(qnanRep); 47 // infinity / anything else = +/- infinity 48 else return fromRep(aAbs | quotientSign); 49 } 50 51 // anything else / infinity = +/- 0 52 if (bAbs == infRep) return fromRep(quotientSign); 53 54 if (!aAbs) { 55 // zero / zero = NaN 56 if (!bAbs) return fromRep(qnanRep); 57 // zero / anything else = +/- zero 58 else return fromRep(quotientSign); 59 } 60 // anything else / zero = +/- infinity 61 if (!bAbs) return fromRep(infRep | quotientSign); 62 63 // one or both of a or b is denormal, the other (if applicable) is a 64 // normal number. Renormalize one or both of a and b, and set scale to 65 // include the necessary exponent adjustment. 66 if (aAbs < implicitBit) scale += normalize(&aSignificand); 67 if (bAbs < implicitBit) scale -= normalize(&bSignificand); 68 } 69 70 // Or in the implicit significand bit. (If we fell through from the 71 // denormal path it was already set by normalize( ), but setting it twice 72 // won't hurt anything.) 73 aSignificand |= implicitBit; 74 bSignificand |= implicitBit; 75 int quotientExponent = aExponent - bExponent + scale; 76 77 // Align the significand of b as a Q31 fixed-point number in the range 78 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax 79 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This 80 // is accurate to about 3.5 binary digits. 81 const uint32_t q31b = bSignificand >> 21; 82 uint32_t recip32 = UINT32_C(0x7504f333) - q31b; 83 84 // Now refine the reciprocal estimate using a Newton-Raphson iteration: 85 // 86 // x1 = x0 * (2 - x0 * b) 87 // 88 // This doubles the number of correct binary digits in the approximation 89 // with each iteration, so after three iterations, we have about 28 binary 90 // digits of accuracy. 91 uint32_t correction32; 92 correction32 = -((uint64_t)recip32 * q31b >> 32); 93 recip32 = (uint64_t)recip32 * correction32 >> 31; 94 correction32 = -((uint64_t)recip32 * q31b >> 32); 95 recip32 = (uint64_t)recip32 * correction32 >> 31; 96 correction32 = -((uint64_t)recip32 * q31b >> 32); 97 recip32 = (uint64_t)recip32 * correction32 >> 31; 98 99 // recip32 might have overflowed to exactly zero in the preceding 100 // computation if the high word of b is exactly 1.0. This would sabotage 101 // the full-width final stage of the computation that follows, so we adjust 102 // recip32 downward by one bit. 103 recip32--; 104 105 // We need to perform one more iteration to get us to 56 binary digits; 106 // The last iteration needs to happen with extra precision. 107 const uint32_t q63blo = bSignificand << 11; 108 uint64_t correction, reciprocal; 109 correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32)); 110 uint32_t cHi = correction >> 32; 111 uint32_t cLo = correction; 112 reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32); 113 114 // We already adjusted the 32-bit estimate, now we need to adjust the final 115 // 64-bit reciprocal estimate downward to ensure that it is strictly smaller 116 // than the infinitely precise exact reciprocal. Because the computation 117 // of the Newton-Raphson step is truncating at every step, this adjustment 118 // is small; most of the work is already done. 119 reciprocal -= 2; 120 121 // The numerical reciprocal is accurate to within 2^-56, lies in the 122 // interval [0.5, 1.0), and is strictly smaller than the true reciprocal 123 // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b 124 // in Q53 with the following properties: 125 // 126 // 1. q < a/b 127 // 2. q is in the interval [0.5, 2.0) 128 // 3. the error in q is bounded away from 2^-53 (actually, we have a 129 // couple of bits to spare, but this is all we need). 130 131 // We need a 64 x 64 multiply high to compute q, which isn't a basic 132 // operation in C, so we need to be a little bit fussy. 133 rep_t quotient, quotientLo; 134 wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo); 135 136 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). 137 // In either case, we are going to compute a residual of the form 138 // 139 // r = a - q*b 140 // 141 // We know from the construction of q that r satisfies: 142 // 143 // 0 <= r < ulp(q)*b 144 // 145 // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we 146 // already have the correct result. The exact halfway case cannot occur. 147 // We also take this time to right shift quotient if it falls in the [1,2) 148 // range and adjust the exponent accordingly. 149 rep_t residual; 150 if (quotient < (implicitBit << 1)) { 151 residual = (aSignificand << 53) - quotient * bSignificand; 152 quotientExponent--; 153 } else { 154 quotient >>= 1; 155 residual = (aSignificand << 52) - quotient * bSignificand; 156 } 157 158 const int writtenExponent = quotientExponent + exponentBias; 159 160 if (writtenExponent >= maxExponent) { 161 // If we have overflowed the exponent, return infinity. 162 return fromRep(infRep | quotientSign); 163 } 164 165 else if (writtenExponent < 1) { 166 // Flush denormals to zero. In the future, it would be nice to add 167 // code to round them correctly. 168 return fromRep(quotientSign); 169 } 170 171 else { 172 const bool round = (residual << 1) > bSignificand; 173 // Clear the implicit bit 174 rep_t absResult = quotient & significandMask; 175 // Insert the exponent 176 absResult |= (rep_t)writtenExponent << significandBits; 177 // Round 178 absResult += round; 179 // Insert the sign and return 180 const double result = fromRep(absResult | quotientSign); 181 return result; 182 } 183 } 184 185 #if defined(__ARM_EABI__) 186 #if defined(COMPILER_RT_ARMHF_TARGET) 187 AEABI_RTABI fp_t __aeabi_ddiv(fp_t a, fp_t b) { 188 return __divdf3(a, b); 189 } 190 #else 191 AEABI_RTABI fp_t __aeabi_ddiv(fp_t a, fp_t b) COMPILER_RT_ALIAS(__divdf3); 192 #endif 193 #endif 194