1 /* $NetBSD: xhci.c,v 1.132 2020/06/06 08:56:30 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 2013 Jonathan A. Kollasch 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * USB rev 2.0 and rev 3.1 specification 31 * http://www.usb.org/developers/docs/ 32 * xHCI rev 1.1 specification 33 * http://www.intel.com/technology/usb/spec.htm 34 */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.132 2020/06/06 08:56:30 skrll Exp $"); 38 39 #ifdef _KERNEL_OPT 40 #include "opt_usb.h" 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/kernel.h> 46 #include <sys/kmem.h> 47 #include <sys/device.h> 48 #include <sys/select.h> 49 #include <sys/proc.h> 50 #include <sys/queue.h> 51 #include <sys/mutex.h> 52 #include <sys/condvar.h> 53 #include <sys/bus.h> 54 #include <sys/cpu.h> 55 #include <sys/sysctl.h> 56 57 #include <machine/endian.h> 58 59 #include <dev/usb/usb.h> 60 #include <dev/usb/usbdi.h> 61 #include <dev/usb/usbdivar.h> 62 #include <dev/usb/usbdi_util.h> 63 #include <dev/usb/usbhist.h> 64 #include <dev/usb/usb_mem.h> 65 #include <dev/usb/usb_quirks.h> 66 67 #include <dev/usb/xhcireg.h> 68 #include <dev/usb/xhcivar.h> 69 #include <dev/usb/usbroothub.h> 70 71 72 #ifdef USB_DEBUG 73 #ifndef XHCI_DEBUG 74 #define xhcidebug 0 75 #else /* !XHCI_DEBUG */ 76 #define HEXDUMP(a, b, c) \ 77 do { \ 78 if (xhcidebug > 0) \ 79 hexdump(printf, a, b, c); \ 80 } while (/*CONSTCOND*/0) 81 static int xhcidebug = 0; 82 83 SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup") 84 { 85 int err; 86 const struct sysctlnode *rnode; 87 const struct sysctlnode *cnode; 88 89 err = sysctl_createv(clog, 0, NULL, &rnode, 90 CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci", 91 SYSCTL_DESCR("xhci global controls"), 92 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); 93 94 if (err) 95 goto fail; 96 97 /* control debugging printfs */ 98 err = sysctl_createv(clog, 0, &rnode, &cnode, 99 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 100 "debug", SYSCTL_DESCR("Enable debugging output"), 101 NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL); 102 if (err) 103 goto fail; 104 105 return; 106 fail: 107 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); 108 } 109 110 #endif /* !XHCI_DEBUG */ 111 #endif /* USB_DEBUG */ 112 113 #ifndef HEXDUMP 114 #define HEXDUMP(a, b, c) 115 #endif 116 117 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(xhcidebug,FMT,A,B,C,D) 118 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D) 119 #define XHCIHIST_FUNC() USBHIST_FUNC() 120 #define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug) 121 #define XHCIHIST_CALLARGS(FMT,A,B,C,D) \ 122 USBHIST_CALLARGS(xhcidebug,FMT,A,B,C,D) 123 124 #define XHCI_DCI_SLOT 0 125 #define XHCI_DCI_EP_CONTROL 1 126 127 #define XHCI_ICI_INPUT_CONTROL 0 128 129 struct xhci_pipe { 130 struct usbd_pipe xp_pipe; 131 struct usb_task xp_async_task; 132 }; 133 134 #define XHCI_COMMAND_RING_TRBS 256 135 #define XHCI_EVENT_RING_TRBS 256 136 #define XHCI_EVENT_RING_SEGMENTS 1 137 #define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT 138 139 static usbd_status xhci_open(struct usbd_pipe *); 140 static void xhci_close_pipe(struct usbd_pipe *); 141 static int xhci_intr1(struct xhci_softc * const); 142 static void xhci_softintr(void *); 143 static void xhci_poll(struct usbd_bus *); 144 static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int); 145 static void xhci_freex(struct usbd_bus *, struct usbd_xfer *); 146 static void xhci_abortx(struct usbd_xfer *); 147 static bool xhci_dying(struct usbd_bus *); 148 static void xhci_get_lock(struct usbd_bus *, kmutex_t **); 149 static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int, 150 struct usbd_port *); 151 static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *, 152 void *, int); 153 154 static usbd_status xhci_configure_endpoint(struct usbd_pipe *); 155 //static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *); 156 static usbd_status xhci_reset_endpoint(struct usbd_pipe *); 157 static usbd_status xhci_stop_endpoint(struct usbd_pipe *); 158 159 static void xhci_host_dequeue(struct xhci_ring * const); 160 static usbd_status xhci_set_dequeue(struct usbd_pipe *); 161 162 static usbd_status xhci_do_command(struct xhci_softc * const, 163 struct xhci_soft_trb * const, int); 164 static usbd_status xhci_do_command_locked(struct xhci_softc * const, 165 struct xhci_soft_trb * const, int); 166 static usbd_status xhci_init_slot(struct usbd_device *, uint32_t); 167 static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *); 168 static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool); 169 static usbd_status xhci_enable_slot(struct xhci_softc * const, 170 uint8_t * const); 171 static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t); 172 static usbd_status xhci_address_device(struct xhci_softc * const, 173 uint64_t, uint8_t, bool); 174 static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int); 175 static usbd_status xhci_update_ep0_mps(struct xhci_softc * const, 176 struct xhci_slot * const, u_int); 177 static usbd_status xhci_ring_init(struct xhci_softc * const, 178 struct xhci_ring **, size_t, size_t); 179 static void xhci_ring_free(struct xhci_softc * const, 180 struct xhci_ring ** const); 181 182 static void xhci_setup_ctx(struct usbd_pipe *); 183 static void xhci_setup_route(struct usbd_pipe *, uint32_t *); 184 static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *); 185 static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *); 186 static uint32_t xhci_bival2ival(uint32_t, uint32_t); 187 188 static void xhci_noop(struct usbd_pipe *); 189 190 static usbd_status xhci_root_intr_transfer(struct usbd_xfer *); 191 static usbd_status xhci_root_intr_start(struct usbd_xfer *); 192 static void xhci_root_intr_abort(struct usbd_xfer *); 193 static void xhci_root_intr_close(struct usbd_pipe *); 194 static void xhci_root_intr_done(struct usbd_xfer *); 195 196 static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *); 197 static usbd_status xhci_device_ctrl_start(struct usbd_xfer *); 198 static void xhci_device_ctrl_abort(struct usbd_xfer *); 199 static void xhci_device_ctrl_close(struct usbd_pipe *); 200 static void xhci_device_ctrl_done(struct usbd_xfer *); 201 202 static usbd_status xhci_device_intr_transfer(struct usbd_xfer *); 203 static usbd_status xhci_device_intr_start(struct usbd_xfer *); 204 static void xhci_device_intr_abort(struct usbd_xfer *); 205 static void xhci_device_intr_close(struct usbd_pipe *); 206 static void xhci_device_intr_done(struct usbd_xfer *); 207 208 static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *); 209 static usbd_status xhci_device_bulk_start(struct usbd_xfer *); 210 static void xhci_device_bulk_abort(struct usbd_xfer *); 211 static void xhci_device_bulk_close(struct usbd_pipe *); 212 static void xhci_device_bulk_done(struct usbd_xfer *); 213 214 static const struct usbd_bus_methods xhci_bus_methods = { 215 .ubm_open = xhci_open, 216 .ubm_softint = xhci_softintr, 217 .ubm_dopoll = xhci_poll, 218 .ubm_allocx = xhci_allocx, 219 .ubm_freex = xhci_freex, 220 .ubm_abortx = xhci_abortx, 221 .ubm_dying = xhci_dying, 222 .ubm_getlock = xhci_get_lock, 223 .ubm_newdev = xhci_new_device, 224 .ubm_rhctrl = xhci_roothub_ctrl, 225 }; 226 227 static const struct usbd_pipe_methods xhci_root_intr_methods = { 228 .upm_transfer = xhci_root_intr_transfer, 229 .upm_start = xhci_root_intr_start, 230 .upm_abort = xhci_root_intr_abort, 231 .upm_close = xhci_root_intr_close, 232 .upm_cleartoggle = xhci_noop, 233 .upm_done = xhci_root_intr_done, 234 }; 235 236 237 static const struct usbd_pipe_methods xhci_device_ctrl_methods = { 238 .upm_transfer = xhci_device_ctrl_transfer, 239 .upm_start = xhci_device_ctrl_start, 240 .upm_abort = xhci_device_ctrl_abort, 241 .upm_close = xhci_device_ctrl_close, 242 .upm_cleartoggle = xhci_noop, 243 .upm_done = xhci_device_ctrl_done, 244 }; 245 246 static const struct usbd_pipe_methods xhci_device_isoc_methods = { 247 .upm_cleartoggle = xhci_noop, 248 }; 249 250 static const struct usbd_pipe_methods xhci_device_bulk_methods = { 251 .upm_transfer = xhci_device_bulk_transfer, 252 .upm_start = xhci_device_bulk_start, 253 .upm_abort = xhci_device_bulk_abort, 254 .upm_close = xhci_device_bulk_close, 255 .upm_cleartoggle = xhci_noop, 256 .upm_done = xhci_device_bulk_done, 257 }; 258 259 static const struct usbd_pipe_methods xhci_device_intr_methods = { 260 .upm_transfer = xhci_device_intr_transfer, 261 .upm_start = xhci_device_intr_start, 262 .upm_abort = xhci_device_intr_abort, 263 .upm_close = xhci_device_intr_close, 264 .upm_cleartoggle = xhci_noop, 265 .upm_done = xhci_device_intr_done, 266 }; 267 268 static inline uint32_t 269 xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset) 270 { 271 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset); 272 } 273 274 static inline uint32_t 275 xhci_read_2(const struct xhci_softc * const sc, bus_size_t offset) 276 { 277 return bus_space_read_2(sc->sc_iot, sc->sc_ioh, offset); 278 } 279 280 static inline uint32_t 281 xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset) 282 { 283 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset); 284 } 285 286 static inline void 287 xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset, 288 uint32_t value) 289 { 290 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value); 291 } 292 293 #if 0 /* unused */ 294 static inline void 295 xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset, 296 uint32_t value) 297 { 298 bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value); 299 } 300 #endif /* unused */ 301 302 static inline uint32_t 303 xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset) 304 { 305 return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset); 306 } 307 308 static inline uint32_t 309 xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset) 310 { 311 return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset); 312 } 313 314 static inline void 315 xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset, 316 uint32_t value) 317 { 318 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value); 319 } 320 321 static inline uint64_t 322 xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset) 323 { 324 uint64_t value; 325 326 if (sc->sc_ac64) { 327 #ifdef XHCI_USE_BUS_SPACE_8 328 value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset); 329 #else 330 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset); 331 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh, 332 offset + 4) << 32; 333 #endif 334 } else { 335 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset); 336 } 337 338 return value; 339 } 340 341 static inline void 342 xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset, 343 uint64_t value) 344 { 345 if (sc->sc_ac64) { 346 #ifdef XHCI_USE_BUS_SPACE_8 347 bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value); 348 #else 349 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0, 350 (value >> 0) & 0xffffffff); 351 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4, 352 (value >> 32) & 0xffffffff); 353 #endif 354 } else { 355 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value); 356 } 357 } 358 359 static inline void 360 xhci_op_barrier(const struct xhci_softc * const sc, bus_size_t offset, 361 bus_size_t len, int flags) 362 { 363 bus_space_barrier(sc->sc_iot, sc->sc_obh, offset, len, flags); 364 } 365 366 static inline uint32_t 367 xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset) 368 { 369 return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset); 370 } 371 372 static inline void 373 xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset, 374 uint32_t value) 375 { 376 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value); 377 } 378 379 #if 0 /* unused */ 380 static inline uint64_t 381 xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset) 382 { 383 uint64_t value; 384 385 if (sc->sc_ac64) { 386 #ifdef XHCI_USE_BUS_SPACE_8 387 value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset); 388 #else 389 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset); 390 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh, 391 offset + 4) << 32; 392 #endif 393 } else { 394 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset); 395 } 396 397 return value; 398 } 399 #endif /* unused */ 400 401 static inline void 402 xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset, 403 uint64_t value) 404 { 405 if (sc->sc_ac64) { 406 #ifdef XHCI_USE_BUS_SPACE_8 407 bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value); 408 #else 409 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0, 410 (value >> 0) & 0xffffffff); 411 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4, 412 (value >> 32) & 0xffffffff); 413 #endif 414 } else { 415 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value); 416 } 417 } 418 419 #if 0 /* unused */ 420 static inline uint32_t 421 xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset) 422 { 423 return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset); 424 } 425 #endif /* unused */ 426 427 static inline void 428 xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset, 429 uint32_t value) 430 { 431 bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value); 432 } 433 434 /* --- */ 435 436 static inline uint8_t 437 xhci_ep_get_type(usb_endpoint_descriptor_t * const ed) 438 { 439 u_int eptype = 0; 440 441 switch (UE_GET_XFERTYPE(ed->bmAttributes)) { 442 case UE_CONTROL: 443 eptype = 0x0; 444 break; 445 case UE_ISOCHRONOUS: 446 eptype = 0x1; 447 break; 448 case UE_BULK: 449 eptype = 0x2; 450 break; 451 case UE_INTERRUPT: 452 eptype = 0x3; 453 break; 454 } 455 456 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) || 457 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)) 458 return eptype | 0x4; 459 else 460 return eptype; 461 } 462 463 static u_int 464 xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed) 465 { 466 /* xHCI 1.0 section 4.5.1 */ 467 u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress); 468 u_int in = 0; 469 470 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) || 471 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)) 472 in = 1; 473 474 return epaddr * 2 + in; 475 } 476 477 static inline u_int 478 xhci_dci_to_ici(const u_int i) 479 { 480 return i + 1; 481 } 482 483 static inline void * 484 xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs, 485 const u_int dci) 486 { 487 return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci); 488 } 489 490 #if 0 /* unused */ 491 static inline bus_addr_t 492 xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs, 493 const u_int dci) 494 { 495 return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci); 496 } 497 #endif /* unused */ 498 499 static inline void * 500 xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs, 501 const u_int ici) 502 { 503 return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici); 504 } 505 506 static inline bus_addr_t 507 xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs, 508 const u_int ici) 509 { 510 return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici); 511 } 512 513 static inline struct xhci_trb * 514 xhci_ring_trbv(struct xhci_ring * const xr, u_int idx) 515 { 516 return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx); 517 } 518 519 static inline bus_addr_t 520 xhci_ring_trbp(struct xhci_ring * const xr, u_int idx) 521 { 522 return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx); 523 } 524 525 static inline void 526 xhci_xfer_put_trb(struct xhci_xfer * const xx, u_int idx, 527 uint64_t parameter, uint32_t status, uint32_t control) 528 { 529 KASSERTMSG(idx < xx->xx_ntrb, "idx=%u xx_ntrb=%u", idx, xx->xx_ntrb); 530 xx->xx_trb[idx].trb_0 = parameter; 531 xx->xx_trb[idx].trb_2 = status; 532 xx->xx_trb[idx].trb_3 = control; 533 } 534 535 static inline void 536 xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status, 537 uint32_t control) 538 { 539 trb->trb_0 = htole64(parameter); 540 trb->trb_2 = htole32(status); 541 trb->trb_3 = htole32(control); 542 } 543 544 static int 545 xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx) 546 { 547 /* base address of TRBs */ 548 bus_addr_t trbp = xhci_ring_trbp(xr, 0); 549 550 /* trb_0 range sanity check */ 551 if (trb_0 == 0 || trb_0 < trbp || 552 (trb_0 - trbp) % sizeof(struct xhci_trb) != 0 || 553 (trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) { 554 return 1; 555 } 556 *idx = (trb_0 - trbp) / sizeof(struct xhci_trb); 557 return 0; 558 } 559 560 static unsigned int 561 xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs, 562 u_int dci) 563 { 564 uint32_t *cp; 565 566 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD); 567 cp = xhci_slot_get_dcv(sc, xs, dci); 568 return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0])); 569 } 570 571 static inline unsigned int 572 xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport) 573 { 574 const unsigned int port = ctlrport - 1; 575 const uint8_t bit = __BIT(port % NBBY); 576 577 return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit); 578 } 579 580 /* 581 * Return the roothub port for a controller port. Both are 1..n. 582 */ 583 static inline unsigned int 584 xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport) 585 { 586 587 return sc->sc_ctlrportmap[ctrlport - 1]; 588 } 589 590 /* 591 * Return the controller port for a bus roothub port. Both are 1..n. 592 */ 593 static inline unsigned int 594 xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn, 595 unsigned int rhport) 596 { 597 598 return sc->sc_rhportmap[bn][rhport - 1]; 599 } 600 601 /* --- */ 602 603 void 604 xhci_childdet(device_t self, device_t child) 605 { 606 struct xhci_softc * const sc = device_private(self); 607 608 KASSERT((sc->sc_child == child) || (sc->sc_child2 == child)); 609 if (child == sc->sc_child2) 610 sc->sc_child2 = NULL; 611 else if (child == sc->sc_child) 612 sc->sc_child = NULL; 613 } 614 615 int 616 xhci_detach(struct xhci_softc *sc, int flags) 617 { 618 int rv = 0; 619 620 if (sc->sc_child2 != NULL) { 621 rv = config_detach(sc->sc_child2, flags); 622 if (rv != 0) 623 return rv; 624 KASSERT(sc->sc_child2 == NULL); 625 } 626 627 if (sc->sc_child != NULL) { 628 rv = config_detach(sc->sc_child, flags); 629 if (rv != 0) 630 return rv; 631 KASSERT(sc->sc_child == NULL); 632 } 633 634 /* XXX unconfigure/free slots */ 635 636 /* verify: */ 637 xhci_rt_write_4(sc, XHCI_IMAN(0), 0); 638 xhci_op_write_4(sc, XHCI_USBCMD, 0); 639 /* do we need to wait for stop? */ 640 641 xhci_op_write_8(sc, XHCI_CRCR, 0); 642 xhci_ring_free(sc, &sc->sc_cr); 643 cv_destroy(&sc->sc_command_cv); 644 cv_destroy(&sc->sc_cmdbusy_cv); 645 646 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0); 647 xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0); 648 xhci_rt_write_8(sc, XHCI_ERDP(0), 0 | XHCI_ERDP_BUSY); 649 xhci_ring_free(sc, &sc->sc_er); 650 651 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma); 652 653 xhci_op_write_8(sc, XHCI_DCBAAP, 0); 654 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma); 655 656 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots); 657 658 kmem_free(sc->sc_ctlrportbus, 659 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY)); 660 kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int)); 661 662 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) { 663 kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int)); 664 } 665 666 mutex_destroy(&sc->sc_lock); 667 mutex_destroy(&sc->sc_intr_lock); 668 669 pool_cache_destroy(sc->sc_xferpool); 670 671 return rv; 672 } 673 674 int 675 xhci_activate(device_t self, enum devact act) 676 { 677 struct xhci_softc * const sc = device_private(self); 678 679 switch (act) { 680 case DVACT_DEACTIVATE: 681 sc->sc_dying = true; 682 return 0; 683 default: 684 return EOPNOTSUPP; 685 } 686 } 687 688 bool 689 xhci_suspend(device_t dv, const pmf_qual_t *qual) 690 { 691 return false; 692 } 693 694 bool 695 xhci_resume(device_t dv, const pmf_qual_t *qual) 696 { 697 return false; 698 } 699 700 bool 701 xhci_shutdown(device_t self, int flags) 702 { 703 return false; 704 } 705 706 static int 707 xhci_hc_reset(struct xhci_softc * const sc) 708 { 709 uint32_t usbcmd, usbsts; 710 int i; 711 712 /* Check controller not ready */ 713 for (i = 0; i < XHCI_WAIT_CNR; i++) { 714 usbsts = xhci_op_read_4(sc, XHCI_USBSTS); 715 if ((usbsts & XHCI_STS_CNR) == 0) 716 break; 717 usb_delay_ms(&sc->sc_bus, 1); 718 } 719 if (i >= XHCI_WAIT_CNR) { 720 aprint_error_dev(sc->sc_dev, "controller not ready timeout\n"); 721 return EIO; 722 } 723 724 /* Halt controller */ 725 usbcmd = 0; 726 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd); 727 usb_delay_ms(&sc->sc_bus, 1); 728 729 /* Reset controller */ 730 usbcmd = XHCI_CMD_HCRST; 731 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd); 732 for (i = 0; i < XHCI_WAIT_HCRST; i++) { 733 /* 734 * Wait 1ms first. Existing Intel xHCI requies 1ms delay to 735 * prevent system hang (Errata). 736 */ 737 usb_delay_ms(&sc->sc_bus, 1); 738 usbcmd = xhci_op_read_4(sc, XHCI_USBCMD); 739 if ((usbcmd & XHCI_CMD_HCRST) == 0) 740 break; 741 } 742 if (i >= XHCI_WAIT_HCRST) { 743 aprint_error_dev(sc->sc_dev, "host controller reset timeout\n"); 744 return EIO; 745 } 746 747 /* Check controller not ready */ 748 for (i = 0; i < XHCI_WAIT_CNR; i++) { 749 usbsts = xhci_op_read_4(sc, XHCI_USBSTS); 750 if ((usbsts & XHCI_STS_CNR) == 0) 751 break; 752 usb_delay_ms(&sc->sc_bus, 1); 753 } 754 if (i >= XHCI_WAIT_CNR) { 755 aprint_error_dev(sc->sc_dev, 756 "controller not ready timeout after reset\n"); 757 return EIO; 758 } 759 760 return 0; 761 } 762 763 764 /* 7.2 xHCI Support Protocol Capability */ 765 static void 766 xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp) 767 { 768 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 769 770 /* XXX Cache this lot */ 771 772 const uint32_t w0 = xhci_read_4(sc, ecp); 773 const uint32_t w4 = xhci_read_4(sc, ecp + 4); 774 const uint32_t w8 = xhci_read_4(sc, ecp + 8); 775 const uint32_t wc = xhci_read_4(sc, ecp + 0xc); 776 777 aprint_debug_dev(sc->sc_dev, 778 " SP: 0x%08x 0x%08x 0x%08x 0x%08x\n", w0, w4, w8, wc); 779 780 if (w4 != XHCI_XECP_USBID) 781 return; 782 783 const int major = XHCI_XECP_SP_W0_MAJOR(w0); 784 const int minor = XHCI_XECP_SP_W0_MINOR(w0); 785 const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8); 786 const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8); 787 788 const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16)); 789 switch (mm) { 790 case 0x0200: 791 case 0x0300: 792 case 0x0301: 793 case 0x0310: 794 aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n", 795 major == 3 ? "ss" : "hs", cpo, cpo + cpc -1); 796 break; 797 default: 798 aprint_error_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n", 799 major, minor); 800 return; 801 } 802 803 const size_t bus = (major == 3) ? 0 : 1; 804 805 /* Index arrays with 0..n-1 where ports are numbered 1..n */ 806 for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) { 807 if (sc->sc_ctlrportmap[cp] != 0) { 808 aprint_error_dev(sc->sc_dev, "controller port %zu " 809 "already assigned", cp); 810 continue; 811 } 812 813 sc->sc_ctlrportbus[cp / NBBY] |= 814 bus == 0 ? 0 : __BIT(cp % NBBY); 815 816 const size_t rhp = sc->sc_rhportcount[bus]++; 817 818 KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0, 819 "bus %zu rhp %zu is %d", bus, rhp, 820 sc->sc_rhportmap[bus][rhp]); 821 822 sc->sc_rhportmap[bus][rhp] = cp + 1; 823 sc->sc_ctlrportmap[cp] = rhp + 1; 824 } 825 } 826 827 /* Process extended capabilities */ 828 static void 829 xhci_ecp(struct xhci_softc *sc, uint32_t hcc) 830 { 831 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 832 833 bus_size_t ecp = XHCI_HCC_XECP(hcc) * 4; 834 while (ecp != 0) { 835 uint32_t ecr = xhci_read_4(sc, ecp); 836 aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr); 837 switch (XHCI_XECP_ID(ecr)) { 838 case XHCI_ID_PROTOCOLS: { 839 xhci_id_protocols(sc, ecp); 840 break; 841 } 842 case XHCI_ID_USB_LEGACY: { 843 uint8_t bios_sem; 844 845 /* Take host controller ownership from BIOS */ 846 bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM); 847 if (bios_sem) { 848 /* sets xHCI to be owned by OS */ 849 xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1); 850 aprint_debug_dev(sc->sc_dev, 851 "waiting for BIOS to give up control\n"); 852 for (int i = 0; i < 5000; i++) { 853 bios_sem = xhci_read_1(sc, ecp + 854 XHCI_XECP_BIOS_SEM); 855 if (bios_sem == 0) 856 break; 857 DELAY(1000); 858 } 859 if (bios_sem) { 860 aprint_error_dev(sc->sc_dev, 861 "timed out waiting for BIOS\n"); 862 } 863 } 864 break; 865 } 866 default: 867 break; 868 } 869 ecr = xhci_read_4(sc, ecp); 870 if (XHCI_XECP_NEXT(ecr) == 0) { 871 ecp = 0; 872 } else { 873 ecp += XHCI_XECP_NEXT(ecr) * 4; 874 } 875 } 876 } 877 878 #define XHCI_HCCPREV1_BITS \ 879 "\177\020" /* New bitmask */ \ 880 "f\020\020XECP\0" \ 881 "f\014\4MAXPSA\0" \ 882 "b\013CFC\0" \ 883 "b\012SEC\0" \ 884 "b\011SBD\0" \ 885 "b\010FSE\0" \ 886 "b\7NSS\0" \ 887 "b\6LTC\0" \ 888 "b\5LHRC\0" \ 889 "b\4PIND\0" \ 890 "b\3PPC\0" \ 891 "b\2CZC\0" \ 892 "b\1BNC\0" \ 893 "b\0AC64\0" \ 894 "\0" 895 #define XHCI_HCCV1_x_BITS \ 896 "\177\020" /* New bitmask */ \ 897 "f\020\020XECP\0" \ 898 "f\014\4MAXPSA\0" \ 899 "b\013CFC\0" \ 900 "b\012SEC\0" \ 901 "b\011SPC\0" \ 902 "b\010PAE\0" \ 903 "b\7NSS\0" \ 904 "b\6LTC\0" \ 905 "b\5LHRC\0" \ 906 "b\4PIND\0" \ 907 "b\3PPC\0" \ 908 "b\2CSZ\0" \ 909 "b\1BNC\0" \ 910 "b\0AC64\0" \ 911 "\0" 912 913 #define XHCI_HCC2_BITS \ 914 "\177\020" /* New bitmask */ \ 915 "b\7ETC_TSC\0" \ 916 "b\6ETC\0" \ 917 "b\5CIC\0" \ 918 "b\4LEC\0" \ 919 "b\3CTC\0" \ 920 "b\2FSC\0" \ 921 "b\1CMC\0" \ 922 "b\0U3C\0" \ 923 "\0" 924 925 void 926 xhci_start(struct xhci_softc *sc) 927 { 928 xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA); 929 if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0) 930 /* Intel xhci needs interrupt rate moderated. */ 931 xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP); 932 else 933 xhci_rt_write_4(sc, XHCI_IMOD(0), 0); 934 aprint_debug_dev(sc->sc_dev, "current IMOD %u\n", 935 xhci_rt_read_4(sc, XHCI_IMOD(0))); 936 937 /* Go! */ 938 xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS); 939 aprint_debug_dev(sc->sc_dev, "USBCMD 0x%08"PRIx32"\n", 940 xhci_op_read_4(sc, XHCI_USBCMD)); 941 } 942 943 int 944 xhci_init(struct xhci_softc *sc) 945 { 946 bus_size_t bsz; 947 uint32_t hcs1, hcs2, hcs3, hcc, dboff, rtsoff, hcc2; 948 uint32_t pagesize, config; 949 int i = 0; 950 uint16_t hciversion; 951 uint8_t caplength; 952 953 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 954 955 /* Set up the bus struct for the usb 3 and usb 2 buses */ 956 sc->sc_bus.ub_methods = &xhci_bus_methods; 957 sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe); 958 sc->sc_bus.ub_usedma = true; 959 sc->sc_bus.ub_hcpriv = sc; 960 961 sc->sc_bus2.ub_methods = &xhci_bus_methods; 962 sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe); 963 sc->sc_bus2.ub_revision = USBREV_2_0; 964 sc->sc_bus2.ub_usedma = true; 965 sc->sc_bus2.ub_hcpriv = sc; 966 sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag; 967 968 caplength = xhci_read_1(sc, XHCI_CAPLENGTH); 969 hciversion = xhci_read_2(sc, XHCI_HCIVERSION); 970 971 if (hciversion < XHCI_HCIVERSION_0_96 || 972 hciversion >= 0x0200) { 973 aprint_normal_dev(sc->sc_dev, 974 "xHCI version %x.%x not known to be supported\n", 975 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff); 976 } else { 977 aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n", 978 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff); 979 } 980 981 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength, 982 &sc->sc_cbh) != 0) { 983 aprint_error_dev(sc->sc_dev, "capability subregion failure\n"); 984 return ENOMEM; 985 } 986 987 hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1); 988 sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1); 989 sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1); 990 sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1); 991 hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2); 992 hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3); 993 aprint_debug_dev(sc->sc_dev, 994 "hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3); 995 996 hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS); 997 sc->sc_ac64 = XHCI_HCC_AC64(hcc); 998 sc->sc_ctxsz = XHCI_HCC_CSZ(hcc) ? 64 : 32; 999 1000 char sbuf[128]; 1001 if (hciversion < XHCI_HCIVERSION_1_0) 1002 snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, hcc); 1003 else 1004 snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, hcc); 1005 aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf); 1006 aprint_debug_dev(sc->sc_dev, "xECP %" __PRIxBITS "\n", 1007 XHCI_HCC_XECP(hcc) * 4); 1008 if (hciversion >= XHCI_HCIVERSION_1_1) { 1009 hcc2 = xhci_cap_read_4(sc, XHCI_HCCPARAMS2); 1010 snprintb(sbuf, sizeof(sbuf), XHCI_HCC2_BITS, hcc2); 1011 aprint_debug_dev(sc->sc_dev, "hcc2=%s\n", sbuf); 1012 } 1013 1014 /* default all ports to bus 0, i.e. usb 3 */ 1015 sc->sc_ctlrportbus = kmem_zalloc( 1016 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP); 1017 sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP); 1018 1019 /* controller port to bus roothub port map */ 1020 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) { 1021 sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP); 1022 } 1023 1024 /* 1025 * Process all Extended Capabilities 1026 */ 1027 xhci_ecp(sc, hcc); 1028 1029 bsz = XHCI_PORTSC(sc->sc_maxports); 1030 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz, 1031 &sc->sc_obh) != 0) { 1032 aprint_error_dev(sc->sc_dev, "operational subregion failure\n"); 1033 return ENOMEM; 1034 } 1035 1036 dboff = xhci_cap_read_4(sc, XHCI_DBOFF); 1037 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff, 1038 sc->sc_maxslots * 4, &sc->sc_dbh) != 0) { 1039 aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n"); 1040 return ENOMEM; 1041 } 1042 1043 rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF); 1044 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff, 1045 sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) { 1046 aprint_error_dev(sc->sc_dev, "runtime subregion failure\n"); 1047 return ENOMEM; 1048 } 1049 1050 int rv; 1051 rv = xhci_hc_reset(sc); 1052 if (rv != 0) { 1053 return rv; 1054 } 1055 1056 if (sc->sc_vendor_init) 1057 sc->sc_vendor_init(sc); 1058 1059 pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE); 1060 aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize); 1061 pagesize = ffs(pagesize); 1062 if (pagesize == 0) { 1063 aprint_error_dev(sc->sc_dev, "pagesize is 0\n"); 1064 return EIO; 1065 } 1066 sc->sc_pgsz = 1 << (12 + (pagesize - 1)); 1067 aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz); 1068 aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n", 1069 (uint32_t)sc->sc_maxslots); 1070 aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports); 1071 1072 usbd_status err; 1073 1074 sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2); 1075 aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf); 1076 if (sc->sc_maxspbuf != 0) { 1077 err = usb_allocmem(&sc->sc_bus, 1078 sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t), 1079 USBMALLOC_COHERENT, &sc->sc_spbufarray_dma); 1080 if (err) { 1081 aprint_error_dev(sc->sc_dev, 1082 "spbufarray init fail, err %d\n", err); 1083 return ENOMEM; 1084 } 1085 1086 sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) * 1087 sc->sc_maxspbuf, KM_SLEEP); 1088 uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0); 1089 for (i = 0; i < sc->sc_maxspbuf; i++) { 1090 usb_dma_t * const dma = &sc->sc_spbuf_dma[i]; 1091 /* allocate contexts */ 1092 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, 1093 sc->sc_pgsz, USBMALLOC_COHERENT, dma); 1094 if (err) { 1095 aprint_error_dev(sc->sc_dev, 1096 "spbufarray_dma init fail, err %d\n", err); 1097 rv = ENOMEM; 1098 goto bad1; 1099 } 1100 spbufarray[i] = htole64(DMAADDR(dma, 0)); 1101 usb_syncmem(dma, 0, sc->sc_pgsz, 1102 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1103 } 1104 1105 usb_syncmem(&sc->sc_spbufarray_dma, 0, 1106 sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE); 1107 } 1108 1109 config = xhci_op_read_4(sc, XHCI_CONFIG); 1110 config &= ~0xFF; 1111 config |= sc->sc_maxslots & 0xFF; 1112 xhci_op_write_4(sc, XHCI_CONFIG, config); 1113 1114 err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS, 1115 XHCI_COMMAND_RING_SEGMENTS_ALIGN); 1116 if (err) { 1117 aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n", 1118 err); 1119 rv = ENOMEM; 1120 goto bad1; 1121 } 1122 1123 err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS, 1124 XHCI_EVENT_RING_SEGMENTS_ALIGN); 1125 if (err) { 1126 aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n", 1127 err); 1128 rv = ENOMEM; 1129 goto bad2; 1130 } 1131 1132 usb_dma_t *dma; 1133 size_t size; 1134 size_t align; 1135 1136 dma = &sc->sc_eventst_dma; 1137 size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE, 1138 XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN); 1139 KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size); 1140 align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN; 1141 err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, dma); 1142 if (err) { 1143 aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n", 1144 err); 1145 rv = ENOMEM; 1146 goto bad3; 1147 } 1148 1149 memset(KERNADDR(dma, 0), 0, size); 1150 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE); 1151 aprint_debug_dev(sc->sc_dev, "eventst: 0x%016jx %p %zx\n", 1152 (uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0), 1153 KERNADDR(&sc->sc_eventst_dma, 0), 1154 sc->sc_eventst_dma.udma_block->size); 1155 1156 dma = &sc->sc_dcbaa_dma; 1157 size = (1 + sc->sc_maxslots) * sizeof(uint64_t); 1158 KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size); 1159 align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN; 1160 err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, dma); 1161 if (err) { 1162 aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err); 1163 rv = ENOMEM; 1164 goto bad4; 1165 } 1166 aprint_debug_dev(sc->sc_dev, "dcbaa: 0x%016jx %p %zx\n", 1167 (uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0), 1168 KERNADDR(&sc->sc_dcbaa_dma, 0), 1169 sc->sc_dcbaa_dma.udma_block->size); 1170 1171 memset(KERNADDR(dma, 0), 0, size); 1172 if (sc->sc_maxspbuf != 0) { 1173 /* 1174 * DCBA entry 0 hold the scratchbuf array pointer. 1175 */ 1176 *(uint64_t *)KERNADDR(dma, 0) = 1177 htole64(DMAADDR(&sc->sc_spbufarray_dma, 0)); 1178 } 1179 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE); 1180 1181 sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots, 1182 KM_SLEEP); 1183 if (sc->sc_slots == NULL) { 1184 aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err); 1185 rv = ENOMEM; 1186 goto bad; 1187 } 1188 1189 sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0, 1190 "xhcixfer", NULL, IPL_USB, NULL, NULL, NULL); 1191 if (sc->sc_xferpool == NULL) { 1192 aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n", 1193 err); 1194 rv = ENOMEM; 1195 goto bad; 1196 } 1197 1198 cv_init(&sc->sc_command_cv, "xhcicmd"); 1199 cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq"); 1200 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB); 1201 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB); 1202 1203 struct xhci_erste *erst; 1204 erst = KERNADDR(&sc->sc_eventst_dma, 0); 1205 erst[0].erste_0 = htole64(xhci_ring_trbp(sc->sc_er, 0)); 1206 erst[0].erste_2 = htole32(sc->sc_er->xr_ntrb); 1207 erst[0].erste_3 = htole32(0); 1208 usb_syncmem(&sc->sc_eventst_dma, 0, 1209 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE); 1210 1211 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS); 1212 xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0)); 1213 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(sc->sc_er, 0) | 1214 XHCI_ERDP_BUSY); 1215 1216 xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0)); 1217 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) | 1218 sc->sc_cr->xr_cs); 1219 1220 xhci_op_barrier(sc, 0, 4, BUS_SPACE_BARRIER_WRITE); 1221 1222 HEXDUMP("eventst", KERNADDR(&sc->sc_eventst_dma, 0), 1223 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS); 1224 1225 if ((sc->sc_quirks & XHCI_DEFERRED_START) == 0) 1226 xhci_start(sc); 1227 1228 return 0; 1229 1230 bad: 1231 if (sc->sc_xferpool) { 1232 pool_cache_destroy(sc->sc_xferpool); 1233 sc->sc_xferpool = NULL; 1234 } 1235 1236 if (sc->sc_slots) { 1237 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * 1238 sc->sc_maxslots); 1239 sc->sc_slots = NULL; 1240 } 1241 1242 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma); 1243 bad4: 1244 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma); 1245 bad3: 1246 xhci_ring_free(sc, &sc->sc_er); 1247 bad2: 1248 xhci_ring_free(sc, &sc->sc_cr); 1249 i = sc->sc_maxspbuf; 1250 bad1: 1251 for (int j = 0; j < i; j++) 1252 usb_freemem(&sc->sc_bus, &sc->sc_spbuf_dma[j]); 1253 usb_freemem(&sc->sc_bus, &sc->sc_spbufarray_dma); 1254 1255 return rv; 1256 } 1257 1258 static inline bool 1259 xhci_polling_p(struct xhci_softc * const sc) 1260 { 1261 return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling; 1262 } 1263 1264 int 1265 xhci_intr(void *v) 1266 { 1267 struct xhci_softc * const sc = v; 1268 int ret = 0; 1269 1270 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 1271 1272 if (sc == NULL) 1273 return 0; 1274 1275 mutex_spin_enter(&sc->sc_intr_lock); 1276 1277 if (sc->sc_dying || !device_has_power(sc->sc_dev)) 1278 goto done; 1279 1280 /* If we get an interrupt while polling, then just ignore it. */ 1281 if (xhci_polling_p(sc)) { 1282 #ifdef DIAGNOSTIC 1283 DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0); 1284 #endif 1285 goto done; 1286 } 1287 1288 ret = xhci_intr1(sc); 1289 if (ret) { 1290 KASSERT(sc->sc_child || sc->sc_child2); 1291 1292 /* 1293 * One of child busses could be already detached. It doesn't 1294 * matter on which of the two the softintr is scheduled. 1295 */ 1296 if (sc->sc_child) 1297 usb_schedsoftintr(&sc->sc_bus); 1298 else 1299 usb_schedsoftintr(&sc->sc_bus2); 1300 } 1301 done: 1302 mutex_spin_exit(&sc->sc_intr_lock); 1303 return ret; 1304 } 1305 1306 int 1307 xhci_intr1(struct xhci_softc * const sc) 1308 { 1309 uint32_t usbsts; 1310 uint32_t iman; 1311 1312 XHCIHIST_FUNC(); 1313 1314 usbsts = xhci_op_read_4(sc, XHCI_USBSTS); 1315 XHCIHIST_CALLARGS("USBSTS 0x%08jx", usbsts, 0, 0, 0); 1316 if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD | 1317 XHCI_STS_HCE)) == 0) { 1318 DPRINTFN(16, "ignored intr not for %jd", 1319 device_unit(sc->sc_dev), 0, 0, 0); 1320 return 0; 1321 } 1322 1323 /* 1324 * Clear EINT and other transient flags, to not misenterpret 1325 * next shared interrupt. Also, to avoid race, EINT must be cleared 1326 * before XHCI_IMAN_INTR_PEND is cleared. 1327 */ 1328 xhci_op_write_4(sc, XHCI_USBSTS, usbsts & XHCI_STS_RSVDP0); 1329 1330 #ifdef XHCI_DEBUG 1331 usbsts = xhci_op_read_4(sc, XHCI_USBSTS); 1332 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0); 1333 #endif 1334 1335 iman = xhci_rt_read_4(sc, XHCI_IMAN(0)); 1336 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0); 1337 iman |= XHCI_IMAN_INTR_PEND; 1338 xhci_rt_write_4(sc, XHCI_IMAN(0), iman); 1339 1340 #ifdef XHCI_DEBUG 1341 iman = xhci_rt_read_4(sc, XHCI_IMAN(0)); 1342 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0); 1343 usbsts = xhci_op_read_4(sc, XHCI_USBSTS); 1344 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0); 1345 #endif 1346 1347 return 1; 1348 } 1349 1350 /* 1351 * 3 port speed types used in USB stack 1352 * 1353 * usbdi speed 1354 * definition: USB_SPEED_* in usb.h 1355 * They are used in struct usbd_device in USB stack. 1356 * ioctl interface uses these values too. 1357 * port_status speed 1358 * definition: UPS_*_SPEED in usb.h 1359 * They are used in usb_port_status_t and valid only for USB 2.0. 1360 * Speed value is always 0 for Super Speed or more, and dwExtPortStatus 1361 * of usb_port_status_ext_t indicates port speed. 1362 * Note that some 3.0 values overlap with 2.0 values. 1363 * (e.g. 0x200 means UPS_POER_POWER_SS in SS and 1364 * means UPS_LOW_SPEED in HS.) 1365 * port status returned from hub also uses these values. 1366 * On NetBSD UPS_OTHER_SPEED indicates port speed is super speed 1367 * or more. 1368 * xspeed: 1369 * definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1) 1370 * They are used in only slot context and PORTSC reg of xhci. 1371 * The difference between usbdi speed and xspeed is 1372 * that FS and LS values are swapped. 1373 */ 1374 1375 /* convert usbdi speed to xspeed */ 1376 static int 1377 xhci_speed2xspeed(int speed) 1378 { 1379 switch (speed) { 1380 case USB_SPEED_LOW: return 2; 1381 case USB_SPEED_FULL: return 1; 1382 default: return speed; 1383 } 1384 } 1385 1386 #if 0 1387 /* convert xspeed to usbdi speed */ 1388 static int 1389 xhci_xspeed2speed(int xspeed) 1390 { 1391 switch (xspeed) { 1392 case 1: return USB_SPEED_FULL; 1393 case 2: return USB_SPEED_LOW; 1394 default: return xspeed; 1395 } 1396 } 1397 #endif 1398 1399 /* convert xspeed to port status speed */ 1400 static int 1401 xhci_xspeed2psspeed(int xspeed) 1402 { 1403 switch (xspeed) { 1404 case 0: return 0; 1405 case 1: return UPS_FULL_SPEED; 1406 case 2: return UPS_LOW_SPEED; 1407 case 3: return UPS_HIGH_SPEED; 1408 default: return UPS_OTHER_SPEED; 1409 } 1410 } 1411 1412 /* 1413 * Construct input contexts and issue TRB to open pipe. 1414 */ 1415 static usbd_status 1416 xhci_configure_endpoint(struct usbd_pipe *pipe) 1417 { 1418 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 1419 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv; 1420 #ifdef USB_DEBUG 1421 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc); 1422 #endif 1423 struct xhci_soft_trb trb; 1424 usbd_status err; 1425 1426 XHCIHIST_FUNC(); 1427 XHCIHIST_CALLARGS("slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx", 1428 xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress, 1429 pipe->up_endpoint->ue_edesc->bmAttributes); 1430 1431 /* XXX ensure input context is available? */ 1432 1433 memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz); 1434 1435 /* set up context */ 1436 xhci_setup_ctx(pipe); 1437 1438 HEXDUMP("input control context", xhci_slot_get_icv(sc, xs, 0), 1439 sc->sc_ctxsz * 1); 1440 HEXDUMP("input endpoint context", xhci_slot_get_icv(sc, xs, 1441 xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1); 1442 1443 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0); 1444 trb.trb_2 = 0; 1445 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) | 1446 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP); 1447 1448 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT); 1449 1450 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD); 1451 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, dci), 1452 sc->sc_ctxsz * 1); 1453 1454 return err; 1455 } 1456 1457 #if 0 1458 static usbd_status 1459 xhci_unconfigure_endpoint(struct usbd_pipe *pipe) 1460 { 1461 #ifdef USB_DEBUG 1462 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv; 1463 #endif 1464 1465 XHCIHIST_FUNC(); 1466 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0); 1467 1468 return USBD_NORMAL_COMPLETION; 1469 } 1470 #endif 1471 1472 /* 4.6.8, 6.4.3.7 */ 1473 static usbd_status 1474 xhci_reset_endpoint_locked(struct usbd_pipe *pipe) 1475 { 1476 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 1477 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv; 1478 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc); 1479 struct xhci_soft_trb trb; 1480 usbd_status err; 1481 1482 XHCIHIST_FUNC(); 1483 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0); 1484 1485 KASSERT(mutex_owned(&sc->sc_lock)); 1486 1487 trb.trb_0 = 0; 1488 trb.trb_2 = 0; 1489 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) | 1490 XHCI_TRB_3_EP_SET(dci) | 1491 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP); 1492 1493 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT); 1494 1495 return err; 1496 } 1497 1498 static usbd_status 1499 xhci_reset_endpoint(struct usbd_pipe *pipe) 1500 { 1501 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 1502 1503 mutex_enter(&sc->sc_lock); 1504 usbd_status ret = xhci_reset_endpoint_locked(pipe); 1505 mutex_exit(&sc->sc_lock); 1506 1507 return ret; 1508 } 1509 1510 /* 1511 * 4.6.9, 6.4.3.8 1512 * Stop execution of TDs on xfer ring. 1513 * Should be called with sc_lock held. 1514 */ 1515 static usbd_status 1516 xhci_stop_endpoint(struct usbd_pipe *pipe) 1517 { 1518 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 1519 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv; 1520 struct xhci_soft_trb trb; 1521 usbd_status err; 1522 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc); 1523 1524 XHCIHIST_FUNC(); 1525 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0); 1526 1527 KASSERT(mutex_owned(&sc->sc_lock)); 1528 1529 trb.trb_0 = 0; 1530 trb.trb_2 = 0; 1531 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) | 1532 XHCI_TRB_3_EP_SET(dci) | 1533 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP); 1534 1535 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT); 1536 1537 return err; 1538 } 1539 1540 /* 1541 * Set TR Dequeue Pointer. 1542 * xHCI 1.1 4.6.10 6.4.3.9 1543 * Purge all of the TRBs on ring and reinitialize ring. 1544 * Set TR dequeue Pointr to 0 and Cycle State to 1. 1545 * EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE 1546 * error will be generated. 1547 */ 1548 static usbd_status 1549 xhci_set_dequeue_locked(struct usbd_pipe *pipe) 1550 { 1551 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 1552 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv; 1553 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc); 1554 struct xhci_ring * const xr = xs->xs_xr[dci]; 1555 struct xhci_soft_trb trb; 1556 usbd_status err; 1557 1558 XHCIHIST_FUNC(); 1559 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0); 1560 1561 KASSERT(mutex_owned(&sc->sc_lock)); 1562 KASSERT(xr != NULL); 1563 1564 xhci_host_dequeue(xr); 1565 1566 /* set DCS */ 1567 trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */ 1568 trb.trb_2 = 0; 1569 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) | 1570 XHCI_TRB_3_EP_SET(dci) | 1571 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE); 1572 1573 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT); 1574 1575 return err; 1576 } 1577 1578 static usbd_status 1579 xhci_set_dequeue(struct usbd_pipe *pipe) 1580 { 1581 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 1582 1583 mutex_enter(&sc->sc_lock); 1584 usbd_status ret = xhci_set_dequeue_locked(pipe); 1585 mutex_exit(&sc->sc_lock); 1586 1587 return ret; 1588 } 1589 1590 /* 1591 * Open new pipe: called from usbd_setup_pipe_flags. 1592 * Fills methods of pipe. 1593 * If pipe is not for ep0, calls configure_endpoint. 1594 */ 1595 static usbd_status 1596 xhci_open(struct usbd_pipe *pipe) 1597 { 1598 struct usbd_device * const dev = pipe->up_dev; 1599 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus); 1600 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv; 1601 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc; 1602 const u_int dci = xhci_ep_get_dci(ed); 1603 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes); 1604 usbd_status err; 1605 1606 XHCIHIST_FUNC(); 1607 XHCIHIST_CALLARGS("addr %jd depth %jd port %jd speed %jd", dev->ud_addr, 1608 dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed); 1609 DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx", 1610 xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress, 1611 ed->bmAttributes); 1612 DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize), 1613 ed->bInterval, 0, 0); 1614 1615 if (sc->sc_dying) 1616 return USBD_IOERROR; 1617 1618 /* Root Hub */ 1619 if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) { 1620 switch (ed->bEndpointAddress) { 1621 case USB_CONTROL_ENDPOINT: 1622 pipe->up_methods = &roothub_ctrl_methods; 1623 break; 1624 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT: 1625 pipe->up_methods = &xhci_root_intr_methods; 1626 break; 1627 default: 1628 pipe->up_methods = NULL; 1629 DPRINTFN(0, "bad bEndpointAddress 0x%02jx", 1630 ed->bEndpointAddress, 0, 0, 0); 1631 return USBD_INVAL; 1632 } 1633 return USBD_NORMAL_COMPLETION; 1634 } 1635 1636 switch (xfertype) { 1637 case UE_CONTROL: 1638 pipe->up_methods = &xhci_device_ctrl_methods; 1639 break; 1640 case UE_ISOCHRONOUS: 1641 pipe->up_methods = &xhci_device_isoc_methods; 1642 return USBD_INVAL; 1643 break; 1644 case UE_BULK: 1645 pipe->up_methods = &xhci_device_bulk_methods; 1646 break; 1647 case UE_INTERRUPT: 1648 pipe->up_methods = &xhci_device_intr_methods; 1649 break; 1650 default: 1651 return USBD_IOERROR; 1652 break; 1653 } 1654 1655 KASSERT(xs != NULL); 1656 KASSERT(xs->xs_xr[dci] == NULL); 1657 1658 /* allocate transfer ring */ 1659 err = xhci_ring_init(sc, &xs->xs_xr[dci], XHCI_TRANSFER_RING_TRBS, 1660 XHCI_TRB_ALIGN); 1661 if (err) { 1662 DPRINTFN(1, "ring alloc failed %jd", err, 0, 0, 0); 1663 return err; 1664 } 1665 1666 if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT) 1667 return xhci_configure_endpoint(pipe); 1668 1669 return USBD_NORMAL_COMPLETION; 1670 } 1671 1672 /* 1673 * Closes pipe, called from usbd_kill_pipe via close methods. 1674 * If the endpoint to be closed is ep0, disable_slot. 1675 * Should be called with sc_lock held. 1676 */ 1677 static void 1678 xhci_close_pipe(struct usbd_pipe *pipe) 1679 { 1680 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 1681 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv; 1682 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc; 1683 const u_int dci = xhci_ep_get_dci(ed); 1684 struct xhci_soft_trb trb; 1685 uint32_t *cp; 1686 1687 XHCIHIST_FUNC(); 1688 1689 if (sc->sc_dying) 1690 return; 1691 1692 /* xs is uninitialized before xhci_init_slot */ 1693 if (xs == NULL || xs->xs_idx == 0) 1694 return; 1695 1696 XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju", 1697 (uintptr_t)pipe, xs->xs_idx, dci, 0); 1698 1699 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx"); 1700 KASSERT(mutex_owned(&sc->sc_lock)); 1701 1702 if (pipe->up_dev->ud_depth == 0) 1703 return; 1704 1705 if (dci == XHCI_DCI_EP_CONTROL) { 1706 DPRINTFN(4, "closing ep0", 0, 0, 0, 0); 1707 /* This frees all rings */ 1708 xhci_disable_slot(sc, xs->xs_idx); 1709 return; 1710 } 1711 1712 if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED) 1713 (void)xhci_stop_endpoint(pipe); 1714 1715 /* 1716 * set appropriate bit to be dropped. 1717 * don't set DC bit to 1, otherwise all endpoints 1718 * would be deconfigured. 1719 */ 1720 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL); 1721 cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci)); 1722 cp[1] = htole32(0); 1723 1724 /* XXX should be most significant one, not dci? */ 1725 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT)); 1726 cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci)); 1727 1728 /* configure ep context performs an implicit dequeue */ 1729 xhci_host_dequeue(xs->xs_xr[dci]); 1730 1731 /* sync input contexts before they are read from memory */ 1732 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE); 1733 1734 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0); 1735 trb.trb_2 = 0; 1736 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) | 1737 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP); 1738 1739 (void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT); 1740 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD); 1741 1742 xhci_ring_free(sc, &xs->xs_xr[dci]); 1743 } 1744 1745 /* 1746 * Abort transfer. 1747 * Should be called with sc_lock held. 1748 */ 1749 static void 1750 xhci_abortx(struct usbd_xfer *xfer) 1751 { 1752 XHCIHIST_FUNC(); 1753 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 1754 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv; 1755 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc); 1756 1757 XHCIHIST_CALLARGS("xfer %#jx pipe %#jx", 1758 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0); 1759 1760 KASSERT(mutex_owned(&sc->sc_lock)); 1761 ASSERT_SLEEPABLE(); 1762 1763 KASSERTMSG((xfer->ux_status == USBD_CANCELLED || 1764 xfer->ux_status == USBD_TIMEOUT), 1765 "bad abort status: %d", xfer->ux_status); 1766 1767 /* 1768 * If we're dying, skip the hardware action and just notify the 1769 * software that we're done. 1770 */ 1771 if (sc->sc_dying) { 1772 DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer, 1773 xfer->ux_status, 0, 0); 1774 goto dying; 1775 } 1776 1777 /* 1778 * HC Step 1: Stop execution of TD on the ring. 1779 */ 1780 switch (xhci_get_epstate(sc, xs, dci)) { 1781 case XHCI_EPSTATE_HALTED: 1782 (void)xhci_reset_endpoint_locked(xfer->ux_pipe); 1783 break; 1784 case XHCI_EPSTATE_STOPPED: 1785 break; 1786 default: 1787 (void)xhci_stop_endpoint(xfer->ux_pipe); 1788 break; 1789 } 1790 #ifdef DIAGNOSTIC 1791 uint32_t epst = xhci_get_epstate(sc, xs, dci); 1792 if (epst != XHCI_EPSTATE_STOPPED) 1793 DPRINTFN(4, "dci %ju not stopped %ju", dci, epst, 0, 0); 1794 #endif 1795 1796 /* 1797 * HC Step 2: Remove any vestiges of the xfer from the ring. 1798 */ 1799 xhci_set_dequeue_locked(xfer->ux_pipe); 1800 1801 /* 1802 * Final Step: Notify completion to waiting xfers. 1803 */ 1804 dying: 1805 usb_transfer_complete(xfer); 1806 DPRINTFN(14, "end", 0, 0, 0, 0); 1807 1808 KASSERT(mutex_owned(&sc->sc_lock)); 1809 } 1810 1811 static void 1812 xhci_host_dequeue(struct xhci_ring * const xr) 1813 { 1814 /* When dequeueing the controller, update our struct copy too */ 1815 memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE); 1816 usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE, 1817 BUS_DMASYNC_PREWRITE); 1818 memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies)); 1819 1820 xr->xr_ep = 0; 1821 xr->xr_cs = 1; 1822 } 1823 1824 /* 1825 * Recover STALLed endpoint. 1826 * xHCI 1.1 sect 4.10.2.1 1827 * Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove 1828 * all transfers on transfer ring. 1829 * These are done in thread context asynchronously. 1830 */ 1831 static void 1832 xhci_clear_endpoint_stall_async_task(void *cookie) 1833 { 1834 struct usbd_xfer * const xfer = cookie; 1835 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 1836 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv; 1837 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc); 1838 struct xhci_ring * const tr = xs->xs_xr[dci]; 1839 1840 XHCIHIST_FUNC(); 1841 XHCIHIST_CALLARGS("xfer %#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx, 1842 dci, 0); 1843 1844 /* 1845 * XXXMRG: Stall task can run after slot is disabled when yanked. 1846 * This hack notices that the xs has been memset() in 1847 * xhci_disable_slot() and returns. Both xhci_reset_endpoint() 1848 * and xhci_set_dequeue() rely upon a valid ring setup for correct 1849 * operation, and the latter will fault, as would 1850 * usb_transfer_complete() if it got that far. 1851 */ 1852 if (xs->xs_idx == 0) { 1853 DPRINTFN(4, "ends xs_idx is 0", 0, 0, 0, 0); 1854 return; 1855 } 1856 1857 KASSERT(tr != NULL); 1858 1859 xhci_reset_endpoint(xfer->ux_pipe); 1860 xhci_set_dequeue(xfer->ux_pipe); 1861 1862 mutex_enter(&sc->sc_lock); 1863 tr->is_halted = false; 1864 usb_transfer_complete(xfer); 1865 mutex_exit(&sc->sc_lock); 1866 DPRINTFN(4, "ends", 0, 0, 0, 0); 1867 } 1868 1869 static usbd_status 1870 xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer) 1871 { 1872 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 1873 struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe; 1874 1875 XHCIHIST_FUNC(); 1876 XHCIHIST_CALLARGS("xfer %#jx", (uintptr_t)xfer, 0, 0, 0); 1877 1878 if (sc->sc_dying) { 1879 return USBD_IOERROR; 1880 } 1881 1882 usb_init_task(&xp->xp_async_task, 1883 xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE); 1884 usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC); 1885 DPRINTFN(4, "ends", 0, 0, 0, 0); 1886 1887 return USBD_NORMAL_COMPLETION; 1888 } 1889 1890 /* Process roothub port status/change events and notify to uhub_intr. */ 1891 static void 1892 xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport) 1893 { 1894 XHCIHIST_FUNC(); 1895 XHCIHIST_CALLARGS("xhci%jd: port %ju status change", 1896 device_unit(sc->sc_dev), ctlrport, 0, 0); 1897 1898 if (ctlrport > sc->sc_maxports) 1899 return; 1900 1901 const size_t bn = xhci_ctlrport2bus(sc, ctlrport); 1902 const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport); 1903 struct usbd_xfer * const xfer = sc->sc_intrxfer[bn]; 1904 1905 DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change", 1906 device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer); 1907 1908 if (xfer == NULL) 1909 return; 1910 KASSERT(xfer->ux_status == USBD_IN_PROGRESS); 1911 1912 uint8_t *p = xfer->ux_buf; 1913 memset(p, 0, xfer->ux_length); 1914 p[rhp / NBBY] |= 1 << (rhp % NBBY); 1915 xfer->ux_actlen = xfer->ux_length; 1916 xfer->ux_status = USBD_NORMAL_COMPLETION; 1917 usb_transfer_complete(xfer); 1918 } 1919 1920 /* Process Transfer Events */ 1921 static void 1922 xhci_event_transfer(struct xhci_softc * const sc, 1923 const struct xhci_trb * const trb) 1924 { 1925 uint64_t trb_0; 1926 uint32_t trb_2, trb_3; 1927 uint8_t trbcode; 1928 u_int slot, dci; 1929 struct xhci_slot *xs; 1930 struct xhci_ring *xr; 1931 struct xhci_xfer *xx; 1932 struct usbd_xfer *xfer; 1933 usbd_status err; 1934 1935 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 1936 1937 trb_0 = le64toh(trb->trb_0); 1938 trb_2 = le32toh(trb->trb_2); 1939 trb_3 = le32toh(trb->trb_3); 1940 trbcode = XHCI_TRB_2_ERROR_GET(trb_2); 1941 slot = XHCI_TRB_3_SLOT_GET(trb_3); 1942 dci = XHCI_TRB_3_EP_GET(trb_3); 1943 xs = &sc->sc_slots[slot]; 1944 xr = xs->xs_xr[dci]; 1945 1946 /* sanity check */ 1947 KASSERT(xr != NULL); 1948 KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots, 1949 "invalid xs_idx %u slot %u", xs->xs_idx, slot); 1950 1951 int idx = 0; 1952 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) { 1953 if (xhci_trb_get_idx(xr, trb_0, &idx)) { 1954 DPRINTFN(0, "invalid trb_0 %#jx", trb_0, 0, 0, 0); 1955 return; 1956 } 1957 xx = xr->xr_cookies[idx]; 1958 1959 /* clear cookie of consumed TRB */ 1960 xr->xr_cookies[idx] = NULL; 1961 1962 /* 1963 * xx is NULL if pipe is opened but xfer is not started. 1964 * It happens when stopping idle pipe. 1965 */ 1966 if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) { 1967 DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju", 1968 idx, (uintptr_t)xx, trbcode, dci); 1969 DPRINTFN(1, " orig TRB %#jx type %ju", trb_0, 1970 XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)), 1971 0, 0); 1972 return; 1973 } 1974 } else { 1975 /* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */ 1976 xx = (void *)(uintptr_t)(trb_0 & ~0x3); 1977 } 1978 /* XXX this may not happen */ 1979 if (xx == NULL) { 1980 DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0); 1981 return; 1982 } 1983 xfer = &xx->xx_xfer; 1984 /* XXX this may happen when detaching */ 1985 if (xfer == NULL) { 1986 DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx", 1987 (uintptr_t)xx, trb_0, 0, 0); 1988 return; 1989 } 1990 DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0); 1991 /* XXX I dunno why this happens */ 1992 KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer); 1993 1994 if (!xfer->ux_pipe->up_repeat && 1995 SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) { 1996 DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer, 1997 0, 0, 0); 1998 return; 1999 } 2000 2001 /* 4.11.5.2 Event Data TRB */ 2002 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) { 2003 DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx" 2004 " %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0); 2005 if ((trb_0 & 0x3) == 0x3) { 2006 xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2); 2007 } 2008 } 2009 2010 switch (trbcode) { 2011 case XHCI_TRB_ERROR_SHORT_PKT: 2012 case XHCI_TRB_ERROR_SUCCESS: 2013 /* 2014 * A ctrl transfer can generate two events if it has a Data 2015 * stage. A short data stage can be OK and should not 2016 * complete the transfer as the status stage needs to be 2017 * performed. 2018 * 2019 * Note: Data and Status stage events point at same xfer. 2020 * ux_actlen and ux_dmabuf will be passed to 2021 * usb_transfer_complete after the Status stage event. 2022 * 2023 * It can be distingished which stage generates the event: 2024 * + by checking least 3 bits of trb_0 if ED==1. 2025 * (see xhci_device_ctrl_start). 2026 * + by checking the type of original TRB if ED==0. 2027 * 2028 * In addition, intr, bulk, and isoc transfer currently 2029 * consists of single TD, so the "skip" is not needed. 2030 * ctrl xfer uses EVENT_DATA, and others do not. 2031 * Thus driver can switch the flow by checking ED bit. 2032 */ 2033 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) { 2034 if (xfer->ux_actlen == 0) 2035 xfer->ux_actlen = xfer->ux_length - 2036 XHCI_TRB_2_REM_GET(trb_2); 2037 if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)) 2038 == XHCI_TRB_TYPE_DATA_STAGE) { 2039 return; 2040 } 2041 } else if ((trb_0 & 0x3) == 0x3) { 2042 return; 2043 } 2044 err = USBD_NORMAL_COMPLETION; 2045 break; 2046 case XHCI_TRB_ERROR_STOPPED: 2047 case XHCI_TRB_ERROR_LENGTH: 2048 case XHCI_TRB_ERROR_STOPPED_SHORT: 2049 err = USBD_IOERROR; 2050 break; 2051 case XHCI_TRB_ERROR_STALL: 2052 case XHCI_TRB_ERROR_BABBLE: 2053 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0); 2054 xr->is_halted = true; 2055 /* 2056 * Try to claim this xfer for completion. If it has already 2057 * completed or aborted, drop it on the floor. 2058 */ 2059 if (!usbd_xfer_trycomplete(xfer)) 2060 return; 2061 2062 /* 2063 * Stalled endpoints can be recoverd by issuing 2064 * command TRB TYPE_RESET_EP on xHCI instead of 2065 * issuing request CLEAR_FEATURE UF_ENDPOINT_HALT 2066 * on the endpoint. However, this function may be 2067 * called from softint context (e.g. from umass), 2068 * in that case driver gets KASSERT in cv_timedwait 2069 * in xhci_do_command. 2070 * To avoid this, this runs reset_endpoint and 2071 * usb_transfer_complete in usb task thread 2072 * asynchronously (and then umass issues clear 2073 * UF_ENDPOINT_HALT). 2074 */ 2075 2076 /* Override the status. */ 2077 xfer->ux_status = USBD_STALLED; 2078 2079 xhci_clear_endpoint_stall_async(xfer); 2080 return; 2081 default: 2082 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0); 2083 err = USBD_IOERROR; 2084 break; 2085 } 2086 2087 /* 2088 * Try to claim this xfer for completion. If it has already 2089 * completed or aborted, drop it on the floor. 2090 */ 2091 if (!usbd_xfer_trycomplete(xfer)) 2092 return; 2093 2094 /* Set the status. */ 2095 xfer->ux_status = err; 2096 2097 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 || 2098 (trb_0 & 0x3) == 0x0) { 2099 usb_transfer_complete(xfer); 2100 } 2101 } 2102 2103 /* Process Command complete events */ 2104 static void 2105 xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb) 2106 { 2107 uint64_t trb_0; 2108 uint32_t trb_2, trb_3; 2109 2110 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 2111 2112 KASSERT(mutex_owned(&sc->sc_lock)); 2113 2114 trb_0 = le64toh(trb->trb_0); 2115 trb_2 = le32toh(trb->trb_2); 2116 trb_3 = le32toh(trb->trb_3); 2117 2118 if (trb_0 == sc->sc_command_addr) { 2119 sc->sc_resultpending = false; 2120 2121 sc->sc_result_trb.trb_0 = trb_0; 2122 sc->sc_result_trb.trb_2 = trb_2; 2123 sc->sc_result_trb.trb_3 = trb_3; 2124 if (XHCI_TRB_2_ERROR_GET(trb_2) != 2125 XHCI_TRB_ERROR_SUCCESS) { 2126 DPRINTFN(1, "command completion " 2127 "failure: 0x%016jx 0x%08jx 0x%08jx", 2128 trb_0, trb_2, trb_3, 0); 2129 } 2130 cv_signal(&sc->sc_command_cv); 2131 } else { 2132 DPRINTFN(1, "spurious event: %#jx 0x%016jx " 2133 "0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3); 2134 } 2135 } 2136 2137 /* 2138 * Process events. 2139 * called from xhci_softintr 2140 */ 2141 static void 2142 xhci_handle_event(struct xhci_softc * const sc, 2143 const struct xhci_trb * const trb) 2144 { 2145 uint64_t trb_0; 2146 uint32_t trb_2, trb_3; 2147 2148 XHCIHIST_FUNC(); 2149 2150 trb_0 = le64toh(trb->trb_0); 2151 trb_2 = le32toh(trb->trb_2); 2152 trb_3 = le32toh(trb->trb_3); 2153 2154 XHCIHIST_CALLARGS("event: %#jx 0x%016jx 0x%08jx 0x%08jx", 2155 (uintptr_t)trb, trb_0, trb_2, trb_3); 2156 2157 /* 2158 * 4.11.3.1, 6.4.2.1 2159 * TRB Pointer is invalid for these completion codes. 2160 */ 2161 switch (XHCI_TRB_2_ERROR_GET(trb_2)) { 2162 case XHCI_TRB_ERROR_RING_UNDERRUN: 2163 case XHCI_TRB_ERROR_RING_OVERRUN: 2164 case XHCI_TRB_ERROR_VF_RING_FULL: 2165 return; 2166 default: 2167 if (trb_0 == 0) { 2168 return; 2169 } 2170 break; 2171 } 2172 2173 switch (XHCI_TRB_3_TYPE_GET(trb_3)) { 2174 case XHCI_TRB_EVENT_TRANSFER: 2175 xhci_event_transfer(sc, trb); 2176 break; 2177 case XHCI_TRB_EVENT_CMD_COMPLETE: 2178 xhci_event_cmd(sc, trb); 2179 break; 2180 case XHCI_TRB_EVENT_PORT_STS_CHANGE: 2181 xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff)); 2182 break; 2183 default: 2184 break; 2185 } 2186 } 2187 2188 static void 2189 xhci_softintr(void *v) 2190 { 2191 struct usbd_bus * const bus = v; 2192 struct xhci_softc * const sc = XHCI_BUS2SC(bus); 2193 struct xhci_ring * const er = sc->sc_er; 2194 struct xhci_trb *trb; 2195 int i, j, k; 2196 2197 XHCIHIST_FUNC(); 2198 2199 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock)); 2200 2201 i = er->xr_ep; 2202 j = er->xr_cs; 2203 2204 XHCIHIST_CALLARGS("er: xr_ep %jd xr_cs %jd", i, j, 0, 0); 2205 2206 while (1) { 2207 usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE, 2208 BUS_DMASYNC_POSTREAD); 2209 trb = &er->xr_trb[i]; 2210 k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0; 2211 2212 if (j != k) 2213 break; 2214 2215 xhci_handle_event(sc, trb); 2216 2217 i++; 2218 if (i == er->xr_ntrb) { 2219 i = 0; 2220 j ^= 1; 2221 } 2222 } 2223 2224 er->xr_ep = i; 2225 er->xr_cs = j; 2226 2227 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) | 2228 XHCI_ERDP_BUSY); 2229 2230 DPRINTFN(16, "ends", 0, 0, 0, 0); 2231 2232 return; 2233 } 2234 2235 static void 2236 xhci_poll(struct usbd_bus *bus) 2237 { 2238 struct xhci_softc * const sc = XHCI_BUS2SC(bus); 2239 2240 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 2241 2242 mutex_enter(&sc->sc_intr_lock); 2243 int ret = xhci_intr1(sc); 2244 if (ret) { 2245 xhci_softintr(bus); 2246 } 2247 mutex_exit(&sc->sc_intr_lock); 2248 2249 return; 2250 } 2251 2252 static struct usbd_xfer * 2253 xhci_allocx(struct usbd_bus *bus, unsigned int nframes) 2254 { 2255 struct xhci_softc * const sc = XHCI_BUS2SC(bus); 2256 struct xhci_xfer *xx; 2257 u_int ntrbs; 2258 2259 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 2260 2261 ntrbs = XHCI_XFER_NTRB; 2262 const size_t trbsz = sizeof(*xx->xx_trb) * ntrbs; 2263 2264 xx = pool_cache_get(sc->sc_xferpool, PR_WAITOK); 2265 if (xx != NULL) { 2266 memset(xx, 0, sizeof(*xx)); 2267 if (ntrbs > 0) { 2268 xx->xx_trb = kmem_alloc(trbsz, KM_SLEEP); 2269 xx->xx_ntrb = ntrbs; 2270 } 2271 #ifdef DIAGNOSTIC 2272 xx->xx_xfer.ux_state = XFER_BUSY; 2273 #endif 2274 } 2275 2276 return &xx->xx_xfer; 2277 } 2278 2279 static void 2280 xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) 2281 { 2282 struct xhci_softc * const sc = XHCI_BUS2SC(bus); 2283 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer); 2284 2285 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 2286 2287 #ifdef DIAGNOSTIC 2288 if (xfer->ux_state != XFER_BUSY && 2289 xfer->ux_status != USBD_NOT_STARTED) { 2290 DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx", 2291 (uintptr_t)xfer, xfer->ux_state, 0, 0); 2292 } 2293 xfer->ux_state = XFER_FREE; 2294 #endif 2295 if (xx->xx_ntrb > 0) { 2296 kmem_free(xx->xx_trb, xx->xx_ntrb * sizeof(*xx->xx_trb)); 2297 xx->xx_trb = NULL; 2298 xx->xx_ntrb = 0; 2299 } 2300 pool_cache_put(sc->sc_xferpool, xx); 2301 } 2302 2303 static bool 2304 xhci_dying(struct usbd_bus *bus) 2305 { 2306 struct xhci_softc * const sc = XHCI_BUS2SC(bus); 2307 2308 return sc->sc_dying; 2309 } 2310 2311 static void 2312 xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock) 2313 { 2314 struct xhci_softc * const sc = XHCI_BUS2SC(bus); 2315 2316 *lock = &sc->sc_lock; 2317 } 2318 2319 extern uint32_t usb_cookie_no; 2320 2321 /* 2322 * xHCI 4.3 2323 * Called when uhub_explore finds a new device (via usbd_new_device). 2324 * Port initialization and speed detection (4.3.1) are already done in uhub.c. 2325 * This function does: 2326 * Allocate and construct dev structure of default endpoint (ep0). 2327 * Allocate and open pipe of ep0. 2328 * Enable slot and initialize slot context. 2329 * Set Address. 2330 * Read initial device descriptor. 2331 * Determine initial MaxPacketSize (mps) by speed. 2332 * Read full device descriptor. 2333 * Register this device. 2334 * Finally state of device transitions ADDRESSED. 2335 */ 2336 static usbd_status 2337 xhci_new_device(device_t parent, struct usbd_bus *bus, int depth, 2338 int speed, int port, struct usbd_port *up) 2339 { 2340 struct xhci_softc * const sc = XHCI_BUS2SC(bus); 2341 struct usbd_device *dev; 2342 usbd_status err; 2343 usb_device_descriptor_t *dd; 2344 struct xhci_slot *xs; 2345 uint32_t *cp; 2346 2347 XHCIHIST_FUNC(); 2348 XHCIHIST_CALLARGS("port %ju depth %ju speed %ju up %#jx", 2349 port, depth, speed, (uintptr_t)up); 2350 2351 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 2352 dev->ud_bus = bus; 2353 dev->ud_quirks = &usbd_no_quirk; 2354 dev->ud_addr = 0; 2355 dev->ud_ddesc.bMaxPacketSize = 0; 2356 dev->ud_depth = depth; 2357 dev->ud_powersrc = up; 2358 dev->ud_myhub = up->up_parent; 2359 dev->ud_speed = speed; 2360 dev->ud_langid = USBD_NOLANG; 2361 dev->ud_cookie.cookie = ++usb_cookie_no; 2362 2363 /* Set up default endpoint handle. */ 2364 dev->ud_ep0.ue_edesc = &dev->ud_ep0desc; 2365 /* doesn't matter, just don't let it uninitialized */ 2366 dev->ud_ep0.ue_toggle = 0; 2367 2368 /* Set up default endpoint descriptor. */ 2369 dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE; 2370 dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT; 2371 dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT; 2372 dev->ud_ep0desc.bmAttributes = UE_CONTROL; 2373 dev->ud_ep0desc.bInterval = 0; 2374 2375 /* 4.3, 4.8.2.1 */ 2376 switch (speed) { 2377 case USB_SPEED_SUPER: 2378 case USB_SPEED_SUPER_PLUS: 2379 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET); 2380 break; 2381 case USB_SPEED_FULL: 2382 /* XXX using 64 as initial mps of ep0 in FS */ 2383 case USB_SPEED_HIGH: 2384 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET); 2385 break; 2386 case USB_SPEED_LOW: 2387 default: 2388 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET); 2389 break; 2390 } 2391 2392 up->up_dev = dev; 2393 2394 dd = &dev->ud_ddesc; 2395 2396 if (depth == 0 && port == 0) { 2397 KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL); 2398 bus->ub_devices[USB_ROOTHUB_INDEX] = dev; 2399 2400 /* Establish the default pipe. */ 2401 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0, 2402 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0); 2403 if (err) { 2404 DPRINTFN(1, "setup default pipe failed %jd", err,0,0,0); 2405 goto bad; 2406 } 2407 err = usbd_get_initial_ddesc(dev, dd); 2408 if (err) { 2409 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0); 2410 goto bad; 2411 } 2412 } else { 2413 uint8_t slot = 0; 2414 2415 /* 4.3.2 */ 2416 err = xhci_enable_slot(sc, &slot); 2417 if (err) { 2418 DPRINTFN(1, "enable slot %ju", err, 0, 0, 0); 2419 goto bad; 2420 } 2421 2422 xs = &sc->sc_slots[slot]; 2423 dev->ud_hcpriv = xs; 2424 2425 /* 4.3.3 initialize slot structure */ 2426 err = xhci_init_slot(dev, slot); 2427 if (err) { 2428 DPRINTFN(1, "init slot %ju", err, 0, 0, 0); 2429 dev->ud_hcpriv = NULL; 2430 /* 2431 * We have to disable_slot here because 2432 * xs->xs_idx == 0 when xhci_init_slot fails, 2433 * in that case usbd_remove_dev won't work. 2434 */ 2435 mutex_enter(&sc->sc_lock); 2436 xhci_disable_slot(sc, slot); 2437 mutex_exit(&sc->sc_lock); 2438 goto bad; 2439 } 2440 2441 /* 2442 * We have to establish the default pipe _after_ slot 2443 * structure has been prepared. 2444 */ 2445 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0, 2446 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0); 2447 if (err) { 2448 DPRINTFN(1, "setup default pipe failed %jd", err, 0, 0, 2449 0); 2450 goto bad; 2451 } 2452 2453 /* 4.3.4 Address Assignment */ 2454 err = xhci_set_address(dev, slot, false); 2455 if (err) { 2456 DPRINTFN(1, "failed! to set address: %ju", err, 0, 0, 0); 2457 goto bad; 2458 } 2459 2460 /* Allow device time to set new address */ 2461 usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE); 2462 2463 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD); 2464 cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT); 2465 HEXDUMP("slot context", cp, sc->sc_ctxsz); 2466 uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3])); 2467 DPRINTFN(4, "device address %ju", addr, 0, 0, 0); 2468 /* 2469 * XXX ensure we know when the hardware does something 2470 * we can't yet cope with 2471 */ 2472 KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr); 2473 dev->ud_addr = addr; 2474 2475 KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL, 2476 "addr %d already allocated", dev->ud_addr); 2477 /* 2478 * The root hub is given its own slot 2479 */ 2480 bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev; 2481 2482 err = usbd_get_initial_ddesc(dev, dd); 2483 if (err) { 2484 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0); 2485 goto bad; 2486 } 2487 2488 /* 4.8.2.1 */ 2489 if (USB_IS_SS(speed)) { 2490 if (dd->bMaxPacketSize != 9) { 2491 printf("%s: invalid mps 2^%u for SS ep0," 2492 " using 512\n", 2493 device_xname(sc->sc_dev), 2494 dd->bMaxPacketSize); 2495 dd->bMaxPacketSize = 9; 2496 } 2497 USETW(dev->ud_ep0desc.wMaxPacketSize, 2498 (1 << dd->bMaxPacketSize)); 2499 } else 2500 USETW(dev->ud_ep0desc.wMaxPacketSize, 2501 dd->bMaxPacketSize); 2502 DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0); 2503 err = xhci_update_ep0_mps(sc, xs, 2504 UGETW(dev->ud_ep0desc.wMaxPacketSize)); 2505 if (err) { 2506 DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0); 2507 goto bad; 2508 } 2509 } 2510 2511 err = usbd_reload_device_desc(dev); 2512 if (err) { 2513 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0); 2514 goto bad; 2515 } 2516 2517 DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,", 2518 dev->ud_addr, UGETW(dd->bcdUSB), 0, 0); 2519 DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,", 2520 dd->bDeviceClass, dd->bDeviceSubClass, 2521 dd->bDeviceProtocol, 0); 2522 DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd", 2523 dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations, 2524 dev->ud_speed); 2525 2526 usbd_get_device_strings(dev); 2527 2528 usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev); 2529 2530 if (depth == 0 && port == 0) { 2531 usbd_attach_roothub(parent, dev); 2532 DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0); 2533 return USBD_NORMAL_COMPLETION; 2534 } 2535 2536 err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr); 2537 bad: 2538 if (err != USBD_NORMAL_COMPLETION) { 2539 usbd_remove_device(dev, up); 2540 } 2541 2542 return err; 2543 } 2544 2545 static usbd_status 2546 xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring **xrp, 2547 size_t ntrb, size_t align) 2548 { 2549 usbd_status err; 2550 size_t size = ntrb * XHCI_TRB_SIZE; 2551 struct xhci_ring *xr; 2552 2553 XHCIHIST_FUNC(); 2554 XHCIHIST_CALLARGS("xr %#jx ntrb %#jx align %#jx", 2555 (uintptr_t)*xrp, ntrb, align, 0); 2556 2557 xr = kmem_zalloc(sizeof(struct xhci_ring), KM_SLEEP); 2558 DPRINTFN(1, "ring %#jx", (uintptr_t)xr, 0, 0, 0); 2559 2560 err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, 2561 &xr->xr_dma); 2562 if (err) { 2563 kmem_free(xr, sizeof(struct xhci_ring)); 2564 DPRINTFN(1, "alloc xr_dma failed %jd", err, 0, 0, 0); 2565 return err; 2566 } 2567 mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB); 2568 xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP); 2569 xr->xr_trb = xhci_ring_trbv(xr, 0); 2570 xr->xr_ntrb = ntrb; 2571 xr->is_halted = false; 2572 xhci_host_dequeue(xr); 2573 *xrp = xr; 2574 2575 return USBD_NORMAL_COMPLETION; 2576 } 2577 2578 static void 2579 xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring ** const xr) 2580 { 2581 if (*xr == NULL) 2582 return; 2583 2584 usb_freemem(&sc->sc_bus, &(*xr)->xr_dma); 2585 mutex_destroy(&(*xr)->xr_lock); 2586 kmem_free((*xr)->xr_cookies, 2587 sizeof(*(*xr)->xr_cookies) * (*xr)->xr_ntrb); 2588 kmem_free(*xr, sizeof(struct xhci_ring)); 2589 *xr = NULL; 2590 } 2591 2592 static void 2593 xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr, 2594 void *cookie, struct xhci_soft_trb * const trbs, size_t ntrbs) 2595 { 2596 size_t i; 2597 u_int ri; 2598 u_int cs; 2599 uint64_t parameter; 2600 uint32_t status; 2601 uint32_t control; 2602 2603 XHCIHIST_FUNC(); 2604 XHCIHIST_CALLARGS("%#jx xr_ep %#jx xr_cs %ju", 2605 (uintptr_t)xr, xr->xr_ep, xr->xr_cs, 0); 2606 2607 KASSERTMSG(ntrbs < xr->xr_ntrb, "ntrbs %zu, xr->xr_ntrb %u", 2608 ntrbs, xr->xr_ntrb); 2609 for (i = 0; i < ntrbs; i++) { 2610 DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr, 2611 (uintptr_t)trbs, i, 0); 2612 DPRINTFN(12, " 0x%016jx 0x%08jx 0x%08jx", 2613 trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0); 2614 KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) != 2615 XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3); 2616 } 2617 2618 ri = xr->xr_ep; 2619 cs = xr->xr_cs; 2620 2621 /* 2622 * Although the xhci hardware can do scatter/gather dma from 2623 * arbitrary sized buffers, there is a non-obvious restriction 2624 * that a LINK trb is only allowed at the end of a burst of 2625 * transfers - which might be 16kB. 2626 * Arbitrary aligned LINK trb definitely fail on Ivy bridge. 2627 * The simple solution is not to allow a LINK trb in the middle 2628 * of anything - as here. 2629 * XXX: (dsl) There are xhci controllers out there (eg some made by 2630 * ASMedia) that seem to lock up if they process a LINK trb but 2631 * cannot process the linked-to trb yet. 2632 * The code should write the 'cycle' bit on the link trb AFTER 2633 * adding the other trb. 2634 */ 2635 u_int firstep = xr->xr_ep; 2636 u_int firstcs = xr->xr_cs; 2637 2638 for (i = 0; i < ntrbs; ) { 2639 u_int oldri = ri; 2640 u_int oldcs = cs; 2641 2642 if (ri >= (xr->xr_ntrb - 1)) { 2643 /* Put Link TD at the end of ring */ 2644 parameter = xhci_ring_trbp(xr, 0); 2645 status = 0; 2646 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) | 2647 XHCI_TRB_3_TC_BIT; 2648 xr->xr_cookies[ri] = NULL; 2649 xr->xr_ep = 0; 2650 xr->xr_cs ^= 1; 2651 ri = xr->xr_ep; 2652 cs = xr->xr_cs; 2653 } else { 2654 parameter = trbs[i].trb_0; 2655 status = trbs[i].trb_2; 2656 control = trbs[i].trb_3; 2657 2658 xr->xr_cookies[ri] = cookie; 2659 ri++; 2660 i++; 2661 } 2662 /* 2663 * If this is a first TRB, mark it invalid to prevent 2664 * xHC from running it immediately. 2665 */ 2666 if (oldri == firstep) { 2667 if (oldcs) { 2668 control &= ~XHCI_TRB_3_CYCLE_BIT; 2669 } else { 2670 control |= XHCI_TRB_3_CYCLE_BIT; 2671 } 2672 } else { 2673 if (oldcs) { 2674 control |= XHCI_TRB_3_CYCLE_BIT; 2675 } else { 2676 control &= ~XHCI_TRB_3_CYCLE_BIT; 2677 } 2678 } 2679 xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control); 2680 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri, 2681 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE); 2682 } 2683 2684 /* Now invert cycle bit of first TRB */ 2685 if (firstcs) { 2686 xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT); 2687 } else { 2688 xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT); 2689 } 2690 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep, 2691 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE); 2692 2693 xr->xr_ep = ri; 2694 xr->xr_cs = cs; 2695 2696 DPRINTFN(12, "%#jx xr_ep %#jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep, 2697 xr->xr_cs, 0); 2698 } 2699 2700 static inline void 2701 xhci_ring_put_xfer(struct xhci_softc * const sc, struct xhci_ring * const tr, 2702 struct xhci_xfer *xx, u_int ntrb) 2703 { 2704 KASSERT(ntrb <= xx->xx_ntrb); 2705 xhci_ring_put(sc, tr, xx, xx->xx_trb, ntrb); 2706 } 2707 2708 /* 2709 * Stop execution commands, purge all commands on command ring, and 2710 * rewind dequeue pointer. 2711 */ 2712 static void 2713 xhci_abort_command(struct xhci_softc *sc) 2714 { 2715 struct xhci_ring * const cr = sc->sc_cr; 2716 uint64_t crcr; 2717 int i; 2718 2719 XHCIHIST_FUNC(); 2720 XHCIHIST_CALLARGS("command %#jx timeout, aborting", 2721 sc->sc_command_addr, 0, 0, 0); 2722 2723 mutex_enter(&cr->xr_lock); 2724 2725 /* 4.6.1.2 Aborting a Command */ 2726 crcr = xhci_op_read_8(sc, XHCI_CRCR); 2727 xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA); 2728 2729 for (i = 0; i < 500; i++) { 2730 crcr = xhci_op_read_8(sc, XHCI_CRCR); 2731 if ((crcr & XHCI_CRCR_LO_CRR) == 0) 2732 break; 2733 usb_delay_ms(&sc->sc_bus, 1); 2734 } 2735 if ((crcr & XHCI_CRCR_LO_CRR) != 0) { 2736 DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0); 2737 /* reset HC here? */ 2738 } 2739 2740 /* reset command ring dequeue pointer */ 2741 cr->xr_ep = 0; 2742 cr->xr_cs = 1; 2743 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs); 2744 2745 mutex_exit(&cr->xr_lock); 2746 } 2747 2748 /* 2749 * Put a command on command ring, ring bell, set timer, and cv_timedwait. 2750 * Command completion is notified by cv_signal from xhci_event_cmd() 2751 * (called from xhci_softint), or timed-out. 2752 * The completion code is copied to sc->sc_result_trb in xhci_event_cmd(), 2753 * then do_command examines it. 2754 */ 2755 static usbd_status 2756 xhci_do_command_locked(struct xhci_softc * const sc, 2757 struct xhci_soft_trb * const trb, int timeout) 2758 { 2759 struct xhci_ring * const cr = sc->sc_cr; 2760 usbd_status err; 2761 2762 XHCIHIST_FUNC(); 2763 XHCIHIST_CALLARGS("input: 0x%016jx 0x%08jx 0x%08jx", 2764 trb->trb_0, trb->trb_2, trb->trb_3, 0); 2765 2766 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx"); 2767 KASSERT(mutex_owned(&sc->sc_lock)); 2768 2769 while (sc->sc_command_addr != 0) 2770 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock); 2771 2772 /* 2773 * If enqueue pointer points at last of ring, it's Link TRB, 2774 * command TRB will be stored in 0th TRB. 2775 */ 2776 if (cr->xr_ep == cr->xr_ntrb - 1) 2777 sc->sc_command_addr = xhci_ring_trbp(cr, 0); 2778 else 2779 sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep); 2780 2781 sc->sc_resultpending = true; 2782 2783 mutex_enter(&cr->xr_lock); 2784 xhci_ring_put(sc, cr, NULL, trb, 1); 2785 mutex_exit(&cr->xr_lock); 2786 2787 xhci_db_write_4(sc, XHCI_DOORBELL(0), 0); 2788 2789 while (sc->sc_resultpending) { 2790 if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock, 2791 MAX(1, mstohz(timeout))) == EWOULDBLOCK) { 2792 xhci_abort_command(sc); 2793 err = USBD_TIMEOUT; 2794 goto timedout; 2795 } 2796 } 2797 2798 trb->trb_0 = sc->sc_result_trb.trb_0; 2799 trb->trb_2 = sc->sc_result_trb.trb_2; 2800 trb->trb_3 = sc->sc_result_trb.trb_3; 2801 2802 DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx", 2803 trb->trb_0, trb->trb_2, trb->trb_3, 0); 2804 2805 switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) { 2806 case XHCI_TRB_ERROR_SUCCESS: 2807 err = USBD_NORMAL_COMPLETION; 2808 break; 2809 default: 2810 case 192 ... 223: 2811 DPRINTFN(5, "error %#jx", 2812 XHCI_TRB_2_ERROR_GET(trb->trb_2), 0, 0, 0); 2813 err = USBD_IOERROR; 2814 break; 2815 case 224 ... 255: 2816 err = USBD_NORMAL_COMPLETION; 2817 break; 2818 } 2819 2820 timedout: 2821 sc->sc_resultpending = false; 2822 sc->sc_command_addr = 0; 2823 cv_broadcast(&sc->sc_cmdbusy_cv); 2824 2825 return err; 2826 } 2827 2828 static usbd_status 2829 xhci_do_command(struct xhci_softc * const sc, struct xhci_soft_trb * const trb, 2830 int timeout) 2831 { 2832 2833 mutex_enter(&sc->sc_lock); 2834 usbd_status ret = xhci_do_command_locked(sc, trb, timeout); 2835 mutex_exit(&sc->sc_lock); 2836 2837 return ret; 2838 } 2839 2840 static usbd_status 2841 xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp) 2842 { 2843 struct xhci_soft_trb trb; 2844 usbd_status err; 2845 2846 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 2847 2848 trb.trb_0 = 0; 2849 trb.trb_2 = 0; 2850 trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT); 2851 2852 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT); 2853 if (err != USBD_NORMAL_COMPLETION) { 2854 return err; 2855 } 2856 2857 *slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3); 2858 2859 return err; 2860 } 2861 2862 /* 2863 * xHCI 4.6.4 2864 * Deallocate ring and device/input context DMA buffers, and disable_slot. 2865 * All endpoints in the slot should be stopped. 2866 * Should be called with sc_lock held. 2867 */ 2868 static usbd_status 2869 xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot) 2870 { 2871 struct xhci_soft_trb trb; 2872 struct xhci_slot *xs; 2873 usbd_status err; 2874 2875 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 2876 2877 if (sc->sc_dying) 2878 return USBD_IOERROR; 2879 2880 trb.trb_0 = 0; 2881 trb.trb_2 = 0; 2882 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot) | 2883 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT); 2884 2885 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT); 2886 2887 if (!err) { 2888 xs = &sc->sc_slots[slot]; 2889 if (xs->xs_idx != 0) { 2890 xhci_free_slot(sc, xs); 2891 xhci_set_dcba(sc, 0, slot); 2892 memset(xs, 0, sizeof(*xs)); 2893 } 2894 } 2895 2896 return err; 2897 } 2898 2899 /* 2900 * Set address of device and transition slot state from ENABLED to ADDRESSED 2901 * if Block Setaddress Request (BSR) is false. 2902 * If BSR==true, transition slot state from ENABLED to DEFAULT. 2903 * see xHCI 1.1 4.5.3, 3.3.4 2904 * Should be called without sc_lock held. 2905 */ 2906 static usbd_status 2907 xhci_address_device(struct xhci_softc * const sc, 2908 uint64_t icp, uint8_t slot_id, bool bsr) 2909 { 2910 struct xhci_soft_trb trb; 2911 usbd_status err; 2912 2913 XHCIHIST_FUNC(); 2914 if (bsr) { 2915 XHCIHIST_CALLARGS("icp %#jx slot %#jx with bsr", 2916 icp, slot_id, 0, 0); 2917 } else { 2918 XHCIHIST_CALLARGS("icp %#jx slot %#jx nobsr", 2919 icp, slot_id, 0, 0); 2920 } 2921 2922 trb.trb_0 = icp; 2923 trb.trb_2 = 0; 2924 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) | 2925 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) | 2926 (bsr ? XHCI_TRB_3_BSR_BIT : 0); 2927 2928 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT); 2929 2930 if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS) 2931 err = USBD_NO_ADDR; 2932 2933 return err; 2934 } 2935 2936 static usbd_status 2937 xhci_update_ep0_mps(struct xhci_softc * const sc, 2938 struct xhci_slot * const xs, u_int mps) 2939 { 2940 struct xhci_soft_trb trb; 2941 usbd_status err; 2942 uint32_t * cp; 2943 2944 XHCIHIST_FUNC(); 2945 XHCIHIST_CALLARGS("slot %ju mps %ju", xs->xs_idx, mps, 0, 0); 2946 2947 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL); 2948 cp[0] = htole32(0); 2949 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL)); 2950 2951 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL)); 2952 cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps)); 2953 2954 /* sync input contexts before they are read from memory */ 2955 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE); 2956 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0), 2957 sc->sc_ctxsz * 4); 2958 2959 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0); 2960 trb.trb_2 = 0; 2961 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) | 2962 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX); 2963 2964 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT); 2965 return err; 2966 } 2967 2968 static void 2969 xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si) 2970 { 2971 uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0); 2972 2973 XHCIHIST_FUNC(); 2974 XHCIHIST_CALLARGS("dcbaa %#jx dc 0x%016jx slot %jd", 2975 (uintptr_t)&dcbaa[si], dcba, si, 0); 2976 2977 dcbaa[si] = htole64(dcba); 2978 usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t), 2979 BUS_DMASYNC_PREWRITE); 2980 } 2981 2982 /* 2983 * Allocate device and input context DMA buffer, and 2984 * TRB DMA buffer for each endpoint. 2985 */ 2986 static usbd_status 2987 xhci_init_slot(struct usbd_device *dev, uint32_t slot) 2988 { 2989 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus); 2990 struct xhci_slot *xs; 2991 usbd_status err; 2992 2993 XHCIHIST_FUNC(); 2994 XHCIHIST_CALLARGS("slot %ju", slot, 0, 0, 0); 2995 2996 xs = &sc->sc_slots[slot]; 2997 2998 /* allocate contexts */ 2999 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz, 3000 USBMALLOC_COHERENT, &xs->xs_dc_dma); 3001 if (err) { 3002 DPRINTFN(1, "failed to allocmem output device context %jd", 3003 err, 0, 0, 0); 3004 return err; 3005 } 3006 memset(KERNADDR(&xs->xs_dc_dma, 0), 0, sc->sc_pgsz); 3007 3008 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz, 3009 USBMALLOC_COHERENT, &xs->xs_ic_dma); 3010 if (err) { 3011 DPRINTFN(1, "failed to allocmem input device context %jd", 3012 err, 0, 0, 0); 3013 goto bad1; 3014 } 3015 memset(KERNADDR(&xs->xs_ic_dma, 0), 0, sc->sc_pgsz); 3016 3017 memset(&xs->xs_xr[0], 0, sizeof(xs->xs_xr)); 3018 xs->xs_idx = slot; 3019 3020 return USBD_NORMAL_COMPLETION; 3021 3022 bad1: 3023 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma); 3024 xs->xs_idx = 0; 3025 return err; 3026 } 3027 3028 static void 3029 xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs) 3030 { 3031 u_int dci; 3032 3033 XHCIHIST_FUNC(); 3034 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0); 3035 3036 /* deallocate all allocated rings in the slot */ 3037 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) { 3038 if (xs->xs_xr[dci] != NULL) 3039 xhci_ring_free(sc, &xs->xs_xr[dci]); 3040 } 3041 usb_freemem(&sc->sc_bus, &xs->xs_ic_dma); 3042 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma); 3043 xs->xs_idx = 0; 3044 } 3045 3046 /* 3047 * Setup slot context, set Device Context Base Address, and issue 3048 * Set Address Device command. 3049 */ 3050 static usbd_status 3051 xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr) 3052 { 3053 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus); 3054 struct xhci_slot *xs; 3055 usbd_status err; 3056 3057 XHCIHIST_FUNC(); 3058 XHCIHIST_CALLARGS("slot %ju bsr %ju", slot, bsr, 0, 0); 3059 3060 xs = &sc->sc_slots[slot]; 3061 3062 xhci_setup_ctx(dev->ud_pipe0); 3063 3064 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0), 3065 sc->sc_ctxsz * 3); 3066 3067 xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot); 3068 3069 err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr); 3070 3071 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD); 3072 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, 0), 3073 sc->sc_ctxsz * 2); 3074 3075 return err; 3076 } 3077 3078 /* 3079 * 4.8.2, 6.2.3.2 3080 * construct slot/endpoint context parameters and do syncmem 3081 */ 3082 static void 3083 xhci_setup_ctx(struct usbd_pipe *pipe) 3084 { 3085 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 3086 struct usbd_device *dev = pipe->up_dev; 3087 struct xhci_slot * const xs = dev->ud_hcpriv; 3088 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc; 3089 const u_int dci = xhci_ep_get_dci(ed); 3090 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes); 3091 uint32_t *cp; 3092 uint16_t mps = UGETW(ed->wMaxPacketSize); 3093 uint8_t speed = dev->ud_speed; 3094 uint8_t ival = ed->bInterval; 3095 3096 XHCIHIST_FUNC(); 3097 XHCIHIST_CALLARGS("pipe %#jx: slot %ju dci %ju speed %ju", 3098 (uintptr_t)pipe, xs->xs_idx, dci, speed); 3099 3100 /* set up initial input control context */ 3101 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL); 3102 cp[0] = htole32(0); 3103 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci)); 3104 cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT)); 3105 cp[7] = htole32(0); 3106 3107 /* set up input slot context */ 3108 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT)); 3109 cp[0] = 3110 XHCI_SCTX_0_CTX_NUM_SET(dci) | 3111 XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed)); 3112 cp[1] = 0; 3113 cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0); 3114 cp[3] = 0; 3115 xhci_setup_route(pipe, cp); 3116 xhci_setup_tthub(pipe, cp); 3117 3118 cp[0] = htole32(cp[0]); 3119 cp[1] = htole32(cp[1]); 3120 cp[2] = htole32(cp[2]); 3121 cp[3] = htole32(cp[3]); 3122 3123 /* set up input endpoint context */ 3124 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci)); 3125 cp[0] = 3126 XHCI_EPCTX_0_EPSTATE_SET(0) | 3127 XHCI_EPCTX_0_MULT_SET(0) | 3128 XHCI_EPCTX_0_MAXP_STREAMS_SET(0) | 3129 XHCI_EPCTX_0_LSA_SET(0) | 3130 XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0); 3131 cp[1] = 3132 XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) | 3133 XHCI_EPCTX_1_HID_SET(0) | 3134 XHCI_EPCTX_1_MAXB_SET(0); 3135 3136 if (xfertype != UE_ISOCHRONOUS) 3137 cp[1] |= XHCI_EPCTX_1_CERR_SET(3); 3138 3139 if (xfertype == UE_CONTROL) 3140 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */ 3141 else if (USB_IS_SS(speed)) 3142 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps); 3143 else 3144 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps)); 3145 3146 xhci_setup_maxburst(pipe, cp); 3147 3148 switch (xfertype) { 3149 case UE_CONTROL: 3150 break; 3151 case UE_BULK: 3152 /* XXX Set MaxPStreams, HID, and LSA if streams enabled */ 3153 break; 3154 case UE_INTERRUPT: 3155 if (pipe->up_interval != USBD_DEFAULT_INTERVAL) 3156 ival = pipe->up_interval; 3157 3158 ival = xhci_bival2ival(ival, speed); 3159 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival); 3160 break; 3161 case UE_ISOCHRONOUS: 3162 if (pipe->up_interval != USBD_DEFAULT_INTERVAL) 3163 ival = pipe->up_interval; 3164 3165 /* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */ 3166 if (speed == USB_SPEED_FULL) 3167 ival += 3; /* 1ms -> 125us */ 3168 ival--; 3169 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival); 3170 break; 3171 default: 3172 break; 3173 } 3174 DPRINTFN(4, "setting ival %ju MaxBurst %#jx", 3175 XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0); 3176 3177 /* rewind TR dequeue pointer in xHC */ 3178 /* can't use xhci_ep_get_dci() yet? */ 3179 *(uint64_t *)(&cp[2]) = htole64( 3180 xhci_ring_trbp(xs->xs_xr[dci], 0) | 3181 XHCI_EPCTX_2_DCS_SET(1)); 3182 3183 cp[0] = htole32(cp[0]); 3184 cp[1] = htole32(cp[1]); 3185 cp[4] = htole32(cp[4]); 3186 3187 /* rewind TR dequeue pointer in driver */ 3188 struct xhci_ring *xr = xs->xs_xr[dci]; 3189 mutex_enter(&xr->xr_lock); 3190 xhci_host_dequeue(xr); 3191 mutex_exit(&xr->xr_lock); 3192 3193 /* sync input contexts before they are read from memory */ 3194 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE); 3195 } 3196 3197 /* 3198 * Setup route string and roothub port of given device for slot context 3199 */ 3200 static void 3201 xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp) 3202 { 3203 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 3204 struct usbd_device *dev = pipe->up_dev; 3205 struct usbd_port *up = dev->ud_powersrc; 3206 struct usbd_device *hub; 3207 struct usbd_device *adev; 3208 uint8_t rhport = 0; 3209 uint32_t route = 0; 3210 3211 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3212 3213 /* Locate root hub port and Determine route string */ 3214 /* 4.3.3 route string does not include roothub port */ 3215 for (hub = dev; hub != NULL; hub = hub->ud_myhub) { 3216 uint32_t dep; 3217 3218 DPRINTFN(4, "hub %#jx depth %jd upport %#jx upportno %jd", 3219 (uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc, 3220 hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno : 3221 -1); 3222 3223 if (hub->ud_powersrc == NULL) 3224 break; 3225 dep = hub->ud_depth; 3226 if (dep == 0) 3227 break; 3228 rhport = hub->ud_powersrc->up_portno; 3229 if (dep > USB_HUB_MAX_DEPTH) 3230 continue; 3231 3232 route |= 3233 (rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport) 3234 << ((dep - 1) * 4); 3235 } 3236 route = route >> 4; 3237 size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1; 3238 3239 /* Locate port on upstream high speed hub */ 3240 for (adev = dev, hub = up->up_parent; 3241 hub != NULL && hub->ud_speed != USB_SPEED_HIGH; 3242 adev = hub, hub = hub->ud_myhub) 3243 ; 3244 if (hub) { 3245 int p; 3246 for (p = 1; p <= hub->ud_hub->uh_hubdesc.bNbrPorts; p++) { 3247 if (hub->ud_hub->uh_ports[p - 1].up_dev == adev) { 3248 dev->ud_myhsport = &hub->ud_hub->uh_ports[p - 1]; 3249 goto found; 3250 } 3251 } 3252 panic("%s: cannot find HS port", __func__); 3253 found: 3254 DPRINTFN(4, "high speed port %jd", p, 0, 0, 0); 3255 } else { 3256 dev->ud_myhsport = NULL; 3257 } 3258 3259 const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport); 3260 3261 DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport, 3262 ctlrport, route, (uintptr_t)hub); 3263 3264 cp[0] |= XHCI_SCTX_0_ROUTE_SET(route); 3265 cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport); 3266 } 3267 3268 /* 3269 * Setup whether device is hub, whether device uses MTT, and 3270 * TT informations if it uses MTT. 3271 */ 3272 static void 3273 xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp) 3274 { 3275 struct usbd_device *dev = pipe->up_dev; 3276 struct usbd_port *myhsport = dev->ud_myhsport; 3277 usb_device_descriptor_t * const dd = &dev->ud_ddesc; 3278 uint32_t speed = dev->ud_speed; 3279 uint8_t rhaddr = dev->ud_bus->ub_rhaddr; 3280 uint8_t tthubslot, ttportnum; 3281 bool ishub; 3282 bool usemtt; 3283 3284 XHCIHIST_FUNC(); 3285 3286 /* 3287 * 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2 3288 * tthubslot: 3289 * This is the slot ID of parent HS hub 3290 * if LS/FS device is connected && connected through HS hub. 3291 * This is 0 if device is not LS/FS device || 3292 * parent hub is not HS hub || 3293 * attached to root hub. 3294 * ttportnum: 3295 * This is the downstream facing port of parent HS hub 3296 * if LS/FS device is connected. 3297 * This is 0 if device is not LS/FS device || 3298 * parent hub is not HS hub || 3299 * attached to root hub. 3300 */ 3301 if (myhsport && 3302 myhsport->up_parent->ud_addr != rhaddr && 3303 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) { 3304 ttportnum = myhsport->up_portno; 3305 tthubslot = myhsport->up_parent->ud_addr; 3306 } else { 3307 ttportnum = 0; 3308 tthubslot = 0; 3309 } 3310 XHCIHIST_CALLARGS("myhsport %#jx ttportnum=%jd tthubslot=%jd", 3311 (uintptr_t)myhsport, ttportnum, tthubslot, 0); 3312 3313 /* ishub is valid after reading UDESC_DEVICE */ 3314 ishub = (dd->bDeviceClass == UDCLASS_HUB); 3315 3316 /* dev->ud_hub is valid after reading UDESC_HUB */ 3317 if (ishub && dev->ud_hub) { 3318 usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc; 3319 uint8_t ttt = 3320 __SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK); 3321 3322 cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts); 3323 cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt); 3324 DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0); 3325 } 3326 3327 #define IS_MTTHUB(dd) \ 3328 ((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT) 3329 3330 /* 3331 * MTT flag is set if 3332 * 1. this is HS hub && MTTs are supported and enabled; or 3333 * 2. this is LS or FS device && there is a parent HS hub where MTTs 3334 * are supported and enabled. 3335 * 3336 * XXX enabled is not tested yet 3337 */ 3338 if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd)) 3339 usemtt = true; 3340 else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) && 3341 myhsport && 3342 myhsport->up_parent->ud_addr != rhaddr && 3343 IS_MTTHUB(&myhsport->up_parent->ud_ddesc)) 3344 usemtt = true; 3345 else 3346 usemtt = false; 3347 DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd", 3348 dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt); 3349 3350 #undef IS_MTTHUB 3351 3352 cp[0] |= 3353 XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) | 3354 XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0); 3355 cp[2] |= 3356 XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) | 3357 XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum); 3358 } 3359 3360 /* set up params for periodic endpoint */ 3361 static void 3362 xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp) 3363 { 3364 struct usbd_device *dev = pipe->up_dev; 3365 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc; 3366 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes); 3367 usbd_desc_iter_t iter; 3368 const usb_cdc_descriptor_t *cdcd; 3369 uint32_t maxb = 0; 3370 uint16_t mps = UGETW(ed->wMaxPacketSize); 3371 uint8_t speed = dev->ud_speed; 3372 uint8_t ep; 3373 3374 /* config desc is NULL when opening ep0 */ 3375 if (dev == NULL || dev->ud_cdesc == NULL) 3376 goto no_cdcd; 3377 cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev, 3378 UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY); 3379 if (cdcd == NULL) 3380 goto no_cdcd; 3381 usb_desc_iter_init(dev, &iter); 3382 iter.cur = (const void *)cdcd; 3383 3384 /* find endpoint_ss_comp desc for ep of this pipe */ 3385 for (ep = 0;;) { 3386 cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter); 3387 if (cdcd == NULL) 3388 break; 3389 if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) { 3390 ep = ((const usb_endpoint_descriptor_t *)cdcd)-> 3391 bEndpointAddress; 3392 if (UE_GET_ADDR(ep) == 3393 UE_GET_ADDR(ed->bEndpointAddress)) { 3394 cdcd = (const usb_cdc_descriptor_t *) 3395 usb_desc_iter_next(&iter); 3396 break; 3397 } 3398 ep = 0; 3399 } 3400 } 3401 if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) { 3402 const usb_endpoint_ss_comp_descriptor_t * esscd = 3403 (const usb_endpoint_ss_comp_descriptor_t *)cdcd; 3404 maxb = esscd->bMaxBurst; 3405 } 3406 3407 no_cdcd: 3408 /* 6.2.3.4, 4.8.2.4 */ 3409 if (USB_IS_SS(speed)) { 3410 /* USB 3.1 9.6.6 */ 3411 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps); 3412 /* USB 3.1 9.6.7 */ 3413 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb); 3414 #ifdef notyet 3415 if (xfertype == UE_ISOCHRONOUS) { 3416 } 3417 if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) { 3418 /* use ESIT */ 3419 cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x); 3420 cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x); 3421 3422 /* XXX if LEC = 1, set ESIT instead */ 3423 cp[0] |= XHCI_EPCTX_0_MULT_SET(0); 3424 } else { 3425 /* use ival */ 3426 } 3427 #endif 3428 } else { 3429 /* USB 2.0 9.6.6 */ 3430 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps)); 3431 3432 /* 6.2.3.4 */ 3433 if (speed == USB_SPEED_HIGH && 3434 (xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) { 3435 maxb = UE_GET_TRANS(mps); 3436 } else { 3437 /* LS/FS or HS CTRL or HS BULK */ 3438 maxb = 0; 3439 } 3440 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb); 3441 } 3442 } 3443 3444 /* 3445 * Convert endpoint bInterval value to endpoint context interval value 3446 * for Interrupt pipe. 3447 * xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 3448 */ 3449 static uint32_t 3450 xhci_bival2ival(uint32_t ival, uint32_t speed) 3451 { 3452 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) { 3453 int i; 3454 3455 /* 3456 * round ival down to "the nearest base 2 multiple of 3457 * bInterval * 8". 3458 * bInterval is at most 255 as its type is uByte. 3459 * 255(ms) = 2040(x 125us) < 2^11, so start with 10. 3460 */ 3461 for (i = 10; i > 0; i--) { 3462 if ((ival * 8) >= (1 << i)) 3463 break; 3464 } 3465 ival = i; 3466 } else { 3467 /* Interval = bInterval-1 for SS/HS */ 3468 ival--; 3469 } 3470 3471 return ival; 3472 } 3473 3474 /* ----- */ 3475 3476 static void 3477 xhci_noop(struct usbd_pipe *pipe) 3478 { 3479 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3480 } 3481 3482 /* 3483 * Process root hub request. 3484 */ 3485 static int 3486 xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req, 3487 void *buf, int buflen) 3488 { 3489 struct xhci_softc * const sc = XHCI_BUS2SC(bus); 3490 usb_port_status_t ps; 3491 int l, totlen = 0; 3492 uint16_t len, value, index; 3493 int port, i; 3494 uint32_t v; 3495 3496 XHCIHIST_FUNC(); 3497 3498 if (sc->sc_dying) 3499 return -1; 3500 3501 size_t bn = bus == &sc->sc_bus ? 0 : 1; 3502 3503 len = UGETW(req->wLength); 3504 value = UGETW(req->wValue); 3505 index = UGETW(req->wIndex); 3506 3507 XHCIHIST_CALLARGS("rhreq: %04jx %04jx %04jx %04jx", 3508 req->bmRequestType | (req->bRequest << 8), value, index, len); 3509 3510 #define C(x,y) ((x) | ((y) << 8)) 3511 switch (C(req->bRequest, req->bmRequestType)) { 3512 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): 3513 DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0); 3514 if (len == 0) 3515 break; 3516 switch (value) { 3517 #define sd ((usb_string_descriptor_t *)buf) 3518 case C(2, UDESC_STRING): 3519 /* Product */ 3520 totlen = usb_makestrdesc(sd, len, "xHCI root hub"); 3521 break; 3522 #undef sd 3523 default: 3524 /* default from usbroothub */ 3525 return buflen; 3526 } 3527 break; 3528 3529 /* Hub requests */ 3530 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): 3531 break; 3532 /* Clear Port Feature request */ 3533 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): { 3534 const size_t cp = xhci_rhport2ctlrport(sc, bn, index); 3535 3536 DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd", 3537 index, value, bn, cp); 3538 if (index < 1 || index > sc->sc_rhportcount[bn]) { 3539 return -1; 3540 } 3541 port = XHCI_PORTSC(cp); 3542 v = xhci_op_read_4(sc, port); 3543 DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0); 3544 v &= ~XHCI_PS_CLEAR; 3545 switch (value) { 3546 case UHF_PORT_ENABLE: 3547 xhci_op_write_4(sc, port, v & ~XHCI_PS_PED); 3548 break; 3549 case UHF_PORT_SUSPEND: 3550 return -1; 3551 case UHF_PORT_POWER: 3552 break; 3553 case UHF_PORT_TEST: 3554 case UHF_PORT_INDICATOR: 3555 return -1; 3556 case UHF_C_PORT_CONNECTION: 3557 xhci_op_write_4(sc, port, v | XHCI_PS_CSC); 3558 break; 3559 case UHF_C_PORT_ENABLE: 3560 case UHF_C_PORT_SUSPEND: 3561 case UHF_C_PORT_OVER_CURRENT: 3562 return -1; 3563 case UHF_C_BH_PORT_RESET: 3564 xhci_op_write_4(sc, port, v | XHCI_PS_WRC); 3565 break; 3566 case UHF_C_PORT_RESET: 3567 xhci_op_write_4(sc, port, v | XHCI_PS_PRC); 3568 break; 3569 case UHF_C_PORT_LINK_STATE: 3570 xhci_op_write_4(sc, port, v | XHCI_PS_PLC); 3571 break; 3572 case UHF_C_PORT_CONFIG_ERROR: 3573 xhci_op_write_4(sc, port, v | XHCI_PS_CEC); 3574 break; 3575 default: 3576 return -1; 3577 } 3578 break; 3579 } 3580 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): 3581 if (len == 0) 3582 break; 3583 if ((value & 0xff) != 0) { 3584 return -1; 3585 } 3586 usb_hub_descriptor_t hubd; 3587 3588 totlen = uimin(buflen, sizeof(hubd)); 3589 memcpy(&hubd, buf, totlen); 3590 hubd.bNbrPorts = sc->sc_rhportcount[bn]; 3591 USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH); 3592 hubd.bPwrOn2PwrGood = 200; 3593 for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) { 3594 /* XXX can't find out? */ 3595 hubd.DeviceRemovable[i++] = 0; 3596 } 3597 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i; 3598 totlen = uimin(totlen, hubd.bDescLength); 3599 memcpy(buf, &hubd, totlen); 3600 break; 3601 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): 3602 if (len != 4) { 3603 return -1; 3604 } 3605 memset(buf, 0, len); /* ? XXX */ 3606 totlen = len; 3607 break; 3608 /* Get Port Status request */ 3609 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): { 3610 const size_t cp = xhci_rhport2ctlrport(sc, bn, index); 3611 3612 DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju", 3613 bn, index, cp, 0); 3614 if (index < 1 || index > sc->sc_rhportcount[bn]) { 3615 DPRINTFN(5, "bad get port status: index=%jd bn=%jd " 3616 "portcount=%jd", 3617 index, bn, sc->sc_rhportcount[bn], 0); 3618 return -1; 3619 } 3620 if (len != 4) { 3621 DPRINTFN(5, "bad get port status: len %jd != 4", 3622 len, 0, 0, 0); 3623 return -1; 3624 } 3625 v = xhci_op_read_4(sc, XHCI_PORTSC(cp)); 3626 DPRINTFN(4, "getrhportsc %jd 0x%08jx", cp, v, 0, 0); 3627 i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v)); 3628 if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS; 3629 if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED; 3630 if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR; 3631 //if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND; 3632 if (v & XHCI_PS_PR) i |= UPS_RESET; 3633 if (v & XHCI_PS_PP) { 3634 if (i & UPS_OTHER_SPEED) 3635 i |= UPS_PORT_POWER_SS; 3636 else 3637 i |= UPS_PORT_POWER; 3638 } 3639 if (i & UPS_OTHER_SPEED) 3640 i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v)); 3641 if (sc->sc_vendor_port_status) 3642 i = sc->sc_vendor_port_status(sc, v, i); 3643 USETW(ps.wPortStatus, i); 3644 i = 0; 3645 if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS; 3646 if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED; 3647 if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR; 3648 if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET; 3649 if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET; 3650 if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE; 3651 if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR; 3652 USETW(ps.wPortChange, i); 3653 totlen = uimin(len, sizeof(ps)); 3654 memcpy(buf, &ps, totlen); 3655 DPRINTFN(5, "get port status: wPortStatus %#jx wPortChange %#jx" 3656 " totlen %jd", 3657 UGETW(ps.wPortStatus), UGETW(ps.wPortChange), totlen, 0); 3658 break; 3659 } 3660 case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): 3661 return -1; 3662 case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE): 3663 break; 3664 case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): 3665 break; 3666 /* Set Port Feature request */ 3667 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): { 3668 int optval = (index >> 8) & 0xff; 3669 index &= 0xff; 3670 if (index < 1 || index > sc->sc_rhportcount[bn]) { 3671 return -1; 3672 } 3673 3674 const size_t cp = xhci_rhport2ctlrport(sc, bn, index); 3675 3676 port = XHCI_PORTSC(cp); 3677 v = xhci_op_read_4(sc, port); 3678 DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0); 3679 v &= ~XHCI_PS_CLEAR; 3680 switch (value) { 3681 case UHF_PORT_ENABLE: 3682 xhci_op_write_4(sc, port, v | XHCI_PS_PED); 3683 break; 3684 case UHF_PORT_SUSPEND: 3685 /* XXX suspend */ 3686 break; 3687 case UHF_PORT_RESET: 3688 v &= ~(XHCI_PS_PED | XHCI_PS_PR); 3689 xhci_op_write_4(sc, port, v | XHCI_PS_PR); 3690 /* Wait for reset to complete. */ 3691 usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY); 3692 if (sc->sc_dying) { 3693 return -1; 3694 } 3695 v = xhci_op_read_4(sc, port); 3696 if (v & XHCI_PS_PR) { 3697 xhci_op_write_4(sc, port, v & ~XHCI_PS_PR); 3698 usb_delay_ms(&sc->sc_bus, 10); 3699 /* XXX */ 3700 } 3701 break; 3702 case UHF_PORT_POWER: 3703 /* XXX power control */ 3704 break; 3705 /* XXX more */ 3706 case UHF_C_PORT_RESET: 3707 xhci_op_write_4(sc, port, v | XHCI_PS_PRC); 3708 break; 3709 case UHF_PORT_U1_TIMEOUT: 3710 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) { 3711 return -1; 3712 } 3713 port = XHCI_PORTPMSC(cp); 3714 v = xhci_op_read_4(sc, port); 3715 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx", 3716 index, cp, v, 0); 3717 v &= ~XHCI_PM3_U1TO_SET(0xff); 3718 v |= XHCI_PM3_U1TO_SET(optval); 3719 xhci_op_write_4(sc, port, v); 3720 break; 3721 case UHF_PORT_U2_TIMEOUT: 3722 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) { 3723 return -1; 3724 } 3725 port = XHCI_PORTPMSC(cp); 3726 v = xhci_op_read_4(sc, port); 3727 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx", 3728 index, cp, v, 0); 3729 v &= ~XHCI_PM3_U2TO_SET(0xff); 3730 v |= XHCI_PM3_U2TO_SET(optval); 3731 xhci_op_write_4(sc, port, v); 3732 break; 3733 default: 3734 return -1; 3735 } 3736 } 3737 break; 3738 case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER): 3739 case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER): 3740 case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER): 3741 case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER): 3742 break; 3743 default: 3744 /* default from usbroothub */ 3745 return buflen; 3746 } 3747 3748 return totlen; 3749 } 3750 3751 /* root hub interrupt */ 3752 3753 static usbd_status 3754 xhci_root_intr_transfer(struct usbd_xfer *xfer) 3755 { 3756 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 3757 usbd_status err; 3758 3759 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3760 3761 /* Insert last in queue. */ 3762 mutex_enter(&sc->sc_lock); 3763 err = usb_insert_transfer(xfer); 3764 mutex_exit(&sc->sc_lock); 3765 if (err) 3766 return err; 3767 3768 /* Pipe isn't running, start first */ 3769 return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); 3770 } 3771 3772 /* Wait for roothub port status/change */ 3773 static usbd_status 3774 xhci_root_intr_start(struct usbd_xfer *xfer) 3775 { 3776 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 3777 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1; 3778 const bool polling = xhci_polling_p(sc); 3779 3780 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3781 3782 if (sc->sc_dying) 3783 return USBD_IOERROR; 3784 3785 if (!polling) 3786 mutex_enter(&sc->sc_lock); 3787 KASSERT(sc->sc_intrxfer[bn] == NULL); 3788 sc->sc_intrxfer[bn] = xfer; 3789 xfer->ux_status = USBD_IN_PROGRESS; 3790 if (!polling) 3791 mutex_exit(&sc->sc_lock); 3792 3793 return USBD_IN_PROGRESS; 3794 } 3795 3796 static void 3797 xhci_root_intr_abort(struct usbd_xfer *xfer) 3798 { 3799 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 3800 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1; 3801 3802 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3803 3804 KASSERT(mutex_owned(&sc->sc_lock)); 3805 KASSERT(xfer->ux_pipe->up_intrxfer == xfer); 3806 3807 /* If xfer has already completed, nothing to do here. */ 3808 if (sc->sc_intrxfer[bn] == NULL) 3809 return; 3810 3811 /* 3812 * Otherwise, sc->sc_intrxfer[bn] had better be this transfer. 3813 * Cancel it. 3814 */ 3815 KASSERT(sc->sc_intrxfer[bn] == xfer); 3816 xfer->ux_status = USBD_CANCELLED; 3817 usb_transfer_complete(xfer); 3818 } 3819 3820 static void 3821 xhci_root_intr_close(struct usbd_pipe *pipe) 3822 { 3823 struct xhci_softc * const sc __diagused = XHCI_PIPE2SC(pipe); 3824 const struct usbd_xfer *xfer __diagused = pipe->up_intrxfer; 3825 const size_t bn __diagused = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1; 3826 3827 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3828 3829 KASSERT(mutex_owned(&sc->sc_lock)); 3830 3831 /* 3832 * Caller must guarantee the xfer has completed first, by 3833 * closing the pipe only after normal completion or an abort. 3834 */ 3835 KASSERT(sc->sc_intrxfer[bn] == NULL); 3836 } 3837 3838 static void 3839 xhci_root_intr_done(struct usbd_xfer *xfer) 3840 { 3841 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 3842 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1; 3843 3844 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3845 3846 KASSERT(mutex_owned(&sc->sc_lock)); 3847 3848 /* Claim the xfer so it doesn't get completed again. */ 3849 KASSERT(sc->sc_intrxfer[bn] == xfer); 3850 KASSERT(xfer->ux_status != USBD_IN_PROGRESS); 3851 sc->sc_intrxfer[bn] = NULL; 3852 } 3853 3854 /* -------------- */ 3855 /* device control */ 3856 3857 static usbd_status 3858 xhci_device_ctrl_transfer(struct usbd_xfer *xfer) 3859 { 3860 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 3861 usbd_status err; 3862 3863 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3864 3865 /* Insert last in queue. */ 3866 mutex_enter(&sc->sc_lock); 3867 err = usb_insert_transfer(xfer); 3868 mutex_exit(&sc->sc_lock); 3869 if (err) 3870 return err; 3871 3872 /* Pipe isn't running, start first */ 3873 return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); 3874 } 3875 3876 static usbd_status 3877 xhci_device_ctrl_start(struct usbd_xfer *xfer) 3878 { 3879 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 3880 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv; 3881 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc); 3882 struct xhci_ring * const tr = xs->xs_xr[dci]; 3883 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer); 3884 usb_device_request_t * const req = &xfer->ux_request; 3885 const bool isread = usbd_xfer_isread(xfer); 3886 const uint32_t len = UGETW(req->wLength); 3887 usb_dma_t * const dma = &xfer->ux_dmabuf; 3888 uint64_t parameter; 3889 uint32_t status; 3890 uint32_t control; 3891 u_int i; 3892 const bool polling = xhci_polling_p(sc); 3893 3894 XHCIHIST_FUNC(); 3895 XHCIHIST_CALLARGS("req: %04jx %04jx %04jx %04jx", 3896 req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue), 3897 UGETW(req->wIndex), UGETW(req->wLength)); 3898 3899 /* we rely on the bottom bits for extra info */ 3900 KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx", 3901 (uintptr_t) xfer); 3902 3903 KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0); 3904 3905 i = 0; 3906 3907 /* setup phase */ 3908 parameter = le64dec(req); /* to keep USB endian after xhci_trb_put() */ 3909 status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req)); 3910 control = ((len == 0) ? XHCI_TRB_3_TRT_NONE : 3911 (isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) | 3912 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) | 3913 XHCI_TRB_3_IDT_BIT; 3914 xhci_xfer_put_trb(xx, i++, parameter, status, control); 3915 3916 if (len != 0) { 3917 /* data phase */ 3918 parameter = DMAADDR(dma, 0); 3919 KASSERTMSG(len <= 0x10000, "len %d", len); 3920 status = XHCI_TRB_2_IRQ_SET(0) | 3921 XHCI_TRB_2_TDSZ_SET(0) | 3922 XHCI_TRB_2_BYTES_SET(len); 3923 control = (isread ? XHCI_TRB_3_DIR_IN : 0) | 3924 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) | 3925 (isread ? XHCI_TRB_3_ISP_BIT : 0) | 3926 XHCI_TRB_3_IOC_BIT; 3927 xhci_xfer_put_trb(xx, i++, parameter, status, control); 3928 3929 usb_syncmem(dma, 0, len, 3930 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); 3931 } 3932 3933 parameter = 0; 3934 status = XHCI_TRB_2_IRQ_SET(0); 3935 /* the status stage has inverted direction */ 3936 control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) | 3937 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) | 3938 XHCI_TRB_3_IOC_BIT; 3939 xhci_xfer_put_trb(xx, i++, parameter, status, control); 3940 3941 if (!polling) 3942 mutex_enter(&tr->xr_lock); 3943 xhci_ring_put_xfer(sc, tr, xx, i); 3944 if (!polling) 3945 mutex_exit(&tr->xr_lock); 3946 3947 if (!polling) 3948 mutex_enter(&sc->sc_lock); 3949 xfer->ux_status = USBD_IN_PROGRESS; 3950 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci); 3951 usbd_xfer_schedule_timeout(xfer); 3952 if (!polling) 3953 mutex_exit(&sc->sc_lock); 3954 3955 return USBD_IN_PROGRESS; 3956 } 3957 3958 static void 3959 xhci_device_ctrl_done(struct usbd_xfer *xfer) 3960 { 3961 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3962 usb_device_request_t *req = &xfer->ux_request; 3963 int len = UGETW(req->wLength); 3964 int rd = req->bmRequestType & UT_READ; 3965 3966 if (len) 3967 usb_syncmem(&xfer->ux_dmabuf, 0, len, 3968 rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); 3969 } 3970 3971 static void 3972 xhci_device_ctrl_abort(struct usbd_xfer *xfer) 3973 { 3974 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3975 3976 usbd_xfer_abort(xfer); 3977 } 3978 3979 static void 3980 xhci_device_ctrl_close(struct usbd_pipe *pipe) 3981 { 3982 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 3983 3984 xhci_close_pipe(pipe); 3985 } 3986 3987 /* ------------------ */ 3988 /* device isochronous */ 3989 3990 /* ----------- */ 3991 /* device bulk */ 3992 3993 static usbd_status 3994 xhci_device_bulk_transfer(struct usbd_xfer *xfer) 3995 { 3996 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 3997 usbd_status err; 3998 3999 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 4000 4001 /* Insert last in queue. */ 4002 mutex_enter(&sc->sc_lock); 4003 err = usb_insert_transfer(xfer); 4004 mutex_exit(&sc->sc_lock); 4005 if (err) 4006 return err; 4007 4008 /* 4009 * Pipe isn't running (otherwise err would be USBD_INPROG), 4010 * so start it first. 4011 */ 4012 return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); 4013 } 4014 4015 static usbd_status 4016 xhci_device_bulk_start(struct usbd_xfer *xfer) 4017 { 4018 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 4019 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv; 4020 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc); 4021 struct xhci_ring * const tr = xs->xs_xr[dci]; 4022 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer); 4023 const uint32_t len = xfer->ux_length; 4024 usb_dma_t * const dma = &xfer->ux_dmabuf; 4025 uint64_t parameter; 4026 uint32_t status; 4027 uint32_t control; 4028 u_int i = 0; 4029 const bool polling = xhci_polling_p(sc); 4030 4031 XHCIHIST_FUNC(); 4032 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju", 4033 (uintptr_t)xfer, xs->xs_idx, dci, 0); 4034 4035 if (sc->sc_dying) 4036 return USBD_IOERROR; 4037 4038 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0); 4039 4040 parameter = DMAADDR(dma, 0); 4041 const bool isread = usbd_xfer_isread(xfer); 4042 if (len) 4043 usb_syncmem(dma, 0, len, 4044 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); 4045 4046 /* 4047 * XXX: (dsl) The physical buffer must not cross a 64k boundary. 4048 * If the user supplied buffer crosses such a boundary then 2 4049 * (or more) TRB should be used. 4050 * If multiple TRB are used the td_size field must be set correctly. 4051 * For v1.0 devices (like ivy bridge) this is the number of usb data 4052 * blocks needed to complete the transfer. 4053 * Setting it to 1 in the last TRB causes an extra zero-length 4054 * data block be sent. 4055 * The earlier documentation differs, I don't know how it behaves. 4056 */ 4057 KASSERTMSG(len <= 0x10000, "len %d", len); 4058 status = XHCI_TRB_2_IRQ_SET(0) | 4059 XHCI_TRB_2_TDSZ_SET(0) | 4060 XHCI_TRB_2_BYTES_SET(len); 4061 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) | 4062 (isread ? XHCI_TRB_3_ISP_BIT : 0) | 4063 XHCI_TRB_3_IOC_BIT; 4064 xhci_xfer_put_trb(xx, i++, parameter, status, control); 4065 4066 if (!polling) 4067 mutex_enter(&tr->xr_lock); 4068 xhci_ring_put_xfer(sc, tr, xx, i); 4069 if (!polling) 4070 mutex_exit(&tr->xr_lock); 4071 4072 if (!polling) 4073 mutex_enter(&sc->sc_lock); 4074 xfer->ux_status = USBD_IN_PROGRESS; 4075 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci); 4076 usbd_xfer_schedule_timeout(xfer); 4077 if (!polling) 4078 mutex_exit(&sc->sc_lock); 4079 4080 return USBD_IN_PROGRESS; 4081 } 4082 4083 static void 4084 xhci_device_bulk_done(struct usbd_xfer *xfer) 4085 { 4086 #ifdef USB_DEBUG 4087 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv; 4088 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc); 4089 #endif 4090 const bool isread = usbd_xfer_isread(xfer); 4091 4092 XHCIHIST_FUNC(); 4093 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju", 4094 (uintptr_t)xfer, xs->xs_idx, dci, 0); 4095 4096 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length, 4097 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); 4098 } 4099 4100 static void 4101 xhci_device_bulk_abort(struct usbd_xfer *xfer) 4102 { 4103 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 4104 4105 usbd_xfer_abort(xfer); 4106 } 4107 4108 static void 4109 xhci_device_bulk_close(struct usbd_pipe *pipe) 4110 { 4111 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 4112 4113 xhci_close_pipe(pipe); 4114 } 4115 4116 /* ---------------- */ 4117 /* device interrupt */ 4118 4119 static usbd_status 4120 xhci_device_intr_transfer(struct usbd_xfer *xfer) 4121 { 4122 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 4123 usbd_status err; 4124 4125 XHCIHIST_FUNC(); XHCIHIST_CALLED(); 4126 4127 /* Insert last in queue. */ 4128 mutex_enter(&sc->sc_lock); 4129 err = usb_insert_transfer(xfer); 4130 mutex_exit(&sc->sc_lock); 4131 if (err) 4132 return err; 4133 4134 /* 4135 * Pipe isn't running (otherwise err would be USBD_INPROG), 4136 * so start it first. 4137 */ 4138 return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); 4139 } 4140 4141 static usbd_status 4142 xhci_device_intr_start(struct usbd_xfer *xfer) 4143 { 4144 struct xhci_softc * const sc = XHCI_XFER2SC(xfer); 4145 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv; 4146 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc); 4147 struct xhci_ring * const tr = xs->xs_xr[dci]; 4148 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer); 4149 const uint32_t len = xfer->ux_length; 4150 const bool polling = xhci_polling_p(sc); 4151 usb_dma_t * const dma = &xfer->ux_dmabuf; 4152 uint64_t parameter; 4153 uint32_t status; 4154 uint32_t control; 4155 u_int i = 0; 4156 4157 XHCIHIST_FUNC(); 4158 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju", 4159 (uintptr_t)xfer, xs->xs_idx, dci, 0); 4160 4161 if (sc->sc_dying) 4162 return USBD_IOERROR; 4163 4164 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0); 4165 4166 const bool isread = usbd_xfer_isread(xfer); 4167 if (len) 4168 usb_syncmem(dma, 0, len, 4169 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); 4170 4171 parameter = DMAADDR(dma, 0); 4172 KASSERTMSG(len <= 0x10000, "len %d", len); 4173 status = XHCI_TRB_2_IRQ_SET(0) | 4174 XHCI_TRB_2_TDSZ_SET(0) | 4175 XHCI_TRB_2_BYTES_SET(len); 4176 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) | 4177 (isread ? XHCI_TRB_3_ISP_BIT : 0) | XHCI_TRB_3_IOC_BIT; 4178 xhci_xfer_put_trb(xx, i++, parameter, status, control); 4179 4180 if (!polling) 4181 mutex_enter(&tr->xr_lock); 4182 xhci_ring_put_xfer(sc, tr, xx, i); 4183 if (!polling) 4184 mutex_exit(&tr->xr_lock); 4185 4186 if (!polling) 4187 mutex_enter(&sc->sc_lock); 4188 xfer->ux_status = USBD_IN_PROGRESS; 4189 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci); 4190 usbd_xfer_schedule_timeout(xfer); 4191 if (!polling) 4192 mutex_exit(&sc->sc_lock); 4193 4194 return USBD_IN_PROGRESS; 4195 } 4196 4197 static void 4198 xhci_device_intr_done(struct usbd_xfer *xfer) 4199 { 4200 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer); 4201 #ifdef USB_DEBUG 4202 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv; 4203 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc); 4204 #endif 4205 const bool isread = usbd_xfer_isread(xfer); 4206 4207 XHCIHIST_FUNC(); 4208 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju", 4209 (uintptr_t)xfer, xs->xs_idx, dci, 0); 4210 4211 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock)); 4212 4213 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length, 4214 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); 4215 } 4216 4217 static void 4218 xhci_device_intr_abort(struct usbd_xfer *xfer) 4219 { 4220 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer); 4221 4222 XHCIHIST_FUNC(); 4223 XHCIHIST_CALLARGS("%#jx", (uintptr_t)xfer, 0, 0, 0); 4224 4225 KASSERT(mutex_owned(&sc->sc_lock)); 4226 KASSERT(xfer->ux_pipe->up_intrxfer == xfer); 4227 usbd_xfer_abort(xfer); 4228 } 4229 4230 static void 4231 xhci_device_intr_close(struct usbd_pipe *pipe) 4232 { 4233 //struct xhci_softc * const sc = XHCI_PIPE2SC(pipe); 4234 4235 XHCIHIST_FUNC(); 4236 XHCIHIST_CALLARGS("%#jx", (uintptr_t)pipe, 0, 0, 0); 4237 4238 xhci_close_pipe(pipe); 4239 } 4240