xref: /netbsd-src/sys/dev/usb/vhci.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: vhci.c,v 1.20 2020/06/05 17:20:56 maxv Exp $ */
2 
3 /*
4  * Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Maxime Villard.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: vhci.c,v 1.20 2020/06/05 17:20:56 maxv Exp $");
34 
35 #ifdef _KERNEL_OPT
36 #include "opt_usb.h"
37 #endif
38 
39 #include <sys/param.h>
40 
41 #include <sys/bus.h>
42 #include <sys/cpu.h>
43 #include <sys/conf.h>
44 #include <sys/device.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/queue.h>
50 #include <sys/systm.h>
51 #include <sys/mman.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/kcov.h>
55 
56 #include <machine/endian.h>
57 
58 #include "ioconf.h"
59 
60 #include <dev/usb/usb.h>
61 #include <dev/usb/usbdi.h>
62 #include <dev/usb/usbdivar.h>
63 
64 #include <dev/usb/usbroothub.h>
65 #include <dev/usb/vhci.h>
66 
67 #ifdef VHCI_DEBUG
68 #define DPRINTF(fmt, ...)	printf(fmt, __VA_ARGS__)
69 #else
70 #define DPRINTF(fmt, ...)	__nothing
71 #endif
72 
73 static usbd_status vhci_open(struct usbd_pipe *);
74 static void vhci_softintr(void *);
75 
76 static struct usbd_xfer *vhci_allocx(struct usbd_bus *, unsigned int);
77 static void vhci_freex(struct usbd_bus *, struct usbd_xfer *);
78 static void vhci_get_lock(struct usbd_bus *, kmutex_t **);
79 static int vhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
80     void *, int);
81 
82 static const struct usbd_bus_methods vhci_bus_methods = {
83 	.ubm_open =	vhci_open,
84 	.ubm_softint =	vhci_softintr,
85 	.ubm_dopoll =	NULL,
86 	.ubm_allocx =	vhci_allocx,
87 	.ubm_freex =	vhci_freex,
88 	.ubm_getlock =	vhci_get_lock,
89 	.ubm_rhctrl =	vhci_roothub_ctrl,
90 };
91 
92 static usbd_status vhci_device_ctrl_transfer(struct usbd_xfer *);
93 static usbd_status vhci_device_ctrl_start(struct usbd_xfer *);
94 static void vhci_device_ctrl_abort(struct usbd_xfer *);
95 static void vhci_device_ctrl_close(struct usbd_pipe *);
96 static void vhci_device_ctrl_cleartoggle(struct usbd_pipe *);
97 static void vhci_device_ctrl_done(struct usbd_xfer *);
98 
99 static const struct usbd_pipe_methods vhci_device_ctrl_methods = {
100 	.upm_init =		NULL,
101 	.upm_fini =		NULL,
102 	.upm_transfer =		vhci_device_ctrl_transfer,
103 	.upm_start =		vhci_device_ctrl_start,
104 	.upm_abort =		vhci_device_ctrl_abort,
105 	.upm_close =		vhci_device_ctrl_close,
106 	.upm_cleartoggle =	vhci_device_ctrl_cleartoggle,
107 	.upm_done =		vhci_device_ctrl_done,
108 };
109 
110 static usbd_status vhci_root_intr_transfer(struct usbd_xfer *);
111 static usbd_status vhci_root_intr_start(struct usbd_xfer *);
112 static void vhci_root_intr_abort(struct usbd_xfer *);
113 static void vhci_root_intr_close(struct usbd_pipe *);
114 static void vhci_root_intr_cleartoggle(struct usbd_pipe *);
115 static void vhci_root_intr_done(struct usbd_xfer *);
116 
117 static const struct usbd_pipe_methods vhci_root_intr_methods = {
118 	.upm_init =		NULL,
119 	.upm_fini =		NULL,
120 	.upm_transfer =		vhci_root_intr_transfer,
121 	.upm_start =		vhci_root_intr_start,
122 	.upm_abort =		vhci_root_intr_abort,
123 	.upm_close =		vhci_root_intr_close,
124 	.upm_cleartoggle =	vhci_root_intr_cleartoggle,
125 	.upm_done =		vhci_root_intr_done,
126 };
127 
128 /*
129  * There are three structures to understand: vxfers, packets, and ports.
130  *
131  * Each xfer from the point of view of the USB stack is a vxfer from the point
132  * of view of vHCI.
133  *
134  * A vxfer has a linked list containing a maximum of two packets: a request
135  * packet and possibly a data packet. Packets basically contain data exchanged
136  * between the Host and the virtual USB device. A packet is linked to both a
137  * vxfer and a port.
138  *
139  * A port is an abstraction of an actual USB port. Each virtual USB device gets
140  * connected to a port. A port has two lists:
141  *  - The Usb-To-Host list, containing packets to be fetched from the USB
142  *    device and provided to the host.
143  *  - The Host-To-Usb list, containing packets to be sent from the Host to the
144  *    USB device.
145  * Request packets are always in the H->U direction. Data packets however can
146  * be in both the H->U and U->H directions.
147  *
148  * With read() and write() operations on /dev/vhci, userland respectively
149  * "fetches" and "sends" packets from or to the virtual USB device, which
150  * respectively means reading/inserting packets in the H->U and U->H lists on
151  * the port where the virtual USB device is connected.
152  *
153  *             +------------------------------------------------+
154  *             |                 USB Stack                      |
155  *             +---------------------^--------------------------+
156  *                                   |
157  *             +---------------------V--------------------------+
158  *             | +----------------+    +-------------+          |
159  *             | | Request Packet |    | Data Packet |     Xfer |
160  *             | +-------|--------+    +----|---^----+          |
161  *             +---------|------------------|---|---------------+
162  *                       |                  |   |
163  *                       |   +--------------+   |
164  *                       |   |                  |
165  *             +---------|---|------------------|---------------+
166  *             |     +---V---V---+    +---------|-+             |
167  *             |     | H->U List |    | U->H List |   vHCI Port |
168  *             |     +-----|-----+    +-----^-----+             |
169  *             +-----------|----------------|-------------------+
170  *                         |                |
171  *             +-----------|----------------|-------------------+
172  *             |     +-----V-----+    +-----|-----+             |
173  *             |     |   read()  |    |  write()  |     vHCI FD |
174  *             |     +-----------+    +-----------+             |
175  *             +------------------------------------------------+
176  */
177 
178 struct vhci_xfer;
179 
180 typedef struct vhci_packet {
181 	/* General. */
182 	TAILQ_ENTRY(vhci_packet) portlist;
183 	TAILQ_ENTRY(vhci_packet) xferlist;
184 	struct vhci_xfer *vxfer;
185 	bool utoh;
186 	uint8_t addr;
187 
188 	/* Type. */
189 	struct {
190 		bool req:1;
191 		bool res:1;
192 		bool dat:1;
193 	} type;
194 
195 	/* Exposed for FD operations. */
196 	uint8_t *buf;
197 	size_t size;
198 	size_t cursor;
199 } vhci_packet_t;
200 
201 typedef TAILQ_HEAD(, vhci_packet) vhci_packet_list_t;
202 
203 #define VHCI_NADDRS	16	/* maximum supported by USB */
204 
205 typedef struct {
206 	kmutex_t lock;
207 	int status;
208 	int change;
209 	struct {
210 		vhci_packet_list_t usb_to_host;
211 		vhci_packet_list_t host_to_usb;
212 	} endpoints[VHCI_NADDRS];
213 } vhci_port_t;
214 
215 typedef struct {
216 	struct usbd_pipe pipe;
217 } vhci_pipe_t;
218 
219 typedef struct vhci_xfer {
220 	/* General. */
221 	struct usbd_xfer xfer;
222 
223 	/* Port where the xfer occurs. */
224 	vhci_port_t *port;
225 
226 	/* Packets in the xfer. */
227 	size_t npkts;
228 	vhci_packet_list_t pkts;
229 
230 	/* Header storage. */
231 	vhci_request_t reqbuf;
232 	vhci_response_t resbuf;
233 
234 	/* Used for G/C. */
235 	TAILQ_ENTRY(vhci_xfer) freelist;
236 } vhci_xfer_t;
237 
238 typedef TAILQ_HEAD(, vhci_xfer) vhci_xfer_list_t;
239 
240 #define VHCI_INDEX2PORT(idx)	(idx)
241 #define VHCI_NPORTS		8	/* above 8, update TODO-bitmap */
242 #define VHCI_NBUSES		8
243 
244 typedef struct {
245 	device_t sc_dev;
246 
247 	struct usbd_bus sc_bus;
248 	bool sc_dying;
249 	kmutex_t sc_lock;
250 
251 	/*
252 	 * Intr Root. Used to attach the devices.
253 	 */
254 	struct usbd_xfer *sc_intrxfer;
255 
256 	/*
257 	 * The ports. Zero is for the roothub, one and beyond for the USB
258 	 * devices.
259 	 */
260 	size_t sc_nports;
261 	vhci_port_t sc_port[VHCI_NPORTS];
262 
263 	device_t sc_child; /* /dev/usb# device */
264 } vhci_softc_t;
265 
266 typedef struct {
267 	u_int port;
268 	uint8_t addr;
269 	vhci_softc_t *softc;
270 } vhci_fd_t;
271 
272 extern struct cfdriver vhci_cd;
273 
274 /* -------------------------------------------------------------------------- */
275 
276 static void
277 vhci_pkt_ctrl_create(vhci_port_t *port, struct usbd_xfer *xfer, bool utoh,
278     uint8_t addr)
279 {
280 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
281 	vhci_packet_list_t *reqlist, *reslist, *datlist = NULL;
282 	vhci_packet_t *req, *res = NULL, *dat = NULL;
283 	size_t npkts = 0;
284 
285 	/* Request packet. */
286 	reqlist = &port->endpoints[addr].host_to_usb;
287 	req = kmem_zalloc(sizeof(*req), KM_SLEEP);
288 	req->vxfer = vxfer;
289 	req->utoh = false;
290 	req->addr = addr;
291 	req->type.req = true;
292 	req->buf = (uint8_t *)&vxfer->reqbuf;
293 	req->size = sizeof(vxfer->reqbuf);
294 	req->cursor = 0;
295 	npkts++;
296 
297 	/* Init the request buffer. */
298 	memset(&vxfer->reqbuf, 0, sizeof(vxfer->reqbuf));
299 	vxfer->reqbuf.type = VHCI_REQ_CTRL;
300 	memcpy(&vxfer->reqbuf.u.ctrl, &xfer->ux_request,
301 	    sizeof(xfer->ux_request));
302 
303 	/* Response packet. */
304 	if (utoh && (xfer->ux_length > 0)) {
305 		reslist = &port->endpoints[addr].usb_to_host;
306 		res = kmem_zalloc(sizeof(*res), KM_SLEEP);
307 		res->vxfer = vxfer;
308 		res->utoh = true;
309 		res->addr = addr;
310 		res->type.res = true;
311 		res->buf = (uint8_t *)&vxfer->resbuf;
312 		res->size = sizeof(vxfer->resbuf);
313 		res->cursor = 0;
314 		npkts++;
315 	}
316 
317 	/* Data packet. */
318 	if (xfer->ux_length > 0) {
319 		if (utoh) {
320 			datlist = &port->endpoints[addr].usb_to_host;
321 		} else {
322 			datlist = &port->endpoints[addr].host_to_usb;
323 		}
324 		dat = kmem_zalloc(sizeof(*dat), KM_SLEEP);
325 		dat->vxfer = vxfer;
326 		dat->utoh = utoh;
327 		dat->addr = addr;
328 		dat->type.dat = true;
329 		dat->buf = xfer->ux_buf;
330 		dat->size = xfer->ux_length;
331 		dat->cursor = 0;
332 		npkts++;
333 	}
334 
335 	/* Insert in the xfer. */
336 	vxfer->port = port;
337 	vxfer->npkts = npkts;
338 	TAILQ_INIT(&vxfer->pkts);
339 	TAILQ_INSERT_TAIL(&vxfer->pkts, req, xferlist);
340 	if (res != NULL)
341 		TAILQ_INSERT_TAIL(&vxfer->pkts, res, xferlist);
342 	if (dat != NULL)
343 		TAILQ_INSERT_TAIL(&vxfer->pkts, dat, xferlist);
344 
345 	/* Insert in the port. */
346 	KASSERT(mutex_owned(&port->lock));
347 	TAILQ_INSERT_TAIL(reqlist, req, portlist);
348 	if (res != NULL)
349 		TAILQ_INSERT_TAIL(reslist, res, portlist);
350 	if (dat != NULL)
351 		TAILQ_INSERT_TAIL(datlist, dat, portlist);
352 }
353 
354 static void
355 vhci_pkt_destroy(vhci_softc_t *sc, vhci_packet_t *pkt)
356 {
357 	vhci_xfer_t *vxfer = pkt->vxfer;
358 	vhci_port_t *port = vxfer->port;
359 	vhci_packet_list_t *pktlist;
360 
361 	KASSERT(mutex_owned(&port->lock));
362 
363 	/* Remove from the port. */
364 	if (pkt->utoh) {
365 		pktlist = &port->endpoints[pkt->addr].usb_to_host;
366 	} else {
367 		pktlist = &port->endpoints[pkt->addr].host_to_usb;
368 	}
369 	TAILQ_REMOVE(pktlist, pkt, portlist);
370 
371 	/* Remove from the xfer. */
372 	TAILQ_REMOVE(&vxfer->pkts, pkt, xferlist);
373 	kmem_free(pkt, sizeof(*pkt));
374 
375 	/* Unref. */
376 	KASSERT(vxfer->npkts > 0);
377 	vxfer->npkts--;
378 	if (vxfer->npkts > 0)
379 		return;
380 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
381 }
382 
383 /* -------------------------------------------------------------------------- */
384 
385 static usbd_status
386 vhci_open(struct usbd_pipe *pipe)
387 {
388 	struct usbd_device *dev = pipe->up_dev;
389 	struct usbd_bus *bus = dev->ud_bus;
390 	usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
391 	vhci_softc_t *sc = bus->ub_hcpriv;
392 	uint8_t addr = dev->ud_addr;
393 
394 	if (sc->sc_dying)
395 		return USBD_IOERROR;
396 
397 	DPRINTF("%s: called, type=%d\n", __func__,
398 	    UE_GET_XFERTYPE(ed->bmAttributes));
399 
400 	if (addr == bus->ub_rhaddr) {
401 		switch (ed->bEndpointAddress) {
402 		case USB_CONTROL_ENDPOINT:
403 			DPRINTF("%s: roothub_ctrl\n", __func__);
404 			pipe->up_methods = &roothub_ctrl_methods;
405 			break;
406 		case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
407 			DPRINTF("%s: root_intr\n", __func__);
408 			pipe->up_methods = &vhci_root_intr_methods;
409 			break;
410 		default:
411 			DPRINTF("%s: inval\n", __func__);
412 			return USBD_INVAL;
413 		}
414 	} else {
415 		switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
416 		case UE_CONTROL:
417 			pipe->up_methods = &vhci_device_ctrl_methods;
418 			break;
419 		case UE_INTERRUPT:
420 		case UE_BULK:
421 		default:
422 			goto bad;
423 		}
424 	}
425 
426 	return USBD_NORMAL_COMPLETION;
427 
428 bad:
429 	return USBD_NOMEM;
430 }
431 
432 static void
433 vhci_softintr(void *v)
434 {
435 	DPRINTF("%s: called\n", __func__);
436 }
437 
438 static struct usbd_xfer *
439 vhci_allocx(struct usbd_bus *bus, unsigned int nframes)
440 {
441 	vhci_xfer_t *vxfer;
442 
443 	vxfer = kmem_zalloc(sizeof(*vxfer), KM_SLEEP);
444 #ifdef DIAGNOSTIC
445 	vxfer->xfer.ux_state = XFER_BUSY;
446 #endif
447 	return (struct usbd_xfer *)vxfer;
448 }
449 
450 static void
451 vhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
452 {
453 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
454 
455 	KASSERT(vxfer->npkts == 0);
456 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
457 
458 #ifdef DIAGNOSTIC
459 	vxfer->xfer.ux_state = XFER_FREE;
460 #endif
461 	kmem_free(vxfer, sizeof(*vxfer));
462 }
463 
464 static void
465 vhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
466 {
467 	vhci_softc_t *sc = bus->ub_hcpriv;
468 
469 	*lock = &sc->sc_lock;
470 }
471 
472 static int
473 vhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
474     void *buf, int buflen)
475 {
476 	vhci_softc_t *sc = bus->ub_hcpriv;
477 	vhci_port_t *port;
478 	usb_hub_descriptor_t hubd;
479 	uint16_t len, value, index;
480 	int totlen = 0;
481 
482 	len = UGETW(req->wLength);
483 	value = UGETW(req->wValue);
484 	index = UGETW(req->wIndex);
485 
486 #define C(x,y) ((x) | ((y) << 8))
487 	switch (C(req->bRequest, req->bmRequestType)) {
488 	case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
489 		switch (value) {
490 		case C(0, UDESC_DEVICE): {
491 			usb_device_descriptor_t devd;
492 
493 			totlen = uimin(buflen, sizeof(devd));
494 			memcpy(&devd, buf, totlen);
495 			USETW(devd.idVendor, 0);
496 			USETW(devd.idProduct, 0);
497 			memcpy(buf, &devd, totlen);
498 			break;
499 		}
500 #define sd ((usb_string_descriptor_t *)buf)
501 		case C(1, UDESC_STRING):
502 			/* Vendor */
503 			totlen = usb_makestrdesc(sd, len, "NetBSD");
504 			break;
505 		case C(2, UDESC_STRING):
506 			/* Product */
507 			totlen = usb_makestrdesc(sd, len, "VHCI root hub");
508 			break;
509 #undef sd
510 		default:
511 			/* default from usbroothub */
512 			return buflen;
513 		}
514 		break;
515 
516 	case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
517 		switch (value) {
518 		case UHF_PORT_RESET:
519 			if (index < 1 || index >= sc->sc_nports) {
520 				return -1;
521 			}
522 			port = &sc->sc_port[VHCI_INDEX2PORT(index)];
523 			port->status |= UPS_C_PORT_RESET;
524 			break;
525 		case UHF_PORT_POWER:
526 			break;
527 		default:
528 			return -1;
529 		}
530 		break;
531 
532 	/* Hub requests. */
533 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
534 		break;
535 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
536 		if (index < 1 || index >= sc->sc_nports) {
537 			return -1;
538 		}
539 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
540 		switch (value) {
541 		case UHF_PORT_ENABLE:
542 			port->status &= ~UPS_PORT_ENABLED;
543 			break;
544 		case UHF_C_PORT_ENABLE:
545 			port->change |= UPS_C_PORT_ENABLED;
546 			break;
547 		default:
548 			return -1;
549 		}
550 		break;
551 
552 	case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
553 		totlen = uimin(buflen, sizeof(hubd));
554 		memcpy(&hubd, buf, totlen);
555 		hubd.bNbrPorts = sc->sc_nports - 1;
556 		hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE;
557 		totlen = uimin(totlen, hubd.bDescLength);
558 		memcpy(buf, &hubd, totlen);
559 		break;
560 
561 	case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
562 		/* XXX The other HCs do this */
563 		memset(buf, 0, len);
564 		totlen = len;
565 		break;
566 
567 	case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
568 		usb_port_status_t ps;
569 
570 		if (index < 1 || index >= sc->sc_nports) {
571 			return -1;
572 		}
573 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
574 		USETW(ps.wPortStatus, port->status);
575 		USETW(ps.wPortChange, port->change);
576 		totlen = uimin(len, sizeof(ps));
577 		memcpy(buf, &ps, totlen);
578 		break;
579 	}
580 	default:
581 		/* default from usbroothub */
582 		return buflen;
583 	}
584 
585 	return totlen;
586 }
587 
588 /* -------------------------------------------------------------------------- */
589 
590 static usbd_status
591 vhci_device_ctrl_transfer(struct usbd_xfer *xfer)
592 {
593 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
594 	usbd_status err;
595 
596 	DPRINTF("%s: called\n", __func__);
597 
598 	/* Insert last in queue. */
599 	mutex_enter(&sc->sc_lock);
600 	err = usb_insert_transfer(xfer);
601 	mutex_exit(&sc->sc_lock);
602 	if (err)
603 		return err;
604 
605 	/* Pipe isn't running, start first */
606 	return vhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
607 }
608 
609 static usbd_status
610 vhci_device_ctrl_start(struct usbd_xfer *xfer)
611 {
612 	usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
613 	usb_device_request_t *req = &xfer->ux_request;
614 	struct usbd_device *dev = xfer->ux_pipe->up_dev;
615 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
616 	vhci_port_t *port;
617 	bool polling = sc->sc_bus.ub_usepolling;
618 	bool isread = (req->bmRequestType & UT_READ) != 0;
619 	uint8_t addr = UE_GET_ADDR(ed->bEndpointAddress);
620 	int portno, ret;
621 
622 	KASSERT(addr == 0);
623 	KASSERT(xfer->ux_rqflags & URQ_REQUEST);
624 	KASSERT(dev->ud_myhsport != NULL);
625 	portno = dev->ud_myhsport->up_portno;
626 
627 	DPRINTF("%s: type=0x%02x, len=%d, isread=%d, portno=%d\n",
628 	    __func__, req->bmRequestType, UGETW(req->wLength), isread, portno);
629 
630 	if (sc->sc_dying)
631 		return USBD_IOERROR;
632 
633 	port = &sc->sc_port[portno];
634 
635 	if (!polling)
636 		mutex_enter(&sc->sc_lock);
637 
638 	mutex_enter(&port->lock);
639 	if (port->status & UPS_PORT_ENABLED) {
640 		xfer->ux_status = USBD_IN_PROGRESS;
641 		vhci_pkt_ctrl_create(port, xfer, isread, addr);
642 		ret = USBD_IN_PROGRESS;
643 	} else {
644 		ret = USBD_IOERROR;
645 	}
646 	mutex_exit(&port->lock);
647 
648 	if (!polling)
649 		mutex_exit(&sc->sc_lock);
650 
651 	return ret;
652 }
653 
654 static void
655 vhci_device_ctrl_abort(struct usbd_xfer *xfer)
656 {
657 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
658 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
659 	vhci_port_t *port = vxfer->port;
660 	vhci_packet_t *pkt;
661 
662 	DPRINTF("%s: called\n", __func__);
663 
664 	KASSERT(mutex_owned(&sc->sc_lock));
665 
666 	callout_halt(&xfer->ux_callout, &sc->sc_lock);
667 
668 	/* If anyone else beat us, we're done.  */
669 	KASSERT(xfer->ux_status != USBD_CANCELLED);
670 	if (xfer->ux_status != USBD_IN_PROGRESS)
671 		return;
672 
673 	mutex_enter(&port->lock);
674 	while (vxfer->npkts > 0) {
675 		pkt = TAILQ_FIRST(&vxfer->pkts);
676 		KASSERT(pkt != NULL);
677 		vhci_pkt_destroy(sc, pkt);
678 	}
679 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
680 	mutex_exit(&port->lock);
681 
682 	xfer->ux_status = USBD_CANCELLED;
683 	usb_transfer_complete(xfer);
684 	KASSERT(mutex_owned(&sc->sc_lock));
685 }
686 
687 static void
688 vhci_device_ctrl_close(struct usbd_pipe *pipe)
689 {
690 	DPRINTF("%s: called\n", __func__);
691 }
692 
693 static void
694 vhci_device_ctrl_cleartoggle(struct usbd_pipe *pipe)
695 {
696 	DPRINTF("%s: called\n", __func__);
697 }
698 
699 static void
700 vhci_device_ctrl_done(struct usbd_xfer *xfer)
701 {
702 	DPRINTF("%s: called\n", __func__);
703 }
704 
705 /* -------------------------------------------------------------------------- */
706 
707 static usbd_status
708 vhci_root_intr_transfer(struct usbd_xfer *xfer)
709 {
710 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
711 	usbd_status err;
712 
713 	DPRINTF("%s: called\n", __func__);
714 
715 	/* Insert last in queue. */
716 	mutex_enter(&sc->sc_lock);
717 	err = usb_insert_transfer(xfer);
718 	mutex_exit(&sc->sc_lock);
719 	if (err)
720 		return err;
721 
722 	/* Pipe isn't running, start first */
723 	return vhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
724 }
725 
726 static usbd_status
727 vhci_root_intr_start(struct usbd_xfer *xfer)
728 {
729 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
730 	const bool polling = sc->sc_bus.ub_usepolling;
731 
732 	DPRINTF("%s: called, len=%zu\n", __func__, (size_t)xfer->ux_length);
733 
734 	if (sc->sc_dying)
735 		return USBD_IOERROR;
736 
737 	if (!polling)
738 		mutex_enter(&sc->sc_lock);
739 	KASSERT(sc->sc_intrxfer == NULL);
740 	sc->sc_intrxfer = xfer;
741 	xfer->ux_status = USBD_IN_PROGRESS;
742 	if (!polling)
743 		mutex_exit(&sc->sc_lock);
744 
745 	return USBD_IN_PROGRESS;
746 }
747 
748 static void
749 vhci_root_intr_abort(struct usbd_xfer *xfer)
750 {
751 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
752 
753 	DPRINTF("%s: called\n", __func__);
754 
755 	KASSERT(mutex_owned(&sc->sc_lock));
756 	KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
757 
758 	/* If xfer has already completed, nothing to do here.  */
759 	if (sc->sc_intrxfer == NULL)
760 		return;
761 
762 	/*
763 	 * Otherwise, sc->sc_intrxfer had better be this transfer.
764 	 * Cancel it.
765 	 */
766 	KASSERT(sc->sc_intrxfer == xfer);
767 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
768 	xfer->ux_status = USBD_CANCELLED;
769 	usb_transfer_complete(xfer);
770 }
771 
772 static void
773 vhci_root_intr_close(struct usbd_pipe *pipe)
774 {
775 	vhci_softc_t *sc __diagused = pipe->up_dev->ud_bus->ub_hcpriv;
776 
777 	DPRINTF("%s: called\n", __func__);
778 
779 	KASSERT(mutex_owned(&sc->sc_lock));
780 
781 	/*
782 	 * Caller must guarantee the xfer has completed first, by
783 	 * closing the pipe only after normal completion or an abort.
784 	 */
785 	KASSERT(sc->sc_intrxfer == NULL);
786 }
787 
788 static void
789 vhci_root_intr_cleartoggle(struct usbd_pipe *pipe)
790 {
791 	DPRINTF("%s: called\n", __func__);
792 }
793 
794 static void
795 vhci_root_intr_done(struct usbd_xfer *xfer)
796 {
797 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
798 
799 	KASSERT(mutex_owned(&sc->sc_lock));
800 
801 	/* Claim the xfer so it doesn't get completed again.  */
802 	KASSERT(sc->sc_intrxfer == xfer);
803 	KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
804 	sc->sc_intrxfer = NULL;
805 }
806 
807 /* -------------------------------------------------------------------------- */
808 
809 static int
810 vhci_usb_attach(vhci_fd_t *vfd)
811 {
812 	vhci_softc_t *sc = vfd->softc;
813 	vhci_port_t *port;
814 	struct usbd_xfer *xfer;
815 	u_char *p;
816 	int ret = 0;
817 
818 	port = &sc->sc_port[vfd->port];
819 
820 	mutex_enter(&sc->sc_lock);
821 
822 	mutex_enter(&port->lock);
823 	port->status = UPS_CURRENT_CONNECT_STATUS | UPS_PORT_ENABLED |
824 	    UPS_PORT_POWER;
825 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
826 	mutex_exit(&port->lock);
827 
828 	xfer = sc->sc_intrxfer;
829 
830 	if (xfer == NULL) {
831 		ret = ENOBUFS;
832 		goto done;
833 	}
834 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
835 
836 	/*
837 	 * Mark our port has having changed state. Uhub will then fetch
838 	 * status/change and see it needs to perform an attach.
839 	 */
840 	p = xfer->ux_buf;
841 	memset(p, 0, xfer->ux_length);
842 	p[0] = __BIT(vfd->port); /* TODO-bitmap */
843 	xfer->ux_actlen = xfer->ux_length;
844 	xfer->ux_status = USBD_NORMAL_COMPLETION;
845 
846 	usb_transfer_complete(xfer);
847 
848 done:
849 	mutex_exit(&sc->sc_lock);
850 	return ret;
851 }
852 
853 static void
854 vhci_port_flush(vhci_softc_t *sc, vhci_port_t *port)
855 {
856 	vhci_packet_list_t *pktlist;
857 	vhci_packet_t *pkt, *nxt;
858 	vhci_xfer_list_t vxferlist;
859 	vhci_xfer_t *vxfer;
860 	uint8_t addr;
861 
862 	KASSERT(mutex_owned(&sc->sc_lock));
863 	KASSERT(mutex_owned(&port->lock));
864 
865 	TAILQ_INIT(&vxferlist);
866 
867 	for (addr = 0; addr < VHCI_NADDRS; addr++) {
868 		/* Drop all the packets in the H->U direction. */
869 		pktlist = &port->endpoints[addr].host_to_usb;
870 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
871 			vxfer = pkt->vxfer;
872 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
873 			vhci_pkt_destroy(sc, pkt);
874 			if (vxfer->npkts == 0)
875 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
876 		}
877 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
878 
879 		/* Drop all the packets in the U->H direction. */
880 		pktlist = &port->endpoints[addr].usb_to_host;
881 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
882 			vxfer = pkt->vxfer;
883 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
884 			vhci_pkt_destroy(sc, pkt);
885 			if (vxfer->npkts == 0)
886 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
887 		}
888 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
889 
890 		/* Terminate all the xfers collected. */
891 		while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
892 			struct usbd_xfer *xfer = &vxfer->xfer;
893 			TAILQ_REMOVE(&vxferlist, vxfer, freelist);
894 
895 			xfer->ux_status = USBD_TIMEOUT;
896 			usb_transfer_complete(xfer);
897 		}
898 	}
899 }
900 
901 static int
902 vhci_usb_detach(vhci_fd_t *vfd)
903 {
904 	vhci_softc_t *sc = vfd->softc;
905 	vhci_port_t *port;
906 	struct usbd_xfer *xfer;
907 	u_char *p;
908 
909 	port = &sc->sc_port[vfd->port];
910 
911 	mutex_enter(&sc->sc_lock);
912 
913 	xfer = sc->sc_intrxfer;
914 	if (xfer == NULL) {
915 		mutex_exit(&sc->sc_lock);
916 		return ENOBUFS;
917 	}
918 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
919 
920 	mutex_enter(&port->lock);
921 
922 	port->status = 0;
923 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
924 
925 	/*
926 	 * Mark our port has having changed state. Uhub will then fetch
927 	 * status/change and see it needs to perform a detach.
928 	 */
929 	p = xfer->ux_buf;
930 	memset(p, 0, xfer->ux_length);
931 	p[0] = __BIT(vfd->port); /* TODO-bitmap */
932 	xfer->ux_actlen = xfer->ux_length;
933 	xfer->ux_status = USBD_NORMAL_COMPLETION;
934 
935 	usb_transfer_complete(xfer);
936 	vhci_port_flush(sc, port);
937 
938 	mutex_exit(&port->lock);
939 	mutex_exit(&sc->sc_lock);
940 	return 0;
941 }
942 
943 static int
944 vhci_get_info(vhci_fd_t *vfd, struct vhci_ioc_get_info *args)
945 {
946 	vhci_softc_t *sc = vfd->softc;
947 	vhci_port_t *port;
948 
949 	port = &sc->sc_port[vfd->port];
950 
951 	args->nports = VHCI_NPORTS;
952 	args->port = vfd->port;
953 	mutex_enter(&port->lock);
954 	args->status = port->status;
955 	mutex_exit(&port->lock);
956 	args->addr = vfd->addr;
957 
958 	return 0;
959 }
960 
961 static int
962 vhci_set_port(vhci_fd_t *vfd, struct vhci_ioc_set_port *args)
963 {
964 	vhci_softc_t *sc = vfd->softc;
965 
966 	if (args->port == 0 || args->port >= sc->sc_nports)
967 		return EINVAL;
968 
969 	vfd->port = args->port;
970 
971 	return 0;
972 }
973 
974 static int
975 vhci_set_addr(vhci_fd_t *vfd, struct vhci_ioc_set_addr *args)
976 {
977 	if (args->addr >= VHCI_NADDRS)
978 		return EINVAL;
979 
980 	vfd->addr = args->addr;
981 
982 	return 0;
983 }
984 
985 /* -------------------------------------------------------------------------- */
986 
987 static dev_type_open(vhci_fd_open);
988 
989 const struct cdevsw vhci_cdevsw = {
990 	.d_open = vhci_fd_open,
991 	.d_close = noclose,
992 	.d_read = noread,
993 	.d_write = nowrite,
994 	.d_ioctl = noioctl,
995 	.d_stop = nostop,
996 	.d_tty = notty,
997 	.d_poll = nopoll,
998 	.d_mmap = nommap,
999 	.d_kqfilter = nokqfilter,
1000 	.d_discard = nodiscard,
1001 	.d_flag = D_OTHER | D_MPSAFE
1002 };
1003 
1004 static int vhci_fd_ioctl(file_t *, u_long, void *);
1005 static int vhci_fd_close(file_t *);
1006 static int vhci_fd_read(struct file *, off_t *, struct uio *, kauth_cred_t, int);
1007 static int vhci_fd_write(struct file *, off_t *, struct uio *, kauth_cred_t, int);
1008 
1009 const struct fileops vhci_fileops = {
1010 	.fo_read = vhci_fd_read,
1011 	.fo_write = vhci_fd_write,
1012 	.fo_ioctl = vhci_fd_ioctl,
1013 	.fo_fcntl = fnullop_fcntl,
1014 	.fo_poll = fnullop_poll,
1015 	.fo_stat = fbadop_stat,
1016 	.fo_close = vhci_fd_close,
1017 	.fo_kqfilter = fnullop_kqfilter,
1018 	.fo_restart = fnullop_restart,
1019 	.fo_mmap = NULL,
1020 };
1021 
1022 static int
1023 vhci_fd_open(dev_t dev, int flags, int type, struct lwp *l)
1024 {
1025 	vhci_softc_t *sc;
1026 	vhci_fd_t *vfd;
1027 	struct file *fp;
1028 	int error, fd;
1029 
1030 	sc = device_lookup_private(&vhci_cd, minor(dev));
1031 	if (sc == NULL)
1032 		return EXDEV;
1033 
1034 	error = fd_allocfile(&fp, &fd);
1035 	if (error)
1036 		return error;
1037 
1038 	vfd = kmem_alloc(sizeof(*vfd), KM_SLEEP);
1039 	vfd->port = 1;
1040 	vfd->addr = 0;
1041 	vfd->softc = sc;
1042 
1043 	return fd_clone(fp, fd, flags, &vhci_fileops, vfd);
1044 }
1045 
1046 static int
1047 vhci_fd_close(file_t *fp)
1048 {
1049 	vhci_fd_t *vfd = fp->f_data;
1050 	int ret __diagused;
1051 
1052 	KASSERT(vfd != NULL);
1053 	ret = vhci_usb_detach(vfd);
1054 	KASSERT(ret == 0);
1055 
1056 	kmem_free(vfd, sizeof(*vfd));
1057 	fp->f_data = NULL;
1058 
1059 	return 0;
1060 }
1061 
1062 static int
1063 vhci_fd_read(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1064     int flags)
1065 {
1066 	vhci_fd_t *vfd = fp->f_data;
1067 	vhci_softc_t *sc = vfd->softc;
1068 	vhci_packet_list_t *pktlist;
1069 	vhci_packet_t *pkt, *nxt;
1070 	vhci_xfer_list_t vxferlist;
1071 	vhci_xfer_t *vxfer;
1072 	vhci_port_t *port;
1073 	int error = 0;
1074 	uint8_t *buf;
1075 	size_t size;
1076 
1077 	if (uio->uio_resid == 0)
1078 		return 0;
1079 	port = &sc->sc_port[vfd->port];
1080 	pktlist = &port->endpoints[vfd->addr].host_to_usb;
1081 
1082 	TAILQ_INIT(&vxferlist);
1083 
1084 	mutex_enter(&port->lock);
1085 
1086 	if (!(port->status & UPS_PORT_ENABLED)) {
1087 		error = ENOBUFS;
1088 		goto out;
1089 	}
1090 
1091 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
1092 		vxfer = pkt->vxfer;
1093 		buf = pkt->buf + pkt->cursor;
1094 
1095 		KASSERT(pkt->size >= pkt->cursor);
1096 		size = uimin(uio->uio_resid, pkt->size - pkt->cursor);
1097 
1098 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
1099 
1100 		error = uiomove(buf, size, uio);
1101 		if (error) {
1102 			DPRINTF("%s: error = %d\n", __func__, error);
1103 			goto out;
1104 		}
1105 
1106 		pkt->cursor += size;
1107 
1108 		if (pkt->cursor == pkt->size) {
1109 			vhci_pkt_destroy(sc, pkt);
1110 			if (vxfer->npkts == 0) {
1111 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
1112 			}
1113 		}
1114 		if (uio->uio_resid == 0) {
1115 			break;
1116 		}
1117 	}
1118 
1119 out:
1120 	mutex_exit(&port->lock);
1121 
1122 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
1123 		struct usbd_xfer *xfer = &vxfer->xfer;
1124 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
1125 
1126 		mutex_enter(&sc->sc_lock);
1127 		xfer->ux_actlen = xfer->ux_length;
1128 		xfer->ux_status = USBD_NORMAL_COMPLETION;
1129 		usb_transfer_complete(xfer);
1130 		mutex_exit(&sc->sc_lock);
1131 	}
1132 
1133 	return error;
1134 }
1135 
1136 static int
1137 vhci_fd_write(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1138     int flags)
1139 {
1140 	vhci_fd_t *vfd = fp->f_data;
1141 	vhci_softc_t *sc = vfd->softc;
1142 	vhci_packet_list_t *pktlist;
1143 	vhci_packet_t *pkt, *nxt;
1144 	vhci_xfer_list_t vxferlist;
1145 	vhci_xfer_t *vxfer;
1146 	vhci_port_t *port;
1147 	int error = 0;
1148 	uint8_t *buf;
1149 	size_t pktsize, size;
1150 
1151 	if (uio->uio_resid == 0)
1152 		return 0;
1153 	port = &sc->sc_port[vfd->port];
1154 	pktlist = &port->endpoints[vfd->addr].usb_to_host;
1155 
1156 	TAILQ_INIT(&vxferlist);
1157 
1158 	mutex_enter(&port->lock);
1159 
1160 	if (!(port->status & UPS_PORT_ENABLED)) {
1161 		error = ENOBUFS;
1162 		goto out;
1163 	}
1164 
1165 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
1166 		vxfer = pkt->vxfer;
1167 		buf = pkt->buf + pkt->cursor;
1168 
1169 		pktsize = pkt->size;
1170 		if (pkt->type.dat)
1171 			pktsize = ulmin(vxfer->resbuf.size, pktsize);
1172 
1173 		KASSERT(pktsize >= pkt->cursor);
1174 		size = uimin(uio->uio_resid, pktsize - pkt->cursor);
1175 
1176 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
1177 
1178 		error = uiomove(buf, size, uio);
1179 		if (error) {
1180 			DPRINTF("%s: error = %d\n", __func__, error);
1181 			goto out;
1182 		}
1183 
1184 		pkt->cursor += size;
1185 
1186 		if (pkt->cursor == pktsize) {
1187 			vhci_pkt_destroy(sc, pkt);
1188 			if (vxfer->npkts == 0) {
1189 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
1190 			}
1191 		}
1192 		if (uio->uio_resid == 0) {
1193 			break;
1194 		}
1195 	}
1196 
1197 out:
1198 	mutex_exit(&port->lock);
1199 
1200 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
1201 		struct usbd_xfer *xfer = &vxfer->xfer;
1202 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
1203 
1204 		mutex_enter(&sc->sc_lock);
1205 		xfer->ux_actlen = ulmin(vxfer->resbuf.size, xfer->ux_length);
1206 		xfer->ux_status = USBD_NORMAL_COMPLETION;
1207 		usb_transfer_complete(xfer);
1208 		mutex_exit(&sc->sc_lock);
1209 	}
1210 
1211 	return error;
1212 }
1213 
1214 static int
1215 vhci_fd_ioctl(file_t *fp, u_long cmd, void *data)
1216 {
1217 	vhci_fd_t *vfd = fp->f_data;
1218 
1219 	KASSERT(vfd != NULL);
1220 
1221 	switch (cmd) {
1222 	case VHCI_IOC_GET_INFO:
1223 		return vhci_get_info(vfd, data);
1224 	case VHCI_IOC_SET_PORT:
1225 		return vhci_set_port(vfd, data);
1226 	case VHCI_IOC_SET_ADDR:
1227 		return vhci_set_addr(vfd, data);
1228 	case VHCI_IOC_USB_ATTACH:
1229 		return vhci_usb_attach(vfd);
1230 	case VHCI_IOC_USB_DETACH:
1231 		return vhci_usb_detach(vfd);
1232 	default:
1233 		return EINVAL;
1234 	}
1235 }
1236 
1237 /* -------------------------------------------------------------------------- */
1238 
1239 static int vhci_match(device_t, cfdata_t, void *);
1240 static void vhci_attach(device_t, device_t, void *);
1241 static int vhci_activate(device_t, enum devact);
1242 
1243 CFATTACH_DECL_NEW(vhci, sizeof(vhci_softc_t), vhci_match, vhci_attach,
1244     NULL, vhci_activate);
1245 
1246 void
1247 vhciattach(int nunits)
1248 {
1249 	struct cfdata *cf;
1250 	int error;
1251 	size_t i;
1252 
1253 	error = config_cfattach_attach(vhci_cd.cd_name, &vhci_ca);
1254 	if (error) {
1255 		aprint_error("%s: unable to register cfattach\n",
1256 		    vhci_cd.cd_name);
1257 		(void)config_cfdriver_detach(&vhci_cd);
1258 		return;
1259 	}
1260 
1261 	for (i = 0; i < VHCI_NBUSES; i++) {
1262 		cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
1263 		cf->cf_name = vhci_cd.cd_name;
1264 		cf->cf_atname = vhci_cd.cd_name;
1265 		cf->cf_unit = i;
1266 		cf->cf_fstate = FSTATE_STAR;
1267 		config_attach_pseudo(cf);
1268 	}
1269 }
1270 
1271 static int
1272 vhci_activate(device_t self, enum devact act)
1273 {
1274 	vhci_softc_t *sc = device_private(self);
1275 
1276 	switch (act) {
1277 	case DVACT_DEACTIVATE:
1278 		sc->sc_dying = 1;
1279 		return 0;
1280 	default:
1281 		return EOPNOTSUPP;
1282 	}
1283 }
1284 
1285 static int
1286 vhci_match(device_t parent, cfdata_t match, void *aux)
1287 {
1288 	return 1;
1289 }
1290 
1291 static void
1292 vhci_attach(device_t parent, device_t self, void *aux)
1293 {
1294 	vhci_softc_t *sc = device_private(self);
1295 	vhci_port_t *port;
1296 	uint8_t addr;
1297 	size_t i;
1298 
1299 	sc->sc_dev = self;
1300 	sc->sc_bus.ub_revision = USBREV_2_0;
1301 	sc->sc_bus.ub_hctype = USBHCTYPE_VHCI;
1302 	sc->sc_bus.ub_busnum = self->dv_unit;
1303 	sc->sc_bus.ub_usedma = false;
1304 	sc->sc_bus.ub_methods = &vhci_bus_methods;
1305 	sc->sc_bus.ub_pipesize = sizeof(vhci_pipe_t);
1306 	sc->sc_bus.ub_hcpriv = sc;
1307 	sc->sc_dying = false;
1308 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1309 
1310 	sc->sc_nports = VHCI_NPORTS;
1311 	for (i = 0; i < sc->sc_nports; i++) {
1312 		port = &sc->sc_port[i];
1313 		mutex_init(&port->lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1314 		for (addr = 0; addr < VHCI_NADDRS; addr++) {
1315 			TAILQ_INIT(&port->endpoints[addr].usb_to_host);
1316 			TAILQ_INIT(&port->endpoints[addr].host_to_usb);
1317 		}
1318 		kcov_remote_register(KCOV_REMOTE_VHCI,
1319 		    KCOV_REMOTE_VHCI_ID(sc->sc_bus.ub_busnum, i));
1320 	}
1321 
1322 	sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint);
1323 }
1324