1 /* $NetBSD: usb_mem.c,v 1.65 2014/09/12 16:40:38 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Lennart Augustsson (lennart@augustsson.net) at 9 * Carlstedt Research & Technology. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * USB DMA memory allocation. 35 * We need to allocate a lot of small (many 8 byte, some larger) 36 * memory blocks that can be used for DMA. Using the bus_dma 37 * routines directly would incur large overheads in space and time. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: usb_mem.c,v 1.65 2014/09/12 16:40:38 skrll Exp $"); 42 43 #ifdef _KERNEL_OPT 44 #include "opt_usb.h" 45 #endif 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/kernel.h> 50 #include <sys/kmem.h> 51 #include <sys/queue.h> 52 #include <sys/device.h> /* for usbdivar.h */ 53 #include <sys/bus.h> 54 #include <sys/cpu.h> 55 #include <sys/once.h> 56 57 #include <sys/extent.h> 58 59 #ifdef DIAGNOSTIC 60 #include <sys/proc.h> 61 #endif 62 63 #include <dev/usb/usb.h> 64 #include <dev/usb/usbdi.h> 65 #include <dev/usb/usbdivar.h> /* just for usb_dma_t */ 66 #include <dev/usb/usb_mem.h> 67 68 #ifdef USB_DEBUG 69 #define DPRINTF(x) if (usbdebug) printf x 70 #define DPRINTFN(n,x) if (usbdebug>(n)) printf x 71 extern int usbdebug; 72 #else 73 #define DPRINTF(x) 74 #define DPRINTFN(n,x) 75 #endif 76 77 #define USB_MEM_SMALL roundup(64, CACHE_LINE_SIZE) 78 #define USB_MEM_CHUNKS 64 79 #define USB_MEM_BLOCK (USB_MEM_SMALL * USB_MEM_CHUNKS) 80 81 /* This struct is overlayed on free fragments. */ 82 struct usb_frag_dma { 83 usb_dma_block_t *block; 84 u_int offs; 85 LIST_ENTRY(usb_frag_dma) next; 86 }; 87 88 Static usbd_status usb_block_allocmem(bus_dma_tag_t, size_t, size_t, 89 usb_dma_block_t **, bool); 90 Static void usb_block_freemem(usb_dma_block_t *); 91 92 LIST_HEAD(usb_dma_block_qh, usb_dma_block); 93 Static struct usb_dma_block_qh usb_blk_freelist = 94 LIST_HEAD_INITIALIZER(usb_blk_freelist); 95 kmutex_t usb_blk_lock; 96 97 #ifdef DEBUG 98 Static struct usb_dma_block_qh usb_blk_fraglist = 99 LIST_HEAD_INITIALIZER(usb_blk_fraglist); 100 Static struct usb_dma_block_qh usb_blk_fulllist = 101 LIST_HEAD_INITIALIZER(usb_blk_fulllist); 102 #endif 103 Static u_int usb_blk_nfree = 0; 104 /* XXX should have different free list for different tags (for speed) */ 105 Static LIST_HEAD(, usb_frag_dma) usb_frag_freelist = 106 LIST_HEAD_INITIALIZER(usb_frag_freelist); 107 108 Static int usb_mem_init(void); 109 110 Static int 111 usb_mem_init(void) 112 { 113 114 mutex_init(&usb_blk_lock, MUTEX_DEFAULT, IPL_NONE); 115 return 0; 116 } 117 118 Static usbd_status 119 usb_block_allocmem(bus_dma_tag_t tag, size_t size, size_t align, 120 usb_dma_block_t **dmap, bool multiseg) 121 { 122 usb_dma_block_t *b; 123 int error; 124 125 DPRINTFN(5, ("usb_block_allocmem: size=%zu align=%zu\n", size, align)); 126 127 if (size == 0) { 128 #ifdef DIAGNOSTIC 129 printf("usb_block_allocmem: called with size==0\n"); 130 #endif 131 return USBD_INVAL; 132 } 133 134 #ifdef DIAGNOSTIC 135 if (cpu_softintr_p() || cpu_intr_p()) { 136 printf("usb_block_allocmem: in interrupt context, size=%lu\n", 137 (unsigned long) size); 138 } 139 #endif 140 141 KASSERT(mutex_owned(&usb_blk_lock)); 142 143 /* First check the free list. */ 144 LIST_FOREACH(b, &usb_blk_freelist, next) { 145 /* Don't allocate multiple segments to unwilling callers */ 146 if (b->nsegs != 1 && !multiseg) 147 continue; 148 if (b->tag == tag && b->size >= size && b->align >= align) { 149 LIST_REMOVE(b, next); 150 usb_blk_nfree--; 151 *dmap = b; 152 DPRINTFN(6,("usb_block_allocmem: free list size=%zu\n", 153 b->size)); 154 return (USBD_NORMAL_COMPLETION); 155 } 156 } 157 158 #ifdef DIAGNOSTIC 159 if (cpu_softintr_p() || cpu_intr_p()) { 160 printf("usb_block_allocmem: in interrupt context, failed\n"); 161 return (USBD_NOMEM); 162 } 163 #endif 164 165 DPRINTFN(6, ("usb_block_allocmem: no free\n")); 166 b = kmem_zalloc(sizeof *b, KM_SLEEP); 167 if (b == NULL) 168 return (USBD_NOMEM); 169 170 b->tag = tag; 171 b->size = size; 172 b->align = align; 173 174 if (!multiseg) 175 /* Caller wants one segment */ 176 b->nsegs = 1; 177 else 178 b->nsegs = (size + (PAGE_SIZE-1)) / PAGE_SIZE; 179 180 b->segs = kmem_alloc(b->nsegs * sizeof(*b->segs), KM_SLEEP); 181 if (b->segs == NULL) { 182 kmem_free(b, sizeof *b); 183 return USBD_NOMEM; 184 } 185 b->nsegs_alloc = b->nsegs; 186 187 error = bus_dmamem_alloc(tag, b->size, align, 0, 188 b->segs, b->nsegs, 189 &b->nsegs, BUS_DMA_NOWAIT); 190 if (error) 191 goto free0; 192 193 error = bus_dmamem_map(tag, b->segs, b->nsegs, b->size, 194 &b->kaddr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 195 if (error) 196 goto free1; 197 198 error = bus_dmamap_create(tag, b->size, b->nsegs, b->size, 199 0, BUS_DMA_NOWAIT, &b->map); 200 if (error) 201 goto unmap; 202 203 error = bus_dmamap_load(tag, b->map, b->kaddr, b->size, NULL, 204 BUS_DMA_NOWAIT); 205 if (error) 206 goto destroy; 207 208 *dmap = b; 209 #ifdef USB_FRAG_DMA_WORKAROUND 210 memset(b->kaddr, 0, b->size); 211 #endif 212 213 return (USBD_NORMAL_COMPLETION); 214 215 destroy: 216 bus_dmamap_destroy(tag, b->map); 217 unmap: 218 bus_dmamem_unmap(tag, b->kaddr, b->size); 219 free1: 220 bus_dmamem_free(tag, b->segs, b->nsegs); 221 free0: 222 kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs)); 223 kmem_free(b, sizeof *b); 224 return (USBD_NOMEM); 225 } 226 227 #if 0 228 void 229 usb_block_real_freemem(usb_dma_block_t *b) 230 { 231 #ifdef DIAGNOSTIC 232 if (cpu_softintr_p() || cpu_intr_p()) { 233 printf("usb_block_real_freemem: in interrupt context\n"); 234 return; 235 } 236 #endif 237 bus_dmamap_unload(b->tag, b->map); 238 bus_dmamap_destroy(b->tag, b->map); 239 bus_dmamem_unmap(b->tag, b->kaddr, b->size); 240 bus_dmamem_free(b->tag, b->segs, b->nsegs); 241 kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs)); 242 kmem_free(b, sizeof *b); 243 } 244 #endif 245 246 #ifdef DEBUG 247 static bool 248 usb_valid_block_p(usb_dma_block_t *b, struct usb_dma_block_qh *qh) 249 { 250 usb_dma_block_t *xb; 251 LIST_FOREACH(xb, qh, next) { 252 if (xb == b) 253 return true; 254 } 255 return false; 256 } 257 #endif 258 259 /* 260 * Do not free the memory unconditionally since we might be called 261 * from an interrupt context and that is BAD. 262 * XXX when should we really free? 263 */ 264 Static void 265 usb_block_freemem(usb_dma_block_t *b) 266 { 267 268 KASSERT(mutex_owned(&usb_blk_lock)); 269 270 DPRINTFN(6, ("usb_block_freemem: size=%zu\n", b->size)); 271 #ifdef DEBUG 272 LIST_REMOVE(b, next); 273 #endif 274 LIST_INSERT_HEAD(&usb_blk_freelist, b, next); 275 usb_blk_nfree++; 276 } 277 278 usbd_status 279 usb_allocmem(usbd_bus_handle bus, size_t size, size_t align, usb_dma_t *p) 280 { 281 return usb_allocmem_flags(bus, size, align, p, 0); 282 } 283 284 usbd_status 285 usb_allocmem_flags(usbd_bus_handle bus, size_t size, size_t align, usb_dma_t *p, 286 int flags) 287 { 288 bus_dma_tag_t tag = bus->dmatag; 289 usbd_status err; 290 struct usb_frag_dma *f; 291 usb_dma_block_t *b; 292 int i; 293 static ONCE_DECL(init_control); 294 bool frag; 295 296 RUN_ONCE(&init_control, usb_mem_init); 297 298 frag = (flags & USBMALLOC_MULTISEG); 299 300 /* If the request is large then just use a full block. */ 301 if (size > USB_MEM_SMALL || align > USB_MEM_SMALL) { 302 DPRINTFN(1, ("usb_allocmem: large alloc %d\n", (int)size)); 303 size = (size + USB_MEM_BLOCK - 1) & ~(USB_MEM_BLOCK - 1); 304 mutex_enter(&usb_blk_lock); 305 err = usb_block_allocmem(tag, size, align, &p->block, frag); 306 if (!err) { 307 #ifdef DEBUG 308 LIST_INSERT_HEAD(&usb_blk_fulllist, p->block, next); 309 #endif 310 p->block->flags = USB_DMA_FULLBLOCK; 311 p->offs = 0; 312 } 313 mutex_exit(&usb_blk_lock); 314 return (err); 315 } 316 317 mutex_enter(&usb_blk_lock); 318 /* Check for free fragments. */ 319 LIST_FOREACH(f, &usb_frag_freelist, next) { 320 KDASSERTMSG(usb_valid_block_p(f->block, &usb_blk_fraglist), 321 "%s: usb frag %p: unknown block pointer %p", 322 __func__, f, f->block); 323 if (f->block->tag == tag) 324 break; 325 } 326 if (f == NULL) { 327 DPRINTFN(1, ("usb_allocmem: adding fragments\n")); 328 err = usb_block_allocmem(tag, USB_MEM_BLOCK, USB_MEM_SMALL, &b, 329 false); 330 if (err) { 331 mutex_exit(&usb_blk_lock); 332 return (err); 333 } 334 #ifdef DEBUG 335 LIST_INSERT_HEAD(&usb_blk_fraglist, b, next); 336 #endif 337 b->flags = 0; 338 for (i = 0; i < USB_MEM_BLOCK; i += USB_MEM_SMALL) { 339 f = (struct usb_frag_dma *)((char *)b->kaddr + i); 340 f->block = b; 341 f->offs = i; 342 LIST_INSERT_HEAD(&usb_frag_freelist, f, next); 343 #ifdef USB_FRAG_DMA_WORKAROUND 344 i += 1 * USB_MEM_SMALL; 345 #endif 346 } 347 f = LIST_FIRST(&usb_frag_freelist); 348 } 349 p->block = f->block; 350 p->offs = f->offs; 351 #ifdef USB_FRAG_DMA_WORKAROUND 352 p->offs += USB_MEM_SMALL; 353 #endif 354 p->block->flags &= ~USB_DMA_RESERVE; 355 LIST_REMOVE(f, next); 356 mutex_exit(&usb_blk_lock); 357 DPRINTFN(5, ("usb_allocmem: use frag=%p size=%d\n", f, (int)size)); 358 359 return (USBD_NORMAL_COMPLETION); 360 } 361 362 void 363 usb_freemem(usbd_bus_handle bus, usb_dma_t *p) 364 { 365 struct usb_frag_dma *f; 366 367 mutex_enter(&usb_blk_lock); 368 if (p->block->flags & USB_DMA_FULLBLOCK) { 369 KDASSERTMSG(usb_valid_block_p(p->block, &usb_blk_fulllist), 370 "%s: dma %p: invalid block pointer %p", 371 __func__, p, p->block); 372 DPRINTFN(1, ("usb_freemem: large free\n")); 373 usb_block_freemem(p->block); 374 mutex_exit(&usb_blk_lock); 375 return; 376 } 377 KDASSERTMSG(usb_valid_block_p(p->block, &usb_blk_fraglist), 378 "%s: dma %p: invalid block pointer %p", 379 __func__, p, p->block); 380 //usb_syncmem(p, 0, USB_MEM_SMALL, BUS_DMASYNC_POSTREAD); 381 f = KERNADDR(p, 0); 382 #ifdef USB_FRAG_DMA_WORKAROUND 383 f = (void *)((uintptr_t)f - USB_MEM_SMALL); 384 #endif 385 f->block = p->block; 386 f->offs = p->offs; 387 #ifdef USB_FRAG_DMA_WORKAROUND 388 f->offs -= USB_MEM_SMALL; 389 #endif 390 LIST_INSERT_HEAD(&usb_frag_freelist, f, next); 391 mutex_exit(&usb_blk_lock); 392 DPRINTFN(5, ("usb_freemem: frag=%p\n", f)); 393 } 394 395 bus_addr_t 396 usb_dmaaddr(usb_dma_t *dma, unsigned int offset) 397 { 398 unsigned int i; 399 bus_size_t seg_offs; 400 401 offset += dma->offs; 402 403 KASSERT(offset < dma->block->size); 404 405 if (dma->block->nsegs == 1) { 406 KASSERT(dma->block->map->dm_segs[0].ds_len > offset); 407 return dma->block->map->dm_segs[0].ds_addr + offset; 408 } 409 410 /* Search for a bus_segment_t corresponding to this offset. With no 411 * record of the offset in the map to a particular dma_segment_t, we 412 * have to iterate from the start of the list each time. Could be 413 * improved */ 414 seg_offs = 0; 415 for (i = 0; i < dma->block->nsegs; i++) { 416 if (seg_offs + dma->block->map->dm_segs[i].ds_len > offset) 417 break; 418 419 seg_offs += dma->block->map->dm_segs[i].ds_len; 420 } 421 422 KASSERT(i != dma->block->nsegs); 423 offset -= seg_offs; 424 return dma->block->map->dm_segs[i].ds_addr + offset; 425 } 426 427 void 428 usb_syncmem(usb_dma_t *p, bus_addr_t offset, bus_size_t len, int ops) 429 { 430 bus_dmamap_sync(p->block->tag, p->block->map, p->offs + offset, 431 len, ops); 432 } 433 434 435 usbd_status 436 usb_reserve_allocm(struct usb_dma_reserve *rs, usb_dma_t *dma, u_int32_t size) 437 { 438 int error; 439 u_long start; 440 bus_addr_t baddr; 441 442 if (rs->vaddr == 0 || size > USB_MEM_RESERVE) 443 return USBD_NOMEM; 444 445 dma->block = kmem_zalloc(sizeof *dma->block, KM_SLEEP); 446 if (dma->block == NULL) { 447 aprint_error_dev(rs->dv, "%s: failed allocating dma block", 448 __func__); 449 goto out0; 450 } 451 452 dma->block->nsegs = 1; 453 dma->block->segs = kmem_alloc(dma->block->nsegs * 454 sizeof(*dma->block->segs), KM_SLEEP); 455 if (dma->block->segs == NULL) { 456 aprint_error_dev(rs->dv, "%s: failed allocating 1 dma segment", 457 __func__); 458 goto out1; 459 } 460 461 error = extent_alloc(rs->extent, size, PAGE_SIZE, 0, 462 EX_NOWAIT, &start); 463 464 if (error != 0) { 465 aprint_error_dev(rs->dv, "%s: extent_alloc size %u failed " 466 "(error %d)", __func__, size, error); 467 goto out2; 468 } 469 470 baddr = start; 471 dma->offs = baddr - rs->paddr; 472 dma->block->flags = USB_DMA_RESERVE; 473 dma->block->align = PAGE_SIZE; 474 dma->block->size = size; 475 dma->block->segs[0] = rs->map->dm_segs[0]; 476 dma->block->map = rs->map; 477 dma->block->kaddr = rs->vaddr; 478 dma->block->tag = rs->dtag; 479 480 return USBD_NORMAL_COMPLETION; 481 out2: 482 kmem_free(dma->block->segs, dma->block->nsegs * 483 sizeof(*dma->block->segs)); 484 out1: 485 kmem_free(dma->block, sizeof *dma->block); 486 out0: 487 return USBD_NOMEM; 488 } 489 490 void 491 usb_reserve_freem(struct usb_dma_reserve *rs, usb_dma_t *dma) 492 { 493 494 extent_free(rs->extent, 495 (u_long)(rs->paddr + dma->offs), dma->block->size, 0); 496 kmem_free(dma->block->segs, dma->block->nsegs * 497 sizeof(*dma->block->segs)); 498 kmem_free(dma->block, sizeof *dma->block); 499 } 500 501 int 502 usb_setup_reserve(device_t dv, struct usb_dma_reserve *rs, bus_dma_tag_t dtag, 503 size_t size) 504 { 505 int error, nseg; 506 bus_dma_segment_t seg; 507 508 rs->dtag = dtag; 509 rs->size = size; 510 rs->dv = dv; 511 512 error = bus_dmamem_alloc(dtag, USB_MEM_RESERVE, PAGE_SIZE, 0, 513 &seg, 1, &nseg, BUS_DMA_NOWAIT); 514 if (error != 0) 515 return error; 516 517 error = bus_dmamem_map(dtag, &seg, nseg, USB_MEM_RESERVE, 518 &rs->vaddr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 519 if (error != 0) 520 goto freeit; 521 522 error = bus_dmamap_create(dtag, USB_MEM_RESERVE, 1, 523 USB_MEM_RESERVE, 0, BUS_DMA_NOWAIT, &rs->map); 524 if (error != 0) 525 goto unmap; 526 527 error = bus_dmamap_load(dtag, rs->map, rs->vaddr, USB_MEM_RESERVE, 528 NULL, BUS_DMA_NOWAIT); 529 if (error != 0) 530 goto destroy; 531 532 rs->paddr = rs->map->dm_segs[0].ds_addr; 533 rs->extent = extent_create(device_xname(dv), (u_long)rs->paddr, 534 (u_long)(rs->paddr + USB_MEM_RESERVE - 1), 0, 0, 0); 535 if (rs->extent == NULL) { 536 rs->vaddr = 0; 537 return ENOMEM; 538 } 539 540 return 0; 541 542 destroy: 543 bus_dmamap_destroy(dtag, rs->map); 544 unmap: 545 bus_dmamem_unmap(dtag, rs->vaddr, size); 546 freeit: 547 bus_dmamem_free(dtag, &seg, nseg); 548 549 rs->vaddr = 0; 550 551 return error; 552 } 553