1 /* $NetBSD: usb_mem.c,v 1.81 2021/05/27 10:44:29 jmcneill Exp $ */ 2 3 /* 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Lennart Augustsson (lennart@augustsson.net) at 9 * Carlstedt Research & Technology. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * USB DMA memory allocation. 35 * We need to allocate a lot of small (many 8 byte, some larger) 36 * memory blocks that can be used for DMA. Using the bus_dma 37 * routines directly would incur large overheads in space and time. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: usb_mem.c,v 1.81 2021/05/27 10:44:29 jmcneill Exp $"); 42 43 #ifdef _KERNEL_OPT 44 #include "opt_usb.h" 45 #endif 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/cpu.h> 50 #include <sys/device.h> /* for usbdivar.h */ 51 #include <sys/kernel.h> 52 #include <sys/kmem.h> 53 #include <sys/once.h> 54 #include <sys/queue.h> 55 #include <sys/systm.h> 56 57 #include <dev/usb/usb.h> 58 #include <dev/usb/usbdi.h> 59 #include <dev/usb/usbdivar.h> /* just for usb_dma_t */ 60 #include <dev/usb/usbhist.h> 61 #include <dev/usb/usb_mem.h> 62 63 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usbdebug,FMT,A,B,C,D) 64 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbdebug,N,FMT,A,B,C,D) 65 66 #define USB_MEM_SMALL roundup(64, CACHE_LINE_SIZE) 67 #define USB_MEM_CHUNKS 64 68 #define USB_MEM_BLOCK (USB_MEM_SMALL * USB_MEM_CHUNKS) 69 70 /* This struct is overlayed on free fragments. */ 71 struct usb_frag_dma { 72 usb_dma_block_t *ufd_block; 73 u_int ufd_offs; 74 LIST_ENTRY(usb_frag_dma) ufd_next; 75 }; 76 77 Static int usb_block_allocmem(bus_dma_tag_t, size_t, size_t, 78 u_int, usb_dma_block_t **); 79 Static void usb_block_freemem(usb_dma_block_t *); 80 81 LIST_HEAD(usb_dma_block_qh, usb_dma_block); 82 Static struct usb_dma_block_qh usb_blk_freelist = 83 LIST_HEAD_INITIALIZER(usb_blk_freelist); 84 kmutex_t usb_blk_lock; 85 86 #ifdef DEBUG 87 Static struct usb_dma_block_qh usb_blk_fraglist = 88 LIST_HEAD_INITIALIZER(usb_blk_fraglist); 89 Static struct usb_dma_block_qh usb_blk_fulllist = 90 LIST_HEAD_INITIALIZER(usb_blk_fulllist); 91 #endif 92 Static u_int usb_blk_nfree = 0; 93 /* XXX should have different free list for different tags (for speed) */ 94 Static LIST_HEAD(, usb_frag_dma) usb_frag_freelist = 95 LIST_HEAD_INITIALIZER(usb_frag_freelist); 96 97 Static int usb_mem_init(void); 98 99 Static int 100 usb_mem_init(void) 101 { 102 103 mutex_init(&usb_blk_lock, MUTEX_DEFAULT, IPL_NONE); 104 return 0; 105 } 106 107 Static int 108 usb_block_allocmem(bus_dma_tag_t tag, size_t size, size_t align, 109 u_int flags, usb_dma_block_t **dmap) 110 { 111 usb_dma_block_t *b; 112 int error; 113 114 USBHIST_FUNC(); 115 USBHIST_CALLARGS(usbdebug, "size=%ju align=%ju flags=%#jx", size, align, flags, 0); 116 117 ASSERT_SLEEPABLE(); 118 KASSERT(size != 0); 119 KASSERT(mutex_owned(&usb_blk_lock)); 120 121 #ifdef USB_FRAG_DMA_WORKAROUND 122 flags |= USBMALLOC_ZERO; 123 #endif 124 125 bool multiseg = (flags & USBMALLOC_MULTISEG) != 0; 126 bool coherent = (flags & USBMALLOC_COHERENT) != 0; 127 bool zero = (flags & USBMALLOC_ZERO) != 0; 128 u_int dmaflags = coherent ? USB_DMA_COHERENT : 0; 129 130 /* First check the free list. */ 131 LIST_FOREACH(b, &usb_blk_freelist, next) { 132 /* Don't allocate multiple segments to unwilling callers */ 133 if (b->nsegs != 1 && !multiseg) 134 continue; 135 if (b->tag == tag && 136 b->size >= size && 137 b->align >= align && 138 (b->flags & USB_DMA_COHERENT) == dmaflags) { 139 LIST_REMOVE(b, next); 140 usb_blk_nfree--; 141 *dmap = b; 142 if (zero) { 143 memset(b->kaddr, 0, b->size); 144 bus_dmamap_sync(b->tag, b->map, 0, b->size, 145 BUS_DMASYNC_PREWRITE); 146 } 147 DPRINTFN(6, "free list size=%ju", b->size, 0, 0, 0); 148 return 0; 149 } 150 } 151 152 DPRINTFN(6, "no freelist entry", 0, 0, 0, 0); 153 mutex_exit(&usb_blk_lock); 154 155 b = kmem_zalloc(sizeof(*b), KM_SLEEP); 156 b->tag = tag; 157 b->size = size; 158 b->align = align; 159 b->flags = dmaflags; 160 161 if (!multiseg) 162 /* Caller wants one segment */ 163 b->nsegs = 1; 164 else 165 b->nsegs = howmany(size, PAGE_SIZE); 166 167 b->segs = kmem_alloc(b->nsegs * sizeof(*b->segs), KM_SLEEP); 168 b->nsegs_alloc = b->nsegs; 169 170 error = bus_dmamem_alloc(tag, b->size, align, 0, 171 b->segs, b->nsegs, 172 &b->nsegs, BUS_DMA_WAITOK); 173 if (error) 174 goto free0; 175 176 error = bus_dmamem_map(tag, b->segs, b->nsegs, b->size, &b->kaddr, 177 BUS_DMA_WAITOK | (coherent ? BUS_DMA_COHERENT : 0)); 178 if (error) 179 goto free1; 180 181 error = bus_dmamap_create(tag, b->size, b->nsegs, b->size, 182 0, BUS_DMA_WAITOK, &b->map); 183 if (error) 184 goto unmap; 185 186 error = bus_dmamap_load(tag, b->map, b->kaddr, b->size, NULL, 187 BUS_DMA_WAITOK); 188 if (error) 189 goto destroy; 190 191 *dmap = b; 192 193 if (zero) { 194 memset(b->kaddr, 0, b->size); 195 bus_dmamap_sync(b->tag, b->map, 0, b->size, 196 BUS_DMASYNC_PREWRITE); 197 } 198 199 mutex_enter(&usb_blk_lock); 200 201 return 0; 202 203 destroy: 204 bus_dmamap_destroy(tag, b->map); 205 unmap: 206 bus_dmamem_unmap(tag, b->kaddr, b->size); 207 free1: 208 bus_dmamem_free(tag, b->segs, b->nsegs); 209 free0: 210 kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs)); 211 kmem_free(b, sizeof(*b)); 212 mutex_enter(&usb_blk_lock); 213 214 return USBD_NOMEM; 215 } 216 217 #if 0 218 void 219 usb_block_real_freemem(usb_dma_block_t *b) 220 { 221 ASSERT_SLEEPABLE(); 222 223 bus_dmamap_unload(b->tag, b->map); 224 bus_dmamap_destroy(b->tag, b->map); 225 bus_dmamem_unmap(b->tag, b->kaddr, b->size); 226 bus_dmamem_free(b->tag, b->segs, b->nsegs); 227 kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs)); 228 kmem_free(b, sizeof(*b)); 229 } 230 #endif 231 232 #ifdef DEBUG 233 static bool 234 usb_valid_block_p(usb_dma_block_t *b, struct usb_dma_block_qh *qh) 235 { 236 usb_dma_block_t *xb; 237 LIST_FOREACH(xb, qh, next) { 238 if (xb == b) 239 return true; 240 } 241 return false; 242 } 243 #endif 244 245 /* 246 * Do not free the memory unconditionally since we might be called 247 * from an interrupt context and that is BAD. 248 * XXX when should we really free? 249 */ 250 Static void 251 usb_block_freemem(usb_dma_block_t *b) 252 { 253 USBHIST_FUNC(); 254 USBHIST_CALLARGS(usbdebug, "size=%ju", b->size, 0, 0, 0); 255 256 KASSERT(mutex_owned(&usb_blk_lock)); 257 258 #ifdef DEBUG 259 LIST_REMOVE(b, next); 260 #endif 261 LIST_INSERT_HEAD(&usb_blk_freelist, b, next); 262 usb_blk_nfree++; 263 } 264 265 int 266 usb_allocmem(struct usbd_bus *bus, size_t size, size_t align, u_int flags, 267 usb_dma_t *p) 268 { 269 bus_dma_tag_t tag = bus->ub_dmatag; 270 usbd_status err; 271 struct usb_frag_dma *f; 272 usb_dma_block_t *b; 273 int i; 274 static ONCE_DECL(init_control); 275 276 USBHIST_FUNC(); USBHIST_CALLED(usbdebug); 277 278 ASSERT_SLEEPABLE(); 279 280 RUN_ONCE(&init_control, usb_mem_init); 281 282 u_int dmaflags = (flags & USBMALLOC_COHERENT) ? USB_DMA_COHERENT : 0; 283 284 /* If the request is large then just use a full block. */ 285 if (size > USB_MEM_SMALL || align > USB_MEM_SMALL) { 286 DPRINTFN(1, "large alloc %jd", size, 0, 0, 0); 287 size = (size + USB_MEM_BLOCK - 1) & ~(USB_MEM_BLOCK - 1); 288 mutex_enter(&usb_blk_lock); 289 err = usb_block_allocmem(tag, size, align, flags, 290 &p->udma_block); 291 if (!err) { 292 #ifdef DEBUG 293 LIST_INSERT_HEAD(&usb_blk_fulllist, p->udma_block, next); 294 #endif 295 p->udma_block->flags = USB_DMA_FULLBLOCK | dmaflags; 296 p->udma_offs = 0; 297 } 298 mutex_exit(&usb_blk_lock); 299 return err; 300 } 301 302 mutex_enter(&usb_blk_lock); 303 /* Check for free fragments. */ 304 LIST_FOREACH(f, &usb_frag_freelist, ufd_next) { 305 KDASSERTMSG(usb_valid_block_p(f->ufd_block, &usb_blk_fraglist), 306 "%s: usb frag %p: unknown block pointer %p", 307 __func__, f, f->ufd_block); 308 if (f->ufd_block->tag == tag && 309 (f->ufd_block->flags & USB_DMA_COHERENT) == dmaflags) 310 break; 311 } 312 if (f == NULL) { 313 DPRINTFN(1, "adding fragments", 0, 0, 0, 0); 314 315 err = usb_block_allocmem(tag, USB_MEM_BLOCK, USB_MEM_SMALL, 316 flags, &b); 317 if (err) { 318 mutex_exit(&usb_blk_lock); 319 return err; 320 } 321 #ifdef DEBUG 322 LIST_INSERT_HEAD(&usb_blk_fraglist, b, next); 323 #endif 324 b->flags = 0; 325 for (i = 0; i < USB_MEM_BLOCK; i += USB_MEM_SMALL) { 326 f = (struct usb_frag_dma *)((char *)b->kaddr + i); 327 f->ufd_block = b; 328 f->ufd_offs = i; 329 LIST_INSERT_HEAD(&usb_frag_freelist, f, ufd_next); 330 #ifdef USB_FRAG_DMA_WORKAROUND 331 i += 1 * USB_MEM_SMALL; 332 #endif 333 } 334 f = LIST_FIRST(&usb_frag_freelist); 335 } 336 p->udma_block = f->ufd_block; 337 p->udma_offs = f->ufd_offs; 338 #ifdef USB_FRAG_DMA_WORKAROUND 339 p->udma_offs += USB_MEM_SMALL; 340 #endif 341 LIST_REMOVE(f, ufd_next); 342 mutex_exit(&usb_blk_lock); 343 DPRINTFN(5, "use frag=%#jx size=%jd", (uintptr_t)f, size, 0, 0); 344 345 return 0; 346 } 347 348 void 349 usb_freemem(struct usbd_bus *bus, usb_dma_t *p) 350 { 351 struct usb_frag_dma *f; 352 353 USBHIST_FUNC(); USBHIST_CALLED(usbdebug); 354 355 mutex_enter(&usb_blk_lock); 356 if (p->udma_block->flags & USB_DMA_FULLBLOCK) { 357 KDASSERTMSG(usb_valid_block_p(p->udma_block, &usb_blk_fulllist), 358 "%s: dma %p: invalid block pointer %p", 359 __func__, p, p->udma_block); 360 DPRINTFN(1, "large free", 0, 0, 0, 0); 361 usb_block_freemem(p->udma_block); 362 mutex_exit(&usb_blk_lock); 363 return; 364 } 365 KDASSERTMSG(usb_valid_block_p(p->udma_block, &usb_blk_fraglist), 366 "%s: dma %p: invalid block pointer %p", 367 __func__, p, p->udma_block); 368 //usb_syncmem(p, 0, USB_MEM_SMALL, BUS_DMASYNC_POSTREAD); 369 f = KERNADDR(p, 0); 370 #ifdef USB_FRAG_DMA_WORKAROUND 371 f = (void *)((uintptr_t)f - USB_MEM_SMALL); 372 #endif 373 f->ufd_block = p->udma_block; 374 f->ufd_offs = p->udma_offs; 375 #ifdef USB_FRAG_DMA_WORKAROUND 376 f->ufd_offs -= USB_MEM_SMALL; 377 #endif 378 LIST_INSERT_HEAD(&usb_frag_freelist, f, ufd_next); 379 mutex_exit(&usb_blk_lock); 380 DPRINTFN(5, "frag=%#jx", (uintptr_t)f, 0, 0, 0); 381 } 382 383 bus_addr_t 384 usb_dmaaddr(usb_dma_t *dma, unsigned int offset) 385 { 386 unsigned int i; 387 bus_size_t seg_offs; 388 389 offset += dma->udma_offs; 390 391 KASSERTMSG(offset < dma->udma_block->size, "offset %d vs %zu", offset, 392 dma->udma_block->size); 393 394 if (dma->udma_block->nsegs == 1) { 395 KASSERT(dma->udma_block->map->dm_segs[0].ds_len > offset); 396 return dma->udma_block->map->dm_segs[0].ds_addr + offset; 397 } 398 399 /* 400 * Search for a bus_segment_t corresponding to this offset. With no 401 * record of the offset in the map to a particular dma_segment_t, we 402 * have to iterate from the start of the list each time. Could be 403 * improved 404 */ 405 seg_offs = 0; 406 for (i = 0; i < dma->udma_block->nsegs; i++) { 407 if (seg_offs + dma->udma_block->map->dm_segs[i].ds_len > offset) 408 break; 409 410 seg_offs += dma->udma_block->map->dm_segs[i].ds_len; 411 } 412 413 KASSERT(i != dma->udma_block->nsegs); 414 offset -= seg_offs; 415 return dma->udma_block->map->dm_segs[i].ds_addr + offset; 416 } 417 418 void 419 usb_syncmem(usb_dma_t *p, bus_addr_t offset, bus_size_t len, int ops) 420 { 421 422 bus_dmamap_sync(p->udma_block->tag, p->udma_block->map, 423 p->udma_offs + offset, len, ops); 424 } 425