xref: /netbsd-src/sys/dev/usb/umidi.c (revision e7ac2a8b5bd66fa2e050809de09a075c36a7014d)
1 /*	$NetBSD: umidi.c,v 1.82 2020/01/02 08:08:30 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI (tshiozak@NetBSD.org), (full-size transfers, extended
9  * hw_if) Chapman Flack (chap@NetBSD.org), and Matthew R. Green
10  * (mrg@eterna.com.au).
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.82 2020/01/02 08:08:30 maxv Exp $");
36 
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55 
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59 
60 #include <dev/usb/usbdevs.h>
61 #include <dev/usb/umidi_quirks.h>
62 #include <dev/midi_if.h>
63 
64 /* Jack Descriptor */
65 #define UMIDI_MS_HEADER	0x01
66 #define UMIDI_IN_JACK	0x02
67 #define UMIDI_OUT_JACK	0x03
68 
69 /* Jack Type */
70 #define UMIDI_EMBEDDED	0x01
71 #define UMIDI_EXTERNAL	0x02
72 
73 /* generic, for iteration */
74 typedef struct {
75 	uByte		bLength;
76 	uByte		bDescriptorType;
77 	uByte		bDescriptorSubtype;
78 } UPACKED umidi_cs_descriptor_t;
79 
80 typedef struct {
81 	uByte		bLength;
82 	uByte		bDescriptorType;
83 	uByte		bDescriptorSubtype;
84 	uWord		bcdMSC;
85 	uWord		wTotalLength;
86 } UPACKED umidi_cs_interface_descriptor_t;
87 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
88 
89 typedef struct {
90 	uByte		bLength;
91 	uByte		bDescriptorType;
92 	uByte		bDescriptorSubtype;
93 	uByte		bNumEmbMIDIJack;
94 } UPACKED umidi_cs_endpoint_descriptor_t;
95 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
96 
97 typedef struct {
98 	uByte		bLength;
99 	uByte		bDescriptorType;
100 	uByte		bDescriptorSubtype;
101 	uByte		bJackType;
102 	uByte		bJackID;
103 } UPACKED umidi_jack_descriptor_t;
104 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
105 
106 
107 #define TO_D(p) ((usb_descriptor_t *)(p))
108 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
109 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
110 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
111 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
112 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
113 
114 
115 #define UMIDI_PACKET_SIZE 4
116 
117 /*
118  * hierarchie
119  *
120  * <-- parent	       child -->
121  *
122  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
123  *	   ^	 |    ^	    |
124  *	   +-----+    +-----+
125  */
126 
127 /* midi device */
128 struct umidi_mididev {
129 	struct umidi_softc	*sc;
130 	device_t		mdev;
131 	/* */
132 	struct umidi_jack	*in_jack;
133 	struct umidi_jack	*out_jack;
134 	char			*label;
135 	size_t			label_len;
136 	/* */
137 	int			opened;
138 	int			closing;
139 	int			flags;
140 };
141 
142 /* Jack Information */
143 struct umidi_jack {
144 	struct umidi_endpoint	*endpoint;
145 	/* */
146 	int			cable_number;
147 	void			*arg;
148 	int			bound;
149 	int			opened;
150 	unsigned char		*midiman_ppkt;
151 	union {
152 		struct {
153 			void			(*intr)(void *);
154 		} out;
155 		struct {
156 			void			(*intr)(void *, int);
157 		} in;
158 	} u;
159 };
160 
161 #define UMIDI_MAX_EPJACKS	16
162 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
163 /* endpoint data */
164 struct umidi_endpoint {
165 	struct umidi_softc	*sc;
166 	/* */
167 	int			addr;
168 	struct usbd_pipe	*pipe;
169 	struct usbd_xfer	*xfer;
170 	umidi_packet_bufp	buffer;
171 	umidi_packet_bufp	next_slot;
172 	uint32_t               buffer_size;
173 	int			num_scheduled;
174 	int			num_open;
175 	int			num_jacks;
176 	int			soliciting;
177 	void			*solicit_cookie;
178 	int			armed;
179 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
180 	uint16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
181 	uint16_t		next_schedule;
182 };
183 
184 /* software context */
185 struct umidi_softc {
186 	device_t		sc_dev;
187 	struct usbd_device	*sc_udev;
188 	struct usbd_interface	*sc_iface;
189 	const struct umidi_quirk	*sc_quirk;
190 
191 	int			sc_dying;
192 
193 	int			sc_out_num_jacks;
194 	struct umidi_jack	*sc_out_jacks;
195 	int			sc_in_num_jacks;
196 	struct umidi_jack	*sc_in_jacks;
197 	struct umidi_jack	*sc_jacks;
198 
199 	int			sc_num_mididevs;
200 	struct umidi_mididev	*sc_mididevs;
201 
202 	int			sc_out_num_endpoints;
203 	struct umidi_endpoint	*sc_out_ep;
204 	int			sc_in_num_endpoints;
205 	struct umidi_endpoint	*sc_in_ep;
206 	struct umidi_endpoint	*sc_endpoints;
207 	size_t			sc_endpoints_len;
208 	int			cblnums_global;
209 
210 	kmutex_t		sc_lock;
211 	kcondvar_t		sc_cv;
212 	kcondvar_t		sc_detach_cv;
213 
214 	int			sc_refcnt;
215 };
216 
217 #ifdef UMIDI_DEBUG
218 #define DPRINTF(x)	if (umididebug) printf x
219 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
220 #include <sys/time.h>
221 static struct timeval umidi_tv;
222 int	umididebug = 0;
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227 
228 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
229 				 (sc->sc_out_num_endpoints + \
230 				  sc->sc_in_num_endpoints))
231 
232 
233 static int umidi_open(void *, int,
234 		      void (*)(void *, int), void (*)(void *), void *);
235 static void umidi_close(void *);
236 static int umidi_channelmsg(void *, int, int, u_char *, int);
237 static int umidi_commonmsg(void *, int, u_char *, int);
238 static int umidi_sysex(void *, u_char *, int);
239 static int umidi_rtmsg(void *, int);
240 static void umidi_getinfo(void *, struct midi_info *);
241 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
242 
243 static usbd_status alloc_pipe(struct umidi_endpoint *);
244 static void free_pipe(struct umidi_endpoint *);
245 
246 static usbd_status alloc_all_endpoints(struct umidi_softc *);
247 static void free_all_endpoints(struct umidi_softc *);
248 
249 static usbd_status alloc_all_jacks(struct umidi_softc *);
250 static void free_all_jacks(struct umidi_softc *);
251 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
252 					 struct umidi_jack *,
253 					 struct umidi_jack *,
254 					 struct umidi_mididev *);
255 static void unbind_jacks_from_mididev(struct umidi_mididev *);
256 static void unbind_all_jacks(struct umidi_softc *);
257 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
258 static usbd_status open_out_jack(struct umidi_jack *, void *,
259 				 void (*)(void *));
260 static usbd_status open_in_jack(struct umidi_jack *, void *,
261 				void (*)(void *, int));
262 static void close_out_jack(struct umidi_jack *);
263 static void close_in_jack(struct umidi_jack *);
264 
265 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
266 static usbd_status detach_mididev(struct umidi_mididev *, int);
267 static void deactivate_mididev(struct umidi_mididev *);
268 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
269 static void free_all_mididevs(struct umidi_softc *);
270 static usbd_status attach_all_mididevs(struct umidi_softc *);
271 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
272 static void deactivate_all_mididevs(struct umidi_softc *);
273 static void describe_mididev(struct umidi_mididev *);
274 
275 #ifdef UMIDI_DEBUG
276 static void dump_sc(struct umidi_softc *);
277 static void dump_ep(struct umidi_endpoint *);
278 static void dump_jack(struct umidi_jack *);
279 #endif
280 
281 static usbd_status start_input_transfer(struct umidi_endpoint *);
282 static usbd_status start_output_transfer(struct umidi_endpoint *);
283 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
284 static void in_intr(struct usbd_xfer *, void *, usbd_status);
285 static void out_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
287 static void out_solicit_locked(void *); /* pre-locked version */
288 
289 
290 const struct midi_hw_if umidi_hw_if = {
291 	.open = umidi_open,
292 	.close = umidi_close,
293 	.output = umidi_rtmsg,
294 	.getinfo = umidi_getinfo,
295 	.get_locks = umidi_get_locks,
296 };
297 
298 struct midi_hw_if_ext umidi_hw_if_ext = {
299 	.channel = umidi_channelmsg,
300 	.common  = umidi_commonmsg,
301 	.sysex   = umidi_sysex,
302 };
303 
304 struct midi_hw_if_ext umidi_hw_if_mm = {
305 	.channel = umidi_channelmsg,
306 	.common  = umidi_commonmsg,
307 	.sysex   = umidi_sysex,
308 	.compress = 1,
309 };
310 
311 static int umidi_match(device_t, cfdata_t, void *);
312 static void umidi_attach(device_t, device_t, void *);
313 static void umidi_childdet(device_t, device_t);
314 static int umidi_detach(device_t, int);
315 static int umidi_activate(device_t, enum devact);
316 
317 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
318     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
319 
320 static int
321 umidi_match(device_t parent, cfdata_t match, void *aux)
322 {
323 	struct usbif_attach_arg *uiaa = aux;
324 
325 	DPRINTFN(1,("umidi_match\n"));
326 
327 	if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
328 	    uiaa->uiaa_ifaceno))
329 		return UMATCH_IFACECLASS_IFACESUBCLASS;
330 
331 	if (uiaa->uiaa_class == UICLASS_AUDIO &&
332 	    uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
333 		return UMATCH_IFACECLASS_IFACESUBCLASS;
334 
335 	return UMATCH_NONE;
336 }
337 
338 static void
339 umidi_attach(device_t parent, device_t self, void *aux)
340 {
341 	usbd_status     err;
342 	struct umidi_softc *sc = device_private(self);
343 	struct usbif_attach_arg *uiaa = aux;
344 	char *devinfop;
345 
346 	DPRINTFN(1,("umidi_attach\n"));
347 
348 	sc->sc_dev = self;
349 
350 	aprint_naive("\n");
351 	aprint_normal("\n");
352 
353 	devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
354 	aprint_normal_dev(self, "%s\n", devinfop);
355 	usbd_devinfo_free(devinfop);
356 
357 	sc->sc_iface = uiaa->uiaa_iface;
358 	sc->sc_udev = uiaa->uiaa_device;
359 
360 	sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
361 	    uiaa->uiaa_product, uiaa->uiaa_ifaceno);
362 
363 	aprint_normal_dev(self, "");
364 	umidi_print_quirk(sc->sc_quirk);
365 
366 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
367 	cv_init(&sc->sc_cv, "umidopcl");
368 	cv_init(&sc->sc_detach_cv, "umidetcv");
369 	sc->sc_refcnt = 0;
370 
371 	err = alloc_all_endpoints(sc);
372 	if (err != USBD_NORMAL_COMPLETION) {
373 		aprint_error_dev(self,
374 		    "alloc_all_endpoints failed. (err=%d)\n", err);
375 		goto out;
376 	}
377 	err = alloc_all_jacks(sc);
378 	if (err != USBD_NORMAL_COMPLETION) {
379 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
380 		    err);
381 		goto out_free_endpoints;
382 	}
383 	aprint_normal_dev(self, "out=%d, in=%d\n",
384 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
385 
386 	err = assign_all_jacks_automatically(sc);
387 	if (err != USBD_NORMAL_COMPLETION) {
388 		aprint_error_dev(self,
389 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
390 		goto out_free_jacks;
391 	}
392 	err = attach_all_mididevs(sc);
393 	if (err != USBD_NORMAL_COMPLETION) {
394 		aprint_error_dev(self,
395 		    "attach_all_mididevs failed. (err=%d)\n", err);
396 		goto out_free_jacks;
397 	}
398 
399 #ifdef UMIDI_DEBUG
400 	dump_sc(sc);
401 #endif
402 
403 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
404 
405 	return;
406 
407 out_free_jacks:
408 	unbind_all_jacks(sc);
409 	free_all_jacks(sc);
410 
411 out_free_endpoints:
412 	free_all_endpoints(sc);
413 
414 out:
415 	aprint_error_dev(self, "disabled.\n");
416 	sc->sc_dying = 1;
417 	return;
418 }
419 
420 static void
421 umidi_childdet(device_t self, device_t child)
422 {
423 	int i;
424 	struct umidi_softc *sc = device_private(self);
425 
426 	KASSERT(sc->sc_mididevs != NULL);
427 
428 	for (i = 0; i < sc->sc_num_mididevs; i++) {
429 		if (sc->sc_mididevs[i].mdev == child)
430 			break;
431 	}
432 	KASSERT(i < sc->sc_num_mididevs);
433 	sc->sc_mididevs[i].mdev = NULL;
434 }
435 
436 static int
437 umidi_activate(device_t self, enum devact act)
438 {
439 	struct umidi_softc *sc = device_private(self);
440 
441 	switch (act) {
442 	case DVACT_DEACTIVATE:
443 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
444 		sc->sc_dying = 1;
445 		deactivate_all_mididevs(sc);
446 		return 0;
447 	default:
448 		DPRINTFN(1,("umidi_activate (%d)\n", act));
449 		return EOPNOTSUPP;
450 	}
451 }
452 
453 static int
454 umidi_detach(device_t self, int flags)
455 {
456 	struct umidi_softc *sc = device_private(self);
457 
458 	DPRINTFN(1,("umidi_detach\n"));
459 
460 	mutex_enter(&sc->sc_lock);
461 	sc->sc_dying = 1;
462 	if (--sc->sc_refcnt >= 0)
463 		if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
464 			aprint_error_dev(self, ": didn't detach\n");
465 	mutex_exit(&sc->sc_lock);
466 
467 	detach_all_mididevs(sc, flags);
468 	free_all_mididevs(sc);
469 	free_all_jacks(sc);
470 	free_all_endpoints(sc);
471 
472 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
473 
474 	mutex_destroy(&sc->sc_lock);
475 	cv_destroy(&sc->sc_detach_cv);
476 	cv_destroy(&sc->sc_cv);
477 
478 	return 0;
479 }
480 
481 
482 /*
483  * midi_if stuffs
484  */
485 int
486 umidi_open(void *addr,
487 	   int flags,
488 	   void (*iintr)(void *, int),
489 	   void (*ointr)(void *),
490 	   void *arg)
491 {
492 	struct umidi_mididev *mididev = addr;
493 	struct umidi_softc *sc = mididev->sc;
494 	usbd_status err;
495 
496 	KASSERT(mutex_owned(&sc->sc_lock));
497 	DPRINTF(("umidi_open: sc=%p\n", sc));
498 
499 	if (mididev->opened)
500 		return EBUSY;
501 	if (sc->sc_dying)
502 		return EIO;
503 
504 	mididev->opened = 1;
505 	mididev->flags = flags;
506 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
507 		err = open_out_jack(mididev->out_jack, arg, ointr);
508 		if (err != USBD_NORMAL_COMPLETION)
509 			goto bad;
510 	}
511 	if ((mididev->flags & FREAD) && mididev->in_jack) {
512 		err = open_in_jack(mididev->in_jack, arg, iintr);
513 		KASSERT(mididev->opened);
514 		if (err != USBD_NORMAL_COMPLETION &&
515 		    err != USBD_IN_PROGRESS) {
516 			if (mididev->out_jack)
517 				close_out_jack(mididev->out_jack);
518 			goto bad;
519 		}
520 	}
521 
522 	return 0;
523 bad:
524 	mididev->opened = 0;
525 	DPRINTF(("umidi_open: usbd_status %d\n", err));
526 	KASSERT(mutex_owned(&sc->sc_lock));
527 	return USBD_IN_USE == err ? EBUSY : EIO;
528 }
529 
530 void
531 umidi_close(void *addr)
532 {
533 	struct umidi_mididev *mididev = addr;
534 	struct umidi_softc *sc = mididev->sc;
535 
536 	KASSERT(mutex_owned(&sc->sc_lock));
537 
538 	if (mididev->closing)
539 		return;
540 
541 	mididev->closing = 1;
542 
543 	sc->sc_refcnt++;
544 
545 	if ((mididev->flags & FWRITE) && mididev->out_jack)
546 		close_out_jack(mididev->out_jack);
547 	if ((mididev->flags & FREAD) && mididev->in_jack)
548 		close_in_jack(mididev->in_jack);
549 
550 	if (--sc->sc_refcnt < 0)
551 		cv_broadcast(&sc->sc_detach_cv);
552 
553 	mididev->opened = 0;
554 	mididev->closing = 0;
555 }
556 
557 int
558 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
559     int len)
560 {
561 	struct umidi_mididev *mididev = addr;
562 
563 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
564 
565 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
566 		return EIO;
567 
568 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
569 }
570 
571 int
572 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
573 {
574 	struct umidi_mididev *mididev = addr;
575 	int cin;
576 
577 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
578 
579 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
580 		return EIO;
581 
582 	switch ( len ) {
583 	case 1: cin = 5; break;
584 	case 2: cin = 2; break;
585 	case 3: cin = 3; break;
586 	default: return EIO; /* or gcc warns of cin uninitialized */
587 	}
588 
589 	return out_jack_output(mididev->out_jack, msg, len, cin);
590 }
591 
592 int
593 umidi_sysex(void *addr, u_char *msg, int len)
594 {
595 	struct umidi_mididev *mididev = addr;
596 	int cin;
597 
598 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
599 
600 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
601 		return EIO;
602 
603 	switch ( len ) {
604 	case 1: cin = 5; break;
605 	case 2: cin = 6; break;
606 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
607 	default: return EIO; /* or gcc warns of cin uninitialized */
608 	}
609 
610 	return out_jack_output(mididev->out_jack, msg, len, cin);
611 }
612 
613 int
614 umidi_rtmsg(void *addr, int d)
615 {
616 	struct umidi_mididev *mididev = addr;
617 	u_char msg = d;
618 
619 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
620 
621 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
622 		return EIO;
623 
624 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
625 }
626 
627 void
628 umidi_getinfo(void *addr, struct midi_info *mi)
629 {
630 	struct umidi_mididev *mididev = addr;
631 	struct umidi_softc *sc = mididev->sc;
632 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
633 
634 	KASSERT(mutex_owned(&sc->sc_lock));
635 
636 	mi->name = mididev->label;
637 	mi->props = MIDI_PROP_OUT_INTR;
638 	if (mididev->in_jack)
639 		mi->props |= MIDI_PROP_CAN_INPUT;
640 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
641 }
642 
643 static void
644 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
645 {
646 	struct umidi_mididev *mididev = addr;
647 	struct umidi_softc *sc = mididev->sc;
648 
649 	*intr = NULL;
650 	*thread = &sc->sc_lock;
651 }
652 
653 /*
654  * each endpoint stuffs
655  */
656 
657 /* alloc/free pipe */
658 static usbd_status
659 alloc_pipe(struct umidi_endpoint *ep)
660 {
661 	struct umidi_softc *sc = ep->sc;
662 	usbd_status err;
663 	usb_endpoint_descriptor_t *epd;
664 
665 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
666 	/*
667 	 * For output, an improvement would be to have a buffer bigger than
668 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
669 	 * allow out_solicit to fill the buffer to the full packet size in
670 	 * all cases. But to use usbd_create_xfer to get a slightly larger
671 	 * buffer would not be a good way to do that, because if the addition
672 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
673 	 * larger block may be wastefully allocated. Some flavor of double
674 	 * buffering could serve the same purpose, but would increase the
675 	 * code complexity, so for now I will live with the current slight
676 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
677 	 * packet slots.
678 	 */
679 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
680 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
681 
682 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
683 		device_xname(sc->sc_dev), ep, ep->buffer_size));
684 	ep->num_scheduled = 0;
685 	ep->this_schedule = 0;
686 	ep->next_schedule = 0;
687 	ep->soliciting = 0;
688 	ep->armed = 0;
689 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
690 	if (err)
691 		goto quit;
692 	int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
693 	    0, 0, &ep->xfer);
694 	if (error) {
695 		usbd_close_pipe(ep->pipe);
696 		return USBD_NOMEM;
697 	}
698 	ep->buffer = usbd_get_buffer(ep->xfer);
699 	ep->next_slot = ep->buffer;
700 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
701 	    out_solicit, ep);
702 quit:
703 	return err;
704 }
705 
706 static void
707 free_pipe(struct umidi_endpoint *ep)
708 {
709 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 	usbd_abort_pipe(ep->pipe);
711 	usbd_destroy_xfer(ep->xfer);
712 	usbd_close_pipe(ep->pipe);
713 	softint_disestablish(ep->solicit_cookie);
714 }
715 
716 
717 /* alloc/free the array of endpoint structures */
718 
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722 
723 static usbd_status
724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 	usbd_status err;
727 	struct umidi_endpoint *ep;
728 	int i;
729 
730 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
731 		err = alloc_all_endpoints_fixed_ep(sc);
732 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
733 		err = alloc_all_endpoints_yamaha(sc);
734 	} else {
735 		err = alloc_all_endpoints_genuine(sc);
736 	}
737 	if (err != USBD_NORMAL_COMPLETION)
738 		return err;
739 
740 	ep = sc->sc_endpoints;
741 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
742 		err = alloc_pipe(ep++);
743 		if (err != USBD_NORMAL_COMPLETION) {
744 			for (; ep != sc->sc_endpoints; ep--)
745 				free_pipe(ep-1);
746 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
747 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
748 			break;
749 		}
750 	}
751 	return err;
752 }
753 
754 static void
755 free_all_endpoints(struct umidi_softc *sc)
756 {
757 	int i;
758 
759 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
760 		free_pipe(&sc->sc_endpoints[i]);
761 	if (sc->sc_endpoints != NULL)
762 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
763 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
764 }
765 
766 static usbd_status
767 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
768 {
769 	usbd_status err;
770 	const struct umq_fixed_ep_desc *fp;
771 	struct umidi_endpoint *ep;
772 	usb_endpoint_descriptor_t *epd;
773 	int i;
774 
775 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
776 					    UMQ_TYPE_FIXED_EP);
777 	sc->sc_out_num_jacks = 0;
778 	sc->sc_in_num_jacks = 0;
779 	sc->sc_out_num_endpoints = fp->num_out_ep;
780 	sc->sc_in_num_endpoints = fp->num_in_ep;
781 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
782 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
783 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
784 	sc->sc_in_ep =
785 	    sc->sc_in_num_endpoints ?
786 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
787 
788 	ep = &sc->sc_out_ep[0];
789 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
790 		epd = usbd_interface2endpoint_descriptor(
791 			sc->sc_iface,
792 			fp->out_ep[i].ep);
793 		if (!epd) {
794 			aprint_error_dev(sc->sc_dev,
795 			    "cannot get endpoint descriptor(out:%d)\n",
796 			     fp->out_ep[i].ep);
797 			err = USBD_INVAL;
798 			goto error;
799 		}
800 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
801 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
802 			aprint_error_dev(sc->sc_dev,
803 			    "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
804 			err = USBD_INVAL;
805 			goto error;
806 		}
807 		ep->sc = sc;
808 		ep->addr = epd->bEndpointAddress;
809 		ep->num_jacks = fp->out_ep[i].num_jacks;
810 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
811 		ep->num_open = 0;
812 		ep++;
813 	}
814 	ep = &sc->sc_in_ep[0];
815 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
816 		epd = usbd_interface2endpoint_descriptor(
817 			sc->sc_iface,
818 			fp->in_ep[i].ep);
819 		if (!epd) {
820 			aprint_error_dev(sc->sc_dev,
821 			    "cannot get endpoint descriptor(in:%d)\n",
822 			     fp->in_ep[i].ep);
823 			err = USBD_INVAL;
824 			goto error;
825 		}
826 		/*
827 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
828 		 * endpoint.  The existing input logic in this driver seems
829 		 * to work successfully if we just stop treating an interrupt
830 		 * endpoint as illegal (or the in_progress status we get on
831 		 * the initial transfer).  It does not seem necessary to
832 		 * actually use the interrupt flavor of alloc_pipe or make
833 		 * other serious rearrangements of logic.  I like that.
834 		 */
835 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
836 		case UE_BULK:
837 		case UE_INTERRUPT:
838 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
839 				break;
840 			/*FALLTHROUGH*/
841 		default:
842 			aprint_error_dev(sc->sc_dev,
843 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
844 			err = USBD_INVAL;
845 			goto error;
846 		}
847 
848 		ep->sc = sc;
849 		ep->addr = epd->bEndpointAddress;
850 		ep->num_jacks = fp->in_ep[i].num_jacks;
851 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
852 		ep->num_open = 0;
853 		ep++;
854 	}
855 
856 	return USBD_NORMAL_COMPLETION;
857 error:
858 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
859 	sc->sc_endpoints = NULL;
860 	return err;
861 }
862 
863 static usbd_status
864 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
865 {
866 	/* This driver currently supports max 1in/1out bulk endpoints */
867 	usb_descriptor_t *desc;
868 	umidi_cs_descriptor_t *udesc;
869 	usb_endpoint_descriptor_t *epd;
870 	int out_addr, in_addr, i;
871 	int dir;
872 	size_t remain, descsize;
873 
874 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
875 	out_addr = in_addr = 0;
876 
877 	/* detect endpoints */
878 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
879 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
880 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
881 		KASSERT(epd != NULL);
882 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
883 			dir = UE_GET_DIR(epd->bEndpointAddress);
884 			if (dir==UE_DIR_OUT && !out_addr)
885 				out_addr = epd->bEndpointAddress;
886 			else if (dir==UE_DIR_IN && !in_addr)
887 				in_addr = epd->bEndpointAddress;
888 		}
889 	}
890 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
891 
892 	/* count jacks */
893 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
894 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
895 		return USBD_INVAL;
896 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
897 		(size_t)udesc->bLength;
898 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
899 
900 	while (remain >= sizeof(usb_descriptor_t)) {
901 		descsize = udesc->bLength;
902 		if (descsize>remain || descsize==0)
903 			break;
904 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
905 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
906 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
907 				sc->sc_out_num_jacks++;
908 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
909 				sc->sc_in_num_jacks++;
910 		}
911 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
912 		remain -= descsize;
913 	}
914 
915 	/* validate some parameters */
916 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
917 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
918 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
919 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
920 	if (sc->sc_out_num_jacks && out_addr) {
921 		sc->sc_out_num_endpoints = 1;
922 	} else {
923 		sc->sc_out_num_endpoints = 0;
924 		sc->sc_out_num_jacks = 0;
925 	}
926 	if (sc->sc_in_num_jacks && in_addr) {
927 		sc->sc_in_num_endpoints = 1;
928 	} else {
929 		sc->sc_in_num_endpoints = 0;
930 		sc->sc_in_num_jacks = 0;
931 	}
932 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
933 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
934 	if (sc->sc_out_num_endpoints) {
935 		sc->sc_out_ep = sc->sc_endpoints;
936 		sc->sc_out_ep->sc = sc;
937 		sc->sc_out_ep->addr = out_addr;
938 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
939 		sc->sc_out_ep->num_open = 0;
940 	} else
941 		sc->sc_out_ep = NULL;
942 
943 	if (sc->sc_in_num_endpoints) {
944 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
945 		sc->sc_in_ep->sc = sc;
946 		sc->sc_in_ep->addr = in_addr;
947 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
948 		sc->sc_in_ep->num_open = 0;
949 	} else
950 		sc->sc_in_ep = NULL;
951 
952 	return USBD_NORMAL_COMPLETION;
953 }
954 
955 static usbd_status
956 alloc_all_endpoints_genuine(struct umidi_softc *sc)
957 {
958 	usb_interface_descriptor_t *interface_desc;
959 	usb_config_descriptor_t *config_desc;
960 	usb_descriptor_t *desc;
961 	int num_ep;
962 	size_t remain, descsize;
963 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
964 	int epaddr;
965 
966 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
967 	num_ep = interface_desc->bNumEndpoints;
968 	if (num_ep == 0)
969 		return USBD_INVAL;
970 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
971 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
972 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
973 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
974 	epaddr = -1;
975 
976 	/* get the list of endpoints for midi stream */
977 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
978 	desc = (usb_descriptor_t *) config_desc;
979 	remain = (size_t)UGETW(config_desc->wTotalLength);
980 	while (remain>=sizeof(usb_descriptor_t)) {
981 		descsize = desc->bLength;
982 		if (descsize>remain || descsize==0)
983 			break;
984 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
985 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
986 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
987 			epaddr = TO_EPD(desc)->bEndpointAddress;
988 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
989 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
990 			   epaddr!=-1) {
991 			if (num_ep>0) {
992 				num_ep--;
993 				p->sc = sc;
994 				p->addr = epaddr;
995 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
996 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
997 					sc->sc_out_num_endpoints++;
998 					sc->sc_out_num_jacks += p->num_jacks;
999 				} else {
1000 					sc->sc_in_num_endpoints++;
1001 					sc->sc_in_num_jacks += p->num_jacks;
1002 				}
1003 				p++;
1004 			}
1005 		} else
1006 			epaddr = -1;
1007 		desc = NEXT_D(desc);
1008 		remain-=descsize;
1009 	}
1010 
1011 	/* sort endpoints */
1012 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1013 	p = sc->sc_endpoints;
1014 	endep = p + num_ep;
1015 	while (p<endep) {
1016 		lowest = p;
1017 		for (q=p+1; q<endep; q++) {
1018 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1019 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1020 			    ((UE_GET_DIR(lowest->addr)==
1021 			      UE_GET_DIR(q->addr)) &&
1022 			     (UE_GET_ADDR(lowest->addr)>
1023 			      UE_GET_ADDR(q->addr))))
1024 				lowest = q;
1025 		}
1026 		if (lowest != p) {
1027 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1028 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1029 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1030 		}
1031 		p->num_open = 0;
1032 		p++;
1033 	}
1034 
1035 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1036 	sc->sc_in_ep =
1037 	    sc->sc_in_num_endpoints ?
1038 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1039 
1040 	return USBD_NORMAL_COMPLETION;
1041 }
1042 
1043 
1044 /*
1045  * jack stuffs
1046  */
1047 
1048 static usbd_status
1049 alloc_all_jacks(struct umidi_softc *sc)
1050 {
1051 	int i, j;
1052 	struct umidi_endpoint *ep;
1053 	struct umidi_jack *jack;
1054 	const unsigned char *cn_spec;
1055 
1056 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1057 		sc->cblnums_global = 0;
1058 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1059 		sc->cblnums_global = 1;
1060 	else {
1061 		/*
1062 		 * I don't think this default is correct, but it preserves
1063 		 * the prior behavior of the code. That's why I defined two
1064 		 * complementary quirks. Any device for which the default
1065 		 * behavior is wrong can be made to work by giving it an
1066 		 * explicit quirk, and if a pattern ever develops (as I suspect
1067 		 * it will) that a lot of otherwise standard USB MIDI devices
1068 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
1069 		 * changed to 0, and the only devices that will break are those
1070 		 * listing neither quirk, and they'll easily be fixed by giving
1071 		 * them the CN_SEQ_GLOBAL quirk.
1072 		 */
1073 		sc->cblnums_global = 1;
1074 	}
1075 
1076 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1077 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1078 					    		 UMQ_TYPE_CN_FIXED);
1079 	else
1080 		cn_spec = NULL;
1081 
1082 	/* allocate/initialize structures */
1083 	if (sc->sc_in_num_jacks == 0 && sc->sc_out_num_jacks == 0)
1084 		return USBD_INVAL;
1085 	sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks) *
1086 	    (sc->sc_in_num_jacks + sc->sc_out_num_jacks), KM_SLEEP);
1087 	if (!sc->sc_jacks)
1088 		return USBD_NOMEM;
1089 	sc->sc_out_jacks =
1090 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1091 	sc->sc_in_jacks =
1092 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1093 
1094 	jack = &sc->sc_out_jacks[0];
1095 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
1096 		jack->opened = 0;
1097 		jack->bound = 0;
1098 		jack->arg = NULL;
1099 		jack->u.out.intr = NULL;
1100 		jack->midiman_ppkt = NULL;
1101 		if (sc->cblnums_global)
1102 			jack->cable_number = i;
1103 		jack++;
1104 	}
1105 	jack = &sc->sc_in_jacks[0];
1106 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
1107 		jack->opened = 0;
1108 		jack->bound = 0;
1109 		jack->arg = NULL;
1110 		jack->u.in.intr = NULL;
1111 		if (sc->cblnums_global)
1112 			jack->cable_number = i;
1113 		jack++;
1114 	}
1115 
1116 	/* assign each jacks to each endpoints */
1117 	jack = &sc->sc_out_jacks[0];
1118 	ep = &sc->sc_out_ep[0];
1119 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1120 		for (j = 0; j < ep->num_jacks; j++) {
1121 			jack->endpoint = ep;
1122 			if (cn_spec != NULL)
1123 				jack->cable_number = *cn_spec++;
1124 			else if (!sc->cblnums_global)
1125 				jack->cable_number = j;
1126 			ep->jacks[jack->cable_number] = jack;
1127 			jack++;
1128 		}
1129 		ep++;
1130 	}
1131 	jack = &sc->sc_in_jacks[0];
1132 	ep = &sc->sc_in_ep[0];
1133 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1134 		for (j = 0; j < ep->num_jacks; j++) {
1135 			jack->endpoint = ep;
1136 			if (cn_spec != NULL)
1137 				jack->cable_number = *cn_spec++;
1138 			else if (!sc->cblnums_global)
1139 				jack->cable_number = j;
1140 			ep->jacks[jack->cable_number] = jack;
1141 			jack++;
1142 		}
1143 		ep++;
1144 	}
1145 
1146 	return USBD_NORMAL_COMPLETION;
1147 }
1148 
1149 static void
1150 free_all_jacks(struct umidi_softc *sc)
1151 {
1152 	struct umidi_jack *jacks;
1153 	size_t len;
1154 
1155 	mutex_enter(&sc->sc_lock);
1156 	jacks = sc->sc_jacks;
1157 	len = sizeof(*sc->sc_out_jacks) *
1158 	    (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1159 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1160 	mutex_exit(&sc->sc_lock);
1161 
1162 	if (jacks)
1163 		kmem_free(jacks, len);
1164 }
1165 
1166 static usbd_status
1167 bind_jacks_to_mididev(struct umidi_softc *sc,
1168 		      struct umidi_jack *out_jack,
1169 		      struct umidi_jack *in_jack,
1170 		      struct umidi_mididev *mididev)
1171 {
1172 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1173 		return USBD_IN_USE;
1174 	if (mididev->out_jack || mididev->in_jack)
1175 		return USBD_IN_USE;
1176 
1177 	if (out_jack)
1178 		out_jack->bound = 1;
1179 	if (in_jack)
1180 		in_jack->bound = 1;
1181 	mididev->in_jack = in_jack;
1182 	mididev->out_jack = out_jack;
1183 
1184 	mididev->closing = 0;
1185 
1186 	return USBD_NORMAL_COMPLETION;
1187 }
1188 
1189 static void
1190 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1191 {
1192 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
1193 
1194 	mididev->closing = 1;
1195 
1196 	if ((mididev->flags & FWRITE) && mididev->out_jack)
1197 		close_out_jack(mididev->out_jack);
1198 	if ((mididev->flags & FREAD) && mididev->in_jack)
1199 		close_in_jack(mididev->in_jack);
1200 
1201 	if (mididev->out_jack) {
1202 		mididev->out_jack->bound = 0;
1203 		mididev->out_jack = NULL;
1204 	}
1205 	if (mididev->in_jack) {
1206 		mididev->in_jack->bound = 0;
1207 		mididev->in_jack = NULL;
1208 	}
1209 }
1210 
1211 static void
1212 unbind_all_jacks(struct umidi_softc *sc)
1213 {
1214 	int i;
1215 
1216 	mutex_enter(&sc->sc_lock);
1217 	if (sc->sc_mididevs)
1218 		for (i = 0; i < sc->sc_num_mididevs; i++)
1219 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1220 	mutex_exit(&sc->sc_lock);
1221 }
1222 
1223 static usbd_status
1224 assign_all_jacks_automatically(struct umidi_softc *sc)
1225 {
1226 	usbd_status err;
1227 	int i;
1228 	struct umidi_jack *out, *in;
1229 	const signed char *asg_spec;
1230 
1231 	err =
1232 	    alloc_all_mididevs(sc,
1233 			       uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1234 	if (err!=USBD_NORMAL_COMPLETION)
1235 		return err;
1236 
1237 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1238 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1239 					    		  UMQ_TYPE_MD_FIXED);
1240 	else
1241 		asg_spec = NULL;
1242 
1243 	for (i = 0; i < sc->sc_num_mididevs; i++) {
1244 		if (asg_spec != NULL) {
1245 			if (*asg_spec == -1)
1246 				out = NULL;
1247 			else
1248 				out = &sc->sc_out_jacks[*asg_spec];
1249 			++ asg_spec;
1250 			if (*asg_spec == -1)
1251 				in = NULL;
1252 			else
1253 				in = &sc->sc_in_jacks[*asg_spec];
1254 			++ asg_spec;
1255 		} else {
1256 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1257 						       : NULL;
1258 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1259 						     : NULL;
1260 		}
1261 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1262 		if (err != USBD_NORMAL_COMPLETION) {
1263 			free_all_mididevs(sc);
1264 			return err;
1265 		}
1266 	}
1267 
1268 	return USBD_NORMAL_COMPLETION;
1269 }
1270 
1271 static usbd_status
1272 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1273 {
1274 	struct umidi_endpoint *ep = jack->endpoint;
1275 	struct umidi_softc *sc = ep->sc;
1276 	umidi_packet_bufp end;
1277 	int err;
1278 
1279 	KASSERT(mutex_owned(&sc->sc_lock));
1280 
1281 	if (jack->opened)
1282 		return USBD_IN_USE;
1283 
1284 	jack->arg = arg;
1285 	jack->u.out.intr = intr;
1286 	jack->midiman_ppkt = NULL;
1287 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1288 	jack->opened = 1;
1289 	ep->num_open++;
1290 	/*
1291 	 * out_solicit maintains an invariant that there will always be
1292 	 * (num_open - num_scheduled) slots free in the buffer. as we have
1293 	 * just incremented num_open, the buffer may be too full to satisfy
1294 	 * the invariant until a transfer completes, for which we must wait.
1295 	 */
1296 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1297 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1298 		     mstohz(10));
1299 		if (err) {
1300 			ep->num_open--;
1301 			jack->opened = 0;
1302 			return USBD_IOERROR;
1303 		}
1304 	}
1305 
1306 	return USBD_NORMAL_COMPLETION;
1307 }
1308 
1309 static usbd_status
1310 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1311 {
1312 	usbd_status err = USBD_NORMAL_COMPLETION;
1313 	struct umidi_endpoint *ep = jack->endpoint;
1314 
1315 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1316 
1317 	if (jack->opened)
1318 		return USBD_IN_USE;
1319 
1320 	jack->arg = arg;
1321 	jack->u.in.intr = intr;
1322 	jack->opened = 1;
1323 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1324 		/*
1325 		 * Can't hold the interrupt lock while calling into USB,
1326 		 * but we can safely drop it here.
1327 		 */
1328 		mutex_exit(&ep->sc->sc_lock);
1329 		err = start_input_transfer(ep);
1330 		if (err != USBD_NORMAL_COMPLETION &&
1331 		    err != USBD_IN_PROGRESS) {
1332 			ep->num_open--;
1333 		}
1334 		mutex_enter(&ep->sc->sc_lock);
1335 	}
1336 
1337 	return err;
1338 }
1339 
1340 static void
1341 close_out_jack(struct umidi_jack *jack)
1342 {
1343 	struct umidi_endpoint *ep;
1344 	struct umidi_softc *sc;
1345 	uint16_t mask;
1346 	int err;
1347 
1348 	if (jack->opened) {
1349 		ep = jack->endpoint;
1350 		sc = ep->sc;
1351 
1352 		KASSERT(mutex_owned(&sc->sc_lock));
1353 		mask = 1 << (jack->cable_number);
1354 		while (mask & (ep->this_schedule | ep->next_schedule)) {
1355 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1356 			     mstohz(10));
1357 			if (err)
1358 				break;
1359 		}
1360 		/*
1361 		 * We can re-enter this function from both close() and
1362 		 * detach().  Make sure only one of them does this part.
1363 		 */
1364 		if (jack->opened) {
1365 			jack->opened = 0;
1366 			jack->endpoint->num_open--;
1367 			ep->this_schedule &= ~mask;
1368 			ep->next_schedule &= ~mask;
1369 		}
1370 	}
1371 }
1372 
1373 static void
1374 close_in_jack(struct umidi_jack *jack)
1375 {
1376 	if (jack->opened) {
1377 		struct umidi_softc *sc = jack->endpoint->sc;
1378 
1379 		KASSERT(mutex_owned(&sc->sc_lock));
1380 
1381 		jack->opened = 0;
1382 		if (--jack->endpoint->num_open == 0) {
1383 			/*
1384 			 * We have to drop the (interrupt) lock so that
1385 			 * the USB thread lock can be safely taken by
1386 			 * the abort operation.  This is safe as this
1387 			 * either closing or dying will be set proerly.
1388 			 */
1389 			mutex_exit(&sc->sc_lock);
1390 			usbd_abort_pipe(jack->endpoint->pipe);
1391 			mutex_enter(&sc->sc_lock);
1392 		}
1393 	}
1394 }
1395 
1396 static usbd_status
1397 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1398 {
1399 	if (mididev->sc)
1400 		return USBD_IN_USE;
1401 
1402 	mididev->sc = sc;
1403 
1404 	describe_mididev(mididev);
1405 
1406 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1407 
1408 	return USBD_NORMAL_COMPLETION;
1409 }
1410 
1411 static usbd_status
1412 detach_mididev(struct umidi_mididev *mididev, int flags)
1413 {
1414 	struct umidi_softc *sc = mididev->sc;
1415 
1416 	if (!sc)
1417 		return USBD_NO_ADDR;
1418 
1419 	mutex_enter(&sc->sc_lock);
1420 	if (mididev->opened) {
1421 		umidi_close(mididev);
1422 	}
1423 	unbind_jacks_from_mididev(mididev);
1424 	mutex_exit(&sc->sc_lock);
1425 
1426 	if (mididev->mdev != NULL)
1427 		config_detach(mididev->mdev, flags);
1428 
1429 	if (NULL != mididev->label) {
1430 		kmem_free(mididev->label, mididev->label_len);
1431 		mididev->label = NULL;
1432 	}
1433 
1434 	mididev->sc = NULL;
1435 
1436 	return USBD_NORMAL_COMPLETION;
1437 }
1438 
1439 static void
1440 deactivate_mididev(struct umidi_mididev *mididev)
1441 {
1442 	if (mididev->out_jack)
1443 		mididev->out_jack->bound = 0;
1444 	if (mididev->in_jack)
1445 		mididev->in_jack->bound = 0;
1446 }
1447 
1448 static usbd_status
1449 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1450 {
1451 	sc->sc_num_mididevs = nmidi;
1452 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1453 	return USBD_NORMAL_COMPLETION;
1454 }
1455 
1456 static void
1457 free_all_mididevs(struct umidi_softc *sc)
1458 {
1459 	struct umidi_mididev *mididevs;
1460 	size_t len;
1461 
1462 	mutex_enter(&sc->sc_lock);
1463 	mididevs = sc->sc_mididevs;
1464 	if (mididevs)
1465 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1466 	sc->sc_mididevs = NULL;
1467 	sc->sc_num_mididevs = 0;
1468 	mutex_exit(&sc->sc_lock);
1469 
1470 	if (mididevs)
1471 		kmem_free(mididevs, len);
1472 }
1473 
1474 static usbd_status
1475 attach_all_mididevs(struct umidi_softc *sc)
1476 {
1477 	usbd_status err;
1478 	int i;
1479 
1480 	if (sc->sc_mididevs)
1481 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1482 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
1483 			if (err != USBD_NORMAL_COMPLETION)
1484 				return err;
1485 		}
1486 
1487 	return USBD_NORMAL_COMPLETION;
1488 }
1489 
1490 static usbd_status
1491 detach_all_mididevs(struct umidi_softc *sc, int flags)
1492 {
1493 	usbd_status err;
1494 	int i;
1495 
1496 	if (sc->sc_mididevs)
1497 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1498 			err = detach_mididev(&sc->sc_mididevs[i], flags);
1499 			if (err != USBD_NORMAL_COMPLETION)
1500 				return err;
1501 		}
1502 
1503 	return USBD_NORMAL_COMPLETION;
1504 }
1505 
1506 static void
1507 deactivate_all_mididevs(struct umidi_softc *sc)
1508 {
1509 	int i;
1510 
1511 	if (sc->sc_mididevs) {
1512 		for (i = 0; i < sc->sc_num_mididevs; i++)
1513 			deactivate_mididev(&sc->sc_mididevs[i]);
1514 	}
1515 }
1516 
1517 /*
1518  * TODO: the 0-based cable numbers will often not match the labeling of the
1519  * equipment. Ideally:
1520  *  For class-compliant devices: get the iJack string from the jack descriptor.
1521  *  Otherwise:
1522  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1523  *    number for display)
1524  *  - support an array quirk explictly giving a char * for each jack.
1525  * For now, you get 0-based cable numbers. If there are multiple endpoints and
1526  * the CNs are not globally unique, each is shown with its associated endpoint
1527  * address in hex also. That should not be necessary when using iJack values
1528  * or a quirk array.
1529  */
1530 void
1531 describe_mididev(struct umidi_mididev *md)
1532 {
1533 	char in_label[16];
1534 	char out_label[16];
1535 	const char *unit_label;
1536 	char *final_label;
1537 	struct umidi_softc *sc;
1538 	int show_ep_in;
1539 	int show_ep_out;
1540 	size_t len;
1541 
1542 	sc = md->sc;
1543 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1544 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1545 
1546 	if (NULL == md->in_jack)
1547 		in_label[0] = '\0';
1548 	else if (show_ep_in)
1549 		snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1550 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
1551 	else
1552 		snprintf(in_label, sizeof(in_label), "<%d ",
1553 		    md->in_jack->cable_number);
1554 
1555 	if (NULL == md->out_jack)
1556 		out_label[0] = '\0';
1557 	else if (show_ep_out)
1558 		snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1559 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
1560 	else
1561 		snprintf(out_label, sizeof(out_label), ">%d ",
1562 		    md->out_jack->cable_number);
1563 
1564 	unit_label = device_xname(sc->sc_dev);
1565 
1566 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1567 
1568 	final_label = kmem_alloc(len, KM_SLEEP);
1569 
1570 	snprintf(final_label, len, "%s%son %s",
1571 	    in_label, out_label, unit_label);
1572 
1573 	md->label = final_label;
1574 	md->label_len = len;
1575 }
1576 
1577 #ifdef UMIDI_DEBUG
1578 static void
1579 dump_sc(struct umidi_softc *sc)
1580 {
1581 	int i;
1582 
1583 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1584 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
1585 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1586 		dump_ep(&sc->sc_out_ep[i]);
1587 	}
1588 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
1589 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1590 		dump_ep(&sc->sc_in_ep[i]);
1591 	}
1592 }
1593 
1594 static void
1595 dump_ep(struct umidi_endpoint *ep)
1596 {
1597 	int i;
1598 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1599 		if (NULL==ep->jacks[i])
1600 			continue;
1601 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1602 		dump_jack(ep->jacks[i]);
1603 	}
1604 }
1605 static void
1606 dump_jack(struct umidi_jack *jack)
1607 {
1608 	DPRINTFN(10, ("\t\t\tep=%p\n",
1609 		      jack->endpoint));
1610 }
1611 
1612 #endif /* UMIDI_DEBUG */
1613 
1614 
1615 
1616 /*
1617  * MUX MIDI PACKET
1618  */
1619 
1620 static const int packet_length[16] = {
1621 	/*0*/	-1,
1622 	/*1*/	-1,
1623 	/*2*/	2,
1624 	/*3*/	3,
1625 	/*4*/	3,
1626 	/*5*/	1,
1627 	/*6*/	2,
1628 	/*7*/	3,
1629 	/*8*/	3,
1630 	/*9*/	3,
1631 	/*A*/	3,
1632 	/*B*/	3,
1633 	/*C*/	2,
1634 	/*D*/	2,
1635 	/*E*/	3,
1636 	/*F*/	1,
1637 };
1638 
1639 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
1640 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
1641 #define MIX_CN_CIN(cn, cin) \
1642 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1643 			  ((unsigned char)(cin)&0x0F)))
1644 
1645 static usbd_status
1646 start_input_transfer(struct umidi_endpoint *ep)
1647 {
1648 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1649 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1650 	return usbd_transfer(ep->xfer);
1651 }
1652 
1653 static usbd_status
1654 start_output_transfer(struct umidi_endpoint *ep)
1655 {
1656 	usbd_status rv;
1657 	uint32_t length;
1658 	int i;
1659 
1660 	length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1661 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1662 	    ep->buffer, ep->next_slot, length));
1663 
1664 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1665 	    USBD_NO_TIMEOUT, out_intr);
1666 	rv = usbd_transfer(ep->xfer);
1667 
1668 	/*
1669 	 * Once the transfer is scheduled, no more adding to partial
1670 	 * packets within it.
1671 	 */
1672 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1673 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1674 			if (NULL != ep->jacks[i])
1675 				ep->jacks[i]->midiman_ppkt = NULL;
1676 	}
1677 
1678 	return rv;
1679 }
1680 
1681 #ifdef UMIDI_DEBUG
1682 #define DPR_PACKET(dir, sc, p)						\
1683 if ((unsigned char)(p)[1]!=0xFE)				\
1684 	DPRINTFN(500,							\
1685 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
1686 		  device_xname(sc->sc_dev),				\
1687 		  (unsigned char)(p)[0],			\
1688 		  (unsigned char)(p)[1],			\
1689 		  (unsigned char)(p)[2],			\
1690 		  (unsigned char)(p)[3]));
1691 #else
1692 #define DPR_PACKET(dir, sc, p)
1693 #endif
1694 
1695 /*
1696  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1697  * with the cable number and length in the last byte instead of the first,
1698  * but there the resemblance ends. Where a USB MIDI packet is a semantic
1699  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1700  * with a cable nybble and a length nybble (which, unlike the CIN of a
1701  * real USB MIDI packet, has no semantics at all besides the length).
1702  * A packet received from a Midiman may contain part of a MIDI message,
1703  * more than one MIDI message, or parts of more than one MIDI message. A
1704  * three-byte MIDI message may arrive in three packets of data length 1, and
1705  * running status may be used. Happily, the midi(4) driver above us will put
1706  * it all back together, so the only cost is in USB bandwidth. The device
1707  * has an easier time with what it receives from us: we'll pack messages in
1708  * and across packets, but filling the packets whenever possible and,
1709  * as midi(4) hands us a complete message at a time, we'll never send one
1710  * in a dribble of short packets.
1711  */
1712 
1713 static int
1714 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1715 {
1716 	struct umidi_endpoint *ep = out_jack->endpoint;
1717 	struct umidi_softc *sc = ep->sc;
1718 	unsigned char *packet;
1719 	int plen;
1720 	int poff;
1721 
1722 	KASSERT(mutex_owned(&sc->sc_lock));
1723 
1724 	if (sc->sc_dying)
1725 		return EIO;
1726 
1727 	if (!out_jack->opened)
1728 		return ENODEV; /* XXX as it was, is this the right errno? */
1729 
1730 	sc->sc_refcnt++;
1731 
1732 #ifdef UMIDI_DEBUG
1733 	if (umididebug >= 100)
1734 		microtime(&umidi_tv);
1735 #endif
1736 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1737 	    "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1738 	    (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1739 
1740 	packet = *ep->next_slot++;
1741 	KASSERT(ep->buffer_size >=
1742 	    (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1743 	memset(packet, 0, UMIDI_PACKET_SIZE);
1744 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1745 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1746 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
1747 			plen = 3 - poff;
1748 			if (plen > len)
1749 				plen = len;
1750 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
1751 			src += plen;
1752 			len -= plen;
1753 			plen += poff;
1754 			out_jack->midiman_ppkt[3] =
1755 			    MIX_CN_CIN(out_jack->cable_number, plen);
1756 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1757 			if (3 == plen)
1758 				out_jack->midiman_ppkt = NULL; /* no more */
1759 		}
1760 		if (0 == len)
1761 			ep->next_slot--; /* won't be needed, nevermind */
1762 		else {
1763 			memcpy(packet, src, len);
1764 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1765 			DPR_PACKET(out, sc, packet);
1766 			if (len < 3)
1767 				out_jack->midiman_ppkt = packet;
1768 		}
1769 	} else { /* the nice simple USB class-compliant case */
1770 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1771 		memcpy(packet+1, src, len);
1772 		DPR_PACKET(out, sc, packet);
1773 	}
1774 	ep->next_schedule |= 1<<(out_jack->cable_number);
1775 	++ ep->num_scheduled;
1776 	if (!ep->armed && !ep->soliciting) {
1777 		/*
1778 		 * It would be bad to call out_solicit directly here (the
1779 		 * caller need not be reentrant) but a soft interrupt allows
1780 		 * solicit to run immediately the caller exits its critical
1781 		 * section, and if the caller has more to write we can get it
1782 		 * before starting the USB transfer, and send a longer one.
1783 		 */
1784 		ep->soliciting = 1;
1785 		kpreempt_disable();
1786 		softint_schedule(ep->solicit_cookie);
1787 		kpreempt_enable();
1788 	}
1789 
1790 	if (--sc->sc_refcnt < 0)
1791 		cv_broadcast(&sc->sc_detach_cv);
1792 
1793 	return 0;
1794 }
1795 
1796 static void
1797 in_intr(struct usbd_xfer *xfer, void *priv,
1798     usbd_status status)
1799 {
1800 	int cn, len, i;
1801 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1802 	struct umidi_softc *sc = ep->sc;
1803 	struct umidi_jack *jack;
1804 	unsigned char *packet;
1805 	umidi_packet_bufp slot;
1806 	umidi_packet_bufp end;
1807 	unsigned char *data;
1808 	uint32_t count;
1809 
1810 	if (ep->sc->sc_dying || !ep->num_open)
1811 		return;
1812 
1813 	mutex_enter(&sc->sc_lock);
1814 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1815 	if (0 == count % UMIDI_PACKET_SIZE) {
1816 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1817 			     device_xname(ep->sc->sc_dev), ep, count));
1818 	} else {
1819 		DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1820 			device_xname(ep->sc->sc_dev), ep, count));
1821 	}
1822 
1823 	slot = ep->buffer;
1824 	end = slot + count / sizeof(*slot);
1825 
1826 	for (packet = *slot; slot < end; packet = *++slot) {
1827 
1828 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1829 			cn = (0xf0&(packet[3]))>>4;
1830 			len = 0x0f&(packet[3]);
1831 			data = packet;
1832 		} else {
1833 			cn = GET_CN(packet[0]);
1834 			len = packet_length[GET_CIN(packet[0])];
1835 			data = packet + 1;
1836 		}
1837 		/* 0 <= cn <= 15 by inspection of above code */
1838 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1839 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1840 				 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1841 				 device_xname(ep->sc->sc_dev), ep, cn, len,
1842 				 (unsigned)data[0],
1843 				 (unsigned)data[1],
1844 				 (unsigned)data[2]));
1845 			mutex_exit(&sc->sc_lock);
1846 			return;
1847 		}
1848 
1849 		if (!jack->bound || !jack->opened)
1850 			continue;
1851 
1852 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1853 			     "%02X %02X %02X\n",
1854 			     device_xname(ep->sc->sc_dev), ep, cn, len,
1855 			     (unsigned)data[0],
1856 			     (unsigned)data[1],
1857 			     (unsigned)data[2]));
1858 
1859 		if (jack->u.in.intr) {
1860 			for (i = 0; i < len; i++) {
1861 				(*jack->u.in.intr)(jack->arg, data[i]);
1862 			}
1863 		}
1864 
1865 	}
1866 
1867 	(void)start_input_transfer(ep);
1868 	mutex_exit(&sc->sc_lock);
1869 }
1870 
1871 static void
1872 out_intr(struct usbd_xfer *xfer, void *priv,
1873     usbd_status status)
1874 {
1875 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1876 	struct umidi_softc *sc = ep->sc;
1877 	uint32_t count;
1878 
1879 	if (sc->sc_dying)
1880 		return;
1881 
1882 	mutex_enter(&sc->sc_lock);
1883 #ifdef UMIDI_DEBUG
1884 	if (umididebug >= 200)
1885 		microtime(&umidi_tv);
1886 #endif
1887 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1888 	if (0 == count % UMIDI_PACKET_SIZE) {
1889 		DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1890 		    "length %u\n", device_xname(ep->sc->sc_dev),
1891 		    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1892 		    count));
1893 	} else {
1894 		DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1895 			device_xname(ep->sc->sc_dev), ep, count));
1896 	}
1897 	count /= UMIDI_PACKET_SIZE;
1898 
1899 	/*
1900 	 * If while the transfer was pending we buffered any new messages,
1901 	 * move them to the start of the buffer.
1902 	 */
1903 	ep->next_slot -= count;
1904 	if (ep->buffer < ep->next_slot) {
1905 		memcpy(ep->buffer, ep->buffer + count,
1906 		       (char *)ep->next_slot - (char *)ep->buffer);
1907 	}
1908 	cv_broadcast(&sc->sc_cv);
1909 	/*
1910 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1911 	 * Running at IPL_USB so the following should happen to be safe.
1912 	 */
1913 	ep->armed = 0;
1914 	if (!ep->soliciting) {
1915 		ep->soliciting = 1;
1916 		out_solicit_locked(ep);
1917 	}
1918 	mutex_exit(&sc->sc_lock);
1919 }
1920 
1921 /*
1922  * A jack on which we have received a packet must be called back on its
1923  * out.intr handler before it will send us another; it is considered
1924  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1925  * we need no extra buffer space for it.
1926  *
1927  * In contrast, a jack that is open but not scheduled may supply us a packet
1928  * at any time, driven by the top half, and we must be able to accept it, no
1929  * excuses. So we must ensure that at any point in time there are at least
1930  * (num_open - num_scheduled) slots free.
1931  *
1932  * As long as there are more slots free than that minimum, we can loop calling
1933  * scheduled jacks back on their "interrupt" handlers, soliciting more
1934  * packets, starting the USB transfer only when the buffer space is down to
1935  * the minimum or no jack has any more to send.
1936  */
1937 
1938 static void
1939 out_solicit_locked(void *arg)
1940 {
1941 	struct umidi_endpoint *ep = arg;
1942 	umidi_packet_bufp end;
1943 	uint16_t which;
1944 	struct umidi_jack *jack;
1945 
1946 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1947 
1948 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1949 
1950 	for ( ;; ) {
1951 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1952 			break; /* at IPL_USB */
1953 		if (ep->this_schedule == 0) {
1954 			if (ep->next_schedule == 0)
1955 				break; /* at IPL_USB */
1956 			ep->this_schedule = ep->next_schedule;
1957 			ep->next_schedule = 0;
1958 		}
1959 		/*
1960 		 * At least one jack is scheduled. Find and mask off the least
1961 		 * set bit in this_schedule and decrement num_scheduled.
1962 		 * Convert mask to bit index to find the corresponding jack,
1963 		 * and call its intr handler. If it has a message, it will call
1964 		 * back one of the output methods, which will set its bit in
1965 		 * next_schedule (not copied into this_schedule until the
1966 		 * latter is empty). In this way we round-robin the jacks that
1967 		 * have messages to send, until the buffer is as full as we
1968 		 * dare, and then start a transfer.
1969 		 */
1970 		which = ep->this_schedule;
1971 		which &= (~which)+1; /* now mask of least set bit */
1972 		ep->this_schedule &= ~which;
1973 		--ep->num_scheduled;
1974 
1975 		--which; /* now 1s below mask - count 1s to get index */
1976 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1977 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
1978 		which = (((which >> 4) + which) & 0x0f0f);
1979 		which +=  (which >> 8);
1980 		which &= 0x1f; /* the bit index a/k/a jack number */
1981 
1982 		jack = ep->jacks[which];
1983 		if (jack->u.out.intr)
1984 			(*jack->u.out.intr)(jack->arg);
1985 	}
1986 	/* intr lock held at loop exit */
1987 	if (!ep->armed && ep->next_slot > ep->buffer) {
1988 		/*
1989 		 * Can't hold the interrupt lock while calling into USB,
1990 		 * but we can safely drop it here.
1991 		 */
1992 		mutex_exit(&ep->sc->sc_lock);
1993 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1994 		mutex_enter(&ep->sc->sc_lock);
1995 	}
1996 	ep->soliciting = 0;
1997 }
1998 
1999 /* Entry point for the softintr.  */
2000 static void
2001 out_solicit(void *arg)
2002 {
2003 	struct umidi_endpoint *ep = arg;
2004 	struct umidi_softc *sc = ep->sc;
2005 
2006 	mutex_enter(&sc->sc_lock);
2007 	out_solicit_locked(arg);
2008 	mutex_exit(&sc->sc_lock);
2009 }
2010