xref: /netbsd-src/sys/dev/usb/umidi.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: umidi.c,v 1.71 2016/07/07 06:55:42 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI (tshiozak@NetBSD.org), (full-size transfers, extended
9  * hw_if) Chapman Flack (chap@NetBSD.org), and Matthew R. Green
10  * (mrg@eterna.com.au).
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.71 2016/07/07 06:55:42 msaitoh Exp $");
36 
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/device.h>
43 #include <sys/ioctl.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/select.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/poll.h>
50 #include <sys/intr.h>
51 
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 
56 #include <dev/auconv.h>
57 #include <dev/usb/usbdevs.h>
58 #include <dev/usb/umidi_quirks.h>
59 #include <dev/midi_if.h>
60 
61 /* Jack Descriptor */
62 #define UMIDI_MS_HEADER	0x01
63 #define UMIDI_IN_JACK	0x02
64 #define UMIDI_OUT_JACK	0x03
65 
66 /* Jack Type */
67 #define UMIDI_EMBEDDED	0x01
68 #define UMIDI_EXTERNAL	0x02
69 
70 /* generic, for iteration */
71 typedef struct {
72 	uByte		bLength;
73 	uByte		bDescriptorType;
74 	uByte		bDescriptorSubtype;
75 } UPACKED umidi_cs_descriptor_t;
76 
77 typedef struct {
78 	uByte		bLength;
79 	uByte		bDescriptorType;
80 	uByte		bDescriptorSubtype;
81 	uWord		bcdMSC;
82 	uWord		wTotalLength;
83 } UPACKED umidi_cs_interface_descriptor_t;
84 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
85 
86 typedef struct {
87 	uByte		bLength;
88 	uByte		bDescriptorType;
89 	uByte		bDescriptorSubtype;
90 	uByte		bNumEmbMIDIJack;
91 } UPACKED umidi_cs_endpoint_descriptor_t;
92 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
93 
94 typedef struct {
95 	uByte		bLength;
96 	uByte		bDescriptorType;
97 	uByte		bDescriptorSubtype;
98 	uByte		bJackType;
99 	uByte		bJackID;
100 } UPACKED umidi_jack_descriptor_t;
101 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
102 
103 
104 #define TO_D(p) ((usb_descriptor_t *)(p))
105 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
106 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
107 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
108 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
109 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
110 
111 
112 #define UMIDI_PACKET_SIZE 4
113 
114 /*
115  * hierarchie
116  *
117  * <-- parent	       child -->
118  *
119  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
120  *	   ^	 |    ^	    |
121  *	   +-----+    +-----+
122  */
123 
124 /* midi device */
125 struct umidi_mididev {
126 	struct umidi_softc	*sc;
127 	device_t		mdev;
128 	/* */
129 	struct umidi_jack	*in_jack;
130 	struct umidi_jack	*out_jack;
131 	char			*label;
132 	size_t			label_len;
133 	/* */
134 	int			opened;
135 	int			closing;
136 	int			flags;
137 };
138 
139 /* Jack Information */
140 struct umidi_jack {
141 	struct umidi_endpoint	*endpoint;
142 	/* */
143 	int			cable_number;
144 	void			*arg;
145 	int			bound;
146 	int			opened;
147 	unsigned char		*midiman_ppkt;
148 	union {
149 		struct {
150 			void			(*intr)(void *);
151 		} out;
152 		struct {
153 			void			(*intr)(void *, int);
154 		} in;
155 	} u;
156 };
157 
158 #define UMIDI_MAX_EPJACKS	16
159 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
160 /* endpoint data */
161 struct umidi_endpoint {
162 	struct umidi_softc	*sc;
163 	/* */
164 	int			addr;
165 	struct usbd_pipe	*pipe;
166 	struct usbd_xfer	*xfer;
167 	umidi_packet_bufp	buffer;
168 	umidi_packet_bufp	next_slot;
169 	uint32_t               buffer_size;
170 	int			num_scheduled;
171 	int			num_open;
172 	int			num_jacks;
173 	int			soliciting;
174 	void			*solicit_cookie;
175 	int			armed;
176 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
177 	uint16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
178 	uint16_t		next_schedule;
179 };
180 
181 /* software context */
182 struct umidi_softc {
183 	device_t		sc_dev;
184 	struct usbd_device	*sc_udev;
185 	struct usbd_interface	*sc_iface;
186 	const struct umidi_quirk	*sc_quirk;
187 
188 	int			sc_dying;
189 
190 	int			sc_out_num_jacks;
191 	struct umidi_jack	*sc_out_jacks;
192 	int			sc_in_num_jacks;
193 	struct umidi_jack	*sc_in_jacks;
194 	struct umidi_jack	*sc_jacks;
195 
196 	int			sc_num_mididevs;
197 	struct umidi_mididev	*sc_mididevs;
198 
199 	int			sc_out_num_endpoints;
200 	struct umidi_endpoint	*sc_out_ep;
201 	int			sc_in_num_endpoints;
202 	struct umidi_endpoint	*sc_in_ep;
203 	struct umidi_endpoint	*sc_endpoints;
204 	size_t			sc_endpoints_len;
205 	int			cblnums_global;
206 
207 	kmutex_t		sc_lock;
208 	kcondvar_t		sc_cv;
209 	kcondvar_t		sc_detach_cv;
210 
211 	int			sc_refcnt;
212 };
213 
214 #ifdef UMIDI_DEBUG
215 #define DPRINTF(x)	if (umididebug) printf x
216 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
217 #include <sys/time.h>
218 static struct timeval umidi_tv;
219 int	umididebug = 0;
220 #else
221 #define DPRINTF(x)
222 #define DPRINTFN(n,x)
223 #endif
224 
225 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
226 				 (sc->sc_out_num_endpoints + \
227 				  sc->sc_in_num_endpoints))
228 
229 
230 static int umidi_open(void *, int,
231 		      void (*)(void *, int), void (*)(void *), void *);
232 static void umidi_close(void *);
233 static int umidi_channelmsg(void *, int, int, u_char *, int);
234 static int umidi_commonmsg(void *, int, u_char *, int);
235 static int umidi_sysex(void *, u_char *, int);
236 static int umidi_rtmsg(void *, int);
237 static void umidi_getinfo(void *, struct midi_info *);
238 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
239 
240 static usbd_status alloc_pipe(struct umidi_endpoint *);
241 static void free_pipe(struct umidi_endpoint *);
242 
243 static usbd_status alloc_all_endpoints(struct umidi_softc *);
244 static void free_all_endpoints(struct umidi_softc *);
245 
246 static usbd_status alloc_all_jacks(struct umidi_softc *);
247 static void free_all_jacks(struct umidi_softc *);
248 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
249 					 struct umidi_jack *,
250 					 struct umidi_jack *,
251 					 struct umidi_mididev *);
252 static void unbind_jacks_from_mididev(struct umidi_mididev *);
253 static void unbind_all_jacks(struct umidi_softc *);
254 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
255 static usbd_status open_out_jack(struct umidi_jack *, void *,
256 				 void (*)(void *));
257 static usbd_status open_in_jack(struct umidi_jack *, void *,
258 				void (*)(void *, int));
259 static void close_out_jack(struct umidi_jack *);
260 static void close_in_jack(struct umidi_jack *);
261 
262 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
263 static usbd_status detach_mididev(struct umidi_mididev *, int);
264 static void deactivate_mididev(struct umidi_mididev *);
265 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
266 static void free_all_mididevs(struct umidi_softc *);
267 static usbd_status attach_all_mididevs(struct umidi_softc *);
268 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
269 static void deactivate_all_mididevs(struct umidi_softc *);
270 static void describe_mididev(struct umidi_mididev *);
271 
272 #ifdef UMIDI_DEBUG
273 static void dump_sc(struct umidi_softc *);
274 static void dump_ep(struct umidi_endpoint *);
275 static void dump_jack(struct umidi_jack *);
276 #endif
277 
278 static usbd_status start_input_transfer(struct umidi_endpoint *);
279 static usbd_status start_output_transfer(struct umidi_endpoint *);
280 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
281 static void in_intr(struct usbd_xfer *, void *, usbd_status);
282 static void out_intr(struct usbd_xfer *, void *, usbd_status);
283 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
284 static void out_solicit_locked(void *); /* pre-locked version */
285 
286 
287 const struct midi_hw_if umidi_hw_if = {
288 	.open = umidi_open,
289 	.close = umidi_close,
290 	.output = umidi_rtmsg,
291 	.getinfo = umidi_getinfo,
292 	.get_locks = umidi_get_locks,
293 };
294 
295 struct midi_hw_if_ext umidi_hw_if_ext = {
296 	.channel = umidi_channelmsg,
297 	.common  = umidi_commonmsg,
298 	.sysex   = umidi_sysex,
299 };
300 
301 struct midi_hw_if_ext umidi_hw_if_mm = {
302 	.channel = umidi_channelmsg,
303 	.common  = umidi_commonmsg,
304 	.sysex   = umidi_sysex,
305 	.compress = 1,
306 };
307 
308 int umidi_match(device_t, cfdata_t, void *);
309 void umidi_attach(device_t, device_t, void *);
310 void umidi_childdet(device_t, device_t);
311 int umidi_detach(device_t, int);
312 int umidi_activate(device_t, enum devact);
313 extern struct cfdriver umidi_cd;
314 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
315     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
316 
317 int
318 umidi_match(device_t parent, cfdata_t match, void *aux)
319 {
320 	struct usbif_attach_arg *uiaa = aux;
321 
322 	DPRINTFN(1,("umidi_match\n"));
323 
324 	if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
325 	    uiaa->uiaa_ifaceno))
326 		return UMATCH_IFACECLASS_IFACESUBCLASS;
327 
328 	if (uiaa->uiaa_class == UICLASS_AUDIO &&
329 	    uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
330 		return UMATCH_IFACECLASS_IFACESUBCLASS;
331 
332 	return UMATCH_NONE;
333 }
334 
335 void
336 umidi_attach(device_t parent, device_t self, void *aux)
337 {
338 	usbd_status     err;
339 	struct umidi_softc *sc = device_private(self);
340 	struct usbif_attach_arg *uiaa = aux;
341 	char *devinfop;
342 
343 	DPRINTFN(1,("umidi_attach\n"));
344 
345 	sc->sc_dev = self;
346 
347 	aprint_naive("\n");
348 	aprint_normal("\n");
349 
350 	devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
351 	aprint_normal_dev(self, "%s\n", devinfop);
352 	usbd_devinfo_free(devinfop);
353 
354 	sc->sc_iface = uiaa->uiaa_iface;
355 	sc->sc_udev = uiaa->uiaa_device;
356 
357 	sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
358 	    uiaa->uiaa_product, uiaa->uiaa_ifaceno);
359 
360 	aprint_normal_dev(self, "");
361 	umidi_print_quirk(sc->sc_quirk);
362 
363 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
364 	cv_init(&sc->sc_cv, "umidopcl");
365 	cv_init(&sc->sc_detach_cv, "umidetcv");
366 	sc->sc_refcnt = 0;
367 
368 	err = alloc_all_endpoints(sc);
369 	if (err != USBD_NORMAL_COMPLETION) {
370 		aprint_error_dev(self,
371 		    "alloc_all_endpoints failed. (err=%d)\n", err);
372 		goto out;
373 	}
374 	err = alloc_all_jacks(sc);
375 	if (err != USBD_NORMAL_COMPLETION) {
376 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
377 		    err);
378 		goto out_free_endpoints;
379 	}
380 	aprint_normal_dev(self, "out=%d, in=%d\n",
381 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
382 
383 	err = assign_all_jacks_automatically(sc);
384 	if (err != USBD_NORMAL_COMPLETION) {
385 		aprint_error_dev(self,
386 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
387 		goto out_free_jacks;
388 	}
389 	err = attach_all_mididevs(sc);
390 	if (err != USBD_NORMAL_COMPLETION) {
391 		aprint_error_dev(self,
392 		    "attach_all_mididevs failed. (err=%d)\n", err);
393 		goto out_free_jacks;
394 	}
395 
396 #ifdef UMIDI_DEBUG
397 	dump_sc(sc);
398 #endif
399 
400 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
401 
402 	return;
403 
404 out_free_jacks:
405 	unbind_all_jacks(sc);
406 	free_all_jacks(sc);
407 
408 out_free_endpoints:
409 	free_all_endpoints(sc);
410 
411 out:
412 	aprint_error_dev(self, "disabled.\n");
413 	sc->sc_dying = 1;
414 	KERNEL_UNLOCK_ONE(curlwp);
415 	return;
416 }
417 
418 void
419 umidi_childdet(device_t self, device_t child)
420 {
421 	int i;
422 	struct umidi_softc *sc = device_private(self);
423 
424 	KASSERT(sc->sc_mididevs != NULL);
425 
426 	for (i = 0; i < sc->sc_num_mididevs; i++) {
427 		if (sc->sc_mididevs[i].mdev == child)
428 			break;
429 	}
430 	KASSERT(i < sc->sc_num_mididevs);
431 	sc->sc_mididevs[i].mdev = NULL;
432 }
433 
434 int
435 umidi_activate(device_t self, enum devact act)
436 {
437 	struct umidi_softc *sc = device_private(self);
438 
439 	switch (act) {
440 	case DVACT_DEACTIVATE:
441 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
442 		sc->sc_dying = 1;
443 		deactivate_all_mididevs(sc);
444 		return 0;
445 	default:
446 		DPRINTFN(1,("umidi_activate (%d)\n", act));
447 		return EOPNOTSUPP;
448 	}
449 }
450 
451 int
452 umidi_detach(device_t self, int flags)
453 {
454 	struct umidi_softc *sc = device_private(self);
455 
456 	DPRINTFN(1,("umidi_detach\n"));
457 
458 	mutex_enter(&sc->sc_lock);
459 	sc->sc_dying = 1;
460 	if (--sc->sc_refcnt >= 0)
461 		usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
462 	mutex_exit(&sc->sc_lock);
463 
464 	detach_all_mididevs(sc, flags);
465 	free_all_mididevs(sc);
466 	free_all_jacks(sc);
467 	free_all_endpoints(sc);
468 
469 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
470 
471 	mutex_destroy(&sc->sc_lock);
472 	cv_destroy(&sc->sc_detach_cv);
473 	cv_destroy(&sc->sc_cv);
474 
475 	return 0;
476 }
477 
478 
479 /*
480  * midi_if stuffs
481  */
482 int
483 umidi_open(void *addr,
484 	   int flags,
485 	   void (*iintr)(void *, int),
486 	   void (*ointr)(void *),
487 	   void *arg)
488 {
489 	struct umidi_mididev *mididev = addr;
490 	struct umidi_softc *sc = mididev->sc;
491 	usbd_status err;
492 
493 	KASSERT(mutex_owned(&sc->sc_lock));
494 	DPRINTF(("umidi_open: sc=%p\n", sc));
495 
496 	if (mididev->opened)
497 		return EBUSY;
498 	if (sc->sc_dying)
499 		return EIO;
500 
501 	mididev->opened = 1;
502 	mididev->flags = flags;
503 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
504 		err = open_out_jack(mididev->out_jack, arg, ointr);
505 		if (err != USBD_NORMAL_COMPLETION)
506 			goto bad;
507 	}
508 	if ((mididev->flags & FREAD) && mididev->in_jack) {
509 		err = open_in_jack(mididev->in_jack, arg, iintr);
510 		KASSERT(mididev->opened);
511 		if (err != USBD_NORMAL_COMPLETION &&
512 		    err != USBD_IN_PROGRESS) {
513 			if (mididev->out_jack)
514 				close_out_jack(mididev->out_jack);
515 			goto bad;
516 		}
517 	}
518 
519 	return 0;
520 bad:
521 	mididev->opened = 0;
522 	DPRINTF(("umidi_open: usbd_status %d\n", err));
523 	KASSERT(mutex_owned(&sc->sc_lock));
524 	return USBD_IN_USE == err ? EBUSY : EIO;
525 }
526 
527 void
528 umidi_close(void *addr)
529 {
530 	struct umidi_mididev *mididev = addr;
531 	struct umidi_softc *sc = mididev->sc;
532 
533 	KASSERT(mutex_owned(&sc->sc_lock));
534 
535 	if (mididev->closing)
536 		return;
537 
538 	mididev->closing = 1;
539 
540 	sc->sc_refcnt++;
541 
542 	if ((mididev->flags & FWRITE) && mididev->out_jack)
543 		close_out_jack(mididev->out_jack);
544 	if ((mididev->flags & FREAD) && mididev->in_jack)
545 		close_in_jack(mididev->in_jack);
546 
547 	if (--sc->sc_refcnt < 0)
548 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
549 
550 	mididev->opened = 0;
551 	mididev->closing = 0;
552 }
553 
554 int
555 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
556     int len)
557 {
558 	struct umidi_mididev *mididev = addr;
559 
560 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
561 
562 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
563 		return EIO;
564 
565 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
566 }
567 
568 int
569 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
570 {
571 	struct umidi_mididev *mididev = addr;
572 	int cin;
573 
574 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
575 
576 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
577 		return EIO;
578 
579 	switch ( len ) {
580 	case 1: cin = 5; break;
581 	case 2: cin = 2; break;
582 	case 3: cin = 3; break;
583 	default: return EIO; /* or gcc warns of cin uninitialized */
584 	}
585 
586 	return out_jack_output(mididev->out_jack, msg, len, cin);
587 }
588 
589 int
590 umidi_sysex(void *addr, u_char *msg, int len)
591 {
592 	struct umidi_mididev *mididev = addr;
593 	int cin;
594 
595 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
596 
597 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
598 		return EIO;
599 
600 	switch ( len ) {
601 	case 1: cin = 5; break;
602 	case 2: cin = 6; break;
603 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
604 	default: return EIO; /* or gcc warns of cin uninitialized */
605 	}
606 
607 	return out_jack_output(mididev->out_jack, msg, len, cin);
608 }
609 
610 int
611 umidi_rtmsg(void *addr, int d)
612 {
613 	struct umidi_mididev *mididev = addr;
614 	u_char msg = d;
615 
616 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
617 
618 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
619 		return EIO;
620 
621 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
622 }
623 
624 void
625 umidi_getinfo(void *addr, struct midi_info *mi)
626 {
627 	struct umidi_mididev *mididev = addr;
628 	struct umidi_softc *sc = mididev->sc;
629 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
630 
631 	KASSERT(mutex_owned(&sc->sc_lock));
632 
633 	mi->name = mididev->label;
634 	mi->props = MIDI_PROP_OUT_INTR;
635 	if (mididev->in_jack)
636 		mi->props |= MIDI_PROP_CAN_INPUT;
637 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
638 }
639 
640 static void
641 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
642 {
643 	struct umidi_mididev *mididev = addr;
644 	struct umidi_softc *sc = mididev->sc;
645 
646 	*intr = NULL;
647 	*thread = &sc->sc_lock;
648 }
649 
650 /*
651  * each endpoint stuffs
652  */
653 
654 /* alloc/free pipe */
655 static usbd_status
656 alloc_pipe(struct umidi_endpoint *ep)
657 {
658 	struct umidi_softc *sc = ep->sc;
659 	usbd_status err;
660 	usb_endpoint_descriptor_t *epd;
661 
662 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
663 	/*
664 	 * For output, an improvement would be to have a buffer bigger than
665 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
666 	 * allow out_solicit to fill the buffer to the full packet size in
667 	 * all cases. But to use usbd_create_xfer to get a slightly larger
668 	 * buffer would not be a good way to do that, because if the addition
669 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
670 	 * larger block may be wastefully allocated. Some flavor of double
671 	 * buffering could serve the same purpose, but would increase the
672 	 * code complexity, so for now I will live with the current slight
673 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
674 	 * packet slots.
675 	 */
676 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
677 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
678 
679 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
680 		device_xname(sc->sc_dev), ep, ep->buffer_size));
681 	ep->num_scheduled = 0;
682 	ep->this_schedule = 0;
683 	ep->next_schedule = 0;
684 	ep->soliciting = 0;
685 	ep->armed = 0;
686 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
687 	if (err)
688 		goto quit;
689 	int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
690 	    USBD_SHORT_XFER_OK, 0, &ep->xfer);
691 	if (error) {
692 		usbd_close_pipe(ep->pipe);
693 		return USBD_NOMEM;
694 	}
695 	ep->buffer = usbd_get_buffer(ep->xfer);
696 	ep->next_slot = ep->buffer;
697 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
698 	    out_solicit, ep);
699 quit:
700 	return err;
701 }
702 
703 static void
704 free_pipe(struct umidi_endpoint *ep)
705 {
706 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
707 	usbd_abort_pipe(ep->pipe);
708 	usbd_destroy_xfer(ep->xfer);
709 	usbd_close_pipe(ep->pipe);
710 	softint_disestablish(ep->solicit_cookie);
711 }
712 
713 
714 /* alloc/free the array of endpoint structures */
715 
716 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
717 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
718 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
719 
720 static usbd_status
721 alloc_all_endpoints(struct umidi_softc *sc)
722 {
723 	usbd_status err;
724 	struct umidi_endpoint *ep;
725 	int i;
726 
727 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
728 		err = alloc_all_endpoints_fixed_ep(sc);
729 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
730 		err = alloc_all_endpoints_yamaha(sc);
731 	} else {
732 		err = alloc_all_endpoints_genuine(sc);
733 	}
734 	if (err != USBD_NORMAL_COMPLETION)
735 		return err;
736 
737 	ep = sc->sc_endpoints;
738 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
739 		err = alloc_pipe(ep++);
740 		if (err != USBD_NORMAL_COMPLETION) {
741 			for (; ep != sc->sc_endpoints; ep--)
742 				free_pipe(ep-1);
743 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
744 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
745 			break;
746 		}
747 	}
748 	return err;
749 }
750 
751 static void
752 free_all_endpoints(struct umidi_softc *sc)
753 {
754 	int i;
755 
756 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
757 		free_pipe(&sc->sc_endpoints[i]);
758 	if (sc->sc_endpoints != NULL)
759 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
760 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
761 }
762 
763 static usbd_status
764 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
765 {
766 	usbd_status err;
767 	const struct umq_fixed_ep_desc *fp;
768 	struct umidi_endpoint *ep;
769 	usb_endpoint_descriptor_t *epd;
770 	int i;
771 
772 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
773 					    UMQ_TYPE_FIXED_EP);
774 	sc->sc_out_num_jacks = 0;
775 	sc->sc_in_num_jacks = 0;
776 	sc->sc_out_num_endpoints = fp->num_out_ep;
777 	sc->sc_in_num_endpoints = fp->num_in_ep;
778 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
779 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
780 	if (!sc->sc_endpoints)
781 		return USBD_NOMEM;
782 
783 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
784 	sc->sc_in_ep =
785 	    sc->sc_in_num_endpoints ?
786 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
787 
788 	ep = &sc->sc_out_ep[0];
789 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
790 		epd = usbd_interface2endpoint_descriptor(
791 			sc->sc_iface,
792 			fp->out_ep[i].ep);
793 		if (!epd) {
794 			aprint_error_dev(sc->sc_dev,
795 			    "cannot get endpoint descriptor(out:%d)\n",
796 			     fp->out_ep[i].ep);
797 			err = USBD_INVAL;
798 			goto error;
799 		}
800 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
801 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
802 			aprint_error_dev(sc->sc_dev,
803 			    "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
804 			err = USBD_INVAL;
805 			goto error;
806 		}
807 		ep->sc = sc;
808 		ep->addr = epd->bEndpointAddress;
809 		ep->num_jacks = fp->out_ep[i].num_jacks;
810 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
811 		ep->num_open = 0;
812 		ep++;
813 	}
814 	ep = &sc->sc_in_ep[0];
815 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
816 		epd = usbd_interface2endpoint_descriptor(
817 			sc->sc_iface,
818 			fp->in_ep[i].ep);
819 		if (!epd) {
820 			aprint_error_dev(sc->sc_dev,
821 			    "cannot get endpoint descriptor(in:%d)\n",
822 			     fp->in_ep[i].ep);
823 			err = USBD_INVAL;
824 			goto error;
825 		}
826 		/*
827 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
828 		 * endpoint.  The existing input logic in this driver seems
829 		 * to work successfully if we just stop treating an interrupt
830 		 * endpoint as illegal (or the in_progress status we get on
831 		 * the initial transfer).  It does not seem necessary to
832 		 * actually use the interrupt flavor of alloc_pipe or make
833 		 * other serious rearrangements of logic.  I like that.
834 		 */
835 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
836 		case UE_BULK:
837 		case UE_INTERRUPT:
838 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
839 				break;
840 			/*FALLTHROUGH*/
841 		default:
842 			aprint_error_dev(sc->sc_dev,
843 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
844 			err = USBD_INVAL;
845 			goto error;
846 		}
847 
848 		ep->sc = sc;
849 		ep->addr = epd->bEndpointAddress;
850 		ep->num_jacks = fp->in_ep[i].num_jacks;
851 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
852 		ep->num_open = 0;
853 		ep++;
854 	}
855 
856 	return USBD_NORMAL_COMPLETION;
857 error:
858 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
859 	sc->sc_endpoints = NULL;
860 	return err;
861 }
862 
863 static usbd_status
864 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
865 {
866 	/* This driver currently supports max 1in/1out bulk endpoints */
867 	usb_descriptor_t *desc;
868 	umidi_cs_descriptor_t *udesc;
869 	usb_endpoint_descriptor_t *epd;
870 	int out_addr, in_addr, i;
871 	int dir;
872 	size_t remain, descsize;
873 
874 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
875 	out_addr = in_addr = 0;
876 
877 	/* detect endpoints */
878 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
879 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
880 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
881 		KASSERT(epd != NULL);
882 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
883 			dir = UE_GET_DIR(epd->bEndpointAddress);
884 			if (dir==UE_DIR_OUT && !out_addr)
885 				out_addr = epd->bEndpointAddress;
886 			else if (dir==UE_DIR_IN && !in_addr)
887 				in_addr = epd->bEndpointAddress;
888 		}
889 	}
890 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
891 
892 	/* count jacks */
893 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
894 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
895 		return USBD_INVAL;
896 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
897 		(size_t)udesc->bLength;
898 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
899 
900 	while (remain >= sizeof(usb_descriptor_t)) {
901 		descsize = udesc->bLength;
902 		if (descsize>remain || descsize==0)
903 			break;
904 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
905 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
906 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
907 				sc->sc_out_num_jacks++;
908 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
909 				sc->sc_in_num_jacks++;
910 		}
911 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
912 		remain -= descsize;
913 	}
914 
915 	/* validate some parameters */
916 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
917 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
918 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
919 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
920 	if (sc->sc_out_num_jacks && out_addr) {
921 		sc->sc_out_num_endpoints = 1;
922 	} else {
923 		sc->sc_out_num_endpoints = 0;
924 		sc->sc_out_num_jacks = 0;
925 	}
926 	if (sc->sc_in_num_jacks && in_addr) {
927 		sc->sc_in_num_endpoints = 1;
928 	} else {
929 		sc->sc_in_num_endpoints = 0;
930 		sc->sc_in_num_jacks = 0;
931 	}
932 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
933 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
934 	if (!sc->sc_endpoints)
935 		return USBD_NOMEM;
936 	if (sc->sc_out_num_endpoints) {
937 		sc->sc_out_ep = sc->sc_endpoints;
938 		sc->sc_out_ep->sc = sc;
939 		sc->sc_out_ep->addr = out_addr;
940 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
941 		sc->sc_out_ep->num_open = 0;
942 	} else
943 		sc->sc_out_ep = NULL;
944 
945 	if (sc->sc_in_num_endpoints) {
946 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
947 		sc->sc_in_ep->sc = sc;
948 		sc->sc_in_ep->addr = in_addr;
949 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
950 		sc->sc_in_ep->num_open = 0;
951 	} else
952 		sc->sc_in_ep = NULL;
953 
954 	return USBD_NORMAL_COMPLETION;
955 }
956 
957 static usbd_status
958 alloc_all_endpoints_genuine(struct umidi_softc *sc)
959 {
960 	usb_interface_descriptor_t *interface_desc;
961 	usb_config_descriptor_t *config_desc;
962 	usb_descriptor_t *desc;
963 	int num_ep;
964 	size_t remain, descsize;
965 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
966 	int epaddr;
967 
968 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
969 	num_ep = interface_desc->bNumEndpoints;
970 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
971 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
972 	if (!p)
973 		return USBD_NOMEM;
974 
975 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
976 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
977 	epaddr = -1;
978 
979 	/* get the list of endpoints for midi stream */
980 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
981 	desc = (usb_descriptor_t *) config_desc;
982 	remain = (size_t)UGETW(config_desc->wTotalLength);
983 	while (remain>=sizeof(usb_descriptor_t)) {
984 		descsize = desc->bLength;
985 		if (descsize>remain || descsize==0)
986 			break;
987 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
988 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
989 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
990 			epaddr = TO_EPD(desc)->bEndpointAddress;
991 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
992 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
993 			   epaddr!=-1) {
994 			if (num_ep>0) {
995 				num_ep--;
996 				p->sc = sc;
997 				p->addr = epaddr;
998 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
999 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1000 					sc->sc_out_num_endpoints++;
1001 					sc->sc_out_num_jacks += p->num_jacks;
1002 				} else {
1003 					sc->sc_in_num_endpoints++;
1004 					sc->sc_in_num_jacks += p->num_jacks;
1005 				}
1006 				p++;
1007 			}
1008 		} else
1009 			epaddr = -1;
1010 		desc = NEXT_D(desc);
1011 		remain-=descsize;
1012 	}
1013 
1014 	/* sort endpoints */
1015 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1016 	p = sc->sc_endpoints;
1017 	endep = p + num_ep;
1018 	while (p<endep) {
1019 		lowest = p;
1020 		for (q=p+1; q<endep; q++) {
1021 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1022 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1023 			    ((UE_GET_DIR(lowest->addr)==
1024 			      UE_GET_DIR(q->addr)) &&
1025 			     (UE_GET_ADDR(lowest->addr)>
1026 			      UE_GET_ADDR(q->addr))))
1027 				lowest = q;
1028 		}
1029 		if (lowest != p) {
1030 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1031 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1032 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1033 		}
1034 		p->num_open = 0;
1035 		p++;
1036 	}
1037 
1038 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1039 	sc->sc_in_ep =
1040 	    sc->sc_in_num_endpoints ?
1041 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1042 
1043 	return USBD_NORMAL_COMPLETION;
1044 }
1045 
1046 
1047 /*
1048  * jack stuffs
1049  */
1050 
1051 static usbd_status
1052 alloc_all_jacks(struct umidi_softc *sc)
1053 {
1054 	int i, j;
1055 	struct umidi_endpoint *ep;
1056 	struct umidi_jack *jack;
1057 	const unsigned char *cn_spec;
1058 
1059 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1060 		sc->cblnums_global = 0;
1061 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1062 		sc->cblnums_global = 1;
1063 	else {
1064 		/*
1065 		 * I don't think this default is correct, but it preserves
1066 		 * the prior behavior of the code. That's why I defined two
1067 		 * complementary quirks. Any device for which the default
1068 		 * behavior is wrong can be made to work by giving it an
1069 		 * explicit quirk, and if a pattern ever develops (as I suspect
1070 		 * it will) that a lot of otherwise standard USB MIDI devices
1071 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
1072 		 * changed to 0, and the only devices that will break are those
1073 		 * listing neither quirk, and they'll easily be fixed by giving
1074 		 * them the CN_SEQ_GLOBAL quirk.
1075 		 */
1076 		sc->cblnums_global = 1;
1077 	}
1078 
1079 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1080 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1081 					    		 UMQ_TYPE_CN_FIXED);
1082 	else
1083 		cn_spec = NULL;
1084 
1085 	/* allocate/initialize structures */
1086 	sc->sc_jacks =
1087 	    kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
1088 		    + sc->sc_out_num_jacks), KM_SLEEP);
1089 	if (!sc->sc_jacks)
1090 		return USBD_NOMEM;
1091 	sc->sc_out_jacks =
1092 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1093 	sc->sc_in_jacks =
1094 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1095 
1096 	jack = &sc->sc_out_jacks[0];
1097 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
1098 		jack->opened = 0;
1099 		jack->bound = 0;
1100 		jack->arg = NULL;
1101 		jack->u.out.intr = NULL;
1102 		jack->midiman_ppkt = NULL;
1103 		if (sc->cblnums_global)
1104 			jack->cable_number = i;
1105 		jack++;
1106 	}
1107 	jack = &sc->sc_in_jacks[0];
1108 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
1109 		jack->opened = 0;
1110 		jack->bound = 0;
1111 		jack->arg = NULL;
1112 		jack->u.in.intr = NULL;
1113 		if (sc->cblnums_global)
1114 			jack->cable_number = i;
1115 		jack++;
1116 	}
1117 
1118 	/* assign each jacks to each endpoints */
1119 	jack = &sc->sc_out_jacks[0];
1120 	ep = &sc->sc_out_ep[0];
1121 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1122 		for (j = 0; j < ep->num_jacks; j++) {
1123 			jack->endpoint = ep;
1124 			if (cn_spec != NULL)
1125 				jack->cable_number = *cn_spec++;
1126 			else if (!sc->cblnums_global)
1127 				jack->cable_number = j;
1128 			ep->jacks[jack->cable_number] = jack;
1129 			jack++;
1130 		}
1131 		ep++;
1132 	}
1133 	jack = &sc->sc_in_jacks[0];
1134 	ep = &sc->sc_in_ep[0];
1135 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1136 		for (j = 0; j < ep->num_jacks; j++) {
1137 			jack->endpoint = ep;
1138 			if (cn_spec != NULL)
1139 				jack->cable_number = *cn_spec++;
1140 			else if (!sc->cblnums_global)
1141 				jack->cable_number = j;
1142 			ep->jacks[jack->cable_number] = jack;
1143 			jack++;
1144 		}
1145 		ep++;
1146 	}
1147 
1148 	return USBD_NORMAL_COMPLETION;
1149 }
1150 
1151 static void
1152 free_all_jacks(struct umidi_softc *sc)
1153 {
1154 	struct umidi_jack *jacks;
1155 	size_t len;
1156 
1157 	mutex_enter(&sc->sc_lock);
1158 	jacks = sc->sc_jacks;
1159 	len = sizeof(*sc->sc_out_jacks)
1160 	    * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1161 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1162 	mutex_exit(&sc->sc_lock);
1163 
1164 	if (jacks)
1165 		kmem_free(jacks, len);
1166 }
1167 
1168 static usbd_status
1169 bind_jacks_to_mididev(struct umidi_softc *sc,
1170 		      struct umidi_jack *out_jack,
1171 		      struct umidi_jack *in_jack,
1172 		      struct umidi_mididev *mididev)
1173 {
1174 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1175 		return USBD_IN_USE;
1176 	if (mididev->out_jack || mididev->in_jack)
1177 		return USBD_IN_USE;
1178 
1179 	if (out_jack)
1180 		out_jack->bound = 1;
1181 	if (in_jack)
1182 		in_jack->bound = 1;
1183 	mididev->in_jack = in_jack;
1184 	mididev->out_jack = out_jack;
1185 
1186 	mididev->closing = 0;
1187 
1188 	return USBD_NORMAL_COMPLETION;
1189 }
1190 
1191 static void
1192 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1193 {
1194 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
1195 
1196 	mididev->closing = 1;
1197 
1198 	if ((mididev->flags & FWRITE) && mididev->out_jack)
1199 		close_out_jack(mididev->out_jack);
1200 	if ((mididev->flags & FREAD) && mididev->in_jack)
1201 		close_in_jack(mididev->in_jack);
1202 
1203 	if (mididev->out_jack) {
1204 		mididev->out_jack->bound = 0;
1205 		mididev->out_jack = NULL;
1206 	}
1207 	if (mididev->in_jack) {
1208 		mididev->in_jack->bound = 0;
1209 		mididev->in_jack = NULL;
1210 	}
1211 }
1212 
1213 static void
1214 unbind_all_jacks(struct umidi_softc *sc)
1215 {
1216 	int i;
1217 
1218 	mutex_enter(&sc->sc_lock);
1219 	if (sc->sc_mididevs)
1220 		for (i = 0; i < sc->sc_num_mididevs; i++)
1221 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1222 	mutex_exit(&sc->sc_lock);
1223 }
1224 
1225 static usbd_status
1226 assign_all_jacks_automatically(struct umidi_softc *sc)
1227 {
1228 	usbd_status err;
1229 	int i;
1230 	struct umidi_jack *out, *in;
1231 	const signed char *asg_spec;
1232 
1233 	err =
1234 	    alloc_all_mididevs(sc,
1235 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1236 	if (err!=USBD_NORMAL_COMPLETION)
1237 		return err;
1238 
1239 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1240 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1241 					    		  UMQ_TYPE_MD_FIXED);
1242 	else
1243 		asg_spec = NULL;
1244 
1245 	for (i = 0; i < sc->sc_num_mididevs; i++) {
1246 		if (asg_spec != NULL) {
1247 			if (*asg_spec == -1)
1248 				out = NULL;
1249 			else
1250 				out = &sc->sc_out_jacks[*asg_spec];
1251 			++ asg_spec;
1252 			if (*asg_spec == -1)
1253 				in = NULL;
1254 			else
1255 				in = &sc->sc_in_jacks[*asg_spec];
1256 			++ asg_spec;
1257 		} else {
1258 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1259 						       : NULL;
1260 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1261 						     : NULL;
1262 		}
1263 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1264 		if (err != USBD_NORMAL_COMPLETION) {
1265 			free_all_mididevs(sc);
1266 			return err;
1267 		}
1268 	}
1269 
1270 	return USBD_NORMAL_COMPLETION;
1271 }
1272 
1273 static usbd_status
1274 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1275 {
1276 	struct umidi_endpoint *ep = jack->endpoint;
1277 	struct umidi_softc *sc = ep->sc;
1278 	umidi_packet_bufp end;
1279 	int err;
1280 
1281 	KASSERT(mutex_owned(&sc->sc_lock));
1282 
1283 	if (jack->opened)
1284 		return USBD_IN_USE;
1285 
1286 	jack->arg = arg;
1287 	jack->u.out.intr = intr;
1288 	jack->midiman_ppkt = NULL;
1289 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1290 	jack->opened = 1;
1291 	ep->num_open++;
1292 	/*
1293 	 * out_solicit maintains an invariant that there will always be
1294 	 * (num_open - num_scheduled) slots free in the buffer. as we have
1295 	 * just incremented num_open, the buffer may be too full to satisfy
1296 	 * the invariant until a transfer completes, for which we must wait.
1297 	 */
1298 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1299 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1300 		     mstohz(10));
1301 		if (err) {
1302 			ep->num_open--;
1303 			jack->opened = 0;
1304 			return USBD_IOERROR;
1305 		}
1306 	}
1307 
1308 	return USBD_NORMAL_COMPLETION;
1309 }
1310 
1311 static usbd_status
1312 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1313 {
1314 	usbd_status err = USBD_NORMAL_COMPLETION;
1315 	struct umidi_endpoint *ep = jack->endpoint;
1316 
1317 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1318 
1319 	if (jack->opened)
1320 		return USBD_IN_USE;
1321 
1322 	jack->arg = arg;
1323 	jack->u.in.intr = intr;
1324 	jack->opened = 1;
1325 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1326 		/*
1327 		 * Can't hold the interrupt lock while calling into USB,
1328 		 * but we can safely drop it here.
1329 		 */
1330 		mutex_exit(&ep->sc->sc_lock);
1331 		err = start_input_transfer(ep);
1332 		if (err != USBD_NORMAL_COMPLETION &&
1333 		    err != USBD_IN_PROGRESS) {
1334 			ep->num_open--;
1335 		}
1336 		mutex_enter(&ep->sc->sc_lock);
1337 	}
1338 
1339 	return err;
1340 }
1341 
1342 static void
1343 close_out_jack(struct umidi_jack *jack)
1344 {
1345 	struct umidi_endpoint *ep;
1346 	struct umidi_softc *sc;
1347 	uint16_t mask;
1348 	int err;
1349 
1350 	if (jack->opened) {
1351 		ep = jack->endpoint;
1352 		sc = ep->sc;
1353 
1354 		KASSERT(mutex_owned(&sc->sc_lock));
1355 		mask = 1 << (jack->cable_number);
1356 		while (mask & (ep->this_schedule | ep->next_schedule)) {
1357 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1358 			     mstohz(10));
1359 			if (err)
1360 				break;
1361 		}
1362 		/*
1363 		 * We can re-enter this function from both close() and
1364 		 * detach().  Make sure only one of them does this part.
1365 		 */
1366 		if (jack->opened) {
1367 			jack->opened = 0;
1368 			jack->endpoint->num_open--;
1369 			ep->this_schedule &= ~mask;
1370 			ep->next_schedule &= ~mask;
1371 		}
1372 	}
1373 }
1374 
1375 static void
1376 close_in_jack(struct umidi_jack *jack)
1377 {
1378 	if (jack->opened) {
1379 		struct umidi_softc *sc = jack->endpoint->sc;
1380 
1381 		KASSERT(mutex_owned(&sc->sc_lock));
1382 
1383 		jack->opened = 0;
1384 		if (--jack->endpoint->num_open == 0) {
1385 			/*
1386 			 * We have to drop the (interrupt) lock so that
1387 			 * the USB thread lock can be safely taken by
1388 			 * the abort operation.  This is safe as this
1389 			 * either closing or dying will be set proerly.
1390 			 */
1391 			mutex_exit(&sc->sc_lock);
1392 			usbd_abort_pipe(jack->endpoint->pipe);
1393 			mutex_enter(&sc->sc_lock);
1394 		}
1395 	}
1396 }
1397 
1398 static usbd_status
1399 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1400 {
1401 	if (mididev->sc)
1402 		return USBD_IN_USE;
1403 
1404 	mididev->sc = sc;
1405 
1406 	describe_mididev(mididev);
1407 
1408 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1409 
1410 	return USBD_NORMAL_COMPLETION;
1411 }
1412 
1413 static usbd_status
1414 detach_mididev(struct umidi_mididev *mididev, int flags)
1415 {
1416 	struct umidi_softc *sc = mididev->sc;
1417 
1418 	if (!sc)
1419 		return USBD_NO_ADDR;
1420 
1421 	mutex_enter(&sc->sc_lock);
1422 	if (mididev->opened) {
1423 		umidi_close(mididev);
1424 	}
1425 	unbind_jacks_from_mididev(mididev);
1426 	mutex_exit(&sc->sc_lock);
1427 
1428 	if (mididev->mdev != NULL)
1429 		config_detach(mididev->mdev, flags);
1430 
1431 	if (NULL != mididev->label) {
1432 		kmem_free(mididev->label, mididev->label_len);
1433 		mididev->label = NULL;
1434 	}
1435 
1436 	mididev->sc = NULL;
1437 
1438 	return USBD_NORMAL_COMPLETION;
1439 }
1440 
1441 static void
1442 deactivate_mididev(struct umidi_mididev *mididev)
1443 {
1444 	if (mididev->out_jack)
1445 		mididev->out_jack->bound = 0;
1446 	if (mididev->in_jack)
1447 		mididev->in_jack->bound = 0;
1448 }
1449 
1450 static usbd_status
1451 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1452 {
1453 	sc->sc_num_mididevs = nmidi;
1454 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1455 	if (!sc->sc_mididevs)
1456 		return USBD_NOMEM;
1457 
1458 	return USBD_NORMAL_COMPLETION;
1459 }
1460 
1461 static void
1462 free_all_mididevs(struct umidi_softc *sc)
1463 {
1464 	struct umidi_mididev *mididevs;
1465 	size_t len;
1466 
1467 	mutex_enter(&sc->sc_lock);
1468 	mididevs = sc->sc_mididevs;
1469 	if (mididevs)
1470 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1471 	sc->sc_mididevs = NULL;
1472 	sc->sc_num_mididevs = 0;
1473 	mutex_exit(&sc->sc_lock);
1474 
1475 	if (mididevs)
1476 		kmem_free(mididevs, len);
1477 }
1478 
1479 static usbd_status
1480 attach_all_mididevs(struct umidi_softc *sc)
1481 {
1482 	usbd_status err;
1483 	int i;
1484 
1485 	if (sc->sc_mididevs)
1486 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1487 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
1488 			if (err != USBD_NORMAL_COMPLETION)
1489 				return err;
1490 		}
1491 
1492 	return USBD_NORMAL_COMPLETION;
1493 }
1494 
1495 static usbd_status
1496 detach_all_mididevs(struct umidi_softc *sc, int flags)
1497 {
1498 	usbd_status err;
1499 	int i;
1500 
1501 	if (sc->sc_mididevs)
1502 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1503 			err = detach_mididev(&sc->sc_mididevs[i], flags);
1504 			if (err != USBD_NORMAL_COMPLETION)
1505 				return err;
1506 		}
1507 
1508 	return USBD_NORMAL_COMPLETION;
1509 }
1510 
1511 static void
1512 deactivate_all_mididevs(struct umidi_softc *sc)
1513 {
1514 	int i;
1515 
1516 	if (sc->sc_mididevs) {
1517 		for (i = 0; i < sc->sc_num_mididevs; i++)
1518 			deactivate_mididev(&sc->sc_mididevs[i]);
1519 	}
1520 }
1521 
1522 /*
1523  * TODO: the 0-based cable numbers will often not match the labeling of the
1524  * equipment. Ideally:
1525  *  For class-compliant devices: get the iJack string from the jack descriptor.
1526  *  Otherwise:
1527  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1528  *    number for display)
1529  *  - support an array quirk explictly giving a char * for each jack.
1530  * For now, you get 0-based cable numbers. If there are multiple endpoints and
1531  * the CNs are not globally unique, each is shown with its associated endpoint
1532  * address in hex also. That should not be necessary when using iJack values
1533  * or a quirk array.
1534  */
1535 void
1536 describe_mididev(struct umidi_mididev *md)
1537 {
1538 	char in_label[16];
1539 	char out_label[16];
1540 	const char *unit_label;
1541 	char *final_label;
1542 	struct umidi_softc *sc;
1543 	int show_ep_in;
1544 	int show_ep_out;
1545 	size_t len;
1546 
1547 	sc = md->sc;
1548 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1549 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1550 
1551 	if (NULL == md->in_jack)
1552 		in_label[0] = '\0';
1553 	else if (show_ep_in)
1554 		snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1555 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
1556 	else
1557 		snprintf(in_label, sizeof(in_label), "<%d ",
1558 		    md->in_jack->cable_number);
1559 
1560 	if (NULL == md->out_jack)
1561 		out_label[0] = '\0';
1562 	else if (show_ep_out)
1563 		snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1564 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
1565 	else
1566 		snprintf(out_label, sizeof(out_label), ">%d ",
1567 		    md->out_jack->cable_number);
1568 
1569 	unit_label = device_xname(sc->sc_dev);
1570 
1571 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1572 
1573 	final_label = kmem_alloc(len, KM_SLEEP);
1574 
1575 	snprintf(final_label, len, "%s%son %s",
1576 	    in_label, out_label, unit_label);
1577 
1578 	md->label = final_label;
1579 	md->label_len = len;
1580 }
1581 
1582 #ifdef UMIDI_DEBUG
1583 static void
1584 dump_sc(struct umidi_softc *sc)
1585 {
1586 	int i;
1587 
1588 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1589 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
1590 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1591 		dump_ep(&sc->sc_out_ep[i]);
1592 	}
1593 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
1594 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1595 		dump_ep(&sc->sc_in_ep[i]);
1596 	}
1597 }
1598 
1599 static void
1600 dump_ep(struct umidi_endpoint *ep)
1601 {
1602 	int i;
1603 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1604 		if (NULL==ep->jacks[i])
1605 			continue;
1606 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1607 		dump_jack(ep->jacks[i]);
1608 	}
1609 }
1610 static void
1611 dump_jack(struct umidi_jack *jack)
1612 {
1613 	DPRINTFN(10, ("\t\t\tep=%p\n",
1614 		      jack->endpoint));
1615 }
1616 
1617 #endif /* UMIDI_DEBUG */
1618 
1619 
1620 
1621 /*
1622  * MUX MIDI PACKET
1623  */
1624 
1625 static const int packet_length[16] = {
1626 	/*0*/	-1,
1627 	/*1*/	-1,
1628 	/*2*/	2,
1629 	/*3*/	3,
1630 	/*4*/	3,
1631 	/*5*/	1,
1632 	/*6*/	2,
1633 	/*7*/	3,
1634 	/*8*/	3,
1635 	/*9*/	3,
1636 	/*A*/	3,
1637 	/*B*/	3,
1638 	/*C*/	2,
1639 	/*D*/	2,
1640 	/*E*/	3,
1641 	/*F*/	1,
1642 };
1643 
1644 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
1645 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
1646 #define MIX_CN_CIN(cn, cin) \
1647 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1648 			  ((unsigned char)(cin)&0x0F)))
1649 
1650 static usbd_status
1651 start_input_transfer(struct umidi_endpoint *ep)
1652 {
1653 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1654 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1655 	return usbd_transfer(ep->xfer);
1656 }
1657 
1658 static usbd_status
1659 start_output_transfer(struct umidi_endpoint *ep)
1660 {
1661 	usbd_status rv;
1662 	uint32_t length;
1663 	int i;
1664 
1665 	length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1666 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1667 	    ep->buffer, ep->next_slot, length));
1668 
1669 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1670 	    USBD_NO_TIMEOUT, out_intr);
1671 	rv = usbd_transfer(ep->xfer);
1672 
1673 	/*
1674 	 * Once the transfer is scheduled, no more adding to partial
1675 	 * packets within it.
1676 	 */
1677 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1678 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1679 			if (NULL != ep->jacks[i])
1680 				ep->jacks[i]->midiman_ppkt = NULL;
1681 	}
1682 
1683 	return rv;
1684 }
1685 
1686 #ifdef UMIDI_DEBUG
1687 #define DPR_PACKET(dir, sc, p)						\
1688 if ((unsigned char)(p)[1]!=0xFE)				\
1689 	DPRINTFN(500,							\
1690 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
1691 		  device_xname(sc->sc_dev),				\
1692 		  (unsigned char)(p)[0],			\
1693 		  (unsigned char)(p)[1],			\
1694 		  (unsigned char)(p)[2],			\
1695 		  (unsigned char)(p)[3]));
1696 #else
1697 #define DPR_PACKET(dir, sc, p)
1698 #endif
1699 
1700 /*
1701  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1702  * with the cable number and length in the last byte instead of the first,
1703  * but there the resemblance ends. Where a USB MIDI packet is a semantic
1704  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1705  * with a cable nybble and a length nybble (which, unlike the CIN of a
1706  * real USB MIDI packet, has no semantics at all besides the length).
1707  * A packet received from a Midiman may contain part of a MIDI message,
1708  * more than one MIDI message, or parts of more than one MIDI message. A
1709  * three-byte MIDI message may arrive in three packets of data length 1, and
1710  * running status may be used. Happily, the midi(4) driver above us will put
1711  * it all back together, so the only cost is in USB bandwidth. The device
1712  * has an easier time with what it receives from us: we'll pack messages in
1713  * and across packets, but filling the packets whenever possible and,
1714  * as midi(4) hands us a complete message at a time, we'll never send one
1715  * in a dribble of short packets.
1716  */
1717 
1718 static int
1719 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1720 {
1721 	struct umidi_endpoint *ep = out_jack->endpoint;
1722 	struct umidi_softc *sc = ep->sc;
1723 	unsigned char *packet;
1724 	int plen;
1725 	int poff;
1726 
1727 	KASSERT(mutex_owned(&sc->sc_lock));
1728 
1729 	if (sc->sc_dying)
1730 		return EIO;
1731 
1732 	if (!out_jack->opened)
1733 		return ENODEV; /* XXX as it was, is this the right errno? */
1734 
1735 	sc->sc_refcnt++;
1736 
1737 #ifdef UMIDI_DEBUG
1738 	if (umididebug >= 100)
1739 		microtime(&umidi_tv);
1740 #endif
1741 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1742 	    "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1743 	    (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1744 
1745 	packet = *ep->next_slot++;
1746 	KASSERT(ep->buffer_size >=
1747 	    (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1748 	memset(packet, 0, UMIDI_PACKET_SIZE);
1749 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1750 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1751 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
1752 			plen = 3 - poff;
1753 			if (plen > len)
1754 				plen = len;
1755 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
1756 			src += plen;
1757 			len -= plen;
1758 			plen += poff;
1759 			out_jack->midiman_ppkt[3] =
1760 			    MIX_CN_CIN(out_jack->cable_number, plen);
1761 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1762 			if (3 == plen)
1763 				out_jack->midiman_ppkt = NULL; /* no more */
1764 		}
1765 		if (0 == len)
1766 			ep->next_slot--; /* won't be needed, nevermind */
1767 		else {
1768 			memcpy(packet, src, len);
1769 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1770 			DPR_PACKET(out, sc, packet);
1771 			if (len < 3)
1772 				out_jack->midiman_ppkt = packet;
1773 		}
1774 	} else { /* the nice simple USB class-compliant case */
1775 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1776 		memcpy(packet+1, src, len);
1777 		DPR_PACKET(out, sc, packet);
1778 	}
1779 	ep->next_schedule |= 1<<(out_jack->cable_number);
1780 	++ ep->num_scheduled;
1781 	if (!ep->armed && !ep->soliciting) {
1782 		/*
1783 		 * It would be bad to call out_solicit directly here (the
1784 		 * caller need not be reentrant) but a soft interrupt allows
1785 		 * solicit to run immediately the caller exits its critical
1786 		 * section, and if the caller has more to write we can get it
1787 		 * before starting the USB transfer, and send a longer one.
1788 		 */
1789 		ep->soliciting = 1;
1790 		kpreempt_disable();
1791 		softint_schedule(ep->solicit_cookie);
1792 		kpreempt_enable();
1793 	}
1794 
1795 	if (--sc->sc_refcnt < 0)
1796 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
1797 
1798 	return 0;
1799 }
1800 
1801 static void
1802 in_intr(struct usbd_xfer *xfer, void *priv,
1803     usbd_status status)
1804 {
1805 	int cn, len, i;
1806 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1807 	struct umidi_softc *sc = ep->sc;
1808 	struct umidi_jack *jack;
1809 	unsigned char *packet;
1810 	umidi_packet_bufp slot;
1811 	umidi_packet_bufp end;
1812 	unsigned char *data;
1813 	uint32_t count;
1814 
1815 	if (ep->sc->sc_dying || !ep->num_open)
1816 		return;
1817 
1818 	mutex_enter(&sc->sc_lock);
1819 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1820 	if (0 == count % UMIDI_PACKET_SIZE) {
1821 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1822 			     device_xname(ep->sc->sc_dev), ep, count));
1823 	} else {
1824 		DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1825 			device_xname(ep->sc->sc_dev), ep, count));
1826 	}
1827 
1828 	slot = ep->buffer;
1829 	end = slot + count / sizeof(*slot);
1830 
1831 	for (packet = *slot; slot < end; packet = *++slot) {
1832 
1833 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1834 			cn = (0xf0&(packet[3]))>>4;
1835 			len = 0x0f&(packet[3]);
1836 			data = packet;
1837 		} else {
1838 			cn = GET_CN(packet[0]);
1839 			len = packet_length[GET_CIN(packet[0])];
1840 			data = packet + 1;
1841 		}
1842 		/* 0 <= cn <= 15 by inspection of above code */
1843 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1844 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1845 				 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1846 				 device_xname(ep->sc->sc_dev), ep, cn, len,
1847 				 (unsigned)data[0],
1848 				 (unsigned)data[1],
1849 				 (unsigned)data[2]));
1850 			mutex_exit(&sc->sc_lock);
1851 			return;
1852 		}
1853 
1854 		if (!jack->bound || !jack->opened)
1855 			continue;
1856 
1857 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1858 			     "%02X %02X %02X\n",
1859 			     device_xname(ep->sc->sc_dev), ep, cn, len,
1860 			     (unsigned)data[0],
1861 			     (unsigned)data[1],
1862 			     (unsigned)data[2]));
1863 
1864 		if (jack->u.in.intr) {
1865 			for (i = 0; i < len; i++) {
1866 				(*jack->u.in.intr)(jack->arg, data[i]);
1867 			}
1868 		}
1869 
1870 	}
1871 
1872 	(void)start_input_transfer(ep);
1873 	mutex_exit(&sc->sc_lock);
1874 }
1875 
1876 static void
1877 out_intr(struct usbd_xfer *xfer, void *priv,
1878     usbd_status status)
1879 {
1880 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1881 	struct umidi_softc *sc = ep->sc;
1882 	uint32_t count;
1883 
1884 	if (sc->sc_dying)
1885 		return;
1886 
1887 	mutex_enter(&sc->sc_lock);
1888 #ifdef UMIDI_DEBUG
1889 	if (umididebug >= 200)
1890 		microtime(&umidi_tv);
1891 #endif
1892 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1893 	if (0 == count % UMIDI_PACKET_SIZE) {
1894 		DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1895 		    "length %u\n", device_xname(ep->sc->sc_dev),
1896 		    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1897 		    count));
1898 	} else {
1899 		DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1900 			device_xname(ep->sc->sc_dev), ep, count));
1901 	}
1902 	count /= UMIDI_PACKET_SIZE;
1903 
1904 	/*
1905 	 * If while the transfer was pending we buffered any new messages,
1906 	 * move them to the start of the buffer.
1907 	 */
1908 	ep->next_slot -= count;
1909 	if (ep->buffer < ep->next_slot) {
1910 		memcpy(ep->buffer, ep->buffer + count,
1911 		       (char *)ep->next_slot - (char *)ep->buffer);
1912 	}
1913 	cv_broadcast(&sc->sc_cv);
1914 	/*
1915 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1916 	 * Running at IPL_USB so the following should happen to be safe.
1917 	 */
1918 	ep->armed = 0;
1919 	if (!ep->soliciting) {
1920 		ep->soliciting = 1;
1921 		out_solicit_locked(ep);
1922 	}
1923 	mutex_exit(&sc->sc_lock);
1924 }
1925 
1926 /*
1927  * A jack on which we have received a packet must be called back on its
1928  * out.intr handler before it will send us another; it is considered
1929  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1930  * we need no extra buffer space for it.
1931  *
1932  * In contrast, a jack that is open but not scheduled may supply us a packet
1933  * at any time, driven by the top half, and we must be able to accept it, no
1934  * excuses. So we must ensure that at any point in time there are at least
1935  * (num_open - num_scheduled) slots free.
1936  *
1937  * As long as there are more slots free than that minimum, we can loop calling
1938  * scheduled jacks back on their "interrupt" handlers, soliciting more
1939  * packets, starting the USB transfer only when the buffer space is down to
1940  * the minimum or no jack has any more to send.
1941  */
1942 
1943 static void
1944 out_solicit_locked(void *arg)
1945 {
1946 	struct umidi_endpoint *ep = arg;
1947 	umidi_packet_bufp end;
1948 	uint16_t which;
1949 	struct umidi_jack *jack;
1950 
1951 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1952 
1953 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1954 
1955 	for ( ;; ) {
1956 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1957 			break; /* at IPL_USB */
1958 		if (ep->this_schedule == 0) {
1959 			if (ep->next_schedule == 0)
1960 				break; /* at IPL_USB */
1961 			ep->this_schedule = ep->next_schedule;
1962 			ep->next_schedule = 0;
1963 		}
1964 		/*
1965 		 * At least one jack is scheduled. Find and mask off the least
1966 		 * set bit in this_schedule and decrement num_scheduled.
1967 		 * Convert mask to bit index to find the corresponding jack,
1968 		 * and call its intr handler. If it has a message, it will call
1969 		 * back one of the output methods, which will set its bit in
1970 		 * next_schedule (not copied into this_schedule until the
1971 		 * latter is empty). In this way we round-robin the jacks that
1972 		 * have messages to send, until the buffer is as full as we
1973 		 * dare, and then start a transfer.
1974 		 */
1975 		which = ep->this_schedule;
1976 		which &= (~which)+1; /* now mask of least set bit */
1977 		ep->this_schedule &= ~which;
1978 		--ep->num_scheduled;
1979 
1980 		--which; /* now 1s below mask - count 1s to get index */
1981 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1982 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
1983 		which = (((which >> 4) + which) & 0x0f0f);
1984 		which +=  (which >> 8);
1985 		which &= 0x1f; /* the bit index a/k/a jack number */
1986 
1987 		jack = ep->jacks[which];
1988 		if (jack->u.out.intr)
1989 			(*jack->u.out.intr)(jack->arg);
1990 	}
1991 	/* intr lock held at loop exit */
1992 	if (!ep->armed && ep->next_slot > ep->buffer) {
1993 		/*
1994 		 * Can't hold the interrupt lock while calling into USB,
1995 		 * but we can safely drop it here.
1996 		 */
1997 		mutex_exit(&ep->sc->sc_lock);
1998 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1999 		mutex_enter(&ep->sc->sc_lock);
2000 	}
2001 	ep->soliciting = 0;
2002 }
2003 
2004 /* Entry point for the softintr.  */
2005 static void
2006 out_solicit(void *arg)
2007 {
2008 	struct umidi_endpoint *ep = arg;
2009 	struct umidi_softc *sc = ep->sc;
2010 
2011 	mutex_enter(&sc->sc_lock);
2012 	out_solicit_locked(arg);
2013 	mutex_exit(&sc->sc_lock);
2014 }
2015