xref: /netbsd-src/sys/dev/usb/umidi.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: umidi.c,v 1.27 2006/10/12 01:32:00 christos Exp $	*/
2 /*
3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Takuya SHIOZAKI (tshiozak@NetBSD.org) and (full-size transfers, extended
8  * hw_if) Chapman Flack (chap@NetBSD.org).
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	  This product includes software developed by the NetBSD
21  *	  Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.27 2006/10/12 01:32:00 christos Exp $");
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/device.h>
48 #include <sys/ioctl.h>
49 #include <sys/conf.h>
50 #include <sys/file.h>
51 #include <sys/select.h>
52 #include <sys/proc.h>
53 #include <sys/vnode.h>
54 #include <sys/poll.h>
55 #include <sys/lock.h>
56 
57 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
58 #include <machine/intr.h>
59 #endif
60 
61 #include <dev/usb/usb.h>
62 #include <dev/usb/usbdi.h>
63 #include <dev/usb/usbdi_util.h>
64 
65 #include <dev/usb/usbdevs.h>
66 #include <dev/usb/uaudioreg.h>
67 #include <dev/usb/umidireg.h>
68 #include <dev/usb/umidivar.h>
69 #include <dev/usb/umidi_quirks.h>
70 
71 #include <dev/midi_if.h>
72 
73 #ifdef UMIDI_DEBUG
74 #define DPRINTF(x)	if (umididebug) printf x
75 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
76 #include <sys/time.h>
77 static struct timeval umidi_tv;
78 int	umididebug = 0;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n,x)
82 #endif
83 
84 
85 static int umidi_open(void *, int,
86 		      void (*)(void *, int), void (*)(void *), void *);
87 static void umidi_close(void *);
88 static int umidi_channelmsg(void *, int, int, u_char *, int);
89 static int umidi_commonmsg(void *, int, u_char *, int);
90 static int umidi_sysex(void *, u_char *, int);
91 static int umidi_rtmsg(void *, int);
92 static void umidi_getinfo(void *, struct midi_info *);
93 
94 static usbd_status alloc_pipe(struct umidi_endpoint *);
95 static void free_pipe(struct umidi_endpoint *);
96 
97 static usbd_status alloc_all_endpoints(struct umidi_softc *);
98 static void free_all_endpoints(struct umidi_softc *);
99 
100 static usbd_status alloc_all_jacks(struct umidi_softc *);
101 static void free_all_jacks(struct umidi_softc *);
102 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
103 					 struct umidi_jack *,
104 					 struct umidi_jack *,
105 					 struct umidi_mididev *);
106 static void unbind_jacks_from_mididev(struct umidi_mididev *);
107 static void unbind_all_jacks(struct umidi_softc *);
108 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
109 static usbd_status open_out_jack(struct umidi_jack *, void *,
110 				 void (*)(void *));
111 static usbd_status open_in_jack(struct umidi_jack *, void *,
112 				void (*)(void *, int));
113 static void close_out_jack(struct umidi_jack *);
114 static void close_in_jack(struct umidi_jack *);
115 
116 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
117 static usbd_status detach_mididev(struct umidi_mididev *, int);
118 static usbd_status deactivate_mididev(struct umidi_mididev *);
119 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
120 static void free_all_mididevs(struct umidi_softc *);
121 static usbd_status attach_all_mididevs(struct umidi_softc *);
122 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
123 static usbd_status deactivate_all_mididevs(struct umidi_softc *);
124 static char *describe_mididev(struct umidi_mididev *);
125 
126 #ifdef UMIDI_DEBUG
127 static void dump_sc(struct umidi_softc *);
128 static void dump_ep(struct umidi_endpoint *);
129 static void dump_jack(struct umidi_jack *);
130 #endif
131 
132 static usbd_status start_input_transfer(struct umidi_endpoint *);
133 static usbd_status start_output_transfer(struct umidi_endpoint *);
134 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
135 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
136 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
137 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
138 
139 
140 const struct midi_hw_if umidi_hw_if = {
141 	umidi_open,
142 	umidi_close,
143 	umidi_rtmsg,
144 	umidi_getinfo,
145 	0,		/* ioctl */
146 };
147 
148 struct midi_hw_if_ext umidi_hw_if_ext = {
149 	.channel = umidi_channelmsg,
150 	.common  = umidi_commonmsg,
151 	.sysex   = umidi_sysex,
152 };
153 
154 struct midi_hw_if_ext umidi_hw_if_mm = {
155 	.channel = umidi_channelmsg,
156 	.common  = umidi_commonmsg,
157 	.sysex   = umidi_sysex,
158 	.compress = 1,
159 };
160 
161 USB_DECLARE_DRIVER(umidi);
162 
163 USB_MATCH(umidi)
164 {
165 	USB_MATCH_START(umidi, uaa);
166 	usb_interface_descriptor_t *id;
167 
168 	DPRINTFN(1,("umidi_match\n"));
169 
170 	if (uaa->iface == NULL)
171 		return UMATCH_NONE;
172 
173 	if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
174 		return UMATCH_IFACECLASS_IFACESUBCLASS;
175 
176 	id = usbd_get_interface_descriptor(uaa->iface);
177 	if (id!=NULL &&
178 	    id->bInterfaceClass==UICLASS_AUDIO &&
179 	    id->bInterfaceSubClass==UISUBCLASS_MIDISTREAM)
180 		return UMATCH_IFACECLASS_IFACESUBCLASS;
181 
182 	return UMATCH_NONE;
183 }
184 
185 USB_ATTACH(umidi)
186 {
187 	usbd_status err;
188 	USB_ATTACH_START(umidi, sc, uaa);
189 	char *devinfop;
190 
191 	DPRINTFN(1,("umidi_attach\n"));
192 
193 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
194 	printf("\n%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
195 	usbd_devinfo_free(devinfop);
196 
197 	sc->sc_iface = uaa->iface;
198 	sc->sc_udev = uaa->device;
199 
200 	sc->sc_quirk =
201 	    umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
202 	printf("%s: ", USBDEVNAME(sc->sc_dev));
203 	umidi_print_quirk(sc->sc_quirk);
204 
205 
206 	err = alloc_all_endpoints(sc);
207 	if (err!=USBD_NORMAL_COMPLETION) {
208 		printf("%s: alloc_all_endpoints failed. (err=%d)\n",
209 		       USBDEVNAME(sc->sc_dev), err);
210 		goto error;
211 	}
212 	err = alloc_all_jacks(sc);
213 	if (err!=USBD_NORMAL_COMPLETION) {
214 		free_all_endpoints(sc);
215 		printf("%s: alloc_all_jacks failed. (err=%d)\n",
216 		       USBDEVNAME(sc->sc_dev), err);
217 		goto error;
218 	}
219 	printf("%s: out=%d, in=%d\n",
220 	       USBDEVNAME(sc->sc_dev),
221 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
222 
223 	err = assign_all_jacks_automatically(sc);
224 	if (err!=USBD_NORMAL_COMPLETION) {
225 		unbind_all_jacks(sc);
226 		free_all_jacks(sc);
227 		free_all_endpoints(sc);
228 		printf("%s: assign_all_jacks_automatically failed. (err=%d)\n",
229 		       USBDEVNAME(sc->sc_dev), err);
230 		goto error;
231 	}
232 	err = attach_all_mididevs(sc);
233 	if (err!=USBD_NORMAL_COMPLETION) {
234 		free_all_jacks(sc);
235 		free_all_endpoints(sc);
236 		printf("%s: attach_all_mididevs failed. (err=%d)\n",
237 		       USBDEVNAME(sc->sc_dev), err);
238 	}
239 
240 #ifdef UMIDI_DEBUG
241 	dump_sc(sc);
242 #endif
243 
244 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
245 			   sc->sc_udev, USBDEV(sc->sc_dev));
246 
247 	USB_ATTACH_SUCCESS_RETURN;
248 error:
249 	printf("%s: disabled.\n", USBDEVNAME(sc->sc_dev));
250 	sc->sc_dying = 1;
251 	USB_ATTACH_ERROR_RETURN;
252 }
253 
254 int
255 umidi_activate(device_ptr_t self, enum devact act)
256 {
257 	struct umidi_softc *sc = (struct umidi_softc *)self;
258 
259 	switch (act) {
260 	case DVACT_ACTIVATE:
261 		DPRINTFN(1,("umidi_activate (activate)\n"));
262 
263 		return EOPNOTSUPP;
264 		break;
265 	case DVACT_DEACTIVATE:
266 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
267 		sc->sc_dying = 1;
268 		deactivate_all_mididevs(sc);
269 		break;
270 	}
271 	return 0;
272 }
273 
274 USB_DETACH(umidi)
275 {
276 	USB_DETACH_START(umidi, sc);
277 
278 	DPRINTFN(1,("umidi_detach\n"));
279 
280 	sc->sc_dying = 1;
281 	detach_all_mididevs(sc, flags);
282 	free_all_mididevs(sc);
283 	free_all_jacks(sc);
284 	free_all_endpoints(sc);
285 
286 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
287 			   USBDEV(sc->sc_dev));
288 
289 	return 0;
290 }
291 
292 
293 /*
294  * midi_if stuffs
295  */
296 int
297 umidi_open(void *addr,
298 	   int flags,
299 	   void (*iintr)(void *, int),
300 	   void (*ointr)(void *),
301 	   void *arg)
302 {
303 	struct umidi_mididev *mididev = addr;
304 	struct umidi_softc *sc = mididev->sc;
305 	usbd_status err;
306 
307 	DPRINTF(("umidi_open: sc=%p\n", sc));
308 
309 	if (!sc)
310 		return ENXIO;
311 	if (mididev->opened)
312 		return EBUSY;
313 	if (sc->sc_dying)
314 		return EIO;
315 
316 	mididev->opened = 1;
317 	mididev->flags = flags;
318 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
319 		err = open_out_jack(mididev->out_jack, arg, ointr);
320 		if ( err != USBD_NORMAL_COMPLETION )
321 			goto bad;
322 	}
323 	if ((mididev->flags & FREAD) && mididev->in_jack) {
324 		err = open_in_jack(mididev->in_jack, arg, iintr);
325 		if ( err != USBD_NORMAL_COMPLETION
326 		&&   err != USBD_IN_PROGRESS )
327 			goto bad;
328 	}
329 
330 	return 0;
331 bad:
332 	mididev->opened = 0;
333 	DPRINTF(("umidi_open: usbd_status %d\n", err));
334 	return USBD_IN_USE == err ? EBUSY : EIO;
335 }
336 
337 void
338 umidi_close(void *addr)
339 {
340 	int s;
341 	struct umidi_mididev *mididev = addr;
342 
343 	s = splusb();
344 	if ((mididev->flags & FWRITE) && mididev->out_jack)
345 		close_out_jack(mididev->out_jack);
346 	if ((mididev->flags & FREAD) && mididev->in_jack)
347 		close_in_jack(mididev->in_jack);
348 	mididev->opened = 0;
349 	splx(s);
350 }
351 
352 int
353 umidi_channelmsg(void *addr, int status, int channel __unused, u_char *msg,
354     int len)
355 {
356 	struct umidi_mididev *mididev = addr;
357 
358 	if (!mididev->out_jack || !mididev->opened)
359 		return EIO;
360 
361 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
362 }
363 
364 int
365 umidi_commonmsg(void *addr, int status __unused, u_char *msg, int len)
366 {
367 	struct umidi_mididev *mididev = addr;
368 	int cin;
369 
370 	if (!mididev->out_jack || !mididev->opened)
371 		return EIO;
372 
373 	switch ( len ) {
374 	case 1: cin = 5; break;
375 	case 2: cin = 2; break;
376 	case 3: cin = 3; break;
377 	default: return EIO; /* or gcc warns of cin uninitialized */
378 	}
379 
380 	return out_jack_output(mididev->out_jack, msg, len, cin);
381 }
382 
383 int
384 umidi_sysex(void *addr, u_char *msg, int len)
385 {
386 	struct umidi_mididev *mididev = addr;
387 	int cin;
388 
389 	if (!mididev->out_jack || !mididev->opened)
390 		return EIO;
391 
392 	switch ( len ) {
393 	case 1: cin = 5; break;
394 	case 2: cin = 6; break;
395 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
396 	default: return EIO; /* or gcc warns of cin uninitialized */
397 	}
398 
399 	return out_jack_output(mididev->out_jack, msg, len, cin);
400 }
401 
402 int
403 umidi_rtmsg(void *addr, int d)
404 {
405 	struct umidi_mididev *mididev = addr;
406 	u_char msg = d;
407 
408 	if (!mididev->out_jack || !mididev->opened)
409 		return EIO;
410 
411 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
412 }
413 
414 void
415 umidi_getinfo(void *addr, struct midi_info *mi)
416 {
417 	struct umidi_mididev *mididev = addr;
418 	struct umidi_softc *sc = mididev->sc;
419 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
420 
421 	mi->name = mididev->label;
422 	mi->props = MIDI_PROP_OUT_INTR;
423 	if (mididev->in_jack)
424 		mi->props |= MIDI_PROP_CAN_INPUT;
425 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
426 }
427 
428 
429 /*
430  * each endpoint stuffs
431  */
432 
433 /* alloc/free pipe */
434 static usbd_status
435 alloc_pipe(struct umidi_endpoint *ep)
436 {
437 	struct umidi_softc *sc = ep->sc;
438 	usbd_status err;
439 	usb_endpoint_descriptor_t *epd;
440 
441 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
442 	/*
443 	 * For output, an improvement would be to have a buffer bigger than
444 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
445 	 * allow out_solicit to fill the buffer to the full packet size in
446 	 * all cases. But to use usbd_alloc_buffer to get a slightly larger
447 	 * buffer would not be a good way to do that, because if the addition
448 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
449 	 * larger block may be wastefully allocated. Some flavor of double
450 	 * buffering could serve the same purpose, but would increase the
451 	 * code complexity, so for now I will live with the current slight
452 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
453 	 * packet slots.
454 	 */
455 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
456 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
457 
458 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
459 	        USBDEVNAME(sc->sc_dev), ep, ep->buffer_size));
460 	ep->num_scheduled = 0;
461 	ep->this_schedule = 0;
462 	ep->next_schedule = 0;
463 	ep->soliciting = 0;
464 	ep->armed = 0;
465 	ep->xfer = usbd_alloc_xfer(sc->sc_udev);
466 	if (ep->xfer == NULL) {
467 	    err = USBD_NOMEM;
468 	    goto quit;
469 	}
470 	ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
471 	if (ep->buffer == NULL) {
472 	    usbd_free_xfer(ep->xfer);
473 	    err = USBD_NOMEM;
474 	    goto quit;
475 	}
476 	ep->next_slot = ep->buffer;
477 	err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
478 	if (err)
479 	    usbd_free_xfer(ep->xfer);
480 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
481 	ep->solicit_cookie = softintr_establish(IPL_SOFTCLOCK,out_solicit,ep);
482 #endif
483 quit:
484 	return err;
485 }
486 
487 static void
488 free_pipe(struct umidi_endpoint *ep)
489 {
490 	DPRINTF(("%s: free_pipe %p\n", USBDEVNAME(ep->sc->sc_dev), ep));
491 	usbd_abort_pipe(ep->pipe);
492 	usbd_close_pipe(ep->pipe);
493 	usbd_free_xfer(ep->xfer);
494 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
495 	softintr_disestablish(ep->solicit_cookie);
496 #endif
497 }
498 
499 
500 /* alloc/free the array of endpoint structures */
501 
502 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
503 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
504 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
505 
506 static usbd_status
507 alloc_all_endpoints(struct umidi_softc *sc)
508 {
509 	usbd_status err;
510 	struct umidi_endpoint *ep;
511 	int i;
512 
513 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
514 		err = alloc_all_endpoints_fixed_ep(sc);
515 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
516 		err = alloc_all_endpoints_yamaha(sc);
517 	} else {
518 		err = alloc_all_endpoints_genuine(sc);
519 	}
520 	if (err!=USBD_NORMAL_COMPLETION)
521 		return err;
522 
523 	ep = sc->sc_endpoints;
524 	for (i=sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i>0; i--) {
525 		err = alloc_pipe(ep++);
526 		if (err!=USBD_NORMAL_COMPLETION) {
527 			for (; ep!=sc->sc_endpoints; ep--)
528 				free_pipe(ep-1);
529 			free(sc->sc_endpoints, M_USBDEV);
530 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
531 			break;
532 		}
533 	}
534 	return err;
535 }
536 
537 static void
538 free_all_endpoints(struct umidi_softc *sc)
539 {
540 	int i;
541 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
542 	    free_pipe(&sc->sc_endpoints[i]);
543 	if (sc->sc_endpoints != NULL)
544 		free(sc->sc_endpoints, M_USBDEV);
545 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
546 }
547 
548 static usbd_status
549 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
550 {
551 	usbd_status err;
552 	struct umq_fixed_ep_desc *fp;
553 	struct umidi_endpoint *ep;
554 	usb_endpoint_descriptor_t *epd;
555 	int i;
556 
557 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
558 					    UMQ_TYPE_FIXED_EP);
559 	sc->sc_out_num_jacks = 0;
560 	sc->sc_in_num_jacks = 0;
561 	sc->sc_out_num_endpoints = fp->num_out_ep;
562 	sc->sc_in_num_endpoints = fp->num_in_ep;
563 	sc->sc_endpoints = malloc(sizeof(*sc->sc_out_ep)*
564 				  (sc->sc_out_num_endpoints+
565 				   sc->sc_in_num_endpoints),
566 				  M_USBDEV, M_WAITOK);
567 	if (!sc->sc_endpoints) {
568 		return USBD_NOMEM;
569 	}
570 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
571 	sc->sc_in_ep =
572 	    sc->sc_in_num_endpoints ?
573 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
574 
575 	ep = &sc->sc_out_ep[0];
576 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
577 		epd = usbd_interface2endpoint_descriptor(
578 			sc->sc_iface,
579 			fp->out_ep[i].ep);
580 		if (!epd) {
581 			printf("%s: cannot get endpoint descriptor(out:%d)\n",
582 			       USBDEVNAME(sc->sc_dev), fp->out_ep[i].ep);
583 			err = USBD_INVAL;
584 			goto error;
585 		}
586 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
587 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
588 			printf("%s: illegal endpoint(out:%d)\n",
589 			       USBDEVNAME(sc->sc_dev), fp->out_ep[i].ep);
590 			err = USBD_INVAL;
591 			goto error;
592 		}
593 		ep->sc = sc;
594 		ep->addr = epd->bEndpointAddress;
595 		ep->num_jacks = fp->out_ep[i].num_jacks;
596 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
597 		ep->num_open = 0;
598 		memset(ep->jacks, 0, sizeof(ep->jacks));
599 		ep++;
600 	}
601 	ep = &sc->sc_in_ep[0];
602 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
603 		epd = usbd_interface2endpoint_descriptor(
604 			sc->sc_iface,
605 			fp->in_ep[i].ep);
606 		if (!epd) {
607 			printf("%s: cannot get endpoint descriptor(in:%d)\n",
608 			       USBDEVNAME(sc->sc_dev), fp->in_ep[i].ep);
609 			err = USBD_INVAL;
610 			goto error;
611 		}
612 		/*
613 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
614 		 * endpoint.  The existing input logic in this driver seems
615 		 * to work successfully if we just stop treating an interrupt
616 		 * endpoint as illegal (or the in_progress status we get on
617 		 * the initial transfer).  It does not seem necessary to
618 		 * actually use the interrupt flavor of alloc_pipe or make
619 		 * other serious rearrangements of logic.  I like that.
620 		 */
621 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
622 		case UE_BULK:
623 		case UE_INTERRUPT:
624 			if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
625 				break;
626 			/*FALLTHROUGH*/
627 		default:
628 			printf("%s: illegal endpoint(in:%d)\n",
629 			       USBDEVNAME(sc->sc_dev), fp->in_ep[i].ep);
630 			err = USBD_INVAL;
631 			goto error;
632 		}
633 
634 		ep->sc = sc;
635 		ep->addr = epd->bEndpointAddress;
636 		ep->num_jacks = fp->in_ep[i].num_jacks;
637 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
638 		ep->num_open = 0;
639 		memset(ep->jacks, 0, sizeof(ep->jacks));
640 		ep++;
641 	}
642 
643 	return USBD_NORMAL_COMPLETION;
644 error:
645 	free(sc->sc_endpoints, M_USBDEV);
646 	sc->sc_endpoints = NULL;
647 	return err;
648 }
649 
650 static usbd_status
651 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
652 {
653 	/* This driver currently supports max 1in/1out bulk endpoints */
654 	usb_descriptor_t *desc;
655 	usb_endpoint_descriptor_t *epd;
656 	int out_addr, in_addr, i;
657 	int dir;
658 	size_t remain, descsize;
659 
660 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
661 	out_addr = in_addr = 0;
662 
663 	/* detect endpoints */
664 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
665 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
666 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
667 		KASSERT(epd != NULL);
668 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
669 			dir = UE_GET_DIR(epd->bEndpointAddress);
670 			if (dir==UE_DIR_OUT && !out_addr)
671 				out_addr = epd->bEndpointAddress;
672 			else if (dir==UE_DIR_IN && !in_addr)
673 				in_addr = epd->bEndpointAddress;
674 		}
675 	}
676 	desc = NEXT_D(desc);
677 
678 	/* count jacks */
679 	if (!(desc->bDescriptorType==UDESC_CS_INTERFACE &&
680 	      desc->bDescriptorSubtype==UMIDI_MS_HEADER))
681 		return USBD_INVAL;
682 	remain = (size_t)UGETW(TO_CSIFD(desc)->wTotalLength) -
683 		(size_t)desc->bLength;
684 	desc = NEXT_D(desc);
685 
686 	while (remain>=sizeof(usb_descriptor_t)) {
687 		descsize = desc->bLength;
688 		if (descsize>remain || descsize==0)
689 			break;
690 		if (desc->bDescriptorType==UDESC_CS_INTERFACE &&
691 		    remain>=UMIDI_JACK_DESCRIPTOR_SIZE) {
692 			if (desc->bDescriptorSubtype==UMIDI_OUT_JACK)
693 				sc->sc_out_num_jacks++;
694 			else if (desc->bDescriptorSubtype==UMIDI_IN_JACK)
695 				sc->sc_in_num_jacks++;
696 		}
697 		desc = NEXT_D(desc);
698 		remain-=descsize;
699 	}
700 
701 	/* validate some parameters */
702 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
703 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
704 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
705 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
706 	if (sc->sc_out_num_jacks && out_addr) {
707 		sc->sc_out_num_endpoints = 1;
708 	} else {
709 		sc->sc_out_num_endpoints = 0;
710 		sc->sc_out_num_jacks = 0;
711 	}
712 	if (sc->sc_in_num_jacks && in_addr) {
713 		sc->sc_in_num_endpoints = 1;
714 	} else {
715 		sc->sc_in_num_endpoints = 0;
716 		sc->sc_in_num_jacks = 0;
717 	}
718 	sc->sc_endpoints = malloc(sizeof(struct umidi_endpoint)*
719 				  (sc->sc_out_num_endpoints+
720 				   sc->sc_in_num_endpoints),
721 				  M_USBDEV, M_WAITOK);
722 	if (!sc->sc_endpoints)
723 		return USBD_NOMEM;
724 	if (sc->sc_out_num_endpoints) {
725 		sc->sc_out_ep = sc->sc_endpoints;
726 		sc->sc_out_ep->sc = sc;
727 		sc->sc_out_ep->addr = out_addr;
728 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
729 		sc->sc_out_ep->num_open = 0;
730 		memset(sc->sc_out_ep->jacks, 0, sizeof(sc->sc_out_ep->jacks));
731 	} else
732 		sc->sc_out_ep = NULL;
733 
734 	if (sc->sc_in_num_endpoints) {
735 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
736 		sc->sc_in_ep->sc = sc;
737 		sc->sc_in_ep->addr = in_addr;
738 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
739 		sc->sc_in_ep->num_open = 0;
740 		memset(sc->sc_in_ep->jacks, 0, sizeof(sc->sc_in_ep->jacks));
741 	} else
742 		sc->sc_in_ep = NULL;
743 
744 	return USBD_NORMAL_COMPLETION;
745 }
746 
747 static usbd_status
748 alloc_all_endpoints_genuine(struct umidi_softc *sc)
749 {
750 	usb_interface_descriptor_t *interface_desc;
751 	usb_config_descriptor_t *config_desc;
752 	usb_descriptor_t *desc;
753 	int num_ep;
754 	size_t remain, descsize;
755 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
756 	int epaddr;
757 
758 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
759 	num_ep = interface_desc->bNumEndpoints;
760 	sc->sc_endpoints = p = malloc(sizeof(struct umidi_endpoint) * num_ep,
761 				      M_USBDEV, M_WAITOK);
762 	if (!p)
763 		return USBD_NOMEM;
764 
765 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
766 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
767 	epaddr = -1;
768 
769 	/* get the list of endpoints for midi stream */
770 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
771 	desc = (usb_descriptor_t *) config_desc;
772 	remain = (size_t)UGETW(config_desc->wTotalLength);
773 	while (remain>=sizeof(usb_descriptor_t)) {
774 		descsize = desc->bLength;
775 		if (descsize>remain || descsize==0)
776 			break;
777 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
778 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
779 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
780 			epaddr = TO_EPD(desc)->bEndpointAddress;
781 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
782 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
783 			   epaddr!=-1) {
784 			if (num_ep>0) {
785 				num_ep--;
786 				p->sc = sc;
787 				p->addr = epaddr;
788 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
789 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
790 					sc->sc_out_num_endpoints++;
791 					sc->sc_out_num_jacks += p->num_jacks;
792 				} else {
793 					sc->sc_in_num_endpoints++;
794 					sc->sc_in_num_jacks += p->num_jacks;
795 				}
796 				p++;
797 			}
798 		} else
799 			epaddr = -1;
800 		desc = NEXT_D(desc);
801 		remain-=descsize;
802 	}
803 
804 	/* sort endpoints */
805 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
806 	p = sc->sc_endpoints;
807 	endep = p + num_ep;
808 	while (p<endep) {
809 		lowest = p;
810 		for (q=p+1; q<endep; q++) {
811 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
812 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
813 			    ((UE_GET_DIR(lowest->addr)==
814 			      UE_GET_DIR(q->addr)) &&
815 			     (UE_GET_ADDR(lowest->addr)>
816 			      UE_GET_ADDR(q->addr))))
817 				lowest = q;
818 		}
819 		if (lowest != p) {
820 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
821 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
822 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
823 		}
824 		p->num_open = 0;
825 		p++;
826 	}
827 
828 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
829 	sc->sc_in_ep =
830 	    sc->sc_in_num_endpoints ?
831 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
832 
833 	return USBD_NORMAL_COMPLETION;
834 }
835 
836 
837 /*
838  * jack stuffs
839  */
840 
841 static usbd_status
842 alloc_all_jacks(struct umidi_softc *sc)
843 {
844 	int i, j;
845 	struct umidi_endpoint *ep;
846 	struct umidi_jack *jack;
847 	unsigned char *cn_spec;
848 
849 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
850 		sc->cblnums_global = 0;
851 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
852 		sc->cblnums_global = 1;
853 	else {
854 		/*
855 		 * I don't think this default is correct, but it preserves
856 		 * the prior behavior of the code. That's why I defined two
857 		 * complementary quirks. Any device for which the default
858 		 * behavior is wrong can be made to work by giving it an
859 		 * explicit quirk, and if a pattern ever develops (as I suspect
860 		 * it will) that a lot of otherwise standard USB MIDI devices
861 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
862 		 * changed to 0, and the only devices that will break are those
863 		 * listing neither quirk, and they'll easily be fixed by giving
864 		 * them the CN_SEQ_GLOBAL quirk.
865 		 */
866 		sc->cblnums_global = 1;
867 	}
868 
869 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
870 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
871 					    		 UMQ_TYPE_CN_FIXED);
872 	else
873 		cn_spec = NULL;
874 
875 	/* allocate/initialize structures */
876 	sc->sc_jacks =
877 	    malloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
878 					      sc->sc_out_num_jacks),
879 		   M_USBDEV, M_WAITOK);
880 	if (!sc->sc_jacks)
881 		return USBD_NOMEM;
882 	sc->sc_out_jacks =
883 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
884 	sc->sc_in_jacks =
885 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
886 
887 	jack = &sc->sc_out_jacks[0];
888 	for (i=0; i<sc->sc_out_num_jacks; i++) {
889 		jack->opened = 0;
890 		jack->binded = 0;
891 		jack->arg = NULL;
892 		jack->u.out.intr = NULL;
893 		jack->midiman_ppkt = NULL;
894 		if ( sc->cblnums_global )
895 			jack->cable_number = i;
896 		jack++;
897 	}
898 	jack = &sc->sc_in_jacks[0];
899 	for (i=0; i<sc->sc_in_num_jacks; i++) {
900 		jack->opened = 0;
901 		jack->binded = 0;
902 		jack->arg = NULL;
903 		jack->u.in.intr = NULL;
904 		if ( sc->cblnums_global )
905 			jack->cable_number = i;
906 		jack++;
907 	}
908 
909 	/* assign each jacks to each endpoints */
910 	jack = &sc->sc_out_jacks[0];
911 	ep = &sc->sc_out_ep[0];
912 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
913 		for (j=0; j<ep->num_jacks; j++) {
914 			jack->endpoint = ep;
915 			if ( cn_spec != NULL )
916 				jack->cable_number = *cn_spec++;
917 			else if ( !sc->cblnums_global )
918 				jack->cable_number = j;
919 			ep->jacks[jack->cable_number] = jack;
920 			jack++;
921 		}
922 		ep++;
923 	}
924 	jack = &sc->sc_in_jacks[0];
925 	ep = &sc->sc_in_ep[0];
926 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
927 		for (j=0; j<ep->num_jacks; j++) {
928 			jack->endpoint = ep;
929 			if ( cn_spec != NULL )
930 				jack->cable_number = *cn_spec++;
931 			else if ( !sc->cblnums_global )
932 				jack->cable_number = j;
933 			ep->jacks[jack->cable_number] = jack;
934 			jack++;
935 		}
936 		ep++;
937 	}
938 
939 	return USBD_NORMAL_COMPLETION;
940 }
941 
942 static void
943 free_all_jacks(struct umidi_softc *sc)
944 {
945 	int s;
946 
947 	s = splaudio();
948 	if (sc->sc_out_jacks) {
949 		free(sc->sc_jacks, M_USBDEV);
950 		sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
951 	}
952 	splx(s);
953 }
954 
955 static usbd_status
956 bind_jacks_to_mididev(struct umidi_softc *sc __unused,
957 		      struct umidi_jack *out_jack,
958 		      struct umidi_jack *in_jack,
959 		      struct umidi_mididev *mididev)
960 {
961 	if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
962 		return USBD_IN_USE;
963 	if (mididev->out_jack || mididev->in_jack)
964 		return USBD_IN_USE;
965 
966 	if (out_jack)
967 		out_jack->binded = 1;
968 	if (in_jack)
969 		in_jack->binded = 1;
970 	mididev->in_jack = in_jack;
971 	mididev->out_jack = out_jack;
972 
973 	return USBD_NORMAL_COMPLETION;
974 }
975 
976 static void
977 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
978 {
979 	if ((mididev->flags & FWRITE) && mididev->out_jack)
980 		close_out_jack(mididev->out_jack);
981 	if ((mididev->flags & FREAD) && mididev->in_jack)
982 		close_in_jack(mididev->in_jack);
983 
984 	if (mididev->out_jack)
985 		mididev->out_jack->binded = 0;
986 	if (mididev->in_jack)
987 		mididev->in_jack->binded = 0;
988 	mididev->out_jack = mididev->in_jack = NULL;
989 }
990 
991 static void
992 unbind_all_jacks(struct umidi_softc *sc)
993 {
994 	int i;
995 
996 	if (sc->sc_mididevs)
997 		for (i=0; i<sc->sc_num_mididevs; i++) {
998 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
999 		}
1000 }
1001 
1002 static usbd_status
1003 assign_all_jacks_automatically(struct umidi_softc *sc)
1004 {
1005 	usbd_status err;
1006 	int i;
1007 	struct umidi_jack *out, *in;
1008 	signed char *asg_spec;
1009 
1010 	err =
1011 	    alloc_all_mididevs(sc,
1012 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1013 	if (err!=USBD_NORMAL_COMPLETION)
1014 		return err;
1015 
1016 	if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1017 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1018 					    		  UMQ_TYPE_MD_FIXED);
1019 	else
1020 		asg_spec = NULL;
1021 
1022 	for (i=0; i<sc->sc_num_mididevs; i++) {
1023 		if ( asg_spec != NULL ) {
1024 			if ( *asg_spec == -1 )
1025 				out = NULL;
1026 			else
1027 				out = &sc->sc_out_jacks[*asg_spec];
1028 			++ asg_spec;
1029 			if ( *asg_spec == -1 )
1030 				in = NULL;
1031 			else
1032 				in = &sc->sc_in_jacks[*asg_spec];
1033 			++ asg_spec;
1034 		} else {
1035 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1036 			                               : NULL;
1037 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1038 						     : NULL;
1039 		}
1040 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1041 		if (err!=USBD_NORMAL_COMPLETION) {
1042 			free_all_mididevs(sc);
1043 			return err;
1044 		}
1045 	}
1046 
1047 	return USBD_NORMAL_COMPLETION;
1048 }
1049 
1050 static usbd_status
1051 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1052 {
1053 	struct umidi_endpoint *ep = jack->endpoint;
1054 	umidi_packet_bufp end;
1055 	int s;
1056 	int err;
1057 
1058 	if (jack->opened)
1059 		return USBD_IN_USE;
1060 
1061 	jack->arg = arg;
1062 	jack->u.out.intr = intr;
1063 	jack->midiman_ppkt = NULL;
1064 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1065 	s = splusb();
1066 	jack->opened = 1;
1067 	ep->num_open++;
1068 	/*
1069 	 * out_solicit maintains an invariant that there will always be
1070 	 * (num_open - num_scheduled) slots free in the buffer. as we have
1071 	 * just incremented num_open, the buffer may be too full to satisfy
1072 	 * the invariant until a transfer completes, for which we must wait.
1073 	 */
1074 	while ( end - ep->next_slot < ep->num_open - ep->num_scheduled ) {
1075 		err = tsleep(ep, PWAIT|PCATCH, "umi op", mstohz(10));
1076 		if ( err ) {
1077 			ep->num_open--;
1078 			jack->opened = 0;
1079 			splx(s);
1080 			return USBD_IOERROR;
1081 		}
1082 	}
1083 	splx(s);
1084 
1085 	return USBD_NORMAL_COMPLETION;
1086 }
1087 
1088 static usbd_status
1089 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1090 {
1091 	usbd_status err = USBD_NORMAL_COMPLETION;
1092 	struct umidi_endpoint *ep = jack->endpoint;
1093 
1094 	if (jack->opened)
1095 		return USBD_IN_USE;
1096 
1097 	jack->arg = arg;
1098 	jack->u.in.intr = intr;
1099 	jack->opened = 1;
1100 	if (ep->num_open++==0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1101 		err = start_input_transfer(ep);
1102 		if (err != USBD_NORMAL_COMPLETION &&
1103 		    err != USBD_IN_PROGRESS) {
1104 			ep->num_open--;
1105 		}
1106 	}
1107 
1108 	return err;
1109 }
1110 
1111 static void
1112 close_out_jack(struct umidi_jack *jack)
1113 {
1114 	struct umidi_endpoint *ep;
1115 	int s;
1116 	u_int16_t mask;
1117 	int err;
1118 
1119 	if (jack->opened) {
1120 		ep = jack->endpoint;
1121 		mask = 1 << (jack->cable_number);
1122 		s = splusb();
1123 		while ( mask & (ep->this_schedule | ep->next_schedule) ) {
1124 			err = tsleep(ep, PWAIT|PCATCH, "umi dr", mstohz(10));
1125 			if ( err )
1126 				break;
1127 		}
1128 		jack->opened = 0;
1129 		jack->endpoint->num_open--;
1130 		ep->this_schedule &= ~mask;
1131 		ep->next_schedule &= ~mask;
1132 		splx(s);
1133 	}
1134 }
1135 
1136 static void
1137 close_in_jack(struct umidi_jack *jack)
1138 {
1139 	if (jack->opened) {
1140 		jack->opened = 0;
1141 		if (--jack->endpoint->num_open == 0) {
1142 		    usbd_abort_pipe(jack->endpoint->pipe);
1143 		}
1144 	}
1145 }
1146 
1147 static usbd_status
1148 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1149 {
1150 	if (mididev->sc)
1151 		return USBD_IN_USE;
1152 
1153 	mididev->sc = sc;
1154 
1155 	mididev->label = describe_mididev(mididev);
1156 
1157 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, &sc->sc_dev);
1158 
1159 	return USBD_NORMAL_COMPLETION;
1160 }
1161 
1162 static usbd_status
1163 detach_mididev(struct umidi_mididev *mididev, int flags)
1164 {
1165 	if (!mididev->sc)
1166 		return USBD_NO_ADDR;
1167 
1168 	if (mididev->opened) {
1169 		umidi_close(mididev);
1170 	}
1171 	unbind_jacks_from_mididev(mididev);
1172 
1173 	if (mididev->mdev)
1174 		config_detach(mididev->mdev, flags);
1175 
1176 	if (NULL != mididev->label) {
1177 		free(mididev->label, M_USBDEV);
1178 		mididev->label = NULL;
1179 	}
1180 
1181 	mididev->sc = NULL;
1182 
1183 	return USBD_NORMAL_COMPLETION;
1184 }
1185 
1186 static usbd_status
1187 deactivate_mididev(struct umidi_mididev *mididev)
1188 {
1189 	if (mididev->out_jack)
1190 		mididev->out_jack->binded = 0;
1191 	if (mididev->in_jack)
1192 		mididev->in_jack->binded = 0;
1193 	config_deactivate(mididev->mdev);
1194 
1195 	return USBD_NORMAL_COMPLETION;
1196 }
1197 
1198 static usbd_status
1199 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1200 {
1201 	sc->sc_num_mididevs = nmidi;
1202 	sc->sc_mididevs = malloc(sizeof(*sc->sc_mididevs)*nmidi,
1203 				 M_USBDEV, M_WAITOK|M_ZERO);
1204 	if (!sc->sc_mididevs)
1205 		return USBD_NOMEM;
1206 
1207 	return USBD_NORMAL_COMPLETION;
1208 }
1209 
1210 static void
1211 free_all_mididevs(struct umidi_softc *sc)
1212 {
1213 	sc->sc_num_mididevs = 0;
1214 	if (sc->sc_mididevs)
1215 		free(sc->sc_mididevs, M_USBDEV);
1216 }
1217 
1218 static usbd_status
1219 attach_all_mididevs(struct umidi_softc *sc)
1220 {
1221 	usbd_status err;
1222 	int i;
1223 
1224 	if (sc->sc_mididevs)
1225 		for (i=0; i<sc->sc_num_mididevs; i++) {
1226 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
1227 			if (err!=USBD_NORMAL_COMPLETION)
1228 				return err;
1229 		}
1230 
1231 	return USBD_NORMAL_COMPLETION;
1232 }
1233 
1234 static usbd_status
1235 detach_all_mididevs(struct umidi_softc *sc, int flags)
1236 {
1237 	usbd_status err;
1238 	int i;
1239 
1240 	if (sc->sc_mididevs)
1241 		for (i=0; i<sc->sc_num_mididevs; i++) {
1242 			err = detach_mididev(&sc->sc_mididevs[i], flags);
1243 			if (err!=USBD_NORMAL_COMPLETION)
1244 				return err;
1245 		}
1246 
1247 	return USBD_NORMAL_COMPLETION;
1248 }
1249 
1250 static usbd_status
1251 deactivate_all_mididevs(struct umidi_softc *sc)
1252 {
1253 	usbd_status err;
1254 	int i;
1255 
1256 	if (sc->sc_mididevs)
1257 		for (i=0; i<sc->sc_num_mididevs; i++) {
1258 			err = deactivate_mididev(&sc->sc_mididevs[i]);
1259 			if (err!=USBD_NORMAL_COMPLETION)
1260 				return err;
1261 		}
1262 
1263 	return USBD_NORMAL_COMPLETION;
1264 }
1265 
1266 /*
1267  * TODO: the 0-based cable numbers will often not match the labeling of the
1268  * equipment. Ideally:
1269  *  For class-compliant devices: get the iJack string from the jack descriptor.
1270  *  Otherwise:
1271  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1272  *    number for display)
1273  *  - support an array quirk explictly giving a char * for each jack.
1274  * For now, you get 0-based cable numbers. If there are multiple endpoints and
1275  * the CNs are not globally unique, each is shown with its associated endpoint
1276  * address in hex also. That should not be necessary when using iJack values
1277  * or a quirk array.
1278  */
1279 static char *
1280 describe_mididev(struct umidi_mididev *md)
1281 {
1282 	char in_label[16];
1283 	char out_label[16];
1284 	char *unit_label;
1285 	char *final_label;
1286 	struct umidi_softc *sc;
1287 	int show_ep_in;
1288 	int show_ep_out;
1289 	size_t len;
1290 
1291 	sc = md->sc;
1292 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1293 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1294 
1295 	if ( NULL != md->in_jack )
1296 		snprintf(in_label, sizeof in_label,
1297 		    show_ep_in ? "<%d(%x) " : "<%d ",
1298 		    md->in_jack->cable_number,
1299 		    md->in_jack->endpoint->addr);
1300 	else
1301 		in_label[0] = '\0';
1302 
1303 	if ( NULL != md->out_jack )
1304 		snprintf(out_label, sizeof out_label,
1305 		    show_ep_out ? ">%d(%x) " : ">%d ",
1306 		    md->out_jack->cable_number,
1307 		    md->out_jack->endpoint->addr);
1308 	else
1309 		in_label[0] = '\0';
1310 
1311 	unit_label = USBDEVNAME(sc->sc_dev);
1312 
1313 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1314 
1315 	final_label = malloc(len, M_USBDEV, M_WAITOK);
1316 
1317 	snprintf(final_label, len, "%s%son %s",
1318 	    in_label, out_label, unit_label);
1319 
1320 	return final_label;
1321 }
1322 
1323 #ifdef UMIDI_DEBUG
1324 static void
1325 dump_sc(struct umidi_softc *sc)
1326 {
1327 	int i;
1328 
1329 	DPRINTFN(10, ("%s: dump_sc\n", USBDEVNAME(sc->sc_dev)));
1330 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
1331 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1332 		dump_ep(&sc->sc_out_ep[i]);
1333 	}
1334 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
1335 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1336 		dump_ep(&sc->sc_in_ep[i]);
1337 	}
1338 }
1339 
1340 static void
1341 dump_ep(struct umidi_endpoint *ep)
1342 {
1343 	int i;
1344 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1345 		if (NULL==ep->jacks[i])
1346 			continue;
1347 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1348 		dump_jack(ep->jacks[i]);
1349 	}
1350 }
1351 static void
1352 dump_jack(struct umidi_jack *jack)
1353 {
1354 	DPRINTFN(10, ("\t\t\tep=%p\n",
1355 		      jack->endpoint));
1356 }
1357 
1358 #endif /* UMIDI_DEBUG */
1359 
1360 
1361 
1362 /*
1363  * MUX MIDI PACKET
1364  */
1365 
1366 static const int packet_length[16] = {
1367 	/*0*/	-1,
1368 	/*1*/	-1,
1369 	/*2*/	2,
1370 	/*3*/	3,
1371 	/*4*/	3,
1372 	/*5*/	1,
1373 	/*6*/	2,
1374 	/*7*/	3,
1375 	/*8*/	3,
1376 	/*9*/	3,
1377 	/*A*/	3,
1378 	/*B*/	3,
1379 	/*C*/	2,
1380 	/*D*/	2,
1381 	/*E*/	3,
1382 	/*F*/	1,
1383 };
1384 
1385 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
1386 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
1387 #define MIX_CN_CIN(cn, cin) \
1388 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1389 			  ((unsigned char)(cin)&0x0F)))
1390 
1391 static usbd_status
1392 start_input_transfer(struct umidi_endpoint *ep)
1393 {
1394 	usbd_setup_xfer(ep->xfer, ep->pipe,
1395 			(usbd_private_handle)ep,
1396 			ep->buffer, ep->buffer_size,
1397 			USBD_SHORT_XFER_OK | USBD_NO_COPY,
1398                         USBD_NO_TIMEOUT, in_intr);
1399 	return usbd_transfer(ep->xfer);
1400 }
1401 
1402 static usbd_status
1403 start_output_transfer(struct umidi_endpoint *ep)
1404 {
1405 	usbd_status rv;
1406 	u_int32_t length;
1407 	int i;
1408 
1409 	length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1410 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1411 	    ep->buffer, ep->next_slot, length));
1412 	usbd_setup_xfer(ep->xfer, ep->pipe,
1413 			(usbd_private_handle)ep,
1414 			ep->buffer, length,
1415 			USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1416 	rv = usbd_transfer(ep->xfer);
1417 
1418 	/*
1419 	 * Once the transfer is scheduled, no more adding to partial
1420 	 * packets within it.
1421 	 */
1422 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1423 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1424 			if (NULL != ep->jacks[i])
1425 				ep->jacks[i]->midiman_ppkt = NULL;
1426 	}
1427 
1428 	return rv;
1429 }
1430 
1431 #ifdef UMIDI_DEBUG
1432 #define DPR_PACKET(dir, sc, p)						\
1433 if ((unsigned char)(p)[1]!=0xFE)				\
1434 	DPRINTFN(500,							\
1435 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
1436 		  USBDEVNAME(sc->sc_dev),				\
1437 		  (unsigned char)(p)[0],			\
1438 		  (unsigned char)(p)[1],			\
1439 		  (unsigned char)(p)[2],			\
1440 		  (unsigned char)(p)[3]));
1441 #else
1442 #define DPR_PACKET(dir, sc, p)
1443 #endif
1444 
1445 /*
1446  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1447  * with the cable number and length in the last byte instead of the first,
1448  * but there the resemblance ends. Where a USB MIDI packet is a semantic
1449  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1450  * with a cable nybble and a length nybble (which, unlike the CIN of a
1451  * real USB MIDI packet, has no semantics at all besides the length).
1452  * A packet received from a Midiman may contain part of a MIDI message,
1453  * more than one MIDI message, or parts of more than one MIDI message. A
1454  * three-byte MIDI message may arrive in three packets of data length 1, and
1455  * running status may be used. Happily, the midi(4) driver above us will put
1456  * it all back together, so the only cost is in USB bandwidth. The device
1457  * has an easier time with what it receives from us: we'll pack messages in
1458  * and across packets, but filling the packets whenever possible and,
1459  * as midi(4) hands us a complete message at a time, we'll never send one
1460  * in a dribble of short packets.
1461  */
1462 
1463 static int
1464 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1465 {
1466 	struct umidi_endpoint *ep = out_jack->endpoint;
1467 	struct umidi_softc *sc = ep->sc;
1468 	unsigned char *packet;
1469 	int s;
1470 	int plen;
1471 	int poff;
1472 
1473 	if (sc->sc_dying)
1474 		return EIO;
1475 
1476 	if (!out_jack->opened)
1477 		return ENODEV; /* XXX as it was, is this the right errno? */
1478 
1479 #ifdef UMIDI_DEBUG
1480 	if ( umididebug >= 100 )
1481 		microtime(&umidi_tv);
1482 #endif
1483 	DPRINTFN(100, ("umidi out: %lu.%06lus ep=%p cn=%d len=%d cin=%#x\n",
1484 	    umidi_tv.tv_sec%100, umidi_tv.tv_usec,
1485 	    ep, out_jack->cable_number, len, cin));
1486 
1487 	s = splusb();
1488 	packet = *ep->next_slot++;
1489 	KASSERT(ep->buffer_size >=
1490 	    (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1491 	memset(packet, 0, UMIDI_PACKET_SIZE);
1492 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1493 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1494 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
1495 			plen = 3 - poff;
1496 			if (plen > len)
1497 				plen = len;
1498 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
1499 			src += plen;
1500 			len -= plen;
1501 			plen += poff;
1502 			out_jack->midiman_ppkt[3] =
1503 			    MIX_CN_CIN(out_jack->cable_number, plen);
1504 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1505 			if (3 == plen)
1506 				out_jack->midiman_ppkt = NULL; /* no more */
1507 		}
1508 		if (0 == len)
1509 			ep->next_slot--; /* won't be needed, nevermind */
1510 		else {
1511 			memcpy(packet, src, len);
1512 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1513 			DPR_PACKET(out, sc, packet);
1514 			if (len < 3)
1515 				out_jack->midiman_ppkt = packet;
1516 		}
1517 	} else { /* the nice simple USB class-compliant case */
1518 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1519 		memcpy(packet+1, src, len);
1520 		DPR_PACKET(out, sc, packet);
1521 	}
1522 	ep->next_schedule |= 1<<(out_jack->cable_number);
1523 	++ ep->num_scheduled;
1524 	if ( !ep->armed  &&  !ep->soliciting ) {
1525 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
1526 		/*
1527 		 * It would be bad to call out_solicit directly here (the
1528 		 * caller need not be reentrant) but a soft interrupt allows
1529 		 * solicit to run immediately the caller exits its critical
1530 		 * section, and if the caller has more to write we can get it
1531 		 * before starting the USB transfer, and send a longer one.
1532 		 */
1533 		ep->soliciting = 1;
1534 		softintr_schedule(ep->solicit_cookie);
1535 #else
1536 		/*
1537 		 * This alternative is a little less desirable, because if the
1538 		 * writer has several messages to go at once, the first will go
1539 		 * in a USB frame all to itself, and the rest in a full-size
1540 		 * transfer one frame later (solicited on the first frame's
1541 		 * completion interrupt). But it's simple.
1542 		 */
1543 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1544 #endif
1545 	}
1546 	splx(s);
1547 
1548 	return 0;
1549 }
1550 
1551 static void
1552 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1553     usbd_status status __unused)
1554 {
1555 	int cn, len, i;
1556 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1557 	struct umidi_jack *jack;
1558 	unsigned char *packet;
1559 	umidi_packet_bufp slot;
1560 	umidi_packet_bufp end;
1561 	unsigned char *data;
1562 	u_int32_t count;
1563 
1564 	if (ep->sc->sc_dying || !ep->num_open)
1565 		return;
1566 
1567 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1568         if ( 0 == count % UMIDI_PACKET_SIZE ) {
1569 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1570 			     USBDEVNAME(ep->sc->sc_dev), ep, count));
1571         } else {
1572                 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1573                         USBDEVNAME(ep->sc->sc_dev), ep, count));
1574         }
1575 
1576 	slot = ep->buffer;
1577 	end = slot + count / sizeof *slot;
1578 
1579 	for ( packet = *slot; slot < end; packet = *++slot ) {
1580 
1581 		if ( UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE) ) {
1582 			cn = (0xf0&(packet[3]))>>4;
1583 			len = 0x0f&(packet[3]);
1584 			data = packet;
1585 		} else {
1586 			cn = GET_CN(packet[0]);
1587 			len = packet_length[GET_CIN(packet[0])];
1588 			data = packet + 1;
1589 		}
1590 		/* 0 <= cn <= 15 by inspection of above code */
1591 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1592 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1593 			         "%02X %02X %02X (try CN_SEQ quirk?)\n",
1594 				 USBDEVNAME(ep->sc->sc_dev), ep, cn, len,
1595 				 (unsigned)data[0],
1596 				 (unsigned)data[1],
1597 				 (unsigned)data[2]));
1598 			return;
1599 		}
1600 
1601 		if (!jack->binded || !jack->opened)
1602 			continue;
1603 
1604 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1605 		             "%02X %02X %02X\n",
1606 			     USBDEVNAME(ep->sc->sc_dev), ep, cn, len,
1607 			     (unsigned)data[0],
1608 			     (unsigned)data[1],
1609 			     (unsigned)data[2]));
1610 
1611 		if (jack->u.in.intr) {
1612 			for (i=0; i<len; i++) {
1613 				(*jack->u.in.intr)(jack->arg, data[i]);
1614 			}
1615 		}
1616 
1617 	}
1618 
1619 	(void)start_input_transfer(ep);
1620 }
1621 
1622 static void
1623 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1624     usbd_status status __unused)
1625 {
1626 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1627 	struct umidi_softc *sc = ep->sc;
1628 	u_int32_t count;
1629 
1630 	if (sc->sc_dying)
1631 		return;
1632 
1633 #ifdef UMIDI_DEBUG
1634 	if ( umididebug >= 200 )
1635 		microtime(&umidi_tv);
1636 #endif
1637 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1638         if ( 0 == count % UMIDI_PACKET_SIZE ) {
1639 		DPRINTFN(200,("%s: %lu.%06lus out ep %p xfer length %u\n",
1640 			     USBDEVNAME(ep->sc->sc_dev),
1641 			     umidi_tv.tv_sec%100, umidi_tv.tv_usec, ep, count));
1642         } else {
1643                 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1644                         USBDEVNAME(ep->sc->sc_dev), ep, count));
1645         }
1646 	count /= UMIDI_PACKET_SIZE;
1647 
1648 	/*
1649 	 * If while the transfer was pending we buffered any new messages,
1650 	 * move them to the start of the buffer.
1651 	 */
1652 	ep->next_slot -= count;
1653 	if ( ep->buffer < ep->next_slot ) {
1654 		memcpy(ep->buffer, ep->buffer + count,
1655 		       (char *)ep->next_slot - (char *)ep->buffer);
1656 	}
1657 	wakeup(ep);
1658 	/*
1659 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1660 	 * Running at splusb so the following should happen to be safe.
1661 	 */
1662 	ep->armed = 0;
1663 	if ( !ep->soliciting ) {
1664 		ep->soliciting = 1;
1665 		out_solicit(ep);
1666 	}
1667 }
1668 
1669 /*
1670  * A jack on which we have received a packet must be called back on its
1671  * out.intr handler before it will send us another; it is considered
1672  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1673  * we need no extra buffer space for it.
1674  *
1675  * In contrast, a jack that is open but not scheduled may supply us a packet
1676  * at any time, driven by the top half, and we must be able to accept it, no
1677  * excuses. So we must ensure that at any point in time there are at least
1678  * (num_open - num_scheduled) slots free.
1679  *
1680  * As long as there are more slots free than that minimum, we can loop calling
1681  * scheduled jacks back on their "interrupt" handlers, soliciting more
1682  * packets, starting the USB transfer only when the buffer space is down to
1683  * the minimum or no jack has any more to send.
1684  */
1685 static void
1686 out_solicit(void *arg)
1687 {
1688 	struct umidi_endpoint *ep = arg;
1689 	int s;
1690 	umidi_packet_bufp end;
1691 	u_int16_t which;
1692 	struct umidi_jack *jack;
1693 
1694 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1695 
1696 	for ( ;; ) {
1697 		s = splusb();
1698 		if ( end - ep->next_slot <= ep->num_open - ep->num_scheduled )
1699 			break; /* at splusb */
1700 		if ( ep->this_schedule == 0 ) {
1701 			if ( ep->next_schedule == 0 )
1702 				break; /* at splusb */
1703 			ep->this_schedule = ep->next_schedule;
1704 			ep->next_schedule = 0;
1705 		}
1706 		/*
1707 		 * At least one jack is scheduled. Find and mask off the least
1708 		 * set bit in this_schedule and decrement num_scheduled.
1709 		 * Convert mask to bit index to find the corresponding jack,
1710 		 * and call its intr handler. If it has a message, it will call
1711 		 * back one of the output methods, which will set its bit in
1712 		 * next_schedule (not copied into this_schedule until the
1713 		 * latter is empty). In this way we round-robin the jacks that
1714 		 * have messages to send, until the buffer is as full as we
1715 		 * dare, and then start a transfer.
1716 		 */
1717 		which = ep->this_schedule;
1718 		which &= (~which)+1; /* now mask of least set bit */
1719 		ep->this_schedule &= ~which;
1720 		-- ep->num_scheduled;
1721 		splx(s);
1722 
1723 		-- which; /* now 1s below mask - count 1s to get index */
1724 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1725 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
1726 		which = (((which >> 4) + which) & 0x0f0f);
1727 		which +=  (which >> 8);
1728 		which &= 0x1f; /* the bit index a/k/a jack number */
1729 
1730 		jack = ep->jacks[which];
1731 		if (jack->u.out.intr)
1732 			(*jack->u.out.intr)(jack->arg);
1733 	}
1734 	/* splusb at loop exit */
1735 	if ( !ep->armed  &&  ep->next_slot > ep->buffer )
1736 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1737 	ep->soliciting = 0;
1738 	splx(s);
1739 }
1740