xref: /netbsd-src/sys/dev/usb/umidi.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: umidi.c,v 1.74 2018/01/21 13:57:12 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI (tshiozak@NetBSD.org), (full-size transfers, extended
9  * hw_if) Chapman Flack (chap@NetBSD.org), and Matthew R. Green
10  * (mrg@eterna.com.au).
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.74 2018/01/21 13:57:12 skrll Exp $");
36 
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55 
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59 
60 #include <dev/auconv.h>
61 #include <dev/usb/usbdevs.h>
62 #include <dev/usb/umidi_quirks.h>
63 #include <dev/midi_if.h>
64 
65 /* Jack Descriptor */
66 #define UMIDI_MS_HEADER	0x01
67 #define UMIDI_IN_JACK	0x02
68 #define UMIDI_OUT_JACK	0x03
69 
70 /* Jack Type */
71 #define UMIDI_EMBEDDED	0x01
72 #define UMIDI_EXTERNAL	0x02
73 
74 /* generic, for iteration */
75 typedef struct {
76 	uByte		bLength;
77 	uByte		bDescriptorType;
78 	uByte		bDescriptorSubtype;
79 } UPACKED umidi_cs_descriptor_t;
80 
81 typedef struct {
82 	uByte		bLength;
83 	uByte		bDescriptorType;
84 	uByte		bDescriptorSubtype;
85 	uWord		bcdMSC;
86 	uWord		wTotalLength;
87 } UPACKED umidi_cs_interface_descriptor_t;
88 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
89 
90 typedef struct {
91 	uByte		bLength;
92 	uByte		bDescriptorType;
93 	uByte		bDescriptorSubtype;
94 	uByte		bNumEmbMIDIJack;
95 } UPACKED umidi_cs_endpoint_descriptor_t;
96 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
97 
98 typedef struct {
99 	uByte		bLength;
100 	uByte		bDescriptorType;
101 	uByte		bDescriptorSubtype;
102 	uByte		bJackType;
103 	uByte		bJackID;
104 } UPACKED umidi_jack_descriptor_t;
105 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
106 
107 
108 #define TO_D(p) ((usb_descriptor_t *)(p))
109 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
110 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
111 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
112 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
113 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
114 
115 
116 #define UMIDI_PACKET_SIZE 4
117 
118 /*
119  * hierarchie
120  *
121  * <-- parent	       child -->
122  *
123  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
124  *	   ^	 |    ^	    |
125  *	   +-----+    +-----+
126  */
127 
128 /* midi device */
129 struct umidi_mididev {
130 	struct umidi_softc	*sc;
131 	device_t		mdev;
132 	/* */
133 	struct umidi_jack	*in_jack;
134 	struct umidi_jack	*out_jack;
135 	char			*label;
136 	size_t			label_len;
137 	/* */
138 	int			opened;
139 	int			closing;
140 	int			flags;
141 };
142 
143 /* Jack Information */
144 struct umidi_jack {
145 	struct umidi_endpoint	*endpoint;
146 	/* */
147 	int			cable_number;
148 	void			*arg;
149 	int			bound;
150 	int			opened;
151 	unsigned char		*midiman_ppkt;
152 	union {
153 		struct {
154 			void			(*intr)(void *);
155 		} out;
156 		struct {
157 			void			(*intr)(void *, int);
158 		} in;
159 	} u;
160 };
161 
162 #define UMIDI_MAX_EPJACKS	16
163 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
164 /* endpoint data */
165 struct umidi_endpoint {
166 	struct umidi_softc	*sc;
167 	/* */
168 	int			addr;
169 	struct usbd_pipe	*pipe;
170 	struct usbd_xfer	*xfer;
171 	umidi_packet_bufp	buffer;
172 	umidi_packet_bufp	next_slot;
173 	uint32_t               buffer_size;
174 	int			num_scheduled;
175 	int			num_open;
176 	int			num_jacks;
177 	int			soliciting;
178 	void			*solicit_cookie;
179 	int			armed;
180 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
181 	uint16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
182 	uint16_t		next_schedule;
183 };
184 
185 /* software context */
186 struct umidi_softc {
187 	device_t		sc_dev;
188 	struct usbd_device	*sc_udev;
189 	struct usbd_interface	*sc_iface;
190 	const struct umidi_quirk	*sc_quirk;
191 
192 	int			sc_dying;
193 
194 	int			sc_out_num_jacks;
195 	struct umidi_jack	*sc_out_jacks;
196 	int			sc_in_num_jacks;
197 	struct umidi_jack	*sc_in_jacks;
198 	struct umidi_jack	*sc_jacks;
199 
200 	int			sc_num_mididevs;
201 	struct umidi_mididev	*sc_mididevs;
202 
203 	int			sc_out_num_endpoints;
204 	struct umidi_endpoint	*sc_out_ep;
205 	int			sc_in_num_endpoints;
206 	struct umidi_endpoint	*sc_in_ep;
207 	struct umidi_endpoint	*sc_endpoints;
208 	size_t			sc_endpoints_len;
209 	int			cblnums_global;
210 
211 	kmutex_t		sc_lock;
212 	kcondvar_t		sc_cv;
213 	kcondvar_t		sc_detach_cv;
214 
215 	int			sc_refcnt;
216 };
217 
218 #ifdef UMIDI_DEBUG
219 #define DPRINTF(x)	if (umididebug) printf x
220 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
221 #include <sys/time.h>
222 static struct timeval umidi_tv;
223 int	umididebug = 0;
224 #else
225 #define DPRINTF(x)
226 #define DPRINTFN(n,x)
227 #endif
228 
229 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
230 				 (sc->sc_out_num_endpoints + \
231 				  sc->sc_in_num_endpoints))
232 
233 
234 static int umidi_open(void *, int,
235 		      void (*)(void *, int), void (*)(void *), void *);
236 static void umidi_close(void *);
237 static int umidi_channelmsg(void *, int, int, u_char *, int);
238 static int umidi_commonmsg(void *, int, u_char *, int);
239 static int umidi_sysex(void *, u_char *, int);
240 static int umidi_rtmsg(void *, int);
241 static void umidi_getinfo(void *, struct midi_info *);
242 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
243 
244 static usbd_status alloc_pipe(struct umidi_endpoint *);
245 static void free_pipe(struct umidi_endpoint *);
246 
247 static usbd_status alloc_all_endpoints(struct umidi_softc *);
248 static void free_all_endpoints(struct umidi_softc *);
249 
250 static usbd_status alloc_all_jacks(struct umidi_softc *);
251 static void free_all_jacks(struct umidi_softc *);
252 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
253 					 struct umidi_jack *,
254 					 struct umidi_jack *,
255 					 struct umidi_mididev *);
256 static void unbind_jacks_from_mididev(struct umidi_mididev *);
257 static void unbind_all_jacks(struct umidi_softc *);
258 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
259 static usbd_status open_out_jack(struct umidi_jack *, void *,
260 				 void (*)(void *));
261 static usbd_status open_in_jack(struct umidi_jack *, void *,
262 				void (*)(void *, int));
263 static void close_out_jack(struct umidi_jack *);
264 static void close_in_jack(struct umidi_jack *);
265 
266 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
267 static usbd_status detach_mididev(struct umidi_mididev *, int);
268 static void deactivate_mididev(struct umidi_mididev *);
269 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
270 static void free_all_mididevs(struct umidi_softc *);
271 static usbd_status attach_all_mididevs(struct umidi_softc *);
272 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
273 static void deactivate_all_mididevs(struct umidi_softc *);
274 static void describe_mididev(struct umidi_mididev *);
275 
276 #ifdef UMIDI_DEBUG
277 static void dump_sc(struct umidi_softc *);
278 static void dump_ep(struct umidi_endpoint *);
279 static void dump_jack(struct umidi_jack *);
280 #endif
281 
282 static usbd_status start_input_transfer(struct umidi_endpoint *);
283 static usbd_status start_output_transfer(struct umidi_endpoint *);
284 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
285 static void in_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_intr(struct usbd_xfer *, void *, usbd_status);
287 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
288 static void out_solicit_locked(void *); /* pre-locked version */
289 
290 
291 const struct midi_hw_if umidi_hw_if = {
292 	.open = umidi_open,
293 	.close = umidi_close,
294 	.output = umidi_rtmsg,
295 	.getinfo = umidi_getinfo,
296 	.get_locks = umidi_get_locks,
297 };
298 
299 struct midi_hw_if_ext umidi_hw_if_ext = {
300 	.channel = umidi_channelmsg,
301 	.common  = umidi_commonmsg,
302 	.sysex   = umidi_sysex,
303 };
304 
305 struct midi_hw_if_ext umidi_hw_if_mm = {
306 	.channel = umidi_channelmsg,
307 	.common  = umidi_commonmsg,
308 	.sysex   = umidi_sysex,
309 	.compress = 1,
310 };
311 
312 int umidi_match(device_t, cfdata_t, void *);
313 void umidi_attach(device_t, device_t, void *);
314 void umidi_childdet(device_t, device_t);
315 int umidi_detach(device_t, int);
316 int umidi_activate(device_t, enum devact);
317 extern struct cfdriver umidi_cd;
318 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
319     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
320 
321 int
322 umidi_match(device_t parent, cfdata_t match, void *aux)
323 {
324 	struct usbif_attach_arg *uiaa = aux;
325 
326 	DPRINTFN(1,("umidi_match\n"));
327 
328 	if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
329 	    uiaa->uiaa_ifaceno))
330 		return UMATCH_IFACECLASS_IFACESUBCLASS;
331 
332 	if (uiaa->uiaa_class == UICLASS_AUDIO &&
333 	    uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
334 		return UMATCH_IFACECLASS_IFACESUBCLASS;
335 
336 	return UMATCH_NONE;
337 }
338 
339 void
340 umidi_attach(device_t parent, device_t self, void *aux)
341 {
342 	usbd_status     err;
343 	struct umidi_softc *sc = device_private(self);
344 	struct usbif_attach_arg *uiaa = aux;
345 	char *devinfop;
346 
347 	DPRINTFN(1,("umidi_attach\n"));
348 
349 	sc->sc_dev = self;
350 
351 	aprint_naive("\n");
352 	aprint_normal("\n");
353 
354 	devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
355 	aprint_normal_dev(self, "%s\n", devinfop);
356 	usbd_devinfo_free(devinfop);
357 
358 	sc->sc_iface = uiaa->uiaa_iface;
359 	sc->sc_udev = uiaa->uiaa_device;
360 
361 	sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
362 	    uiaa->uiaa_product, uiaa->uiaa_ifaceno);
363 
364 	aprint_normal_dev(self, "");
365 	umidi_print_quirk(sc->sc_quirk);
366 
367 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
368 	cv_init(&sc->sc_cv, "umidopcl");
369 	cv_init(&sc->sc_detach_cv, "umidetcv");
370 	sc->sc_refcnt = 0;
371 
372 	err = alloc_all_endpoints(sc);
373 	if (err != USBD_NORMAL_COMPLETION) {
374 		aprint_error_dev(self,
375 		    "alloc_all_endpoints failed. (err=%d)\n", err);
376 		goto out;
377 	}
378 	err = alloc_all_jacks(sc);
379 	if (err != USBD_NORMAL_COMPLETION) {
380 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
381 		    err);
382 		goto out_free_endpoints;
383 	}
384 	aprint_normal_dev(self, "out=%d, in=%d\n",
385 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
386 
387 	err = assign_all_jacks_automatically(sc);
388 	if (err != USBD_NORMAL_COMPLETION) {
389 		aprint_error_dev(self,
390 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
391 		goto out_free_jacks;
392 	}
393 	err = attach_all_mididevs(sc);
394 	if (err != USBD_NORMAL_COMPLETION) {
395 		aprint_error_dev(self,
396 		    "attach_all_mididevs failed. (err=%d)\n", err);
397 		goto out_free_jacks;
398 	}
399 
400 #ifdef UMIDI_DEBUG
401 	dump_sc(sc);
402 #endif
403 
404 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
405 
406 	return;
407 
408 out_free_jacks:
409 	unbind_all_jacks(sc);
410 	free_all_jacks(sc);
411 
412 out_free_endpoints:
413 	free_all_endpoints(sc);
414 
415 out:
416 	aprint_error_dev(self, "disabled.\n");
417 	sc->sc_dying = 1;
418 	KERNEL_UNLOCK_ONE(curlwp);
419 	return;
420 }
421 
422 void
423 umidi_childdet(device_t self, device_t child)
424 {
425 	int i;
426 	struct umidi_softc *sc = device_private(self);
427 
428 	KASSERT(sc->sc_mididevs != NULL);
429 
430 	for (i = 0; i < sc->sc_num_mididevs; i++) {
431 		if (sc->sc_mididevs[i].mdev == child)
432 			break;
433 	}
434 	KASSERT(i < sc->sc_num_mididevs);
435 	sc->sc_mididevs[i].mdev = NULL;
436 }
437 
438 int
439 umidi_activate(device_t self, enum devact act)
440 {
441 	struct umidi_softc *sc = device_private(self);
442 
443 	switch (act) {
444 	case DVACT_DEACTIVATE:
445 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
446 		sc->sc_dying = 1;
447 		deactivate_all_mididevs(sc);
448 		return 0;
449 	default:
450 		DPRINTFN(1,("umidi_activate (%d)\n", act));
451 		return EOPNOTSUPP;
452 	}
453 }
454 
455 int
456 umidi_detach(device_t self, int flags)
457 {
458 	struct umidi_softc *sc = device_private(self);
459 
460 	DPRINTFN(1,("umidi_detach\n"));
461 
462 	mutex_enter(&sc->sc_lock);
463 	sc->sc_dying = 1;
464 	if (--sc->sc_refcnt >= 0)
465 		usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
466 	mutex_exit(&sc->sc_lock);
467 
468 	detach_all_mididevs(sc, flags);
469 	free_all_mididevs(sc);
470 	free_all_jacks(sc);
471 	free_all_endpoints(sc);
472 
473 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
474 
475 	mutex_destroy(&sc->sc_lock);
476 	cv_destroy(&sc->sc_detach_cv);
477 	cv_destroy(&sc->sc_cv);
478 
479 	return 0;
480 }
481 
482 
483 /*
484  * midi_if stuffs
485  */
486 int
487 umidi_open(void *addr,
488 	   int flags,
489 	   void (*iintr)(void *, int),
490 	   void (*ointr)(void *),
491 	   void *arg)
492 {
493 	struct umidi_mididev *mididev = addr;
494 	struct umidi_softc *sc = mididev->sc;
495 	usbd_status err;
496 
497 	KASSERT(mutex_owned(&sc->sc_lock));
498 	DPRINTF(("umidi_open: sc=%p\n", sc));
499 
500 	if (mididev->opened)
501 		return EBUSY;
502 	if (sc->sc_dying)
503 		return EIO;
504 
505 	mididev->opened = 1;
506 	mididev->flags = flags;
507 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
508 		err = open_out_jack(mididev->out_jack, arg, ointr);
509 		if (err != USBD_NORMAL_COMPLETION)
510 			goto bad;
511 	}
512 	if ((mididev->flags & FREAD) && mididev->in_jack) {
513 		err = open_in_jack(mididev->in_jack, arg, iintr);
514 		KASSERT(mididev->opened);
515 		if (err != USBD_NORMAL_COMPLETION &&
516 		    err != USBD_IN_PROGRESS) {
517 			if (mididev->out_jack)
518 				close_out_jack(mididev->out_jack);
519 			goto bad;
520 		}
521 	}
522 
523 	return 0;
524 bad:
525 	mididev->opened = 0;
526 	DPRINTF(("umidi_open: usbd_status %d\n", err));
527 	KASSERT(mutex_owned(&sc->sc_lock));
528 	return USBD_IN_USE == err ? EBUSY : EIO;
529 }
530 
531 void
532 umidi_close(void *addr)
533 {
534 	struct umidi_mididev *mididev = addr;
535 	struct umidi_softc *sc = mididev->sc;
536 
537 	KASSERT(mutex_owned(&sc->sc_lock));
538 
539 	if (mididev->closing)
540 		return;
541 
542 	mididev->closing = 1;
543 
544 	sc->sc_refcnt++;
545 
546 	if ((mididev->flags & FWRITE) && mididev->out_jack)
547 		close_out_jack(mididev->out_jack);
548 	if ((mididev->flags & FREAD) && mididev->in_jack)
549 		close_in_jack(mididev->in_jack);
550 
551 	if (--sc->sc_refcnt < 0)
552 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
553 
554 	mididev->opened = 0;
555 	mididev->closing = 0;
556 }
557 
558 int
559 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
560     int len)
561 {
562 	struct umidi_mididev *mididev = addr;
563 
564 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
565 
566 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
567 		return EIO;
568 
569 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
570 }
571 
572 int
573 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
574 {
575 	struct umidi_mididev *mididev = addr;
576 	int cin;
577 
578 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
579 
580 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
581 		return EIO;
582 
583 	switch ( len ) {
584 	case 1: cin = 5; break;
585 	case 2: cin = 2; break;
586 	case 3: cin = 3; break;
587 	default: return EIO; /* or gcc warns of cin uninitialized */
588 	}
589 
590 	return out_jack_output(mididev->out_jack, msg, len, cin);
591 }
592 
593 int
594 umidi_sysex(void *addr, u_char *msg, int len)
595 {
596 	struct umidi_mididev *mididev = addr;
597 	int cin;
598 
599 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
600 
601 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
602 		return EIO;
603 
604 	switch ( len ) {
605 	case 1: cin = 5; break;
606 	case 2: cin = 6; break;
607 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
608 	default: return EIO; /* or gcc warns of cin uninitialized */
609 	}
610 
611 	return out_jack_output(mididev->out_jack, msg, len, cin);
612 }
613 
614 int
615 umidi_rtmsg(void *addr, int d)
616 {
617 	struct umidi_mididev *mididev = addr;
618 	u_char msg = d;
619 
620 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
621 
622 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
623 		return EIO;
624 
625 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
626 }
627 
628 void
629 umidi_getinfo(void *addr, struct midi_info *mi)
630 {
631 	struct umidi_mididev *mididev = addr;
632 	struct umidi_softc *sc = mididev->sc;
633 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
634 
635 	KASSERT(mutex_owned(&sc->sc_lock));
636 
637 	mi->name = mididev->label;
638 	mi->props = MIDI_PROP_OUT_INTR;
639 	if (mididev->in_jack)
640 		mi->props |= MIDI_PROP_CAN_INPUT;
641 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
642 }
643 
644 static void
645 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
646 {
647 	struct umidi_mididev *mididev = addr;
648 	struct umidi_softc *sc = mididev->sc;
649 
650 	*intr = NULL;
651 	*thread = &sc->sc_lock;
652 }
653 
654 /*
655  * each endpoint stuffs
656  */
657 
658 /* alloc/free pipe */
659 static usbd_status
660 alloc_pipe(struct umidi_endpoint *ep)
661 {
662 	struct umidi_softc *sc = ep->sc;
663 	usbd_status err;
664 	usb_endpoint_descriptor_t *epd;
665 
666 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
667 	/*
668 	 * For output, an improvement would be to have a buffer bigger than
669 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
670 	 * allow out_solicit to fill the buffer to the full packet size in
671 	 * all cases. But to use usbd_create_xfer to get a slightly larger
672 	 * buffer would not be a good way to do that, because if the addition
673 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
674 	 * larger block may be wastefully allocated. Some flavor of double
675 	 * buffering could serve the same purpose, but would increase the
676 	 * code complexity, so for now I will live with the current slight
677 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
678 	 * packet slots.
679 	 */
680 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
681 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
682 
683 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
684 		device_xname(sc->sc_dev), ep, ep->buffer_size));
685 	ep->num_scheduled = 0;
686 	ep->this_schedule = 0;
687 	ep->next_schedule = 0;
688 	ep->soliciting = 0;
689 	ep->armed = 0;
690 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
691 	if (err)
692 		goto quit;
693 	int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
694 	    0, 0, &ep->xfer);
695 	if (error) {
696 		usbd_close_pipe(ep->pipe);
697 		return USBD_NOMEM;
698 	}
699 	ep->buffer = usbd_get_buffer(ep->xfer);
700 	ep->next_slot = ep->buffer;
701 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
702 	    out_solicit, ep);
703 quit:
704 	return err;
705 }
706 
707 static void
708 free_pipe(struct umidi_endpoint *ep)
709 {
710 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
711 	usbd_abort_pipe(ep->pipe);
712 	usbd_destroy_xfer(ep->xfer);
713 	usbd_close_pipe(ep->pipe);
714 	softint_disestablish(ep->solicit_cookie);
715 }
716 
717 
718 /* alloc/free the array of endpoint structures */
719 
720 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
722 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
723 
724 static usbd_status
725 alloc_all_endpoints(struct umidi_softc *sc)
726 {
727 	usbd_status err;
728 	struct umidi_endpoint *ep;
729 	int i;
730 
731 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
732 		err = alloc_all_endpoints_fixed_ep(sc);
733 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
734 		err = alloc_all_endpoints_yamaha(sc);
735 	} else {
736 		err = alloc_all_endpoints_genuine(sc);
737 	}
738 	if (err != USBD_NORMAL_COMPLETION)
739 		return err;
740 
741 	ep = sc->sc_endpoints;
742 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
743 		err = alloc_pipe(ep++);
744 		if (err != USBD_NORMAL_COMPLETION) {
745 			for (; ep != sc->sc_endpoints; ep--)
746 				free_pipe(ep-1);
747 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
748 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
749 			break;
750 		}
751 	}
752 	return err;
753 }
754 
755 static void
756 free_all_endpoints(struct umidi_softc *sc)
757 {
758 	int i;
759 
760 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
761 		free_pipe(&sc->sc_endpoints[i]);
762 	if (sc->sc_endpoints != NULL)
763 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
764 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
765 }
766 
767 static usbd_status
768 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
769 {
770 	usbd_status err;
771 	const struct umq_fixed_ep_desc *fp;
772 	struct umidi_endpoint *ep;
773 	usb_endpoint_descriptor_t *epd;
774 	int i;
775 
776 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
777 					    UMQ_TYPE_FIXED_EP);
778 	sc->sc_out_num_jacks = 0;
779 	sc->sc_in_num_jacks = 0;
780 	sc->sc_out_num_endpoints = fp->num_out_ep;
781 	sc->sc_in_num_endpoints = fp->num_in_ep;
782 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
783 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
784 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
785 	sc->sc_in_ep =
786 	    sc->sc_in_num_endpoints ?
787 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
788 
789 	ep = &sc->sc_out_ep[0];
790 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
791 		epd = usbd_interface2endpoint_descriptor(
792 			sc->sc_iface,
793 			fp->out_ep[i].ep);
794 		if (!epd) {
795 			aprint_error_dev(sc->sc_dev,
796 			    "cannot get endpoint descriptor(out:%d)\n",
797 			     fp->out_ep[i].ep);
798 			err = USBD_INVAL;
799 			goto error;
800 		}
801 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
802 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
803 			aprint_error_dev(sc->sc_dev,
804 			    "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
805 			err = USBD_INVAL;
806 			goto error;
807 		}
808 		ep->sc = sc;
809 		ep->addr = epd->bEndpointAddress;
810 		ep->num_jacks = fp->out_ep[i].num_jacks;
811 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
812 		ep->num_open = 0;
813 		ep++;
814 	}
815 	ep = &sc->sc_in_ep[0];
816 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
817 		epd = usbd_interface2endpoint_descriptor(
818 			sc->sc_iface,
819 			fp->in_ep[i].ep);
820 		if (!epd) {
821 			aprint_error_dev(sc->sc_dev,
822 			    "cannot get endpoint descriptor(in:%d)\n",
823 			     fp->in_ep[i].ep);
824 			err = USBD_INVAL;
825 			goto error;
826 		}
827 		/*
828 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
829 		 * endpoint.  The existing input logic in this driver seems
830 		 * to work successfully if we just stop treating an interrupt
831 		 * endpoint as illegal (or the in_progress status we get on
832 		 * the initial transfer).  It does not seem necessary to
833 		 * actually use the interrupt flavor of alloc_pipe or make
834 		 * other serious rearrangements of logic.  I like that.
835 		 */
836 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
837 		case UE_BULK:
838 		case UE_INTERRUPT:
839 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
840 				break;
841 			/*FALLTHROUGH*/
842 		default:
843 			aprint_error_dev(sc->sc_dev,
844 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
845 			err = USBD_INVAL;
846 			goto error;
847 		}
848 
849 		ep->sc = sc;
850 		ep->addr = epd->bEndpointAddress;
851 		ep->num_jacks = fp->in_ep[i].num_jacks;
852 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
853 		ep->num_open = 0;
854 		ep++;
855 	}
856 
857 	return USBD_NORMAL_COMPLETION;
858 error:
859 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
860 	sc->sc_endpoints = NULL;
861 	return err;
862 }
863 
864 static usbd_status
865 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
866 {
867 	/* This driver currently supports max 1in/1out bulk endpoints */
868 	usb_descriptor_t *desc;
869 	umidi_cs_descriptor_t *udesc;
870 	usb_endpoint_descriptor_t *epd;
871 	int out_addr, in_addr, i;
872 	int dir;
873 	size_t remain, descsize;
874 
875 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
876 	out_addr = in_addr = 0;
877 
878 	/* detect endpoints */
879 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
880 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
881 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
882 		KASSERT(epd != NULL);
883 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
884 			dir = UE_GET_DIR(epd->bEndpointAddress);
885 			if (dir==UE_DIR_OUT && !out_addr)
886 				out_addr = epd->bEndpointAddress;
887 			else if (dir==UE_DIR_IN && !in_addr)
888 				in_addr = epd->bEndpointAddress;
889 		}
890 	}
891 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
892 
893 	/* count jacks */
894 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
895 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
896 		return USBD_INVAL;
897 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
898 		(size_t)udesc->bLength;
899 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
900 
901 	while (remain >= sizeof(usb_descriptor_t)) {
902 		descsize = udesc->bLength;
903 		if (descsize>remain || descsize==0)
904 			break;
905 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
906 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
907 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
908 				sc->sc_out_num_jacks++;
909 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
910 				sc->sc_in_num_jacks++;
911 		}
912 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
913 		remain -= descsize;
914 	}
915 
916 	/* validate some parameters */
917 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
918 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
919 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
920 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
921 	if (sc->sc_out_num_jacks && out_addr) {
922 		sc->sc_out_num_endpoints = 1;
923 	} else {
924 		sc->sc_out_num_endpoints = 0;
925 		sc->sc_out_num_jacks = 0;
926 	}
927 	if (sc->sc_in_num_jacks && in_addr) {
928 		sc->sc_in_num_endpoints = 1;
929 	} else {
930 		sc->sc_in_num_endpoints = 0;
931 		sc->sc_in_num_jacks = 0;
932 	}
933 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
934 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
935 	if (sc->sc_out_num_endpoints) {
936 		sc->sc_out_ep = sc->sc_endpoints;
937 		sc->sc_out_ep->sc = sc;
938 		sc->sc_out_ep->addr = out_addr;
939 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
940 		sc->sc_out_ep->num_open = 0;
941 	} else
942 		sc->sc_out_ep = NULL;
943 
944 	if (sc->sc_in_num_endpoints) {
945 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
946 		sc->sc_in_ep->sc = sc;
947 		sc->sc_in_ep->addr = in_addr;
948 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
949 		sc->sc_in_ep->num_open = 0;
950 	} else
951 		sc->sc_in_ep = NULL;
952 
953 	return USBD_NORMAL_COMPLETION;
954 }
955 
956 static usbd_status
957 alloc_all_endpoints_genuine(struct umidi_softc *sc)
958 {
959 	usb_interface_descriptor_t *interface_desc;
960 	usb_config_descriptor_t *config_desc;
961 	usb_descriptor_t *desc;
962 	int num_ep;
963 	size_t remain, descsize;
964 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
965 	int epaddr;
966 
967 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
968 	num_ep = interface_desc->bNumEndpoints;
969 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
970 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
971 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
972 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
973 	epaddr = -1;
974 
975 	/* get the list of endpoints for midi stream */
976 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
977 	desc = (usb_descriptor_t *) config_desc;
978 	remain = (size_t)UGETW(config_desc->wTotalLength);
979 	while (remain>=sizeof(usb_descriptor_t)) {
980 		descsize = desc->bLength;
981 		if (descsize>remain || descsize==0)
982 			break;
983 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
984 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
985 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
986 			epaddr = TO_EPD(desc)->bEndpointAddress;
987 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
988 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
989 			   epaddr!=-1) {
990 			if (num_ep>0) {
991 				num_ep--;
992 				p->sc = sc;
993 				p->addr = epaddr;
994 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
995 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
996 					sc->sc_out_num_endpoints++;
997 					sc->sc_out_num_jacks += p->num_jacks;
998 				} else {
999 					sc->sc_in_num_endpoints++;
1000 					sc->sc_in_num_jacks += p->num_jacks;
1001 				}
1002 				p++;
1003 			}
1004 		} else
1005 			epaddr = -1;
1006 		desc = NEXT_D(desc);
1007 		remain-=descsize;
1008 	}
1009 
1010 	/* sort endpoints */
1011 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1012 	p = sc->sc_endpoints;
1013 	endep = p + num_ep;
1014 	while (p<endep) {
1015 		lowest = p;
1016 		for (q=p+1; q<endep; q++) {
1017 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1018 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1019 			    ((UE_GET_DIR(lowest->addr)==
1020 			      UE_GET_DIR(q->addr)) &&
1021 			     (UE_GET_ADDR(lowest->addr)>
1022 			      UE_GET_ADDR(q->addr))))
1023 				lowest = q;
1024 		}
1025 		if (lowest != p) {
1026 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1027 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1028 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1029 		}
1030 		p->num_open = 0;
1031 		p++;
1032 	}
1033 
1034 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1035 	sc->sc_in_ep =
1036 	    sc->sc_in_num_endpoints ?
1037 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1038 
1039 	return USBD_NORMAL_COMPLETION;
1040 }
1041 
1042 
1043 /*
1044  * jack stuffs
1045  */
1046 
1047 static usbd_status
1048 alloc_all_jacks(struct umidi_softc *sc)
1049 {
1050 	int i, j;
1051 	struct umidi_endpoint *ep;
1052 	struct umidi_jack *jack;
1053 	const unsigned char *cn_spec;
1054 
1055 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1056 		sc->cblnums_global = 0;
1057 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1058 		sc->cblnums_global = 1;
1059 	else {
1060 		/*
1061 		 * I don't think this default is correct, but it preserves
1062 		 * the prior behavior of the code. That's why I defined two
1063 		 * complementary quirks. Any device for which the default
1064 		 * behavior is wrong can be made to work by giving it an
1065 		 * explicit quirk, and if a pattern ever develops (as I suspect
1066 		 * it will) that a lot of otherwise standard USB MIDI devices
1067 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
1068 		 * changed to 0, and the only devices that will break are those
1069 		 * listing neither quirk, and they'll easily be fixed by giving
1070 		 * them the CN_SEQ_GLOBAL quirk.
1071 		 */
1072 		sc->cblnums_global = 1;
1073 	}
1074 
1075 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1076 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1077 					    		 UMQ_TYPE_CN_FIXED);
1078 	else
1079 		cn_spec = NULL;
1080 
1081 	/* allocate/initialize structures */
1082 	sc->sc_jacks =
1083 	    kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
1084 		    + sc->sc_out_num_jacks), KM_SLEEP);
1085 	if (!sc->sc_jacks)
1086 		return USBD_NOMEM;
1087 	sc->sc_out_jacks =
1088 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1089 	sc->sc_in_jacks =
1090 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1091 
1092 	jack = &sc->sc_out_jacks[0];
1093 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
1094 		jack->opened = 0;
1095 		jack->bound = 0;
1096 		jack->arg = NULL;
1097 		jack->u.out.intr = NULL;
1098 		jack->midiman_ppkt = NULL;
1099 		if (sc->cblnums_global)
1100 			jack->cable_number = i;
1101 		jack++;
1102 	}
1103 	jack = &sc->sc_in_jacks[0];
1104 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
1105 		jack->opened = 0;
1106 		jack->bound = 0;
1107 		jack->arg = NULL;
1108 		jack->u.in.intr = NULL;
1109 		if (sc->cblnums_global)
1110 			jack->cable_number = i;
1111 		jack++;
1112 	}
1113 
1114 	/* assign each jacks to each endpoints */
1115 	jack = &sc->sc_out_jacks[0];
1116 	ep = &sc->sc_out_ep[0];
1117 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1118 		for (j = 0; j < ep->num_jacks; j++) {
1119 			jack->endpoint = ep;
1120 			if (cn_spec != NULL)
1121 				jack->cable_number = *cn_spec++;
1122 			else if (!sc->cblnums_global)
1123 				jack->cable_number = j;
1124 			ep->jacks[jack->cable_number] = jack;
1125 			jack++;
1126 		}
1127 		ep++;
1128 	}
1129 	jack = &sc->sc_in_jacks[0];
1130 	ep = &sc->sc_in_ep[0];
1131 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1132 		for (j = 0; j < ep->num_jacks; j++) {
1133 			jack->endpoint = ep;
1134 			if (cn_spec != NULL)
1135 				jack->cable_number = *cn_spec++;
1136 			else if (!sc->cblnums_global)
1137 				jack->cable_number = j;
1138 			ep->jacks[jack->cable_number] = jack;
1139 			jack++;
1140 		}
1141 		ep++;
1142 	}
1143 
1144 	return USBD_NORMAL_COMPLETION;
1145 }
1146 
1147 static void
1148 free_all_jacks(struct umidi_softc *sc)
1149 {
1150 	struct umidi_jack *jacks;
1151 	size_t len;
1152 
1153 	mutex_enter(&sc->sc_lock);
1154 	jacks = sc->sc_jacks;
1155 	len = sizeof(*sc->sc_out_jacks)
1156 	    * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1157 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1158 	mutex_exit(&sc->sc_lock);
1159 
1160 	if (jacks)
1161 		kmem_free(jacks, len);
1162 }
1163 
1164 static usbd_status
1165 bind_jacks_to_mididev(struct umidi_softc *sc,
1166 		      struct umidi_jack *out_jack,
1167 		      struct umidi_jack *in_jack,
1168 		      struct umidi_mididev *mididev)
1169 {
1170 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1171 		return USBD_IN_USE;
1172 	if (mididev->out_jack || mididev->in_jack)
1173 		return USBD_IN_USE;
1174 
1175 	if (out_jack)
1176 		out_jack->bound = 1;
1177 	if (in_jack)
1178 		in_jack->bound = 1;
1179 	mididev->in_jack = in_jack;
1180 	mididev->out_jack = out_jack;
1181 
1182 	mididev->closing = 0;
1183 
1184 	return USBD_NORMAL_COMPLETION;
1185 }
1186 
1187 static void
1188 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1189 {
1190 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
1191 
1192 	mididev->closing = 1;
1193 
1194 	if ((mididev->flags & FWRITE) && mididev->out_jack)
1195 		close_out_jack(mididev->out_jack);
1196 	if ((mididev->flags & FREAD) && mididev->in_jack)
1197 		close_in_jack(mididev->in_jack);
1198 
1199 	if (mididev->out_jack) {
1200 		mididev->out_jack->bound = 0;
1201 		mididev->out_jack = NULL;
1202 	}
1203 	if (mididev->in_jack) {
1204 		mididev->in_jack->bound = 0;
1205 		mididev->in_jack = NULL;
1206 	}
1207 }
1208 
1209 static void
1210 unbind_all_jacks(struct umidi_softc *sc)
1211 {
1212 	int i;
1213 
1214 	mutex_enter(&sc->sc_lock);
1215 	if (sc->sc_mididevs)
1216 		for (i = 0; i < sc->sc_num_mididevs; i++)
1217 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1218 	mutex_exit(&sc->sc_lock);
1219 }
1220 
1221 static usbd_status
1222 assign_all_jacks_automatically(struct umidi_softc *sc)
1223 {
1224 	usbd_status err;
1225 	int i;
1226 	struct umidi_jack *out, *in;
1227 	const signed char *asg_spec;
1228 
1229 	err =
1230 	    alloc_all_mididevs(sc,
1231 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1232 	if (err!=USBD_NORMAL_COMPLETION)
1233 		return err;
1234 
1235 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1236 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1237 					    		  UMQ_TYPE_MD_FIXED);
1238 	else
1239 		asg_spec = NULL;
1240 
1241 	for (i = 0; i < sc->sc_num_mididevs; i++) {
1242 		if (asg_spec != NULL) {
1243 			if (*asg_spec == -1)
1244 				out = NULL;
1245 			else
1246 				out = &sc->sc_out_jacks[*asg_spec];
1247 			++ asg_spec;
1248 			if (*asg_spec == -1)
1249 				in = NULL;
1250 			else
1251 				in = &sc->sc_in_jacks[*asg_spec];
1252 			++ asg_spec;
1253 		} else {
1254 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1255 						       : NULL;
1256 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1257 						     : NULL;
1258 		}
1259 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1260 		if (err != USBD_NORMAL_COMPLETION) {
1261 			free_all_mididevs(sc);
1262 			return err;
1263 		}
1264 	}
1265 
1266 	return USBD_NORMAL_COMPLETION;
1267 }
1268 
1269 static usbd_status
1270 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1271 {
1272 	struct umidi_endpoint *ep = jack->endpoint;
1273 	struct umidi_softc *sc = ep->sc;
1274 	umidi_packet_bufp end;
1275 	int err;
1276 
1277 	KASSERT(mutex_owned(&sc->sc_lock));
1278 
1279 	if (jack->opened)
1280 		return USBD_IN_USE;
1281 
1282 	jack->arg = arg;
1283 	jack->u.out.intr = intr;
1284 	jack->midiman_ppkt = NULL;
1285 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1286 	jack->opened = 1;
1287 	ep->num_open++;
1288 	/*
1289 	 * out_solicit maintains an invariant that there will always be
1290 	 * (num_open - num_scheduled) slots free in the buffer. as we have
1291 	 * just incremented num_open, the buffer may be too full to satisfy
1292 	 * the invariant until a transfer completes, for which we must wait.
1293 	 */
1294 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1295 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1296 		     mstohz(10));
1297 		if (err) {
1298 			ep->num_open--;
1299 			jack->opened = 0;
1300 			return USBD_IOERROR;
1301 		}
1302 	}
1303 
1304 	return USBD_NORMAL_COMPLETION;
1305 }
1306 
1307 static usbd_status
1308 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1309 {
1310 	usbd_status err = USBD_NORMAL_COMPLETION;
1311 	struct umidi_endpoint *ep = jack->endpoint;
1312 
1313 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1314 
1315 	if (jack->opened)
1316 		return USBD_IN_USE;
1317 
1318 	jack->arg = arg;
1319 	jack->u.in.intr = intr;
1320 	jack->opened = 1;
1321 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1322 		/*
1323 		 * Can't hold the interrupt lock while calling into USB,
1324 		 * but we can safely drop it here.
1325 		 */
1326 		mutex_exit(&ep->sc->sc_lock);
1327 		err = start_input_transfer(ep);
1328 		if (err != USBD_NORMAL_COMPLETION &&
1329 		    err != USBD_IN_PROGRESS) {
1330 			ep->num_open--;
1331 		}
1332 		mutex_enter(&ep->sc->sc_lock);
1333 	}
1334 
1335 	return err;
1336 }
1337 
1338 static void
1339 close_out_jack(struct umidi_jack *jack)
1340 {
1341 	struct umidi_endpoint *ep;
1342 	struct umidi_softc *sc;
1343 	uint16_t mask;
1344 	int err;
1345 
1346 	if (jack->opened) {
1347 		ep = jack->endpoint;
1348 		sc = ep->sc;
1349 
1350 		KASSERT(mutex_owned(&sc->sc_lock));
1351 		mask = 1 << (jack->cable_number);
1352 		while (mask & (ep->this_schedule | ep->next_schedule)) {
1353 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1354 			     mstohz(10));
1355 			if (err)
1356 				break;
1357 		}
1358 		/*
1359 		 * We can re-enter this function from both close() and
1360 		 * detach().  Make sure only one of them does this part.
1361 		 */
1362 		if (jack->opened) {
1363 			jack->opened = 0;
1364 			jack->endpoint->num_open--;
1365 			ep->this_schedule &= ~mask;
1366 			ep->next_schedule &= ~mask;
1367 		}
1368 	}
1369 }
1370 
1371 static void
1372 close_in_jack(struct umidi_jack *jack)
1373 {
1374 	if (jack->opened) {
1375 		struct umidi_softc *sc = jack->endpoint->sc;
1376 
1377 		KASSERT(mutex_owned(&sc->sc_lock));
1378 
1379 		jack->opened = 0;
1380 		if (--jack->endpoint->num_open == 0) {
1381 			/*
1382 			 * We have to drop the (interrupt) lock so that
1383 			 * the USB thread lock can be safely taken by
1384 			 * the abort operation.  This is safe as this
1385 			 * either closing or dying will be set proerly.
1386 			 */
1387 			mutex_exit(&sc->sc_lock);
1388 			usbd_abort_pipe(jack->endpoint->pipe);
1389 			mutex_enter(&sc->sc_lock);
1390 		}
1391 	}
1392 }
1393 
1394 static usbd_status
1395 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1396 {
1397 	if (mididev->sc)
1398 		return USBD_IN_USE;
1399 
1400 	mididev->sc = sc;
1401 
1402 	describe_mididev(mididev);
1403 
1404 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1405 
1406 	return USBD_NORMAL_COMPLETION;
1407 }
1408 
1409 static usbd_status
1410 detach_mididev(struct umidi_mididev *mididev, int flags)
1411 {
1412 	struct umidi_softc *sc = mididev->sc;
1413 
1414 	if (!sc)
1415 		return USBD_NO_ADDR;
1416 
1417 	mutex_enter(&sc->sc_lock);
1418 	if (mididev->opened) {
1419 		umidi_close(mididev);
1420 	}
1421 	unbind_jacks_from_mididev(mididev);
1422 	mutex_exit(&sc->sc_lock);
1423 
1424 	if (mididev->mdev != NULL)
1425 		config_detach(mididev->mdev, flags);
1426 
1427 	if (NULL != mididev->label) {
1428 		kmem_free(mididev->label, mididev->label_len);
1429 		mididev->label = NULL;
1430 	}
1431 
1432 	mididev->sc = NULL;
1433 
1434 	return USBD_NORMAL_COMPLETION;
1435 }
1436 
1437 static void
1438 deactivate_mididev(struct umidi_mididev *mididev)
1439 {
1440 	if (mididev->out_jack)
1441 		mididev->out_jack->bound = 0;
1442 	if (mididev->in_jack)
1443 		mididev->in_jack->bound = 0;
1444 }
1445 
1446 static usbd_status
1447 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1448 {
1449 	sc->sc_num_mididevs = nmidi;
1450 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1451 	return USBD_NORMAL_COMPLETION;
1452 }
1453 
1454 static void
1455 free_all_mididevs(struct umidi_softc *sc)
1456 {
1457 	struct umidi_mididev *mididevs;
1458 	size_t len;
1459 
1460 	mutex_enter(&sc->sc_lock);
1461 	mididevs = sc->sc_mididevs;
1462 	if (mididevs)
1463 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1464 	sc->sc_mididevs = NULL;
1465 	sc->sc_num_mididevs = 0;
1466 	mutex_exit(&sc->sc_lock);
1467 
1468 	if (mididevs)
1469 		kmem_free(mididevs, len);
1470 }
1471 
1472 static usbd_status
1473 attach_all_mididevs(struct umidi_softc *sc)
1474 {
1475 	usbd_status err;
1476 	int i;
1477 
1478 	if (sc->sc_mididevs)
1479 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1480 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
1481 			if (err != USBD_NORMAL_COMPLETION)
1482 				return err;
1483 		}
1484 
1485 	return USBD_NORMAL_COMPLETION;
1486 }
1487 
1488 static usbd_status
1489 detach_all_mididevs(struct umidi_softc *sc, int flags)
1490 {
1491 	usbd_status err;
1492 	int i;
1493 
1494 	if (sc->sc_mididevs)
1495 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1496 			err = detach_mididev(&sc->sc_mididevs[i], flags);
1497 			if (err != USBD_NORMAL_COMPLETION)
1498 				return err;
1499 		}
1500 
1501 	return USBD_NORMAL_COMPLETION;
1502 }
1503 
1504 static void
1505 deactivate_all_mididevs(struct umidi_softc *sc)
1506 {
1507 	int i;
1508 
1509 	if (sc->sc_mididevs) {
1510 		for (i = 0; i < sc->sc_num_mididevs; i++)
1511 			deactivate_mididev(&sc->sc_mididevs[i]);
1512 	}
1513 }
1514 
1515 /*
1516  * TODO: the 0-based cable numbers will often not match the labeling of the
1517  * equipment. Ideally:
1518  *  For class-compliant devices: get the iJack string from the jack descriptor.
1519  *  Otherwise:
1520  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1521  *    number for display)
1522  *  - support an array quirk explictly giving a char * for each jack.
1523  * For now, you get 0-based cable numbers. If there are multiple endpoints and
1524  * the CNs are not globally unique, each is shown with its associated endpoint
1525  * address in hex also. That should not be necessary when using iJack values
1526  * or a quirk array.
1527  */
1528 void
1529 describe_mididev(struct umidi_mididev *md)
1530 {
1531 	char in_label[16];
1532 	char out_label[16];
1533 	const char *unit_label;
1534 	char *final_label;
1535 	struct umidi_softc *sc;
1536 	int show_ep_in;
1537 	int show_ep_out;
1538 	size_t len;
1539 
1540 	sc = md->sc;
1541 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1542 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1543 
1544 	if (NULL == md->in_jack)
1545 		in_label[0] = '\0';
1546 	else if (show_ep_in)
1547 		snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1548 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
1549 	else
1550 		snprintf(in_label, sizeof(in_label), "<%d ",
1551 		    md->in_jack->cable_number);
1552 
1553 	if (NULL == md->out_jack)
1554 		out_label[0] = '\0';
1555 	else if (show_ep_out)
1556 		snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1557 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
1558 	else
1559 		snprintf(out_label, sizeof(out_label), ">%d ",
1560 		    md->out_jack->cable_number);
1561 
1562 	unit_label = device_xname(sc->sc_dev);
1563 
1564 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1565 
1566 	final_label = kmem_alloc(len, KM_SLEEP);
1567 
1568 	snprintf(final_label, len, "%s%son %s",
1569 	    in_label, out_label, unit_label);
1570 
1571 	md->label = final_label;
1572 	md->label_len = len;
1573 }
1574 
1575 #ifdef UMIDI_DEBUG
1576 static void
1577 dump_sc(struct umidi_softc *sc)
1578 {
1579 	int i;
1580 
1581 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1582 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
1583 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1584 		dump_ep(&sc->sc_out_ep[i]);
1585 	}
1586 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
1587 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1588 		dump_ep(&sc->sc_in_ep[i]);
1589 	}
1590 }
1591 
1592 static void
1593 dump_ep(struct umidi_endpoint *ep)
1594 {
1595 	int i;
1596 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1597 		if (NULL==ep->jacks[i])
1598 			continue;
1599 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1600 		dump_jack(ep->jacks[i]);
1601 	}
1602 }
1603 static void
1604 dump_jack(struct umidi_jack *jack)
1605 {
1606 	DPRINTFN(10, ("\t\t\tep=%p\n",
1607 		      jack->endpoint));
1608 }
1609 
1610 #endif /* UMIDI_DEBUG */
1611 
1612 
1613 
1614 /*
1615  * MUX MIDI PACKET
1616  */
1617 
1618 static const int packet_length[16] = {
1619 	/*0*/	-1,
1620 	/*1*/	-1,
1621 	/*2*/	2,
1622 	/*3*/	3,
1623 	/*4*/	3,
1624 	/*5*/	1,
1625 	/*6*/	2,
1626 	/*7*/	3,
1627 	/*8*/	3,
1628 	/*9*/	3,
1629 	/*A*/	3,
1630 	/*B*/	3,
1631 	/*C*/	2,
1632 	/*D*/	2,
1633 	/*E*/	3,
1634 	/*F*/	1,
1635 };
1636 
1637 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
1638 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
1639 #define MIX_CN_CIN(cn, cin) \
1640 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1641 			  ((unsigned char)(cin)&0x0F)))
1642 
1643 static usbd_status
1644 start_input_transfer(struct umidi_endpoint *ep)
1645 {
1646 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1647 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1648 	return usbd_transfer(ep->xfer);
1649 }
1650 
1651 static usbd_status
1652 start_output_transfer(struct umidi_endpoint *ep)
1653 {
1654 	usbd_status rv;
1655 	uint32_t length;
1656 	int i;
1657 
1658 	length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1659 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1660 	    ep->buffer, ep->next_slot, length));
1661 
1662 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1663 	    USBD_NO_TIMEOUT, out_intr);
1664 	rv = usbd_transfer(ep->xfer);
1665 
1666 	/*
1667 	 * Once the transfer is scheduled, no more adding to partial
1668 	 * packets within it.
1669 	 */
1670 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1671 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1672 			if (NULL != ep->jacks[i])
1673 				ep->jacks[i]->midiman_ppkt = NULL;
1674 	}
1675 
1676 	return rv;
1677 }
1678 
1679 #ifdef UMIDI_DEBUG
1680 #define DPR_PACKET(dir, sc, p)						\
1681 if ((unsigned char)(p)[1]!=0xFE)				\
1682 	DPRINTFN(500,							\
1683 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
1684 		  device_xname(sc->sc_dev),				\
1685 		  (unsigned char)(p)[0],			\
1686 		  (unsigned char)(p)[1],			\
1687 		  (unsigned char)(p)[2],			\
1688 		  (unsigned char)(p)[3]));
1689 #else
1690 #define DPR_PACKET(dir, sc, p)
1691 #endif
1692 
1693 /*
1694  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1695  * with the cable number and length in the last byte instead of the first,
1696  * but there the resemblance ends. Where a USB MIDI packet is a semantic
1697  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1698  * with a cable nybble and a length nybble (which, unlike the CIN of a
1699  * real USB MIDI packet, has no semantics at all besides the length).
1700  * A packet received from a Midiman may contain part of a MIDI message,
1701  * more than one MIDI message, or parts of more than one MIDI message. A
1702  * three-byte MIDI message may arrive in three packets of data length 1, and
1703  * running status may be used. Happily, the midi(4) driver above us will put
1704  * it all back together, so the only cost is in USB bandwidth. The device
1705  * has an easier time with what it receives from us: we'll pack messages in
1706  * and across packets, but filling the packets whenever possible and,
1707  * as midi(4) hands us a complete message at a time, we'll never send one
1708  * in a dribble of short packets.
1709  */
1710 
1711 static int
1712 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1713 {
1714 	struct umidi_endpoint *ep = out_jack->endpoint;
1715 	struct umidi_softc *sc = ep->sc;
1716 	unsigned char *packet;
1717 	int plen;
1718 	int poff;
1719 
1720 	KASSERT(mutex_owned(&sc->sc_lock));
1721 
1722 	if (sc->sc_dying)
1723 		return EIO;
1724 
1725 	if (!out_jack->opened)
1726 		return ENODEV; /* XXX as it was, is this the right errno? */
1727 
1728 	sc->sc_refcnt++;
1729 
1730 #ifdef UMIDI_DEBUG
1731 	if (umididebug >= 100)
1732 		microtime(&umidi_tv);
1733 #endif
1734 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1735 	    "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1736 	    (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1737 
1738 	packet = *ep->next_slot++;
1739 	KASSERT(ep->buffer_size >=
1740 	    (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1741 	memset(packet, 0, UMIDI_PACKET_SIZE);
1742 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1743 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1744 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
1745 			plen = 3 - poff;
1746 			if (plen > len)
1747 				plen = len;
1748 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
1749 			src += plen;
1750 			len -= plen;
1751 			plen += poff;
1752 			out_jack->midiman_ppkt[3] =
1753 			    MIX_CN_CIN(out_jack->cable_number, plen);
1754 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1755 			if (3 == plen)
1756 				out_jack->midiman_ppkt = NULL; /* no more */
1757 		}
1758 		if (0 == len)
1759 			ep->next_slot--; /* won't be needed, nevermind */
1760 		else {
1761 			memcpy(packet, src, len);
1762 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1763 			DPR_PACKET(out, sc, packet);
1764 			if (len < 3)
1765 				out_jack->midiman_ppkt = packet;
1766 		}
1767 	} else { /* the nice simple USB class-compliant case */
1768 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1769 		memcpy(packet+1, src, len);
1770 		DPR_PACKET(out, sc, packet);
1771 	}
1772 	ep->next_schedule |= 1<<(out_jack->cable_number);
1773 	++ ep->num_scheduled;
1774 	if (!ep->armed && !ep->soliciting) {
1775 		/*
1776 		 * It would be bad to call out_solicit directly here (the
1777 		 * caller need not be reentrant) but a soft interrupt allows
1778 		 * solicit to run immediately the caller exits its critical
1779 		 * section, and if the caller has more to write we can get it
1780 		 * before starting the USB transfer, and send a longer one.
1781 		 */
1782 		ep->soliciting = 1;
1783 		kpreempt_disable();
1784 		softint_schedule(ep->solicit_cookie);
1785 		kpreempt_enable();
1786 	}
1787 
1788 	if (--sc->sc_refcnt < 0)
1789 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
1790 
1791 	return 0;
1792 }
1793 
1794 static void
1795 in_intr(struct usbd_xfer *xfer, void *priv,
1796     usbd_status status)
1797 {
1798 	int cn, len, i;
1799 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1800 	struct umidi_softc *sc = ep->sc;
1801 	struct umidi_jack *jack;
1802 	unsigned char *packet;
1803 	umidi_packet_bufp slot;
1804 	umidi_packet_bufp end;
1805 	unsigned char *data;
1806 	uint32_t count;
1807 
1808 	if (ep->sc->sc_dying || !ep->num_open)
1809 		return;
1810 
1811 	mutex_enter(&sc->sc_lock);
1812 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1813 	if (0 == count % UMIDI_PACKET_SIZE) {
1814 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1815 			     device_xname(ep->sc->sc_dev), ep, count));
1816 	} else {
1817 		DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1818 			device_xname(ep->sc->sc_dev), ep, count));
1819 	}
1820 
1821 	slot = ep->buffer;
1822 	end = slot + count / sizeof(*slot);
1823 
1824 	for (packet = *slot; slot < end; packet = *++slot) {
1825 
1826 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1827 			cn = (0xf0&(packet[3]))>>4;
1828 			len = 0x0f&(packet[3]);
1829 			data = packet;
1830 		} else {
1831 			cn = GET_CN(packet[0]);
1832 			len = packet_length[GET_CIN(packet[0])];
1833 			data = packet + 1;
1834 		}
1835 		/* 0 <= cn <= 15 by inspection of above code */
1836 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1837 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1838 				 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1839 				 device_xname(ep->sc->sc_dev), ep, cn, len,
1840 				 (unsigned)data[0],
1841 				 (unsigned)data[1],
1842 				 (unsigned)data[2]));
1843 			mutex_exit(&sc->sc_lock);
1844 			return;
1845 		}
1846 
1847 		if (!jack->bound || !jack->opened)
1848 			continue;
1849 
1850 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1851 			     "%02X %02X %02X\n",
1852 			     device_xname(ep->sc->sc_dev), ep, cn, len,
1853 			     (unsigned)data[0],
1854 			     (unsigned)data[1],
1855 			     (unsigned)data[2]));
1856 
1857 		if (jack->u.in.intr) {
1858 			for (i = 0; i < len; i++) {
1859 				(*jack->u.in.intr)(jack->arg, data[i]);
1860 			}
1861 		}
1862 
1863 	}
1864 
1865 	(void)start_input_transfer(ep);
1866 	mutex_exit(&sc->sc_lock);
1867 }
1868 
1869 static void
1870 out_intr(struct usbd_xfer *xfer, void *priv,
1871     usbd_status status)
1872 {
1873 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1874 	struct umidi_softc *sc = ep->sc;
1875 	uint32_t count;
1876 
1877 	if (sc->sc_dying)
1878 		return;
1879 
1880 	mutex_enter(&sc->sc_lock);
1881 #ifdef UMIDI_DEBUG
1882 	if (umididebug >= 200)
1883 		microtime(&umidi_tv);
1884 #endif
1885 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1886 	if (0 == count % UMIDI_PACKET_SIZE) {
1887 		DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1888 		    "length %u\n", device_xname(ep->sc->sc_dev),
1889 		    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1890 		    count));
1891 	} else {
1892 		DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1893 			device_xname(ep->sc->sc_dev), ep, count));
1894 	}
1895 	count /= UMIDI_PACKET_SIZE;
1896 
1897 	/*
1898 	 * If while the transfer was pending we buffered any new messages,
1899 	 * move them to the start of the buffer.
1900 	 */
1901 	ep->next_slot -= count;
1902 	if (ep->buffer < ep->next_slot) {
1903 		memcpy(ep->buffer, ep->buffer + count,
1904 		       (char *)ep->next_slot - (char *)ep->buffer);
1905 	}
1906 	cv_broadcast(&sc->sc_cv);
1907 	/*
1908 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1909 	 * Running at IPL_USB so the following should happen to be safe.
1910 	 */
1911 	ep->armed = 0;
1912 	if (!ep->soliciting) {
1913 		ep->soliciting = 1;
1914 		out_solicit_locked(ep);
1915 	}
1916 	mutex_exit(&sc->sc_lock);
1917 }
1918 
1919 /*
1920  * A jack on which we have received a packet must be called back on its
1921  * out.intr handler before it will send us another; it is considered
1922  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1923  * we need no extra buffer space for it.
1924  *
1925  * In contrast, a jack that is open but not scheduled may supply us a packet
1926  * at any time, driven by the top half, and we must be able to accept it, no
1927  * excuses. So we must ensure that at any point in time there are at least
1928  * (num_open - num_scheduled) slots free.
1929  *
1930  * As long as there are more slots free than that minimum, we can loop calling
1931  * scheduled jacks back on their "interrupt" handlers, soliciting more
1932  * packets, starting the USB transfer only when the buffer space is down to
1933  * the minimum or no jack has any more to send.
1934  */
1935 
1936 static void
1937 out_solicit_locked(void *arg)
1938 {
1939 	struct umidi_endpoint *ep = arg;
1940 	umidi_packet_bufp end;
1941 	uint16_t which;
1942 	struct umidi_jack *jack;
1943 
1944 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1945 
1946 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1947 
1948 	for ( ;; ) {
1949 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1950 			break; /* at IPL_USB */
1951 		if (ep->this_schedule == 0) {
1952 			if (ep->next_schedule == 0)
1953 				break; /* at IPL_USB */
1954 			ep->this_schedule = ep->next_schedule;
1955 			ep->next_schedule = 0;
1956 		}
1957 		/*
1958 		 * At least one jack is scheduled. Find and mask off the least
1959 		 * set bit in this_schedule and decrement num_scheduled.
1960 		 * Convert mask to bit index to find the corresponding jack,
1961 		 * and call its intr handler. If it has a message, it will call
1962 		 * back one of the output methods, which will set its bit in
1963 		 * next_schedule (not copied into this_schedule until the
1964 		 * latter is empty). In this way we round-robin the jacks that
1965 		 * have messages to send, until the buffer is as full as we
1966 		 * dare, and then start a transfer.
1967 		 */
1968 		which = ep->this_schedule;
1969 		which &= (~which)+1; /* now mask of least set bit */
1970 		ep->this_schedule &= ~which;
1971 		--ep->num_scheduled;
1972 
1973 		--which; /* now 1s below mask - count 1s to get index */
1974 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1975 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
1976 		which = (((which >> 4) + which) & 0x0f0f);
1977 		which +=  (which >> 8);
1978 		which &= 0x1f; /* the bit index a/k/a jack number */
1979 
1980 		jack = ep->jacks[which];
1981 		if (jack->u.out.intr)
1982 			(*jack->u.out.intr)(jack->arg);
1983 	}
1984 	/* intr lock held at loop exit */
1985 	if (!ep->armed && ep->next_slot > ep->buffer) {
1986 		/*
1987 		 * Can't hold the interrupt lock while calling into USB,
1988 		 * but we can safely drop it here.
1989 		 */
1990 		mutex_exit(&ep->sc->sc_lock);
1991 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1992 		mutex_enter(&ep->sc->sc_lock);
1993 	}
1994 	ep->soliciting = 0;
1995 }
1996 
1997 /* Entry point for the softintr.  */
1998 static void
1999 out_solicit(void *arg)
2000 {
2001 	struct umidi_endpoint *ep = arg;
2002 	struct umidi_softc *sc = ep->sc;
2003 
2004 	mutex_enter(&sc->sc_lock);
2005 	out_solicit_locked(arg);
2006 	mutex_exit(&sc->sc_lock);
2007 }
2008