xref: /netbsd-src/sys/dev/usb/umidi.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /*	$NetBSD: umidi.c,v 1.70 2016/05/07 08:09:43 mrg Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI (tshiozak@NetBSD.org), (full-size transfers, extended
9  * hw_if) Chapman Flack (chap@NetBSD.org), and Matthew R. Green
10  * (mrg@eterna.com.au).
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.70 2016/05/07 08:09:43 mrg Exp $");
36 
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/device.h>
43 #include <sys/ioctl.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/select.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/poll.h>
50 #include <sys/intr.h>
51 
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 
56 #include <dev/auconv.h>
57 #include <dev/usb/usbdevs.h>
58 #include <dev/usb/umidi_quirks.h>
59 #include <dev/midi_if.h>
60 
61 /* Jack Descriptor */
62 #define UMIDI_MS_HEADER	0x01
63 #define UMIDI_IN_JACK	0x02
64 #define UMIDI_OUT_JACK	0x03
65 
66 /* Jack Type */
67 #define UMIDI_EMBEDDED	0x01
68 #define UMIDI_EXTERNAL	0x02
69 
70 /* generic, for iteration */
71 typedef struct {
72 	uByte		bLength;
73 	uByte		bDescriptorType;
74 	uByte		bDescriptorSubtype;
75 } UPACKED umidi_cs_descriptor_t;
76 
77 typedef struct {
78 	uByte		bLength;
79 	uByte		bDescriptorType;
80 	uByte		bDescriptorSubtype;
81 	uWord		bcdMSC;
82 	uWord		wTotalLength;
83 } UPACKED umidi_cs_interface_descriptor_t;
84 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
85 
86 typedef struct {
87 	uByte		bLength;
88 	uByte		bDescriptorType;
89 	uByte		bDescriptorSubtype;
90 	uByte		bNumEmbMIDIJack;
91 } UPACKED umidi_cs_endpoint_descriptor_t;
92 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
93 
94 typedef struct {
95 	uByte		bLength;
96 	uByte		bDescriptorType;
97 	uByte		bDescriptorSubtype;
98 	uByte		bJackType;
99 	uByte		bJackID;
100 } UPACKED umidi_jack_descriptor_t;
101 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
102 
103 
104 #define TO_D(p) ((usb_descriptor_t *)(p))
105 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
106 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
107 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
108 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
109 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
110 
111 
112 #define UMIDI_PACKET_SIZE 4
113 
114 /*
115  * hierarchie
116  *
117  * <-- parent	       child -->
118  *
119  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
120  *	   ^	 |    ^	    |
121  *	   +-----+    +-----+
122  */
123 
124 /* midi device */
125 struct umidi_mididev {
126 	struct umidi_softc	*sc;
127 	device_t		mdev;
128 	/* */
129 	struct umidi_jack	*in_jack;
130 	struct umidi_jack	*out_jack;
131 	char			*label;
132 	size_t			label_len;
133 	/* */
134 	int			opened;
135 	int			closing;
136 	int			flags;
137 };
138 
139 /* Jack Information */
140 struct umidi_jack {
141 	struct umidi_endpoint	*endpoint;
142 	/* */
143 	int			cable_number;
144 	void			*arg;
145 	int			bound;
146 	int			opened;
147 	unsigned char		*midiman_ppkt;
148 	union {
149 		struct {
150 			void			(*intr)(void *);
151 		} out;
152 		struct {
153 			void			(*intr)(void *, int);
154 		} in;
155 	} u;
156 };
157 
158 #define UMIDI_MAX_EPJACKS	16
159 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
160 /* endpoint data */
161 struct umidi_endpoint {
162 	struct umidi_softc	*sc;
163 	/* */
164 	int			addr;
165 	struct usbd_pipe	*pipe;
166 	struct usbd_xfer	*xfer;
167 	umidi_packet_bufp	buffer;
168 	umidi_packet_bufp	next_slot;
169 	uint32_t               buffer_size;
170 	int			num_scheduled;
171 	int			num_open;
172 	int			num_jacks;
173 	int			soliciting;
174 	void			*solicit_cookie;
175 	int			armed;
176 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
177 	uint16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
178 	uint16_t		next_schedule;
179 };
180 
181 /* software context */
182 struct umidi_softc {
183 	device_t		sc_dev;
184 	struct usbd_device	*sc_udev;
185 	struct usbd_interface	*sc_iface;
186 	const struct umidi_quirk	*sc_quirk;
187 
188 	int			sc_dying;
189 
190 	int			sc_out_num_jacks;
191 	struct umidi_jack	*sc_out_jacks;
192 	int			sc_in_num_jacks;
193 	struct umidi_jack	*sc_in_jacks;
194 	struct umidi_jack	*sc_jacks;
195 
196 	int			sc_num_mididevs;
197 	struct umidi_mididev	*sc_mididevs;
198 
199 	int			sc_out_num_endpoints;
200 	struct umidi_endpoint	*sc_out_ep;
201 	int			sc_in_num_endpoints;
202 	struct umidi_endpoint	*sc_in_ep;
203 	struct umidi_endpoint	*sc_endpoints;
204 	size_t			sc_endpoints_len;
205 	int			cblnums_global;
206 
207 	kmutex_t		sc_lock;
208 	kcondvar_t		sc_cv;
209 	kcondvar_t		sc_detach_cv;
210 
211 	int			sc_refcnt;
212 };
213 
214 #ifdef UMIDI_DEBUG
215 #define DPRINTF(x)	if (umididebug) printf x
216 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
217 #include <sys/time.h>
218 static struct timeval umidi_tv;
219 int	umididebug = 0;
220 #else
221 #define DPRINTF(x)
222 #define DPRINTFN(n,x)
223 #endif
224 
225 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
226 				 (sc->sc_out_num_endpoints + \
227 				  sc->sc_in_num_endpoints))
228 
229 
230 static int umidi_open(void *, int,
231 		      void (*)(void *, int), void (*)(void *), void *);
232 static void umidi_close(void *);
233 static int umidi_channelmsg(void *, int, int, u_char *, int);
234 static int umidi_commonmsg(void *, int, u_char *, int);
235 static int umidi_sysex(void *, u_char *, int);
236 static int umidi_rtmsg(void *, int);
237 static void umidi_getinfo(void *, struct midi_info *);
238 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
239 
240 static usbd_status alloc_pipe(struct umidi_endpoint *);
241 static void free_pipe(struct umidi_endpoint *);
242 
243 static usbd_status alloc_all_endpoints(struct umidi_softc *);
244 static void free_all_endpoints(struct umidi_softc *);
245 
246 static usbd_status alloc_all_jacks(struct umidi_softc *);
247 static void free_all_jacks(struct umidi_softc *);
248 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
249 					 struct umidi_jack *,
250 					 struct umidi_jack *,
251 					 struct umidi_mididev *);
252 static void unbind_jacks_from_mididev(struct umidi_mididev *);
253 static void unbind_all_jacks(struct umidi_softc *);
254 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
255 static usbd_status open_out_jack(struct umidi_jack *, void *,
256 				 void (*)(void *));
257 static usbd_status open_in_jack(struct umidi_jack *, void *,
258 				void (*)(void *, int));
259 static void close_out_jack(struct umidi_jack *);
260 static void close_in_jack(struct umidi_jack *);
261 
262 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
263 static usbd_status detach_mididev(struct umidi_mididev *, int);
264 static void deactivate_mididev(struct umidi_mididev *);
265 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
266 static void free_all_mididevs(struct umidi_softc *);
267 static usbd_status attach_all_mididevs(struct umidi_softc *);
268 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
269 static void deactivate_all_mididevs(struct umidi_softc *);
270 static void describe_mididev(struct umidi_mididev *);
271 
272 #ifdef UMIDI_DEBUG
273 static void dump_sc(struct umidi_softc *);
274 static void dump_ep(struct umidi_endpoint *);
275 static void dump_jack(struct umidi_jack *);
276 #endif
277 
278 static usbd_status start_input_transfer(struct umidi_endpoint *);
279 static usbd_status start_output_transfer(struct umidi_endpoint *);
280 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
281 static void in_intr(struct usbd_xfer *, void *, usbd_status);
282 static void out_intr(struct usbd_xfer *, void *, usbd_status);
283 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
284 static void out_solicit_locked(void *); /* pre-locked version */
285 
286 
287 const struct midi_hw_if umidi_hw_if = {
288 	.open = umidi_open,
289 	.close = umidi_close,
290 	.output = umidi_rtmsg,
291 	.getinfo = umidi_getinfo,
292 	.get_locks = umidi_get_locks,
293 };
294 
295 struct midi_hw_if_ext umidi_hw_if_ext = {
296 	.channel = umidi_channelmsg,
297 	.common  = umidi_commonmsg,
298 	.sysex   = umidi_sysex,
299 };
300 
301 struct midi_hw_if_ext umidi_hw_if_mm = {
302 	.channel = umidi_channelmsg,
303 	.common  = umidi_commonmsg,
304 	.sysex   = umidi_sysex,
305 	.compress = 1,
306 };
307 
308 int umidi_match(device_t, cfdata_t, void *);
309 void umidi_attach(device_t, device_t, void *);
310 void umidi_childdet(device_t, device_t);
311 int umidi_detach(device_t, int);
312 int umidi_activate(device_t, enum devact);
313 extern struct cfdriver umidi_cd;
314 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
315     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
316 
317 int
318 umidi_match(device_t parent, cfdata_t match, void *aux)
319 {
320 	struct usbif_attach_arg *uiaa = aux;
321 
322 	DPRINTFN(1,("umidi_match\n"));
323 
324 	if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
325 	    uiaa->uiaa_ifaceno))
326 		return UMATCH_IFACECLASS_IFACESUBCLASS;
327 
328 	if (uiaa->uiaa_class == UICLASS_AUDIO &&
329 	    uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
330 		return UMATCH_IFACECLASS_IFACESUBCLASS;
331 
332 	return UMATCH_NONE;
333 }
334 
335 void
336 umidi_attach(device_t parent, device_t self, void *aux)
337 {
338 	usbd_status     err;
339 	struct umidi_softc *sc = device_private(self);
340 	struct usbif_attach_arg *uiaa = aux;
341 	char *devinfop;
342 
343 	DPRINTFN(1,("umidi_attach\n"));
344 
345 	sc->sc_dev = self;
346 
347 	aprint_naive("\n");
348 	aprint_normal("\n");
349 
350 	devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
351 	aprint_normal_dev(self, "%s\n", devinfop);
352 	usbd_devinfo_free(devinfop);
353 
354 	sc->sc_iface = uiaa->uiaa_iface;
355 	sc->sc_udev = uiaa->uiaa_device;
356 
357 	sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
358 	    uiaa->uiaa_product, uiaa->uiaa_ifaceno);
359 
360 	aprint_normal_dev(self, "");
361 	umidi_print_quirk(sc->sc_quirk);
362 
363 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
364 	cv_init(&sc->sc_cv, "umidopcl");
365 	cv_init(&sc->sc_detach_cv, "umidetcv");
366 	sc->sc_refcnt = 0;
367 
368 	err = alloc_all_endpoints(sc);
369 	if (err != USBD_NORMAL_COMPLETION) {
370 		aprint_error_dev(self,
371 		    "alloc_all_endpoints failed. (err=%d)\n", err);
372 		goto out;
373 	}
374 	err = alloc_all_jacks(sc);
375 	if (err != USBD_NORMAL_COMPLETION) {
376 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
377 		    err);
378 		goto out_free_endpoints;
379 	}
380 	aprint_normal_dev(self, "out=%d, in=%d\n",
381 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
382 
383 	err = assign_all_jacks_automatically(sc);
384 	if (err != USBD_NORMAL_COMPLETION) {
385 		aprint_error_dev(self,
386 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
387 		goto out_free_jacks;
388 	}
389 	err = attach_all_mididevs(sc);
390 	if (err != USBD_NORMAL_COMPLETION) {
391 		aprint_error_dev(self,
392 		    "attach_all_mididevs failed. (err=%d)\n", err);
393 		goto out_free_jacks;
394 	}
395 
396 #ifdef UMIDI_DEBUG
397 	dump_sc(sc);
398 #endif
399 
400 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
401 			   sc->sc_udev, sc->sc_dev);
402 
403 	return;
404 
405 out_free_jacks:
406 	unbind_all_jacks(sc);
407 	free_all_jacks(sc);
408 
409 out_free_endpoints:
410 	free_all_endpoints(sc);
411 
412 out:
413 	aprint_error_dev(self, "disabled.\n");
414 	sc->sc_dying = 1;
415 	KERNEL_UNLOCK_ONE(curlwp);
416 	return;
417 }
418 
419 void
420 umidi_childdet(device_t self, device_t child)
421 {
422 	int i;
423 	struct umidi_softc *sc = device_private(self);
424 
425 	KASSERT(sc->sc_mididevs != NULL);
426 
427 	for (i = 0; i < sc->sc_num_mididevs; i++) {
428 		if (sc->sc_mididevs[i].mdev == child)
429 			break;
430 	}
431 	KASSERT(i < sc->sc_num_mididevs);
432 	sc->sc_mididevs[i].mdev = NULL;
433 }
434 
435 int
436 umidi_activate(device_t self, enum devact act)
437 {
438 	struct umidi_softc *sc = device_private(self);
439 
440 	switch (act) {
441 	case DVACT_DEACTIVATE:
442 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
443 		sc->sc_dying = 1;
444 		deactivate_all_mididevs(sc);
445 		return 0;
446 	default:
447 		DPRINTFN(1,("umidi_activate (%d)\n", act));
448 		return EOPNOTSUPP;
449 	}
450 }
451 
452 int
453 umidi_detach(device_t self, int flags)
454 {
455 	struct umidi_softc *sc = device_private(self);
456 
457 	DPRINTFN(1,("umidi_detach\n"));
458 
459 	mutex_enter(&sc->sc_lock);
460 	sc->sc_dying = 1;
461 	if (--sc->sc_refcnt >= 0)
462 		usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
463 	mutex_exit(&sc->sc_lock);
464 
465 	detach_all_mididevs(sc, flags);
466 	free_all_mididevs(sc);
467 	free_all_jacks(sc);
468 	free_all_endpoints(sc);
469 
470 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
471 			   sc->sc_dev);
472 
473 	mutex_destroy(&sc->sc_lock);
474 	cv_destroy(&sc->sc_detach_cv);
475 	cv_destroy(&sc->sc_cv);
476 
477 	return 0;
478 }
479 
480 
481 /*
482  * midi_if stuffs
483  */
484 int
485 umidi_open(void *addr,
486 	   int flags,
487 	   void (*iintr)(void *, int),
488 	   void (*ointr)(void *),
489 	   void *arg)
490 {
491 	struct umidi_mididev *mididev = addr;
492 	struct umidi_softc *sc = mididev->sc;
493 	usbd_status err;
494 
495 	KASSERT(mutex_owned(&sc->sc_lock));
496 	DPRINTF(("umidi_open: sc=%p\n", sc));
497 
498 	if (mididev->opened)
499 		return EBUSY;
500 	if (sc->sc_dying)
501 		return EIO;
502 
503 	mididev->opened = 1;
504 	mididev->flags = flags;
505 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
506 		err = open_out_jack(mididev->out_jack, arg, ointr);
507 		if (err != USBD_NORMAL_COMPLETION)
508 			goto bad;
509 	}
510 	if ((mididev->flags & FREAD) && mididev->in_jack) {
511 		err = open_in_jack(mididev->in_jack, arg, iintr);
512 		KASSERT(mididev->opened);
513 		if (err != USBD_NORMAL_COMPLETION &&
514 		    err != USBD_IN_PROGRESS) {
515 			if (mididev->out_jack)
516 				close_out_jack(mididev->out_jack);
517 			goto bad;
518 		}
519 	}
520 
521 	return 0;
522 bad:
523 	mididev->opened = 0;
524 	DPRINTF(("umidi_open: usbd_status %d\n", err));
525 	KASSERT(mutex_owned(&sc->sc_lock));
526 	return USBD_IN_USE == err ? EBUSY : EIO;
527 }
528 
529 void
530 umidi_close(void *addr)
531 {
532 	struct umidi_mididev *mididev = addr;
533 	struct umidi_softc *sc = mididev->sc;
534 
535 	KASSERT(mutex_owned(&sc->sc_lock));
536 
537 	if (mididev->closing)
538 		return;
539 
540 	mididev->closing = 1;
541 
542 	sc->sc_refcnt++;
543 
544 	if ((mididev->flags & FWRITE) && mididev->out_jack)
545 		close_out_jack(mididev->out_jack);
546 	if ((mididev->flags & FREAD) && mididev->in_jack)
547 		close_in_jack(mididev->in_jack);
548 
549 	if (--sc->sc_refcnt < 0)
550 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
551 
552 	mididev->opened = 0;
553 	mididev->closing = 0;
554 }
555 
556 int
557 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
558     int len)
559 {
560 	struct umidi_mididev *mididev = addr;
561 
562 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
563 
564 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
565 		return EIO;
566 
567 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
568 }
569 
570 int
571 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
572 {
573 	struct umidi_mididev *mididev = addr;
574 	int cin;
575 
576 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
577 
578 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
579 		return EIO;
580 
581 	switch ( len ) {
582 	case 1: cin = 5; break;
583 	case 2: cin = 2; break;
584 	case 3: cin = 3; break;
585 	default: return EIO; /* or gcc warns of cin uninitialized */
586 	}
587 
588 	return out_jack_output(mididev->out_jack, msg, len, cin);
589 }
590 
591 int
592 umidi_sysex(void *addr, u_char *msg, int len)
593 {
594 	struct umidi_mididev *mididev = addr;
595 	int cin;
596 
597 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
598 
599 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
600 		return EIO;
601 
602 	switch ( len ) {
603 	case 1: cin = 5; break;
604 	case 2: cin = 6; break;
605 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
606 	default: return EIO; /* or gcc warns of cin uninitialized */
607 	}
608 
609 	return out_jack_output(mididev->out_jack, msg, len, cin);
610 }
611 
612 int
613 umidi_rtmsg(void *addr, int d)
614 {
615 	struct umidi_mididev *mididev = addr;
616 	u_char msg = d;
617 
618 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
619 
620 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
621 		return EIO;
622 
623 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
624 }
625 
626 void
627 umidi_getinfo(void *addr, struct midi_info *mi)
628 {
629 	struct umidi_mididev *mididev = addr;
630 	struct umidi_softc *sc = mididev->sc;
631 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
632 
633 	KASSERT(mutex_owned(&sc->sc_lock));
634 
635 	mi->name = mididev->label;
636 	mi->props = MIDI_PROP_OUT_INTR;
637 	if (mididev->in_jack)
638 		mi->props |= MIDI_PROP_CAN_INPUT;
639 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
640 }
641 
642 static void
643 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
644 {
645 	struct umidi_mididev *mididev = addr;
646 	struct umidi_softc *sc = mididev->sc;
647 
648 	*intr = NULL;
649 	*thread = &sc->sc_lock;
650 }
651 
652 /*
653  * each endpoint stuffs
654  */
655 
656 /* alloc/free pipe */
657 static usbd_status
658 alloc_pipe(struct umidi_endpoint *ep)
659 {
660 	struct umidi_softc *sc = ep->sc;
661 	usbd_status err;
662 	usb_endpoint_descriptor_t *epd;
663 
664 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
665 	/*
666 	 * For output, an improvement would be to have a buffer bigger than
667 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
668 	 * allow out_solicit to fill the buffer to the full packet size in
669 	 * all cases. But to use usbd_create_xfer to get a slightly larger
670 	 * buffer would not be a good way to do that, because if the addition
671 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
672 	 * larger block may be wastefully allocated. Some flavor of double
673 	 * buffering could serve the same purpose, but would increase the
674 	 * code complexity, so for now I will live with the current slight
675 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
676 	 * packet slots.
677 	 */
678 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
679 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
680 
681 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
682 		device_xname(sc->sc_dev), ep, ep->buffer_size));
683 	ep->num_scheduled = 0;
684 	ep->this_schedule = 0;
685 	ep->next_schedule = 0;
686 	ep->soliciting = 0;
687 	ep->armed = 0;
688 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
689 	if (err)
690 		goto quit;
691 	int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
692 	    USBD_SHORT_XFER_OK, 0, &ep->xfer);
693 	if (error) {
694 		usbd_close_pipe(ep->pipe);
695 		return USBD_NOMEM;
696 	}
697 	ep->buffer = usbd_get_buffer(ep->xfer);
698 	ep->next_slot = ep->buffer;
699 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
700 quit:
701 	return err;
702 }
703 
704 static void
705 free_pipe(struct umidi_endpoint *ep)
706 {
707 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
708 	usbd_abort_pipe(ep->pipe);
709 	usbd_destroy_xfer(ep->xfer);
710 	usbd_close_pipe(ep->pipe);
711 	softint_disestablish(ep->solicit_cookie);
712 }
713 
714 
715 /* alloc/free the array of endpoint structures */
716 
717 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
718 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
719 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
720 
721 static usbd_status
722 alloc_all_endpoints(struct umidi_softc *sc)
723 {
724 	usbd_status err;
725 	struct umidi_endpoint *ep;
726 	int i;
727 
728 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
729 		err = alloc_all_endpoints_fixed_ep(sc);
730 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
731 		err = alloc_all_endpoints_yamaha(sc);
732 	} else {
733 		err = alloc_all_endpoints_genuine(sc);
734 	}
735 	if (err != USBD_NORMAL_COMPLETION)
736 		return err;
737 
738 	ep = sc->sc_endpoints;
739 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
740 		err = alloc_pipe(ep++);
741 		if (err != USBD_NORMAL_COMPLETION) {
742 			for (; ep != sc->sc_endpoints; ep--)
743 				free_pipe(ep-1);
744 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
745 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
746 			break;
747 		}
748 	}
749 	return err;
750 }
751 
752 static void
753 free_all_endpoints(struct umidi_softc *sc)
754 {
755 	int i;
756 
757 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
758 		free_pipe(&sc->sc_endpoints[i]);
759 	if (sc->sc_endpoints != NULL)
760 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
761 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
762 }
763 
764 static usbd_status
765 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
766 {
767 	usbd_status err;
768 	const struct umq_fixed_ep_desc *fp;
769 	struct umidi_endpoint *ep;
770 	usb_endpoint_descriptor_t *epd;
771 	int i;
772 
773 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
774 					    UMQ_TYPE_FIXED_EP);
775 	sc->sc_out_num_jacks = 0;
776 	sc->sc_in_num_jacks = 0;
777 	sc->sc_out_num_endpoints = fp->num_out_ep;
778 	sc->sc_in_num_endpoints = fp->num_in_ep;
779 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
780 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
781 	if (!sc->sc_endpoints)
782 		return USBD_NOMEM;
783 
784 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
785 	sc->sc_in_ep =
786 	    sc->sc_in_num_endpoints ?
787 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
788 
789 	ep = &sc->sc_out_ep[0];
790 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
791 		epd = usbd_interface2endpoint_descriptor(
792 			sc->sc_iface,
793 			fp->out_ep[i].ep);
794 		if (!epd) {
795 			aprint_error_dev(sc->sc_dev,
796 			    "cannot get endpoint descriptor(out:%d)\n",
797 			     fp->out_ep[i].ep);
798 			err = USBD_INVAL;
799 			goto error;
800 		}
801 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
802 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
803 			aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
804 			    fp->out_ep[i].ep);
805 			err = USBD_INVAL;
806 			goto error;
807 		}
808 		ep->sc = sc;
809 		ep->addr = epd->bEndpointAddress;
810 		ep->num_jacks = fp->out_ep[i].num_jacks;
811 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
812 		ep->num_open = 0;
813 		ep++;
814 	}
815 	ep = &sc->sc_in_ep[0];
816 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
817 		epd = usbd_interface2endpoint_descriptor(
818 			sc->sc_iface,
819 			fp->in_ep[i].ep);
820 		if (!epd) {
821 			aprint_error_dev(sc->sc_dev,
822 			    "cannot get endpoint descriptor(in:%d)\n",
823 			     fp->in_ep[i].ep);
824 			err = USBD_INVAL;
825 			goto error;
826 		}
827 		/*
828 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
829 		 * endpoint.  The existing input logic in this driver seems
830 		 * to work successfully if we just stop treating an interrupt
831 		 * endpoint as illegal (or the in_progress status we get on
832 		 * the initial transfer).  It does not seem necessary to
833 		 * actually use the interrupt flavor of alloc_pipe or make
834 		 * other serious rearrangements of logic.  I like that.
835 		 */
836 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
837 		case UE_BULK:
838 		case UE_INTERRUPT:
839 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
840 				break;
841 			/*FALLTHROUGH*/
842 		default:
843 			aprint_error_dev(sc->sc_dev,
844 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
845 			err = USBD_INVAL;
846 			goto error;
847 		}
848 
849 		ep->sc = sc;
850 		ep->addr = epd->bEndpointAddress;
851 		ep->num_jacks = fp->in_ep[i].num_jacks;
852 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
853 		ep->num_open = 0;
854 		ep++;
855 	}
856 
857 	return USBD_NORMAL_COMPLETION;
858 error:
859 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
860 	sc->sc_endpoints = NULL;
861 	return err;
862 }
863 
864 static usbd_status
865 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
866 {
867 	/* This driver currently supports max 1in/1out bulk endpoints */
868 	usb_descriptor_t *desc;
869 	umidi_cs_descriptor_t *udesc;
870 	usb_endpoint_descriptor_t *epd;
871 	int out_addr, in_addr, i;
872 	int dir;
873 	size_t remain, descsize;
874 
875 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
876 	out_addr = in_addr = 0;
877 
878 	/* detect endpoints */
879 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
880 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
881 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
882 		KASSERT(epd != NULL);
883 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
884 			dir = UE_GET_DIR(epd->bEndpointAddress);
885 			if (dir==UE_DIR_OUT && !out_addr)
886 				out_addr = epd->bEndpointAddress;
887 			else if (dir==UE_DIR_IN && !in_addr)
888 				in_addr = epd->bEndpointAddress;
889 		}
890 	}
891 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
892 
893 	/* count jacks */
894 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
895 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
896 		return USBD_INVAL;
897 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
898 		(size_t)udesc->bLength;
899 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
900 
901 	while (remain >= sizeof(usb_descriptor_t)) {
902 		descsize = udesc->bLength;
903 		if (descsize>remain || descsize==0)
904 			break;
905 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
906 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
907 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
908 				sc->sc_out_num_jacks++;
909 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
910 				sc->sc_in_num_jacks++;
911 		}
912 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
913 		remain -= descsize;
914 	}
915 
916 	/* validate some parameters */
917 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
918 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
919 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
920 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
921 	if (sc->sc_out_num_jacks && out_addr) {
922 		sc->sc_out_num_endpoints = 1;
923 	} else {
924 		sc->sc_out_num_endpoints = 0;
925 		sc->sc_out_num_jacks = 0;
926 	}
927 	if (sc->sc_in_num_jacks && in_addr) {
928 		sc->sc_in_num_endpoints = 1;
929 	} else {
930 		sc->sc_in_num_endpoints = 0;
931 		sc->sc_in_num_jacks = 0;
932 	}
933 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
934 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
935 	if (!sc->sc_endpoints)
936 		return USBD_NOMEM;
937 	if (sc->sc_out_num_endpoints) {
938 		sc->sc_out_ep = sc->sc_endpoints;
939 		sc->sc_out_ep->sc = sc;
940 		sc->sc_out_ep->addr = out_addr;
941 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
942 		sc->sc_out_ep->num_open = 0;
943 	} else
944 		sc->sc_out_ep = NULL;
945 
946 	if (sc->sc_in_num_endpoints) {
947 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
948 		sc->sc_in_ep->sc = sc;
949 		sc->sc_in_ep->addr = in_addr;
950 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
951 		sc->sc_in_ep->num_open = 0;
952 	} else
953 		sc->sc_in_ep = NULL;
954 
955 	return USBD_NORMAL_COMPLETION;
956 }
957 
958 static usbd_status
959 alloc_all_endpoints_genuine(struct umidi_softc *sc)
960 {
961 	usb_interface_descriptor_t *interface_desc;
962 	usb_config_descriptor_t *config_desc;
963 	usb_descriptor_t *desc;
964 	int num_ep;
965 	size_t remain, descsize;
966 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
967 	int epaddr;
968 
969 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
970 	num_ep = interface_desc->bNumEndpoints;
971 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
972 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
973 	if (!p)
974 		return USBD_NOMEM;
975 
976 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
977 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
978 	epaddr = -1;
979 
980 	/* get the list of endpoints for midi stream */
981 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
982 	desc = (usb_descriptor_t *) config_desc;
983 	remain = (size_t)UGETW(config_desc->wTotalLength);
984 	while (remain>=sizeof(usb_descriptor_t)) {
985 		descsize = desc->bLength;
986 		if (descsize>remain || descsize==0)
987 			break;
988 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
989 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
990 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
991 			epaddr = TO_EPD(desc)->bEndpointAddress;
992 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
993 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
994 			   epaddr!=-1) {
995 			if (num_ep>0) {
996 				num_ep--;
997 				p->sc = sc;
998 				p->addr = epaddr;
999 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1000 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1001 					sc->sc_out_num_endpoints++;
1002 					sc->sc_out_num_jacks += p->num_jacks;
1003 				} else {
1004 					sc->sc_in_num_endpoints++;
1005 					sc->sc_in_num_jacks += p->num_jacks;
1006 				}
1007 				p++;
1008 			}
1009 		} else
1010 			epaddr = -1;
1011 		desc = NEXT_D(desc);
1012 		remain-=descsize;
1013 	}
1014 
1015 	/* sort endpoints */
1016 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1017 	p = sc->sc_endpoints;
1018 	endep = p + num_ep;
1019 	while (p<endep) {
1020 		lowest = p;
1021 		for (q=p+1; q<endep; q++) {
1022 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1023 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1024 			    ((UE_GET_DIR(lowest->addr)==
1025 			      UE_GET_DIR(q->addr)) &&
1026 			     (UE_GET_ADDR(lowest->addr)>
1027 			      UE_GET_ADDR(q->addr))))
1028 				lowest = q;
1029 		}
1030 		if (lowest != p) {
1031 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1032 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1033 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1034 		}
1035 		p->num_open = 0;
1036 		p++;
1037 	}
1038 
1039 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1040 	sc->sc_in_ep =
1041 	    sc->sc_in_num_endpoints ?
1042 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1043 
1044 	return USBD_NORMAL_COMPLETION;
1045 }
1046 
1047 
1048 /*
1049  * jack stuffs
1050  */
1051 
1052 static usbd_status
1053 alloc_all_jacks(struct umidi_softc *sc)
1054 {
1055 	int i, j;
1056 	struct umidi_endpoint *ep;
1057 	struct umidi_jack *jack;
1058 	const unsigned char *cn_spec;
1059 
1060 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1061 		sc->cblnums_global = 0;
1062 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1063 		sc->cblnums_global = 1;
1064 	else {
1065 		/*
1066 		 * I don't think this default is correct, but it preserves
1067 		 * the prior behavior of the code. That's why I defined two
1068 		 * complementary quirks. Any device for which the default
1069 		 * behavior is wrong can be made to work by giving it an
1070 		 * explicit quirk, and if a pattern ever develops (as I suspect
1071 		 * it will) that a lot of otherwise standard USB MIDI devices
1072 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
1073 		 * changed to 0, and the only devices that will break are those
1074 		 * listing neither quirk, and they'll easily be fixed by giving
1075 		 * them the CN_SEQ_GLOBAL quirk.
1076 		 */
1077 		sc->cblnums_global = 1;
1078 	}
1079 
1080 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1081 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1082 					    		 UMQ_TYPE_CN_FIXED);
1083 	else
1084 		cn_spec = NULL;
1085 
1086 	/* allocate/initialize structures */
1087 	sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
1088 						      sc->sc_out_num_jacks), KM_SLEEP);
1089 	if (!sc->sc_jacks)
1090 		return USBD_NOMEM;
1091 	sc->sc_out_jacks =
1092 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1093 	sc->sc_in_jacks =
1094 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1095 
1096 	jack = &sc->sc_out_jacks[0];
1097 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
1098 		jack->opened = 0;
1099 		jack->bound = 0;
1100 		jack->arg = NULL;
1101 		jack->u.out.intr = NULL;
1102 		jack->midiman_ppkt = NULL;
1103 		if (sc->cblnums_global)
1104 			jack->cable_number = i;
1105 		jack++;
1106 	}
1107 	jack = &sc->sc_in_jacks[0];
1108 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
1109 		jack->opened = 0;
1110 		jack->bound = 0;
1111 		jack->arg = NULL;
1112 		jack->u.in.intr = NULL;
1113 		if (sc->cblnums_global)
1114 			jack->cable_number = i;
1115 		jack++;
1116 	}
1117 
1118 	/* assign each jacks to each endpoints */
1119 	jack = &sc->sc_out_jacks[0];
1120 	ep = &sc->sc_out_ep[0];
1121 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1122 		for (j = 0; j < ep->num_jacks; j++) {
1123 			jack->endpoint = ep;
1124 			if (cn_spec != NULL)
1125 				jack->cable_number = *cn_spec++;
1126 			else if (!sc->cblnums_global)
1127 				jack->cable_number = j;
1128 			ep->jacks[jack->cable_number] = jack;
1129 			jack++;
1130 		}
1131 		ep++;
1132 	}
1133 	jack = &sc->sc_in_jacks[0];
1134 	ep = &sc->sc_in_ep[0];
1135 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1136 		for (j = 0; j < ep->num_jacks; j++) {
1137 			jack->endpoint = ep;
1138 			if (cn_spec != NULL)
1139 				jack->cable_number = *cn_spec++;
1140 			else if (!sc->cblnums_global)
1141 				jack->cable_number = j;
1142 			ep->jacks[jack->cable_number] = jack;
1143 			jack++;
1144 		}
1145 		ep++;
1146 	}
1147 
1148 	return USBD_NORMAL_COMPLETION;
1149 }
1150 
1151 static void
1152 free_all_jacks(struct umidi_softc *sc)
1153 {
1154 	struct umidi_jack *jacks;
1155 	size_t len;
1156 
1157 	mutex_enter(&sc->sc_lock);
1158 	jacks = sc->sc_jacks;
1159 	len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
1160 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1161 	mutex_exit(&sc->sc_lock);
1162 
1163 	if (jacks)
1164 		kmem_free(jacks, len);
1165 }
1166 
1167 static usbd_status
1168 bind_jacks_to_mididev(struct umidi_softc *sc,
1169 		      struct umidi_jack *out_jack,
1170 		      struct umidi_jack *in_jack,
1171 		      struct umidi_mididev *mididev)
1172 {
1173 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1174 		return USBD_IN_USE;
1175 	if (mididev->out_jack || mididev->in_jack)
1176 		return USBD_IN_USE;
1177 
1178 	if (out_jack)
1179 		out_jack->bound = 1;
1180 	if (in_jack)
1181 		in_jack->bound = 1;
1182 	mididev->in_jack = in_jack;
1183 	mididev->out_jack = out_jack;
1184 
1185 	mididev->closing = 0;
1186 
1187 	return USBD_NORMAL_COMPLETION;
1188 }
1189 
1190 static void
1191 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1192 {
1193 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
1194 
1195 	mididev->closing = 1;
1196 
1197 	if ((mididev->flags & FWRITE) && mididev->out_jack)
1198 		close_out_jack(mididev->out_jack);
1199 	if ((mididev->flags & FREAD) && mididev->in_jack)
1200 		close_in_jack(mididev->in_jack);
1201 
1202 	if (mididev->out_jack) {
1203 		mididev->out_jack->bound = 0;
1204 		mididev->out_jack = NULL;
1205 	}
1206 	if (mididev->in_jack) {
1207 		mididev->in_jack->bound = 0;
1208 		mididev->in_jack = NULL;
1209 	}
1210 }
1211 
1212 static void
1213 unbind_all_jacks(struct umidi_softc *sc)
1214 {
1215 	int i;
1216 
1217 	mutex_enter(&sc->sc_lock);
1218 	if (sc->sc_mididevs)
1219 		for (i = 0; i < sc->sc_num_mididevs; i++)
1220 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1221 	mutex_exit(&sc->sc_lock);
1222 }
1223 
1224 static usbd_status
1225 assign_all_jacks_automatically(struct umidi_softc *sc)
1226 {
1227 	usbd_status err;
1228 	int i;
1229 	struct umidi_jack *out, *in;
1230 	const signed char *asg_spec;
1231 
1232 	err =
1233 	    alloc_all_mididevs(sc,
1234 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1235 	if (err!=USBD_NORMAL_COMPLETION)
1236 		return err;
1237 
1238 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1239 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1240 					    		  UMQ_TYPE_MD_FIXED);
1241 	else
1242 		asg_spec = NULL;
1243 
1244 	for (i = 0; i < sc->sc_num_mididevs; i++) {
1245 		if (asg_spec != NULL) {
1246 			if (*asg_spec == -1)
1247 				out = NULL;
1248 			else
1249 				out = &sc->sc_out_jacks[*asg_spec];
1250 			++ asg_spec;
1251 			if (*asg_spec == -1)
1252 				in = NULL;
1253 			else
1254 				in = &sc->sc_in_jacks[*asg_spec];
1255 			++ asg_spec;
1256 		} else {
1257 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1258 						       : NULL;
1259 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1260 						     : NULL;
1261 		}
1262 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1263 		if (err != USBD_NORMAL_COMPLETION) {
1264 			free_all_mididevs(sc);
1265 			return err;
1266 		}
1267 	}
1268 
1269 	return USBD_NORMAL_COMPLETION;
1270 }
1271 
1272 static usbd_status
1273 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1274 {
1275 	struct umidi_endpoint *ep = jack->endpoint;
1276 	struct umidi_softc *sc = ep->sc;
1277 	umidi_packet_bufp end;
1278 	int err;
1279 
1280 	KASSERT(mutex_owned(&sc->sc_lock));
1281 
1282 	if (jack->opened)
1283 		return USBD_IN_USE;
1284 
1285 	jack->arg = arg;
1286 	jack->u.out.intr = intr;
1287 	jack->midiman_ppkt = NULL;
1288 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1289 	jack->opened = 1;
1290 	ep->num_open++;
1291 	/*
1292 	 * out_solicit maintains an invariant that there will always be
1293 	 * (num_open - num_scheduled) slots free in the buffer. as we have
1294 	 * just incremented num_open, the buffer may be too full to satisfy
1295 	 * the invariant until a transfer completes, for which we must wait.
1296 	 */
1297 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1298 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1299 		     mstohz(10));
1300 		if (err) {
1301 			ep->num_open--;
1302 			jack->opened = 0;
1303 			return USBD_IOERROR;
1304 		}
1305 	}
1306 
1307 	return USBD_NORMAL_COMPLETION;
1308 }
1309 
1310 static usbd_status
1311 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1312 {
1313 	usbd_status err = USBD_NORMAL_COMPLETION;
1314 	struct umidi_endpoint *ep = jack->endpoint;
1315 
1316 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1317 
1318 	if (jack->opened)
1319 		return USBD_IN_USE;
1320 
1321 	jack->arg = arg;
1322 	jack->u.in.intr = intr;
1323 	jack->opened = 1;
1324 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1325 		/*
1326 		 * Can't hold the interrupt lock while calling into USB,
1327 		 * but we can safely drop it here.
1328 		 */
1329 		mutex_exit(&ep->sc->sc_lock);
1330 		err = start_input_transfer(ep);
1331 		if (err != USBD_NORMAL_COMPLETION &&
1332 		    err != USBD_IN_PROGRESS) {
1333 			ep->num_open--;
1334 		}
1335 		mutex_enter(&ep->sc->sc_lock);
1336 	}
1337 
1338 	return err;
1339 }
1340 
1341 static void
1342 close_out_jack(struct umidi_jack *jack)
1343 {
1344 	struct umidi_endpoint *ep;
1345 	struct umidi_softc *sc;
1346 	uint16_t mask;
1347 	int err;
1348 
1349 	if (jack->opened) {
1350 		ep = jack->endpoint;
1351 		sc = ep->sc;
1352 
1353 		KASSERT(mutex_owned(&sc->sc_lock));
1354 		mask = 1 << (jack->cable_number);
1355 		while (mask & (ep->this_schedule | ep->next_schedule)) {
1356 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1357 			     mstohz(10));
1358 			if (err)
1359 				break;
1360 		}
1361 		/*
1362 		 * We can re-enter this function from both close() and
1363 		 * detach().  Make sure only one of them does this part.
1364 		 */
1365 		if (jack->opened) {
1366 			jack->opened = 0;
1367 			jack->endpoint->num_open--;
1368 			ep->this_schedule &= ~mask;
1369 			ep->next_schedule &= ~mask;
1370 		}
1371 	}
1372 }
1373 
1374 static void
1375 close_in_jack(struct umidi_jack *jack)
1376 {
1377 	if (jack->opened) {
1378 		struct umidi_softc *sc = jack->endpoint->sc;
1379 
1380 		KASSERT(mutex_owned(&sc->sc_lock));
1381 
1382 		jack->opened = 0;
1383 		if (--jack->endpoint->num_open == 0) {
1384 			/*
1385 			 * We have to drop the (interrupt) lock so that
1386 			 * the USB thread lock can be safely taken by
1387 			 * the abort operation.  This is safe as this
1388 			 * either closing or dying will be set proerly.
1389 			 */
1390 			mutex_exit(&sc->sc_lock);
1391 			usbd_abort_pipe(jack->endpoint->pipe);
1392 			mutex_enter(&sc->sc_lock);
1393 		}
1394 	}
1395 }
1396 
1397 static usbd_status
1398 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1399 {
1400 	if (mididev->sc)
1401 		return USBD_IN_USE;
1402 
1403 	mididev->sc = sc;
1404 
1405 	describe_mididev(mididev);
1406 
1407 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1408 
1409 	return USBD_NORMAL_COMPLETION;
1410 }
1411 
1412 static usbd_status
1413 detach_mididev(struct umidi_mididev *mididev, int flags)
1414 {
1415 	struct umidi_softc *sc = mididev->sc;
1416 
1417 	if (!sc)
1418 		return USBD_NO_ADDR;
1419 
1420 	mutex_enter(&sc->sc_lock);
1421 	if (mididev->opened) {
1422 		umidi_close(mididev);
1423 	}
1424 	unbind_jacks_from_mididev(mididev);
1425 	mutex_exit(&sc->sc_lock);
1426 
1427 	if (mididev->mdev != NULL)
1428 		config_detach(mididev->mdev, flags);
1429 
1430 	if (NULL != mididev->label) {
1431 		kmem_free(mididev->label, mididev->label_len);
1432 		mididev->label = NULL;
1433 	}
1434 
1435 	mididev->sc = NULL;
1436 
1437 	return USBD_NORMAL_COMPLETION;
1438 }
1439 
1440 static void
1441 deactivate_mididev(struct umidi_mididev *mididev)
1442 {
1443 	if (mididev->out_jack)
1444 		mididev->out_jack->bound = 0;
1445 	if (mididev->in_jack)
1446 		mididev->in_jack->bound = 0;
1447 }
1448 
1449 static usbd_status
1450 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1451 {
1452 	sc->sc_num_mididevs = nmidi;
1453 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1454 	if (!sc->sc_mididevs)
1455 		return USBD_NOMEM;
1456 
1457 	return USBD_NORMAL_COMPLETION;
1458 }
1459 
1460 static void
1461 free_all_mididevs(struct umidi_softc *sc)
1462 {
1463 	struct umidi_mididev *mididevs;
1464 	size_t len;
1465 
1466 	mutex_enter(&sc->sc_lock);
1467 	mididevs = sc->sc_mididevs;
1468 	if (mididevs)
1469 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1470 	sc->sc_mididevs = NULL;
1471 	sc->sc_num_mididevs = 0;
1472 	mutex_exit(&sc->sc_lock);
1473 
1474 	if (mididevs)
1475 		kmem_free(mididevs, len);
1476 }
1477 
1478 static usbd_status
1479 attach_all_mididevs(struct umidi_softc *sc)
1480 {
1481 	usbd_status err;
1482 	int i;
1483 
1484 	if (sc->sc_mididevs)
1485 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1486 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
1487 			if (err != USBD_NORMAL_COMPLETION)
1488 				return err;
1489 		}
1490 
1491 	return USBD_NORMAL_COMPLETION;
1492 }
1493 
1494 static usbd_status
1495 detach_all_mididevs(struct umidi_softc *sc, int flags)
1496 {
1497 	usbd_status err;
1498 	int i;
1499 
1500 	if (sc->sc_mididevs)
1501 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1502 			err = detach_mididev(&sc->sc_mididevs[i], flags);
1503 			if (err != USBD_NORMAL_COMPLETION)
1504 				return err;
1505 		}
1506 
1507 	return USBD_NORMAL_COMPLETION;
1508 }
1509 
1510 static void
1511 deactivate_all_mididevs(struct umidi_softc *sc)
1512 {
1513 	int i;
1514 
1515 	if (sc->sc_mididevs) {
1516 		for (i = 0; i < sc->sc_num_mididevs; i++)
1517 			deactivate_mididev(&sc->sc_mididevs[i]);
1518 	}
1519 }
1520 
1521 /*
1522  * TODO: the 0-based cable numbers will often not match the labeling of the
1523  * equipment. Ideally:
1524  *  For class-compliant devices: get the iJack string from the jack descriptor.
1525  *  Otherwise:
1526  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1527  *    number for display)
1528  *  - support an array quirk explictly giving a char * for each jack.
1529  * For now, you get 0-based cable numbers. If there are multiple endpoints and
1530  * the CNs are not globally unique, each is shown with its associated endpoint
1531  * address in hex also. That should not be necessary when using iJack values
1532  * or a quirk array.
1533  */
1534 void
1535 describe_mididev(struct umidi_mididev *md)
1536 {
1537 	char in_label[16];
1538 	char out_label[16];
1539 	const char *unit_label;
1540 	char *final_label;
1541 	struct umidi_softc *sc;
1542 	int show_ep_in;
1543 	int show_ep_out;
1544 	size_t len;
1545 
1546 	sc = md->sc;
1547 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1548 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1549 
1550 	if (NULL == md->in_jack)
1551 		in_label[0] = '\0';
1552 	else if (show_ep_in)
1553 		snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1554 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
1555 	else
1556 		snprintf(in_label, sizeof(in_label), "<%d ",
1557 		    md->in_jack->cable_number);
1558 
1559 	if (NULL == md->out_jack)
1560 		out_label[0] = '\0';
1561 	else if (show_ep_out)
1562 		snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1563 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
1564 	else
1565 		snprintf(out_label, sizeof(out_label), ">%d ",
1566 		    md->out_jack->cable_number);
1567 
1568 	unit_label = device_xname(sc->sc_dev);
1569 
1570 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1571 
1572 	final_label = kmem_alloc(len, KM_SLEEP);
1573 
1574 	snprintf(final_label, len, "%s%son %s",
1575 	    in_label, out_label, unit_label);
1576 
1577 	md->label = final_label;
1578 	md->label_len = len;
1579 }
1580 
1581 #ifdef UMIDI_DEBUG
1582 static void
1583 dump_sc(struct umidi_softc *sc)
1584 {
1585 	int i;
1586 
1587 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1588 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
1589 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1590 		dump_ep(&sc->sc_out_ep[i]);
1591 	}
1592 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
1593 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1594 		dump_ep(&sc->sc_in_ep[i]);
1595 	}
1596 }
1597 
1598 static void
1599 dump_ep(struct umidi_endpoint *ep)
1600 {
1601 	int i;
1602 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1603 		if (NULL==ep->jacks[i])
1604 			continue;
1605 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1606 		dump_jack(ep->jacks[i]);
1607 	}
1608 }
1609 static void
1610 dump_jack(struct umidi_jack *jack)
1611 {
1612 	DPRINTFN(10, ("\t\t\tep=%p\n",
1613 		      jack->endpoint));
1614 }
1615 
1616 #endif /* UMIDI_DEBUG */
1617 
1618 
1619 
1620 /*
1621  * MUX MIDI PACKET
1622  */
1623 
1624 static const int packet_length[16] = {
1625 	/*0*/	-1,
1626 	/*1*/	-1,
1627 	/*2*/	2,
1628 	/*3*/	3,
1629 	/*4*/	3,
1630 	/*5*/	1,
1631 	/*6*/	2,
1632 	/*7*/	3,
1633 	/*8*/	3,
1634 	/*9*/	3,
1635 	/*A*/	3,
1636 	/*B*/	3,
1637 	/*C*/	2,
1638 	/*D*/	2,
1639 	/*E*/	3,
1640 	/*F*/	1,
1641 };
1642 
1643 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
1644 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
1645 #define MIX_CN_CIN(cn, cin) \
1646 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1647 			  ((unsigned char)(cin)&0x0F)))
1648 
1649 static usbd_status
1650 start_input_transfer(struct umidi_endpoint *ep)
1651 {
1652 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1653 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1654 	return usbd_transfer(ep->xfer);
1655 }
1656 
1657 static usbd_status
1658 start_output_transfer(struct umidi_endpoint *ep)
1659 {
1660 	usbd_status rv;
1661 	uint32_t length;
1662 	int i;
1663 
1664 	length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1665 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1666 	    ep->buffer, ep->next_slot, length));
1667 
1668 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1669 	    USBD_NO_TIMEOUT, out_intr);
1670 	rv = usbd_transfer(ep->xfer);
1671 
1672 	/*
1673 	 * Once the transfer is scheduled, no more adding to partial
1674 	 * packets within it.
1675 	 */
1676 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1677 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1678 			if (NULL != ep->jacks[i])
1679 				ep->jacks[i]->midiman_ppkt = NULL;
1680 	}
1681 
1682 	return rv;
1683 }
1684 
1685 #ifdef UMIDI_DEBUG
1686 #define DPR_PACKET(dir, sc, p)						\
1687 if ((unsigned char)(p)[1]!=0xFE)				\
1688 	DPRINTFN(500,							\
1689 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
1690 		  device_xname(sc->sc_dev),				\
1691 		  (unsigned char)(p)[0],			\
1692 		  (unsigned char)(p)[1],			\
1693 		  (unsigned char)(p)[2],			\
1694 		  (unsigned char)(p)[3]));
1695 #else
1696 #define DPR_PACKET(dir, sc, p)
1697 #endif
1698 
1699 /*
1700  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1701  * with the cable number and length in the last byte instead of the first,
1702  * but there the resemblance ends. Where a USB MIDI packet is a semantic
1703  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1704  * with a cable nybble and a length nybble (which, unlike the CIN of a
1705  * real USB MIDI packet, has no semantics at all besides the length).
1706  * A packet received from a Midiman may contain part of a MIDI message,
1707  * more than one MIDI message, or parts of more than one MIDI message. A
1708  * three-byte MIDI message may arrive in three packets of data length 1, and
1709  * running status may be used. Happily, the midi(4) driver above us will put
1710  * it all back together, so the only cost is in USB bandwidth. The device
1711  * has an easier time with what it receives from us: we'll pack messages in
1712  * and across packets, but filling the packets whenever possible and,
1713  * as midi(4) hands us a complete message at a time, we'll never send one
1714  * in a dribble of short packets.
1715  */
1716 
1717 static int
1718 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1719 {
1720 	struct umidi_endpoint *ep = out_jack->endpoint;
1721 	struct umidi_softc *sc = ep->sc;
1722 	unsigned char *packet;
1723 	int plen;
1724 	int poff;
1725 
1726 	KASSERT(mutex_owned(&sc->sc_lock));
1727 
1728 	if (sc->sc_dying)
1729 		return EIO;
1730 
1731 	if (!out_jack->opened)
1732 		return ENODEV; /* XXX as it was, is this the right errno? */
1733 
1734 	sc->sc_refcnt++;
1735 
1736 #ifdef UMIDI_DEBUG
1737 	if (umididebug >= 100)
1738 		microtime(&umidi_tv);
1739 #endif
1740 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1741 	    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1742 	    ep, out_jack->cable_number, len, cin));
1743 
1744 	packet = *ep->next_slot++;
1745 	KASSERT(ep->buffer_size >=
1746 	    (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1747 	memset(packet, 0, UMIDI_PACKET_SIZE);
1748 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1749 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1750 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
1751 			plen = 3 - poff;
1752 			if (plen > len)
1753 				plen = len;
1754 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
1755 			src += plen;
1756 			len -= plen;
1757 			plen += poff;
1758 			out_jack->midiman_ppkt[3] =
1759 			    MIX_CN_CIN(out_jack->cable_number, plen);
1760 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1761 			if (3 == plen)
1762 				out_jack->midiman_ppkt = NULL; /* no more */
1763 		}
1764 		if (0 == len)
1765 			ep->next_slot--; /* won't be needed, nevermind */
1766 		else {
1767 			memcpy(packet, src, len);
1768 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1769 			DPR_PACKET(out, sc, packet);
1770 			if (len < 3)
1771 				out_jack->midiman_ppkt = packet;
1772 		}
1773 	} else { /* the nice simple USB class-compliant case */
1774 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1775 		memcpy(packet+1, src, len);
1776 		DPR_PACKET(out, sc, packet);
1777 	}
1778 	ep->next_schedule |= 1<<(out_jack->cable_number);
1779 	++ ep->num_scheduled;
1780 	if (!ep->armed && !ep->soliciting) {
1781 		/*
1782 		 * It would be bad to call out_solicit directly here (the
1783 		 * caller need not be reentrant) but a soft interrupt allows
1784 		 * solicit to run immediately the caller exits its critical
1785 		 * section, and if the caller has more to write we can get it
1786 		 * before starting the USB transfer, and send a longer one.
1787 		 */
1788 		ep->soliciting = 1;
1789 		kpreempt_disable();
1790 		softint_schedule(ep->solicit_cookie);
1791 		kpreempt_enable();
1792 	}
1793 
1794 	if (--sc->sc_refcnt < 0)
1795 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
1796 
1797 	return 0;
1798 }
1799 
1800 static void
1801 in_intr(struct usbd_xfer *xfer, void *priv,
1802     usbd_status status)
1803 {
1804 	int cn, len, i;
1805 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1806 	struct umidi_softc *sc = ep->sc;
1807 	struct umidi_jack *jack;
1808 	unsigned char *packet;
1809 	umidi_packet_bufp slot;
1810 	umidi_packet_bufp end;
1811 	unsigned char *data;
1812 	uint32_t count;
1813 
1814 	if (ep->sc->sc_dying || !ep->num_open)
1815 		return;
1816 
1817 	mutex_enter(&sc->sc_lock);
1818 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1819 	if (0 == count % UMIDI_PACKET_SIZE) {
1820 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1821 			     device_xname(ep->sc->sc_dev), ep, count));
1822 	} else {
1823 		DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1824 			device_xname(ep->sc->sc_dev), ep, count));
1825 	}
1826 
1827 	slot = ep->buffer;
1828 	end = slot + count / sizeof(*slot);
1829 
1830 	for (packet = *slot; slot < end; packet = *++slot) {
1831 
1832 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1833 			cn = (0xf0&(packet[3]))>>4;
1834 			len = 0x0f&(packet[3]);
1835 			data = packet;
1836 		} else {
1837 			cn = GET_CN(packet[0]);
1838 			len = packet_length[GET_CIN(packet[0])];
1839 			data = packet + 1;
1840 		}
1841 		/* 0 <= cn <= 15 by inspection of above code */
1842 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1843 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1844 				 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1845 				 device_xname(ep->sc->sc_dev), ep, cn, len,
1846 				 (unsigned)data[0],
1847 				 (unsigned)data[1],
1848 				 (unsigned)data[2]));
1849 			mutex_exit(&sc->sc_lock);
1850 			return;
1851 		}
1852 
1853 		if (!jack->bound || !jack->opened)
1854 			continue;
1855 
1856 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1857 			     "%02X %02X %02X\n",
1858 			     device_xname(ep->sc->sc_dev), ep, cn, len,
1859 			     (unsigned)data[0],
1860 			     (unsigned)data[1],
1861 			     (unsigned)data[2]));
1862 
1863 		if (jack->u.in.intr) {
1864 			for (i = 0; i < len; i++) {
1865 				(*jack->u.in.intr)(jack->arg, data[i]);
1866 			}
1867 		}
1868 
1869 	}
1870 
1871 	(void)start_input_transfer(ep);
1872 	mutex_exit(&sc->sc_lock);
1873 }
1874 
1875 static void
1876 out_intr(struct usbd_xfer *xfer, void *priv,
1877     usbd_status status)
1878 {
1879 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1880 	struct umidi_softc *sc = ep->sc;
1881 	uint32_t count;
1882 
1883 	if (sc->sc_dying)
1884 		return;
1885 
1886 	mutex_enter(&sc->sc_lock);
1887 #ifdef UMIDI_DEBUG
1888 	if (umididebug >= 200)
1889 		microtime(&umidi_tv);
1890 #endif
1891 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1892 	if (0 == count % UMIDI_PACKET_SIZE) {
1893 		DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1894 			     device_xname(ep->sc->sc_dev),
1895 			     umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1896 	} else {
1897 		DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1898 			device_xname(ep->sc->sc_dev), ep, count));
1899 	}
1900 	count /= UMIDI_PACKET_SIZE;
1901 
1902 	/*
1903 	 * If while the transfer was pending we buffered any new messages,
1904 	 * move them to the start of the buffer.
1905 	 */
1906 	ep->next_slot -= count;
1907 	if (ep->buffer < ep->next_slot) {
1908 		memcpy(ep->buffer, ep->buffer + count,
1909 		       (char *)ep->next_slot - (char *)ep->buffer);
1910 	}
1911 	cv_broadcast(&sc->sc_cv);
1912 	/*
1913 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1914 	 * Running at IPL_USB so the following should happen to be safe.
1915 	 */
1916 	ep->armed = 0;
1917 	if (!ep->soliciting) {
1918 		ep->soliciting = 1;
1919 		out_solicit_locked(ep);
1920 	}
1921 	mutex_exit(&sc->sc_lock);
1922 }
1923 
1924 /*
1925  * A jack on which we have received a packet must be called back on its
1926  * out.intr handler before it will send us another; it is considered
1927  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1928  * we need no extra buffer space for it.
1929  *
1930  * In contrast, a jack that is open but not scheduled may supply us a packet
1931  * at any time, driven by the top half, and we must be able to accept it, no
1932  * excuses. So we must ensure that at any point in time there are at least
1933  * (num_open - num_scheduled) slots free.
1934  *
1935  * As long as there are more slots free than that minimum, we can loop calling
1936  * scheduled jacks back on their "interrupt" handlers, soliciting more
1937  * packets, starting the USB transfer only when the buffer space is down to
1938  * the minimum or no jack has any more to send.
1939  */
1940 
1941 static void
1942 out_solicit_locked(void *arg)
1943 {
1944 	struct umidi_endpoint *ep = arg;
1945 	umidi_packet_bufp end;
1946 	uint16_t which;
1947 	struct umidi_jack *jack;
1948 
1949 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1950 
1951 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1952 
1953 	for ( ;; ) {
1954 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1955 			break; /* at IPL_USB */
1956 		if (ep->this_schedule == 0) {
1957 			if (ep->next_schedule == 0)
1958 				break; /* at IPL_USB */
1959 			ep->this_schedule = ep->next_schedule;
1960 			ep->next_schedule = 0;
1961 		}
1962 		/*
1963 		 * At least one jack is scheduled. Find and mask off the least
1964 		 * set bit in this_schedule and decrement num_scheduled.
1965 		 * Convert mask to bit index to find the corresponding jack,
1966 		 * and call its intr handler. If it has a message, it will call
1967 		 * back one of the output methods, which will set its bit in
1968 		 * next_schedule (not copied into this_schedule until the
1969 		 * latter is empty). In this way we round-robin the jacks that
1970 		 * have messages to send, until the buffer is as full as we
1971 		 * dare, and then start a transfer.
1972 		 */
1973 		which = ep->this_schedule;
1974 		which &= (~which)+1; /* now mask of least set bit */
1975 		ep->this_schedule &= ~which;
1976 		--ep->num_scheduled;
1977 
1978 		--which; /* now 1s below mask - count 1s to get index */
1979 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1980 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
1981 		which = (((which >> 4) + which) & 0x0f0f);
1982 		which +=  (which >> 8);
1983 		which &= 0x1f; /* the bit index a/k/a jack number */
1984 
1985 		jack = ep->jacks[which];
1986 		if (jack->u.out.intr)
1987 			(*jack->u.out.intr)(jack->arg);
1988 	}
1989 	/* intr lock held at loop exit */
1990 	if (!ep->armed && ep->next_slot > ep->buffer) {
1991 		/*
1992 		 * Can't hold the interrupt lock while calling into USB,
1993 		 * but we can safely drop it here.
1994 		 */
1995 		mutex_exit(&ep->sc->sc_lock);
1996 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1997 		mutex_enter(&ep->sc->sc_lock);
1998 	}
1999 	ep->soliciting = 0;
2000 }
2001 
2002 /* Entry point for the softintr.  */
2003 static void
2004 out_solicit(void *arg)
2005 {
2006 	struct umidi_endpoint *ep = arg;
2007 	struct umidi_softc *sc = ep->sc;
2008 
2009 	mutex_enter(&sc->sc_lock);
2010 	out_solicit_locked(arg);
2011 	mutex_exit(&sc->sc_lock);
2012 }
2013